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ABSTRACT

In this thesis we propose a fractal analysis metloggl to study elastic-plastic transitions in
random heterogeneous materials. While it is wetivkm that many materials display fractal
characteristics, very little work was done on fiEcin elasto-plasticity, and so this study is ohe
the first attempts in that direction. Fractal patehave been found to form in 2D aggregates of
grains of either elastic-perfectly plastic type, a@lastic-hardening-plastic type, or
thermo-elastic-plastic class (or elastic-plastigetyith residual strains). The grains are either
isotropic or anisotropic, with random, spatiallynrfeactal perturbations in properties such as
elastic/plastic moduli, yield stresses or thermxlaesion coefficients (or residual strains). The
flow rule of each grain follows associated plastigiith increasing loads applied through either
one of three macroscopically uniform boundary domas admitted by the Hill-Mandel condition.
Following an evolution of a set of grains that haeeome plastic, we find that it is an evolving
fractal with its fractal dimension increasing fr@rowards 2. In essence, any non-zero noise in
grains’ properties gives rise to fractal patterhglastic grains. While the grains possess sharp
elastic-plastic stress-strain curves, the ovetadss-strain responses are curved and asymptote
toward perfectly-plastic flows; all these responsksplay smooth transitions but, as the
randomness in properties decreases to zero, timeinta conventional curves with sharp kinks of
homogeneous materials. The influence of plastiddmang and thermal effects on elastic-plastic
transitions are further investigated by varying elambnfigurations. It turns out that the fractal
dimension provides an optimal parameter for dasgrithe transition patterns in a unified way for

a range of different materials.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In traditional plasticity theory metals are treatesl homogeneous materials and the plastic
deformation occurs whenever the stress reachdtcal €yield) level. This deterministic model is
widely employed in engineering applications for signplicity and accuracy. It implies an
immediate elastic-plastic transition, characterizgé kink in the stress-strain curve, which is not
physically plausible in real materials. On the opthband, with the advent of
MEMS/nanotechnology that operate well below themsmale length scales, random fluctuation
effects appear and materials can not be modeldebrapgeneous any more. For micro-nano
devices an important task is to guarantee theirkingr reliability, i.e., to avoid high
mechanical/thermal stresses that may induce laagicpdeformation or even fracture and
damage. All of these observations motivate ourystfdelastic-plastic transitions in random
heterogeneous materials. When material randomsetskeén into account, the elastic-plastic
transition becomes a gradual process and its ppatigy be rather complex — these are clearly due
to material inhomogeneities that act as eitheraotest or facilitators for the transition takingqaa
and the elastoplastic response is essentiallyn@amli In this thesis we propose a fractal analysis
methodology to study the elastic-plastic transipatierns.

It is well known that many materials display frhatharacteristics (e.g., [1,2]). Indeed,
fractals have been used in the characterizatiorethas morphogenesis models of spatial patterns.
Numerous such phenomena, both in natural anctattifnaterials, include phase transitions and

accretion [3], fracture surfaces [4-7], and didiocepatterns [8]. Of course, this is but a shett |



of such studies, which were extensively conducteithe eighties and nineties. While very little
work was done on fractals in elasto-plasticity,egtdor plastic ridges in ice fields [9] and shear
bands in rocks of Mohr-Coulomb type [10,11]. Thie present study is a first attempt of
applying fractals in elastic-plastic transitions.

When fractal concepts are employed in applicatiws questions should be addressed: (i) Is
the object really a fractal? (i) Can we obtain aew physical insights from the fractal view point?
A compelling feature of any fractal is its fradizhension, a parameter which is generally not an
integer and indicating the extent of its spacadll (or plane-filling) tendency. Given the
complexity of mathematical techniques for analgdiglastic-plastic transitions, we numerically
determine the transition process and estimateafrdichensions of evolving sets of plastic regions.
The fractal dimension is then directly relatedhie development of the transition both in terms of

the response curve and spatial plastic patterns.

1.2 Thesisoutline
In the subsequent chapters, we conduct the studiffément random materials following this
sequence:

(@) In Chapter 2 we consider elastic-plastic transstiom random linear elastic-perfectly
plastic media. Plastic regions are found to foractll patterns in two models studied —
isotropic grains and anisotropic polycrystals. Totaustness of this result among several
related cases is further demonstrated.

(b) Chapter 3 discusses the plastic hardening effeetastic-plastic transitions. The focus is
on isotropic grains and various cases where diffenaterial configurations are compared
to illustrate the results.

(c) Chapter 4 extends the study to thermo elasticiplastdia (or elastic-plastic type with

residual strains). The transition patterns undiéerdnt model randomness and material



constants are investigated by virtue of fractalesfision parameters.
(d) In Chapter 5 the main conclusions are summarizeldfiatnre research directions are

discussed.



CHAPTER 2

FRACTAL PATTERN FORMATION IN
ELASTIC-PERFECTLY PLASTIC MATERIALS

In this chapter, we report on fractal patterndas grains forming at elastic-plastic transiam
random elastic-perfectly plastic materials. Spealify, two models are considered: (1) a
composite made of locally isotropic grains with lwesandom fluctuations in elastic moduli and/or
yield limits and (2) a polycrystal made of randonaljented anisotropic grains. The spatial
assignment of material randomness follows a nataratrict-white-noise field on 256x 25¢€
lattice aggregate of homogeneous square-shapes.graiese lattices are subjected to pure shear
loading increasing through either one of three osmaopically uniform boundary conditions
(kinematic, mixed-orthogonal or static) admitted thg Hill-Mandel condition. Following the
evolution of a set of plastic grains, we find titahas a fractal dimension increasing from 0
towards 2 as the material transitions from elastiglastic. While the grains possess sharp
elastic-plastic stress-strain curves, the ovemsponses are smooth and asymptote toward
perfectly-plastic flows; these responses and tetdr dimension-strain curves are almost identical

for three different loadings

2.1 Introduction
The present study focuses on elastic-plastic transiin planar random materials made of linear
elastic/perfectly-plastic phases of metal type.aAfirst step towards fractals in elastoplastic

materials, we resort to the simplest case of prfeastic media. Two special types of

! See also, [12] Li, J. and Ostoja-Starzewski, M1 Fractal pattern formation at elastic-plastiodition in
heterogeneous materiad§ME J. Appl. Mech. 77, 021005-1-7.



microstructural models are employed in our study:a( linear elastic-perfectly plastic material
with isotropic grains having random yield limitsdéor elastic moduli and (2) a ploycrystal with
anisotropic grains following Hill's yield criterioand having random orientations. In both cases,
the microstructures are non-fractal random figlas,reason for that assumption being that the
evolution of plastic zones would obviously (or viékely) be fractal should the material properties
be fractally distributed at the outset. We posediyuestions: (a) Does the elastic-plastic transiti
occur as a fractal, plane-filling process of ptagbnes with increasing macroscopically uniform
applied loading? (b) What are the differences betwe composite made of locally isotropic
grains and a polycrystalline-type aggregate madmisbtropic grains? (c) To what extent is the
fractal character of plastic zones robust undengds of the model such as the change of
perturbations in material properties?

To answer these questions, we set up three typ@smdtonic loadings consistent with the
Hill-Mandel condition, which guarantees the equemae between energetically and mechanically
defined effective responses in random heterogemeatesials [13,14]. The stress-strain responses
are then numerically obtained and directly reléefilactal dimensions of evolving sets of plastic
grains. In all the cases we study, it turns out tihe elastic-plastic transition occurs through a
fractal set of plastic grains, gradually planedfl the entire material domain. In the first model

with isotropic grains, we further investigate saVeglated cases by varying material randomness.

2.2 Mode formulation

2.2.1 Random material
By a random heterogeneous material we understaetl B:{ B(w); wl Q} of deterministic
media B(w), where w indicates a realization an@ is an underlying sample space [15]. The

material parameters of any microstructure, sudhesglasticity tensor or the yield tensor, jointly



form a random field® which is required to be mean-ergodic on (vergdarcales, that is

G(w) = limvije(w, x)dV = jG(w, x)dP(c) =(G(x)) 2.1)

Here and after the overbar indicates the vqumerageeand( > means the ensemble
averageP(w) is the probability measure assigned to the ensra{r@(a), X); w0 Q,XDV}
and itso—algebra.

The microstructures in our study are linear elgitectly-plastic materials with an

associated flow rule. Specifically, the constitatresponse of any grain [i.e. a piecewise-constant

region in a deterministic microstructu®(cw) ] is described by

. of
de=D'de + 1 —2 when f =0 anddf = 0,
Jdo (2.2)

de=D"'de when f, <0, orf = 0 anddf < (

where D is the elasticity tensor and, is the yield function. For anisotropic materialghw
quadratic yielding, f, is taken in the form
fp = I_lijkla-ija-kl -1 (2.3)
Here II,;,, represents a positive defined fourth-order yiefsor with the following symmetries
rlijkl =1 jikl = I_lijlk = rlklij (2-4)
It follows that IT;,, has only 21 independent components instead ob@panents in the most
general case. The following two special forms af @) will be employed:

(i) Huber-von Mises-Hencky (isotropic) yield critay

(2.5)

w8,

1
fp :E[(Ull_azz)z +(011_033)2 "'(022_J 3)2} +0.212+ 0215," J2237

(i) Hill (orthotropic) yield criterion

f,=F(0,-0,) +G(0,,-04) +H (0 ,,-0 ) +2Lo%# 2M 0,3 2No? ;5 1 (2.6)

2.2.2 Hill condition

Key issues in the mechanics of random materialslvevaround effective responses, scales on



which they are attained, and types of loading weal The Hill condition establishes the
equivalence (compatibility) of energetically andamenically defined effective responses in linear
elastic heterogeneous materials [13] i®g=c:c. It can be generalized to elastic-plastic
materials in an incremental setting [14,15]. Toarsthnd this, we consider a nonlinear inelastic
material, where the strain energy can be spedfielfunctional F
F=0olk (2.7)

Here * is a linear operator depending on particcéeses. The constitutive relations are expressed
as

6 =¢(€), £=y(o) (2.8)

Now we introduce the energetic and mechanicaltaféeproperties, denoted bg and m

in superscripts, respectively

F=¢°(e) e (2.9)
s=¢"(¢), e=y"(o) (2.10)

Substituting (2.10) into (2.9) we obtain
F :(pe(g)m;:<pe(wm(;))m£ (2.11)

Note that the equivalence of energetic and mechiagifective properties requireg® =¢™. In
addition to y" = (™), it yields
F=olk i€, 6lk=0clk (2.12)
Equation (2.12) is the generalized form of Hill diion in nonlinear and inelastic materials. For
elastic-plastic materials it takes the form
[o:de=[o:de (2.13)
Transforming the volume integral to integrals dierboundary by the Gauss theorem, we obtain
J'aBJ(t ) {du-dex)dS=0 (2.14)
where u is the displacement vector artd is the traction vector on the specimen bound2By .

Equation (2.14) suggests three special types foinmboundary conditions (BCs):



(1) kinematic (displacement) BC (with applied constactemental straindE):
du=dex, [Ox00By; (2.15)
(2) static (traction) BC (with applied constant stre_s)s
t=¢, OxO0B;; (2.16)
(3) mixed-orthogonal (or displacement-traction) BC:
(t-o M) [du-deX) = 0,0x 0dB;. (2.17)
Note here that an unambiguous way of writing (2idvQlves orthogonal projections [16]
(u-u®)m=0, (I-nOn)(e@)m-t°)=0. (2.18)
In this case, the formal boundary vector is of mhiggucture, i.e., it has one or two components
imposed by boundary displacements and the lackingponents by tractions. Strictly speaking,
the static BC (2.16) is ill-posed for a perfectlggtic material, but all the materials in our stady
heterogeneous, so that the overall stress-stigpomses will effectively be the hardening-type for

monotonic loadings. We return to this issue in 3&%.

2.2.3 Hierarchy of mesoscale bounds

When the size of a specimen is smaller than the, RvEvolume averaged responses must be
referred as apparent, rather than effective [Iath&fundamental questions will be posed, “How
close are the apparent properties related to thetieé properties?”, and “How big is the size of a
specimen enough to approximately attain an RVE?28 Qossible way is to set up different
boundary value problems which are consistent whHill condition and bound the effective
responses from above and below. When the boundsnieecery tight (almost identical) we say
that the RVE is approximately obtained. A hierarofhypounds on the effective tangent stiffness
tensor C™" shows

(1) <.s(sE) s (sy) s g(ST) T =C™
<

(2.19)
! _...s<CId>, forall 1<o'<g<o.



Here <C}d> and <S}t> are the apparent tangent stiffness and compliauackili, respectively.
The superscriptd (or t) indicates the case of displacement (or tracti®@) Another type of
hierarchy that applies is in terms of energies ge(15) in [18]). Hazanov and Huet [19]
exemplified the case of mixed-orthogonal BCs, inctvithe apparent moduli are bounded from
above and below by those under displacement attbtraBCs. A proof of inequalities (2.19) for
elastoplastic materials is shown in [20]. Here ingoly sketch the proof in linear elastic materials

as follows.

Consider a partition of a square-shaped windBy(w) of volume V; into four smaller
parts B (w), s=1,...,4 of size 0 =0/2 and volumeV, each. Note that the boundary

conditions of the latter are more restricted thHan driginal case since they are applied to the
boundaries of aIIB§ (w) rather thanB;(w) . Now, following the minimum energy principles
we have:
w(z,5)<w(e,5) (2.20)
For linear elastic materials, it shows that
1z cdzenvdy oo
SVot:Cyies ;EVJ'S 1CS° e (2.21)
Here C§ and nyfs are the apparent stifiness tensorsB){(w) and B;(w), respectively.
Upon volume averaging we obtain
(c3)=(cs) (2.22)
In this way, a sequence of uppér-dependent bounds is obtained @' =C¢ . Similarly,
applying to the complementary energy in tractiors B have
(s5)<(sy) (2.23)
The sequence of lowed -dependent bounds 08*" is obtained by simply inverting (2.23).

Therefore we obtain the hierarchy (2.19).



2.3 Computational smulations of elagtic-plastic transitions

We consider two special models of such random dgteeous materials. One consists of
isotropic grains and the other is an aggregatanigb@opic grains (crystals). In both cases, the
grains are homogeneous, linear elastic/perfecstipl with the flow rule following associated
plasticity. The Huber-von Mises-Hencky vyield ciiber applies to isotropic grains, while for
crystals we employ Hill's quadratic orthotropiclgiieg.

Modd 1 (isotropic material): Isotropic grains with random perturbations in tleestee modulus
and/or the yield limit. It follows that the randofield of material properties is simplified
to® ={E, g,} , in which E is the elastic modulus and;, represents the yield stress. The
spatial assignment of randderand/or o, is a field of independent identically distribuigdd.)
random variables. That %) :{E, 0'0} Is a strict-white-noise field, clearly non-fract@heir
mean values are those of aluminufd:=71GPa,o, = 137 MP, with the Poisson ratio
v =0.348 [21].

Modd 2 (anisotropic material): Anisotropic polycrystalline aggregates with randanientations.

For individual crystals the elasticity tens@r” and the yield tensoll® are given by
Diljjkl =RHR anRIEr RED

Is="mnrs?
P —pPRPRPRPITE
1_[ijkl - I:'2imRjanrRlsl_[

mnrs*

(2.24)

where D' and I' are the referential elasticity and yield tensod &° is the rotation
tensor associated with a grain of tyge Also in this model, the random orientations faam
strict-white-noise field. The material orientaticare taken to be uniformly distributed on a circle;
this is realized by an algorithm of Shoemake [2alues of the referential material parameters are
given in Table 2.1.

A numerical study of both models, in plane strarcarried out by a finite element method

(FEM) commercial software ABAQUS [23]. We take d#isiently large domain that comprises

256x 25€ square-shaped grains. In model 1 we kéepconstant and let, be a uniform

10



random variable of up ta&2.5% about the mean. Other kinds of material randomaess
studied in Sec. 2.5. We apply shear loading thramghof the three types of uniform BC:

Kinematic: &, =—&5,=€, £2,= 0,
Mixed: &) =€,05,=-0,60,=02,= 0, (2.25)
Static: 0, =-035,=0,0,,= 0.

all consistent with Egs. (2.15)-(2.17).

The equivalent plastic strain contour plots undéerént BCs are shown in Fig. 2.1 for both
models on domain$4x 64 grains; these smaller domains are chosen beceag@dgg on larger
domains become too fuzzy visually. We can find thatshear bands are at rougil§’ to the
direction of tensile loading under various BCs.sTli understandable since we apply shear
loading with equal amplitude in both directions,le/the material field is inhomogeneous, so the
shear bands are not 45° exactly. Regarding this inhomogeneity, the plagtiins tend to form
in a geodesic fashion so as to avoid the strongénsy[24]. Note that the shear band patterns
under the three BCs are different. They differ bigss concentration factors and rank in the
following order in terms of BCs: kinematic, mixaabsstatic.

Figures 2.2 (a,b) show constitutive responseslafive-averaged stress and strain under three
BCs for both models. The responses of single dramogenous phases are also given for a
reference. First, the curves under different B@soat overlap, showing that th@56x 25¢€)
domain is very close to the RVE, i.e. the respoasesalmost independent of the type of BCs
[15,25]. Of course, domains as large as possieleneeded to assess fractal dimensions. The
response under mixed-orthogonal loading is bouriced above and below by kinematic and
static loadings, respectively. The results alsdytre hierarchy of mesoscale bounds (2.19).

Note that the curves of heterogeneous materialahaeys bounded from above by those of
the corresponding homogeneous materials. Howdwerdifference in the case of model 2 is

larger - the reason for this is that, while in mabeve use a material whose parameters are

11



arithmetic means of the microstructure, in modele?have to use a material with all crystalline

grains aligned in one directioR( =1).

2.4 Fractal patternsof plastic grains

Figures 2.3(a, b, ¢, d) show elastic-plastic ttemmspatterns in model 2 for increasing stressin
static BC. The figures use a binary format in these that elastic grains are white, while the
plastic ones are black. The plastic grains formstiglaegions of various shapes and sizes, and we

estimate their fractal dimensi@nusing a “box-counting method” [26]:

__log(N,)
log(r)

(2.26)
whereNr denoteshe number of boxes of sizeneeded to cover the object. We developed a
computer code for the box-counting method andigdrif in a typical example of the Siaigki
Carpet. This fractal object is obtained by dividemgquare into nine subsquares, removing the
central square, and repeating the same type dfiativion the remaining subsquares in a
self-similar way across an infinite range of scalegure 2.4 shows an approximation of the
Sierpiski Carpet obtained after six iterations on thelut®n level 729x 72€. The fractal
dimensiorD is log(8)/log(3)=1.8923. Our estimation gi@s1.8911, showing a good agreement.

The results of box counts for Figs. 2.3(a, b, @rd)shown in Figs. 2.5(a, b, c, d), respectively,
where we plot thén-In relationship between the box numbirand the box size respectively.
With the correlation coefficients very close to Idd all four figures, we conclude that the
elastic-plastic transition patterns are fractak $hme type of results, except for the fact that th
spread of plastic grains is initially slower untter static BC, is obtained for two other loadings i
model 2 as well as all loadings in model 1.

Figures 2.6(a, b) show evolutions in time of tteetal dimensio under different BCs for

both material models. We find that the curves démmewhat on a particular BC: in both

12



models the fractal dimensidh grows slower under the static BC than under theednBC, and
then the kinematic BC. However, note that theyeslhacommon trend regardless of the loading
applied:D tends to 2.0 during the transition, showing that plastic grains have a tendency to
spread over the entire material domain.

Furthermore, the dependenciesDobn the volume averaged plastic strain under difiier
BCs are almost identical in the case of both moé&eis 2.7. This is very similar to the materials’
constitutive responses - say, the volume averagesses. strain - which are independent of BCs
for sufficiently large domains in Fig. 2.2. Th@sturns out to be a useful parameter in quantifying

the evolution of elastic-plastic transitions indregeneous materials at and above the RVE level.

2.5 Further discussion of modd 1

Here we examine model 1 under several kinds of mabfgarameter randomness and various
model assumptions. First, the sensitivity of tiamisipatterns to the material's model randomness
is investigated through comparisons in two scegario

ScenarioA: Scalar random field of the yield limit, with thriggpes of randomness:

Al - Yield limit is a uniform random variable of tip +2.5% about the mean.

A2 - Yield limit is a uniform random variable of tip +0.5% about the mean.

A3 - Deterministic case: no randomness in the Yieiit

Scenario B: Random field of the yield limit and/or elastic méd® , ={E , o } , with three
cases:

B1=Al.

B2 — Elastic moduli is a uniform random variableipfto £2.5% about the mean.

B3 — Yield limits and elastic moduli are indepertdemform random variables of up t%2.5%
about their means.

Results for A1-A3 and B1-B3 are shown in Figs.&h8 2.9, respectively. From Figs. 2.8(a,b)
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one can conclude that different random variantthéx model configuration lead to different
transition patterns; overall, a lower randomnessli®in a narrower elastic-plastic transition. tNex
in Fig. 2.9 we observe the randomness in yielddinma have a stronger effect than that in elastic
moduli. When both these properties are randomiyierd, the effect is even stronger— both, in
the curves of the average stress as well as ttalfdimension versus the average plastic strain.

A test of the robustness of results of model 1hrega comparison of the original material
with two other cases: (i) a hypothetical materighvparameters of the aluminum increased by
factor 2 (E =142 GP¢, 0, =274 MPag) and (ii) a material with parameters of mild steel
(E =206 GP¢, 0, =167 MPa) [21]. Figure 2.10(a) illustrates the evolutiorfidowith respect to
plastic strain for these materials. One can firat the curves of material 1 and 2 are almost
identical and bounded from above by that of madt8riavhich is understandable, since the first
two materials have the same yield strain whiléHeratter one it is less than the two.

In order to demonstrate the influence of yieldiistnaore clearly, we scale the plastic strain by
material’s yield strain and plot the results againFig. 2.10(b). The three curves are now
practically identical. Note that, after scalingy@fld strain, the constitutive responses of allards
of model 1 are also reduced to one smooth stness-sturve, which can be fitted by, say,
o, =(2k I m) tan’l(d12 /b) , Wherek is the yield stress in shear, white>0 models a smooth
curve; for b - 0, the smooth curve tends towards the line of peplasticity. This curve may be

bounded by the linear elasticity/perfect plastiaitih yield strain equal to 1.0.

2.6 Summary

The work performed in this chapter is the firspste study fractal patterns at elastic-plastic
transitions in heterogeneous materials. We consgatelom linear elastic/perfectly-plastic media,
where the yield limits and/or elastic moduli ardeetaas non-fractal, random fields (in fact, fields

of i.i.d. random variables). In particular, tworda models are studied: a composite with isotropic
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grains and a polycrystal with anisotropic graingirtg orientation-dependent elasticity and Hill's
yield criterion. By setting up three types of laag consistent with the Hill-Mandel condition, the
stress-strain responses and fractal dimensionsvalfireg plastic regions are obtained by
computational simulations. Referring to the thigestions raised in the Introduction of this chapter
find the following:

(@) The elastic-plastic transition occurs as adfaplane-filling process of plastic zones in both
heterogeneous (fundamentally non-fractal) matenadlels — one with random fluctuations in
yield limits and/or elastic moduli, and anotherhwmiitndomly oriented anisotropic grains. The
fractal dimension of plastic zones increases maoiily as the macroscopically applied loading
increases, with kinematic BC in a strongest graith, followed by the mixed-orthogonal BC,
and then by the static BC.

(b) Very similar fractal patterns and stress-steairves are exhibited by both, the composite made
of locally isotropic grains and the polycrystallinggregate made of anisotropic grains. As the
randomness in material properties decreases towardsin the first model, the elastic-plastic
transition tends from a smooth curved bend in ffecte/e stress-strain curve towards a sharp
kink and this is accompanied by an immediate pldlimgs of plastic zones. Of course, the
limiting case of no spatial randomness does nasiphlfy exist, i.e., a homogeneous material is
but a hypothetical, idealized model. Also note, timathe model with anisotropic grains, no sharp
kink can be recovered unless all the grains acquiidentical orientation.

(c) The fractal character of plastic zones is rbboder changes of the model such as the change
in strength in random perturbations in materiapproes or a change in the mean elastic moduli
and vyield limits. Since in all the cases the algdtastic transitions share a common trend (O
towards 2), the fractal dimensi@nturns out to be an optimal parameter to invedigainsition
patterns among different materials.

While this study is set in the context of elapicfectly plastic grains, the next step will have
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to show, among others, how hardening affects #weeplilling of plastic zones, and how fractal
patterns change when thermo effects (or residaihs) are taken into account. Those topics will

be discussed in the next two chapters successively.
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Table 2.1: Material parameters in Model 2.

Material Elasticity* (GPa) Plasticity’
C.Ll C.LZ C44 JO(MPa) 0-11/0-0 0-22/0-0 0-33/0-0 0-12/0-0
Aluminum 108 62.2 28.4 137 1.0 0.99580.9214 | 1.08585

*Material properties for cubic elastic sgmatry[27].

®Material properties for the quadraticisstropic yield criterior[21].
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(cl)

Figure 2.1:Plots of equivalent plastic strain d¥x 64 domains for model 1 (isotropic grains)
and model 2 (anisotropic grains) under various B&lsa?) kinematic, (b1,b2) mixed, and (c1,c2)

static.
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“olume average stress~strain responses under different BCs, Model 1
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Figure 2.2: Volume-averaged stress~strain respomgies different BCs for: (a) model 1 (isotropic

grains) and (b) model 2 (anisotropic grains).
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Figure 2.3: Field images (white: elastic; blaclagtt) for model 2 (anisotropic grains) at four

consecutive stress levels applied via uniformesB@. The set of black grains is an evolving set,

d).

with the fractal dimension given in Figs. 2.5(a-

20



Figure 2.4: A fractal example to test our compotele: Siergiski Carpet on729x 72€ pixels.

The theoretical value is log(8)/log(3)=1.8923 andestimation giveD=1.8911.
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Figure 2.5: Estimation of the fractal dimensidfor Figs. 2.3(a-d), respectively, using the
box-counting method: (ap =1.667, (b) D =1.901, (c) D =1.975, (d) D =1.999. The

lines correspond to the best linear fittindgrgNr) versudn(r).
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Fractal Dimension
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Fractal dimension~plastic strain curves under different BCs, Model 1
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(b)

Figure 2.10: Comparison of different material res@s: (a) Fractal dimension vs. plastic strain
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CHAPTER 3

STUDY OF ELASTIC-HARDENING PLASTIC
MATERIALS

In this chapter, we extend the study to more teahsodel materials with elastic-hardening plastic,
isotropic grains having random yield limits or @taplastic moduli. We focus on isotropic grains
for simplicity and to see the hardening effectartyeFollowing the set of grains that have become
plastic, we find that it is still an evolving frattmonotonically plane-filling with an increasing
macroscopic load. All these responses display $maotsitions but, as the randomness decreases
to zero, they turn into sharp response of an ikthlhomogeneous material. The randomness in
yield limits has a stronger effect than that ins@éplastic moduli. In essence the hardening
facilitates elastic-plastic transitions in randoratenials — larger plastic modulus leads to a faster
transition. The fractal analysis methodology herglies a very practical application — the curves
of fractal dimension versus applied stress displayiversal character for a range of different
materials — which offers a simple method of assgdbie inelastic state of material. Finally, we
give a qualitative explanation of the morphogenesifsactal patterns from the standpoint of a

correlated percolation on a Markov field on a gragtwork of grains

3.1 Introduction

This chapter focuses on study of elastic-plagitsitions in elastic-hardening plastic materials,
made of locally isotropic grains with random fluations in yield limits or elastic/plastic moduli.
In particular, we pose the following questions afofe: (1) Does the elastic-plastic transition

occur as a fractal, plane-filling process of ptastines under increasing, macroscopically uniform

2 See also, [28] Li, J. and Ostoja-Starzewski, QR Fractals in elastic-hardening plastic mateifabc. R
Soc. A, in press.
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applied loading? (2) Is the fractal character ekt zones robust under significant changes of
material properties? (3) Can the fractal charaftére set of plastic grains be explained through a
stochastic model?

Motivated by these questions, a white-noise randoonostructure is firstly set up, the key
property of the model being that the material gigegoriori is non-fractal. Then, we determine
fractal dimensions of sets of evolving plastic mgaivhen the body is subjected to monotonic
loading(s) consistent with the Hill-Mandel condijgeveral models and kinds of randomness are
examined. Finally, we present a Markov field manfestochastic and fractal evolution of plastic
grains, where the Markov property is dictated k@ iearest-neighbor interactions between the

contiguous grains.

3.2 Modd formulation

A random heterogeneous material is defined as Bset B(w); wl Q} of deterministic media
B(w), where w indicates a specific realization arfd is an underlying sample space [15]. The
material parameters of any microstructure, sudhesglasticity tensor or the yield tensor, jointly

form a random field® which is required to be mean-ergodic on (vergdacales, that is

G(w) = li[rlvije(w, x)dV = J'G(a), x)dP(c) =(G(x)) (3.1)

We define a homogenized response as that in wihieke tis equivalence between

energetically 6 : £) and mechanicallyd: £) defined effective responsas: £ = ¢ : £ . This is the
well-known Hill-Mandel condition in linear elastimaterials, leading to three types of uniform
boundary conditions (BCs):
(1) kinematic (displacement) BC (with applied conssratin £°):

u=¢g"X, Ox0O0By; (3.2

(2) traction (static) BC (with applied constanest ¢°):
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t=c’lh, [Ox[00By; (3.3)
(3) mixed-orthogonal (or displacement-traction) BC:
(t-o°h) Qu-£°0X) =0, [Ox0B;. (3.4)
where u is the displacement vector artd is the traction vector on the specimen bound2y .
The above boundary conditions can be generalizethfic-plastic materials in an incremental
setting [14,15]. The microstructures in our study made of perfectly-bonded, homogeneous,
isotropic grains of linear elastic/linear harderptastic (J,) type with an associated flow rule

[29]. Specifically, the constitutive response of amain [i.e. a piecewise-constant region in a

deterministic microstructuréB(w) | is described by

de =3 2)y, (ds=%,da=ﬂj, (3.54)
E 3 3

de :“?"da;j when f <0 or df <0, (3.5b)

dg; :H?Vdai'j + % when f >0 and df >0. (3.5¢c)

i
where primes indicate deviatoric tensor paiis;is the elastic modulus (Young’s modulus),

is the Poisson’s ratio, and is the yield function. (3.5b) indicates elastifod@ation or plastic

unloading and (3.5c¢) refers to plastic responsectisider the von Mises-Huber isotropic yield

f= ,/gai'jai'j -c (3.6)

Here c is the yield constant. In the 1D case the comisttwelations (3.5a-c) reduce to

criterion and f is defined as

o=E¢ wheno<o, (3.7a)
g=E,, whenozo, (3.7b)
Where o, is the yield stress in uniaxial tensiom@-%), g, is the plastic strain, and, is the

plastic modulus. We can see that equations (3.7eebjtitute a simple nonlinear model

(piecewise-linear) characterizing the elastoplassponse. Figure 3.1 shows such a homogeneous body
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transitioning instantaneously from elastic (whitejplastic (black) state, accompanied by a kinthé

stress-strain curve.

3.3 Simulationsof fractal patternsof plagtic grains

3.3.1 Evolutionsof fractal patterns

We consider 2D plane strain problem and apply doeding through one of the three types of
uniform BCs consistent with (3.2)-(3.4):

Kinematic: &) =—£2,=¢, £5,= 0,
Mixed: &), =¢,05,=-0,60,=03,=0 (3.8)

Traction: 0, =-03%,=0,0,,= 0,

A computational mechanics study is conducted witkhEBM commercial software ABAQUS [23].
We take a sufficiently large domain comprisi@$6x 25€ square-shaped grains. Each individual
grain is homogeneous and isotropic, B E, being constant ana, being a field of
independent identically distributed (i.i.d.) uniforrandom variables scattered up #8.5%
about the mean. Other kinds of randomness areedtudSection 3.3.3. The material constants are
taken from ABAQUS 6.8 Benchmarks 3.2.1 case 1.

E=68.94GPa E, = 34.4GPa g, = 68.9MPa y= 0.

Figures 3.2(a-d) show elastic-plastic transitiadg at different deformation stages under
traction BC. We follow here the binary format ofF8.1 in the sense that elastic (plastic) grains
are white (black). The plastic grains form plaségions of various shapes and sizes, and we
estimate the fractal dimensi@nof that entire plastic grain set by using a “boxiating method”
[26]:

__log(N,)
log(r)

(3.9)

whereNr denoteshe number of boxes of sizeneeded to cover the object. Results of box counts
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for Figs. 3.2(a-d) are shown in Figs. 3.3(a-d)peetvely. With the correlation coefficients of
log(Nr) versus log() close to 1.0 for all black-white patterns, we aode that the elastic-plastic
transition patterns are fractal. Note the orthatraparacter of the plastic grain set, which réflec
the propensity of shear bands and slip-lines to fapproximately at+45’.

Figures 3.4(a,b) show response curves under theseBCs in terms of the averaged stress
vs. strain and the fractal dimensioB)(vs. strain, respectively. The responses of singlergra
homogeneous phases are also given for a referémceoth figures, the curves overlap,
demonstrating that the2b66x 25€) domain is the Representative Volume Element (R¥€ye
we assign each grain with one finite element foweaience. To verify whether such a meshing is
sufficient, we conduct numerical simulations ugiifterent element types (linear or quadric) and
illustrate the results in Figs. 3.5(a,b). Cledahg curves are nearly identical. Thus, tB86x 25€
domain size is chosen so as to ensure the RVErkes@bnse and computational accuracy, while
having an acceptable spatial resolution of depeniidds to ensure a reliable assessment of

fractal dimensions.

3.3.2 Discussion of hardening effects

In order to investigate the influence of hardenmghe transition, we conduct comparison
studies among different materials with varioustmasodulus and/or yield strairo( / E ). Their
material parameters are listed in Table 3.1, watisgon’s ratio being 0.3 in all the cases. Here we
note that materials 1 and 2 are taken from ABAQUS Benchmarks 3.2.1 case 1 and 2,
respectively, while the materials 3a and 3b arégdated to be different in yield strain from
materials 1 and 2; their parametdes o, are those of 316 steel in ABAQUS 6.8 Example
Problems 1.1.8. The series A materials (2a,3a) the/eame ratio of plastic-to-elastic modulus,
E,/E, as the material 1, while series B materials {2bsBe the same in their plastic modulus

E,. The compared responses are considered in terdimefisionless quantities like normalized
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stress or strain (rescaled by yield stress or giedah) accordingly.

We begin the discussion by comparing responsesi@ria 1 and 2. As seen from Table 3.1,
these materials have the same yield strain butdifeyent hardening parametets, . Note that
the hardening constant of material 2 is much lems that of material 1, we see from Fig. 3.6(a)
that the tendency of approaching a homogeneousnsspn material 2 is slower than that in
material 1. Accordingly, the fractal dimension gsoslower in material 2 as observed in Fig.
3.6(b), which means that the elastic-plastic ttmmsidevelops more rapidly in materials with
stronger hardening effects.

Note that materials 1 and 2 also differ much bgtielanodulus. To see the hardening effects
more clearly, we perform numerical simulationswa hypothetical materials 2a, 2b—the former
with same E, / E  of material 1 while for the latter same B, . The results are given in Fig. 3.7
for comparison. We observe that responses of ralstdriand 2a are nearly identical in the curves
of both, the normalized stress-strain and thedraltinension-strain. While for material 2b with
the sameE of material 1 but a loweiE, / E, the tendency of approaching the homogeneous
response appears slower and the same conclusiohe crawn regarding the fractal dimension
curves.

While the study of materials 1 and 2 (Figs. 3.6hds been restricted to cases in the same
yield strain, we now turn to materials with diffetgield strains. This is done by comparisons of
material 1 and other two hypothetical materials3Ba-—same configurations o,/ E or E|
but different in yield strain. The results aresthated in Fig. 3.8. We arrive at the same corahgsi
as for materials 2a and 2b. Based on these olisesjatve conclude that the elastic-plastic
transition in random materials is characterizedhieyr fractal dimension-normalized plastic strain
responses. Specifically, the same response curnvescial dimension-normalized plastic strain

results in the same normalized stress-straingeitiThe hardening effect is fully determined by

the ratio of plastic-to-elastic modulug;,/ E. The sameE /E leads to the same fractal
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transition patterns, and the largertis, / E the faster is the increase of fractal dimensioaisthe
hardening facilitates the elastic-plastic transittorandom materials.

While our study is restricted to linear hardeningterials, a simple extension to nonlinear

hardening models can also be drawn here—for trexsesdhe hardening parametgy is not a
constant but some function with regard to the sifgastic strain, and the rati&,/ E can be
specified in each incremental step during the ittans\We note that, in conventional stress-strain
calibrations, the trends to approach homogenespsmee curves are not easy to discern among
different materials. On the other hand, the fraditmlension always increases from 0 to 2 during

the transition, thus providing an optimal parameterssess the transition process.

3.3.3 Other types of randomness

Now, we examine the influence of material param@tedomness. This is again studied through
comparisons of several cases. As suggested iro®&c8.2, we consider the response curves in
terms of fractal dimension versus normalized mastiain. First, the sensitivity of transition
processes to material’s model randomness is igesti in two scenarios:
ScenarioA: Scalar random field of the yield limit, with thriggpes of randomness:
Al - Yield limit is a uniform random variable up #2.5% about the mean.
A2 - Yield limit is a uniform random variable up t#0.5% about the mean.
A3 - Deterministic case: no randomness in the Vil
Scenario B: Random field of the yield limit or elastic modulusth two cases:
Bl =A1.
B2 — Elastic modulus is a uniform random varialpdéai +2.5% about the mean.

Results for A1-A3 and B1-B2 are shown in Figs. &8 3.10, respectively. From Fig. 3.9
one can conclude that different random variablethénmodel configuration lead to different

transition processes; overall, a lower randomreesdts in a faster elastic-plastic transition. INext
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in Fig. 3.10 we observe the randomness in yielddito have a stronger effect than that in elastic
modulus.

Note that the hardening parameter (plastic modiy$ can also be randomly perturbed. In
fact, it is more realistic to combine the randorsneselastic modulus and plastic modulus in
applications of composites of various material tturtes. We conduct this study through a
comparison of three cases:

Case 1. B2, the plastic modulus is fixed.

Case 2: Elastic modulus is a uniform random variable apt2.5% about the mean, while the
plastic modulus is a corresponding linearly depen@adom variablé= | / E is fixed.

Case 3: Elastic modulus and plastic modulus are i.i.dfoam random variables up t&2.5%
about the mean.

Figure 3.11 illustrates the results for these cadés can find that the three curves are
practically overlapping, which means that the ramaess in plastic modulus has a very small

effect in the transition.

3.3.4 Further discussons

In Sections 3.3.1-3.3.3, we have demonstrated thieatset of all plastic grains at the
elastic-plastic transition is an evolving fractahd studied hardening effects and material model
randomness appealing to the fractal dimension. &\th¢ fractal dimension versus normalized
plastic strain curves prove effective in compatmagsition patterns among different materials, we
note that the fractal dimension always reachesn2tBe end of the transition, which hints at a
universal property for all elastic-plastic matexialo demonstrate this clearly, we plot the curves
of fractal dimension versus normalized Mises sti@smaterials 1, 2b and 3b in Fig. 3.12(a). We
choose these three materials as in Section 31&2their fractal dimension~normalized plastic

strain curves are different. Interestingly, frong.F3.12(a), it appears that the curves are nearly
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identical for all these materials.

One may argue that a simple variable like the vel@iraction of plastic regions could also
describe the transition, since it reaches 1.0@rfully developed stage. Accordingly we plot the
results of plastic volume fraction versus normdliddises stress in Fig. 3.12(b). Although the
responses of materials 2b and 3b nearly overlagff@ot the E, / E ratios are very close), they
differ from material 1. This leads us to concluidat the relation betwedh and the normalized
Mises stress is a universal property (or at leasey very little) for all isotropic elastic-plasti
hardening materials. Since the fractal dimensionreadily be estimated via, say, image analysis,

this provides an effective approach to infer thesstin the material at the transtion.

3.4Why arefractals observed in dastic-plagtic materials?

The fractal character of evolving sets of plastiairgs observed in computational mechanics
simulations reported above may be explained byeserece to fractals on Markov random fields
(MRF). To see this, we first introduce a binaryd@m variable S describing the state of any

grain as

e if fp<0 or dfp<0,

S={ , (3.10)
p if f,=0 and df, = 0.

where e means an elastic state ard means a plastic statef,) refers to the yield function of
grainp. Next, consider grain centers of our polycrystah &artesian latticé® of spacinga in
R?, that is

L= {x=(ma,ma)}, (3.11)
where m, m, are integers ranging from 1 throulyh(= 256 in our simulations above). Given
that (i) the properties (yield stresses or elgusistic modulus) of each grain is random, andh@)
state of each grain is a result of all the intéwastin the entire system of all grains, the stdte

on L, isarandom field
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S: QxL, - {e p}, S(wx)=e or p. (3.12)
In other words, for anyw(1Q (a particular realization of the entire materigtem) and any
location x on the lattice, the stat& is s (i.e., eithere or p). If we do not specifyx , then
S stands for a realizatiors(w): s on L., where some grains are elastic and others plastic.
Note that the body is subjected to a macroscopit: keither £° or ¢°, according to BCs (3.2) or
(3.3).

Markov property: Recognize that, given the macroscopic load suck’ashe conditional
probability of a grain atx being plastic at any macroscopic load level depention the state of
all other grainsL, —={x} but only on the state of itgarest neighborhood N, :

Po{s()Is(NJ} = Po{s(x) Is(L. ~ 6)}. (3.13)
This relation definesS of (3.13) as aMarkov random fidd (MRF). Given the square lattice
topology of our compositesN, comprises four neighboring grains:
N,={x=[(m+)ama] [(m-Jama] .[ma(m,+}a] [ma(m,- Ja]

(3.14)
whereby we consider the effect of four grains gdimough the vertices onta as being much
weaker than those which contact through the silese this accounts for neighbors just one step
away, S is called al-Markov fidd. It is understood, but not written explicitly i8.13), that the
conditional probabilities on both sides of thatatmun depend on the macroscopic applied loading,
i.e. €2 or ¢° or some combination thereof, applied, respectitaigugh (3.2) - (3.4).

Note that the nearest neighborhood may be replagedset of neighbors up to two steps
away (in Manhattan metric), whereldy would be &-Markov fidd. This would lead to a richer
model, but we do not need to pursue it here, becalbsady the 1-Markov field possesses the
salient features of a correlated percolation.

The formulation above is analogous to that of arF\iiR an Ising magnet on a square lattice,

where the state (spin up or down) of each sitefusetion of the spins at four neighboring sites
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and of the overall temperature (rather than that of a mechanical state)
F’T{s(x)|s(NX)} =PT{S(X) |s(La—{x})}. (3.15)

The temperature does also appear when one wi@tsba specification of the random field:
1
I'IT(a))=Eexp[—U(a),T)] (3.16)

This is called aGibbs random fidd (GRF), with Z being a partition function ensuring the
probability measure is normalized to 1:
Z=)exp U (wT)]. (3.17)
Going back to the elasto-plastic composite, inst#a(B.16), we can also write a Gibbs

specification
I'Iso(a)):%exp[—u(a),ao)]. (3.18)

Now, the equations (3.16) and (3.18) also betrag#tond reason for the formulation above to be
analogous to the MRF for an Ising magnet. Namiedyjriternal energy of the latter i$ (a),T) ,
while the internal energy of the MRF of an elaptastic composite isU(a), so). This is
consistent with a continuum thermomechanics pictuleere the temperature is a control
parameter for a thermal problem, while straingsrrol parameter for a mechanical problem.

It is well known that every MRF is equivalent t&&F, andvice versa [30]. However, the
key issue that arises is whether the descriptionteirms of conditional probabilities
P.{s(x)Is(N,)} is equivalent to the description in terms of altoprobabilities M , ().
That is, if we specify a MRF in terms of local matetions, do we also specify its probability
measurell (and, therefore, its statey) in a unique way? The answer to this question raigpe
on whether the interactions are weak or strong.\WWhey are weak in the sense that the state
s(x) depends weakly on the neighbors' stat€bl, ), then there is a unique correspondence
between P, { s(x)Is(N, )} and M, (w). On the other hand, when they are strong (indhses

of strong such dependence), for a given speciicaif interactionsPso{s(x) | s(NX )} there is
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more than one probability measufé , (w) . The critical point where this non-uniqueness mccu
is characterized by fractal patterns.

In the case of the Ising model, this critical pagthe Curie pointT. on the temperature
scale, below which we have a ferromagnet, and avbiah there is a spatial disorder of spins so
that no single dominant (and hence macroscopic)esperges. A wide range of binary patterns —
i.e., white (V) versus blackR) vertices — have been analyzed for the entireeraigcontrol
parameters [31]. The control parameters are(the likelihood of any single vertex to co-align
with the external magnetic field) and (the strength of interaction), so that a canorfarah of
the internal energy reads

U(wT)=a M|+ B|Vay| (3.19)
where V| is the number of black vertices, af,,| is the number of pairs having one black
and one white vertex.

Note that the first term in (3.19) here is respaasior a Bernoulli type (i.e. uncorrelated)
percolation on the lattice. While this percolatieni.e. retaining only the first term in (3.19) — is
well known to also exhibit fractal patterns, thechramics and physics considerations suggest that
the second term is non-zero, so the elastic-plastitsition is characterized by a correlated
percolation. In fact, for a weakly random microstiwe, the plastic state is likely to 'spill overa
neighboring elastic grain. On the other hand, strangly random microstructure, plasticity tends
to go via weak grains around grains with high yildits [24]. Thus, in some cases the
interactions may be attractive, and in others sdpell Note that (i) the correlated percolation
involves an interplay of both terms in (3.19), diidthe problem being tensorial in nature and
orthotropic, it is more complex than what happanthe Ising model which is only scalar.

In the early eighties fractals were hardly knoww &nis is probably why [31] did not
estimate fractal dimensions from their computeugations, although fractal patterns are clearly

seen in their figures at (and arount). The task of generating fractal patterns via MRitlefs
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and computing their fractal dimensions was accangtl by [32] and followed by others in the
field of image analysis, e.g. [33].

Returning back to our elastic-plastic transitioa lrandom composite we recapitulate:

(i) there are elasticel and plasticf) vertices in analogy t¥V andB vertices in the Ising
model;

(i) the increasing applied loading” tends to cause the>p transition at any single vertex,

while the local conditioning is attractive in thense thatp states onN, tend to make
S(x) = p (with the same cause-effect relation holdinggjor

(i) Sis the MRF so that the evolution of the entirset from a predominantlystate to a
predominantlyp state exhibits fractal patterns.

Since the responses under (3.2) and (3.3) loatiengs been shown to be almost the same

(i.e. the RVE level), the above arguments coulcebtated withe® replaced bys®. While this
section provides only a qualitative explanationtlid morphogenesis of fractal patterns at
elastic-plastic transitions, a quantitative detaatibn of conditional probabilities of the MRF is

outside the present study.

3.5 Summary

We study evolving sets of plastic grains at elggtstic transitions in several random 2D
plane strain material models. In particular, treegecomposites of linear elastic/hardening plastic,
isotropic grains having fluctuations in yield lisiior elastic/plastic moduli, which are taken as
strict-sense white-noise (non-fractal) random $ellil turns out that in every model material
subjected to increasing uniform loading (eitheehkmnatic, traction or mixed) the sets of evolving
plastic grains are fractal, with the fractal dimengrowing from 0 in the globally elastic state?to
in a globally plastic state. Several models andikiof randomness are examined, always

displaying the same essential features. We findtltteatransition is characterized thoroughly by
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the ratio of plastic-to-elastic moduli — the largke ratio, the faster the transition, i.e., the
hardening effect indeed facilitates the transipaocess. Also, as the random field noise vanitiees,
transition from elastic to plastic occurs instagtasly (i.eD goes from O to 2 discontinuously), whereby
the smooth response curve of the random composianto a stress-strain curve with a kink. Theleho
comprising many subdomains with random materigdgoties generates an overall smooth transition
which is physically more feasible. This study hagegy practical application: the curves of fractal
dimension versus applied stress — which indeedeaniésponses for a range of different materials

— provides a simple approach to infer the stressaiterials at transitions.
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Table 3.1: Material parameters

Material 1 2 2a 2b 3a 3b
E[GPa] 68.94 207 207 207 192 192
E, [GPa] 34.47 10.41 103.5 34.47 96 34.47
o,[MPa] 68.94 207 207 207 120 120
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Figure 3.1: Elastic-plastic transition in an idéaimogeneous body is reflected in an instantaneous

change from elastic (white) to plastic (black) aridnk in the stress-strain curve.
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Stress~Strain responses under different BCs
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Figure 3.4: Response curves for the material &f. 3@ and 3.3 under different boundary

conditions: (a) Volume averaged stress versuss(lgi Fractal dimension versus strain.
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Stress~Strain responses under different element types
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Stress~Strain responses of material 1 and 2
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Stress~Strain responses of material 1,25 2b
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Stress~Strain responses of material 1,32 3b
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Fractal dimension versus strain.
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CHAPTER 4

FRACTALSIN THERMO ELASTIC-PLASTIC
MATERIALS

This chapter is a continuation of the work follogvifractals in elastic-plastic transitions. After
discussing cases of elastic-perfectly plastic dastie-hardening plastic media, now we turn to
more general situations — random thermo elastgtiplanaterials (or elastic-plastic type with
residual strains). The model is comprised of lgchttmogeneous isotropic grains with weak
random fluctuations in either the moduli, or pladtnits, or thermal expansion coefficients. We
first focus on the case of random perturbated thleexpansion coefficients (or residual strains)
and find that the set of plastic grains is a cotiy evolving, and ultimately plane-filling, fraadt
structure. On the other hand, the complementary sketstic grains — is still a fractal but with its
dimension decreasing from 2 to 0. Furthermore,dbmparison study under various model
randomness and material constants is conductednoristrate thermal elastic and hardening
plastic effects altogether in elastic-plastic trtamss. It turns out that the fractal dimensions an
optimal parameter of describing the transitiongoas in a unified way for a range of all different

materialé.

4.1 Moded formulation

As conventionally done in mechanics of random na¢erve consider the random heterogeneous

material to be a se :{ B(w); wl Q} of realization8(w) , defined over the sample spatk,

each one evolving in a deterministic fashion [T%jat is, for an elementary evend[1Q we

% See also, [34] Li, J. and Ostoja-Starzewski, NMQ® Fractal pattern formation in thermoelastistia
heterogeneous materigsoceedings of the 8" International Congresson Thermal Sresses, 283-286.
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have a realization of deterministic medi{cw) , each taken as an aggregate of crystals (or yrains
With 8 embedded in a physical space, the aggregateeistialg modeled by a random field.

The random field of any material proper§y is required to be mean-ergodic, that is

G(w) = li[rlvije(w, x)dV = J'G(a), x)dP(c) =(G(x)) 4.1)

where the overbar means the volume average(a)wdindicates the ensemble average. In general,
the grains are homogeneous, isotropic, linear thelastic-hardening plastic materials, where the
randomness resides in either the moduli, or plastits, or thermal expansion coefficients. Now
we focus on the case of random thermal expansigifiments. Thus, the constitutive response of
each grain is written as

-when f <c (thermoelastic region)

& = Sjklakl *+aj (w,x)8 4.2)
-when f >c (plastic region)
. do,
dg =—=+4 [—)i
d0;
) 4.3)
dg:d_a (dg:%’dgzﬁj
3 3

where primes indicate deviatoric tensor compone§g, is the compliance tensog; (w,x) is
the thermal expansion coefficient (randomly spedifin each grain)@ (=T -T,) is the
temperature changef is the yield function,c is the yield limit, andG and K are the shear
and bulk modulus, respectively. Here we assign aamgss only in thermal expansion
coefficients while keep other material parametensstant. This model also corresponds to a
homogeneous media perturbed with random residaals{thermal strain).

Regarding the loading o8, we recall the Hill (-Mandel) condition [13,14], hieh

guarantees the equivalence of energetically antianexally defined effective responses

fo:de=[o:de~ [ (t-om)cfdu-dex)ds=0 (4.4)

56



where dB; is the boundary of a given specim&j of size d, u is the displacement vector,
and t is the traction vector, both on the specimen bagndhis equation suggests three special

types of uniform boundary conditions (BCs):

() uniform displacement BC: du = de X 4.5)
(i) uniform traction BC: t=ch (4.6)
(iii) uniform mixed-orthogonal BC: (t-o M) Qdu-deX) =0 @.7)

4.2 Numerical smulations

4.2.1 Observation of fractal patterns
A numerical study of the elastic-plastic transitionplane strain, is carried out by ABAQUS [23].
The domain comprise@56x 25€ square-shaped grains, i.e., sufficiently largeotopute fractal
dimensions. Each individual grain is homogeneodssotropic, its thermal expansion coefficient
a being a uniform random variable from a range otax2.5% about the mean and other
material parameters being constant. The mean vatagaken from ‘ABAQUS Example Manual
5.1.2%
E=93.5GPa,h= 76.55Pa ¢= 158/Pa ¢ = 11 1D K uv,= 0.

The temperature change is set tode 20K up from T, =273.1K . We apply shear loading
through one of two types of uniform BCs consisteitit Egs. (4.5,4.6):

Displacement:de1; = —de2, = de®, de1=0, (4.8)

Traction: O1n=-02=0° 01,=0. (4.9)

Figures 4.1(a-d) show elastic-plastic transitiortgpas for increasing stress® under

traction BC. The figures use a binary format in ¢base that elastic grains are white, while the
plastic ones are black. As the loading increakesset of plastic grains grows with an apparently

disordered geometry. Its fractal dimensbns estimated using a “box-counting method” [26].
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Table 4.1 shows fractal dimensions and correlataefficients for linear fits applied to each of
Figs. 4.1(a-d) — the fractal character of setdadtic grains is evident. The same type of results
obtained for displacement BC, whereby the spreathsfic grains is initially faster.

Figures 4.2(a,b) show response curves under thes8C€s in terms of volume-averaged
stressvs. strain and fractal dimensidd vs. strain, respectively. The responses of single grain
homogeneous phases are also given for a referévedind that the responses of random
heterogeneous materials all display smooth cumedirtg towards the line of homogeneous
phases, which, in fact, is more realistic, sinceeal materials the elastic-plastic transition must
develop smoothly rather than instantly. The cartsté response under displacement BC bound
that under traction BC from above. This can be rdest by hierarchies of bounds for
elastic-hardening plastic composites [20]. Whilke discrepancy is found to be larger here since
for thermoelastic-plastic materials we need a tasgee of RVE [12]. The fractal dimensidh
grows slower under the traction BC than the digofent BC, which corresponds to the
characteristics of constitutive responses. Howewge that they share a common trend regardless
of the loading applied tends to 2.0 during the transition, showing thatplastic grains have a
tendency to spread over the entire material dor@arthe other hand, if we look at the evolution
of elastic grains (the white set in Fig 4.1), il shows to be a fractal with the dimensibn
decreasing from 2 to 0, see Fig. 4.3. We notealtfaiugh the sets of elastic and plastic grains are
complementary in the plane, the sum of their ftadimensions does not necessarily give 2,

indeed only at the beginning or in the end wheplastic regions or elastic domains exist.

4.2.2 Study of material randomness

Now we examine the elastic-plastic transition urdiéerent model configurations. First, the
sensitivity to the material’s model randomnessudied through a comparison of three cases:

Al-a up to+ 2.5%about the meadl,= 20K .
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A2-a up to+ 12.5%about the mea#l,= 20K .
A3- Same variance afto case 1, bl =100K .

Note that, according to Eq.(4.2), the respons#astad by the multiplicityad as a whole.
Cases A2 and A3 are thus assigned with same variaed) but for the latter the meaord
is higher. Results for A1-A3 are shown in Figs(&.4). We find that different randomness in the
model configuration lead to quantitatively, but rpialitatively different transition patterns.
Basically, a lower randomness results in a narr@lgstic-plastic transition, and the mean value
of af takes a stronger effect when the absolute variariceed — both, in curves of the average
stress as well as the fractal dimension vs. theageestrain.

Next, we study the transition patterns in diffeneratterials. This involves a comparison of
the original material A1 with three other hypotbatimaterials:
Bl- E=207GPa,a=13.#- 6K ; E/h,a/(c/E) are the same with Al, ie,

h=169.365Pa . c=390.8MPa
B2- Same as B1 but with lower: ¢=312.6MPa
B3- Same as B1 but with lowdn: h=135.49%Pa

Figures 4.5(a, b) show the resulting averagedssstesin and fractal dimension vs. strain
curves for these materials. We observe that theeswf material A1 and B1 are very close to
each other and both bounded from below by thossatérials B2 and B3. Thus, we conclude that
higherE/h and/or a/(c/E) result in a slower elastic-plastic transition, actfwhich is
understandable, since under these circumstanctieetheal fluctuation has a stronger effect in the
elastic-plastic response. Also note that the homemes responses in stress-strain curves are
distinct between materials B1 and B3 while in frhdimension vs. strain responses they are the
same. Based on these observations, we argue ¢haatial dimensioD can best be used to

describe the transition patterns in a unified vaayafl the materials.
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4.3 Summary

We consider elastic-plastic transitions in randdimear thermoelastic-hardening plastic
media, where the thermal expansion coefficient f@nelastic/plastic moduli, plastic limits)
is taken as a strict-white-noise (non-fractal) @ndfield. By setting up two types of
monotonic loadings (either displacement or tragtioconsistent with the Hill-Mandel
condition, we find that the set of plastic zonesifractal with its dimension increasing
towards 2.0. A gradual transition of the materrainf elastic type to plastic type, where
plasticity spreads in a plane-filling fashion, iar fmore realistic than the idealized
homogeneous medium model in which the transitianigsnmediate process, characterized
by a kink in the stress-strain curve. For complessnwve also study the complementary set
(elastic regions) and observe that it is an evgliractal with the dimension decreasing
towards 0. Finally, with the fractal dimension paster we further investigate
elastic-plastic transitions by varying model rand@ss or material constants. It is observed
that when the effect of random thermal fluctuatiomseases, as represented by a higher
coefficient of variation ofE/h and/or a/(c/E), the elastic-plastic transition process

becomes slower.
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Table 4.1: Results of estimating fractal dimensions

Fig.4.1a| Fig.4.1b| Fig.4.1c| Fig.4.1d
Fractal dimension 1.8502 1.9477 | 1.9984 | 1.9999
Correlation coefficient 0.9970 | 0.9995 | 0.9999 | 1.0000
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d

Figure 4.1: Field images (white/black: elastic/ptgsat the elastic-to-plastic transition

under uniform traction BC at four consecutive |lsvefl normalized average plastic strain

&£, (@€, =0.000], (b)e, =0.000z, (c)e, =0.007, (d)e, =0.002.
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CHAPTER 5

CONCLUSIONS

This thesis focuses on elastic-plastic transitiongandom heterogeneous materials. In
particular, we propose a fractal analysis methagiolim investigate the transition pattern
for a variety of random material models.

In Chapter 2, we first report on fractal patterfigplastic grains forming at elastic-
plastic transitions in random elastic-perfectlyspia materials. Specifically, two models are
considered — isotropic grains with weak randomttlatons in elastic moduli and/or yield
limits and a polycrystal made of randomly orientedsotropic grains. In both cases the
lattice is subjected to pure shear loading increpsihrough either one of three
macroscopically uniform boundary conditions (kinéimyamixed-orthogonal or static)
admitted by the Hill-Mandel condition. Followingetevolution of a set of plastic grains,
we find that it is an evolving fractal with its @tal dimension increasing from O towards 2
as the material transitions from elastic to plasWghile the grains possess sharp
elastic-plastic stress-strain curves, the oveeslponses are smooth and asymptote toward
perfectly-plastic flows; these responses and thetdf dimension-strain curves are almost
identical for three different loadings.

Chapter 3 continues the study of elastic-plastanditions and proceeds to more
realistic model materials with elastic-hardeningspic type. The focus is on isotropic
grains in order to see the hardening effects gle8y comparison study on models with

different material configurations, we find that tlmardening facilitates elastic-plastic
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transitions — larger plastic modulus leads to &efagansition. The fractal analysis method
demonstrates a very practical application: the esirof fractal dimension versus applied
stress display a universal character for a rangdiféérent materials, thus providing a
simple approach to infer the stress in materialsratsitions. This chapter ends with a
presentation of a Markov random field model of bagtic evolution of plastic grains to
explain the fractal patterns.

In Chapter 4 we extend the investigation to therelastic-plastic media (or
elastic-plastic materials with residual strains)cémparison study under various model
randomness and material constants is conductedetoomstrate thermal elastic and
hardening plastic effects altogether in elastic{itatransitions. We show that the fractal
dimensionD can best be used to describe the transition patiara unified way for all
different materials.

As mentioned in the Introduction of Chapter 1, fibrenation of fractal geometries was
also studied in elastic-brittle materials in thghties and nineties. It was found there that a
fractal crack was approached only asymptoticallyergas at the elastic/plastic transitions
the set of plastic grains is a continually evolviagd ultimately plane-filling fractal structure.
That is, the fractal dimension of that set changemdeed in elastic-perfectly plastic
materials studied in Chapter 2, elastic-hardeniagte type in Chapter 3, and
thermo-elastic-plastic media (or elastic-plastigetyvith residual strains) shown in Chapter
5, as well as in several variations thereof. Caréngy that the magnitude of plastic strain is
reflected in the strength of slip-lines and sheands, we think that even very weak

material randomness in material parameters of ieldsttile materials causes plastic
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slip-lines and shear bands to evolve as fractals.

At this point we can only conjecture that the pliiieng character becomes
space-filling in three-dimensional settings, wiimslations of the latter appearing to be
barely within the reach of present day computers. €rrent study is set in the context of
metal materials, future studies will be conductednicorporate crystal plasticity and soll

mechanics models.
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