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ABSTRACT 

 

A new positioning system is proposed for the B16 Robotics Laboratory testbed.  The 

system is vision based and distributed.  Each mobile agent is responsible for solving its 

individual positioning problem.  The modified algorithm implements detection and 

identification techniques for position markers, following a template matching approach.  

Two modes of operation are implemented, Barycentric and Change of Axes.  The new 

system is able to calculate position using the two methods, and 90% or more of the data 

points collected in each set lie within 0.05 units from true position.  Heading is also 

calculated, but further testing is needed to fully asses its performance.  The concept for 

the new positioning system is validated.  The system achieves partial functionality and 

acceptable performance.  However, it has not yet reached the potential necessary to 

replace the current system. 



 iii 

TABLE OF CONTENTS 

1. INTRODUCTION ....................................................................................................... 1 

2. THEORY ..................................................................................................................... 2 
2.1 Digital Images ..................................................................................................... 2 
2.2 Camera Calibration ............................................................................................. 3 
2.3 Segmentation by Thresholding ........................................................................... 4 
2.4 Color Models ....................................................................................................... 5 

2.4.1 RGB ............................................................................................................. 5 
2.4.2 HSV ............................................................................................................. 6 

2.5 Connected Components....................................................................................... 6 
2.6 Moments .............................................................................................................. 7 
2.7 Coordinate Transformations ................................................................................ 9 
2.8 Barycentric or Areal Coordinates ...................................................................... 10 
2.9 Other Testbeds................................................................................................... 12 

3. METHODOLOGY .................................................................................................... 16 
3.1 Hardware ........................................................................................................... 16 

3.1.1 Positioning system .................................................................................... 16 
3.1.2 Robot agents .............................................................................................. 17 

3.2 Software ............................................................................................................ 19 
3.2.1 Positioning system .................................................................................... 19 
3.2.2 Qt communications and command program ............................................. 20 
3.2.3 DSP program ............................................................................................. 20 

3.3 Proposed New Positioning System ................................................................... 22 
3.3.1 New hardware ........................................................................................... 23 
3.3.2 New software............................................................................................. 26 

4. EXPERIMENT AND RESULTS ............................................................................. 32 
4.1 Barycentric Mode Results ................................................................................. 33 
4.2 Change of Axes Mode Results .......................................................................... 38 
4.3 Discussion ......................................................................................................... 43 

5. CONCLUSIONS AND RECOMMENDATIONS ................................................... 45 

REFERENCES .................................................................................................................. 47 

APPENDIX A:  ORIENTATION DATA FOR CHANGE OF AXES MODE ................ 49 

APPENDIX B:  ORIENTATION DATA FOR BARYCENTRIC MODE ...................... 54 

 



 1

1. INTRODUCTION 

 

The B16 Robotics Laboratory located in the Coordinated Science Laboratory is equipped 

with an autonomous multi-agent ground vehicle testbed.  It is an indoor facility whose 

purpose is to serve as a platform for development and testing of multi-robot control 

algorithms, i.e., collision avoidance and formation control.  It employees machine vision, 

UDP communication protocols, wireless broadcast to vehicles and computing capability 

onboard the vehicles. 

 

This thesis proposes a new positioning system that is based on machine vision, but is 

distributed among the mobile agents.  The two key objectives are the exploration of this 

new scheme for a positioning system and a decrease in overall system latency. 

 

The thesis is divided into five chapters structured as follows.  Chapter 2 presents the 

underlying theory behind machine vision and the mathematics involved in both of the 

positioning algorithms developed.  Chapter 3 describes the existing and new hardware 

used and explains the algorithm and its two modes of operation.  Chapter 4 details the 

experiment, presents the results and includes a discussion of the results and observations 

from the experiments.  Finally, Chapter 5 presents conclusions and suggestions for future 

work. 
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2. THEORY 

 

The theory for machine vision and digital images is covered in this chapter.  Also, the 

mathematics involved in the algorithm described in [1] is presented here, followed by a 

description of other testbeds located at other universities. 

 

2.1 Digital Images 

 

A digital image can be described as a discrete, two-dimensional array of light intensity 

values whose elements, called pixels, are arranged in rows and columns (r,c).  The 

pinhole lens model dictates that the focal center of the lens is considered to be an ideal 

pinhole through which light rays enter and intersect the image plane.  Under this 

assumption, a point P in world coordinates (x,y,z) is collinear with its projection p in the 

image plane (u,v) as seen in Fig. 2.1.  The relationship between the image coordinate 

frame and pixel array lets us relate the digital image to the real world. 

 

Figure 2.1:  World and image coordinate frames. 
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2.2 Camera Calibration 
 

Camera calibration is necessary to relate the world frame with the image array.  In order 

to properly calibrate the camera, some parameters have to be determined.  Camera 

parameters are of two types: intrinsic and extrinsic. 

 

Intrinsic parameters are those that remain constant for the camera regardless of its 

position.  These parameters are the pixel array coordinates for the principal point O and 

the ratios between focal length and pixel dimension fk, defined below: 
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where λ is the focal length and sx, sy are the horizontal and vertical dimensions of the 

pixels. 

 

Extrinsic parameters define the position and orientation of the camera relative to the 

world coordinate frame.  The extrinsic parameters are the rotation matrices R and T 

defined as 
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where c
wR  denotes a transformation from camera pixel array coordinates to world 

coordinates and w
cO  denotes the world frame origin. 
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The coordinate transformation is achieved by solving the linear system: 

TRxx += wc  

where cx  is the vector that contains camera frame coordinates and wx  is the vector that 

contains world frame coordinates; T and R are defined in Eq. (2.1). 

 

2.3 Segmentation by Thresholding 

 

The main goal of image segmentation in this project is to separate the image data into two 

regions: a region that corresponds to the objects of interest and a region that corresponds 

to the background.  This type of segmentation results in a binary image, because pixels 

belong to one of only two classes. 

 

Grayscale image thresholding is performed by choosing a gray level threshold value.  Say 

that a dark object sits against a light background.  Pixels whose gray level values are 

equal to or less than the threshold level belong to the object, and all remaining pixels are 

then classified as background.  The inverse is valid for light objects against dark 

backgrounds.  The problem with grayscale thresholding arises when choosing the proper 

gray level threshold value.  The threshold can be specified a priori based on some initial 

observations.  A histogram that displays the occurrence of each gray level value for all 

pixels in the digital image is used to choose an appropriate gray level threshold that 

separates object gray levels from background.  Alternatively, the gray level threshold 

value can be automatically chosen with an algorithm.  Some statistical information is 

computed from the gray level values and an automatic selection can be made based on 
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the gray level distribution of each image.  The complete automatic algorithm is described 

in Chapter 11 of [1]. 

 

Color images present a more complicated problem when it comes to segmentation 

because color pixels have three values instead of a single gray level value.  As in 

grayscale segmentation, there are numerous ways to approach this problem; in this thesis 

a deterministic approach analogous to grayscale threshold segmentation is followed. 

 

2.4 Color Models 

 

A color model is a mathematical model that describes the representation of colors by 

groups of numbers.  Two of the most common color models are the Red, Green Blue 

(RGB) and Hue, Sat, Value (HSV) models. 

 

2.4.1 RGB 

 

The RGB color system was developed before the digital age and is based on human 

perception of color.  It is an additive model in which quantities of each of the primary 

colors, red, green and blue (hence RGB), are summed together to represent another color.  

The absence of all three primary colors yields darkness or black and full intensity of the 

three primaries yields white.  Color CRT monitors display a subset of the RGB color 

space called mRGB.  Its primary colors are the same:  red, green, and blue.  Since each 

pixel element in a CRT monitor has a finite intensity value, the color solid of the mRGB 
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system is a bounded subset of the space generated by the primaries.  By scaling each 

primary axis, the coordinates can be normalized such that the maximum value is 1.  This 

way, the subset forms a color solid and it is called the RGB cube.  Its origin (0,0,0) 

corresponds to the color black (no color intensities present) and the point (1,1,1) 

corresponds to the brightest white possible by the monitor [2]. 

 

2.4.2 HSV 

 

The HSV model is derived from the mRGB model.  Its name is results from the 

parameters hue, saturation, and value.  By definition, any color with coordinates (R,G,B) 

in the color cube will have a HSV value parameter equal to the maximum of the R, G, B 

values.  The color figure of the HSV system is shaped by the orthogonal projection of all 

parallel RGB cubes that form along the main diagonal from (0,0,0) to (1,1,1).  These 

projections form a pyramid with hexagonal base and its vertex at (0,0,0).  For each cube 

with main diagonal coordinates (p,p,p), all colors contained in the hexagonal projection 

will have the same value parameter [2]. 

 

2.5 Connected Components 

 

When multiple objects are present in the digital image, it is useful to distinguish and 

separate them.  After a digital image is segmented, the binary image does not contain 

information of individual objects; rather, it has the pixels of all seen objects.  An object 

can be identified in a binary image as a connected component.  A connected component 
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is any group of contiguous pixels such that every pixel is in direct contact to its 

neighboring pixels, and there is a continuous pixel-to-pixel path that connects all pixels 

within the group.  Direct contact with neighbor pixels can be defined in two ways: 4-

connected and 8-connected.  Pixels that are 4-connected to the pixel of interest are those 

that are directly above and below and before and after.  8-connected pixels also include 

those that are diagonally adjacent.  After a connected component is identified, all the 

pixels contained in it are labeled the same such that the object is identified; that is, each 

component has a unique label.  Many component labeling algorithms exist; this thesis 

utilizes the one described by [1]. 

 

2.6 Moments 

 

Once objects have been identified and labeled in the digital image, moments can be 

computed in order to acquire some information on the shape and size.  The i,j moment for 

the kth object, denoted by mij(k), is defined by: 
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The order of a moment is defined as the sum i+j, and Ii(r,c) is an indicator function 

defined as 
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where r, c denote row and column numbers for the pixel. 
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It is of high interest to define an object’s center of mass.  The center of mass of an object 

is defined as a the point ),( cr  such that if all that object’s mass were to be concentrated 

at ),( cr , the first moments would not change.  Thus, 
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A moment calculated with respect to the object center of mass has characteristics that are 

invariant with respect to translation.  These moments are called central moments and are 

very useful when determining shape and size characteristics of the object.  The i,j central 

moment for the kth object is defined by: 

 ∑ −−=
cr

k
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kij crIccrrkC
,

),()()()(  (2.2) 

where ),( kk cr  are the coordinates for the center of mass of the kth object. 

 

The orientation of an object will be defined as the direction of the axis that passes 

through the object in such a way that the second moment of the object about that axis is 

minimal.  Then for any given line in the image: 
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where d(r,c) is the distance from pixel (r,c) to the axis. 
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The objective is to minimize L with respect to all possible lines in the image plane.  The 

authors in [1] describe the method to do this and only the final result is presented here: 

0220

112
2tan
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C
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=θ  

where C11, C20 and C02 are defined in Eq. (2.2). 

 

2.7 Coordinate Transformations 

 

Coordinate transforms can be used to scale, translate and rotate objects within a 

coordinate system.  It is particularly useful when referencing one coordinate system in 

terms of another.  In machine vision, the relationship between image coordinates and 

world frame coordinates is dictated by a change of axes, or coordinate transform.  This 

change of axes can be achieved with three operations: scaling, translation and rotation. 

Scaling refers to a change in proportions between the reference frame (x, y) and new 

frame (x′, y′).  It is performed by multiplying the matrix with scale factors αx, αy: 
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Translation introduces a displacement between the coordinate axes.  Displacement in 

direction and magnitude δx, δy are performed by multiplying the matrix below: 
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Rotation is the motion around a fixed pint, in our case the coordinate axes origin, by an 

angle φ  and is achieved by multiplying the matrix: 
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These operations can be combined into one transformation 

 

2.8 Barycentric or Areal Coordinates 

 

Barycentric coordinates are a form of homogeneous coordinates defined by the vertices 

of a simplex.  Also called areal coordinates, barycentric coordinates locate points relative 

to existing points, rather than to an origin.  Let T be a triangle defined by the three 

vertices v1, v2, and v3.  Let p be any point located within triangle T.  Point p can then be 

written as the weighted sum of the three vertices: 

332211 vλvλvλp ++=  

where λ1, λ2, and λ3 are the barycentric coordinates and exist inside the set [0,1].  The 

conversion from Cartesian coordinates to barycentric coordinates is a linear 

transformation problem.  The Cartesian coordinates of p = (xp,yp) can be written as: 
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where (x1, y1), (x2, y2) and (x3, y3) are the Cartesian coordinates for the vertices v1, v2 and 

v3 of triangle T.  Barycentric coordinates λ1, λ2, and λ3 must satisfy [3]: 

 1321 =++ λλλ  (2.4) 
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Rearranging Eq. (2.4) we have: 

 213 1 λλλ −−=  (2.5) 

Substituting Eq. (2.5) into Eq. (2.3) yields: 

( )
( ) 3212211

3212211

1

1

yyyy

xxxx

p

p

λλλλ

λλλλ

−−++=

−−++=
 

After rearranging: 
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Equation (2.6) can be written as the linear transformation: 
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where matrix R is defined as: 
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Since v1, v2, and v3 are vertices of triangle T, they are not collinear and (v1 – v3) and  

(v2 – v3) are linearly independent.  Hence, R is nonsingular, invertible and  
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2.9 Other Testbeds 

 

Some investigation was done to learn about existing testbeds and their systems.  Several 

testbeds where found to be operational in different universities around the nation.  A brief 

description of some of these testbeds follows. 

 

University of Pennsylvania’s experimental testbed for large multi-robot teams is an 

indoor test facility that uses custom vehicles on the ground and suspended in air.  

Vehicles carry an onboard computer, sensors and wireless communication capabilities.  

Localization of agents is done with a custom, low-cost positioning system.  Vehicles 

carry an LED display, each illuminated with a unique 8-bit pattern.  Overhead cameras 

are able to detect and track LED displays, and process information to calculate position 

and pose of robots.  Uncertainty measurements are computed with a Kalman filter, and 

vision information combined with onboard telemetry provides ground-truth data [4]. 

 

Caltech’s multi-vehicle wireless testbed is an indoor experimental area.  Its hardware 

setup is very similar to the B16 robotic testbed.  Its vehicles are equipped with onboard 

laptop computers, and a command PC handles all wireless transmission, global 

information, and commands to vehicles.  Positioning is done with an overhead vision 

system comprising four ceiling-mounted cameras that look down on the test arena.  

Vehicles carry monochrome templates on top, with markings that allow cameras to 

identify vehicles and compute position and orientation.  The vision system has a 

dedicated computer to do all image processing and data is sent wirelessly [5]. 
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MIT’s Aerospace Control Lab developed two testbeds: one indoor, the other outdoor.  

The indoor testbed works with ground and aerial vehicles.  Rovers play the role of 

multiple agents to be controlled while the blimp acts as a supervisory, surveillance 

vehicle overhead.  All vehicles have equal processing capabilities with onboard laptops 

processing sensor data, and a ground station handles heavy computing.  Positioning data 

is acquired with a commercial off-the-shelf (COTS) meteorological system.  The system 

is highly accurate and highly expensive [6].  The outdoor testbed consists of R/C 

airplanes fitted with COTS autopilots.  Wireless vision is employed for position 

verification and user feedback. 

 

MIT’s RAVEN is an indoor, rotary wing, aerial, multi-vehicle testbed.  Vehicles are 

COTS quad-rotors without any sensing capability.  Positioning is also done with a 

central, metrology motion capture system.  This system is very expensive, but highly 

accurate [7]. 

 

Stanford University’s STARMAC is an outdoor testbed of rotorcraft aircraft vehicles for 

multi-agent control.  Vehicles are COTS with Bluetooth capabilities and dual PIC for 

onboard sensor handling.  Positioning is done with differential GPS measurements, 

provided by onboard GPS receivers and a ground station handling all position 

computations and wireless communications [8]. 
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University of California – Berkeley’s BEAR is an outdoor testbed for mobile aerial 

agents.  Industrial R/C helicopters with onboard computers and sensors serve as mobile 

agents.  Positioning is done by onboard GPS receivers along with inertial measurement 

units.  Vision is used for object detection [9]. 

 

University of Washington’s ARCS testbed is a small, indoor testbed that uses COTS 

robot agents.  All heavy computed is done offboard.  The positioning system is based on 

vision.  A single, ceiling-mounted webcam runs Carnegie Mellon CMVision software.  

Robots carry colored templates on top; the vision system is able to identify, localize and 

compute heading.  Information is sent wirelessly to agents [10]. 

 

Oklahoma State University’s COMET is an outdoor testbed.  Its mobile agents were built 

from modified COTS R/C trucks.  They carry onboard embedded computers with the 

same computing capabilities as desktop PCs.  The positioning system consists of GPS 

receivers onboard each mobile agent.  It is assisted by onboard firewire cameras used to 

identify neighboring agents.  Each agent carries boards with NameTag patterns that can 

be seen by other agents.  Inertial measurement units also provide positioning information; 

however, GPS data is considered as correct [11]. 

 

University of Illinois’ HoTDec is an indoor testbed.  Hovercrafts serve as mobile agents, 

equipped with single board computers running the Linux kernel.  Its positioning system 

consists of six firewire cameras mounted to the ceiling and arranged in pairs, each 

connected to a Linux box.  Robots carry templates on top, with unique color patterns that 
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provide identification and orientation information to the image processing software.  

Processed image information is sent over the wireless network, Bluetooth or IEEE 

802.11, to agents [12]. 
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3. METHODOLOGY 

 

Chapter 3 first describes the current testbed configuration.  Both hardware and software 

aspects are briefly discussed.  Then, the proposed positioning system is presented and 

discussed. 

 

3.1 Hardware 

 

The robotic testbed is an indoor facility located in room B-16 in the basement of the 

Coordinated Science Laboratory.  The test area is approximately 14 feet by 18 feet, 

shared with an office space.  The nature of its location presents some restrictions on 

modifications that can be done to the space.  All electronic hardware used for the current 

positioning system and for the robots is described in the following subsections. 

 

3.1.1 Positioning system 

 

The current positioning system includes four USB cameras mounted on the ceiling, each 

connected to its own computer.   The computers are Dell Precision desktops running 

Microsoft Windows XP.  Each desktop runs an instance of the same image processing 

program built in LabVIEW.  All four computers communicate via a local area network.  

One of the four computers also serves the role of command PC.  This command PC also 

runs the client software that broadcasts vision data wirelessly to the robots.  Robots carry 

an identifier template on top that allows for recognition by the vision system.  This 
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template carries a set of dots placed into two regions that provides the vision system with 

enough information to uniquely identify and determine the pose of each robot.  Lighting 

to the testbed is supplied by construction-type halogen lamps.  These lamps were chosen 

over the existing white fluorescent tubes in the room because they provide a more 

uniform light source needed for the vision system. 

 

3.1.2 Robot agents 

 

The robots were designed by Daniel J. Block and Mark W. Spong and built by Juan S. 

Mejia and Chad R. Burns.  They follow the same platform used for the GE423 

Mechatronics Laboratory course [13].  The robots are nonholonomic, four-wheel, ground 

vehicles shown in Figs. 3.1 - 3.4.  The onboard processing is done by the Texas 

Instruments TMS320 C6713 DSP running at 225 MHz with a daughter card.  Sensors 

communicate via an I2C bus and the robot’s wireless communications link is supplied via 

an added wireless radio card.  The primary sensors attached include optical encoders on 

the DC motors that run the wheels and a solid-state rate gyro.  Other sensors supported 

include, but are not limited to, infrared and ultrasonic ranges, compass, and color camera. 
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Figure 3.1:  Test vehicle (back view). 

 

Figure 3.2:  Test vehicle (front view). 
 

 

 

Figure 3.3:  Test vehicle (right side view). 

 

 

Figure 3.4:  Test vehicle (left side view). 
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3.2 Software 

 

Three software packages operate within the testbed.  The first addresses the image 

processing for the positioning system.  The second serves as the GUI for communication 

and command of the robots.  The third runs locally on each robot and is tailored to the 

specific task desired for the robot. 

 

3.2.1 Positioning system 

 

The USB cameras mounted on the ceiling interface with the LabVIEW program.  The 

vision program consists of several sub-VIs that perform the necessary processes to extract 

the positioning information from the images.  The image is first black-and-white 

thresholded at a level that is manually chosen by the user and can be adjusted online.  

Thresholded images then pass through a blob detection algorithm.  This sub-VI identifies 

the objects seen and makes the positive or negative identification of a template.  Once a 

template has been positively identified, its properties are recorded and passed to an object 

array for transmission.  Robot number is determined by the number of dots inside the 

main region of the template.  Its center of mass is taken as the main region’s center of 

mass.  Smaller dots around the main region are used for calculating robot orientation.  A 

vector is drawn from the center of mass to the middle of the closest pair and its 

orientation with respect to the image coordinate frame is recorded as the robot’s 

orientation.  All information is organized into clusters that form an array.  The data is 

transmitted via UDP to the Qt program for display and broadcast.  The loop is repeated 
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for each frame captured.  The vision system information is considered as ground truth.  

Exact measurements have not been recorded, but position deviations at standstill appear 

to be 0.01 feet and angle deviations approximately 0.3 degrees [14]. 

 

3.2.2 Qt communications and command program 

 

The command PC also serves as the GUI console.  This application was written in C 

language with the Qt library by [14].  Its function is threefold: it provides the user with a 

GUI that displays position and orientation of all seen robots, it allows the user to send 

position commands by clicking anywhere within the workspace, and it sorts out all the 

positioning information gathered by the four cameras.  All data is sent wirelessly to the 

robots in two types of packets: position command or ground truth information.  When the 

user clicks on the GUI map, a data packet is sent to the robots with the desired 

coordinates.  The robot agents then follow their uploaded control scheme and take 

necessary action to move to the desired position. 

 

3.2.3 DSP program 

 

The DSP is programmed in Texas Instruments’ DSP/BIOS environment.  It is designed 

for handling time-sensitive operations, and programming is done in Code Composer 

Studio (CCS) compiler using C language.  In contrast to its use in standard C 

programming, the main() function is used only for initialization of sensors, chips, 

devices and global variables, not to contain the principal code.  The DSP/BIOS kernel is 
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configured to execute a periodic function every millisecond.  This function starts the 

analog-to-digital converter and activates a hardware interrupt (HWI).  When HWI_7 is 

active, the DSP executes the ADC_INT7_Func function.  It is in this function that the 

main code resides.  All functions were taken from the Mechatronics Laboratory course 

[13].  The focus of this thesis lies on the function 

userProcessColorImageFunc_laser(), from now referenced as uPCIF, inside 

the user_ColorVisionFuncs.c file. 

 

Some prior processing to the raw image data is done before the uPCIF has access to it.  

The onboard camera captures an image that is 288 rows by 352 columns of 8 bit pixel 

data every 0.04 seconds.  Due to its large size, the image has to be stored in the external 

SDRAM memory instead of the DSP internal RAM.  The external SDRAM runs at a 

slower speed than the DSP and this accounts for some delay when accessing the image 

array.  It takes the DSP approximately 10 ms to scan through the whole image; that 

leaves time for only three passes before the next image is received from the camera.  For 

this reason, the image is scanned once and compressed by a factor of four resulting in an 

image of  72 rows by 88 columns.  The compressed image is faster to scan and leaves 

more time for other tasks to be performed by the DSP.  uPCIF receives this compressed 

image and is able to perform more than the original four passes. 

 

The code in uPCIF implements the algorithm discussed in Chapter 11 of [1].  The color 

image is first converted from RGB, the format in which the image is originally received 

from the camera, to HSV.  An interesting property of the HSV color system led to its 
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selection over RGB.  In HSV space, a color defined by its saturation and hue parameters 

can have a wide range of luminance values.  This behavior is desirable, in hopes that it 

permits a more relaxed definition for a color.  When identifying colors in a digital image, 

this translates to some compensation for some of the lighting variations encountered.  The 

algorithm then thresholds and separates the objects in the image.  It looks for the largest 

object of a predetermined color and extracts its position and orientation within the image 

coordinate frame. 

 

3.3 Proposed New Positioning System 

 

After the development of the B16 Robotic Testbed, some problems and areas for 

improvements were documented.  Among these, the overall system latency was the most 

critical.  It is well known that for stable dynamic systems, delays in updates of state 

observations can affect the stability properties.  The B16 platform is used in the testing of 

control laws for collision avoidance and formation control.  The delay problem may 

cause false failures to the experiments and hence yield false results for current 

investigations.  Although some algorithms have been implemented that take into account 

the delays and can be run on top of control algorithms [14], it is still desirable to reduce 

delays as much as possible.  The overall system delay was measured to be 100 to 400 ms 

[14].  The primary suspect for latency is the wireless broadcast of ground truth data.  

Instead of debugging the system, it was proposed to develop an alternate positioning 

system that does not follow the same communication channel path and that has a more 

decentralized architecture. 
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The new system should be low-cost, scalable and reliable.  The proposed system requires 

minimal hardware acquisition and configuration.  It also takes advantage of the onboard 

DSP computing capability.  After doing some research into other testbeds developed by 

universities, it seems that the positioning system developed in this work has not been 

attempted before.  Instead of having a dedicated system to manage all ground truth 

information, the system proposed in this thesis distributes the task of positioning at an 

individual level.  Each robot is responsible of calculating its own position.  Robots were 

fitted with onboard cameras and a grid of markers was constructed on the ceiling tiles.  

The markers provide coordinate and heading information to the robots’ positioning 

algorithm. 

 

3.3.1 New hardware 

 

Onboard color cameras were installed on the robots, in a horizontal position pointing 

straight at the ceiling.  The cameras are model BB048 ¼ inch color cameras with the 

OmniVision 6620 chip embedded, shown in Fig. 3.5.  The cameras are fully supported by 

the hardware and software of the robots and are the same model used by the 

Mechatronics Laboratory robots [13].  They feature an I2C interface and output a 352 x 

288 pixels array of 8-bit data. 
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Figure 3.5:  OmniVision 6620 chip embedded with 1/4 inch color camera. 
 

The ceiling was fitted with markers arranged into an array, shown in Fig. 3.6, that lays 

out the workspace for the testbed.  The two-foot spacing between the centers of adjacent 

units was chosen because the ceiling tiles are two feet wide.  The marker was designed 

with the current robot templates in mind.  The current templates provide information on 

robot identification, center of mass and orientation.  These new markers, shown in Figs. 

3.6 and 3.7, will not have to provide identification information, for each robot is 

manually identified by its own configuration.  Markers follow a symmetrical, rectangular 

shape to help maintain a consistent overall center of mass.  Having a constant center of 

mass is important because this point will be used for all further positioning calculations 

and should remain stable under all conditions.  The markers break down into two 

rectangular regions, each dedicated to x- and y-coordinates.  Each region is of a different 

background color and contains within it colored dots displaying a binary number 

corresponding to the marker location within the grid.  The two colors chosen were bright 

red and bright green.  These choices make good contrast against the ceiling tiles and other 

colors and shadows found in the ceiling.  The rectangle shapes that make the markers 

provide a major axis that dictates the direction of the orientation vector.  The most 
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significant bit (MSB) from the binary number is identified with the relative position of 

the red and green rectangles.  The binary number is read along the major axis of each 

rectangle and, with MSB known, it can then be converted to decimal base.  The 

dimensions for the markers were determined experimentally.  Several trials were 

performed; the current markers were found to be adequately sized such that the cameras 

can recognize all regions and dots more consistently.  The dimensions for the markers are 

12 inches long by 10 inches high.  Dots are elliptical and measure 3 inches by 2 inches 

(green), and 2 inches by 1 inch (red).  The difference in dot size is due to the sensitivity 

of the recognition scheme to different colors.  Green shapes need to be larger for better 

recognition.  The markers are glued directly to the ceiling tile railing, which is eight feet 

above the floor. 

 

Figure 3.6:  Test course coordinate grid 
mounted to the ceiling. 

 
Figure 3.7:  Marker for coordinate (2,2). 

 
 

For the purpose of testing the new positioning system, a laser pointer was fixed to a test 

robot such that the laser light coincides with the robot camera center of view.  The laser 

allows the user to place the robot at a known position within the new grid.  The robot’s 

exact position is illuminated by the laser pointer in the overhead grid. 
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3.3.2 New software 

 

The new code builds upon the userColorVisionFuncs.c file developed by Daniel Block 

and implements the algorithm from Chapter 11 in [1].  The segmentation, object 

identification and object characteristic calculations are kept the same as the original code.  

The processes are duplicated since there are now two colors of interest.  An additional set 

of definitions was created for the added functions:  color definition parameters (hue, sat, 

value), measurements and dimensions for the marker template matching, error tolerances, 

and coordinate transformation parameters.  With the exception of the scaling constant 

β=pixels/tiles [15], parameters were determined experimentally.  A new set of functions 

was developed for the positioning algorithm.  The functions were created to perform a 

specific task each.  This makes debugging easier and keeps the functionality of the 

original algorithm as changes are made. 

 

After the image is thresholded and objects are identified, the next step is template 

matching.  A virtual template of the rectangles in the markers is built in image 

coordinates and is compared against the rectangles seen.  The template is superimposed 

into each rectangle found and if the rectangle fits within the template, within some 

acceptable range, it is marked as a good fit and its index is recorded in an array.  Criteria 

for a good template fit were found by pixel-counting the image and are specified in the 

error tolerances defined within the code.  The Couple_Rectangles() function is 

then called.  This function defines a proximity radius that establishes a rectangle pair.  

For each rectangle of color 1 the function loops through those from color 2, and the one 
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that satisfies the proximity requirement is marked as its pair.  It can be safely assumed 

that only one possible pair exists because the fitting process filters out any other smaller 

object that may be closer to the rectangle and be misclassified as a pair (i.e. dots).  The 

array is then reorganized so the rectangle pairs are grouped within the same index in the 

array.  Now the Read_Dots() function is called.  This function reads the binary 

coordinates from a specified marker and returns the decimal values to a two-dimensional 

global array.  For this, it makes use of the Heading() function.  This function’s 

purpose is to provide a heading vector for the robot’s orientation and determine the MSB.  

Now that the markers have been identified and read, the positioning technique makes the 

final conversion to world frame coordinates.  There are two techniques explored in this 

project: change of axes and barycentric coordinates.  Figure 3.8 shows a flow diagram for 

the new algorithm.  Note that the original userColorVisionFuncs.c algorithm is closely 

followed until Step 4. 

 

3.3.2.1 Positioning by barycentric coordinates 

 

The Barycentric mode finds the areal coordinates of the image center (robot position) 

with respect to the triangle formed by only the first three markers listed in the good fits 

array.  Initial experimentation pointed to little or negligible distortion in the robot image, 

hence no mapping is performed.  It is then correct to assume that triangle ratios in the 

image frame remain unchanged in the world frame and the areal coordinates computed in 

the former are valid for the latter.  A linear algebraic problem is formed with the marker 

centroid coordinates and the areal coordinates.  The marker centroid coordinates are 
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substituted with world frame coordinates on the markers and the linear problem is then 

solved for the world coordinates; the result is stored in global variables to be used by the 

controller in place.  Naturally, the fundamental requirement when operating in 

Barycentric Mode is that at least three markers have to be successfully seen and 

identified.  This may prove to be a restriction when navigating in the border areas of the 

course as markers may become scarce. 

 

3.3.2.2 Change of axes 

 

The Change of Axes Mode applies a linear transformation to the image frame coordinates 

and changes the axes to world frame coordinates.  The rotation matrix is constructed with 

the orientation angle provided by the Heading() function and the scaling factor β – 

known a priori.  This mode’s versatility over Barycentric Mode is evident when it is 

noted that only one successful marker recognition is needed. 

 

Figure 3.8:  Positioning algorithm flow diagram. 
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3.3.2.3 Functions created 

A list of the functions developed for this project along with their descriptions follows.  

Each function description includes the input arguments that the function requires, its 

output result if any, and flow diagrams to display the series of tasks performed. 

 

Couple_Rectangles() 

argument: none 

return value: none 

The function scans through the global array that contains all recognized markers from 

both colors.  The array includes a counter of figures found for each color.  The lowest 

value of the counters determines the maximum number of pairs that can exist; this 

number is rewritten as the new value for both counters and will be used by the algorithm 

to determine which positioning method is to be applied.  The search starts from the first 

object found in color 1.  For each object in color 1, all objects in color 2 are searched to 

find the one whose centroid falls within a predetermined radius.  The color 2 pairs are 

rewritten in the global array such that all color pairs have the same index.  Figure 3.9 

shows a flow diagram of the operation performed by the function. 

 

 

Figure 3.9:  Couple_Rectangles( ) function flow diagram. 
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Heading() 

argument: object number 

return value: integer [0, 3] 

Two orientation measurements are computed in the Heading() function.  The function 

first constructs a heading vector perpendicular to the line that forms at the union of the 

green and red regions of the marker.  A heading angle is calculated by computing atan2 

of the vector.  The second output signals to the general cardinal direction that the robot is 

facing.  This is done by following the definition that green marks West.  With the 

cardinal direction known, the MSB can now be identified.  This is explained in the next 

function.  Figure 3.10 shows the operation of Heading(). 
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Figure 3.10:  Heading( ) function flow diagram. 

 

Read_Dots() 

argument: marker number 

return value: none 

The function specifies which marker to read in the good fits array.  For each rectangle 

inside the marker, the function scans the length of the rectangle, along its major axis, and 

records how many dots are found.  The function then compares the centroid of each dot 

on the list with predefined slots in a template.  Each slot represents a bit of a 3-bit binary 

number.  When all dots have been localized to within their respective bit slot, an array is 

created with the binary numbers read from the marker.  The function calls the 
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Heading() subroutine and determines the MSB of the binary number from the cardinal 

direction to which the robot is pointing.  By definition, the binary numbers are read from 

North to South.  With the heading known, the subroutine chooses the correct bit order to 

read.  The binary numbers are then converted to decimal base and returned to a global 

array.  Figure 3.11 depicts the order of events within Read_Dots(). 

 

 

Figure 3.11:  Read_Dots( ) function flow diagram. 

 

Barycentric() 

argument: none 

return value: integer [0, 1] 

The function solves Eq. (2.7) from Section 2.8.  The R matrix is constructed with the 

image coordinates of the marker centroids.  The value of λ3 is calculated from Eq. (2.5), 

shown in Fig. 3.12.  The areal coordinates are stored in a global array and an integer is 

returned: 0 if the image center (robot position) is inside or on the edge of the triangle, or 

1 otherwise. 
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Figure 3.12:  Barycentric( ) function flow diagram.
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4. EXPERIMENT AND RESULTS 

 

Two experiments were performed to test the validity and performance of the positioning 

system.  Each algorithm mode was tested.  Both experiments were performed with the 

same robot and in the same course. 

 

Nine markers were constructed and arranged on the ceiling tiles to form a square, three-

by-three grid to serve as the test course.  Small black dots were added between markers 

as a visual aid.  The robot was fitted with a laser pointer, aimed to the ceiling and 

marking the center of the camera image.  The vehicle was manually positioned exactly 

below position markers.  At standstill, position and orientation data was recorded for 500 

consecutive data points and downloaded to MATLAB via serial connection. 

 

Only static measurements were performed and only position data was considered for 

analysis in this thesis.  There was no method in place for verification of true heading, so 

orientation data points were not analyzed.  Histograms for orientation data are included in 

Appendix A and Appendix B for Change of Axes Mode and Barycentric Mode, 

respectively.  The robot was placed under the same set of coordinates in the grid and 

positioning was calculated under both operating modes.  A limited set of coordinates 

were used on both experiments, limited by the Barycentric Mode’s performance.  For the 

Barycentric Mode test, the coordinates were chosen such that the robot camera had the 

clearest view possible of three markers.  This set is the smaller of the two modes; as a 

result, the same set for Change of Axes Mode was used for comparison. 
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4.1 Barycentric Mode Results 

 

This section presents the data gathered during the experiment.  Static measurements for 

position using Baryentric Mode of operation are displayed in histogram form in Figs. 4.1-

4.5.  Unevenly distributed bins were used to emphasize the interval of ±0.05 units from 

the exact position. 
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Figure 4.1:  Histograms for coordinates (1.5, 1.5) at standstill using Barycentric Mode.  Total of 500 

data points recorded.  (a) shows 98% of data points lie within ±0.05 of the true value, (b) shows 89% 
of points lie within ±0.05 of true value. 
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Figure 4.2:  Histograms for coordinates (1.5, 2.0) at standstill using Barycentric Mode.  Total of 500 

data points recorded.  (a) shows 98% of data points lie within ±0.05 of the true value, (b) shows 97% 
of points lie within ±0.05 of true value. 
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Figure 4.3:  Histograms for coordinates (1.5, 2.5) at standstill using Barycentric Mode.  Total of 500 

data points recorded.  (a) shows 98% of data points lie within ±0.05 of the true value, (b) shows 97% 
of points lie within ±0.05 of true value. 
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Figure 4.4:  Histograms for coordinates (2.0, 2.5) at standstill using Barycentric Mode.  Total of 500 

data points recorded.  (a) shows 98% of data points lie within ±0.05 of the true value, (b) shows 97% 
of points lie within ±0.05 of true value. 
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Figure 4.5:  Histograms for coordinates (2.5, 2.5) at standstill using Barycentric Mode.  Total of 500 

data points recorded.  (a) shows 98% of data points lie within ±0.05 of the true value, (b) shows 97% 
of points lie within ±0.05 of true value. 
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4.2 Change of Axes Mode Results 

 

This section presents the data gathered during the experiment.  Static measurements for 

position using Change of Axes Mode of operation are displayed in histogram form in 

Figs. 4.6-4.10.  Unevenly distributed bins were used to emphasize the interval of ±0.05 

units around true position and the percentage of the points in the interval was calculated. 
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Figure 4.6:  Histograms for coordinates (1.5, 1.5) at standstill using Change of Axes Mode.  Total of 
500 data points recorded.  (a) shows 99% of data points lie within ±0.05 of the true value, (b) shows 

99% of points lie within ±0.05 of true value. 
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Figure 4.7:  Histograms for coordinates (1.5, 2.0) at standstill using Change of Axes Mode.  Total of 
500 data points recorded.  (a) shows 99% of data points lie within ±0.05 of the true value, (b) shows 

90% of points lie within ±0.05 of true value. 
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Figure 4.8:  Histograms for coordinates (1.5, 2.5) at standstill using Change of Axes Mode.  Total of 

500 data points recorded.  (a) shows 100% of data points lie within ±0.05 of the true value, (b) shows 
99% of points lie within ±0.05 of true value. 
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Figure 4.9:  Histograms for coordinates (2.0, 2.5) at standstill using Change of Axes Mode.  Total of 
500 data points recorded.  (a) shows 99% of data points lie within ±0.05 of the true value, (b) shows 

99% of points lie within ±0.05 of true value. 
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Figure 4.10:  Histograms for coordinates (2.5, 2.5) at standstill using Change of Axes Mode.  Total of 
500 data points recorded.  (a) shows 99% of data points lie within ±0.05 of the true value, (b) shows 

99% of points lie within ±0.05 of true value. 
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4.3 Discussion 

 

An interval of ±0.05 units was chosen as a tolerance criterion to measure performance.  

Both modes display a fairly constant positioning performance of 90% or better, without 

any noticeable difference between them.  It is important to say that some deviations from 

these tolerances were encountered, but these appeared sporadically and were difficult to 

replicate.  Also, it was observed that a semi-periodic set of outliers appeared in the 

measurements.  The outliers seem to be trash data from memory.  Almost all sets of data 

points exhibited this behavior.  It is suspected that the algorithm takes too much time to 

execute.  Since the DSP/BIOS platform works under a priority scheme, the positioning 

algorithm may not be able to finish before the DSP interrupts the function to execute 

another one of higher hierarchy.  This hypothesis is based on the fact that the algorithm 

takes 400 ms to execute.  This is the main suspected reason, but further work may be 

needed to investigate this behavior. 

 

Although the robot remained at standstill through all measurements, data points show 

variations.  These are caused by varying light conditions on the markers that in turn cause 

variations in the object characteristics in the digital image.  The course is placed on a 

working laboratory area where lighting conditions cannot be controlled.  In an effort to 

achieve a more even light distribution, improvised diffusers were placed over the lighting 

fixtures.  This helps to some extent but the problem still persists.  Also, the course is 

currently limited to the space between lighting fixtures.  Positions on or near the edge of 

a fixture are hard to identify because the direct light causes the camera’s auto-exposure 
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compensation to adjust the gain.  These changes are too large for the algorithm to 

accommodate and color definitions are no longer valid under these conditions.  For this 

reason the course is limited to a three by three square grid and available positions to test 

were limited. 

 

Orientation data is presented in Appendixes A and B.  No true heading measurement was 

available to compare data validity.  However, measurements were recorded and 

statistically graphed.  From observation it can be noted that orientation calculations have 

a lower level of performance.  This should not be taken as a fact, and further testing is 

needed. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

 

A new positioning system has been proposed for the B16 Robotics Laboratory testbed.  

The system is vision based and distributed.  Each agent is responsible for solving its 

individual positioning problem.  The new code developed adds to the existing code that 

implements the algorithm in Chapter 11 of [1].  The new course layout is marked by 

templates on ceiling tiles that consist of two joined rectangles with dots inside.  The 

rectangle color tells the algorithm which axis the coordinates inside it belong to: red for 

x, green for y.  Orientation information is provided by a vector created from red to green 

and this direction is defined as West.  Coordinates are displayed inside the markers in 

binary form; 3 bits are currently in use.  The algorithm implements detection and 

identification techniques for the markers, following a template matching approach.  Two 

modes of operation were created, Barycentric and Change of Axes. 

 

The new system is able to calculate position using the two methods and 90% or more of 

data points in each set recorded lie within 0.05 units of true position.  Heading was also 

calculated, but further testing is needed to asses its performance. 

 

A full course test was not possible because the space is limited to the areas between lamp 

fixtures, and areas surrounding the web cameras have to be avoided as well.  The 

algorithm’s time of execution (TOE) was measured to be 400 ms.  This supports the idea 

that the entire function cycle is not being executed and yields inconsistencies on data 

points. 
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Change of Axes Mode proved to be reliable because of the other mode’s requirement to 

identify at least three markers successfully.  Lighting conditions have a considerable 

impact on the algorithm’s performance, but color detection performed fairly well on 

uniformly lighted regions. 

 

The concept for the new positioning system was validated.  The system achieved partial 

functionality and acceptable performance.  However, it has not yet reached the potential 

necessary to replace the current system.  The problem of sharing position data among 

robots for multi-agent operations still needs to be addressed.  There is much room for 

improvement in the code execution.  Changes in priority and order of execution may 

streamline the algorithm and decrease its TOE.  Adjusting image size or camera frame 

rate may free more time for the DSP to process the images completely.  Also, additional 

techniques may be applied for template matching.  Two subroutines that searched for 

template fits and adjusted the object characteristics accordingly are left as further work to 

improve performance.  A simple filtering process may also be applied for smoothing out 

the data.  Other techniques may be explored for color segmentation or position 

calculation.  When three or more markers are identified, other positioning mechanisms 

may be applied that take advantage of all available data.  However, care must be taken 

with TOE since the DSP must be allowed enough processing time to execute other tasks. 
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APPENDIX A:  ORIENTATION DATA FOR CHANGE OF AXES 
MODE 
 
This appendix presents the orientation data gathered during the experiment.  Static 

measurements using Change of Axes Mode of operation are displayed in histogram form 

in Figs. A.1-A.5.  Percentage of data points falling within one standard deviation of mean 

value was calculated. 

 

Orientation at standstill:  µ = 0.00° , σ = 0.00°
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(a) 

 

Orientation at standstill:  µ = 179.28° , σ = 11.37°
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Figure A.1:  Histograms for coordinates (1.5, 1.5) at standstill using Change of Axes Mode.  Total of 

500 data points recorded.  (a) shows 99.4% of data points lie within ±1σ of the mean value, (b) shows 
99.6% of points lie within ±1σ of mean value. 
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Orientation at standstill:  µ = -0.51° , σ = 1.72°
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(a) 

 

Orientation at standstill:  µ = 177.84° , σ = 19.62°
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(b) 

 
Figure A.2:  Histograms for coordinates (1.5, 2.0) at standstill using Change of Axes Mode.  Total of 

500 data points recorded.  (a) shows 92.0% of data points lie within ±1σ of the mean value, (b) shows 
98.8% of points lie within ±1σ of mean value. 
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Orientation at standstill:  µ = 0° , σ = 0°
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Orientation at standstill:  µ = 177.25° , σ = 11.63°
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(b) 

 
Figure A.3:  Histograms for coordinates (1.5, 2.5) at standstill using Change of Axes Mode.  Total of 
500 data points recorded.  (a) shows 100% of data points lie within ±1σ of the mean value, (b) shows 

99.6% of points lie within ±1σ of mean value. 
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Orientation at standstill:  µ = -4.33° , σ = 2.45°
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(a) 
 

Orientation at standstill:  µ =178.56° , σ = 16.06°
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(b) 

 
Figure A.4:  Histograms for coordinates (2.0, 2.5) at standstill using Change of Axes Mode.  Total of 

500 data points recorded.  (a) shows 75.8% of data points lie within ±1σ of the mean value, (b) shows 
99.2% of points lie within ±1σ of mean value. 
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Orientation at standstill:  µ =-1.00° , σ = 2.31°
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(a) 
 

Orientation at standstill:   µ = 178.56° , σ = 16.05°
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(b) 

 
Figure A.5:  Histograms for coordinates (2.5, 2.5) at standstill using Change of Axes Mode.  Total of 

500 data points recorded.  (a) shows 84.2% of data points lie within ±1σ of the mean value, (b) shows 
99.2% of points lie within ±1σ of mean value. 
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APPENDIX B:  ORIENTATION DATA FOR BARYCENTRIC MODE 
 

This appendix presents the orientation data gathered during the experiment.  Static 

measurements using Barycentric Mode of operation are displayed in histogram form in 

Figs. B.1-B.5.  Percentage of data points falling within one standard deviation of mean 

value was calculated. 
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Figure B.1:  Histogram for coordinates (1.5, 1.5) at standstill using Barycentric Mode.  Total of 500 

data points recorded.  Figure shows 92.2% of data points lie within ±1σ of the mean value. 
 
 

Orientation at standstill:  µ = -16.50° , σ = 6.94°
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Figure B.2:  Histogram for coordinates (1.5, 2.0) at standstill using Barycentric Mode.  Total of 500 

data points recorded.  Figure shows 93.2% of data points lie within ±1σ of the mean value. 
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Orientation at standstill:  µ = 17.55° , σ = 3.16°
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Figure B.3:  Histogram for coordinates (1.5, 2.5) at standstill using Barycentric Mode.  Total of 500 

data points recorded.  Figure shows 97.6% of data points lie within ±1σ of the mean value. 
 
 

Orientation at standstill:  µ = 29.75° , σ = 5.68°
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Figure B.4:  Histogram for coordinates (2.0, 2.5) at standstill using Barycentric Mode.  Total of 500 

data points recorded.  Figure shows 97.6% of data points lie within ±1σ of the mean value. 
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Orientation at standstill:  µ = 0.55° , σ = 1.78°
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Figure B.5:  Histogram for coordinates (2.5, 2.5) at standstill using Barycentric Mode.  Total of 500 

data points recorded.  Figure shows 91.4% of data points lie within ±1σ of the mean value. 


