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Abstract

Transcriptional control is a key regulatory mechanism for cells to direct their
destinies. A large number of transcription factors (TFs) could simultaneously
bind to a regulatory sequence. With the constellation of TFs bound, the expres-
sion level of a target gene is usually determined by the combinatorial control of
a number of TFs. The interactions among regulatory proteins and their regu-
latory sequences collectively form a regulatory network. A major challenge in
the study of gene regulation is to identify the interaction relationships within a
regulatory network and further to reconstruct gene regulatory networks.

In this thesis, we developed an analytical method, Interaction-Identifier, to
identify a thermodynamic model that best describes the form of TF-TF in-
teraction among a set of TFs for every target gene. Applying this approach to
time-course microarray data in mouse embryonic stem cells, we have inferred five
interaction patterns among three regulators: Oct4, Sox2 and Nanog on ten tar-
get genes. We further proposed a computational framework, Network-Identifier,
utilizing Interaction-Identifier, to reconstruct gene regulatory networks. Applied
to five datasets of differentiating embryonic stem cells, Network-Identifier iden-
tified a gene regulatory network among 87 transcription regulator genes. This
network suggests that Oct4, Sox2 and Klf4 indirectly repress lineage specific
differentiation genes by activating transcriptional repressors of Ctbp2, Rest and
Mtf2.
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Chapter 1

Introduction

Transcriptional control is a key regulatory mechanism for cells to direct their
destinies. A large number of transcription factors (TFs) could simultaneously
bind to a regulatory sequence. With the constellation of TFs bound, the expres-
sion level of a target gene is usually determined by the combinatorial control of
a number of TFs. The interactions among regulatory proteins and their regu-
latory sequences collectively form a regulatory network. A major challenge in
the study of gene regulation is to identify the interaction relationships within a
regulatory network and further to reconstruct gene regulatory networks.

A number of analytical methods have been proposed to reconstruct gene
regulatory networks from gene expression and protein-DNA binding data. As-
sociation rule mining [18] , Boolean Network [19], temporal models [16] [55],
ARACNE [34] and Bayesian networks [26] [27] [31] are among the most pop-
ular routes. For example, the Module Networks approach built a probabilistic
model for the gene expression correlations between regulators and target genes
and iteratively searched for the most compatible partition of targets genes to
their respective regulators [42]. The correlation of gene expression patterns of
regulators and the target genes is often the essential piece of information utilized
by the current procedures. It is widely recognized that the statistical correla-
tion of the regulators and the targets is often an inaccurate representation of
the regulator-target relationship [17] [49]. This is because the quantity of a
TF’s mRNA does not necessarily correlate to its active protein concentration,
and even the active protein concentration does not necessarily correlate to its
transcriptional efficiency on every target gene. Using correlation, or some trans-
formed version of correlation measure as the basis for reconstructing regulatory
networks is an approximation made for convenience of modeling and analysis,
with a sacrifice of making spurious findings (see examples in [42]). A network
reconstruction method based on quantities that closely represent the biophysical
properties of TF-DNA binding, transcription activation and repression is still
missing.

Thermodynamic models are based on the assumption that the level of gene
expression is proportional to the equilibrium probability that RNAP binds to
the promoter of interest; and these probabilities can be computed in a statistical
mechanics framework.
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In this thesis, we proposed a method, Interaction-Identifier, based on ther-
modynamic model principles to select the best fit interaction forms (i.e. infer
the form of TF-TF and TF-RNAP interactions) for each target gene from time
course microarray data. Interaction-Identifier enables the investigation of regu-
lation factors from empirical data in eukaryotic systems. Applying this method
to a time course microarray dataset of retinoid acid (RA) induced differentiation
of mouse ESCs, we clearly distinguished different interaction forms among Oct4,
Sox2 and Nanog, and their roles of as an activator, a repressor and a helper on
each target gene. The detailed characterization of interaction forms among mul-
tiple transcription factors allow us to build a core transcription network in ESCs
using a bottom-up approach.

Along with the same line, We further developed a computational frame-
work, called Network-Identifier, for inferring gene regulatory networks from time
course gene expression data. Applying to the analysis of five datasets of differ-
entiation of mouse ESCs, we identified a transcription network composed of 34
TF-TF interactions and 185 TF-target relationships. Data from RNAi [28] and
chromatin immunoprecipitation coupled with microarray (ChIP-chip) data [10]
[30] independently validated a statistically highly significant fraction of these
regulatory relationships.

The remainder of this thesis is organized as follows. In Chapter 2, we make
a thorough review of the related work on thermodynamic modelling. We then
introduce Interaction-Identifier and Network-Identifier in Chapter 3. Based on
the methods, we conduct experiments on synthetic data and mouse embryonic
stem cell data. The performance analysis and the evaluation are described in
Chapter 4. In Chapter 5, we present the concluding remarks and future work.
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Chapter 2

Literature Review

Thermodynamics was first introduced in physics to study the conversion of en-
ergy into work or heat of a system from a macroscopic point of view. Statistic
mechanics incorporating statistical tools with thermodynamic principles pro-
vides a powerful framework to model and further to predict the collective mo-
tion of molecules at the microscopic level on the basis of known characteristics
and interactions of a system.

The statistic thermodynamic concept [45] was first adopted on the study of
molecular mechanism for gene regulation in Bacteriophage Lambda. Later it
was further utilized on modeling TF-DNA and TF-RNA polymerase (RNAP)
interactions in bacteria [7][8][12], based on the assumption that the level of gene
expression is proportional to the equilibrium probability that RNAP is bound
to the promoter of interested gene; and these probabilities can be computed
in a statistical mechanics framework. These models brought the stochastic in-
teractions of TFs, regulatory sequences and RNAP together, and enabled a
quantitative model for the transcription rate in prokaryotes.

More recently, Gertz et al [24] and Segal et al [41] applied thermodynamic
principles to model expression data on large numbers of promoters or enhancers
in Eukaryote system. Gertz et al showed that a thermodynamic model could
successfully convey the relationship between promoter sequence and gene ex-
pression in Yeast system. Under a fixed time point in drosophila development,
Segal et al demonstrated a thermodynamic model could predict the spatial ex-
pression patterns of segmentation genes in Drosophila [41]. Both works have
shown promising results of thermodynamic models on gene regulation in Eu-
karyote system. In the following sections, we introduce how these two works
unravelled the effects of cis-regulatory transcription control on gene expression
(i.e. to find the relationships between sequence and gene expression) based on
thermodynamic modeling.

2.1 Analysis of Combinatorial cis-regulation in

Synthetic Promoter in Yeast

Although the fundamental theory of gene regulation has been studied and de-
fined, the connections between regulatory information(cis-motifs and transcrip-
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tion factors) and gene expression profiles is still unclear [53]. Several studies
developed in silico promoter models [22][54] demonstrated the associations be-
tween promoter modules and gene expressions. A ground-breaking study in
Yeast [4] achieved the relatively high accuracy of prediction from conserved
cis-motif logics to expression. This made it tempting to design synthetic pro-
moters that allow refined and targeted modifications of promoter architecture.
Through synthetic promoter engineering [2], cis-motif logic, including orienta-
tion, binding energy and position, could be clearly elucidated and served as
control variables to study gene expression and gain insights of regulatory com-
plexity.

Gertz et al applied a thermodynamic framework based on the assumption
that gene expression is regulated by the interaction of TF-DNA and TF-TF
stabilizing RNAP binding. It is specified by the changes in free energies of
different TF binding events and the concentrations of TFs under different con-
ditions. Thus, through a thermodynamic model, differential expression could
be explained by changes of the TF concentraions and the events of TF-DNA
binding and TF-TF intractions.

In order to learn how cis-regulatory mechanisms affecting gene expression
in yeast, a strategy of combinatorial engineering was utilized to construct the
synthetic promoter libraries [24]. All random combinations of three or four TF-
BSs as building blocks were placed upstream of a core-promoter attached with
yellow fluorescent protein. Then those synthetic promoters were integrated into
the yeast genome. By quantifying florescent intensities, the level of gene ex-
pression could be observed. The results of applying a thermodynamic approach
suggests modeling the biophysical principle of TF-DNA and TF-TF interactions
can generally depict the expression driven by different combinations of TFBSs.

2.2 Predicting Spatial Expression Patterns

from Sequence in Drosophila Segmentation

Drosophila melanogaster is a model organism for genetics research since its
short life cycle, the relatively small genome and easily manipulation in labora-
tory. Moreover, since its embryos grow outside the body, it provides an excellent
means of studying embryonic development in eukaryotes. Studying its notable
segmentation network has helped accumulate most of our knowledge about the
mechanisms of segmentation in arthropods [37]. Its well-characterized segmen-
tation gene network involves a cascade of gene regulation. It consists of a four-
tiered hierarchy of maternal and zygotic factors that define the antero-posterior
body axis in a stepwise refinement of expression patterns. The maternal factors
form gradients spanning the entire antero-posterior axis; they are translated into
broad, non-periodic domains of zygotic gap gene expression and subsequently
into periodic patterns of seven pair-rule and finally fourteen segmental stripes
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that prefigure the fourteen segments of the larva. Regulation within the network
is highly combinatorial and, in the top tiers, almost transcriptional.

Segal et al developed a statistical thermodynamic framework to predict the
expression of a target DNA sequence. The main idea is to sum over expres-
sion levels predicted by a logistic model under all possible configurations of TFs
on a given sequence. First, they computed the probability of any configura-
tion determined by the concentration of TFs and the binding affinities of the
transcription factor binding sites in the configuration. The homo-cooperativity
interactions between TFs were also considered as an essential factor to help TFs
binding onto DNA. Second, for each configuration, they further used a logistic
model to infer its ability of recruiting RNAP. The contribution of each TF on
a configuration is assumed to be independent to the expression outcome, where
activators contribute positively and repressors contribute negatively. With the
unique saturation property of the logistic model, maximal or minimal transcrip-
tion is achieved beyond a certain number of bound activators and repressors,
respectively. Thus, the whole probability of RNAP binding is the weighted sum
of RNAP binding probability for every configuration, where the weight of each
configuration is the probability of the configuration. Under the thermodynamic
principle, the degree of gene transcription is assumed to be proportional to the
binding probability of the RNAP to the promoter.

With the spatial expression patterns for known key transcription factors and
their binding-site preferences as inputs, the method was applied to model the
process of transcriptional regulation and further to predict the spatial expres-
sion. The results show that expression patterns predicted by the model exhibit
remarkable agreements with the observed pattern for most modules.

These successes of applying thermodynamic models onto Eukaryote system
make it tempting to experiment novel methods for reconstructing gene regula-
tory networks based on more biophysically appropriate method.
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Chapter 3

Proposed Method

Our proposed method consists of two components. The first component is
Interaction-Identifier[15], which is developed to identify a thermodynamic model
that best describes the form of TF-TF interaction among a set of TFs for every
target gene. The second component is Network Identifier[14], which enables to
further infer gene regulatory networks from multiple time course gene expression
data, based on Interaction-Identifier. Next, we will describe each component in
details in the following sections.

3.1 Interaction-Identifier

We propose a computational framework, called Interaction-Identifier, to iden-
tify the interaction form among the TFs and RNA polymerase (RNAP) on the
promoter of a target gene at steady state. This method begins by using a ther-
modynamic model to predict the equilibrium probability that RNAP binds to
the promoter of its targeted gene (PRNAP ) based on concentrations of associ-
ated TFs and interaction forms among TFs and RNAP. Then, a kinetic model
is used to simulate the dynamics of expression of target genes, assuming a) the
transcription rate is proportional to the PRNAP ; b) mRNA degradation rate
is linearly dependent on the RNA concentration; c) the concentration changes
of TF factor can be inferred from the changes in the mRNA levels of TFs. By
searching the space of different TF interaction forms, Interaction-Identifier iden-
tifies the underlining TF interaction form of each target gene, which minimizes
the difference between the model-derived expression profile and the observed
expression data (Figure 3.1).

In the following, we first introduce the basic thermodynamic models for
RNAP binding pioneered by Buchler et al [12] in Section 3.1.1. Next, we describe
the kinetic model which derives the gene expression profile across times for
each TF interaction form in Section 3.1.2. We then introduce the process of
identifying the underlying TF interaction form for each target gene in Section
3.1.3.
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Figure 3.1: Flowchart of the Interaction-Identifier method [14]

Table 3.1: The Boltzmann distribution for the two states of a TFBS
State TF Weight

free 0 1
attached 1 qTF

3.1.1 Thermodynamic Models for RNAP Binding

Cells receive a wide variety of cellular and environmental signals, which are
often processed combinatorially to generate specific genetic responses. We fol-
low Buchler et al [12] and Bintu et al[7][8] to integrate combinatorial signal at
the level of cis-regulatory transcription control in bacteria through the ther-
modynamics of TF-DNA and TF-RNAP-DNA interactions. These interactions
can be quantified by several tunable parameters based on different selections
and placements of various protein-binding DNA sequences. In this section, this
theoretical framework is briefed.

TF-DNA Interactions

At a given time in a cell, there are only two states for a transcription factor
binding site(TFBS): attached with or free of a TF. Let qTF denote as the ratio
of the probability of a TFBS in the attached state to that in the free state (Table
3.1).

The probability that the TFBS of a target gene is bound with a TF could
be denoted as

P (TFbinding) =
qTF

1 + qTF
.
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Table 3.2: The Boltzmann distribution of a promoter with one TF and one
RNAP

State TF RNAP Weight

1 0 0 1
2 0 1 qp

3 1 0 qTF

4 1 1 ωTF pqpqTF

RNAP-promoter binding (without any TF present) can be described by the
same form

P (RNAPbindig) =
qp

1 + qp
.

TF-RNAP-DNA Interactions

Let us look at two different cases of TF-RNAP-DNA interactions in the follow-
ing.

• One TF

If we consider the case of a TF interacting with a RNAP, there are four
possible states for a promotor: (1) bound by both the TF and the RNAP; (2)
bound by the RNAP only; (3) bound by the TF only; (4) free from either the
TF or the RNAP (Table 3.2).

The probability of the promoter of the target gene bound with a RNAP
could be represented as

P (RNAPbinding) =
qp + ωTFpqTF qp

1 + qp + qTF + ωTFp
,

where

ωTFp =

⎧⎪⎨
⎪⎩

1 no iteraction
10 − 100 activation

0 repression

Different settings of ω reflect different roles a TF could play. If ω is set to
1, it represents that there is no interaction between the RNAP and the TF.
They bind independently to the promoter. If ω is set to 10-100, it represents
that the TF helps recruit the RNAP binding to the promoter. The larger ω

is, the larger the synergism is. If ω is set to 0 or close to 0, it represents that
the TF blocks the RNAP binding to the promoter, and thus the TF serves as a
repressor (Figure 3.2, model 2 and model 1, respectively).

• Two TFs

The case of two TFs capable of binding to a promoter together with a RNAP
could be represented in the same fashion (Table 3.3).

The probability of RNAP binding to the promoter could be denoted as

8



Table 3.3: The Boltzmann distribution of a promoter with its RNAP and two
TFs
(TF1, TF2) (0, 0) (1, 0) (0, 1) (1, 1)

RNAP
0 1 qTF1 qTF2 ωTF1TF2qTF1qTF2

1 qp ωTF1pqpqTF1 ωTF2pqpqTF2 (ωTF1p + ωTF2p)ωTF1TF2qTF1qTF2qp

P (RNAPbinding) =

∑
j

∑
k P (1, j, k)∑

i,j,k∈{0,1} P (i, j, k)
,

where P (i, j, k) = P (RNAP = i, TF1 = j, TF2 = k).
The parameters ω could be set differently to reflect the nature of these in-

teractions between two TFs or the interactions between one TF and one RNAP.
The parameter wTF1TF2 is used to simulate the interaction between the two
TFs. A large wTF1TF2 (10-100) represents that the two TFs stabilize each
other onto the promoter. If the two TFs have no interaction, wTF1TF2 should
be set to 1. If the two TFs compete for the binding, wTF1TF2 should be set
to 0 or close to 0. The other two parameters, wTF1p and wTF2p, represent the
interaction between each TF and RNAP, respectively. They can be set to reflect
different interactions similar to wTF1TF2. By adjusting the parameters wTF1p

, wTF2p and wTF1TF2, we can obtain an analytical form for the probability
of RNAP binding under different forms of interactions among RNAP and the
two TFs. Figure 3.2 summarizes the parameter choices for two forms of simple
interactions and five forms of three-way interactions.

Linking TF Concentration to the Probability of Promoter
Occupancy

Besides the forms of RNAP binding probability, we describe the influence of TF
concentration on the probability of TF binding to the promoter of its target
gene in the following.

Let [TF −DNA] represent the cellular concentration of the promoter bound
by the TF. The binding process can be denoted as

[TF ] + [DNA] → [TF − DNA]

Then the probability that the TFBS of a target gene is bound with a TF
could be formulated as

P (TFbinding) =
[TF − DNA]

[DNA] + [TF − DNA]

At equilibrium state, the concentrations of the substrates could be described

9



Model / Promoter state Parameter 
1. Simple Repressor 

WRP=0

2. Simple Activator 

WAP=10~100 

3. Activator recruited by a helper (H) 

WAP=10~100, WAH=10~100, WHP=1

4. Repressor recruited by a helper (H) 

WRP=0, WHP=1, WRH=10~100

5. Dual repressors 

WR1P=0, WR2P=0, WR1R2=1

6. Dual repressors interacting 

WR1P=0, WR2P=0, WR1R2=10~100 

7. Dual activators interacting 

WA1P=10~100, WA2P=10~100, WA1A2=10~100

Figure 3.2: Forms of TF-RNAP interactions and their corresponding parameters
for modeling the probability of RNAP binding. A1 and A2 are activators. R1

and R2 are repressors. P represents RNAP. The line with a dot at the end
represents an repression effect; the line with an arrow at the end indicates
either cooperation between two TFs or activation of a gene by a TF.
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using the Hill equation

P (TFbinding) =
[TF ]H

[TF ]H + [KTF ]H
=

( [TF ]
KT F

)H

[TF ]
KT F

H
+ 1

, where [TF ] is the cellular concentration of the activated TF targeted by this
site, KTF is the effective dissociation constant (relative to the genomic back-
ground) representing the concentration required for half of the TF binding to
the promoter, and H is the Hill coefficient. If H > 1, transcription factor bind-
ing is positively cooperative; if H = 1, the transcription factor binding is not
cooperative; if H < 1, the transcription factor binding is negatively cooperative.

Recall the percentage of promoters bound by TFs can also be described using
qTF , the ratio of the probabilities of the promoter in the bound and free states,

P (TFbinding) =
( [TF ]

KTF
)H

[TF ]
KT F

H
+ 1

=
qTF

qTF + 1
.

Thus, we can obtain

qTF = (
[TF ]
KTF

)H .

We use the unit of [TF ] and KTF as the number of TFs per cell. There
have been a few efforts to estimate KTF from empirical data [48]. In this study,
we assume at each time point in the time course, [TF ] is linearly related to
the expression level of the TF, as did in earlier module network studies [42].
It follows that [TF ] peaks at the same time as its gene expression peaks. We
further assume qTF is maximized at the maximum [TF ] (see sensitivity analysis
in Section 4.1.3 for further discussion on this assumption). We adopt the value
1/20 for qp from [12][7][8].

3.1.2 Kinetic Model

With the above thermodynamic model of TF-DNA interactions, we enable to
quantify the equilibrium binding probability of the RNAP to the promoter, given
the cellular concentrations of all the TFs. However, the bridge connecting from
the binding probability of RNAP to the gene expression levels is still missing.
Thus, we further use a kinetic model to analyze the dynamics of gene expression
over times [15].

Assume that the changes of TF concentrations can be inferred from the
changes of mRNA levels of TFs, and the mRNA degradation rate are linearly
dependent on the mRNA concentration. Thus, based on the principle of ther-
modynamic models that the transcription rate is proportional to the binding
probability of RNAP, an ordinary differential equation was proposed to mimic
the dynamics of gene expressions in the following [15].

11



dG

dt
= Kg(P (RNAPbinding)) − Kd(

G

Gmax
),

where G denotes as the transcript concentration (number per cell); Gmax de-
notes as the maximum concentration of the transcript (number per cell); Kg

represents the maximal synthesized rate of transcripts (per minute per cell) and
Kd is the degradation rate of transcripts (per minute per cell).

The maximum rate of mRNA synthesis rate has been estimated to be about
one mRNA per 6-8 seconds [29]. Following [32] [11], we assume that the rate of
degradation around 1/6 of the maximum transcription rate. Therefore, we use
Kg =10 counts per minute and Kd =10/6 counts per minute in this study.

Although gene expressions should be continuous signals throughout the time,
an assumption should be made that gene expressions are measured when the
transcriptional system is in its equilibrium state at each time point, which is
satisfied by all time course microarray data. Under this circumstance, the ex-
pression could be represented by

G = αP (RNAPbinding),

where

α = Gmax
Kg

Kd
.

3.1.3 Identification of the Underlining TF Interaction

Forms

By combining the thermodynamics models and the kinetic model, we are able to
derive the expression profiles from the interesting models shown in Figure 3.2.
With measured time course gene expression data from microarray experiments,
we compute the Pearson correlation coefficient between the observed expression
pattern and the model-derived expression patterns. Since different combination
of TFs and different interaction forms will lead to different expression patterns,
we search the space of TF interaction forms to find the fittest interaction form.
Finally, the interaction form that predicts an expression pattern with the highest
correlation to the observed expression pattern is identified as the most plausible
interaction form that TFs take to regulate this target gene (Figure 3.1). Note
that if a gene has all Pearson correlations between the observed expression and
model-derived expression patterns not over a user-defined threshold, it might
suggest the real TF interaction form is not included in our search space. Thus,
Interaction-Identifier would return no interaction form for that particular gene.
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Figure 3.3: Flowchart of the Network-Identifier algorithm [14].

3.2 Network-Identifier

The interactions among regulatory proteins and their regulatory sequences col-
lectively form a regulatory network, which controls the fate of cells. A major
challenge in the study of gene regulation is to identify the interaction relation-
ships within a regulatory network. Based on Interaction-Identifier to select for
the thermodynamic model that best describes the TF-TF and TF-RNAP in-
teraction for each target gene, we further develop a computational framework,
Network-Identifier [14], for inferring gene regulatory networks from multiple
time course gene expression data.

Network-Identifier utilizes Interaction-Identifier to find common TF inter-
action forms of target genes across multiple time course microarray datasets,
and then incorporates those predicted regulatory relationships supported by
independent datasets into a regulatory network. The method has three compo-
nents: 1) Interaction-Identifier (See Section 3.1, [15]), 2) Evidence merger and
3) Verification component, shown in Figure 3.3. In the following section, we will
describe each component in details.

3.2.1 Interaction-Identifier Component

Network-Identifier requires more than one time course microarray experiments
for the same biological process as input datasets. For each time course dataset,
Network-Identifier enumerates all possible regulatory forms on each target gene.

13



These interaction forms include the activation or repression by a single TF,
and the five interaction forms between any two TFs (Figure 3.2). For each
gene, Network-Identifier evaluates the fitness of each interaction form with
Interaction-Identifier (See Section 3.1) and ranks them according to their fit-
ness. The ten most likely interaction forms of TFs (i.e. ten interaction forms
with the highest Pearson correlation coefficient) on a target gene are recorded in
the Top-10 List. A built-in user-defined threshold (default=0.8) for Interaction-
Identifier eliminates any interaction that is not well supported by data. It is
therefore possible for a target gene to have less than 10 candidate TF interaction
forms in its Top-10 List.

3.2.2 Evidence Merger Component

The Top-10 Lists from every dataset are passed onto Evidence merger, which
searches for the most frequently appeared interaction form in the Top-10 Lists
of a target gene. This most frequently identified interaction form is passed onto
the verification component.

3.2.3 Verification Component

The verification component groups target genes according to their TF interac-
tion forms. For each regulator-target relationship, for example TF-1 represses
gene a, the target genes grouped into this relationship are subject to statistical
tests. Chi-square tests are used to test whether the identified TF-target rela-
tionships are enriched with regulatory relationships identified from independent
experimental data, such as ChIP-chip and RNA interference (RANi) data. Fi-
nally, if the tests are all insignificant, Network-Identifier will fail to report any
regulatory network. If some of these tests are significant, suggesting there is
consistency between the expression-derived regulatory relationships and those
found by independent methods, Network-Identifier will invoke a compromise al-
gorithm to report the regulatory relationships that are confirmed by at least two
independent data sources. Currently the implemented compromise algorithm is
to require the regulatory relationship identified by expression data to be repro-
duced in at least one of the two other experiments: ChIP-chip and RNAi. It
is easy to substitute this algorithm with more sophisticated algorithms [30] or
when some of the independent data are not available.
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Chapter 4

Results

In this chapter, we first generate synthetic data to check the practicability of
Interaction-Identifier. To further test the robustness of the model, we conduct
the sensitivity analysis to explore the effects of choices of parameter settings on
method performance. Then we apply Interaction-Identifier to mouse Embryonic
stem cells (ESCs). We infer five interaction patterns among three regulators:
Oct4, Sox2 and Nanog on ten target genes. We further apply Network-Identifier
onto five datasets of mouse differentiating ESCs and identify a gene regulatory
network among 87 transcription regulator genes.

4.1 Simulation Study on Interaction-Identifier

4.1.1 Generation of Simulation Data

As a proof of principle, we first use synthetic data to show the validity of method.
We choose three commonly seen regulatory patterns (Figure 4.1). These regu-
latory patterns are: 1. a target gene is activated by one TF (Model 2 in Figure
3.2); 2. RNAP is blocked by a TF (repressor), and this TF is stabilized to DNA
by a helper TF (Model 4 in Figure 3.2); 3 a target gene is regulated by two
interacting activators (Model 7 in Figure 3), and one of the two activators is
transcriptionally repressed by a third TF.

For each of these three regulatory patterns, we do simulations as follows.
First, we simulate the concentration change of each TF over time, which we call
realTFExp using equations of the format or its variants: EA = aA + bAlogT + ε,
where aA and bA are background gene expression index and coefficient describ-
ing changes of expression index with time T . The ε represents the variability
of expression for gene A. Different patterns of transcription factor expression
can be obtained by using different parameters of aA, bA and ε. Assuming that
the concentration of TF is a linear transformation of EA, we feed these simu-
lated concentrations of the TFs into a chosen regulatory pattern described in
Figure 4.1 and derive the expression pattern of the target gene (realTargetExp)
according to the thermodynamics models and the kinetic model. Noises follow-
ing N(0, 1) are added to all the real expression patterns for both TFs and the
target gene. We assume only the noise-added expression patterns are observed,
and we denote the observed expression values as obsTFExp and obsTargetExp.
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The obsTFExp for all TFs in consideration are used to derive expression pat-
tern for the target gene under each model in Figure 3.2. The model derived
expression patterns are termed modelTargetExp. For each model, obsTargetExp
is compared to modelTargetExp in terms of Pearson correlation.

The parameters we use in the study are followed the literatures, where Kg =
10 counts per minute, Kd = 10/6 counts per minute and qp = 1/20. We further
assume that KTF = the maximum [TF ] and H = 2.

4.1.2 Simulation Data Analysis

We use three regulatory patterns to test our new algorithm. Under the first reg-
ulatory pattern, two simulations are conducted. First, TFs expression increases
linearly over time. realTFexp = 500 + 500T , where T = 2, 4, 8, 16, 32, 64 and
128. In the second simulation, TFs expression increases exponentially over time.
realTFExp = 500 + 200logT , where T = 2, 4, 8, 16, 32, 64 and 128. Because
there is only one TF in consideration, there are only two candidate regulatory
models, either repression (Model 1 in Figure 3.2) or activation (Model 2 in Fig-
ure 3.2). In both simulations our method correctly picked our Model 2 (Row
1, Figure 4.1). Two simulations are performed under the second regulatory
pattern. For each simulation, our method consistently identifies the correct reg-
ulatory model out of five candidate models (Row 2, Figure 4.1). Under the third
regulatory pattern, we conduct a two-step analysis. In the first step, we apply
the method to judge the regulatory relationship between TFs A and B (Row
3, Figure 4.1), i.e. one TF is controlling the expression of another TF. After a
regulatory model is determined between A and B, we use the expression pattern
of B derived from the Step 1 to identify the interaction pattern between TFs
B and C. There are two candidate models for Step 1 and five candidate mod-
els for Step 2. Altogether 10 potential regulatory models exist among the four
genes. In two independent simulations, our method identifies both the correct
regulatory models (Row 3, Figure 4.1).

4.1.3 Sensitivity Analysis

We check to what extent the choices of parameters affect the method perfor-
mance. Regulatory model 7 (the regulatory pattern between B, C, D in Row 3,
Figure 4.1) is chosen to perform the sensitivity analysis. We vary KTF , Kg, Kd

and qp in very wide ranges, for example an 10000 fold range for KTF , and re-
run our algorithm. Results in Table 4.1 shows that the method can robustly
identify the correct regulatory model even if the parameters are off-set by 100
fold. The only exceptions are the cases where the synthesis rates of mRNA were
set to be too slow V below 1 mRNA molecule every 10 minutes, as compared to
the default of 10 mRNA per minute from empirical data. We therefore do not
suggest using a very small synthesis rate.
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Scenario Simulation results 

A as an activator  (1) A’s expression is exponentially increasing  
Model Pearson 

1 -0.98651
2 0.984249

(2) A’s expression is linearly increasing  
Model Pearson 

1 -0.99266
2 0.988559

A as a repressor, 

B as a helper.   

(1) A’s expression is exponential increasing;  
   B’s expression is exponential decreasing. 

Model Pearson
3 -0.99729
4 0.999995
5 -0.04712
6 0.900331
7 -0.85573

(2) A’s expression is constant; 
   B’s expression is linearly increasing:   

Model Pearson
3 -0.97315
4 0.979708
5 0.96199
6 0.979216
7 -0.96176

A as a repressor for B;  

B and C are interactive activators for D 

(1) A’s expression is exponentially increasing; 
   C’s expression is constant. 
   Step 1:     Step 2: 

Model Perason
1 0.96201
2 -0.98186

    

(2) A’s expression is linearly increasing; 
   C is linearly decreasing 
   Step 1:     Step 2: 

Model Perason
1 0.971549
2 -0.94788

    

Model Pearson
3 0.998175
4 -0.99645
5 -0.97114
6 -0.99667
7 0.998256

Model Pearson
3 0.967081
4 -0.96954
5 -0.79529
6 -0.96681
7 0.969321

Figure 4.1: Results from synthetic data using the Interaction-Identifier algo-
rithm. [14] The concentration of A was simulated using either a linear function:
[TF ] = 500 + 500T or an exponential function:[TF ] = 500 + 200logT , where T
represents the time.
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Table 4.1: Sensitivity test for KTF , Kg , qp, Kd and H [14]. Numbers in
bold represent the highest correlations under each parameter set. The results
indicate that the correct model can be identified even with drastic variation in
parameters used in the algorithm.
Model KTF Pearson Kg Pearson Kd Pearson qp Pearson H Pearson

3 0.01 0.9500 1/60 0.9671 60/24 0.9671 1/35 0.9677 1 0.9711
0.1 0.9505 1/6 0.9671 60/30 0.9671 0.05 0.9671 2 0.9671
1 0.9671 10 0.9671 60/36 0.9671 0.10 0.9662 3 0.9637
10 0.9571 600 0.9671 60/42 0.9671 1 0.9642 4 0.9641
100 0.9562 1000 0.9671 60/48 0.9671 10 0.9639 5 0.9688

4 0.01 -0.9514 1/60 -0.9697 60/4 -0.9695 1/35 -0.9695 1 -0.9715
0.1 -0.9517 1/6 -0.9695 60/30 -0.9695 0.05 -0.9695 2 -0.9695
1 -0.9695 10 -0.9695 60/36 -0.9695 0.10 -0.9697 3 -0.9693
10 -0.9567 600 -0.9695 60/42 -0.9695 1 -0.9715 4 -0.9719
100 -0.9562 1000 -0.9695 60/48 -0.9695 10 -0.9719 5 -0.9748

5 0.01 -0.8822 1/60 -0.7953 60/24 -0.7953 1/35 -0.7953 1 -0.9242
0.1 -0.9720 1/6 -0.7953 60/30 -0.7953 0.05 -0.7953 2 -0.7953
1 -0.7953 10 -0.7952 60/36 -0.7953 0.10 -0.7952 3 -0.5936
10 -0.6160 600 -0.7952 60/42 -0.7953 1 -0.7936 4 -0.4017
100 -0.6125 1000 -0.7952 60/48 -0.7953 10 -0.7898 5 -0.2617

6 0.01 0 1/60 -0.9668 60/24 -0.9668 1/35 -0.9668 1 -0.9678
0.1 -0.9720 1/6 -0.9668 60/30 -0.9668 0.05 -0.9668 2 -0.9668
1 -0.9668 10 -0.9668 60/36 -0.9668 0.10 -0.9667 3 -0.9598
10 -0.6654 600 -0.9668 60/42 -0.9668 1 -0.9654 4 -0.9354
100 -0.6138 1000 -0.9668 60/48 -0.9668 10 -0.9579 5 -0.8747

7 0.01 0.9608 1/60 0.96931 60/24 0.9693 1/35 0.9696 1 0.9716
0.1 0.9616 1/6 0.96932 60/30 0.9693 0.05 0.9693 2 0.9693
1 0.9693 10 0.96932 60/36 0.9693 0.10 0.9690 3 0.9690
10 0.7092 600 0.96932 60/42 0.9693 1 0.9686 4 0.9739
100 0.6143 1000 0.96932 60/48 0.9693 10 0.9686 5 0.9801
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4.2 Applications on Mouse Embryonic Stem

Cells

In this section, we first introduce the background knowledge for embryonic stem
cells (ESCs). Next, we present the Interaction forms of important ESCs target
genes identified by Interaction-Identifier. Finally, we present the gene regulatory
network found by Network-Identifier.

4.2.1 Background Knowledge for Embryonic Stem Cells

Embryonic stem cells (ESCs) are derived from early mammalian embryos and
can be propagated through apparently unlimited, undifferentiated proliferation
(self-renewal) in cultured cell lines (mouse: [28] [21], human: [51]). ESCs possess
several notable properties that account for their exceptional scientific and medi-
cal importance. ESCs have remarkable potential to develop into many different
cell types in the body (known as ”pluripotency” [36]) and therefore they may be
used to study body development, both normal and abnormal. A major challenge
in the study of ESCs is to explain how the complex gene network is wired to con-
trol their properties of pluripotency and self-renewal. Transcriptional control
is thought to be a key control mechanism for ESCs to maintain their undif-
ferentiated state [1] [6] [13] [10] [33] [10] [25] [46] [5]. Regulatory proteins and
relevant genomic sequences work together to precisely tune the expression levels
of thousands of target genes in ESCs. The interactions among these regulatory
proteins and their interactions with particular genomic sequences collectively
define a transcription network. Understanding of the part of the network at
work in ESCs, i.e. the functional state of the transcription network in ESCs,
can reveal how the undifferentiated state of ESCs is maintained, and how it can
be disrupted to initiate different routes of differentiation.

4.2.2 Interaction Models for Oct4, Sox2 and Nanog in

mouse ESCs

Dataset

Oct4, Sox2 and Nanog are key transcription factors to maintain pluripotency of
embryonic stem cells (ESCs). Nanog is known to be jointly regulated by Oct4
and Sox2. For other target genes, we identified the TFs from either literature
survey or ChIP-chip data. In this study, we focus on genes regulated by two
key transcription factors in embroyotic stem cell (ESC): Oct4 and Nanog [33].

Time course microarray data have been generated for retinoid acid induced
differentiation of mouse embryonic stem cells [28]. Genes that are jointly regu-
lated by Oct4 and Nanog have been reliably identified [33]. Among these target
genes, nine genes (Jarid2, Sall4, Rif1, Gbx2, REST, Zin3, Foxc1, Smarcad1 and
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Atbf1) are represented on the Affymetrix U133 microarray and therefore their
time course data are available.

For each interaction form in Figure 3.2, we use the differential equation
to derive the steady state level of mRNA expression level using the estimated
[TF ] and KTF based on measured mRNA levels. We derive a series of steady
state mRNA concentrations corresponding to measured expression profile of the
target gene. We then compute the Pearson correlation between the derived con-
centrations of target genes over time and the observed concentrations from the
time course microarray data. The interaction form that predicts a concentration
dynamics with a largest correlation to the measured expression level is identified
as the most plausible interaction form.

Five Interaction Models Among Regulators: Oct4, Sox2 and Nanog

We apply the Interaction-Identifier method to the regulatory model for Nanog.
The time course expression data suggest that Oct4 and Sox2 help each other to
stabilize onto the regulatory sequence and attract the RNAP (Figure 4.2).

We then identify the regulatory models for the Oct4 and Nanog regulated
genes. Although these nine genes are all regulated by Oct4 and Nanog in ESCs,
they are not regulated under the same mechanism. Jarid2, Sall4, Rif1, Zic3,
Gbx2 and emoes, are regulated under model 7 (Figure 4.3 (a)), where Oct4 and
Nanog synergistic activators. REST is regulated under model 3, with one TF
as an activator and the other as a helper (Figure 4.3 (b)). Atbf1 is regulated
under model 5 where Oct4 and Nanog are independent repressors (Figure 4.4
(a)). Foxc1 is regulated under model 4 where Nanog is a helper and Oct4 is
a repressor (Figure 4.4 (b)). These results suggest that Atbf1 and Foxc1 are
probably involved in lineage differentiation and therefore need to be repressed
by key transcription factors in ESC. Interestingly, Foxc1 has been shown to be
involved in ocular development [35] and Abf1 mRNA is found to be abundant in
prostate [50]. Finally, none of the models being considered derives an expression
pattern similar to the observed expression pattern of Smarcad1 (All Pearson
correlations are smaller than 0.5). This may suggest that besides Oct4 and
Nanog, there are other mechanisms responsible for the transcriptional control
of Smarcad1.

4.2.3 Gene Regulatory Network in Mouse ESCs

Dataset

We employ five time series microarray datasets of mouse ESCs in this study, in-
cluding a dataset for retinoid acid induced differentiation [28] and four datasets
for spontaneous differentiation of four ESC lines (three lines from [43]; one un-
published, S.Z. and W.H.W). We restrict the analysis to the regulatory relation-
ships among 747 genes that are annotated by Gene Ontology term, Transcription
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Figure 4.2: The identified regulatory network among Oct4, Sox2 and Nanog
[15]. Apply the Interaction-identification algorithm to the expression data of
Oct4, Sox2, and Nanog from time course microarray data.

(a) (b)

Oct4 Sox2

Nanog

REST

Figure 4.3: Activation regulations of Oct4 and Nanog on target genes identified
using Interaction-identification algorithm. [15]. The directed arrows represent
activation and the dotted line represents the function of the helper. The rela-
tionship between Nanog and Oct 4 with these target genes follow the model 3
in Figure 3.2.
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(a) (b)

Figure 4.4: Repression regulations of Oct4 and Nanog on target genes identified
using Interaction-identification algorithm. [15]. (a) model 5 (Figure 3.2) (b)
model 4 (Figure 3.2), where dotted line represents the function of the helper,
a line with an arrow in the end represents the effect of activator; a line with a
solid dot in the end represents the effect of repressor.

Regulator Activity, and are present on the Affymetrix U72av2 array. We desig-
nate six known TFs, Oct4, Sox2, Nanog, Klf4, Esrrb and Tcl1 as regulators of
this system, due to their previously characterized role in ESCs.

Gene Regulatory Network

Interaction-Identifier is first applied to each time course microarray dataset.
A list of common TF Interaction forms across datasets is then generated by
Evidence merger. Genes are then grouped by their predicted regulators as well
as their roles of regulation, i.e. activators and repressors. Twelve gene groups
are formed. ChIP-chip data are available for Oct4, Sox2, Nanog and Klf4. Five
out of eight regulatory-target relationships involving these four regulators are
significantly enriched with ChIP-chip verified relationships (Table 4.2). RNA
knock-out experiments are performed for all the six regulators [28] [30]. Nine
out of twelve target gene groups involving these six regulators are enriched with
RNAi verified regulatory relationships (Table 4.3). Note that when using RNAi
data for testing the predicted regulatory role of a TF, we only count the target
genes whose changes of expression are in the consistent direction to the predicted
role of its TF, but not counting all targets genes with any changes to both
directions. These tests demonstrate that the predicted regulatory relationships
were in general consistent to those derived from independent experiments.

Network-Identifier identifies the regulatory relationships that are predicted
by expression data and had consistent evidence from either RNAi or ChIP-chip
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Table 4.2: Validation by ChIP-chip data
Role TF # of target genes # of genes verified Chi-Square P-value

Activation Nanog 39 12 10.46986 0.00121
Sox2 121 21 12.437 0.00042
Oct4 67 8 2.436113 0.11857
Klf4 49 18 13.90787 0.00019

Repression Nanog 47 11 4.190152 0.04066
Sox2 132 19 5.778738 0.01622
Oct4 103 11 2.121288 0.145264
Klf4 62 14 1.335151 0.247891

Table 4.3: Validation by RNA interference data
Role TF # of target genes # of genes verified Chi-Square P-value

Activation Nanog 39 9 9.710604 0.00183
Sox2 121 20 16.22083 5.6E-05
Oct4 67 13 25.26604 5E-07
Esrrb 95 6 2.966206 0.085021
Tcl1 21 2 4.650429 0.03105
Klf4 49 16 25.21262 5.1E-07

Repression Nanog 47 2 0.018713 0.891192
Sox2 132 12 9.035917 0.00265
Oct4 103 7 3.909397 0.04802
Esrrb 73 6 5.407721 0.02005
Tcl1 27 2 4.663594 0.03081
Klf4 62 10 0.537394 0.463515

data. We use Cytoscape [44] to display the final reported regulatory relation-
ships (Figure 4.5).

87 regulators and target genes are reported in the ESC transcription network
(Figure 4.5). In particular, the mutual regulation of Klf2 and Klf4 were recently
shown to be an important module for maintaining the undifferentiated state of
ESCs [30]. Utf1 and Myc are known to be key ESC transcription factors. The
result that they are under the control of Oct4 and Klf4 underscores the impor-
tance of Klf4 in promoting self-renewal. Mtf2 has only recently been implied
to inhibit differentiation by recruiting the polycomb group of transcription re-
pressors [56]. This analysis indicates that Klf4 and Sox2 could synergistically
activate Mtf2 in ESCs. The regulatory relationships for a number of genes in-
volved in lineage specific differentiation are also identified. These include Gata6,
Gata3, Sox17 and FoxA2. Inhibiting these lineage specific differentiation genes
in ESCs is critical to maintain an undifferentiated state. Among the predicted
network, there are a number of transcription repressors, including Ctpb2 and
Rest. Ctpb2 is predicted to be activated by Oct4. Rest is predicted to be jointly
regulated by Oct4 and Sox2. These results suggest that Oct4 and Sox2 could in-
directly inhibit differentiation genes by activating transcription repressors such
as Ctpb2 and Rest.
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Figure 4.5: The gene regulatory network identified by Network-Identifier [14].
Yellow nodes represent regulators. Green nodes represent genes promoting self-
renewal and pluripotency. Red nodes represent genes used for differentiation.
Sharp and blunt arrows represent activation and repression effects, respectively.
Red and green lines represent activation and repression activities with RNAi
evidence, respectively. Blue and black lines denote regulatory relationships with
ChIP-chip evidence.
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Chapter 5

Discussions and Conclusions

5.1 Discussions

New algorithms combining the strengths of both physical and influence ap-
proaches to identify genetic regulatory network are highly preferable. Interaction-
Identifier integrates three piece of information together to inferring genetic reg-
ulatory interactions: a) mechanistic models of transcriptional factor binding
and RNA transcription [12], b) prior knowledge of network components based
on ChIP-chip data, c) time series expression data. Furthermore, Interaction-
Identifier combines two methodologies together, kinetic modelling and corre-
lation analysis. We further develop Network-Identifier based on Interaction-
Identifier to reconstruct gene regulatory networks.

In both methods, we choose to represent the expression level as continuous
instead of using discretized expression levels. Previously, reverse engineering
approaches have been developed to infer boolean network underlying changes
in the gene expression level assuming that expression levels of different genes
can be categorized into different states [?]. In reality, gene expression levels
tend to be continuous rather than discrete. Furthermore, continuous signals
have much great capacity over discrete signals in implementing different control
functions, such as signal transformation and transduction, precise feedback and
feed forward and maintaining homeostasis [52]. An implicit assumption of using
continuous concentrations of the chemical species (mRNA and protein) is that
the stochastic fluctuations due to single molecules are ignored. In both prokary-
otic and eukaryotic cells, noises in gene expression levels has been observed and
suggested to be an evolvable trait, which possible plays a role in cellular pheno-
typic variation and cellular differentiation [20] [39] [38] [9]. Both stochasticity
inherent in the biochemical process of gene expression (intrinsic noise) and fluc-
tuations in other cellular components (extrinsic noise) contribute substantially
to overall phenotypic variation [38]. The mRNA signals obtained were effec-
tively averages of pooled populations of cells; where the influence of stochastic
noise of single molecules on chemical concentration (mRNA and protein) were
presumably effectively decreased.

Some assumptions are made in the methodological frameworks. First, the
form of the interaction among the TFs and RNAP are assumed to be invariant
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under the multiple conditions from which the gene expression data are obtained.
This assumption can be violated when the experimental conditions are dramat-
ically different from each other, for example, different stress conditions. This
assumption is better satisfied by using data from the biological process, for ex-
ample, a developmental process. For this reason, we suggest using time course
gene expression data rather than data generated from different experimental
conditions. Even for time course data, the users should exercise caution, be-
cause the regulation factor can still change in some circumstances, such as when
the cell goes through different phases of the cell cycle [47] [3]. The second as-
sumption is that the transcriptional system is at equilibrium state in each time
point when the gene expression is measured. This assumption is satisfied by all
the time course microarray data. The third and the biggest assumption is that
the thermodynamic models derived and tested for prokaryotes can be applied
to eukaryote systems. This is essentially ignoring a number of transcriptional
regulatory mechanisms that eukaryotes and especially high level eukaryotes uti-
lize, such as chromatin modification and long range regulation. As a first-order
approximation, the Interaction-Identifier method is still useful to analyze the
biophysical properties of the known TFs. Another point in favour of the valid-
ity of this method is that the absolute value of the model-derived gene expression
level does not influence the correlation calculation. Only the pattern of change
of the expression levels over time influence the correlation calculation. Many of
the eukaryotic specific regulatory features, such as the distance between the en-
hancer and the promoter, are invariant for the target gene over the time course,
and therefore such features should not affect the selection of the corrected model.
Most important of all, Our methods, together with Segal et al [41] and Gertz
et al’s attempts [24], have shown that thermodynamic models are a reasonable
route to capture the underlying relationship between regulatory sequence and
gene expression in either prokaryotes and eukaryote systems.

5.2 Conclusions

Thermodynamic models based on depicting the interactions between TF-TF and
TF-DNA to predict RNAP binding probability, have shown its applicability
to capture the underlying relationship between regulatory sequence and gene
expression.

Interaction-Identifier is developed to identify interaction forms of TFs for
target genes. We apply it to infer the combinatorial control of the key tran-
scription factors in mouse ESCs. In particular, Interaction-Identifier method
identifies that Oct4 and Sox2 help each other to stabilize onto DNA and attract
the RNAP. This indicates that the DNA-bound Oct4 will be less in Sox2 knock-
down ESCs, and vice versa. This is in line with the fact that the knock-down
of either of the two transcription factors will decrease the expression levels of
the mutual target genes and start the differentiation process [28]. We have sub-
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sequently categorized the mutual targets of Oct4 and Nanog according to the
pattern of their combinatorial effect. Although Oct4 and Nanog often serve as
activators for maintaining the expression of ESC specific genes, they also in-
hibit genes for lineage specific differentiation. Little is known about how Oct4
and Nanog switch their tasks between activators and repressors. Interaction-
Identifier does provide us a way to learn the possible changes of interaction
forms of TFs for different target genes.

Along this line, Network-Identifier is proposed to reconstruct transcription
network based on biophysical models of transcription regulation. Multiple tem-
poral gene expression datasets are used as inputs to Network-Identifier. ChIP-
chip and RNAi data can also be utilized by Network-Identifier as indepen-
dent validation datasets to further improve the predicted networks. Moreover,
Network-Identifier has great flexibility in incorporating independent datasets
other than ChIP-chip or RNAi data to reinforce the strength of validation.

However, it should be recognized that there are still a number of simplifica-
tions made in the modeling of the biophysical properties of gene regulation. A
number of molecular events are not included in the model. These include: 1)
the interactions of more than two TFs, 2) long range interaction of enhancer
binding TFs and RNAP, 3) DNA methylation and 4) chromatin structure and
state. Future work that takes these molecular features and events into account
will potentially provide us with a thorough understanding of combinatorial gene
regulation.
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