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ABSTRACT

The increased demand for high bandwidth communication channels has raised

significant interest in overcoming the data rate limitations of fiber

communication systems. In this thesis a solution is proposed: controlled soliton

propagation. This solution requires the use of new technology in the form of

tunable dispersion fibers that can be tuned quickly and continuously. Assuming

such a fiber can be created, control is applied so as to produce Gaussian pulses

that overcome current fiber limitations by balancing dispersion and nonlinearity.

The pulses will experience no dispersion on average and thus allow ultra-short

pulse widths to be propagated. Simulated results suggest that this solution may

succeed in propagating ultra-short pulses where current propagation techniques

fail.
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CHAPTER 1

INTRODUCTION

The trend in the communication industry has been a shift away from copper

wires toward fiber optic communication lines. During the 1990s optical fibers

were laid across the United States to most of the communication nodes, as it

became apparent that fiber optics could deliver fast, reliable, and low cost data

transfers. Today’s demand for high bandwidth data networks has brought us to

the limits of the current fiber communication infrastructure.

In theory all that is necessary to increase bandwidth and thus data speed is to

increase the frequency with which the transmitter is turned on and off. The

receiver would also need to change in order to decrease the error rate of symbol

recovery (i.e., mistake a ‘0’ for a ‘1’). There are many effects contributing to

errors, but they are generally termed collectively as “noise.” There are several

methods for combating noise: changing the receiver and transmitter to reduce

their contributions; using higher grade fibers; using a wavelength of light that is

less affected by noise; and applying signal processing techniques after reception

to recover the original signal. Signal processing has shown great success in

combating noise, but relies on techniques that are only valid for linear systems.

As the frequency regime shifts from the gigahertz to the terahertz data rates,

light propagation can no longer can be approximated by purely linear effects and

new technology is needed.

The phenomenon of light propagation in a fiber is generally described by the

nonlinear Schrödinger equation (NLSE), which is a partial differential equation

describing waves in a medium. The NLSE has three parameters used to describe

the medium: β, γ, and α, corresponding to the dispersion, nonlinearity, and loss,
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respectively. The effect of the nonlinearity is greater at higher frequencies and

invalidates approaches that use linear models.

The soliton has received much attention as a possible solution to this problem.

Originally a theoretical solution of the NLSE, a soliton is a localized wave that

maintains its shape exactly without pulse or spectral broadening in an ideal

lossless fiber [1]. This corresponds to a perfect balancing between the dispersion

and nonlinear optical effects. The absence of broadening is desirable since it

reduces communication errors in demodulation, as no inter-symbol interference

occurs [2]. In practice, such balancing cannot be completely realized in the

presence of attenuation. The tendency to balance without complete balancing is

a physical phenomenon; pulses that behave this way are said to experience the

soliton effect.

In 1980 at Bell Laboratories, Mollenauer, Stolen and Gordon experimentally

verified the existence of a soliton [3]. This experiment worked by modifying the

input pulse shape; the desired output is the input pulse. The input is tuned by

output feedback to obtain a soliton. In practice fiber properties are not well

known, especially the nonlinear and dispersion coefficients, and thus even if the

proper pulse shape were obtained, it would propagate as a soliton only for a

small section of the fiber until the fiber’s properties varied too much. The

current industrial choice for obtaining a similar result is dispersion management

(DM). DM uses alternating length of positive and negative dispersion fibers to

keep the pulse width within a certain tolerance. While traveling through the

positive fiber the pulse width expands; it then contracts through the negative

fiber until it is restored to the initial width, at which point the system is

repeated. DM accounts for nonlinearity, but the spliced lengths of fiber fail to

attain the required resolution needed to balance the high nonlinearity

experienced by ultra-short pulse widths. Current research in the propagation of

solitons involves pre-shaping the input pulse using adaptive techniques [4], [5].

Treating the fiber as an input to output map, if the inverse of this map can be

found then the proper input to the fiber can be calculated as a function of the
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desired output.

Recent technical developments in materials science [6] have enabled the

production of tunable dispersion materials. This presents the possibility, at least

in principle, of varying the dispersion map continuously over the length of the

fiber using closely spaced sections of tunable dispersion material. Each discrete

sections of fiber would be controlled individually, allowing a desired dispersion

to be selected. The fiber’s dispersion would be controlled in space rather than in

time. Such a fiber would open the door to controlled dispersion management

using feedback, provided that pulse broadening is measurable, and that the

dispersion can be tuned fast enough.

This thesis considers such a theoretical fiber and employs it as a means of

creating solitons for any pulse width, thus providing a solution for data

communication. A model for light wave propagation in a fiber is developed from

the foundation of Maxwell’s equations to describe the dynamics of the pulse

width. In Chapter 6 two control laws are developed that demonstrate the

creation of a soliton, with and without chirp. These theoretical results are

compared in Chapter 7 to current fiber communication techniques.
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CHAPTER 2

MODEL DEVELOPMENT

Maxwell’s equations are considered the de facto first principles of electricity and

magnetism. From these equations the NLSE is derived. Then, using the

variational approach, an ansatz describing an envelope equation is assumed.

This allows the construction of a second order ODE describing the dynamics of

the pulse width. This approach has been experimentally verified and is shown to

be one of the best of the current models for describing light propagation [1].

2.1 The NLSE

The derivation of the NLSE from Maxwell’s equation will roughly follow the

derivation by Agrawal [7]. In differential form Maxwell’s equations are:

~∇× ~E = −µ0
∂ ~H

∂t
, (2.1)

~∇× ~H =
∂

∂t
(ε0 ~E + ~P ), (2.2)

~∇ • ~H = 0, (2.3)

~∇ • ~E = ~∇ • ~P = 0, (2.4)

where ~E = ~E(x, y, z, t) and ~H = ~H(x, y, z, t) are the electric and magnetic fields.

The constants ε0 and µ0 are the free-space dielectric permittivity and magnetic

permeability respectively. The polarization vector ~P = ~P (x, y, z, t) represents the

response of the medium to the electromagnetic (EM) wave.

The polarization vector takes into account the full response of the medium to
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the excitation of an incident EM field. The polarization is considered to be the

superposition of both linear and nonlinear contribution, described as

~P (x, y, z, t) = ~PL(x, y, z, t) + ~PNL(x, y, z, t). (2.5)

The specific forms of these contributions are generally determined through

measurement, although some molecular models exist. One can also characterize

the contribution of the material to the electric field through the electric

susceptibility χe, defined for an instantaneous response through

~P = ε0χe
~E. (2.6)

In general a polarization response cannot be instantaneous, so the more general

definition of polarization written as an impulse response to an electric field is

~P (t) =

∫ ∞

−∞
χe(t− τ) ~E(τ)dτ. (2.7)

Models for light wave propagation in fiber are developed using Maxwell’s

equations in the same manner as the wave equation in free-space. The difference

is due to propagation in a material which causes ~P to be non-zero. Taking the

curl of (2.1) and then substituting in (2.2) gives

~∇× (~∇× ~E) = −µ0

(
~∇× ∂ ~H

∂t

)
= −µ0

∂

∂t
(~∇× ~H) = −µ0

∂2

∂t2
(ε0 ~E + ~P )

= −ε0µ0
∂2 ~E

∂t2
− µ0

∂2 ~P

∂t2
. (2.8)

Using the vector identity ~∇× (~∇× ~E) = ~∇(~∇ • ~E)−∇2 ~E and (2.4) results in

∇2 ~E = ε0µ0
∂2 ~E

∂t2
+

µ0ε0
ε0

∂2 ~P

∂t2
. (2.9)
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The standard relationship for the speed of light ε0µ0 = 1/c2 simplifies (2.9) to

∇2 ~E − 1

c2
∂2 ~E

∂t2
=

1

ε0c2
∂2 ~P

∂t2
. (2.10)

This is the familiar form of the wave equation in a material, where

~E = (Ex, Ey, Ey), ∇2 ~E = (∇2Ex,∇2Ey,∇2Ez), and ∇2 is the Laplacian operator

∇2 = ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
. There are other version of this equation where (2.4) is not

required to be zero, i.e., there is charge present in the medium [8].

In order to proceed, the polarization vector ~P must be more precisely

considered. This is done through a series expansion of the electric susceptibility

χe which gives the expression

~PL(~r, t) = ε0

∫ ∞

−∞
χ(1)(~r, t− τ) ~E(~r, τ)dτ , and

~PNL(~r, t) = ε0

∫∫∫

<3

χ(3)(~r, t− τ1, t− τ2, t− τ3)×
(
~E(~r, τ1) • ~E(~r, τ2) • ~E(~r, τ2)

)
dτ1dτ2dτ3, (2.11)

where ~r represents the spatial component (x, y, z). Notice that only the first and

third terms of the susceptibility expansion are used. This is because χ(2) = 0 in

silica (the fiber material) and the remaining higher order terms are considered to

be small and are therefore ignored for the purposes of this derivation [9].

The first assumption of the derivation is that the modes are weakly guided.

This approximation is based on the condition that the index of refraction of the

cladding and core of the fiber are nearly identical, n1
∼= n2. This groups together

the nearly degenerate modes. Also, it is assumed that only the fundamental

mode HE11 propagates, i.e., the fiber is single mode. Under these assumptions

the electric field ~E will have only one non-vanishing component and thus will

reduce (2.10) and (2.11) to scaler equations, greatly reducing the complexity.

The next simplification occurs from the slowly varying envelope approximation

(SVEA). This approximation assumes that the signal under consideration has a
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central carrier frequency ω0 and all other frequency components are concentrated

near that carrier. The envelope is then described by the distribution of

components around ω0 and it slowly varies because not all components are at

the carrier frequency. Solutions to (2.10) will then be of the form

E(x, y, z, t) =
1

2

(
T (x, y, z, t)e−iω0t + T ∗(x, y, z, t)eiω0t

)
. (2.12)

The complex function T (x, y, z, t) is called the complex envelope of the carrier

ω0. Using the SVEA (2.12) for the electric field in (2.10) with (2.11) results in

(
∇2 − 1

c2
∂2

∂t2

)(
1

2
Te−iω0t + T ∗eiω0t

)
=

1

c2
∂2

∂t2

∫ ∞

−∞
χ(1)

(
1

2
Te−iω0τ + T ∗eiω0τ

)
dτ

+
1

c2
∂2

∂t2

∫∫∫

<3

χ(3)

(
Te−iω0τ1 + T ∗eiω0τ1

2

)(
Te−iω0τ2 + T ∗eiω0τ2

2

)

×
(
Te−iω0τ3 + T ∗eiω0τ3

2

)
dτ1dτ2dτ3. (2.13)

The main contributions to the triple integral in (2.13) will occur when τ1 ∼= t,

τ2 ∼= t, and τ3 ∼= t, so that there is roughly a coefficient of e−iωt on the right side

of (2.13). If the ways to obtain terms that contain e−iω0t are summed and

equated to the same exponential on the right, three ways will be found: the

distinct ways to write the product (Te−iω0t)(Te−iω0t)(T ∗eiω0t). After summing

and equating like exponentials, the resulting equation is

(
∇2 − 1

c2
∂2

∂t2

)(
Te−iω0t

)
=

1

c2
∂2

∂t2

∫ ∞

−∞
χ(1)Te−iω0τ

+
3

4c2
∂2

∂t2

∫∫∫

<3

χ(3)Te−iω0τ1Te−iω0τ2T ∗eiω0τ3dτ1dτ2dτ3.

(2.14)
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Let S(~r, t) = T (~r, t)e−iω0t. In terms of S, (2.14) becomes

∇2S − 1

c2
∂2S

∂t2
=

1

c2
∂2

∂t2

∫ ∞

−∞
χ(1)(t− τ)S(τ)dτ

+
3

4c2
∂2

∂t2

∫∫∫

<3

χ(3)(~t− ~τ)S(τ1)S(τ2)S
∗(τ3)d~τ , (2.15)

where ~t− ~τ = (t− τ1, t− τ2, t− τ3) and the spatial variable is suppressed for

simplicity.

Now consider the Fourier transform of S(~r, t) denoted by Ŝ(~r, ω). The

transform of the left side of equation (2.15) is

(
∇2 +

ω2

c2

)
Ŝ(~r, ω). (2.16)

Denote χ̂(1)(~r, ω) =
∫∞
−∞ χ(1)(~r, t)eiωτdτ as the Fourier transform of the linear

susceptibility. It is clear that the linear term on the right side of (2.14) is a

convolution, making its transform

−ω2

c2
χ̂(1)(~r, ω)Ŝ(~r, ω). (2.17)

Subtracting this term from the left side of (2.16) yields

(
∇2 +

ω2

c2
(1 + χ̂(~r, ω))

)
Ŝ = (∇2 + k̃2(ω))Ŝ, (2.18)

corresponding to the linear part of the transform of (2.15), where

k̃(ω) =
ωn(ω)

c
, and n(ω) =

√
1 + χ̂(1)(ω). (2.19)

These symbols should be familiar, as k(ω) is known as the wave number and

n(ω) the general medium index of refraction. In the case of an instantaneous

linear material response in the fiber core, the two are constants.
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The last term of (2.15) is the nonlinear triple integral term. After defining

χ̂(3)(~r, u, v, ω) =

∫∫∫

<3

χ̂(3)(~r, ~τ)eiuτ1eivτ2eiωτ3d~τ , (2.20)

the three-dimension Fourier transform, the nonlinear term also contains a

convolution. Applying the transform will yield the transformed nonlinear

component of (2.15),

− 3ω2

16π2c2

∫∫

<2

χ̂(3)(u, v − u, v − ω)Ŝ(u)Ŝ(v − u)Ŝ∗(v − ω)dudv, (2.21)

where again for simplicity the spatial dependence has been omitted. The final

form of the Fourier transform of (2.15) is

(
∇2 + k̃2(ω)

)
Ŝ = − 3ω2

16π2c2

∫∫

<2

χ̂(3)(u, v− u, ω− v)Ŝ(u)Ŝ(v− u)Ŝ∗(v−ω)dudv.

(2.22)

Postulating that Ŝ is separable into transverse and longitudinal variables,

Ŝ(x, y, z, ω) = F (x, y, ω)Û(z, ω)eiβ(ω)z. Separation of variables is often a

reasonable assumption when analyzing waves. Substituting, the left side of

(2.22) becomes

(
∇2

TF
)
Ûeiβ(ω)z +

(
Ûzz + 2iβ(ω)Ûz − β2(ω)Û

)
Feiβ(ω)z + k̃2(ω)FÛeiβ(ω)z, (2.23)

where ∇2
T is the transverse Laplacian, ∇2

T = ∂2

∂x2 +
∂2

∂y2
and the z subscript

denotes a derivative. In the SVEA, since the envelope is slowly varying, Ûzz is

assumed to be small in comparison to the other terms. Dropping this term leaves

(
∇2

TF +
(
k̃2(ω)− β2(ω)

)
F
)
Ûeiβ(ω)z + 2iβ(ω)ÛzFeiβ(ω)z. (2.24)

The left–hand side resembles the standard free-space wave equation in the

frequency domain. By imposing the weakly guiding conditions this term can be

set equal to zero, ∇2
TF +

(
k̃2(ω)− β2(ω)

)
F = 0. This corresponds to choosing
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β as the propagation constant of the fundamental mode and F (x, y, ω) to satisfy

the index of refraction requirements at the core-cladding interface. The resulting

simplification of (2.22) is

2iβ(ω)ÛzF = − 3ω2

16π2c2

∫∫

<2

χ̂(3)F (u)F (v − u)F ∗(v − ω)

× Û(u)Û(v − u)Û∗(v − ω)ei∆β(ω)zdudv, (2.25)

where ∆β(ω) = β(u) + β(v − u)− β(v − ω)− β(ω). Equation (2.25) corresponds

to the general form of the slowly varying NLSE in the frequency domain.

The slowly varying NLSE (2.25) can be simplified further by removing the

transverse dependence. This is done by confining (x, y) to the fiber core [10],

where the nonlinear susceptibility χ(3) is assumed to be independent of (x, y),

and then integrating over the area of (x, y). This integration is described by

R1(ω) =

∫∫

<2

F (x, y, ω)dxdy, and (2.26)

R2(u, v, ω) =

∫∫

<2

F (x, y, u)F (x, y, v)F ∗(x, y, ω)dxdy; (2.27)

which puts equation (2.25) in the form

ÛzR1(ω) = − 3ω2

32iπ2β(ω)c2

∫∫

<2

χ̂(3)R2(u, v − u, v − ω)ei∆β(ω)zdudv. (2.28)

Since β(ω) depends on the cladding and core materials index of refraction, β is

bounded by n2
2k

2(ω) ≤ β2(ω) ≤ n2
1k

2(ω). Then n2 ≤ β2(ω)
k2(ω)

≤ n1; despite the

frequency dependence, in the weakly guided condition n1
∼= n2,

β2(ω)
k2(ω)

is

approximately a constant. In practice R1 and R2 are usually only weakly

dependent on frequency and are generally considered constants [7]. Defining the

constant ξ = 3ω2R2

32π2β(ω)c2R1

yields

Ûz = iξ

∫∫

<2

χ(3)Û(u)Û(v − u)Û∗(v − ω)ei∆β(ω)z. (2.29)
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The nonlinear susceptibility in its simplest form would be a Dirac delta function

multiplied by a constant, χ(3)(x, y, z, t1, t2, t3) = constant • δ(t1, t2, t3). Then the

transform would also be a constant and can be included by defining ξ′ = ξχ̂(3),

resulting in

Ûz = iξ′
∫∫

<2

Û(u)Û(v − u)Û∗(v − ω)ei∆β(ω)z. (2.30)

Consider the power series expansion of β(ω) around ω0:

β(ω) = β0 + β1(ω − ω0) +
β2

2
(ω − ω0)

2 +O(3). (2.31)

This will allow the exponent to be simplified as

∆β = β(u) + β(v − u)− β(v − ω)− β(ω)

=
β2

2

[
(u− ω2

o) + (v − u− ω0)
2 − (v − ω − ω0)

2 − (ω − ω0)
2
]
, (2.32)

where the higher order terms have been truncated.

Finally, define the envelope in the spectral domain as

Â(z, ω − ω0) = Û(z, ω)ei(β2/2)(ω−ω0)2z. (2.33)

Applying this to (2.30) gives the equation

Âz(z, ω)− i
β2

2
ω2Â(z, ω) = iξ′(ω − ω0)

∫∫

<2

Â(z, u)Â(z, v − u)Â∗(z, v − ω)dudv,

(2.34)

where ξ′(ω − ω0) represents the frequency shift. The result of applying the

inverse Fourier transform is the NLSE:

i
∂A

∂z
= (β2/2)

∂2A

∂t2
− γ|A|2A, (2.35)

where the constant γ, the Kerr coefficient, is generally associated with the

nonlinearity of the medium.
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The purpose of this derivation is to both offer insight into where this equation

comes from and to shed light on the approximations involved. This is the

generally accepted mathematical device for the analysis of nonlinear pulse

propagation in fibers. Some of the simplifications are not strictly necessary and

result in additional terms, which have been omitted. For example, including the

third order term β3 from the expansion of β results in additional terms

corresponding to the shock effect and the delayed Raman response [7].

The most significant term that was omitted is the term corresponding to

attenuation. The total energy in the pulse is

E =

∫ ∞

−∞
|A(z, t)|2dt. (2.36)

Taking the derivative with respect to z yields

dE

dz
=

∫ ∞

−∞
[A(z, t)A(z, t)∗]zdt =

∫ ∞

−∞
[AA∗

z + AzA
∗]dt. (2.37)

Then substituting the NLSE (2.35) in (2.37) and integrating by parts yields

dE/dz = 0. This shows that conservation of energy holds [1]. In practice

attenuation can be applied by considering β2 complex, where the imaginary

component represents loss. Writing the attenuation term explicitly results in a

modified NLSE,

i
∂A

∂z
= (β2/2)

∂2A

∂t2
− γ|A|2A− iαA, (2.38)

where α is the attenuation coefficient of the fiber.

The model derived in the next section will require that conservation of energy

hold. Loss in general is extremely small and can be compensated for through the

use of optical amplifiers as demonstrated by Mollenauer et al. [11]. In general

the model will still be valid, but the values of the coefficients will be modified as

a result of adding amplifiers into fiber length.
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2.2 The Variational Model

The variational approach employs a concept similar to the Hamiltonian used in

physics. The concept is to apply the calculus of variations to associate

differential equations with real-valued functions such that the extremal of the

functional coincides with the solution of the differential equation. In general the

functionals correspond to energy terms. In the Hamiltonian such terms would be

the kinetic and potential energies. The general form of the energy function is

J(y) =

∫ b

a

L (x, y(x), y′(x)) dx, (2.39)

where the function L (x, y(x), y′(x)) is called the Lagrangian. The reduction to

the ODE occurs by requiring the function y(x) to be a minimum for the energy

functional J(y). This results in the ODE

∂L

∂x
− ∂

∂x

(
∂L

∂y′

)
= 0, (2.40)

referred to as Euler’s equation.

Anderson [12] found that there existed a Lagrangian for a system of equations

equivalent to the NLSE (2.35). This required looking at the calculus of

variations applied to coupled systems of partial differential equations. For

two–dimensional systems, the functionals will be of the form

J(u, v) =

∫∫

<2

L(x, y, u, v, ux, vx, uy, vy)dxdy. (2.41)

Then the equivalents to Euler’s equation (2.40), of (u(x, y), v(x, y)) being a

minimum of J(u, v) are the conditions

∂L

∂u
− ∂Lux

∂x
− ∂Luy

∂y
= 0, and (2.42)

∂L

∂v
− ∂Lvx

∂x
− ∂Lvy

∂y
= 0, (2.43)
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where the subscripts denote derivatives. The equivalent functional for the NLSE

is

L(u, v) =
i

2
(uvx − vux)−

β2

2
uyvy +

γ

2
u2v2, (2.44)

with the identification x = z, y = t, u = A, and v = A∗; then

L =
i

2
(AA∗

z − A∗Az)−
β2

2
AtA

∗
t +

γ

2
A2A∗2 . (2.45)

Applying the conditions for a minimum: (2.42) corresponds to the NLSE (2.35)

and (2.43) corresponds to the complex conjugate of the NLSE.

The variational approach uses the Lagrangian found by Anderson [12] and

combines it with the Ritz procedure [13]. The Ritz procedure reduces the

infinite space of the forms of the envelope A(z, t) to a space of

finitely-parameterized pulse shapes. Then minimizing the functional (2.45) over

this restricted class will result in differential equations that describe the

evolution of the pulse parameters.

A commonly used envelope form is the class of parameterized Gaussians.

There are several reasons to choose this class over other pulses. It is a realistic

shape, and it is often used in experiments [7]. Also, the Gaussian has been shown

to retain its shape for both numerical simulation and experimentation in realistic

nonlinear fibers under normal dispersion and low nonlinearity conditions. Such a

class can be applied to a length of the fiber without concern for the pulse shape

leaving the chosen class. Since in the linear limit the Gaussian pulse will reduce

exactly to the NLSE (2.35), Gaussian pulses of the form

A(z, t) = M(z)exp

[
−t2

(
1

2a(z)2
− ib(z)

)]
, (2.46)

are a better choice than other soliton solutions such as hyperbolic secant shaped

pulses.

Inserting the ansatz (2.46) into the Lagrangian L(A,A∗) (2.45), and

14



integrating over time leaves only the space integral

J(A,A∗) =

∫

<
〈L〉dz, (2.47)

where

〈L〉 =
√
π

2

[
ia

(
M

dM∗

dz
−M∗dM

dz

)
+ |M |2a3 db

dz
− a3|M |2β2

2

(
4b2 +

1

a4

)

− 1√
2
γa|M |4

]
. (2.48)

Applying the calculus of variations to minimize the functional (2.47) results in

four equations derived in minimizing with respect to the parameters describing

the pulse, namely M(z), M∗(z), a(z), and b(z). The coupled ODEs are

δ〈L〉
δM

= 0 ⇒ d

dz
(iaM∗) = −ia

dM∗

dz
+M∗a3

db

dz
− a3M∗β2

2

(
4b2 +

1

a4

)

−
√
2γa|M |2M, (2.49)

δ〈L〉
δM∗ = 0 ⇒ d

dz
(iaM) = −ia

dM

dz
+Ma3

db

dz
− a3M

β2

2

(
4b2 +

1

a4

)

−
√
2γa|M |2M, (2.50)

δ〈L〉
δa

= 0 ⇒ i

(
M

dM∗

dz
−M∗dM

dz

)
+ 3|M |2a2 db

dz
− 6β2a

2b2|M |2 + β2

2

|M |2
a2

− 1√
2
γ|M |4 = 0, and (2.51)

δ〈L〉
δb

= 0 ⇒ d

dz
(a3|M |2) = −4β2ba

3|M |2. (2.52)

Subtracting (2.49)×M from (2.50)×M∗ results in

d

dz
(a|M |2) = 0, (2.53)

while adding (2.49)×M to (2.50)×M∗ results in

i

(
M∗dM

dz
−M

dM∗

dz

)
= |M |2

[
a2

db

dz
− a2

β2

2

(
4b2 +

1

a4

)
−
√
2γ|M |2

]
. (2.54)
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The first equation (2.53) is equivalent to the conversation of energy result

already obtained from the NLSE, which can be stated as

a(z)|M(z)|2 = constant = a0|M0|2 = a0P0 = E0, (2.55)

where P0 is the peak power and E0 is a multiple of the pulse energy. Applying

this result to (2.52) yields
da

dz
= −2β2a(z)b(z). (2.56)

Using the like terms (2.51) and (2.54), the result can be combined and simplified

to yield

a
db

dz
− 2β2ab

2 +
β

2a3
+

γ

2
√
2

|M |2
a

. (2.57)

Replacing the constant given by (2.55) with |M |2,

|M |2 = a(z)|M(z)|2
a(z)

=
a0P0

a(z)
(2.58)

allows equation (2.57) to simplify:

a
db

dz
= 2β2ab

2 − β

2a3
− γa0P0

2
√
2a2

. (2.59)

After differentiating (2.56),

d2a

dz2
= −2β2

(
a
db

dz
+ b

da

dz

)
; (2.60)

the result can be written as

a
db

dz
= −b

da

dz
− 1

2β2

d2a

dz2
. (2.61)

Equating (2.59) and (2.61) yields the second order ODE

d2a

dz2
=

β2
2

a(z)3
+

β2a0γP0√
2a(z)2

. (2.62)
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In order to simplify the number of variables, the constant κ = γP0√
2
will be used,

resulting in a second order differential equation

d2a

dz2
=

β2
2

a(z)3
+

β2a0κ

a(z)2
. (2.63)

The variational model has been demonstrated to yield results that closely

correlate to simulations of the NLSE [1]. This model will be used to develop

control laws that produce solitons. The input to this system, the dispersion

coefficient β2, enters the system in both a squared and linear manner, making

this system radically different from classical control systems.
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CHAPTER 3

TUNABLE DISPERSION MATERIALS

In this chapter tunable dispersion technology is examined. This encompasses a

large field of devices including fiber gratings, thin film etalons, and bulk optics.

Each has both positive and negative features, making it unclear which method

will achieve the theoretical fiber we visualize; therefore, this chapter will give a

brief overview of each area.

Using fiber gratings to create tunable dispersion is usually accomplished by

incorporating a small fiber grating into a long length of the fiber. The grating

adds additional dispersion to the system. It is normally used as a compensator

because it counteracts the dispersion and nonlinear effects that result from

propagating a pulse down a long section of fiber. The basic principle behind

almost all fiber grating dispersion compensators is Bragg reflection.

The dispersion is tuned by modifying the grating spacing through a variety of

methods. To date, thermal methods have been the most successful commercially

because of their high reliability, low polarized mode dispersion (PMD) and lack

of moving parts [6]. The primary mechanism is the application of heat or cooling

to the grating. The latest technology embeds heating elements in a thin film

along the outside of the fiber at the site of the grating [14]. Then a current is

applied, resulting in a I2R heating. One of the primary limitations of such

gratings is the slow response time.

An alternative to thermal gratings is strain gratings. These grating are tuned

by applying strain, usually accomplished through piezo-electric materials. The

advantage of strain gratings is that response times may be more than one

hundred times faster than those of thermally tuned gratings [6]. Also, straining
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Figure 3.1: Schematic of multi-cavity etalon tunable dispersion compensator.
The etalons have a reflective interface between each cavity with only R being
close to 100% reflective.

can in principle change a Bragg resonance by more than ten times the maximum

thermal change, which results in larger tuning ranges; however, this is at the

expense of long-term reliability. Strain gratings are also limited in applicability

due to excess PMD.

While it is more common to introduce small lengths of fiber grating as a

compensator, gratings over large area of the fiber have been demonstrated in

telecom systems [15]. This provides almost arbitrary dispersion and dispersion

slope over large bandwidths. The problem from a feedback standpoint is that

such fibers cannot be easily tuned, since their length precludes the strain and

thermal tuning possible with shorter gratings.

The etalon is a tunable dispersion device whose basic operation is

resonance-based. As shown in Figure 3.1, a cavity consists of N reflective

interfaces with varying percentages of reflectivity [16]. The arrows represent the

light path. The cavities and interfaces are built so as to generate the desired

dispersion. Each cavity is constructed so that a resonance will be experienced at

a center frequency. Modifying the number of cavities, spacing, and strain of the

material will affect where the resonance occurs and thus the amount of group

delay experienced by a light wave. Multiple etalons can be spread along the
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fiber so that the dispersion map can be tuned appropriately. Tunability is

achieved through strain on one or more of the cavities of etalon. This strain can

be applied by external heating or by applying a voltage across the material.

Voltage straining necessitates an analog range in order to achieve the desired

strain. To fine tune the dispersion along a fiber, multiple devices must be used.

A drawback of tunable resonant dispersion compensators is that typically they

have large loss due to coupling to bulk optics or planar waveguides. Typical

insertion loss is 4-6 dB as compared to 2-3 dB for tunable fiber gratings [6].

Bulk optic techniques use a dispersion compensation mechanism that is

directly embedded throughout the length of the fiber. This is in contrast to

methods previously discussed, which require the addition of devices spaced along

the length of fiber, and which incur insertion loss. Some of the most promising

work is the development of tunable photonic band gap fibers. Photonic band

gap fibers use alternating layers of dielectric material, which give rise to

two-dimensional Bragg scattering, forming a photonic band gap in the cladding.

Frequencies which lie within the photonic band gap are not allowed to propagate

within the cladding and are localized in the low index fiber core. One design

uses a solid silica core surrounded by a triangular lattice of air holes. The holes

are filled with a high index liquid, n589nm = 1.80 [17]. The index of the material

within the holes is adjusted continuously by varying the temperature. This leads

to changes in the photonic band gap spectra from the spacing and widths of the

band gaps.

Varying the geometry of the holes and using different liquids can result in a

wide range of possible dispersion ranges. In Figure 3.2, which is taken from [18],

two liquids are used in a hexagonal pattern to generate very high negative

chromatic dispersion values, D = − 19 000 ps/(nm·km). These fibers are limited

in that dispersion is tuned thermally and the response is slow. Also, the high

dispersion values available do not necessarily coincide with large ranges. There

may be only a small range of dispersion values possible, but they may be at

extreme values. Despite these issues, the photonic band gap fiber’s low loss and
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Figure 3.2: Cross-sectional view of the dual-core liquid-filled photonic core fiber
for dispersion compensation. Very large negative dispersion can be generated
through the choice of geometry and liquids.

the continuous control along the fiber make it a strong contender for matching

the properties we desire for feedback control.

While tunable dispersion fibers have been developed, they are still severely

limited in their ability to implement standard control algorithms. The physical

object considered in this thesis does not yet exist, but the breakthroughs in

tunable dispersion material should be treated as opportunities to explore

possible uses for such a material. Our vision is to incorporate it into a tunable

dispersion fiber that could be controlled by actuators that would control the

dispersion over an infinitely small length dl, over the total fiber length L. These

actuators will take some kind of signal and convert it into the appropriate

dispersion within the fiber. These sections can be made as small as desired so

that the dispersion can be changed continuously along the fiber. Coupling

between different sections would allow the interfaces between section lengths to

be controlled. The theorized result is a fiber in which the dispersion map can be

controlled continuously and actuators can respond quickly enough to render the

response time approximately instantaneous.
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CHAPTER 4

INTRODUCTION TO THE NORMAL FORM

Before applying control to the model developed in Chapter 2, it is important to

understand normal form theory. The normal form provides a tool for finding a

coordinate system in which the dynamical system takes the “simplest” form.

The coordinate transformation will be derived as well as the resulting “simplest”

dynamical system. The method is local in the sense that the transformation and

resulting system are valid only in a neighborhood of a known solution. In

addition, the linear part of the system will determine the structure of the

resultant form; the higher order dynamics will only affect the parameter values

of the transformed system.

This chapter will present an introduction to the normal form as in [19]. The

first requirement is that the transform be local in terms of a known solution. In

this case a fixed point will be used. By definition, at a fixed point the vector

field is zero and thus the solution at this point is known for all time. Consider

the system

ẇ = W (w), w ∈ R
n, (4.1)

with a fixed point at w = w0. Performing the coordinate shift

v = w − w0, v ∈ R
n, (4.2)

shifts the fixed point to the origin and transforms (4.1) into

v̇ = W (v + w0) ≡ H(v). (4.3)
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The next step is to break the system into linear and nonlinear parts by writing

(4.3) as

v̇ = ∇H(0)v + H̄(v), (4.4)

where H̄(v) = H(v)−∇H(0)v. Notice that H̄ now contains only dynamics of

order two and above. Now the linear part should be placed in real Jordan

canonical form via the transformation

v = Tx, (4.5)

which puts (4.4) into the form

ẋ = T−1∇H(0)Tx+ T−1H̄(Tx) = Jx+ F (x), (4.6)

where J and F are defined as

J ≡ T−1∇H(0)T , and (4.7)

F (x) ≡ T−1H̄(Tx). (4.8)

The fixed point has been moved to the origin and the system has been put in

the real Jordan form. Now the nonlinear part must be simplified. The Taylor

expansion will be applied to F (x) which results in (4.6) becoming

ẋ = Jx+ F2(x) + F3(x) + ...+ Fr−1(x) +O(|x|r), (4.9)

where Fi(x) represents the order i terms. We introduce the close-to-identity

coordinate transformation x = Γ(y), given by

x = y + Γ2(y) + Γ3(y) + ...+ Γr−1(y) +O(|y|r). (4.10)

The sequence of coordinate transformations will be considered at each order.
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4.1 Second Order Terms

Only the second order terms of the transform will be considered for the first

coordinate transformation, thus

x = y + Γ2(y). (4.11)

Following [19], we substitute (4.11) into (4.9) and obtain

ẋ = (I +∇Γ2(y))ẏ = Jy + JΓ2(y) + F2(y + Γ2(y))

+ F3(y + Γ2(y)) + ...+ Fr−1(y + Γ2(y)) +O(|y|r). (4.12)

Each term Fk(y + Γ2(y)), for 2 ≤ k ≤ r − 1, can be written as

Fk(y) +O(|y|k+1) + ...+O(|y|2k). (4.13)

Then (4.12) becomes

(I +∇Γ2(y))ẏ = Jy + JΓ2(y) + F2(y) + F̃3(y)

+ ...+ F̃r−1(y) +O(|y|r), (4.14)

where F̃k(y) contains all terms of order k resulting from applying expansion

(4.13) to all the Fj(y) terms with j ≤ k.

For y sufficiently small, (I +∇Γ2(y))
−1 will exist, and

(I +∇Γ2(y))
−1 = I −∇Γ2(y) +O(|y|2). (4.15)

Applying (4.15) to (4.14) gives

ẏ = Jy + JΓ2(y)−∇Γ2(y)Jy + F2(y) + F̃3(y)

+ ...+ F̃r−1(y) +O(|y|r). (4.16)
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The goal is generally to put the dynamical system ẏ in the simplest form

possible, so if Γ2 can be chosen such that

∇Γ2(y)Jy − JΓ2(y) = F2(y), (4.17)

then the second order terms in ẏ will sum to zero.

Consider (4.17) as a linear equation with Γ2 unknown. Then consider Γ2(y) as

an element of P2, where Pk is the space of all homogeneous polynomials of

degree k. The map

Γ2(y) 7−→ ∇Γ2(y)Jy − JΓ2(y) (4.18)

is a linear map from P2 into P2. It is not surprising that the mapping

Γk(y) 7−→ ∇Γk(y)Jy − JΓk(y) (4.19)

will also be a linear map from Pk into Pk for every order k. Relating to

traditional terminology, this map is denoted as

L
(k)
J (Γk(y)) ≡ [Γk(y), Jy] = (∇Γk(y)Jy − JΓk(y)), (4.20)

where [·, ·] denotes the Lie bracket operation.

Returning to the second order term (4.17), this equation,

−L
(2)
J (Γ2) = F2(y), (4.21)

is equivalent to solving a linear system of the form Ax = b with A = −L
(2)
J (·),

x = Γk(y), and b = F2(y). If F2(y) is in the range of L
(2)
J (·) then all second order

terms can be eliminated. This is computed by applying a finite dimensional

version of the Fredholm alternative:

b ∈ RangeA ⇔ b ∈ (Ker A∗)⊥. (4.22)
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Second order terms can be simplified by the choice of Γ2. The terms that are left

will be denoted by

F r
2 (y) ∈

(
KerL

(2)
J (·)

)⊥
. (4.23)

4.2 Higher Order Terms

Now consider the third order terms through the map

y 7−→ y + Γ3(y). (4.24)

After applying the same sequence of algebraic manipulations the result will be

ẏ = Jy + F r
2 (y) + JΓ3(y)−∇Γ3(y)Jy + F̃3(y) + F̃4(y)

+ ...+ F̃r−1(y) +O(|y|r). (4.25)

This is identical to (4.17), with the remaining second order simplification and the

second order terms replaced by third order terms. The simplification of the third

order terms is identical to the second order simplification, as it involves solving

∇Γ3(y)Jy − JΓ3(y) = F̃3(y). (4.26)

The remaining third order term will then be

F r
3 (y) ∈

(
KerL

(3)
J (·)

)⊥
. (4.27)

This procedure can be followed to order r − 1 with a resulting form of

ẏ = Jy + F r
2 (y) + . . .+ F r

r−1(y) +O(|y|r), (4.28)
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where the resonant terms denoted by the superscript are

F r
k (y) ∈

(
KerLk

J(·)
)⊥

. (4.29)

Note that the resonant terms are all determined through the Jacobian J , the

linear part. It is for this reason that any system with the same eigenvalues will

locally behave similarly.
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CHAPTER 5

THE HOPF BIFURCATION

According to normal form theory, the local dynamics of a system will be

determined by the linear part of a system through its eigenvalues. In this chapter

we will review the normal form of the Poincaré-Andronov-Hopf bifurcation,

often referred to simply as the Hopf bifurcation, and examine its properties.

5.1 Hopf Normal Form

In order for a system to be transformed into a Hopf normal form, it must have

two purely imaginary eigenvalues. Since the normal form for a Hopf bifurcation

is generally described up to third order, terms up to third order will be

considered in the derivation.

Consider the system

ẋ = f(x, µ), x ∈ R
2, (5.1)

where µ is a parameterization and ∇xF (0, 0) has two purely imaginary

eigenvalues λ(0) = ±iω(0). The linear part of the system can be transformed

into real Jordan form such that ∇xf(0, µ) is of the form

∇xf(0, µ) =


 Re λ(µ) −Im λ(µ)

Im λ(µ) Re λ(µ)


 (5.2)

for µ sufficiently small, in the neighborhood of zero.

The next few steps are not strictly necessary; however, they add perspective

because the two eigenvalues will be complex conjugates. For this reason the
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system can be described by a one-dimensional dynamical system and its

complex conjugate, so solving one will also solve the conjugate.

Denoting

Re λ(µ) = |λ(µ)| cos(2πθ(µ)) and (5.3)

Im λ(µ) = |λ(µ)| sin(2πθ(µ)) (5.4)

allows (5.2) to be written as

∇xf(0, µ) = |λ(µ)|


 cos 2πθ(µ) − sin 2πθ(µ)

sin 2πθ(µ) cos 2πθ(µ)


 . (5.5)

The system (5.1) can then be written in the form


ẋ1

ẋ2


 = |λ(µ)|


cos 2πθ(µ) − sin 2πθ(µ)

sin 2πθ(µ) cos 2πθ(µ)




x

y


+


f1(x1, x2, µ)

f2(x1, x2, µ)


 , (5.6)

where f1 and f2 are nonlinear in x and represent the higher order terms. The

system can be put in the form of a complex conjugate pair by making the linear

transformation


z

z̄


 =


1 i

1 −i




y

y


 ;


x1

x2


 =

1

2


 1 1

−i i




z

z̄


 , (5.7)

resulting in the system


ż

˙̄z


 = |λ|


ei2πθ 0

0 e−i2πθ




z

z̄


+


F 1(z, z̄, µ)

F 2(z, z̄, µ)


 , (5.8)

where

F 1(z, z̄, µ) = f1(x1(z, z̄), x2(z, z̄), µ) + if2(x1(z, z̄), x2(z, z̄), µ),

F 2(z, z̄, µ) = f1(x1(z, z̄), x2(z, z̄), µ)− if2(x1(z, z̄), x2(z, z̄), µ).
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Since ˙̄z is simply the complex conjugate of ż, transforming

ż = |λ|ei2πθz + F1(z, z̄, µ) (5.9)

into normal form will also transform z̄ into normal form.

Expanding (5.9) in the Taylor series yields

ż = |λ|ei2πθz + F2 + F3 + . . .+ Fr−1 +O(|z|r, |z̄|r), (5.10)

where the Fj are polynomials in z and z̄ of order j with coefficients depending

on µ. Applying the linear map

z 7−→ z + h2(z, z̄), (5.11)

where the µ dependence exists but is not displayed, (5.10) becomes

ż

(
1 +

∂h2

∂z

)
+

∂h2

∂z̄
˙̄z = λz + λh2 + F2(z, z̄) +O(3) (5.12)

which will describe the dynamics of ż by

ż =

(
1 +

∂h2

∂z

)−1 [
λz − ∂h2

∂z̄
˙̄z + λh2 + F2(z, z̄) +O(3)

]
. (5.13)

Since locally z and z̄ can be taken sufficiently small, the inverse

(
1 +

∂h2

∂z

)−1

= 1− ∂h2

∂z
+O(2) (5.14)

will exist; therefore, up to order two,

ż = λz − λ
∂h2

∂z
z − λ̄

∂h2

∂z̄
z̄ + λh2 + F2 +O(3), (5.15)

˙̄z = λ̄z̄ + F̄2 +O(3). (5.16)
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Then the second order terms can be eliminated if an h2 can be found such that

λh2 −
(
λ
∂h2

∂z
z + λ̄

∂h2

∂z̄
z̄

)
= F2. (5.17)

This is equivalent to (4.17), so the map

h2 7−→ λh2 −
[
λ
∂h2

∂z
z + λ̄

∂h2

∂z̄
z̄

]
(5.18)

is a linear map in the space of polynomials of degree two in z and z̄ into itself;

denote this space P2. To determine if the second order terms can be eliminated,

F2 must be an element of this vector space. This can be determined by

computing the action of the linear map on a basis of P2.

P2 can be described by the basis

P2 = span {z2, zz̄, z̄2}. (5.19)

Applying the linear map (5.18) to each of the basis elements results in

λz2 −
[
λ

(
∂

∂z
z2
)
z + λ̄

(
∂

∂z̄
z2
)
z̄

]
= −λz2, (5.20)

λzz̄ −
[
λ

(
∂

∂z
zz̄

)
z + λ̄

(
∂

∂z̄
zz̄

)
z̄

]
= −λ̄zz̄, (5.21)

λz̄2 −
[
λ

(
∂

∂z
z̄2
)
z + λ̄

(
∂

∂z̄
z̄2
)
z̄

]
= (λ− 2λ̄)z̄2. (5.22)

The matrix representation of the map (5.18) on this basis is




−λ(µ) 0 0

0 −λ̄(µ) 0

0 0 λ(µ)− 2λ̄(µ)


 . (5.23)

If this matrix is full rank then F2 must be in the vector space of the linear map

and thus an h2 can be found and all second order terms eliminated. At µ = 0,

λ(0) = −λ̄(0) 6= 0; therefore, for µ sufficiently small λ(µ) 6= 0 and
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λ(µ)− 2λ̄(µ) 6= 0. This means that the matrix is full rank and all second order

terms can be eliminated from (5.15).

After the elimination of the second order terms,

ż = λz + F3 +O(4). (5.24)

Now applying the linear map for the third order coordinate transform,

z 7−→ z + h3(z, z̄) (5.25)

yields

ż =

(
1 +

∂h3

∂z

)−1 [
λz − ∂h3

∂z̄
˙̄z + λh3 + F3(z, z̄) +O(3)

]

= λz − λ
∂h3

∂z
z − λ̄

∂h3

∂z̄
z̄ + λh3 + F3 +O(4). (5.26)

As before, the third order terms can be eliminated if

λh3 − λ
∂h3

∂z
z + λ̄

∂h3

∂z̄
z̄ = F3 (5.27)

can be solved. The action of the map

h3 7−→ λh3 −
(
λ
∂h3

∂z
z + λ̄

∂h3

∂z̄
z̄

)
(5.28)

maps third order polynomials in z and z̄ into itself (P3).

The basis elements for P3 are

P3 = span {z3, z2z̄, zz̄2z̄3}. (5.29)

32



Applying the linear map (5.28) to each of the basis elements results in

λz3 −
[
λ

(
∂

∂z
z3
)
z + λ̄

(
∂

∂z̄
z3
)
z̄

]
= −2λz3, (5.30)

λz2z̄ −
[
λ

(
∂

∂z
z2z̄

)
z + λ̄

(
∂

∂z̄
z2z̄

)
z̄

]
= −(λ+ λ̄)z2z̄, (5.31)

λzz̄2 −
[
λ

(
∂

∂z
zz̄2
)
z + λ̄

(
∂

∂z̄
zz̄2
)
z̄

]
= −2λ̄zz̄2, (5.32)

λz̄3 −
[
λ

(
∂

∂z
z̄3
)
z + λ̄

(
∂

∂z̄
z̄3
)
z̄

]
= (λ− 3λ̄)z̄3. (5.33)

The matrix representation of the map (5.28) on this basis is




−2λ(µ) 0 0 0

0 −
(
λ(µ) + λ̄(µ)

)
0 0

0 0 −2λ̄(µ) 0

0 0 0 λ(µ)− 3λ̄(µ)




. (5.34)

At µ = 0, the term λ(µ) + λ̄(µ) = 0 while none of the other terms of the matrix

are identically zero. The matrix is then rank three. So for µ sufficiently small,

the third order terms not of the form z2z̄ can be eliminated. Then the normal

form up to third order is

ż = λz + e(µ)z2z̄ +O(4), (5.35)

where e(µ) is a coefficient dependent on µ, which will be determined by the

specific form of F3.

This process can be repeated through order n. At each order the

simplification will depend on whether

λh−
(
λz

∂h

∂z
+ λ̄z̄

∂h

∂z̄

)
= 0 (5.36)

for some h = znz̄m, where m+ n is the order of the term to be simplified. This
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will cause (5.36) to become

λznz̄m − (nλznz̄m +mλ̄znz̄m) = 0, (5.37)

(λ− nλ−mλ̄)znz̄m = 0. (5.38)

At µ = 0, λ(0) = −λ̄(0), which implies that if

1 +m− n = 0 (5.39)

the order m+ n cannot be eliminated. This will never occur if m and n are even

numbers; thus, all even-order terms can be eliminated and the normal form is

ż = λz + e(µ)z2z̄ +O(5)

˙̄z = λ̄z̄ + ē(µ)zz̄2 +O(5) (5.40)

in the neighborhood of µ = 0. This can be transformed back into Cartesian

coordinates by letting λ(µ) = α(µ) + iω(µ), and e(µ) = j(µ) + ik(µ). Then

ẋ1 = αx1 − ωx2 + (jx1 − kx2)(x
2
1 + x2

2) +O(5),

ẋ2 = ωx1 + αx2 + (kx1 + jx2)(x
2
1 + x2

2) +O(5). (5.41)

The transformation to normal form could have been carried out completely in

Cartesian coordinates, but both states would have to be considered, making the

computation more time consuming. The Hopf normal form is expressed in polar

coordinates as

ṙ = αr + jr3 +O(r5), (5.42)

θ̇ = ω + kr2 +O(r4). (5.43)

Given a real system the coefficients α, ω, j, k can all be determined through the

normal form method. The transformation that puts the system into the normal
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form will also be computed in the process.

5.2 Dynamics of the Hopf Bifurcation

As the Hopf normal form is associated with systems with an imaginary pole pair

crossing the imaginary axis, it has been the focus of much study. It is important

to understand the dynamics so as to understand the local dynamics of many

other similar systems. In the previous section the normal form in polar

coordinates was found to be

ṙ = α(µ)r + j(µ)r3 +O(r5),

θ̇ = ω(µ) + k(µ)r2 +O(r4). (5.44)

Near the region of interest, at µ = 0 the dynamics can be Taylor expanded

causing (5.44) to become

ṙ = αµ(0)µr + j(0)r3 +O(µ2r, µr3, r5),

θ̇ = ω(0) + ωµ(0)µ+ k(0)r2 +O(µ2, µr2, r4). (5.45)

Recall that α(0) = 0, which is why that term has been dropped from (5.45). The

subscript µ denotes a differentiation with respect to µ.

Truncating the higher order terms and defining αµ(0) ≡ d, j(0) ≡ j0,

ω(0) ≡ ω0, ωµ(0) ≡ c, k(0) ≡ k0 causes (5.45) to become

ṙ = dµr + j0r
3,

θ̇ = ω0 + cµ+ k0r
2. (5.46)

Considering only the state r, the equilibria are determined by

ṙ = 0 = req(dµ+ j0r
2
eq); (5.47)
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therefore, the equilibria are

req = 0,

√
−dµ

j0
. (5.48)

The equilibrium at the origin will always exist, but the second equilibrium will

only exist if dµ
j0

< 0.

For the second equilibrium, all that is necessary for a periodic orbit is that θ̇

be non-zero. Since ω is a constant independent of µ, this will always be the case.

Since the radius depends only on constants, this equilibrium will correspond

to a periodic orbit at this radius. Let r∗ =
√
−dµ

j0
, and perform the change of

coordinated ρ = r − r∗. The dynamics in ρ are given by

ρ̇ = ṙ = 2r(dµ+ j0r
2)

= j0r

(
dµ

j0
+ r2

)
= j0r

(
r2 − r∗2

)

= aρ(ρ+ r∗)
(
ρ+ 2r2

)
. (5.49)

The stability can be tested via the Lyapunov direct method with candidate

function V = 1
2
ρ2. If

V̇ = ρρ̇ = j0ρ
2(ρ+ r∗)(ρ+ 2r∗)

= j0ρ
2(ρ2 + 3r∗ρ+ 2r∗)

= 2j0r
∗ρ2 + 3j0r

∗ρ3 + j0ρ
4 (5.50)

is negative definite, then V is a Lyapunov function. For ρ sufficiently small near

zero, the second order term of (5.50) will dominate; the periodic orbit will then

be stable locally if j0 < 0.

Now consider the origin’s stability through the Lyapunov function V = 1
2
r2.

This will result in

V̇ = rṙ = dµr2 + j0r
4. (5.51)

Once again, the second order term dominates locally near the origin, and the
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origin will be stable if dµ < 0, or at µ = 0 if j0 < 0

To summarize, the possible cases categorized by d and j0 are:

Case 1: d > 0, j0 > 0

Origin: Unstable for µ ≥ 0; asymptotically stable for µ < 0

Periodic Orbit: Unstable for µ < 0; otherwise non-existent

Case 2: d > 0, j0 < 0

Origin: Unstable for µ > 0; asymptotically stable for µ ≤ 0

Periodic Orbit: Asymptotically stable for µ > 0; otherwise non-existent

Case 3: d < 0, j0 > 0

Origin: Unstable for µ ≤ 0; asymptotically stable for µ > 0

Periodic Orbit: Unstable for µ > 0; otherwise non-existent

Case 4: d < 0, j0 < 0

Origin: Unstable for µ > 0; asymptotically stable for µ ≤ 0

Periodic Orbit: Asymptotically stable for µ < 0; otherwise non-existent

If one considers the stability of the periodic orbit in terms of the coefficient j0

then there are two options. For j0 < 0 it is possible for the periodic orbit to

exist: (Case 2) for µ > 0 or (Case 4) for µ < 0 . In both cases the orbit is

asymptotically stable. Conversely, for j0 > 0 the periodic orbit can exist for

µ > 0 (Case 3) or µ < 0 (Case 1), but in both cases the periodic orbit is

unstable. The coefficient j0 is an indicator of whether the bifurcating periodic

orbit is stable (j0 < 0), the supercritical bifurcation, or unstable (j0 > 0), the

subcritical bifurcation.

Ignoring the higher order terms, the system is shown to have an equilibrium

at the origin, and it may have a periodic orbit. With the higher order terms the

dynamics can be verified to remain the same; i.e., for µ sufficiently small the

dynamics described by truncated form will still hold [19].

We will offer a justification of a stable periodic orbit in case 2 with µ > 0 for

the full system. Choose µ > 0 sufficiently small and consider the annulus shown

37



A

r
r

1

2

x

y

Figure 5.1: The annulus contains the limit cycle but no fixed point.

in Figure 5.1, described by

A = {(r, θ)|r1 ≤ r ≤ r2}, (5.52)

where r1 and r2 are chosen such that

0 < r1 <

√
−dµ

j0
< r2. (5.53)

On the boundary of A, at r2, the vector field given by the truncated normal

form (5.46) will have an ṙ < 0; therefore, the vector field is pointing strictly into

the interior of A. A is a positive invariant region, so A contains the stable

periodic orbit and no fixed points.

Examining the properties of the Hopf bifurcation shows that there exists an

equilibrium and that there may exist a periodic orbit. The stability of these will
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depend on the parameters.

Considering the full normal form (5.45), with µ and r sufficiently small, the

µ2r, µr3, and r5 terms can be made smaller than the rest; therefore, if r1 and r2

are also taken sufficiently small, then the annulus A will still be a positive

invariant region containing no fixed points. By the Poincaré-Bendixon theorem,

A contains a stable periodic orbit. The three other cases can be handled in the

same way with the exception of the cases where j0 > 0, when the time-reversed

flow must be utilized. For the full proof see [20].
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CHAPTER 6

SOLITONS AS A CONTROL PROBLEM

In Chapter 2 a second order ODE was derived that describes the pulse

propagation as it travels through the fiber. The first step is to convert the ODE

into a set of states and an input. Then this ODE simply looks like a nonlinear

system of the form

ẋ = f(x, u). (6.1)

Control theory has tools specifically designed to deal with systems of this

type. Converting (2.63) to the appropriate state representation results in

ȧ1 = a2,

ȧ2 =
β2
2

a31
+

β2κa0
a21

, (6.2)

where a1, a2 are states corresponding to the pulse width (a) and chirp (az), and

ȧ1 denotes the derivative of a with respect to the space variable z. The

dispersion β2 will be the input u. Figure 6.1 shows the corresponding closed-loop

block diagram.

A soliton solution to this ODE propagates with no change in width. This

H(s)

Dispersion

Control
Plant

Variational

Model

β2adesired
aout

Figure 6.1: Controlled dispersion management. Full-state feedback is applied to
the plant to continuously modify the dispersion map.
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would correspond to a stable fixed point at the desired soliton width. Since a

fixed point will only exist if a2 = 0 at the equilibrium, let the fixed point be

described by (aeq, 0). To analyze this fixed point, change coordinates to move

the equilibrium to the origin according to x1 = a1 − aeq, x2 = a2, which results

in the system

ẋ1 = f1(x) = x2

ẋ2 = f2(x) =
β2

(x1 + a0)3
+

βκa0
(x1 + a0)2

, (6.3)

where β2 has been replaced by β, accounting for the shift in coordinates.

For (aeq, 0) to be an equilibrium, the condition f2(0) = 0 must hold, which will

only be the case with the correct input. Let β be a function of both x1 and x2,

and consider the Taylor series expansion of β around x = (0, 0) given by

βi k(x) =
∂i+kβ(x)

∂xi
1 ∂x

k
2

∣∣∣∣
x=0

β =
∞∑

i,k=0

βikx
i
1x

k
2. (6.4)

The condition for a fixed point at the origin is then

f2(0) = 0 =
β2
0

a3eq
+

β0κa0
a2eq

. (6.5)

This is equivalent to a condition on the input signal,

β0 = −κa0aeq. (6.6)

Now that an equilibrium at the origin has been obtained, control must be applied

such that stable solitons are created. We consider two types of solitons, those

with and without chirp, i.e., az,eq 6= 0 and az,eq = 0, at the desired equilibrium.
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6.1 No Chirp Soliton

From (6.3) a soliton in this framework cannot exist with chirp. The fixed point

must be of the form (aeq, 0), and if the a2 component is non-zero there will not

be a fixed point. If the desired soliton does not have a chirp component, this is

not a problem. Creating a soliton corresponds to guaranteeing that the fixed

point is asymptotically stable. Let the fixed point coincide with the initial

conditions, i.e., a0 = aeq.

The stability of the fixed point is determined through the application of the

Lyapunov indirect method. If the eigenvalues of the Jacobian,

J =


 0 1

J12 J22


 , (6.7)

where

J12 = −κ

(
κ+

1

a0
β10

)
and J22 = − κ

a0
β01 (6.8)

evaluated at the equilibrium (a0, 0), are in the open left half-plane, then the full

nonlinear system is stable [21]. The eigenvalues of (6.7) are

λ1,2 =
1

2
J22 ±

√
J2
22

4
+ J12 (6.9)

These eigenvalues depend on β01 and β10, so the complex pole pair can be

arbitrarily placed in the complex plane at a point p and its complex conjugate,

such that the eigenvalues are Re{p}±Im{p}. The control conditions are

β01 = −2a0
κ

Re{p},

β10 =
κ

4a0
β2
01 −

a0
κ

(
1 + |Im{p}|2

)
. (6.10)

The eigenvalues are placed by first setting their real part, and after determining

β01, setting their imaginary part.
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The control law will then be linear of the form

β2 = β0 + β10(a− a0) + β01az. (6.11)

This control law will create a stable fixed point at the desired position assuming

the closed-loop eigenvalues are selected such that the real part is in open left

half complex plane.

6.2 Chirped Soliton

In this case the desired soliton corresponds to a stable fixed point at (aeq, az,eq).

This is impossible as a fixed point cannot have a az component due to the form

of f1(x). It is clear that control cannot create a soliton at the desired fixed

point. A solution is to produce a pulse that, on average, experiences no

dispersion, as in the dispersion managed case. The pulse will periodically return

to the desired state.

This solution corresponds to a periodic orbit of the dynamical system. It is

advantageous for the periodic orbit to be stable so that disturbances do not

cause the pulse to be lost. This is equivalent to a stable limit cycle. One

example of a stable limit cycle is the supercritical Hopf bifurcation as described

in Chapter 5. If there exists a transformation such that the system (6.3) can be

put into a Hopf bifurcation normal form, then we will have achieved our goal.

The control will be designed to ensure that the closed-loop system exhibits a

supercritical Hopf bifurcation in the normal form. This approach is similar in

spirit to the idea of controlled bifurcation explored, e.g., in [22].

From normal form theory, the normal form is determined by the eigenvalues of

the Jacobian. To obtain a Hopf bifurcation, the Jacobian at (aeq, 0) must have

eigenvalues of the form α(µ)± iω(µ) with α(0) = 0 and ω(0) 6= 0.

From Chapter 4 the next step is to transform the system so that the Jacobian

is in real Jordan form. Rather than transform our soliton system, which would
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complicate determining the desired control, we will transform the Hopf normal

form such that the linear part matches our system (6.3):

ż = G(z, 0) (6.12)

of the form

ż1 = z2 +

(
j0z1 +

k0
ω0

z2

)
(ω2

0z
2
1 + z22) +O(5)

ż2 = −ω2
0z1 + (j0z2 − k0ω0z1)(ω

2
0z

2
1 + z22) +O(5), (6.13)

which is obtained from (5.41) through the transform

z1 =
1

ω0

y2 and z2 = y1.

The function G(z, µ) is equivalent to the resonant terms F r(y) from Chapter

4. This will allow us to use these coefficients in determining the transformation

into normal from and the equivalence between variables in the soliton system

and coefficients of the Hopf normal form.

For the first order terms, since the relationship is now one to one,

α(µ) =
1

2
J22, and

ω(µ) =

√
−J12 −

J2
22

4
. (6.14)

Since µ is the bifurcation parameter which should be controlled, let β01 = µ; then

β10 =
a0
κ
(ω2

0 − κ2). (6.15)

For the second order transformation, the homological equation is

G2(y) = JΓ2(y)−∇Γ2(y)Jy + F2(y). (6.16)
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The function G2(y) can be described in terms of the Taylor series by its

coefficients, namely

G2(y) =


 g20y

2
1 + g11y1y2 + g02y

2
2

G20y
2
1 +G11y1y2 +G02y

2
2


 , (6.17)

and likewise

Γ2(y) =


 h20y

2
1 + h11y1y2 + h02y

2
2

H20y
2
1 +H11y1y2 +H02y

2
2


 . (6.18)

Applying this convention results in six equations that describe the coefficients of

G2. Substituting the equivalent values for the coefficients from the known form

of F2 (6.3) gives the linear equation




0 ω2
0 0 1 0 0

−2 0 2ω2
0 0 1 0

0 −1 0 0 0 1

−ω2
0 0 0 0 ω2

0 0

0 −ω2
0 0 −2 0 2ω2

0

0 0 −ω2
0 0 −1 0







h20

h11

h02

H20

H11

H02




=




g20

g11

g02

G20 +
ω4

0
+2ω2

0
κ2+β20κ3

a0κ2

G11

G02




. (6.19)

From the Hopf normal form, all second order terms should cancel, resulting in

G2(y) = 0. Since the linear equation (6.19) is of the form Ax = b with A of full

rank, all the second order terms of G can be set to zero; in addition, we can set

β20 = β02 = 0. Solving the system yields the second order terms of the

transformation, 


h20

h11

h02

H20

H11

H02




=




1
3

ω2

0
+2κ2

a0κ2

0

2
3

ω2

0
+2κ2

a0κ2ω2

0

0

−2
3

ω2

0
+2κ2

a0κ2

0




. (6.20)
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The third order Hopf normal form determines the radius and frequency of the

periodic orbit, so the transform must be computed to at least third order. At

this order, the homological equation results in eight equations. In terms of the

coefficients of the transformation, the linear system is Ax = b of the form




0 ω2
0 0 0 1 0 0 0

−3 0 2ω2
0 0 0 1 0 0

0 −2 0 3ω2
0 0 0 1 0

0 0 −1 0 0 0 0 1

−ω2
0 0 0 0 0 ω2

0 0 0

0 −ω2
0 0 0 −3 0 2ω2

0 0

0 0 −ω2
0 0 0 −2 0 3ω2

0

0 0 0 −ω2
0 0 0 −1 0







h30

h21

h12

h03

H30

H21

H12

H03




=




g30 +
κβ03

a0

g21

g12

g03

G30 +
ω4

0
κ2+ω2

0
κ4+3κ5a0β30−2ω6

0

3a2
0
κ4

G21

G12 − 16κ4+16ω2

0
κ2+4ω4

0

3a2
0
κ4

G03




. (6.21)

The matrix A is of rank six, and solving (6.21) requires the use of the Fredholm
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alternative. After computing

Ker(A∗) = span








3

0

ω2
0

0

0

1

0

3ω2
0




,




0

ω2
0

0

3ω4
0

−3

0

−ω2
0

0








, (6.22)

the vector b must be orthogonal to both vectors spanning this space. Since the

final form desired is (6.13), the second order gik and Gik terms can be substituted

for their counterparts. This gives two equations for determining the values of the

third order control based on the desired values of j0 and k0 of (5.41);

β03 = −8a0
3κ

j0 and

β30 =
24ω2

0a
2
0κ

2k0 − 19ω2
0κ

2 + 13κ4 + 2ω4
o

9κ5a0
. (6.23)

Since the control has created a Hopf bifurcation, the coefficient must be chosen

such that a supercritical bifurcation occurs and matches the desired periodic

orbit.

The desired soliton has the parameters (aeq, az,eq), since the fixed point can

only be set on the real axis. The best solution is to set the fixed point directly

below the desired pulse parameters as shown in Figure 6.2. Then making the

radius r = az,eq, which is valid up to second order, guarantees that the limit

cycle passes through the desired pulse characteristic once a period. To simplify,

the desired pulse parameters will be the initial condition of the pulse,
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a

az

az,eq

Figure 6.2: Limit cycle in phase space. The limit cycle passes through the
desired initial conditions.

(aeq, az,eq) = (a0, az(0)). This requires the condition

β0 = −κa20. (6.24)

The coefficients must be chosen such that a stable limit cycle is created. The

conditions for a supercritical Hopf are:

1. µ > 0

2. j0 < 0

3. d < 0

Notice that there are five parameters describing the system (j0, k0, ω0, d, µ) and

three equations for the system (the radius, frequency, and center).

Consider the frequency of the periodic orbit (5.46)

θ̇ = ω0 + j0µ+ k0r
2; (6.25)

the frequency can be split into two components, ω0 and j0µ+ k0r
2. The desired
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frequency is the Ω = θ̇ = 2π
L
, where L is the fiber length. The first order terms of

Ω, i.e. ω0, should dominate; the second order terms are more likely to fluctuate

in response to disturbances. Let ω0 = 0.9Ω, resulting in the control

β10 =
(
ω2
0 − κ2

) a0
κ
. (6.26)

There is still a free parameter, so choose a j0 < 0. From (5.48) the radius in

terms of the actual system coefficient is

r = az(0) =

√
−dµ

j0
=

√
−J22
2j0

=

√
κ

2a0j0
β01. (6.27)

Solving for the desired control yields

β01 = µ = 2r2j0
a0
κ
. (6.28)

Now solve for k0 from the remaining frequency component of (6.25):

k0 = 0.2Ω
a0j0
κβ01

. (6.29)

From (6.23) solving for the remaining control coefficients yields

β03 = −8j0a0
3κ

, (6.30)

β30 =
24ω3

0a
2
0κ

4k0 + 13ω2
0κ

4 + 13ω4
0κ

4 + 10ω6
0

9a0κ5
. (6.31)

The free parameters can be adjusted. If the fiber’s dispersion input is

bounded (that is, if we know a priori that |β(a, az)| < M for some region of

space), a trial and error process can be used to find an appropriate j0 such that

the control input satisfies them. Also the splitting of (6.25) can be performed

differently to satisfy constraints that might be placed on the control.

To summarize, we have devised control laws to create a soliton pulse with no

chirp and a pulse that experiences the soliton effect, either exactly or on
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average, for pulses that require a particular chirp.

6.3 Estimating Uncertain Parameters

In developing the control laws, the parameters a0, P0, and γ are assumed to be

constant and known. While a0 and P0 correspond to initial conditions that can

be precisely controlled, γ is dependent upon the fiber and, due to

manufacturing, may vary across the fiber within some tolerance. Since the

control law requires knowledge of the value of γ, implementation will necessitate

an estimation of nonlinearity.

Traditional control techniques involve online adaptation that continuously

updates the estimate such that the error between the real parameter and the

estimate converges to zero. This approach fails in this system as it is impossible

to distinguish between the uncertain parameter and the input. It is then

impossible to construct a Lyapunov equation that will guarantee convergence.

To overcome this limitation, by thinking of the problem as an infinite family of

plants, the problem is reduced to determining the plant that is running and then

applying the proper control for the plant. This type of problem falls under

hybrid control theory, which estimates the running process through logic based

switching.

The technique we will use is inspired by supervisory control design as

described by [23]. To better illustrate the technique, (6.3) is put in the standard

form

ẋ1 = x2

ẋ2 =
u2

(x1 + a0)3
+ γ

uP0a0√
2(x1 + a0)2

. (6.32)

To illustrate the connection to hybrid control, the plant (6.32) can be thought of

as a family of plants parameterized by γ ∈ R>0, to which corresponds a family of

controllers also parameterized by γ. Then γ is estimated by determining the
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Figure 6.3: The block diagram of the supervisor control system.

current plant that is running and choosing the appropriate controller.

The subset of supervisory control we will use will consist of two subsystems, a

multi-estimator and switching logic, as shown in Figure 6.3. The multi-estimator

provides estimates of the family of plants using the states of the running plant

and the applied input. The switching logic differentiates between the plants and

makes the final determination of which plant is running. In this case the output

of the switching logic will be the estimate of the parameter γ.

The multi-estimator is a dynamical system whose inputs are the input u and

the state x of the plant. The output signals xγ are a family of signals generated

by applying each γ ∈ R>0. This family of signals provide approximations of x

regardless of the input. A natural requirement for the system is that xγ converge

to x asymptotically for all γ ∈ R>0, if the physical plant is equal to the nominal

process model with no noise or disturbance [24]. This is equivalent to the

asymptotic convergence of the estimation error,

eγ = xγ − x, ∀γ ∈ R>0, (6.33)

to zero.

In our system the uncertainty enters the system only in x2. This will be the

estimated state of the multi-estimator; the input u will be the control input β. If

the estimator equation is

ẋγ = −K(xγ − x2) +
u2

(x1 + a0)3
+ γ

uP0√
2(x1 + a0)2

, ∀γ ∈ R>0 (6.34)

then the estimation error (6.33) satisfies ėγ = −Keγ ∀γ ∈ R>0, where K is an

appropriately chosen gain. By choosing K the error will converge to zero
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exponentially fast, for an arbitrary control input u.

Implementing the multi-estimator as a parallel connection of individual

estimators for all possible values of γ is not efficient and is actually impossible

for the infinite set γ ∈ R>0 [24]. Fortunately, the idea of state sharing, which

allows all estimators to be replaced by a single estimator, can be applied. State

sharing is always possible if the estimator equations are “affinely separable” in

the unknown parameters, as in ẋp = −λxp + f1(p)f2(x, u) [24]. Applying this

results in

ż1 = −z1 + x2 +
u2

(x1 + a0)3

ż2 = −z2 + u
P0a0√

2(x1 + a0)2
, (6.35)

and the output is

xγ = z1 + γz2. (6.36)

Computing ẋγ will show the two are equivalent.

The switching logic must differentiate between the estimates and determine

the best estimate. In the fiber system the nonlinearity γ will vary continuously

and thus no constraints on the switching of the estimate state are required. It is

clear that the best estimate will be the one in which the error squared is a

minimum. The error is eγ = z1 + γz2 − x2, and the error squared is

e2γ = (xγ − x)2 = (z1 − x2)
2 + 2γz2(z1 − x2) + κ2z22 . (6.37)

Seeking to minimize the function with respect to γ, we differentiate (6.37) to

obtain

∂e2γ
∂γ

= 2z2(z1 − x2) + 2γz22 , and

∂2e2γ
∂γ2

= 2z22 . (6.38)
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The second derivate is z22 > 0 and thus the error squared is a convex function of

γ. The necessary and sufficient condition for a minimum is then

0 =
∂e2γ
∂γ

= 2z2(z1 − x2) + 2γz22 . (6.39)

Solving for γ yields

γ = −z1 − x2

z2
. (6.40)

Since the function is convex with respect to γ, the critical point is a minimum,

making it the best estimate for γ.

Using the estimate

γ̂ = −z1 − x2

z2
(6.41)

will result in modifying the control laws by replacing κ with

κ̂ =
γ̂P0√
2

=
(x2 − z1)P0

z2
√
2

. (6.42)

This control law is simulated in Chapter 7 and is shown to result in convergence

to a limit cycle and the correct value of the parameter γ if the nonlinearity is

unknown but constant.

53



CHAPTER 7

SIMULATIONS

In this chapter, we illustrate through simulations the advantages of the feedback

control strategy introduced in Chapter 6 over current techniques, such as DM.

All simulations are conducted on the variational model (6.3). A constant

energy source of 1 ps·W is used, so as the pulse width decreases, the initial

power increases. We use a Kerr nonlinearity of γ = 1 (km·mW)−1. These are

rough estimates for real values, but they will demonstrate the various systems’

properties.

The baseline system is an optical fiber with a constant positive dispersion

map with a typical value of β2, 2 ps2/km. As seen in Figure 7.1 the dispersion

and nonlinearity cause the pulse width to increase unchecked, requiring

retransmission whenever the pulse width goes beyond a certain tolerance. Also

notice that the longer pulse widths have less spreading, which is why fiber optics

today generally use this inexpensive method for short distances.

The current technology of choice for soliton propagation is dispersion

management. This control is essentially open-loop and relies on estimating the

fiber’s properties well enough to match the proper lengths of positive and

negative dispersion fiber. For this simulation the positive fiber has a length L1

of 50 km and β2 of 2 ps2/km. It is followed by a length L2 of 10 km of negative

dispersion fiber of β2 = -20 ps2/km. This setup is repeated for the full length of

the fiber. The dispersion management system causes the pulse width to have a

periodic orbit for the larger pulse widths (see Figure 7.2). At the shorter pulse

widths, specifically 10 ps, the nonlinearity is too large and cannot be

compensated for, causing the pulse width to become unstable.
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Figure 7.1: Pulse width evolution in an uncontrolled fiber (β2 = constant).
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Figure 7.2: Simulated dispersion management. The scheme fails to generate a
periodic behavior at lower pulse widths.
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Figure 7.3: Stable fixed point soliton control.

If the controlled system proposed can propagate the 10 ps pulses under high

nonlinearity, then it will have demonstrated its advantage over the current

technology. Consider first a soliton with no chirp with the parameter aeq = 10 ps.

The additional advantage of feedback control is disturbance rejection. Applying

the wrong initial conditions (10.1, 0.2) will demonstrate this property. The

closed-loop eigenvalues are set to −10 rad/s. In Figure 7.3 the control system

brings the system to the desired parameters after a small transient. After 1 km

the stable state has been reached and the soliton propagates without fluctuation.

To demonstrate the chirped soliton, the desired parameters are set to

(ao, az(0)) = (10, 0.01). The system is designed with the following parameters for

the closed-loop limit cycle: radius r = 0.01 ps, length L = 10 km, and j0 = −10.

In order to verify that the limit cycle exists locally, the initial conditions must

be near the orbit, but to demonstrate disturbance rejection the input pulse will

be (10.1 ps, 0.09 ps/km), which is larger than desired. In Figure 7.4 the 10 ps

pulse experiences a periodic orbit and does not increase beyond the deviation

allowed by the radius of the limit cycle. Once per period, the pulse returns to its

original shape. The limit cycle is clearly observed, as the original deviation
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Figure 7.4: Limit cycle obtained with controlled dispersion. Both states
converge to periodic orbits, even for very short initial pulse width.

asymptotically converges to the desired periodic orbit.

The control laws with no uncertainty create the desired soliton solutions.

Adding in the estimator for γ will introduce uncertainty. The nonlinearity is

assumed constant as before γ = 1 (km·mW)−1, but unknown. Setting the gain

K = 1, Figure 7.5 shows that the estimate converges to the actual value. The

periodic orbits still converge to the limit cycle, but they are slightly deformed

due to the uncertainty.
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Figure 7.5: Estimator performance. Both states still converge to periodic orbits
and the estimate converges to the true parameter.
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CHAPTER 8

CONCLUSION AND PERSPECTIVES

The results of the simulation show that solitons of virtually any desired

Gaussian shape can be created and propagated through the theoretical fiber we

propose. This suggests that it would be advantageous to develop such fibers and

apply these control schemes in order to realize extremely high bandwidth optical

communication systems. Even if such a fiber were already available, some

difficulties would remain in the implementation of our control law. These stem

from the simplifying assumptions that were made.

In developing the model, two primary assumptions were made–the SVEA and

the weakly guided assumption. As the pulse we are interested in is the Gaussian

pulse shape, the SVEA is a good approximation and should be valid for the

conditions of interest. It is less clear that the weakly guided assumption remains

valid. The pulse width approaches extreme limits; even small variations in the x

and y properties in the fiber are in a range comparable to that of the pulse

width, so in this case the effects are non-negligible.

For the purposes of theoretical analysis and synthesis of a controller we

assumed that the fiber’s dispersion could be varied continuously over an

infinitesimal region of fiber dz, which is a strong assumption. It would be more

realistic to assume that there are discrete lengths of fiber over which the

dispersion map can be controlled and constant. This more closely coincides with

availability of sensors to measure the pulse width. Such sensors would be finitely

arranged over the length of the fiber, not necessarily pairing with each discrete

section of dispersion controlled fiber. Designing a controller for this system

would involve discretizing the plant and controller such that solitons are still
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propagated. We also assumed that the actuators controlling the dispersion

would act instantaneously, but in practice delay would be introduced and

further complicate the problem.

The framework built in this thesis demonstrates that applying control theory

to the propagation of solitons in optical fibers is a worthy goal. This

methodology shows great promise for femto-second and smaller pulses required

for ultra-high-bandwidth communication channels.
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