IMPLEMENTATION AND EXPERIMENTS WITH THE
DISCONTINUOUS GALERKIN METHOD FOR MAXWELL'S EQUATIONS

BY

HEITOR DAVID PINTO

THESIS
Submitted in partial fulfillment of the requirement
for the degree of Master of Science in Electricad &omputer Engineering

in the Graduate College of the
University of lllinois at Urbana-Champaign, 2009

Urbana, lllinois

Adviser:

Professor Jianming Jin

ABSTRACT

This thesis presents the mathematical derivatiaghimplementation of, and
improvements to, the discontinuous Galerkin mettix@M) for solving Maxwell’s equations.
Each step leading to the development of a compuaige for this method is explained in detalil,
and samples codes are included in the Appendix Whrk also shows numerical results of
several experiments with the method, namely: sitrariaof simple electromagnetic problems
with a known analytical solution for comparison artbr analysis; comparison of different time
discretization schemes, which are not strictly pADGM; reduction of computation time with
the use of adaptive time steps; and analysis afracg of absorbing boundaries in scattering

problems. A discussion listing advantages and ditiihs of DGM concludes this work.

ACKNOWLEDGMENTS

The author would like to thank his adviser, Prodessanming Jin, for all his guidance,
patience and understanding during the developnfeéheaesearch leading to this thesis. This
research would not have been possible withoutritigli suggestion of the topic, useful insight,
and valuable suggestions and comments. The authddwalso like to acknowledge the help of
his fellow students Rui Wang, Xiaolei Li, Wang Yasingfeng Xue, Huan-Ting Meng, and Su
Yan, who provided many comments and helped soleeedechnical difficulties during the

validation of the computer code.

TABLE OF CONTENTS

2. MAXWELL’'S EQUATIONS AND NUMERICAL METHODScc oot e e
2.1 BASIS FUNCHONS ... oo e e e e e e e e e e e e e e e e e e e

2.2 Finite Element Method e e e 7

3. DISCONTINUOUS GALERKIN METHOD ..ot i e e e e e e
3.1 TransSVverse MagNEliCooueis e it et e e e e e e e e e e e et e e e e e

B.2 TranSVErSE EICIIIC ... oot e e e e e e e e e e e e 15

4. TIME DISCRETIZATION .ot it i i e e et e e e e e e e e e e et e e en e
4.1 Stability ..
4.2 Runge- Kutta Method

5. IMPLEMENTATION .
5.1 Discretized Reglon Matrlces and Vectors ..
5.2 Initial Conditions and Sources .

5.3 External Boundaries ..
5.3.1 Conductors . ..
5.3.2 Absorbing boundary condltlon

8.1 CAVILY ..ttt iie it et et e et e e e e e
8.2 WAV BGUITE ... ittt e e e e e et et e e e e e e

A AN = T L)Y I8 TS U= 1
7.2 Perfectly Matched Layer ..
7.2.1 Split-field formulatlon .
7.2.2 Coordinate- stretchlng formulatlon
7.2.3 Numerical results .

8. CONCLUSION ...ttt e e e e e e e e e ea e
APPENDIX: MATLAB CODEo e e e e e e e e e e et et e e e e

1. INTRODUCTION

The solution of electromagnetic problems is anmsaepart of the development of many
new technologies, such as stealth airplanes, nladieging devices, and a wide range of
components used in telecommunications. The inargakmand for these technologies creates
more complex problems, in which Maxwell’'s equaticasnot be solved analytically and so
require numerical methods.

Some of the current numerical methods for solviraxiell’'s equations are based on
finite difference schemes, which approximate denes. Standard finite difference schemes
require a rectangular grid, imposing a strong itnin on the geometry of the problem.
Nevertheless, these schemes are still often ussibe they enable very fast simulations and
low storage. Other numerical methods are basethide €lements and basis functions, into
which the main functions are decomposed, and theadizes are calculated exactly. Finite
elements provide a greater geometrical flexibaityl thus better accuracy than finite difference
schemes, but require more memory and longer simogtbecause the use of basis functions
involves matrix calculations.

A method that has recently been introduced to seleetromagnetic problems is the
discontinuous Galerkin method (DGM). It was firsbjposed by Reed and Hill in 1973 to solve
the neutron transport equation [1], and since ttltenmethod has been analyzed further
regarding convergence and stability, and more ticirinas been applied to various areas, such
as fluid dynamics, acoustics, and electromagng®nDGM is also based on finite elements,
but it can achieve fast simulations by greatly cialg the order of matrices. The values are
calculated separately in each element, and amgrdiites in adjacent elements are considered
through numerical fluxes across the boundary betvedements. The inclusion of numerical
fluxes also facilitates the treatment of exterralrdaries. DGM only concerns the spatial
derivatives in Maxwell's equations, and the timeives are usually dealt with using
advanced finite difference schemes, such as thg&kKntta method.

Some challenges exist in the application of DGNVxwell's equations. For example,
to achieve stability, a certain relation betweandlement sizes and time steps must be satisfied,
and this requirement often results in longer siraites if there is considerable variation in
element sizes. One successful proposal to overtiisiémitation is to use adaptive time steps
[3]. In scattering problems, another challengdésrieed for a fictitious absorber, such as the

perfectly matched layer (PML), which has also bagplied to DGM [4]. The PML is very
efficient in absorbing incoming waves, but it regsimany additional variables. These
challenges are not necessarily disadvantages of D¥@ide they are present in other numerical
methods as well. However, some methods may be afficeent depending on specific
problems. For instance, the method of momentst&nqdreferred for scattering problems, since
it does not need an absorber [5].

This work presents the theoretical basis of DGMjg&stions for its implementation,
examples of results, and improvements. Chaptevesgn overview of Maxwell's equations and
of a finite difference scheme, defines basis fumsj and discusses the finite element method.
This discussion is necessary for a better undatstgrof DGM. Chapter 3 presents a detailed
derivation of DGM applied to Maxwell’s equationsciuding the derivation of the numerical
flux, for use in two-dimensional problems. Chapter§ concern different time discretization
schemes, implementation of variables, sources anddaries, and validation of the method
through some problems. Chapter 7 suggests somewempents, such as adaptive time steps,
and shows the formulation of the PML, with exampkesliscussion of the advantages and

limitations of DGM concludes this work.

2. MAXWELL’S EQUATIONS AND NUMERICAL METHODS

Electromagnetic phenomena are described by Maxsvedjuations. In integral form, they

are
__0
3€CEmu = Ussms (2.1)
¢ H =%HSD s + [|_Irds 2.2)
ﬁ@SD [ds =fﬂv pav (2.3)
3@@58 s =0 (2.4)

whereE is the electric field intensity is the magnetic field intensitid is the electric flux
density,B is the magnetic flux density,is the electric current density, amds the electric
charge density. When solving electromagnetic prablet is often desirable to use the

divergence theorem to transform these equationgifferential form:

DXE:—a—B (2.5)
ot
OxH :a—D+J (2.6)
ot
OmM=p (2.7)
Om=0. (2.8)

In this form, the equations must be accompanied > of boundary conditions, which concern

field discontinuities on an interface between ddfg materials:

Ax(E, -E,)=0 (2.9)
Ax(H, —H,) =J, (2.10)
ALD, -D,) = p, (2.11)
AB,-B,)=0 (2.12)

where the subscripts 1 and 2 refer to the medi@agh side of the interfage denotes the normal

to the interface] is the surface current density, gnds the surface charge density, existing on

the boundary.
The solution of a set of differential equationgénerally not simple, especially in the

case of Maxwell’'s equations, since they involve fwactions of four variable€ andH both

depend on the three space coordinates and onTimeeefore, several numerical methods exist to

solve such equations. One of the simplest metlotifinite difference method in time domain

(FDTD), which approximates all derivatives with idions:

df _ im f(x+ax)=f(x) f(x+ax)-f(x)
dx ax-0 AX AX '

This method enables very fast simulations when @etpto other methods. However, it

(2.13)

requires a constant for each variable, which poses a strong limitaborthe geometry of the
problem. For example, in a two-dimensional probleith constantAx andAy, a circle must be
discretized with small rectangles, resulting in lagcuracy. A better approximation could be
obtained with triangles, as shown in Figure 2. bbebut the standard FDTD does not support

this kind of discretization.

SRR

AT
LA A
Lo
S v yAVAY ATy
VAVE Sy Yav oy A
Narlvie S

Figure 2.1: Circle discretized with rectangles aiith triangles.

The finite element method (FEM) is more flexiblanhFDTD regarding the geometry of
the problem, as FEM allows a discretization ofribgion of interest into any kind of elements,
including triangles. Instead of approximating tleeidatives, this method consists of
approximating the fields in each element with aesppsition of basis functions, whose
derivatives can be calculated exactly. Before shimng FEM, an overview of basis functions is

provided below.

2.1 Basis Functions

In a two-dimensional numerical problem, the regidrere the calculations are performed
can be discretized into small elements, usuallygmis with the same number of sides,

generating a mesh. Triangles are most often usdtiifopurpose for their ability to approximate

any planar shape with good accuracy, as showngur&i2.1 above. An example of a triangular

element is presented in Figure 2.2 below.

node 3
edge 3 edge 2

node 1 - node 2

Figure 2.2: Triangular element.

In each element, a scalar field can be approximatgbanded with basis functions:
E(x y) =2, E N(X,y), whereE is the value of the field at vertex, or nodeandN is the basis
function associated with that node. Thereforeatesfy/ E = E at node, the basis function must
have the valué&l =1 at nodd andN. =0 at the other nodes. In the rest of the elemeatb#sis
functions can be defined by interpolation polyndmi&or a linear interpolation in a triangular

element, the basis functions are [6]

 +h X+
N (x,y) = % (2.14)
where

& = X2 ™ K 2Yies (2.15)
B = Yia ~ Yiez (2.16)
C =X "X (2.17)

i =1, 2,% andA is the area of the triangle, given by
A :—hqﬂ;qﬂc" . (2.18)

In this notation, whenever the subscriptd andi + 2 result in a value higher than 3, the sum is
decreased by 3. For example, # 2, x,, represents,, andx,, represents,.

It can be observed that Equation (2.14) satishesdesired property of a basis function,
asN, (x,y;) =1andN, (X,y, ¥..) = N (X,,, ¥i.,) = C. Also, Equation (2.18) results in the same
value for anyl.

A vector field can also be expanded with basistions:E(x,y) = 2. E N,(x,y), where

E is the magnitude of the tangential component effield at side, or edgg,andN, is the basis
function associated with that edge. Each vectoisdaaction should have a constant tangential
component along its associated edge, have onlyrmat@omponent along the other edges, and
vary linearly fron{N,| =1 at edge to|N,| = 0 at the opposite node. To ensure these prope6ijes [
N; (%, ¥) =1, (NON,, = N_,ON) (2.19)
whereN is a scalar basis function, ané the length of edge
= (5= %)+ (o =) =A% +62 (2.20)

ForN defined in (2.14), (2.19) reduces to

N; (%) :'—Z‘A[R(ym =Y)* 9(x=X.5)]- (2.21)

Along edge, there is only one point thlté| = E. Itis the point where the basis function

is completely tangential to its edge. To be at edtiee point must satisfy

y=h - X7X% (2.22)
Y=Y XaTX
and forN, to be tangential to the edge, the point must sdsisfy
(Vi = ¥) (Yoo = %) = (X=%5) (%22 = %)- (2.23)
The solution of these two equations is
2Ah,
X=X, =2 (2.24)
2Ac,
y= yi+2——|-2' Z, (2.25)

A line segment from this point to the opposite nedeerpendicular to the edge, as shown in

Figure 2.3 below.

node 1

edge 1 node 2

Figure 2.3: Points where the basis functions argdatial to their edges.

2.2 Finite Element Method

Many electromagnetic problems involve the solutbthe first two Maxwell’s

equations. Using the constitutive relations,

D=¢E (2.26)
B=uH (2.27)
J=0E (2.28)
and adding another terdnfor a current source, first two Maxwell’s equasaran be written as
£a—E:D><H—0E—J (2.29)
ot
oH
— =-[OxE 2.30
Ho (2.30)

wheree is the electric permittivityy is the magnetic permeability, aads the electric
conductivity. This set of equations has two unkndwnrctions, the electric and magnetic fields.
To discretize them, the fields and sources in edé&ment can be expanded in terms of basis
functions:E =2, E/Ng, H =2 H/N,,J=2 J Ng, whereN; andN,, are basis functions for
the electric and magnetic fields, respectivbly.andN,;, may be different from each other; for
example, in a problem wheke= E,z andH = H X+ H_ ¥, the basis functions should be

Ng =N, ZandNy =N,, whereN, is a scalar basis functions associated with a,ramuiN, is a

vector basis function associated with an edgexplsimed in the previous section.
Applying the basis function expansion, the equatifam the fields at each element

become

0
(£E+szj ENg+2,J, NEj‘DX(Z,-H,- NHj)er (2.31)

y%Zj H N, +0%(2 ENg)=r,, (2.32)
wherer_ andr,, are the residuals due to the approximation. THerda method in FEM
consists of minimizing the weighted residual, whiglhe product of the residual by a weighting
or test function, integrated over the entire eletm€he test functions are chosen to be the same
as the basis functions. Thus, Equations (2.31)2:32) are multiplied by a basis function and
integrated, and since vector functions are usellisncase, the multiplication takes the form of a

scalar product:

d
J H%”}Zj ENg + 2, 9Ny -0x(2 H, NHj)} M dQ = [r:M;dQ =R, (2.33)
Q

d
JQ [,ua >, HN,+0x(2 E NEJ.)} ™, dQ = [r M, dQ =R, (2.39)

whereR; andR, are the weighted residuals associated with no@elge of the element, and

represents the area of the element. With someitutlsis, a set of matrix equations can be
formed:

Car CRCRUREREE ECH 235)

0
pocMal{HE (S){H = (R (2.36)
where{E}, {H}, {3}, {R} and{R,} are vectors containing the values of the eleatnit magnetic
fields, the electric current source and the weighésiduals, respectivefjl .| andM] are

called mass matrices, aj8}] and[S,,] are called stiffness matrices, whose elementgiaea by

Mg, = jQNEi Ny dQ (2.37)
S, = JQ(D xN,;) (N dQ (2.38)
M., = jQNHi N, dQ (2.39)
Sy = JQ(D xNg) (N, dQ . (2.40)

It is important to note that the pair of Equati¢2s835) and (2.36) above refers to each
element separately, §8.} and{R,} are not exactly the residuals to be minimizedc&imost
nodes and edges belong to more than one elemerguth of all residuals referring to a node or
edge should be added, and this sum is the onernarmized. This addition can be
accomplished by combining the pairs of matrix emunest for each element into one pair of
matrix equations for the entire region of interésthis combined system, the weighted residuals
can be set to zero:

g DACRUBE RS IR @2.4)

0
p M J{H} [, J{H} =0 (2.42)
which can be solved with matrix inversion. Withstlsiombination of matrices, the whole system

reduces to one pair of matrix equations, but tlieioof matrices and vectors becomes very large,

as this order is the number of nodes or edgeeietiire region of interest, not in just one
element. However, since each node or edge belongsly a few elements, the resulting
matrices are sparse, meaning that most valueg im#trices are zero.

Hence, the FEM formulation usually generates vargd and sparse matrices. Although
many computational methods exist to deal efficiewith sparse matrices, their large orders
usually result in large memory and time requireraehbr example, for a matrix of orderthe
memory required to store it is proportionahfp and standard algorithms to invert matrices take
a computation time proportional

The discontinuous Galerkin method (DGM) is essépteamodification of the Galerkin
method in FEM. The main advantage of DGM over FENhat it solves the matrix equations
separately for each element, similarly to (2.3%) éh36). Thus, DGM requires lower
computation costs, as the matrices involved ircdieulations have low orders. The details of

this method are explained in the next chapter.

3. DISCONTINUOUS GALERKIN METHOD

To solve a system of differential equations withNdGt must be first written in a

conservation form, meaning that the sum of all gesrequals zero:

QZ—?+D[H:(q)—S=O. (3.1)
Maxwell's equations fit this form with the followgnsubstitutions:
0= e 0 _|E S= -oE-J (3.2)
“lo 4T H]TT] o '
—-OxH =XxH |, [-yxH |, [-ZxH |,
O0F(q) = O F(g)= X+ + Z. 3.3
- [oee] o e e e

The fields and sources in each element are apped&ahwith a basis function expansion:

E=2,ENgH=2 HN,,J=> JNg. Asin FEM, this approximation creates a residual:

Q‘Z—?m[ﬁc(q)—s:r. (3.4)

Instead of minimizing the residuals, as in the Gatemethod in FEM, DGM calculates
the fields separately in each element and usedisbentinuity of fields between adjacent

elements:

J (Qg—?+mm(q)—sjmd9:§rﬁEQF— F)oNdr (3.5)

N—NEi 3.6
<[] oo

Hi

where

I' is the contour that defines the ateaf the element) is a unit vector normal tb, andF — F*
is called thenumerical flux. Only its normal componeﬁt[@F - F*) is used in this method, so for
simplicity the nameumerical flux can also be used to refer to this component.

The specification of* starts with the Rankine-Hugoniot condition frore theory of
Riemann solvers [2]:

-AQ(a -g")+(Na) -(Na)" =c (3.7)

wherellq =AF, andA, is an eigenvalue @1 (A, is actually a matrix and not a scalar
eigenvalue, sinc®'M is a block matrix). The superscripts indicatettlie sides of the

boundanf: q” represents the fields at the boundary, withinelleenent defined b¥; g*

10

represents the fields at the same boundary, bbtrwéin adjacent element, as shown in Figure
3.1 below. The same notation can be used &ordu.

Figure 3.1: Fields at adjacent elements.

Assuming that\;, may have three valuesi;-A or 0, Equation (3.7) can be generalized

with intermediate states, represented by the sapets * and **:

(AQ) (o —a7)+(Na) -(Na) =¢ (3.8)
(Ma) =(Ma)” =0 (3.9)
(-AQ)" (@~ -qa°)+(Na)” -(Na)" =¢ (3.10)
which reduce to
(AQ) (o —a7)+(Na) -(Na) =¢ (3.11)
(-AQ)" (g" -a") +(Na)" -(Na)" =0. (3.12)

The numerical flux is obtained with the relatidd* = (Mq)", from the definition of1.
To find the numerical flux for Maxwell's equatiorfgst the matrixIT and the
eigenvalueg\, must be found using the variablesQ andq defined in Equation (3.2), before

the system (3.11-3.12) can be solved. Since thexiais defined by1q = A[F, it can be
expressed by

0 -N
M= (3.13)
N O
EX HX
whereNE =AxE, NH =fixH. Using the notatiok =| E |, H =|H_ |, N can be expressed by
EZ HZ

11

z y
N={n O -n (3.14)
-n, n 0

wheren,, n, andn, are the components 0f It is important to observe that N is singular,

antisymmetric, and tha® = —N. The matrixQ ™' is

0|0 —-N 0 -Ne¢
Q™ - LA = N (3.15)
uel0 €|IN 0 Ny O
and its eigenvalues can thus be found with theyotg equation:
N2
det(/\i2 +—j =C (3.16)
UE
One solution ig\, = 0. Other solutions can be found by
2 4
/\f:—N—:N— O A, =+cN? (3.17)
HE UE

wherec:i. Therefore, in Equations (3.8) to (3.1&)7 cN° Solving (3.11) and (3.12), we

Jue
have

(c'Q"+c'Q) N*(Ng) =c"Q N*(Mg) +c Q@ N(Ma) +c' Qe Q@ N(g™ -q*). (3.18)
In the first three terms of (3.18), the vectgrare multiplied byI andN?, so in effeciN®
multipliesE andH, while in the fourth term the fields are multigliby N*. Although N has no
inverse, the factaN?® can be removed from all four terms in the equaltiecause N is

antisymmetric. Defining =/u/€ andY =,/¢/u, Equation (3.18) can be written as

vy o0 L [Yof=AxHT] YT 0][-AxHT] YY" 0 | AxAx(E-E')
0 Z+Z 0 Z*|| AxE™ | |0 Z7|| AXE’ 0 Z*Z7||AxfAx(H -H")|

(3.19)
Solving forn [F* yields
. Z'H'+ZH -hAxE -E")
—nx " —
AF* = Z+z (3.20)
. Y'E'+YE +fix(H -H")
nx
Y +Y"~

which can be used to find the tefrffF ~F*) in (3.5):

12

. Z'(H*-H")-AxE"*-E")

'\xH nx + - G
AlF-F) = M A = z +% { E}. (3.21)
AxE _ax Y (ET-E)+Ax(H-HT) | (G
Y'+Y~
With the numerical flux defined, the system in §3&n be separated into two equations:
J Hg%w—jEH—DxH}DNBdQ=3€rGE[mEidr (3.22)
Q
M +0xE|N, dQ =G, N, dF (3.23)
5 E Hi T JpoHHI :

with G andG, defined in (3.21). Applying the basis function arpion to (3.22), we have

9
J [(*"E*“jzi ENg +2, J;Ng -0x(X, HjNHj)}[INEidQ =§ G N dr
Q

Z{(E%J’Uj E, +Jj} | Ng NG dQ =3 H, | (OxN,,) (N, dQ + G N, dr

(£%+UijMEUEj +2., Mg, =2 S H, +Fg (3.24)
where
Mg, = jQNEi Ny dQ (3.25)
Sy, = |_(T%Ny) INg dQ (3.26)
Fe =¢ GeMNgdr . (3.27)

Equation (3.24) can also be written in matrix form:
(30 + M3 <[+{F
o{g} _ M| ([scl{H} +{Fd)-o{8 {3}

ot £
where[M | is called the mass matr&,] is called the stiffness matrix, afféL} is the numerical

(3.28)

flux vector. Similarly, (3.23) becomes
0
pIMJ{H} = []{E +{F)

ofH} _ M. (-[s. {8 +{F}) (3.29)
ot U

where the elements ¥, |, [S,] and{F,,} are similar to (3.25-3.27), but with the subseript

13

andH switched.

The evaluation of the mass and stiffness matrindstae numerical flux vector depends
on the choice of basis functions. Two cases arsidered at the end of this chapter: transverse
magnetic (TM) and transverse electric (TE), in tlumensions.

Equations (3.28) and (3.29) calculate the fieldsanh element separately, and the
numerical flux accounts for the differences in fileéls at adjacent elements. Thus, in DGM, a
set of matrix equations must be solved for eacmerfe, as opposed to one set for the entire
system in FEM. However, the order of matrices agctars used in DGM is much smaller, since
this order is the number of nodes or edges in tevaent, not in the entire region of interest.
This result is the main advantage of DGM: bothrttemory required to store all values and the
time to perform all computations vary linearly witte humber of elements.

Another important observation is that, since tle&B are calculated separately in each
element, more than one value is obtained for #ldgiat the boundaries between elements. In
other words, the calculated fields are discontisyand this aspect is reflected in the name of the

method.

3.1 Transverse Magnetic

In a two-dimensional transverse magnetic (TM) peablthe basis functions are
Nz =Nz andN,, =N,, whereN is a scalar basis function aNdis a vector basis function. For
triangular elements with linear interpolation, théssis functions are defined in (2.14-2.21).
Using this discretization, the elements of the naamkstiffness matrices and of the numerical

flux vector are evaluated as

Mg = [NNdQ —%(1 5,) (3.30)

S = [(0*N,)Nzd J {N"V deJ ['_w'_ijdgz:I—i (3.31)
Q o \2A 2A 3

Fo = fGNzar = ix” HoH BB) iy zar

VAR VA

_Z{ (opj)fN opl JNNd +Eopzj+1 J+1J NNJ.*]_dr}

14

| (1-d5)

=2, [3Z+ (Hop,j -H j) + (Eop,j - Ej) (1+ 5'1) * (Eopyi+1 J)(1+ 9 J+J)]

(Z +Z)
(3.32)
. c C. C.
MHIJ _J N |:INJdQ :J {Ii(q : N; _inljlj(éAl NJ _—QJANHl
Q
b, b.
+l, (blﬂ N; _iNiﬂ Ij(- N; _—JNj+1 }dQ
2/ 2N\ 2N\ 2\
Ll _
= 48]A [(flj + fi+1,j+1)(1+5|,j)_ fi+1,j (1+5|J-+])_ fi j+l(1+5i i+ ;_ (333)
S, :J ([OxN 2mN,da = | [N N N o
ij o j i . iX ay iy X
b;
_ |i(h N - Ni+1]_'—| (Qﬂ N -GN j dQ = 6(3 e (3.34)
Jla ™ a o Tl o A
F =§ G, IN, dr =§> i YLEZE) x(HTTH) g
r r Y'+Y
H, . —H Y* (E,, —E) al
— op,] J op, | J op 1+1]+1
Zj[vy T Sadr rNJﬂdr}
. 13
:Zj[Z(HoP,j _Hj)+Y (Eopj _E + Eop]+1_Ej+1):|W .
(3.35)

In the expressions abovej D{l, 2,?, and whenever a sum involving one of these indiesslts
in a value higher than 3, the result is decreage®l hhe subscriptp,j refers to the field at the

element opposite to edgeThe binary functio, ; is defined by

0. ifizi
g,=1 7 (3.36)
o ifi=g
and the functiorf, ; is defined by
f., =hb +cc,. (3.37)

3.2 Transverse Electric

In a two-dimensional transverse electric (TE) peofl the basis functions &axg, =N

15

andN,; =N z. The mass and stiffness matrices in this caseeyesimilar to the ones in the TM
case, but with the subscrifisandH switched. The numerical flux vector is also simtlathe

previous case, as shown below.

Il
6 =] NN AQ =0 (1 G (40) - fusy (144) - f 149)] 339)

Sy =L)(D><Nj 2) N, dQ —'('3(35,J+1) (3.39)
FEi :§ GE[Ni dr :% ﬁxz+ (H _H_)_ﬁj((EJr_E_) |:lNi dr
r AR Y
. —E, z" (H, Z* (Hap s =H o)
xS Zl) o)
1.5
:Zj[Z(EOD,i - Ej)—Z+ (Hop,i “Hy+Hg - Hi‘rﬂﬁ
(3.40)
M., :LN N, dQ =1£2(1+5,,j) (3.41)
S :jQ(DxNj)[deQ :%’ (3.42)
Fu=§ G,INZdr =£—ﬁxY (E 'Eﬂi@x(H)y zar
B[T8 o e e
[0 (£),) ol o
(3.43)

16

4. TIME DISCRETIZATION

The DGM formulation in the previous chapter onlycerns spatial derivatives. The time
derivatives in Maxwell’'s equations can be approxedafor instance, with finite difference
schemes, as in FDTD. One of these schemes is datl@drd difference:

a{E}n :{E}nﬂ_{E}n (4 1)
ot At '

where{E} and{E} _ are the values of the field at timesndn+1, respectively, andt is the

difference between these two times, also calledithe step. A similar expression can be used

for {H}. Substituting these expressions in Equations 228 (3.29), we obtain
(8. ={8, +S{MJ (1M}, +{F,)-8, {3 4.2
() ={H), + I (IS8, +{F) (43

The system above yields the solution of Maxweltisi@ions through DGM and forward
difference. Given initial conditions and sourcé® fields at all points in the region of interest

and at any later time can be calculated.

4.1 Stability

One problem that arises from the discretizatiohath space and time derivatives is
stability. If the relation betweefx, the distance between nodes, amndhe interval between two
time points, is not enough to approximate the vaahtion of the fields, the calculated values
may increase indefinitely with time. Hence, it ecessary to find a stability condition that
involvesAx andAt.

Combining Equations (4.2) and (4.3), and ignoriogrses and numerical fluxes, we have

-1 At)? -1 1
G =820 T80, - sl e, @
The calculated valuge} , relates to one of its previous valugg, , through the factor
(iz—tz[M o M.] [S][S.] Using either (3.30-3.35) or (3.38-3.43), and itering the most

common element of each matrix, this factor becomes

17

ue A (Ax)4 3 6

(A1) 12 480 Axax _ (CAAXt A \/5)2 (4.5)

wherec =i, the speed of an electromagnetic wave in the e@leraadAx represents the

HE
length of one of the edges of the element. To enstability, the factor cannot be greater than 1:

(ﬂwﬁf <1

AX
AX
s> a/2c. 4.6
At (4.6)

In this derivation, the numerical fluxes were igeahrthe edges were considered to have the same
length, and the matrices were substituted withr timeist common elements, so the stability
condition in Equation (4.6) is approximate. Therefdhe value oh/2 may not be enough to
achieve stability, and usually a slightly highelueais used.

4.2 Runge-Kutta Method

The simple approximation of time derivatives witinfard difference can be easily
implemented in a computer program with a conditap. However, the accuracy obtained with
this method is limited because it considers thaffiglds vary linearly between two consecutive
points in time. Therefore, to obtain high accuraciields with large time variations, many
points in time are required, which results in géamemory needed to store all values as well as
a long computation time.

The Runge-Kutta method is also widely used to agprate time derivatives because of
it can often achieve the same accuracy as FDTDnsefidut with fewer points in time, thus
allowing faster computations. The classical versibthis method involves calculating four
additional values in each approximation, so ils® aeferred to as the fourth-order Runge-Kutta
method (RK4). Considering the partial differengguation

0X
o (%) (4.7)
wherex is a function ot, and discretizing this variable with
oy = t, +AL (4.8)

RK4 gives a solution of by

18

K =%, 5 (3, + 2, + 25, +) (4.9)

where
a, = f(x,) (4.10)
b, = f(x, +a,At/2) (4.11)
c, = f(x,+b,At/2) (4.12)
d, = f(x,+c,At). (4.13)

A simpler version, which still has a comparableusacy, is the second-order Runge-
Kutta method (RK2):

X ., =% +b At (4.14)
where
a, = f(x,) (4.15)
b, = f(x, +a,At/2). (4.16)

To apply RK4 or RK2 to Equations (3.28) and (3.28¢ functionx can be considered as a
vector containing bot{E} and{H}.

19

5. IMPLEMENTATION

Before Equations (3.28) and (3.29) can be implestemt a computer code using the
finite difference or the Runge-Kutta method foreiterivatives, a large number of variables and

parameters must be defined.

5.1 Discretized Region, Matrices and Vectors

First of all, the region of interest should contalhobjects and spaces relevant to the
electromagnetic problem to be solved, includingses, scatterers, dielectrics and free space.
Once defined, the region is discretized into sml@iments, usually triangles, such that the
boundaries of all objects are approximated witheitiges of the elements. Figure 5.1 below

shows an example of a discretized region.

Figure 5.1: Discretized region with objects.

To deal with the discretization efficiently, ituseful to number all elements and nodes
uniquely, and to generate two matrices with thisrimation: amatrix of e ements, listing all
elements and their nodes, anehatrix of nodes, listing all nodes individually and their
coordinates. While the numbering of elements ardkads arbitrary, in the matrix of elements it
is important that the nodes be listed in the saotetion order for every element, clockwise or
counterclockwise. In other words, the specific nemstassigned to each element and node are
irrelevant, but the order in which the nodes ated for each element must be consistent. Figure

5.2 below gives an example of how the nodes shioeilidsted.

20

1 2 3 4 elementl node1l node?2 node 3
. . 1 1 9 8
2 1 8 2
(2) @ ® ® 3 2 8 7
4 2 7 3
@ O & (7 5 3 7 6
® 6 3 6 4
5 7 4 6 5
99 @ @ ' 8 5 6 12
12 9 6 7 12
1 10 7 11 12
20 11 7 8 11
(18 12 8 10 11
s w 14 | 8 16 1o
* ¢ 15 10 16 15
16 15 14 13 16 10 15 11
17 11 15 14
18 11 14 12
19 12 14 13
20 12 13 2

Figure 5.2: Listing of nodes for each element, teratockwise.

The fieldskE andH, as well as the sourdecan be stored as vectors having three indices:
element number, node number in the element, aregimmt. For example, the electric field at
nodei of element, at timen, can be written a&®.

The material parametessu ando are usually considered to be invariant within each
element, so they can be stored as vectors withamyindex, the element number. Moreover, if
the problem only includes one kind of dielectricpaly free space, and any conductors are
considered perfect, the material parameters catobed as constants.

The mass and stiffness matrices can also be stotedhree indices: element numleer
and the row and column numbemsndj, for instancevi ée’)i’j (the subscripE is not an index).

Their values can be calculated according to theesgmons in Chapter 2, and with the help of the
matrix of elements and matrix of nodes, to find ¢berect indices and coordinate values easily.
The mass and stiffness matrices only need to loelleédd once for each element, as they do not
change with time, so they should be stored forais¥ery time point.

The calculation of the numerical flux vectors irads the values of the fields and
material parameters at adjacent elements, andledgtas. Since the fields change with time, the
numerical flux vectors must also be calculatedefach element and at each time point. They do
not need to be stored, since they are only usedertime point. However, just for the purpose of

notation, they can be written with three indicdsmeent numbee, row numbei, and time point

21

n, such aﬁ(?,n- In addition, to avoid recalculating the edge tasat every time point, it is

useful to store them as vectors with two indicésment numbee, and edge numbda,rasli(e)
The fields at adjacent elements must be carefalgcsed when calculating the numerical
flux. Using the notation that includes all indicas,explained above, the expressions in (3.32)

and (3.35), for the TM case, are written as

|:E(e) => [sz(op)(H(n) ern) (E(OP) Ej(e))(l +J)

Jin k+1n n 1)

+(E% -E%,) 1+ 4., ; (z(=M 'Zz))) (5.1)

n n

R = ZJ.[Z(—HIE D -HE)+Y™ (E) ~ES +EX -EY
and those in (3.40) and (3.43), for the TE case, as

FY, =%, |2(-E -E) -2 (H§+gn-ern+H§°g>-ngzln)}z(z(;T:Z@) (5.3)

R, =28 (B -E0) + (M, -HE) 2+ 0

|(e) J .
+(H|£?rr:) -H j(?m) (1+ 5|,1+1)}W . (5.4)

In the expressions above, the indgxmeans the element adjacent to elenegnpposite to edge

j of elemene. Edgek of elemenibp and edg¢ of element are the same edge; nddel of op

and nodg of e are the same node; and n&d# op and nodg+1 of e are the same node as well.
The negative signs inH® for the TM case and irE{* for the TE case are necessary because
these fields along the edges are oriented at ofgpdisections in adjacent elements. Figure 5.3
gives an example of two adjacent elements withadles, edges, and fields indexed, for the TM
case (for simplicity, the indexis omitted in all fields).

To facilitate finding the element opposite to atairedge, it is useful to create a matrix
whose row and column numbers are the unique nundbéie nodes, and the matrix elements
are the numbers of the elements that share that &dg instance, denoting this matrix by A, if
the edge between nodesindq is shared between elemestandop, thenA , =A = (g op). If
this edge is at the end of the region of intel@sd, only belongs to elemegta zero can be used

to represent the second element. If two nodes o an edge, as is the case for most pairs of

22

Figure 5.3: Adjacent elements and fields in a Thgbem.

nodes, zeros can be used for both elements. Wheulatang the numerical flux, this matrix can
be accessed using the numbers of the two nodeddfiaé a certain edge of the element,
returning two values: one is the number of the elanitself, the other is the number of the

adjacent element opposite to the edge.

5.2 Initial Conditions and Sources

Any scheme that approximates time derivatives reguinown values of the functions at
the first time point. Therefore, the vaIueQ—Zqug andHi(% for all e andi must be defined, and these

initial conditions depend on the type of problenmgesimulated. In scattering problems, for
instance, where an electromagnetic wave is incidergn object, usually the initial values of the
fields are set to zero at all points. In a resoegroblem with no sources, the initial values may
represent the desired modes to be analyzed.

In case the initial field values are not zero, degendent on position, they must be
calculated for specific points in the elements, relthe basis functions are maximum. For
example, in a TM problem using triangles as elesé&ptshould be calculated at the nodes,

while H, andH should be calculated at the points given by (2a24) (2.25). Then the initial
fields Ei(% andHi(% are implemented with
E%

e

E, (5.5)
H><C’|+2 - Hyh+2
I '

(5.6)

23

In a TE problem, where the initially set fields &gE, andH,,

E|(?_-)) - ExC|+2 l_ Eyh+2 (57)
HY =H, (5.8)

The values of any sourceﬂéﬂ, must be defined for all elements and time points.

5.3 External Boundaries

The calculation of the fields in DGM is done sepalsafor each element, but the field
values at adjacent elements are needed to contputeimerical flux. However, some elements
have an edge at an external boundary of the ragfiotierest, so there is no defined element
opposite to these edges, and no adjacent fielevalavailable for them. Thus, the adjacent field
values at the external boundaries must be chosestionated. For instance, in Figure 5.4 below,

the elements having an edge at the external boyadaishaded. The elememqtis not defined,

and in the TM case, the valug$”, E* andH® are unknown (the indexis omitted here).

=)

op
A
HE(OP)

EY

Figure 5.4: Elements at the external boundary.

5.3.1 Conductors

There are several ways to treat the fields at xtereal boundaries, depending on the

problem. Often an external boundary is considesea perfect electric conductor (PEC) or a

24

perfect magnetic conductor (PMC). The former modst$als with high conductivity, and the
latter, although not representing any real matesalseful to study some types of propagating
waves. Both kinds of boundaries are used in caritywaveguide problems.

Inside a PEC, the impedance and the electric isddzero. These properties can be
applied to (3.21) witlz* =0 andE* =0 [7]:

NxXAXE"

Ge| |———
= - . 5.9
{GJ Z (5.9

Alternatively, this expression can be achieved Wit Z",H* =H ", andE™ = -E". Therefore,
in Equations (5.1) and (5.2), the adjacent fielals loe set as

M =K, Bl =g, B =g, 510
and in (5.3) and (5.4) as

EIE(,)E) - E](e H (op) =H J(e H (op) =H @

n? k+1,n n? k,n j+ln (511)
both withz® = z® andy® =v©,
Inside a PMC, the admittance and the magnetic fisédzero. Applyiny™ =0 and

H* =0to (3.21), we have

G, -AxH"
{GJ: AxAxH" (5.12)
—
which is equivalent to setting =Y,E* =E~, andH™ =-H". In Equations (5.1) and (5.2), the
adjacent fields can be chosen as
HP =H)

jn

EW =E@ EM = gU

+1,n j.n? j+1,n

(5.13)

and in (5.3) and (5.4), as
) = _g@ oo —_q@ o) -_yE

k,n j,nt " Tk+1,n j,n? " Tk, j+1ln

both withz® = z®@ andy©® =y©,

(5.14)

5.3.2 Absorbing boundary condition

If the external boundary is not a conductor, beéfspace or a dielectric, the values of the
adjacent fields at the boundary are not known. iQee is to place the external boundary very far
from any sources and scatterers, such that thesyamepagating from these objects will be

attenuated to small values at the boundary, anddfaezent fields there can be set to zero. This

25

approach is not practical, of course, becauseyitires the calculation of the fields at many
additional elements, and such values are not efest to the problem being simulated. And
more importantly, the waves, although attenuatexjldvbe reflected back to the region and
corrupt the simulation. Therefore, a better solut®to use a smaller region and estimate the
field values at the boundary, based on assumpébaast the incident waves. As explained
below, these assumptions result inalasorbing boundary condition (ABC), so called because it
minimizes reflections of incident waves on the baany.
In a plane wave propagating in the directithe electric and magnetic fields are related

by

axE=ZH,axH =-YE. (5.15)
To create the ABG3 must be specified. One option is to assume tleatvtlve is normally
incident on the boundary, $6=f. In this case, the ABC is

NxE=ZH,nxH =-YE. (5.16)
Applying these relations &" andH ™ in Equation (3.21), and considering no changéén t
material parameters across the boundary, the noahdux becomes

. ZH —AxE~
G.|_| ™ 2
Fl= A . (5.17)
G, ~ YE +AxH"~
AX————
2Y

If the wave is indeed normally incidelt, andH ™~ also satisfy (5.16), and this numerical flux
becomes zero. Otherwise, a small reflection willwdrom the boundary. To implement the
ABC, the expression in (5.17) can be achieved tmpbi setting the adjacent fields to zero. In
(5.1) and (5.2):

H® =0,E®, =0,E® =0 (5.18)
and in (5.3) and (5.4):

o =0,HE, =0,H{ =0 (5.19)

both withz® =z andy® =y,

The ABC presented above results in small reflestiomly for plane waves at small
incident angles with the boundary. For other kiotigzaves or higher angles, there are additional
methods that can be used to limit reflections. Ay\a®mmon method in scattering problems is
the perfectly matched layer (PML), which basically consists of a layer of \adaie conductivity.

This method is covered in Chapter 7.

26

6. VALIDATION

The method presented in the previous chaptersmaleimented in a computer code,
which can be found in the Appendix. To validate ¢bde and evaluate the method’s accuracy,

simple electromagnetic problems with known solwtiorere tested.

6.1 Cavity

The first problem represents a two-dimensionalamgular cavity containing free space,

surrounded by a PEC. The discretized region is showigure 6.1 below.

a
Figure 6.1: Rectangular cavity.

The cavity in this problem has finite dimensionghaxy plane, and is considered infinite
in the z direction. Therefore, the TM fields inside the itaare given by [8]:
E = E,sin(k X sin(k, y) sin(at) 2 (6.1)
H :E,;;Eysin(kxx) cogk,y) co@a)i—% cok,X) sliy) cfst)y (6.2)

whereE, is the amplitude of the electric fielg=\/1/¢, k =,k +k’, w=kc, andk, andk, are

wave numbers given by:
mir N7z
=—.,k, =— 6.3
k== k= (6.3)

wherea andb are the horizontal and vertical dimensions ofdéety, respectively, anch andn
are integers greater than zero that define the maode

In a completely closed cavity without any sourgesde, the fields can only oscillate or
decay, so it is necessary to define an initiakstait the fields, according to (6.1) and (6.2). As

27

explained in the previous chapter, the coordinasesl to calculaté andH are the points where
the respective basis functions are maximum; thney, are not the same for both fields. In this
TM case, the nodes are used for the electric fagid,the points given by (2.24) and (2.25), for
the magnetic field, theB') andH are obtained with (5.5) and (5.6). The adjacesid§i at the
external boundaries must be chosen appropriateth&PEC, as in (5.10).

Figure 6.2 below presents the results of the cawhulation for several levels of space
discretization and different time discretizatiolmeimes. In this examplmy=n=1,a=1m, and
b=0.5 m. To satisfy the stability condition, the time steas chosen withx/At = 6¢c, whereAx
is the smallest edge in the entire region. Thelt®stow that the accuracy strongly improves
with the increase in the number of elements peraleangth, as expected. The Runge-Kutta
method provides a much lower error than FDTD, wimtgeasing the computation time only
slightly. In this simulation, RK2 and RK4 give tkame accuracy, but RK4 uses a longer
computation time than RK2, so RK4 does not proadg advantage over RK2 in this
simulation. This result occurs probably becausedirbasis functions are used for space
discretization, so a fourth-order would only redtioe error if the basis functions also have a

higher polynomial order.

e FDTD

- FOTD|]
—e—RK2]

relative error
computation time (s)

20 30 40 &0 60 70 80 90 20 30 40 50 60 70 80 90
elements per wavelength elements per wavelength

Figure 6.2: Results of the cavity simulation witirious element sizes.

Figure 6.3 shows the results of the simulation \sékieral time steps, again for different
time discretization schemes, and about 20 elenpamnta/avelength. Although a strong reduction

in the error is observed with the decrease in efersiges, the interval between time points does

28

not seem to interfere with the accuracy signifisarats long as it is small enough to ensure
stability.

e EOTD
—=e—RK2
4 R4

relative error

*®
*

2 1 1 1 1 L 1
30 a0 100 110 120 130 140 150
time steps per period

Figure 6.3: Results of the cavity simulation witirious time steps.

To verify the stability condition with Figure 6.Bguation (4.6) can be rewritten in terms

of elements per wavelength/Ax, and time steps per peridy/At:

AX _ T/At
—=——24J2. 6.4
cAt A/Ax V2 ©4)

Therefore, in this problem, the results should beestable i /At > 4724 /Ax = 115, which is
observed in Figure 6.3.

The error in the above figures was computed with:
Ee,i,n - Eanalytical‘

EanaJyticaI|

ei,n

relative error= (6.5)

ei,n

wherek, .., refers to the electric field calculated by (6.4)46.2) for the same position and

time ast,;,. A similar expression can be used to find theréiopthe magnetic field.

6.2 Waveguide

Another simple two-dimensional problem with a knoaralytical solution is the parallel-

plate waveguide, consisting of two PEC plates sdpdrby a fixed distance. The plates are

29

considered infinite, so the cross-section usetienstmulation represents in fact only a part of the
waveguide. A rectangular region can be used; howewdy two of the sides of the rectangle are

closed by the PEC, while the others are open, @srsim Figure 6.4 below.

PEC

open side open side

b

PEC
Figure 6.4: Section of parallel-plate waveguide.

Considering a wave that travels inside the wavegindhex direction, the fields at the
two open sides, for all time points, as well asithigal state in the entire region, can be set

according to the analytical solution for this prel [8]:

E= Eosin(kyy) sin(at —k,X) 2 (6.6)
:%kycos(kyy) cos{ax—kxx)i—vkx silﬁkyy) sifut —kX) § (6.7)

wherek, is the amplitude of the electric field=\/¢//€, w is the angular frequency of the wave,

k=ay/c, k =,/k*-k?, andk, = n7/b, whereb is the vertical dimension of the cavity, ami an
integer greater than zero that defines the modeeif direction. The fields are calculated at the
points where the basis functions are maximum, angito the previous section.

Figure 6.5 presents the results of the waveguidelstion, again for several levels of
space discretization and different time discreimaschemes. In this examptez1,b=0.5m,
f =500 MHz, wherew = 271f , andAx/At = 6¢. Similarly to the cavity simulation, the increase
the number of elements per wavelength enhancesctheacy, and the Runge-Kutta method
further reduces the error, with a slight increaisthe computation time, but RK2 and RK4 result
in the same accuracy. Figure 6.6 shows the restlte simulation with several time steps, for
about 13 elements per wavelength. As in the cauilation, the interval between time points
is only relevant for stability. Again, the resudtgree with the stability condition,

T/At > 424 /A= 74,

30

< EOTD +--FDTD
—e—RK2Z —e—RK2

relative error
computation time (s)

107k 10k
10'3 1 1 L 1 100 1 1 L 1
10 20 30 40 50 680 10 20 a0 40 500 60
slements per wavelength slements per wavelength

Figure 6.5: Results of the waveguide simulatiorhwirious element sizes.

10 :
cw FDTD
—s—RK2
10
5
E
i}
=
B
o
10
10'2 1 1 1 1
50 60 70 80 90 100

time steps per period

Figure 6.6: Results of the waveguide simulatiorhwirious time steps.

Another way to implement the fields in the waveguisito specify them with Equations
(6.6) and (6.7) only at one open side and use a@ ABhe other open side. This implementation
is more useful for real applications because isdus require a prior knowledge of the field
values at all external boundaries. The resulti®@kimulation with the ABC can be seen in
Figure 6.7. The error with the ABC is still accdg& but higher than the error due only to the
discretization in Figure 6.5. A more detailed asa\f the ABC and other absorbers is given in

the next chapter.

31

- FDTD
—e—RK2
+ RK4

relative error

3 1 L 1 L
10 20 an 40 a0 B0
elements per wavelength

Figure 6.7: Results of the waveguide simulatiorhwiBC.

Based on the results of this chapter, all the remgisimulations in this work use RK2
andAx/At = 6c.

32

7. IMPROVEMENTS

The previous chapters explain the derivation arglementation of DGM, and show
numerical results that validate the method ancttitke used in the simulations. Yet, there are
some modifications that can be employed to imptbeeefficiency of the method. Two
improvements are discussed in this chapter: thptageatiime steps, used to reduce the
computation time in meshes with a large variatioelement sizes, and the perfectly matched
layer, which reduces reflections from the extebwmindaries and thus improves the accuracy of
the results. The computer code used to generateshés in this chapter can be found in the

Appendix.

7.1 Adaptive Time Steps

As explained in Chapter 4, the stability conditdepends on the element sizes and the
time step. The element sizes are usually chosprotode a desired level of accuracy; for
example, they can be specified as a fraction oiieelengths involved. After that, the time step
to be used in the calculation can be obtained Bafhation (4.6). As shown in the previous
chapter, reducing the time step below the valuessary for stability does not improve the
accuracy significantly, but it increases the compah time because more steps are needed to
cover the same total time. Thus, it is desirablehmose the largest time step that ensures
stability.

The stability condition must be satisfied in akbmlents, so if the same time step is used
for all elements, the length of the smallest edgidé entire region should be used to calculate
the time step. This restriction is not a problenmieshes having uniform element sizes, such as
the examples in Figures 6.1 and 6.4 in the prevobiapter. However, if the region includes
objects that are small compared to the wavelerngihsidered, or objects that have complex
shapes with small details, the elements that digeréhese objects or details need to be small as
well. These small elements restrict the time sh@p, if other elements in the region are
considerably larger, the time spent to calculagefigids in the larger elements will be
unnecessarily long, without much gain in accur&®nce, a region with a large variation in
element sizes cannot be handled efficiently ifdhme time step is used for all elements.

One solution is to use adaptive time steps. Thal igigproach would be to apply the

33

stability condition to every element and find aeistep for each one. However, this approach is
not practical because the fields would be calcdl&te different time points in each element, and
the numerical flux requires known values of thédfseat the same positions and times. Thus, an
efficient approach is to define classes of elembased on their size, and the time steps used for
the classes of larger elements are multiples (fehused for the classes of smaller elements [3].
Since the larger time steps are multiples of thallemones, the time points coincide.

The following procedure explains how the classesdafined. First, the smallest edge in
the whole region)x,,, is identified and used to calculate the time &tiep with the stability

condition. All elements whose smallest edge is Em#tan, for instanc&Ax,,, belong to the

first class and their fields are calculated usheytime steg@t_. . The elements whose smallest

min*

edge is larger tha2Ax . but smaller thadAx . belong to the second class and use time step

20, those with edges larger thafx ,, belong to the third class and ul, ,, and so on. In

min? min?

this example the classes were divided accordiqgteers of two, but any integer may be used.

In general, the class number of an element camloalated with the following expression:

C]
C(e= roo{Iogd (AI%H (7.1)

whereC (e) is the class of elemeaﬂmn Is the smallest edge of elemenandd is the integer
used to divide the classes (in the example atibwe2). The functiorfloor (a) returns the largest

integer that is smaller than

Since higher classes use longer time steps, tle&dsfare not calculated at every time
point. For example, in elements of a class udiky, , the fields are calculated at time 4 from
the values at tima, and the values at intermediate timesl, n+2 andn +3 can be obtained
through interpolation [3]. Also, the numerical fluges field values from adjacent elements,
which may belong to different classes, so the §@hdlower classes can only be calculated after
the interpolated values from higher classes argadl@. Therefore, it is important to observe the
order in which the fields are calculated, as ilatgd in Figure 7.1, for three classes dnd2. In
the figure, this order is denoted by the numbethentop left corner of each rectangle. The fields
in each rectangle can only be computed after thosectangles with lower numbers are

available. The calculation starts with kno&nandH,, in all elements.

34

Class 3AX > 4AXmin Class 2: Axyin < AX < 4AXmin Class 1AX < 2AXy,in
1) 1)

Epeqr Hippg With 4At

Epvo, Hiypeo With 2At i, b Env1s Hneg With Aty

by interpolationE, 1, Hp+1 2) Envor Hyeo With At
by interpolationE, 1, Hp+1, 3)
E

: 3 i
Env2 Hnioo Enva Hies s Hineg With 2At;,) Enva Hieg With Aty

by interpolationE, 3, Hp.3 4) Envar Hpea With At

5) 5) E. .o HogWith 20t | 2 Envs, iy With At
Epvg Hyeg With 4At -

by interpolationE, .5, Hp+s 6) Enve Hpvg With At
by interpolationE,,s, Hp.s, 7)
E

. 7 ;
Enve: Hnter Envzs Hier negr Hineg With 2Aty;,) Ene7, Hiez With Aty

by interpolationE, 7, Hy.7 8) Envg Hipeg With At

Figure 7.1: Order of calculation in elements ofatiént classes.

In the general case, starting from time 0, the fields in elemerd should be calculated if
nis a multiple od“®. If so, the fields are calculatedrat d°®© from the values at time and

using time stenc(e)Atmm, then at any intermediate time points betweamdn +d® through
interpolation. This procedure conforms to the oferalculation described above.

Figures 7.2 and 7.3 present a comparison betweecotinputation time using a single
time step and using adaptive time steps. The twblepms analyzed were the same as in the
previous chapter, cavity and waveguide, but usifigrént ranges of element sizes. As expected,
the reduction in computation time increases withrditio between largest and smallest element

sizes. The error level is not significantly changeth adaptive time steps, only slightly lower.

~wsingle time step o+osingle time step
—&—adaptive time steps —e—adaptive time steps

-

computation time ()
relative error
3
L

WOU 1 1 1 1 L 1 1
1 2 5 10 20 50 1 2 5 10 20 50

element size ratio element size ratio

Figure 7.2: Results of the cavity simulation witlagtive time steps.

35

+---single time step ~oeesingle time step
—&—gdaptive time steps —&— adaptive time steps

[}
]
T

computation time (s)
relative error
3

C)A

. .
10 10" 10 10"
element size ratio element size ratio

Figure 7.3: Results of the waveguide simulatiorhwaitlaptive time steps.

7.2 Perfectly Matched Layer

As mentioned in Chapter 5, in problems where theraal boundary is not a conductor,
the field values at the boundary are not known. ABE estimates these values assuming that
the waves at the boundary are plane waves with aldmoidence. Thus, the ABC is only
accurate if the incident angles on the boundarganall. If the region of interest is kept small,
with boundaries near the sources and scattergs,imcident angles may occur, resulting in
undesired reflections from the boundary back toréiggon. Therefore, accurate and efficient
simulations of scattering problems require a bountlat creates no reflections, regardless of
the type of waves or incident angles.

One type of boundary that possesses such propeatikesst ideally, is thgerfectly
matched layer (PML), first proposed by Berenger in 1994 and egapin FDTD [9]. It has since
become one of the most popular methods to treatdaies in scattering problems. The PML is
not a simple boundary condition as the ABC, byt of varying unidirectional conductivity

that attenuates the incident waves without causfigctions.

7.2.1 Split-field formulation

The first form of the PML, developed by Berengsrcalled a split-field formulation,
because one of the fields in Maxwell's equationspié into two components. This formulation

is described below for the TM case [9]:

36

0E,, oH,

f—2 +gE = 7.2
3t < Ex ™ (7.2)
JE, oH

EFy-'-O—y Ey - ayx (73)
oH . 0

,ua—tX+Uny = —a—% (7.4)
oH oE,

Y 4+ *H =_Z 7.5

H— Yo, =— (7.5)

whereE, =E, +E,, 0, ando, are the electric conductivities in tkendy directions,

respectively, and’, anda; are the magnetic conductivities, also in eachctiva. The magnetic

conductivities are not physical, but they can bplamented in the fictitious PML material. The

conductivities are zero except in layers near gtereal boundaries of the region, such that
o, =0, =0in horizontal layers, and, = 0'; =0 in vertical layers, as shown in Figure 7.4 below.

These absorbing layers form the PML region. In nebshe region of interest, the conductivities

are all zero, and Equations (7.2—7.5) reduce todbelar Maxwell’s equations for the TM case.

4 0y# 0,0y #0,0,=0 =0

AT A
PML main region PML
0')(7é 010')(*‘_/:01‘/\ T 0')(7é O,O'X*7$O,
ay=cry*=0 O'XZO'X*:O'yZO'y*zo ay=cry*=0
T

L0, #0,0) #0,0,=0, =0

Figure 7.4: Conductivities in the PML regions.

The reflection factor of a plane wave incident arahsorbing layer is:
R(6) =¥ (7.6)
wheres iso, oro,, andd is the thickness of the layer. According to thipression, the layer

could be made extremely thin, as long as a highused, and the reflection factor can still be

37

arbitrarily small. However, Equation (7.6) assurtied the conductivity varies continuously
inside the layer, which is not true in a discredizegion where each element has constant
material parameters. In this case, the discontewiietween elements cause numerical
reflections, so in practice the absorbing layeusthinclude several elements to minimize these
discontinuities. Inside the layer, the conductestvary from zero, at the edge near the main

region of interest, to__, at the external boundary. A polynomial profile@smmonly used to

express the variation of the conductivities:
o(p) = AY
£) =0, 5 ,0<0 (7.7)

wherep is the distance to the external boundary, mrgdthe polynomial order. Usuallg,=2 is
enough to approximate a smooth variation [5].

The split-field formulation is useful to understathé PML idea, for its simplicity, but it
can only be easily implemented in methods usingsgsuch as FDTD, because the field
components are calculated separately. A differ@mhdilation is needed for methods based in

elements, as explained below.

7.2.2 Coordinate-stretching formulation

Another form of PML is derived with coordinate $tt@ng [10]. First, Maxwell’s

equations are written in frequency domain:

-iweE =0xH -0E (7.8)
iouH =0O%xE (7.9)
wherew is the angular frequency of the fields. Next, ¢bd is redefined with the following
expression:
0(XxA 0(yxA 0(zxA
axac L 0(xA) 1 o(yxA) 1 0(2xA) (7.10)

+ +
1+iw /w 0Xx I+iw, /w0y Hiw,/w 0z
wherew,, @, andw, are coordinate stretching variables that attenwatees, similarly t@, and

o, in the previous formulation. Applying the redefineurl to the Equation in (7.8),

38

o(H,2-H,9) 1 a(H,%x-H,2)

=i EX+EV+E 2=
|a)£(HTEYT ZZ) 1+iw,/w ox +1+ia)y/a) oy
1 0(H,9-H,% o
+1+iwz/w > 1 —g(ER+E,+E,2). (7.11)

The X component of (7.11) is:

—iwe 1+ﬂ (1+ﬂjEx :(1+iwzjaHz -]_+ﬂ ai_a- 1+ﬂ (Jﬂ-ﬂjEx
w w w) oy w) 0z w w

: E H
—|a)£EX+(a)y+wz)£Ex+a)ya)Z£ = =9 H, +w, l__lz 9 H, +w,—-
-iw oy -iw) 0z —-iw

E, E,
—U{Eﬁ(wwwz) Tt &JJ (7.12)

Then the equation can be returned to time domain:

OE, m_0 m)_0 ¢
£ 5 +(a)y+a)z)gEx+a)ya)Z£Ex —a—y(HZ+a)ZHZ) E(Hy-l-way)
~0E, _g(wy +a)z) EY —Ja)ya)zEf) (7.13)
where
0 @ oHY o
OB’ ¢ OB’ o OHy . oH7 (7.14)

o4 ot 7 ot Yoot ’
DefiningE, =E,_+ a)XEf), (7.13) can be written as:

{£%+a+£(a)y +a)z—a)x)} E, +[a(wy+a)z—a)x)+g(a)x —a)y)(a,x —CUZ)] ES)

@-0H. M, 715
9y 0z
Finally, the procedure can be repeated toythedz components, and similarly to Equation

(7.9). The result is [4]:

+ow,w,E

(£%+U+£PJI~E+(UP+£QE@+(JI:§E(2)+J:DXH (7.16)
(/J%ttu H+(uQR®Y =-0OxE (7.17)
where the auxiliary variablés, H, E?, E? andH® are defined by:
~ i 0 @ 0
E=E+WED F=H+wn® 9" _g 9" o OHT _\, (7.18)
ot ot ot

39

and the matrices P, Q and R are:

P= diag(a)y+a)z—a)X W, +w, - w, a)x+a)y—a)z) (7.19)
Q= diag{(a)X - a)y) (o, -~ w) (a)y - a)x) (a)y - a)z) (w,-w) (a)Z - a)y)] (7.20)
R= diag(a)ya)Z W, puxa)y) (7.21)

Wherediag(a b ,c) means a 3x3 matrix whose diagonal elementg,dr@andc, and whose off-
diagonal elements are zero.

In the derivation above, the souttwas omitted. Equations (7.16) and (7.17) reduce to
the original Maxwell's equations &, = w, = w, =0, and there should not be any sources inside
the PML region, sd was included only in the final result to give gete@quations applicable to
the whole region of interest.

The DGM procedure in Chapter 3 can be applied t6j7and (7.17) to transform it into
a pair of matrix equations. Equation (7.16) becames

218 =21 - v
_%[MER]{E(Z)}} ‘%{E} R0 (7.22)

&
where
Mepy = j PN, (N, dQ (7.23)
Megy = | QNg (N, dQ (7.24)
M, IJQRNE]. N, dQ. (7.25)

Similarly, Equation (7.17) becomes:

{ Hp =M,] {[S“]IE} - M J{1} - [Myo [{H (’)}} (7.26)

where

Mypy = j PN,, [N, dQ (7.27)
M, JQNH, N,; dQ. (7.28)

The auxiliary equations in (7.18) can be written as

2{E% ={8 -IMd Mal{E%) =18 (7.29)

40

E{E(Z)} :{E@)} (7.30)

ot
%{H(l)}:{H}—[MH]_l[MHW]{H(])}:{H} (7.31)
where
Mew = jQWNEj N, dQ (7.32)
My = jQWNH,. N, dQ . (7.33)

The matrices and vectdid, |, [S.]. {F:}.[M,].[S,] and{F,,} are the same as in the general
DGM derivation.
The matrices defined in (7.23-7.25), (7.27—7.28) @32—7.33) are further evaluated

below for the TM case. The basis functionsMyge= N z andN,, =N., andw, =0, so:

WN =(0,0,0, WN,, =(&3N, . @,N, .0

May; =0 (7.34)
|1
MHWij :ﬁ[(fwi,j + fv\n+1,j+1) (1+d|,j)_ f\M+1,j (1+5|,j+1)_ fwn j+1(1+5| j+ ;} (7-35)
where
fw; =whb, +wcc, (7.36)

PN =] 0,0{w, +@)N |, QNg =(0,0,@N), RNy =(0,0wsN)

Mg =\ +wy) Mg, Meg; = W0, Mg, Mgy = @,00, Mg (7.37)

PN,y =| (@, @) N, (@ - @) N, .0, QN =[@ (@ - @) N ., (@, -)N, 0]

Mupy = o] (fo * fr o) 0+ 0) = oy (144)~ fa (160 L)) (7:39)

where
fo; = (@ ~@)bb, +(@ - @) cc (7.39)
Mg :%[(fq,j + fQi+1,j+1) (1+5i,j)_ foiva (1+5.,j+1)— fo ,-+1(1+5i j+)] (7.40)

where
foi :a)x(a)x—a)y)hbj +@, (a)y—a)x)clcj. (7.41)

The variable%li}, {H},{E(l)}, {E(z)} and{H (1)} should be calculated first, with Equations (7.22),

(7.26) and (7.29-7.31), then their values can kel trs calculatéE} and{H}, with Equations

41

(7.29) and (7.31).

7.2.3 Numerical results

The coordinate-stretching formulation for the PMLDGM was implemented in a
computer program, which can be found in the Appentio compare the accuracy of the PML
and ABC, the first problem simulates a plane wanogdient on an external boundary, for several
incident angles. The coordinate-stretching varsbleandw, vary quadratically inside the
absorbing layer, from zero near the main regiomtefrest taw,,,, at the external boundary. To
create the plane wave, the adjacent field valuésret external boundaries of a rectangular

region are set to the field values of the incideave, and the PML covers the fourth external

boundary, as seen in Figure 7.5 below. The ABGsis applied at the fourth external boundary.

incident wave

incident

wave ABC

incident wave

Figure 7.5: Region for simulation of a plane waveén#?ML.

The relative error for several valuesssf w, . /w is presented in the first graph of Figure
7.6. The line fos =0 represents the simulation with only the ABC.Aacreases, the reflection
at high angles is reduced, showing the efficierfah® PML, but the reflection at low angles
increases because the discontinuities between eterage more pronounced wheis high. On

average, the lowest error for this problem is fowtdns = 0.2, represented by the solid line in

42

the graph. Moreover, the error can be further reduespecially for high angles of incidence, if
the PML includes more elements and is thicker caeppto the wavelength, as shown in the
second graph of Figure 7.6. These results showshted@ML combined with the ABC provides
a better accuracy than if only the ABC is used.

It is important to notice that this relative erreobtained by comparing the values from
the simulation with the theoretical field valuesagblane wave, so the error is due to the
discretization and reflection combined.

Incident wave: planar, 300MHz, PML: B layers, 0.5m, quadratic Incident wave: planar, B00MHz, PML: 10 layers, 0.5m, quadratic
0040 T T T : T 0.040 : T T ' !
e g=0) s g=()
0035k s=01 - 00354 —*—5=02
—+—5=02]
ctees=05] |
0.030¢| Hoam 0.030

00251 00251

0.020 0.020¢

relative error
relative error

0015L 0015}

0.0M0F 0010F

0.005F

0.005F

O'OOOO” 10 20 30 40 50 50 0 DE]OO 10 20 a0 A0 50 60
incident angle (%) incident angle (%)

Figure 7.6: Relative error of the PML for a planave.

The second problem simulates a current sourceeatethter of the region, surrounded by
the PML. Since the method used is in the time dapthe source is represented by a causal
function, so there is no simple analytical solutionthis problem. However, there is a way to
evaluate the accuracy of the PML by comparing tinauations. First, the current source
radiates in a very large region, such that duriveggeriod considered by the simulation the waves
propagate to the external boundary but there i€notigh time for them to be reflected. The
field values are stored and considered as theemsfervalues. Next, the region is truncated and
the PML covers the external boundary. The sourdetes, the waves are reflected, and this
reflection is calculated by subtracting the refeeemalues of the first simulation from the field
values of the second simulation. This proceduikuistrated in Figure 7.7.

Table 7.1 presents the results of the simulatiaefadiation from a current source,
using several absorbers at the external boundagyvalues in the table do not include the error

43

Figure 7.7: Extended and truncated regions.

Table 7.1: Results of the simulation of the radiafirom a current source.

a) f =300 MHz, PML thickness 0.5 m, los\= 0.15, highs = 2, quadratic
Relative error

Absorber average near PML Reflection coefficient
PML with PEC, lows 36.29% 55.96% 30.37%
PML with PEC, highs 6.61% 8.45% 14.69%
ABC only 1.48% 2.55% 7.58%
PML with ABC, lows 1.06% 1.42% 2.72%
PML(low s) x ABC 0.54% 1.43% 2.30%
b) f=300 MHz, PML thickness 1 m, log«= 0.07, highs = 1.5, quadratic
Absorber Relative error Reflection coefficient
average = near PML
PML with PEC, lows 14.60% 31.44% 22.34%
PML with PEC, highs 1.61% 2.32% 4.15%
ABC only 0.58% 1.05% 4.36%
PML with ABC, lows 0.55% 0.72% 1.91%
PML(low s) x ABC 0.09% 0.33% 0.97%

due to the discretization, only the reflectionceithe reference and calculated values are both
obtained with simulations, as explained above. fBflection varies in time, as does the incident
wave, so relative error shown is the time averadie the reflection coefficient is obtained
from the reflection peaks. It is expected thatréfkection coefficient of the PML combined with
the ABC will approximately be the product of twdleetion coefficients: of the PML with a

PEC at the external boundary, and of only the ABClong as the PML with PEC and the PML

44

with ABC use the same= w,,,./«w. This expectation is verified in the table. Aglie previous
example, the best accuracy occurs when the PMansmed with the ABC.

The value of used in the PML with ABC is optimized to providestlowest reflection.
The optimals for the PML with PEC is higher, which explains thigh reflection when the same
s as for the PML with ABC is used. The reflectioreffewient of the PML with PEC using the
higher optimak is also shown in the table for comparison.

A more complex problem is the scattering of a plamage due to a conducting cylinder.
To simulate this problem, the region around thendgr should be surrounded by the PML, but
this arrangement prevents the use of the extemaldaries to create the incident plane wave.
Therefore, a fictitious boundary is created betwienPML and the cylinder, and the plane wave
is created there [11]. This fictitious boundargadled a Huygens boundary because it invokes
Huygens’s principle to create the wave insideigufe 7.8 below shows the region with the

scatterer, the PML and the Huygens boundary.

Figure 7.8: Huygens boundary and regions in aegatf problem.
The plane wave should be confined in the innergghe region surrounded by the

Huygens boundary, and only the scattered waveddipass into the outer region. To implement

this restriction in DGM, the adjacent fields ofralents with an edge at the Huygens boundary

45

must be modified when calculating the numericak.fleor an element in the inner region, the
field values of the plane wave are added to adjdeglds from the outer region. Conversely, for
an element in the outer region, the field valuethefplane wave are subtracted from the adjacent
fields from the inner region.

The figures below show the simulation of this sty problem. Figure 7.9 presents the
electric field as calculated, and the Huygens baunis clearly visible. Figures 7.10 and 7.11
show the scattered and total fields, respectitbbse two figures were generated by adding or

subtracting the field values of the plane wavehmauter or inner regions.

Figure 7.9: Electric field as calculated in scatighby a conducting cylinder.

46

Figure 7.10: Electric field scattered by a concugtylinder.

{t,

Figure 7.11: Total electric field around a condugtcylinder.

To evaluate the accuracy, the same procedure @réwous simulation can be applied,
namely using a large region and then truncatingable 7.2 presents the relative error of the
numerical results, again showing that the PML corabdiwith the ABC has a better accuracy

47

than the ABC alone. In addition, the error decreagiéh a higher level of discretization, as

expected.

Table 7.2: Relative error of the scattering simalat

Elements per ‘ Relative error
wavelength ABConly | PML with ABC
16.8 5.68% 5.24%
225 3.88% 3.42%
28.3 3.02% 2.47%

48

8. CONCLUSION

Several numerical methods exist for the solutiodifférential or integral equations in
electromagnetic problems. Finite difference in tidoenain (FDTD) approximates derivatives
and usually enables very fast simulations, buttieéhod is not appropriate for an arbitrary
geometry if a high accuracy is desired. The fieleanent metod (FEM), on the other hand, uses
elements and basis functions, is more flexible ndigg the geometry of the problem and gives
more accurate results, but it generally involvesittversion of large matrices and therefore
consumes a great amount of time and memory.

The discontinuous Galerkin method (DGM) presentetthis work attempts to reduce the
time and memory requirements of FEM by calculathmgfields in each element separately, thus
employing much smaller matrices, and accountingHferdiscontinuities across element
boundaries through numerical fluxes. The completesdtion given in Chapters 3 and 4, along
with the detailed implementation procedures in G&ap, allow the generation of a computer
code to solve any electromagnetic problem with D@Wapter 6 shows that the derivation and
implementation are valid and produce acceptabldteeg-or the linear basis functions used in
the examples, it is found that the best time diszagon scheme among those considered is the
second-order Runge-Kutta method, for its successduacing the error, and because the fourth-
order method does not provide any further reducfitrve stability condition is also analyzed and
verified.

Nevertheless, the are some limitations of DGM. Stability condition forces a
dependence of the time step on the size of smallestent, so using the same time step for every
element is very inefficient when the problem regsia large variation in element sizes. One
solution that reduces this inefficiency is the ddeptime steps, detailed in Chapter 7. The
solution is successful, but the ideal case of uiecbest time step for each element is not
practical, so the stability condition limits thdiefency of DGM.

Another limitation is the requirement of an absongoboundary in scattering problems.
Two main kinds of absorbers are analyzed—the absptmundary condition (ABC) and the
perfectly matched layer (PML)—as well as their camakion. The original PML formulation is
not suitable for methods based on elements, shvanfarmulation is derived. It is also shown,
through several examples, that the PML combined thié¢ ABC can achieve better accuracy
than the PML or ABC alone. However, the PML extetiidscomputational domain and thus the

49

decrease in the error is compensated by an inchedise time and memory used.

All simulations done in this work used linear bdsisctions. Although the error is shown
to decrease indefinitely with element sizes, theveogence rate may not be fast enough for
simulations requiring a high level of accuracy. &sen these results, it appears that the greatest
advantage of DGM is indeed its reduction of matriders. Therefore, DGM seems more
suitable for simulations requiring fast results enhaccuracy is not as important.

Other works have been successful in obtaining keewerror levels with DGM by
applying higher-order basis functions [12—-14], this approach increases the matrix orders and
thus requires more computation time and memoryreutork may concentrate on the

comparison of DGM and other numerical methods,naigg accuracy and efficiency.

50

REFERENCES

[1] W. H. Reed and T. R. Hill, “Triangular mesh medls for the neutron transport
equation,” Technical Report LA-UR-73-479, Los Alasridational Laboratory, 1973.

[2] J. S. Hesthaven and T. Warburtdndal Discontinuous Galerkin Methods. New York,
NY: Springer, 2008.

[3] E. Montseny, S. Pernet, X. Ferrieres, and G.€bgHDissipative terms and local time-
stepping improvements in a spatial high order adisooous Galerkin scheme for the
time-domain Maxwell’'s equationsJournal of Computational Physics, vol. 227, no. 14,
pp. 6795-6820, July 2008.

[4] T. Xiao and Q. H. Liu, “Three-dimensional unsttured-grid discontinuous Galerkin
method for Maxwell’'s equations with well-posed getfy matched layer Microwave
and Optical Technology Letters, vol. 46, no. 5, Sep. 2005.

[5] J.-M. Jin,Electromagnetic Field Computation, ECE 540 Course Notes, University of
lllinois at Urbana-Champaign, 2008.

[6] J.-M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. New York, NY:
Wiley-Interscience, 2002.

[7] N. Godel, S. Lange, and M. Clemens, “Time dondistontinuous Galerkin method with
efficient modelling of boundary conditions for sikations of electromagnetic wave
propagation,” inAsia-Pacific Symposium on Electromagnetic Compatibility and 19th
International Zurich Symposium on Electromagnetic Compatibility, May 2008, pp. 594-
597.

[8] C. A. Balanis,Advanced Engineering Electromagnetics. New York, NY: Wiley, 1989.

51

[9] J.-P. Berenger, “A perfectly matched layer floe &bsorption of electromagnetic waves,”
Journal of Computational Physics, vol. 114, no. 2, pp. 185-200, Oct. 1994.

[10] G.-X. Fan and Q. H. Liu, “A well-posed PML alsbing boundary condition for lossy
media,” inlEEE Antennas and Propagation Society International Symposium, July 2001,
vol. 3, pp. 2-5.

[11] W.-J. Yao and Y.-X. Wang, “An equivalence piiple-based plane wave excitation in
time/envelope-domain finite-element analysiEEE Antennas and Wireless
Propagation Letters, vol. 2, pp. 337-340, 2003.

[12] J. S. Hesthaven and T. Warburton, “Nodal higtteo methods on unstructured grids,”
Journal of Computational Physics, vol. 181, no. 1, pp. 186-221, Sep. 2002.

[13] J.S. Hesthaven and T. Warburton, “High-ordaruasate methods for time-domain
electromagnetics,Computer Modeling in Engineering and Sciences, vol. 5, no. 5, pp.
395-407, 2004.

[14] S.D. Gedney, C. Luo, J. A. Roden, R. D. Crawfd. Guernsey, J. A. Miller, and E. W.

Lucas, “A discontinuous Galerkin finite element émomain method with PML,” in
|EEE Antennas and Propagation Society International Symposium, July 2008, pp. 1-4.

52

APPENDIX: MATLAB CODE

This appendix provides some of the Matlab coded tsgenerate the numerical results
of the previous chapters. The codes listed bel@iarcavity and waveguide problems, cavity
with adaptive time steps, plane wave, current sguand scattering by a conducting cylinder.

The last three codes include an implementatioh@BRML.

Cavity problem

%p: matrix of points (nodes)

%t: matrix of triangles (elements)

%e: matrix of points at the boundaries

% tic;

%2D, TM

ne=size(t,2); %onumber of elements
Me=zeros(ne,3,3); Se=Me; Mh=Me; Sh=Me;
b=zeros(ne,3); c=b; I=b;

A=zeros(ne,1); f=zeros(3,3);

method=1; scale=1;

np=size(p,2); Y%onumber of nodes
opposite=zeros(np,np,2);

for el=1:ne
fori=1:3
for j=1:3
if i~=
if opposite(t(i,el),t(j,el),1)==0
opposite(t(i,el),t(,el),1)=el;
else
opposite(t(i,el),t(j,el),2)=el;
end;
end;
end;
end;
end;
for el=1:ne

b(el,1)=p(2,t(2,el))-p(2,t(3,el));
b(el,2)=p(2,t(3,el))-p(2,t(1,el));
b(el,3)=p(2,t(1,el))-p(2,t(2,el));
c(el,1)=p(1,t(3,el))-p(1,t(2,el));
c(el,2)=p(1,t(1,el))-p(1,t(3,el));
c(el,3)=p(1,t(2,el))-p(1,t(1,el));
[(el,1)=sqrt(c(el,3)*2+b(el,3)"2);
I(el,2)=sqgrt(c(el,1)"2+b(el,1)"2);
[(el,3)=sqrt(c(el,2)*2+b(el,2)"2);
A(el)=(b(el,1)*c(el,2)-b(el,2)*c(el,1))/2;
fori=1:3
for j=1:3
Me(el,i,j)=A(el)/12*(1+(i==j));
Se(el,i,j)=I(el,j)/3;
f(i,j)=b(el,i)*b(el,j)+c(el,i)*c(el,j);
end;
end;

53

fori=1:3
for j=1:3
temp=(f(i+1-3*(i+1>3),j+1-3*(j+1>3))+f(
temp=temp-f(i+1-3*(i+1>3),))*(1+(i==j+1
(+1>3))*(1+(i==j+2-3*(j+2>3)));
Mh(el,i,j)=I(el,i)*I(el,j)/(48*A(el))*t
Sh(el,i,j)=I(el,i)/6*(3*(i==j+1-3*(+1>
end;
end;
end;
Imin=min(min(l));

vCc=299792458;

mu=pi*4e-7;

eps=1/(mu*vc"2);%free space
eta=sqrt(mu/eps);
ky=1*pi/(max(p(2,:))-min(p(2,:)));
kx=1*pi/(max(p(1,:))-min(p(1,:)));
k=sqrt(kx"2+ky"2);

freq=vc*k/(2*pi);

snumber=1;

dt=Imin/vc/4.5;

Nt=floor(1/freq/dt); %number of points of t
time=0:dt;dt*Nt; time=time(’);

xd=p(1,:); yd=p(2,:); Ed=zeros(np,size(time,1));
xd=xd(:);yd=yd(:);

tri=delaunay(xd,yd);

clear scenes;

%initial E and H
E=zeros(ne,3,size(time,1));
H=zeros(ne,3,size(time,1));
for el=1:ne
fori=1:3
x=p(1,t(i,el))-min(p(1,:));
y=p(2,t(i,el))-min(p(2,2));
nt=1;
%for nt=1:size(time,1)
E(el,i,nt)=1*sin(2*pi*freq*time(nt))*sin(kx
%end;
x=p(1,t(i+2-3*(i+2>3),el))-2*A(el)*b(el,i+2-3*(i+2>
2)-min(p(1,.));
y=p(2,t(i+2-3*(i+2>3),el))-2*A(el)*c(el,i+2
min(p(2,:));
nt=1,
%for nt=1:size(time,1)
Hy=-1*kx/(k*eta)*sin(ky*y)*cos(2*pi*freq*ti
Hx=1*(k"2-kx"2)/(ky*k*eta)*cos(ky*y)*cos(2*

(kx*x);
H(el,i,nt)=Hx*c(el,i+2-3*(i+2>3))/I(el,i)-H
(eli);
%end;
end;
end;

for nt=1:size(time,1)-1
%plot
nt
Edpoints=zeros(np,1);
for el=1:ne
fori=1:3

54

L)*(A+(i==)));
-3%(j+1>3)))(i,j+1-3*

emp;

3))-1);

*X)*sin(ky*y);
3))/(I(el,i)
-3*(i+2>3))/(I(el,i)"2)-

me(nt))*cos(kx*x);
pi*freg*time(nt))*sin

y*b(el,i+2-3*(+2>3))/l

%
%
%
%
%

Ed(t(i,el),nt)=Ed(t(i,el),nt)+E(el,i,nt);
Edpoints(t(i,el))=Edpoints(t(i,el))+1;
end;
end;
for el=1:np
Ed(el,nt)=Ed(el,nt)/Edpoints(el);
end;
figure(2);
trisurf(tri,xd,yd,Ed(:,nt));%-Ead(:,nt));
xlim([min(p(1,:)) max(p(1,:))]); ylim([min(p(2,:)) max(p(2,:))]);
zlim([-2 2]); caxis([-2 2]); %shading interp;
axis square; view([0 0]);
scenes(nt)=getframe;
%calculate
for el=1:ne

Met=zeros(3,3); Mht=Met; Set=Met; Sht=Met;
Et=zeros(3,1); Ht=Et; Fe=Et; Fh=Et;
fori=1:3

Et(i)=E(el,i,nt);

Ht(i)=H(el,i,nt);

for j=1:3
Met(i,j)=Me(el,i,j);
Mht(i,j)=Mh(el,i,j);
Set(i,j)=Se(el,i,j);
Sht(i,j)=Sh(el,i,);

end;

end;
Met=inv(Met); Mht=inv(Mht);
for i=1:3

for j=1:3
op=opposite(t(j,el),t(j+1-3*(+1>3),el),1);
if op==el
op=opposite(t(j,el),t(j+1-3*(+1>3),el),2);
end;
if op==0
EopO=-Et());
Eopl=-Et(j+1-3*(+1>3));
Hop=-Ht());
else
opj=0;

if opposite(t(1,0p),t(2,0p),1)==el || opposite(

(1,0p),t(2,0p),2)==¢l

opj=1; end;
if opposite(t(2,0p),t(3,0p),1)==el || opposite(

(2,0p),t(3,0p),2)==¢l

opj=2; end;
if opposite(t(3,0p),t(1,0p),1)==el || opposite(

(3,0p),t(1,0p),2)==el

opj=3; end;
Hop=H(op,opj,nt);
EopO=E(op,opj+1-3*(opj+1>3),nt);
Eopl=E(op,opj,nt);

d;
temp=eta*(-elfllop—Ht(j))*3+(Eop0—Et(j))*(1+(i==)));
temp=temp+(Eopl-Et(j+1-3*(j+1>3)))* (1+(i==j+1-3*(j+1>3)));
temp=temp*I(el,j)/6*(1-(i==j+2-3*(j +2>3)))/(etateta);

Fe(i)=Fe(i)+temp;
temp=(-Hop-Ht(j))*2;

temp=temp+(1/eta)*(EopO-Et(j)+Eop1l- Et(j+1-3*(j+1>3)));
Fh(i)=Fh(i)+temp*I(el,j)/2*(i==)/(l/eta+1/eta);
end;

55

end;
%FDTD
Erka=1/eps*Met*(Set*Ht+Fe);
Hrka=1/mu*Mht*(-Sht*Et+Fh);
E(el,:,nt+1)=(Et+Erka*dt)";
H(el,:,nt+1)=(Ht+Hrka*dt)";
%second-order Runge-Kutta method

% Erkb=1/eps*Met*(Set*(Ht+Hrka*dt/2)+Fe);
% Hrkb=1/mu*Mht*(-Sht*(Et+Erka*dt/2)+Fh);
% E(el,:,nt+1)=(Et+Erkb*dt)";
% H(el,:,nt+1)=(Ht+Hrkb*dt)';
%fourth order
% Erkc=1/eps*Met*(Set*(Ht+Hrkb*dt/2)+Fe);
% Hrkc=1/mu*Mht*(-Sht*(Et+Erkb*dt/2)+Fh);
% Erkd=1/eps*Met*(Set*(Ht+Hrkc*dt)+Fe);
% Hrkd=1/mu*Mht*(-Sht*(Et+Erkc*dt)+Fh);
% E(el,:,nt+1)=(Et+(Erka+2*Erkb+2*Erkc+Erkd)*dt/6)'
% H(el,:,nt+1)=(Ht+(Hrka+2*Hrkb+2*Hrkc+Hrkd)*dt/6)'
end;
end;

% comptime(method,scale)=toc;

56

Waveguide problem

%p: matrix of points (nodes)

%t: matrix of triangles (elements)

%e: matrix of points at the boundaries

tic;

%2D, TM

ne=size(t,2); %number of elements
Me=zeros(ne,3,3); Se=Me; Mh=Me; Sh=Me;
b=zeros(ne,3); c=b; I=b;

A=zeros(ne,1); f=zeros(3,3);

method=2; scale=3;

np=size(p,2); %onumber of nodes
opposite=zeros(np,np,2);

for el=1:ne
fori=1:3
for j=1:3
if i~=
if opposite(t(i,el),t(j,el),1)==
opposite(t(i,el),t(j,el),1)=el;
else
opposite(t(i,el),t(j,el),2)=el;
end;
end;
end;
end;
end;

xmin=min(p(1,:));
ymin=min(p(2,:));

%boundary
bpointsh=[];
ecorrection=(e(5,size(e,2))>4);
for el=1:size(e,2)
if e(5,el)==4-ecorrection
bpointsh=[bpointsh [e(1,el);e(2,el)]];

end;
end;
for el=1:ne
for i=1:3
for j=1:size(bpointsh,2)
if t(i,el)==bpointsh(2,j) && t(i+1-3*(i+1>3),el)==b
(1))
opposite(t(i,el),t(i+1-3*(i+1>3),el),2)=-1;
opposite(t(i+1-3*(i+1>3),el),i(i,el),2)=-1;
end;
end;
end;
end;
bpointsh=[];

ecorrection=(e(5,size(e,2))>4);
for el=1:size(e,2)
if e(5,el)==2-ecorrection
bpointsh=[bpointsh [e(1,el);e(2,el)]];

end;
end;
for el=1:ne

for i=1:3

for j=1:size(bpointsh,2)

57

pointsh

if t(i,el)==bpointsh(2,j) && t(i+1-3*(+1>3),el)==b

opposite(t(i,el),t(i+1-3*(i+1>3),el),2)=-2;
opposite(t(i+1-3*(i+1>3),el),t(i,el),2)=-2;

(1.)
end;
end;
end;
end;
for el=1:ne

b(el,1)=p(2,1(2,el))-p(2,t(3,el));
b(el,2)=p(2,1(3,el))-p(2,t(1,el));
b(el,3)=p(2,t(1,el))-p(2,t(2,el));
c(el,1)=p(1,t(3,el))-p(1,t(2,el));
c(el,2)=p(1,t(1,el))-p(1,t(3,el));
c(el,3)=p(1,t(2,el))-p(1,t(1,el));
I(el,1)=sqrt(c(el,3)*2+b(el,3)"2);
I(el,2)=sqrt(c(el,1)"2+b(el,1)"2);
I(el,3)=sqrt(c(el,2)"2+b(el,2)"2);
A(el)=(b(el,1)*c(el,2)-b(el,2)*c(el,1))/2;
for i=1:3
for j=1:3
Me(el,i,j)=A(el)/12*(1+(i==j));
Se(el,i,j)=I(el,j)/3;
f(i,j)=b(el,i)*b(el,j)+c(el,i)*c(el,j);
end;
end;
for i=1:3
for j=1:3
temp=(f(i+1-3*(i+1>3),j+1-3*(j+1>3))+f(
temp=temp-f(i+1-3*(i+1>3),))*(1+(i==j+1
(+1>3))*(1+(i==j+2-3%(j+2>3)));
Mh(el,i,j)=I(el,i)*I(el,j)/(48*A(el))*t
Sh(el,i,j)=I(el,i)/6*(3*(i==j+1-3*(+1>
end;
end;
end;
Imin=min(min(l));

vCc=299792458;

mu=pi*4e-7;

eps=1/(mu*vc"2);%free space
eta=sqrt(mu/eps);

freq=5e8;

k=2*pi*freq/vc;

ky=1*pi/(max(p(2,:))-ymin);

kx=sqrt(k"2-ky"2);

snumber=2;

dt=Imin/vc/6;

Nt=floor(1/freq/dt); %number of points of t
time=0:dt:dt*Nt; time=time(’);

xd=p(1,:); yd=p(2,:); Ed=zeros(np,size(time,1));
xd=xd(:);yd=yd(:);

tri=delaunay(xd,yd);

clear scenes;

%initial E and H
E=zeros(ne,3,size(time,1));
H=zeros(ne,3,size(time,1));
for el=1:ne

fori=1:3

58

L)*(A+(i==)));
-3%(j+1>3)))f(i,j+1-3*

emp;

3))-1);

pointsh

x=p(1,t(i,el))-xmin;

y=p(2,t(i,el))-ymin;

nt=1;

%for nt=1:size(time,1)
E(el,i,nt)=1*sin(2*pi*freq*time(nt)-kx*x)*s

%end;

x=p(1,t(i+2-3*(i+2>3),el))-2*A(el)*b(el,i+2-3*(i+2>

A2)-xmin;

y=p(2,t(i+2-3*(i+2>3),el))-2*A(el)*c(el,i+2

ymin;

nt=1,

%for nt=1:size(time,1)
Hy=-1*kx/(k*eta)*sin(ky*y)*sin(2*pi*freq*ti
Hx=1*ky/(k*eta)*cos(ky*y)*cos(2*pi*freq*tim
H(el,i,nt)=Hx*c(el,i+2-3*(i+2>3))/I(el,i)-H

(el,i);

end;

%end;
end;

for nt=1:size(time,1)-1

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%plot
nt
Edpoints=zeros(np,1);
for el=1:ne
fori=1:3
Ed(t(i,el),nt)=Ed(t(i,el),nt)+E(el,i,nt);
Edpoints(t(i,el))=Edpoints(t(i,el))+1;
end;
end;
for el=1:np
Ed(el,nt)=Ed(el,nt)/Edpoints(el);
end;
figure(2);

trisurf(tri,xd,yd,Ed(:,nt));%-Ead(:,nt));
xlim([min(p(L,2)) max(p(1,:))]); ylim(min(p(2,:)
zlim([-2 2]); caxis([-2 2]); %shading interp;
axis square; view([0 0]);
scenes(nt)=getframe;
%calculate
for el=1:ne
Met=zeros(3,3); Mht=Met; Set=Met; Sht=Met;
Et=zeros(3,1); Ht=Et; Fe=Et; Fh=Et;
for i=1:3
Et(i)=E(el,i,nt);
Ht(i)=H(el,i,nt);
for j=1:3
Met(i,j)=Me(el,i,j);
Mht(i,j)=Mh(el,ij);
Set(i,j)=Se(el,i,j);
Sht(i,j)=Sh(el,i,j);

end;
end;
Met=inv(Met); Mht=inv(Mht);
for i=1:3
for j=1:3
op=opposite(t(j,el),t(j+1-3*(+1>3),el),1);
if op==el
op=opposite(t(j,el),t(j+1-3*(+1>3),el),2);
end;
if op==

59

in(ky*y);
3)/((el,i)
-3*(i+2>3))/(I(el i) 2)-

me(nt)-kx*x);
e(nt)-kx*x);
y*b(el,i+2-3*(i+2>3))/I

) max(p(2,:))));

EopO=-Et());
Eopl=-Et(j+1-3*(+1>3));
Hop=-Ht(j);
else
if op==-1
x=p(1,t(j,el))-xmin;
yo:p(zvt(J!el))'ymln:
y1=p(2,t(j+1-3*(j+1>3),el))-ymin;
y2=p(2,t(j+2-3*(j+2>3),el))-ymin;
EopO=1*sin(2*pi*freg*time(nt)-kx*x)*sin(ky*y0);
Eopl=1*sin(2*pi*freq*time(nt)-kx*x)*sin(ky*y1);
Hop=(-1+2*(y1>y0))*kx/(k*eta)*sin(2*pi*freq*time
(nt)-kx*x)*sin(ky*y2);

else
if op==-
EopO=Et());
Eopl=Et(j+1-3*(j+1>3));
Hop=-Ht(j);
else
opj=0;

if opposite(t(1,0p),t(2,0p),1)==el || opposite(
(1,0p),t(2,0p),2)==el
opj=1; end;
if opposite(t(2,0p),t(3,0p),1)==el || opposite(
(2,0p),t(3,0p),2)==el
opj=2; end;
if opposite(t(3,0p),t(1,0p),1)==el || opposite(
(3,0p),t(1,0p),2)==el
opj=3; end;
Hop=H(op,opj,nt);
EopO=E(op,opj+1-3*(opj+1>3),nt);
Eopl=E(op,opj,nt);

end;

end;

end;

temp=eta*(-Hop-Ht(j))*3+(Eop0-Et(j))*(1+(i==j));
temp=temp+(Eop1-Et(j+1-3*(j+1>3)))* (1+(i==j+1-3*(j+1>3)));
temp=temp*I(el,j)/6*(1-(i==j+2-3*(j +2>3)))/(etateta);

Fe(i)=Fe(i)+temp;
temp=(-Hop-Ht(j))*2;

temp=temp+(1/eta)*(EopO-Et(j)+Eop1l- Et(j+1-3*(j+1>3)));
Fh(i)=Fh(i)+temp*I(el,j)/2*(i==j)/(l/eta+1/eta);
end;end,;
%FDTD

Erka=1/eps*Met*(Set*Ht+Fe);
Hrka=1/mu*Mht*(-Sht*Et+Fh);
% E(el,:,nt+1)=(Et+Erka*dt)’;
% H(el,:,nt+1)=(Ht+Hrka*dt)';
%second-order Runge-Kutta method
Erkb=1/eps*Met*(Set*(Ht+Hrka*dt/2)+Fe);
Hrkb=1/mu*Mht*(-Sht*(Et+Erka*dt/2)+Fh);
E(el,:,nt+1)=(Et+Erkb*dt)";
H(el,:,nt+1)=(Ht+Hrkb*dt)";
%fourth order

% Erkc=1/eps*Met*(Set*(Ht+Hrkb*dt/2)+Fe);

% Hrkc=1/mu*Mht*(-Sht*(Et+Erkb*dt/2)+Fh);

% Erkd=1/eps*Met*(Set*(Ht+Hrkc*dt)+Fe);

% Hrkd=1/mu*Mht*(-Sht*(Et+Erkc*dt)+Fh);

% E(el,:,nt+1)=(Et+(Erka+2*Erkb+2*Erkc+Erkd)*dt/6)'
% H(el,:,nt+1)=(Ht+(Hrka+2*Hrkb+2*Hrkc+Hrkd)*dt/6)'

end;end;comptime(method,scale)=toc;

60

Cavity with adaptive time steps

%p: matrix of points (nodes)

%t: matrix of triangles (elements)

%e: matrix of points at the boundaries

tic;

%2D, TM

ne=size(t,2); %number of elements
Me=zeros(ne,3,3); Se=Me; Mh=Me; Sh=Me;
b=zeros(ne,3); c=b; I=b;

A=zeros(ne,1); class=A; f=zeros(3,3);

np=size(p,2); %onumber of nodes
opposite=zeros(np,np,2);

for el=1:ne
for i=1:3
for j=1:3
if i~=j
if opposite(t(i,el),t(j,el),1)==
opposite(t(i,el),t(j,el),1)=el;
else
opposite(t(i,el),t(j,el),2)=el;
end;
end;
end;
end;
end;
for el=1:ne

b(el,1)=p(2,1(2,el))-p(2,t(3,el));
b(el,2)=p(2,1(3,el))-p(2,t(1,el));
b(el,3)=p(2,t(1,el))-p(2,t(2,el));
c(el,1)=p(1,t(3,el))-p(1,t(2,el));
c(el,2)=p(1,t(1,el))-p(1,t(3,el));
c(el,3)=p(1,t(2,el))-p(1,t(1,el));
[(el,1)=sqrt(c(el,3)*2+b(el,3)"2);
I(el,2)=sqrt(c(el,1)"2+b(el,1)"2);
I(el,3)=sqrt(c(el,2)"2+b(el,2)"2);
A(el)=(b(el,1)*c(el,2)-b(el,2)*c(el,1))/2;
for i=1:3
for j=1:3
Me(el,i,j)=A(el)/12*(1+(i==j));
Se(el,i,j)=I(el,j)/3;
f(i,j)=b(el,i)*b(el,j)+c(el,i)*c(el,j);
end;
end;
for i=1:3
for j=1:3
temp=(f(i+1-3*(i+1>3),j+1-3*(j+1>3))+f(
temp=temp-f(i+1-3*(i+1>3),))*(1+(i==j+1
(+1>3))*(1+(i==j+2-3%(j+2>3)));
Mh(el,i,j)=I(el,i)*I(el,j)/(48*A(el))*t
Sh(el,i,j)=I(el,i)/6*(3*(i==j+1-3*(+1>
end;
end;
end;
Imin=min(min(l));

vCc=299792458;

mu=pi*4e-7;
eps=1/(mu*vc"2);%free space

61

L)*(1+(==));
-3*(j+1>3)))-f(i,j+1-3*

emp;
3))-1);

eta=sqrt(mu/eps);

ky=1*pi/(max(p(2,.))-min(p(2,:));

kx=1*pi/(max(p(1,:))-min(p(1,:)));

k=sqrt(kx*2+ky"2);

freq=vc*k/(2*pi);

snumber=4;

division=2;

dt=Imin/vc/6;

Nt=floor(1/freg/dt); %number of points of t

time=0:dt:dt*Nt; time=time(:);

xd=p(1,:); yd=p(2,:); Ed=zeros(np,size(time,1));

xd=xd(:);yd=yd(:);

tri=delaunay(xd,yd);

clear scenes;

for el=1:ne
class(el)=floor(log(min(I(el,:))/Imin)/log(division

end;

%initial E and H
E=zeros(ne,3,size(time,1));
H=zeros(ne,3,size(time,1));
for el=1:ne
fori=1:3
x=p(1,t(i,el))-min(p(1,:));
y=p(2,t(i,el))-min(p(2,:));
nt=1;
%for nt=1:size(time,1)
E(el,i,nt)=1*sin(2*pi*freq*time(nt))*sin(kx
%end;
x=p(1,t(i+2-3*(i+2>3),el))-2*A(el)*b(el,i+2-3*(i+2>
2)-min(p(1,:));
y=p(2,t(i+2-3*(i+2>3),el))-2*A(el)*c(el,i+2
min(p(2,:));
nt=1;
%for nt=1:size(time,1)
Hy=-1*kx/(k*eta)*sin(ky*y)*cos(2*pi*freq*ti
Hx=1*(k"2-kx"2)/(ky*k*eta)*cos(ky*y)*cos(2*

(kx*x);
H(el,i,nt)=Hx*c(el,i+2-3*(i+2>3))/I(el,i)-H
(el,i);
%end;
end;
end;

for nt=1:size(time,1)-1

%plot
% nt
% Edpoints=zeros(np,1);
% for el=1:ne
% fori=1:3
% Ed(t(i,el),nt)=Ed(t(i,el),nt)+E(el,i,nt);
% Edpoints(t(i,el))=Edpoints(t(i,el))+1;
% end;
% end;
% for el=1:np
% Ed(el,nt)=Ed(el,nt)/Edpoints(el);
% end;

% figure(2);

% trisurf(tri,xd,yd,Ed(:,nt));%-Ead(:,nt));

% xiim(Imin(p(,:)) max(p(L,))); ylim([min(p(2.)
% zlim([-2 2]); caxis([-2 2]); %shading interp;

62

B

*x)*sin(ky*y);
3)/(el,i)
-3%(i+2>3))/(I(el,)"2)-

me(nt))*cos(kx*x);
pi*freg*time(nt))*sin

y*b(el,i+2-3*(i+2>3))/l

) max(p(2,:))));

% axis square; view([0 0]);
% scenes(nt)=getframe;
%calculate
for el=1:ne
classfactor=division”class(el);
if mod(nt-1,classfactor)==0
Met=zeros(3,3); Mht=Met; Set=Met; Sht=Met;
Et=zeros(3,1); Ht=Et; Fe=Et; Fh=Et;
fori=1:3
Et(i)=E(el,i,nt);
Ht(i)=H(el,i,nt);
for j=1:3
Met(i,j)=Me(el,i,);
Mht(i,j)=Mh(el,i,j);
Set(i,j)=Se(el,i,j);
Sht(i,j)=Sh(el,i,j);
end;
end;
Met=inv(Met); Mht=inv(Mht);
for i=1:3
for j=1:3
op=opposite(t(j,el),t(j+1-3*(j+1>3),el),1);
if op==el
op=opposite(t(j,el),t(j+1-3*(j+1>3),el),2);
end;
if op==0
EopO=-Et());
Eopl=-Et(j+1-3*(+1>3));
Hop=-Ht(j);
else
opj=0;
if opposite(t(1,0p),t(2,0p),1)==el || opposite(t
(1,0p),t(2,0p),2)==¢l
opj=1; end;
if opposite(t(2,0p),t(3,0p),1)==el || opposite(t
(2,0p),t(3,0p),2)==el
opj=2; end,;
if opposite(t(3,0p),t(1,0p),1)==el || opposite(t
(3,0p),t(1,0p),2)==el
opj=3; end;
Hop=H(op,opj,nt);
EopO=E(op,opj+1-3*(opj+1>3),nt);
Eopl=E(op,opj,nt);
end;
temp=eta*(-Hop-Ht(j))*3+(Eop0-Et(j))*(1+(i==)));
temp=temp+(Eopl-Et(j+1-3*(j+1>3)))*(1+(i==j+1-3*
(+1>3)));
temp=temp*I(el,j)/6*(1-(i==j+2-3*(j+2>3)))/(eta+eta
Fe(i)=Fe(i)+temp;
temp=(-Hop-Ht(j))*2;
temp=temp+(1/eta)*(EopO-Et(j)+Eopl-Et(j+1-3*(+1>3)
Fh(i)=Fh(i)+temp*I(el,j)/2*(i==))/(1/eta+1/eta);
end,;
end;
%second-order Runge-Kutta method
Erka=1/eps*Met*(Set*Ht+Fe);
Hrka=1/mu*Mht*(-Sht*Et+Fh);
Erkb=1/eps*Met*(Set*(Ht+Hrka*dt/2*classfactor)+Fe);
Hrkb=1/mu*Mht*(-Sht*(Et+Erka*dt/2*classfactor)+Fh);
E(el,:,nt+classfactor)=(Et+Erkb*dt*classfactor)’;
H(el,:,nt+classfactor)=(Ht+Hrkb*dt*classfactor)';

63

for i=1:classfactor-1
E(el,:,nt+i)=(Et+Erkb*dt*i)";
H(el,:,nt+i)=(Ht+Hrkb*dt*i)';
end;
end;
end;
end;
comptime2(snumber)=toc;

64

Plane wave with PML

%p: matrix of points (nodes)
%t: matrix of triangles (elements)
%e: matrix of points at the boundaries

%frequency, number of periods and incident angle fr om plane.m

abcorpec=0; %0 for ABC, 1 for PEC
smax=2*pi*freq*0;

sorder=2;

snumber=2;

%2D, TM

ne=size(t,2); %onumber of elements
Me=zeros(ne,3,3); Se=Me; Mh=Me; Sh=Me;
b=zeros(ne,3); c=b; I=b;

A=zeros(ne,1); f=zeros(3,3);

%additional matrices and variables for PML
Mhw=Me; Mhp=Me; Mhg=Me;

fw=f; fp=f; fq=f; sx=A; sy=A;

np=size(p,2); %onumber of nodes
opposite=zeros(np,np,2);

for el=1:ne
fori=1:3
for j=1:3
if i~=j
if opposite(t(i,el),t(j,el),1)==0
opposite(t(i,el),t(,el),1)=el;
else
opposite(t(i,el),.t(j,el),2)=el;
end;
end;
end;
end;
end;

%find extreme points
xmax=max(p(1,:)); xmin=min(p(1,:));
ymax=max(p(2,:)); ymin=min(p(2,:));

%set conductivity components sx and sy
boundaryx=zeros(2,2);
for region=1:2
tempx=[]; tempy=[];
for el=1:ne
if(t(4,el)==region)
tempx=[tempx p(1,t(1,el)) p(1,t(2,el)) p(1,t(3,el))
end;
end;
boundaryx(region,1)=min(tempx); boundaryx(region,2)
end;
%regions are numbered 1 to 2, from left to right
boundary=zeros(2,1);
for region=1:2
if boundaryx(region,1)==xmin
boundary(1)=region; end,;
if boundaryx(region,2)==xmax
boundary(2)=region; boundary4=boundaryx(region,1);
end;
for el=1:ne

65

=max(tempx);

end;

region=t(4,el);
centerx=(p(1,t(1,e))+p(1,t(2,e)+p(1,t(3,el)))/3;
centery=(p(2,t(1,el))+p(2,t(2,el))+p(2,t(3,el)))/3;
if region==boundary(2)
sx(el)=smax*((centerx-boundary4)/(xmax-boundary4))*
end;
%clear boundary* temp* center?;

%boundary
bpointsh=[];
for el=1:size(e,2)
if (e(6,el)==0 || e(7,el)==0) %&& (e(6,el)==boundar
==boundary(1))
bpointsh=[bpointsh [e(1,el);e(2,el)]];
end;
end;
for el=1:ne
fori=1:3
for j=1:size(bpointsh,2)
if ((t(i,el)==bpointsh(2,j) && t(i+1-3*(i+1>3),el)=
.

N)

xmax)>1e-10)
opposite(t(i,el),t(i+1-3*(i+1>3),el),2)=-1;
opposite(t(i+1-3*(i+1>3),el),i(i,el),2)=-1;
end;
end;
end;
end;

for el=1:ne
b(el,1)=p(2,1(2,el))-p(2,t(3,el));
b(el,2)=p(2,1(3,el))-p(2,t(1,el));
b(el,3)=p(2,t(1,el))-p(2,t(2,el));
c(el,1)=p(1,t(3,el))-p(1,t(2,el));
c(el,2)=p(1,t(1,el))-p(1,t(3,el));
c(el,3)=p(1,t(2,el))-p(1,t(1,el));
[(el,1)=sqrt(c(el,3)"*2+b(el,3)"2);
[(el,2)=sqrt(c(el,1)*2+b(el,1)"2);
I(el,3)=sqrt(c(el,2)"2+b(el,2)"2);
A(el)=(b(el,1)*c(el,2)-b(el,2)*c(el,1))/2;
for i=1:3
for j=1:3
Me(el,i,j)=A(el)/12*(1+(i==j));
Se(el,i,j)=I(el,j)/3;
f(i,j)=b(el,i)*b(el,j)+c(el,i)*c(el,j);
fw(i,j)=sx(el)*b(el,i)*b(el,j)+sy(el)*c(el,i)*c(el,
fp(i.))=(sy(el)-sx(el))*b(el.i)*b(el,j)+(sx(el)-sy(

(eli)*c(elj);
fq(i,j)=sx(el)*(sx(el)-sy(el))*b(el,i)*b(el,j)+sy(e
(el)-sx(el))*c(el,i)*c(el,));
end;
end;
fori=1:3
for j=1:3

2; end;

y(2) Il e(7.el)

|l (&(i,el)==bpointsh(L,j) && t(i+1-3%(i+1>3),el)==bpointsh
" && (abs(p(L,t(i,el))-xmax)>1e-10 || abs (P(L,t(i+1-3*(+1>3) el))-

temp=(f(i+1-3*(i+1>3),j+1-3*(j+1>3))+f(iL))*(1+(3i==)));
temp=temp-f(i+1-3*(i+1>3),))*(1+(i==j+1 -3*(j+1>3)))-f(i,j+1-3*

(+1>3))*(1+(i==j+2-3*(j+2>3)));

Mh(el,ij)=I(el,i*I(el,j)/(48*A(el))*t emp;

66

=bpointsh

0;
el))*c

*(sy

Sh(el,i,j)=I(el,i)/6*(3*(==j+1-3*{+1> 3))-1);

temp=(fw(i+1-3*(i+1>3),j+1-3*(j+1>3))+fw(i,j)) *(1+(I==)))
temp=temp-fw(i+1-3*(i+1>3),j)*(1+(i==j+ 1-3*(j+1>3)))-fw(i,j+1-3*
(+1>3))*(1+(i==j+2-3*(j+2>3)));
Mhw(el,i,j)=I(el,i)*I(el,j)/(48*A(el))* temp;
temp=(fp(i+1-3*(i+1>3),j+1-3*(j+1>3))+fp(i.j))*(1+(i==]
temp=temp-fp(i+1-3*(i+1>3),))*(1+(i==j+ 1-3*(j+1>3)))-fp(i,j+1-3*
(+1>3))*(1+(i==j+2-3%(j+2>3)));
Mhp(el,i,j)=I(el,i)*I(el,j)/(48*A(el))* temp;
temp=(fq(i+1-3*(i+1>3),j+1-3*(+1>3))+fq(i.j))*(1+(i==)));
temp=temp-fq(i+1-3*(i+1>3),j)*(1+(i==j+ 1-3*(j+1>3)))-fq(i,j+1-3*
(+1>3))*(1+(i==j+2-3%(j+2>3)));
Mhq(el,i,j)=I(el,i)*I(el,j)/(48*A(el))* temp;
end;
end;

end;
Imin=min(min());

vCc=299792458;

mu=pi*4e-7;

eps=1/(mu*vc"2);%free space
eta=sqrt(mu/eps);

k=2*pi*freq/vc;

dt=Imin/vc/6;

Nt=floor(periods/freq/dt); %number of point s of t
time=0:dt;dt*Nt; time=time(’);

xd=p(1,)); yd=p(2,:); Ed=zeros(np,size(time,1));
xd=xd(:);yd=yd(:);

tri=delaunay(xd,yd);

clear scenes;

%initial E and H
E=zeros(ne,3,size(time,1)); H=E;

E1=E; J=E; H1=E; Hz=E;

% for nt=1:size(time,1)

% for el=1:ne

% for i=1:3

% if(t(i,el)==center)
% J(el,i,;nt)=1*sin(2*pi*freq*time(nt));
% end;

% end;

% end;

% end;

for nt=1:size(time,1)-1

%plot
nt
Edpoints=zeros(np,1);
for el=1:ne
fori=1:3
Ed(t(i,el),nt)=Ed(t(i,el),nt)+E(el,i,nt);
Edpoints(t(i,el))=Edpoints(t(i,el))+1;
end;
end;
for el=1:np
Ed(el,nt)=Ed(el,nt)/Edpoints(el);
end;

% figure(1);

% trisurf(tri,xd,yd,Ed(:,nt));%-Ead(:,nt));

% xlim([xmin xmax]); ylim([ymin ymax]);

% zlim([-2 2]); caxis([-1 1]); %shading interp;

67

% view([30 30]); axis square;
% scenes(nt)=getframe;
%calculate
for el=1:ne
Met=zeros(3,3); Mht=Met; Set=Met; Sht=Met;
Et=zeros(3,1); Ht=Et; Fe=Et; Fh=Et;
Mhwt=Met; Mhpt=Met; Mhqt=Met;
Elt=Et; Jt=Et; H1t=Et; Hzt=Et;
fori=1:3
Et(i)=E(el,i,nt);
Ht(i)=H(el,i,nt);
E1t(i)=E1(el,i,nt);
Jt(i)=J(el,i,nt);
H1t(i)=H1(el,i,nt);
Hzt(i)=Hz(el,i,nt);
for j=1:3
Met(i,j)=Me(el,i,);
Mht(i,j)=Mh(el,i,j);
Set(i,j)=Se(el,i,j);
Sht(i,j)=Sh(el,i,));

Mhwt(i j)=Mhw(el,i.j); Mhpt(i,j)=Mhp(el.i.j); Mhat

(i.))=Mhq(el.i,);

end;
end;
Met=inv(Met); Mht=inv(Mht);
fori=1:3
for j=1:3
op=opposite(t(j,el),t(j+1-3*(+1>3),el),1);
if op==el
op=opposite(t(j,el),t(j+1-3*(+1>3),el),2);
end;
if op==
EopO=-Et(j)*abcorpec;
Eopl=-Et(j+1-3*(j+1>3))*abcorpe
Hop=-Ht(j)*abcorpec;
else

if op==-1

x0=p(1,t(j,el))-xmin;
y0=p(2,t(j,el))-ymin;

x1=p(1,t(j+1-3*(j+1>3),el))-xmi
y1=p(2,t(j+1-3*(+1>3),el))-ymi

y2=p(2,1(j+2-3*(j+2>3),el))-ymi
EopO=1*sin(k*(x0*cos(theta)+y0*
(nt))... .
*(time(nt)>(x0*cos(theta)+y
Eopl=1*sin(k*(x1*cos(theta)+yl*
(nt))... .
*(time(nt)>(x1*cos(theta)+y
if abs(y1-y0)>1e-10 %vertical b
Hop=-cos(theta)/eta*sin(k*(
(theta))-2*pi*freq*time(nt))...
(1-2(y1>y0))*(time(nt
(theta))/vc);
else %horizontal boundary
Hop=-sin(theta)/eta*sin(k*(
(theta))-2*pi*freq*time(nt))...
(1-2(x0>x1))*(time(nt
(theta))/vc);
end;
else

68

Xzzp(l,t(1+2-3*(j+2>3),el))-xmih;

n;
n

n;
sin(theta))-2*pi*freq*time

O*sin(theta))/vc);
sin(theta))-2*pi*freq*time

1*sin(theta))/vc);
oundary
x0*cos(theta)+y2*sin

)>(x0*cos(theta)+y2*sin

x2*cos(theta)+y0*sin

)>(x2*cos(theta)+y0*sin

opj=0;
if opposite(t(1,0p),t(2,0p),1)==el || opposite(

(1,0p),t(2,0p),2)==¢l

opj=1; end;
if opposite(t(2,0p),t(3,0p),1)==el || opposite(

(2,0p),t(3,0p),2)==¢l

opj=2; end;
if opposite(t(3,0p),t(1,0p),1)==el || opposite(

(3,0p),t(1,0p),2)==el

opj=3; end;
Hop=H(op,opj,nt);
EopO=E(op,opj+1-3*(opj+1>3),nt);

Eopl=E(op,opj,nt);

end;
end;
temp=eta*(-Hop-Ht(j))*3+(Eop0-Et(j))*(1+(i==j));
temp=temp+(Eopl-Et(j+1-3*(j+1>3)))* (L+(i==j+1-3*(j+1>3)));
temp=temp*I(el,j)/6*(1-(i==j+2-3*(j +2>3)))/(etateta);

Fe(i)=Fe(i)+temp;
temp=(-Hop-Ht(j))*2;

temp=temp+(1/eta)*(EopO-Et(j)+Eop1l-
Fh(i)=Fh(i)+temp*I(el,j)/2*(i==))/(

end;
end,;

%second-order Runge-Kutta method

Jt/eps;

%Runge-Kutta a
Erka=1/eps*Met*(Set*Hzt+Fe)-(sx(el)+sy(el))*Et-sx(e

Hzrka=Mht*((-Sht*Et+Fh)/mu-Mhpt*Hzt-Mhqt*H1t);
Elrka=Et;

Hlrka=Hzt-Mht*Mhwt*H1t;

Jt=(Jt+J(el,:,nt+1)")/2;

%Runge-Kutta b
Erkb=1/eps*Met*(Set*(Hzt+Hzrka*dt/2)+Fe)- (sx(el)+sy

(Et+Erka*dt/2)-sx(el)*sy(el)*(E1t+E1lrka*dt/2)-Jt/ep

Hzrkb=Mht*((- Sht*(Et+Erka*dt/2)+Fh)/mu Mhpt*(Hzt+Hz

(H1t+H1rka*dt/2));

end;
end;
Edpml=Ed;

Elrkb=Et+Erka*dt/2;
H1rkb=Hzt+Hzrka*dt/2-Mht*Mhwt*(H1t+H1rka*dt/2);
%update next values

E(el,:,nt+1)=(Et+Erkb*dt)";
El(el,:,nt+1)=(E1t+E1rkb*dt);
H1(el,:,nt+1)=(H1t+H1rkb*dt)";
Hz(el,:,nt+1)=(Hzt+Hzrkb*dt)';
H(el,:,nt+1)=(Hzt+Hzrkb*dt-Mht*Mhwt*(H1t+H1rkb*dt))

69

Et(j+1-3*(+1>3)));
l/eta+1/eta);

I)*sy(el)*E1t-

(el)~
rka*dt/2)-Mhqt*

Current source with PML

%p: matrix of points (nodes)
%t: matrix of triangles (elements)
%e: matrix of points at the boundaries

abcorpec=0; %0 for ABC, 1 for PEC
%frequency, periods and Imin from pml.m
smax=2*pi*freq*0.07;

sorder=2;

snumber=4;

%remove region 1
np=size(p,2); %onumber of nodes
xmax=max(p(1,:)); xmin=min(p(1,:));
ymax=max(p(2,:)); ymin=min(p(2,:));
centerx=(xmax+xmin)/2;
centery=(ymax+ymin)/2;
center=1,
for el=1:np
if (p(1,el)-centerx)"2+(p(2,el)-centery)*2<(p(1,cen
(2,center)-centery)"2
center=el;
end;
end;
ne=size(t,2); %number of elements
boundaryx=zeros(10,2); boundaryy=boundaryx;
for region=1:10
tempx=[]; tempy=[];
for el=1:ne
if t(4,el)==region
tempx=[tempx p(1,t(1,el)) p(1,t(2,el)) p(1,t(3,el))
tempy=[tempy p(2,t(1,el)) p(2,t(2,el)) p(2,t(3,el))
end;
end;
boundaryx(region,1)=min(tempx); boundaryx(region,2)
boundaryy(region,1)=min(tempy); boundaryy(region,2)
end;
boundaryx(1,:)=[]; boundaryy(1,:)=[];
xmin=min(boundaryx(:,1)); xmax=max(boundaryx(:,2));
ymin=min(boundaryy(:,1)); ymax=max(boundaryy(:,2));
newp=zeros(np,1);
tempp=[];
counterp=1,
for el=1:np
if p(1,el)>=xmin-1e-10 && p(1,el)<=xmax+1le-10 && p(
p(2,el)<=ymax+1e-10
tempp=[tempp [p(1,el);p(2,eN]];
newp(el)=counterp;
counterp=counterp+1;

end;
end;
p=tempp;
center=newp(center);
tempt=[];
for el=1:ne

if t(4,el)~=1

tempt=[tempt [newp(t(1,el));newp(t(2,el));newp(t(3,

111;

end;
end;

70

ter)-centerx)"2+(p

=max(tempx);
=max(tempy);

2,el)>=ymin-1e-10 &&

el));t(4,el)-

t=tempt;

%2D, TM

ne=size(t,2); %onumber of elements
Me=zeros(ne,3,3); Se=Me; Mh=Me; Sh=Me;
b=zeros(ne,3); c=b; I=b;

A=zeros(ne,1); f=zeros(3,3);

%additional matrices and variables for PML
Mhw=Me; Mhp=Me; Mhg=Me;

fw=f; fp=f; fq=f; sx=A; sy=A,

np=size(p,2); Y%onumber of nodes
opposite=zeros(np,np,2);

for el=1:ne
fori=1:3
for j=1:3
if i~=
if opposite(t(i,el),t(j,el),1)==0
opposite(t(i,el),t(,el),1)=el;
else
opposite(t(i,el),t(j,el),2)=el;
end;
end;
end;
end;

end;

%set conductivity components sx and sy
boundaryx=zeros(9,2); boundaryy=boundaryx;
for region=1:9
tempx=[]; tempy=[];
for el=1:ne
if t(4,el)==region
tempx=[tempx p(1,t(1,el)) p(1,t(2,el)) p(1,t(3,el))
tempy=[tempy p(2,t(1,el)) p(2,t(2,el)) p(2,t(3,el))

end;
end;
boundaryx(region,1)=min(tempx); boundaryx(region,2) =max(tempx);
boundaryy(region,1)=min(tempy); boundaryy(region,2) =max(tempy);
end;
%regions are numbered 1 to 8, starting from the top left and increasing
clockwise

boundary=zeros(8,1);
for region=1:9
if abs(boundaryx(region,1)-xmin)<le-10 && abs(bound
<le-10
boundary(1)=region; end;
if boundaryx(region,1)>xmin+1e-10 && boundaryx(regi
abs(boundaryy(region,2)-ymax)<le-10
boundary(2)=region; boundary2=boundaryy(region,1);
if abs(boundaryx(region,2)-xmax)<le-10 && abs(bound
<le-10
boundary(3)=region; end;
if abs(boundaryx(region,2)-xmax)<le-10 && boundaryy
&& boundaryy(region,2)<ymax-1e-10
boundary(4)=region; boundary4=boundaryx(region,1);
if abs(boundaryx(region,2)-xmax)<le-10 && abs(bound
<le-10
boundary(5)=region; end,;
if boundaryx(region,1)>xmin+1e-10 && boundaryx(regi
abs(boundaryy(region,1)-ymin)<le-10

71

aryy(region,2)-ymax)

on,2)<xmax-1le-10 &&
end;

aryy(region,2)-ymax)

(region,1)>ymin+1e-10
end;

aryy(region,1)-ymin)

on,2)<xmax-1le-10 &&

boundary(6)=region; boundary6=boundaryy(region,2); end;

if abs(boundaryx(region,1)-xmin)<le-10 && abs(bound aryy(region,1)-ymin)
<le-10
boundary(7)=region; end;
if abs(boundaryx(region,1)-xmin)<le-10 && boundaryy (region,1)>ymin+1e-10
&& boundaryy(region,2)<ymax-1e-10
boundary(8)=region; boundary8=boundaryx(region,2); end;
end;
for el=1:ne
region=t(4,el);
centerx=(p(1,t(1,el))+p(1,t(2,el)+p(1,t(3,el)))/3;
centery=(p(2,t(1,el))+p(2,t(2,el))+p(2,t(3,el)))/3;
if region==boundary(1) || region==boundary(2) || re gion==boundary(3)
sy(el)=smax*((centery-boundary?2)/(ymax-boundary2))* sorder; end,;
if region==boundary(3) || region==boundary(4) || re gion==boundary(5)
sx(el)=smax*((centerx-boundary4)/(xmax-boundary4))* sorder; end,;
if region==boundary(5) || region==boundary(6) || re gion==boundary(7)
sy(el)=smax*((centery-boundary6)/(ymin-boundary6))" sorder; end,;
if region==boundary(7) || region==boundary(8) || re gion==boundary(1)
sx(el)=smax*((centerx-boundary8)/(xmin-boundary8))" sorder; end;
end;

%clear boundary boundaryx boundaryy temp*;

for el=1:ne
b(el,1)=p(2,t(2,el))-p(2,t(3,el));
b(el,2)=p(2,t(3,el))-p(2,t(1,el));
b(el,3)=p(2,t(1,el))-p(2,t(2,el));
c(el,1)=p(1,t(3,el))-p(1,t(2,el));
c(el,2)=p(1,t(1,el))-p(1,t(3,el));
c(el,3)=p(1,t(2,el))-p(1,t(1,el));
I(el,1)=sqrt(c(el,3)"2+b(el,3)"2);
[(el,2)=sqgrt(c(el,1)*2+b(el,1)"2);
I(el,3)=sqrt(c(el,2)*2+b(el,2)"2);
A(el)=(b(el,1)*c(el,2)-b(el,2)*c(el,1))/2;
for i=1:3
for j=1:3
Me(el,i,j)=A(el)/12*(1+(i==)));
Se(el,i,j)=I(el,j)/3;
f(i,j)=b(el,i)*b(el,j)+c(el,i)*c(el,);

fw(i,j)=sx(el)*b(el,i)*b(el,j)+sy(el)*c(el,i)*c(el, 0;
fp(i,j)=(sy(el)-sx(el))*b(el,i)*b(el,j)+(sx(el)-sy(el))*c
(el,i)*c(el,));
fq(i,j)=sx(el)*(sx(el)-sy(el))*b(el,i)*b(el,j)+sy(e N*(sy
(el)-sx(el))*c(el,i)*c(el,));
end;
end;
for i=1:3
for j=1:3
temp=(f(i+1-3*(i+1>3),j+1-3*(j+1>3))+f(L)*(1+(i==)));
temp=temp-f(i+1-3*(i+1>3),j)*(1+(i==j+1 -3*(j+1>3)))-f(i,j+1-3*
(+1>3))*(1+(i==j+2-3%(+2>3)));
Mh(el,i,j)=I(el,i)*I(el j)/(48*A(el))*t emp;
Sh(el,i,j)=I(el,i)/6*(3*(i==j+1-3*(+1> 3))-1);
temp=(fw(i+1-3*(i+1>3),j+1-3*(j+1>3))+w(i,j)) *(1+(I==)));
temp=temp-fw(i+1-3*(i+1>3),j)*(1+(i==j+ 1-3*(j+1>3)))-fw(i,j+1-3*
(+1>3))*(1+(i==j+2-3*(j+2>3)));
Mhw(el,i,j)=I(el,i)*I(el,j)/(48*A(el))* temp;
temp=(fp(i+1-3*(i+1>3),j+1-3*(j+1>3))+fp(i.j)) *(1+(I==)));
temp=temp-fp(i+1-3*(i+1>3),j)*(1+(i==j+ 1-3*(j+1>3)))-fp(i,j+1-3*
(+1>3))*(1+(i==j+2-3%(j+2>3)));
Mhp(el,i,j)=I(el,i)*I(el,j)/(48*A(el))* temp;

72

temp=(fq(i+1-3*(i+1>3),j+1-3*(j+1>3))+fq(i.j))*(1+(

temp=temp-fq(i+1-3*(i+1>3),))*(1+(i==j+ 1-3*(j+1>3)))-fq(i,j+1-3*
(1+1>3))*(1+(i==j+2-3*(j+2>3)));
Mhq(el,i,j)=I(el,i)*I(el,j)/(48*A(el))* temp;
end;
end;
end;

%Imin=min(min(1));

vc=299792458;

mu=pi*4e-7;

eps=1/(mu*vc"2);%free space
eta=sqrt(mu/eps);

k=2*pi*freq/vc;

dt=Imin/vc/6;

Nt=floor(periods/freq/dt); %number of point soft
time=0:dt:dt*Nt; time=time(:);

xd=p(1,:); yd=p(2,:); Ed=zeros(np,size(time,1));
xd=xd(:);yd=yd(:);

tri=delaunay(xd,yd);

clear scenes;

%initial E and H
E=zeros(ne,3,size(time,1)); H=E;
E1=E,; J=E; H1=E; Hz=E;

for nt=1:size(time,1)

for el=1:ne
fori=1:3
if(t(i,el)==center)
J(el,i,nt)=1*sin(2*pi*freg*time(nt));
end;
end;

end;
end;

for nt=1:size(time,1)-1

%plot
nt
Edpoints=zeros(np,1);
for el=1:ne
fori=1:3
Ed(t(i,el),nt)=Ed(t(i,el),nt)+E(el,i,nt);
Edpoints(t(i,el))=Edpoints(t(i,el))+1;
end;
end;
for el=1:np
Ed(el,nt)=Ed(el,nt)/Edpoints(el);
end;

% figure(2);
% trisurf(tri,xd,yd,Ed(:,nt));%-Ead(;,nt));

% xlim([xmin xmax]); ylim([ymin ymax]);
% zlim([-8 8]); caxis([-4 4]); %shading interp;
% %view([0 90]); axis square;
% scenes(nt)=getframe;
%calculate
for el=1:ne

Met=zeros(3,3); Mht=Met; Set=Met; Sht=Met;
Et=zeros(3,1); Ht=Et; Fe=Et; Fh=Et;
Mhwt=Met; Mhpt=Met; Mhqt=Met;
Elt=Et; Jt=Et; H1t=Et; Hzt=Et;
fori=1:3

73

I==)));

Et(i)=E(el,i,nt);
Ht(i)=H(el,i,nt);
E1t(i)=E1(el,i,nt);
Jt(i)=J(el,i,nt);
H1t(i)=H1(el,i,nt);
Hzt(i)=Hz(el,i,nt);
for j=1:3
Met(i,j)=Me(el,i,);
Mht(i,j)=Mh(el,i,j);
Set(i,j)=Se(el,i,j);
Sht(i,j)=Sh(el,i,j);

(i.))=Mhq(el,i,);

Mhwt(i,j)=Mhw(el,i,j); Mhpt(i,j)=Mhp(el,ij); Mhqt

end;
end;
Met=inv(Met); Mht=inv(Mht);
fori=1:3
for j=1:3
op=opposite(t(j,el),t(j+1-3*(+1>3),el),1);
if op==el
op=opposite(t(j,el),t(j+1-3*(+1>3),el),2);
end;
if op==0
EopO=-Et(j)*abcorpec;
Eopl=-Et(j+1-3*(j+1>3))*abcorpe c;
Hop=-Ht(j)*abcorpec;
else
opj=0;
if opposite(t(1,0p),t(2,0p),1)==el || opposite(t
(1,0p),t(2,0p),2)==el
opj=1; end;
if opposite(t(2,0p),t(3,0p),1)==el || opposite(t
(2,0p),t1(3,0p),2)==el
opj=2; end;
if opposite(t(3,0p),t(1,0p),1)==el || opposite(t
(3,0p),t(1,0p),2)==el
opj=3; end;

Hop=H(op,opj,nt);
EopO=E(op,opj+1-3*(opj+1>3),nt);
Eopl1=E(op,opj,nt);

d;
temp:eta*(?lzop-Ht(j))*3+(E0p0-Et(j))*(1+(i==j));
temp=temp+(Eopl-Et(j+1-3*(j+1>3)))* (1+(i==j+1-3*(j+1>3)));
temp=temp*I(el,j)/6*(1-(i==j+2-3*(j +2>3)))/(eta+eta);

Fe(i)=Fe(i)+temp;
temp=(-Hop-Ht(j))*2;

temp=temp+(1/eta)*(EopO-Et(j)+Eop1l- Et(j+1-3*(j+1>3)));
Fh(i)=Fh(i)+temp*I(el,j)/2*(i==))/(l/eta+1/eta);
end;

end;
%second-order Runge-Kutta method
%Runge-Kutta a
Erka=1/eps*Met*(Set*Hzt+Fe)-(sx(el)+sy(el))*Et-sx(e I)*sy(el)*E1t-
Jt/eps;
Hzrka=Mht*((-Sht*Et+Fh)/mu-Mhpt*Hzt-Mhqt*H1t);
Elrka=Et;
Hlrka=Hzt-Mht*Mhwt*H1t;
Jt=(Jt+J(el,:,nt+1)")/2;
%Runge-Kutta b
Erkb=1/eps*Met*(Set*(Hzt+Hzrka*dt/2)+Fe)-(sx(el)+sy (eh)*
(Et+Erka*dt/2)-sx(el)*sy(el)*(E1t+E1lrka*dt/2)-Jt/ep S;

74

Hzrkb=Mht*((-Sht*(Et+Erka*dt/2)+Fh)/mu-Mhpt*(Hzt+Hz

(H1t+H1rka*dt/2));

end;

end;
Edpml=Ed;

Elrkb=Et+Erka*dt/2;
H1rkb=Hzt+Hzrka*dt/2-Mht*Mhwt*(H1t+H1rka*dt/2);
%update next values

E(el,:,nt+1)=(Et+Erkb*dt)’;
El(el,:;,nt+1)=(E1t+Elrkb*dt)";
H1(el,:,nt+1)=(H1t+H1rkb*dt)";
Hz(el,:,nt+1)=(Hzt+Hzrkb*dt)';
H(el,:,nt+1)=(Hzt+Hzrkb*dt-Mht*Mhwt*(H1t+H1rkb*dt))

75

rka*dt/2)-Mhqt*

Scattering by a conducting cylinder with PML

%p: matrix of points (nodes)
%t: matrix of triangles (elements)
%e: matrix of points at the boundaries

freq=2e8;

periods=4;

theta=0/180*pi; %incident angle
abcorpec=0; %0 for ABC, 1 for PEC
smax=2*pi*freq*0.2;

sorder=2;

snumber=2;

%2D, TM

ne=size(t,2); %number of elements
Me=zeros(ne,3,3); Se=Me; Mh=Me; Sh=Me;
b=zeros(ne,3); c=b; I=b;

A=zeros(ne,1); f=zeros(3,3);

%additional matrices and variables for PML
Mhw=Me; Mhp=Me; Mhg=Me;

fw=f; fp=f; fq=f; sx=A; sy=A;

np=size(p,2); %onumber of nodes
opposite=zeros(np,np,2);

for el=1:ne
fori=1:3
for j=1:3
if i~=j
if opposite(t(i,el),t(j,el),1)==0
opposite(t(i,el),t(,el),1)=el;
else
opposite(t(i,el),.t(j,el),2)=el;
end;
end;
end;
end;
end;

%find extreme points
xmax=max(p(1,:)); xmin=min(p(1,:));
ymax=max(p(2,:)); ymin=min(p(2,:));

%find limits of regions
boundaryx=zeros(11,2); boundaryy=boundaryx;
forreg=1:11
tempx=[]; tempy=[];
for el=1:ne
if t(4,el)==reg
tempx=[tempx p(1,t(1,el)) p(1,t(2,el)) p(1,t(3,el)) 1
tempy=[tempy p(2,t(1,el)) p(2,t(2,el)) p(2,t(3,el)) I;
end;
end;
boundaryx(reg,1)=min(tempx); boundaryx(reg,2)=max(t empx);
boundaryy(reg,1)=min(tempy); boundaryy(reg,2)=max(t empy);
end;
%PML regions are numbered 1 to 8, starting from the top left and increasing
clockwise
region=zeros(11,1);
forreg=1:11
if abs(boundaryx(reg,1)-xmin)<le-10 && abs(boundary y(reg,2)-ymax)<le-10

76

region(1)=reg; end;
if boundaryx(reg,1)>xmin+1e-10 && boundaryx(reg,2)<
(boundaryy(reg,2)-ymax)<le-10
region(2)=reg; boundary2=boundaryy(reg,1); end;
if abs(boundaryx(reg,2)-xmax)<le-10 && abs(boundary
region(3)=reg; end;
if abs(boundaryx(reg,2)-xmax)<le-10 && boundaryy(re
boundaryy(reg,2)<ymax-1e-10
region(4)=reg; boundary4=boundaryx(reg,1); end;
if abs(boundaryx(reg,2)-xmax)<le-10 && abs(boundary
region(5)=reg; end;
if boundaryx(reg,1)>xmin+1e-10 && boundaryx(reg,2)<
(boundaryy(reg,1)-ymin)<le-10
region(6)=reg; boundary6=boundaryy(reg,2); end;
if abs(boundaryx(reg,1)-xmin)<le-10 && abs(boundary
region(7)=reg; end;
if abs(boundaryx(reg,1)-xmin)<le-10 && boundaryy(re
boundaryy(reg,2)<ymax-1e-10
region(8)=reg; boundary8=boundaryx(reg,2); end;

end;
%set conductivity components sx and sy
for el=1:ne
reg=t(4,el);
centerx=(p(1,t(1,el))+p(1,t(2,e)+p(1,t(3,el)))/3;
centery=(p(2,t(1,el))+p(2,t(2,e)+p(2,t(3,el)))/3;
if reg==region(1) || reg==region(2) || reg==region(
sy(el)=smax*((centery-boundary2)/(ymax-boundary2))*
if reg==region(3) || reg==region(4) || reg==region(
sx(el)=smax*((centerx-boundary4)/(xmax-boundary4))*
if reg==region(5) || reg==region(6) || reg==region(
sy(el)=smax*((centery-boundary6)/(ymin-boundary6))"
if reg==region(7) || reg==region(8) || reg==region(
sx(el)=smax*((centerx-boundary8)/(xmin-boundary8))"
end;
%outer Huygens region
forreg=1:11

if abs(boundaryx(reg,1)-boundary8)<le-10 && abs(bou
boundary4)<le-10...
&& abs(boundaryy(reg,1)-boundary6)<le-10 && abs(bou
boundary?)<le-10
region(9)=reg;
end;
end;
%scatterer region
centerx=(xmax+xmin)/2;
centery=(ymax+ymin)/2;
center=1,;
for el=1:ne
centerpx=mean([p(1,t(1,el)) p(1,t(2,el)) p(1,t(3,el
centerpy=mean([p(2,t(1,el)) p(2,t(2,el)) p(2,t(3,el
centercx=mean([p(1,t(1,center)) p(1,t(2,center)) p(
centercy=mean([p(2,t(1,center)) p(2,t(2,center)) p(
if (centerpx-centerx)"2+(centerpy-centery)*2<(cente
(centercy-centery)2
center=el;
end;
end;
region(11)=t(4,center);
%inner Huygens region
forreg=1:11
if boundaryx(reg,2)>boundaryx(region(11),2)+1e-10..

77

xmax-1le-10 && abs

y(reg,2)-ymax)<le-10

g,1)>ymin+1e-10 &&

y(reg,1)-ymin)<le-10

xmax-1le-10 && abs

y(reg,1)-ymin)<le-10

0,1)>ymin+1le-10 &&

3)

sorder; end;
5)

sorder; end;
7)

sorder; end;
1)

sorder; end;

ndaryx(reg,2)-
ndaryy(reg,2)-

DD
)D;
1,t(3,center))]);
2,1(3,centen))));
rcx-centerx)"2+

&& boundaryx(reg,2)<boundaryx(region(9),2)-1e-10
region(10)=reg;

end;
end;
reg=region(10);
boundary2h=boundaryy(reg,2); boundary4h=boundaryx(r eg,2);
boundary6h=boundaryy(reg,1); boundary8h=boundaryx(r eg,l);
%clear boundaryx boundaryy temp* center*;

for el=1:ne
b(el,1)=p(2,1(2,el))-p(2,t(3,el));
b(el,2)=p(2,1(3,el))-p(2,t(1,el));
b(el,3)=p(2,t(1,el))-p(2,t(2,el));
c(el,1)=p(1,t(3,el))-p(1,t(2,el));
c(el,2)=p(1,t(1,el))-p(1,t(3,el));
c(el,3)=p(1,t(2,el))-p(1,t(1,el));
[(el,1)=sqrt(c(el,3)*2+b(el,3)"2);
[(el,2)=sqrt(c(el,1)"2+b(el,1)"2);
I(el,3)=sqrt(c(el,2)*2+b(el,2)"2);
Alel)= (b(eI 1)*c(el,2)-b(el,2)*c(el,1))/2;
for i=1:3
for j=1:3
Me(el,i,j)=A(el)/12*(1+(i==j));
Se(el,i,j)=I(el,j)/3;
f(i,j)=b(el,i)*b(el,j)+c(el,i)*c(el,j);

fw(i,j)=sx(el)*b(el,i)*b(el,j)+sy(el)*c(el,i)*c(el, i
fp(i,j)=(sy(el)-sx(el))*b(el,i)*b(el,j)+(sx(el)-sy(el))*c
(el.i)*c(elj);
fq(i,j)=sx(el)*(sx(el)-sy(el))*b(el,i)*b(el,j)+sy(e *(sy
(el)-sx(el))*c(el,i)*c(el,));
end;
end;
fori=1:3
for j=1:3
temp=(f(i+1-3*(i+1>3),j+ 1-3*(j+ 1>3))+f(L)*(1+(i=5)));
temp=temp-f(i+1-3*(i+1>3),))*(1+(i==j+1 -3*(j+1>3)))-f(i,j+1-3*
(1+1>3))*(1+(i==j+2-3*(j+2>3)));
Mh(el,i,j)=I(el,i)*I(el,j)/(48*A(el))*t emp;
Sh(el,i,j)=I(el,i)/6*(3*(i==j+1-3*(+1> 3))-1);
temp=(fw(i+1-3*(i+1>3),j+1-3*(j+1>3))+fw(i,j))*(1+(i==)));
temp=temp-fw(i+1-3*(i+1>3),j)*(1+(i==j+ 1-3*(j+1>3)))-fw(i,j+1-3*
(1+1>3))*(1+(i==j+2-3*(j+2>3)));
Mhw(el,i,j)=I(el,i)*I(el,j)/(48*A(el))* temp
temp=(fp(i+1-3*(i+1>3),j+1-3*(j+1>3))+fp(i.j))* (1+(i==)));
temp=temp-fp(i+1-3*(i+1>3),))*(1+(i==j+ 1-3*(j+1>3)))-fp(i,j+1-3*
(+1>3))*(1+(i==j+2-3*(j+2>3)));
Mhp(el,i,j)=I(el,i)*I(el,j)/(48*A(el))* temp;
temp=(fq(i+1-3*(i+1>3),j+1-3*(j+1>3))+fq(i,j))*(1+(i==)));
temp=temp-fq(i+1-3*(i+1>3),))*(1+(i==j+ 1-3*(j+1>3)))-fq(i,j+1-3*
(+1>3))*(1+(i==j+2-3*(j+2>3)));
Mhq(el,i,j)=I(el,i)*I(el,j)/(48*A(el))* temp;
end;
end;
end;

Imin=min(min(l));

vCc=299792458;

mu=pi*4e-7;
eps=1/(mu*vc"2);%free space
eta=sqrt(mu/eps);
k=2*pi*freq/vc;

78

dt=Imin/vc/6;

Nt=floor(periods/freq/dt) %number of points
time=0:dt;dt*Nt; time=time(’);

xd=p(1,:); yd=p(2,3);

xd=xd(:);yd=yd(:);

tri=delaunay(xd,yd);

Ed=zeros(np,size(time,1));

clear scenes;

%initial E and H
E=zeros(ne,3,size(time,1)); H=E;
E1=E, J=E; H1=E; Hz=E;

% for nt=1:size(time,1)

%
%
%
%
%

for el=1:ne
for i=1:3
if(t(i,el)==center)

J(el,i,;nt)=1*sin(2*pi*freq*time(nt));

end;end;end;end;

for nt=1:size(time,1)-1

%
%
%
%
%
%

%plot
nt
Edpoints=zeros(np,1);
for el=1:ne
fori=1:3
Ed(t(i,el),nt)=Ed(t(i,el),nt)+E(el,i,nt);
Edpoints(t(i,el))=Edpoints(t(i,el))+1;
end;
end;
for el=1:np
Ed(el,nt)=Ed(el,nt)/Edpoints(el);
end;
figure(1);

trisurf(tri,xd,yd,Ed(:,nt));%-Ead(:,nt));
xlim([xmin xmax]); ylim([ymin ymax]);
zlim([-2 2]); caxis([-1 1]); shading interp;
view([0 90]); axis square;
scenes(nt)=getframe;

%calculate

for el=1:ne

Met=zeros(3,3); Mht=Met; Set=Met; Sht=Met;

Et=zeros(3,1); Ht=Et; Fe=Et; Fh=Et;
Mhwt=Met; Mhpt=Met; Mhqt=Met;
E1t=Et; Jt=Et; H1t=Et; Hzt=Et;
for i=1:3
Et(i)=E(el,i,nt);
Ht(i)=H(el,i,nt);
E1t(i)=E1(el,i,nt);
Jt(i)=J(el,i,nt);
H1t(i)=H1(el,i,nt);
Hzt(i)=Hz(el,i,nt);
for j=1:3
Met(i,j)=Me(el,i,j);
Mht(i,j)=Mh(el,ij);
Set(i,j)=Se(el,i,j);
Sht(i,j)=Sh(el,i,j);

Mhwt(i,j)=Mhw(el,i,j); Mhpt(i,j)=Mhp(el,ij); Mhqt

(i.j)=Mhq(el.i,j);
end;

end;
Met=inv(Met); Mht=inv(Mht);

79

of t

for i=1:3

for j=1:3

op=opposite(t(j,el),t(j+1-3*(+1>3),el),1);

if op==el
op=opposite(t(j,el),t(j+1-3*(+1>3),el),2);

end;

if op==
EopO=-Et(j)*abcorpec;
Eopl=-Et(j+1-3*(j+1>3))*abcorpe C;
Hop=Ht(j)*abcorpec;
else
opj=0;

if opposite(t(1,0p),t(2,0p),1)==el || opposite(
(1,0p),t(2,0p),2)==¢l
opj=1; end;
if opposite(t(2,0p),t(3,0p),1)==el || opposite(
(2,0p),t1(3,0p),2)==el
opj=2; end;
if opposite(t(3,0p),t(1,0p),1)==el || opposite(
(3,0p),t(1,0p),2)==¢l
opj=3; end;
Hop=-H(op,opj,nt);
EopO=E(op,opj+1-3*(opj+1>3),nt);
Eopl=E(op,opj,nt);
if t(4,el)==region(9) && t(4,0p)==region(10)
x0=p(1,t(j,el))-boundary8h;
y0=p(2,t(j,el))-boundary6h;
x1=p(1,t(j+1-3*(j+1>3),el))-boundary8h;
y1=p(2,t(j+1-3*(j+1>3),el))-boundary6h;
x2=p(1,t(j+2-3*(j+2>3),el))-boundary8h;
y2=p(2,t(j+2-3*(j+2>3),el))-boundary6h;
EopO=Eop0-1*sin(k*(x0*cos(theta)+y0*sin
(theta))-2*pi*freq*time(nt))...
*(time(nt)>(x0*cos(theta)+y0*sin
(theta))/vc);
Eopl=Eopl-1*sin(k*(x1*cos(theta)+yl*sin
(theta))-2*pi*freq*time(nt))...
*(time(nt)>(x1*cos(theta)+yl1*sin
(theta))/vc);
if abs(y1-y0)>1e-10 %vertical boundary
Hop=Hop-cos(theta)/eta*sin(k*(x0*cos
(theta)+y2*sin(theta))-2*pi*freg*time(nt))...
(1-2(y1>y0))*(time(nt)>
(xO*cos(theta)+y2*sin(theta))/vc);
else %horizontal boundary
Hop=Hop-sin(theta)/eta*sin(k*(x2*cos
(theta)+y0*sin(theta))-2*pi*freq*time(nt))...
(1-2(x0>x1))*(time(nt)>
(x2*cos(theta)+y0*sin(theta))/vc);
end;
end;
if t(4,el)==region(10) && t(4,0p)==region(9)
x0=p(1,t(j,el))-boundary8h;
y0=p(2,t(j,el))-boundary6h;
x1=p(1,t(j+1-3*(j+1>3),el))-boundary8h;
y1=p(2,t(j+1-3*(j+1>3),el))-boundary6h;
x2=p(1,t(j+2-3*(j+2>3),el))-boundary8h;
y2=p(2,t(j+2-3*(j+2>3),el))-boundary6h;
EopO=Eop0+1*sin(k*(x0*cos(theta)+y0*sin
(theta))-2*pi*freq*time(nt))...
*(time(nt)>(x0*cos(theta)+y0*sin

80

(theta))/vc);

Eopl=Eopl+1*sin(k*(x1*cos(theta)+yl*sin

(theta))-2*pi*freq*time(nt))...

(theta))/vc);

*(time(nt)>(x1*cos(theta)+yl*sin

if abs(y1-y0)>1e-10 %vertical boundary
Hop=Hop+cos(theta)/eta*sin(k*(x0*cos

(theta)+y2*sin(theta))-2*pi*freg*time(nt))...

(1-2(y1>y0))*(time(nt)>

(xO*cos(theta)+y2*sin(theta))/vc);

else %horizontal boundary

Hop=Hop+sin(theta)/eta*sin(k*(x2*cos

(theta)+y0O*sin(theta))-2*pi*freg*time(nt))...

(1-2(x0>x1))*(time(nt)>

(x2*cos(theta)+y0*sin(theta))/vc);

end;
end;
if t(4,el)==region(10) && t(4,0p)==
EopO=-Et());
Eopl=-Et(j+1-3*(j+1>3));
Hop=Ht(j);
end;
if t(4,el)==region(11)
Eop0=0;
Eop1=0;
Hop=0;
end;
end;
temp=eta*(Hop-Ht(j))*3+(EopO0-Et()))
temp=temp+(Eopl-Et(j+1-3*(j+1>3)))* (1+(i=

temp=temp*I(el,j)/6*(1-(i==j+2-3*(j

Fe(i)=Fe(i)+temp;
temp=(Hop-Ht(j))*2;

temp=temp+(1/eta)*(EopO-Et(j)+Eop1-
Fh(i)=Fh(i)+temp*I(el,j)/2*(i==})/(

end;end;

%second-order Runge-Kutta method

Jt/eps;

%Runge-Kutta a
Erka=1/eps*Met*(Set*Hzt+Fe)-(sx(el)+sy(el))*Et-sx(e

Hzrka=Mht*((-Sht*Et+Fh)/mu-Mhpt*Hzt-Mhqt*H1t);
Elrka=Et;

Hlrka=Hzt-Mht*Mhwt*H1t;

Jt=(3t+J(el,:,nt+1)")/2;

%Runge-Kutta b
Erkb=1/eps*Met*(Set*(Hzt+Hzrka*dt/2)+Fe)- (sx(el)+sy

(Et+Erka*dt/2)-sx(el)*sy(el)*(E1t+Elrka*dt/2)-Jt/ep

Hzrkb=Mht*((-Sht*(Et+Erka*dt/2)+Fh)/mu- Mhpt*(Hzt+Hz

(H1t+H1rka*dt/2)):

end;
end;
Edpml=Ed;

Elrkb=Et+Erka*dt/2;
H1rkb=Hzt+Hzrka*dt/2-Mht*Mhwt*(H1t+H1rka*dt/2);
%update next values

E(el,:,nt+1)=(Et+Erkb*dt)’;
El(el,:;,nt+1)=(E1t+Elrkb*dt)";
H1(el,:,nt+1)=(H1t+H1rkb*dt)"
Hz(el,:,nt+1)=(Hzt+Hzrkb*dt)';
H(el,:,nt+1)=(Hzt+Hzrkb*dt-Mht*Mhwt*(H1t+H1rkb*dt))

81

*(L+(i==]);
=j+1-3*(j+1>3)));
+2>3)))/(eta+eta);

Et(j+1-3*(j+1>3)));
1/etat+1/eta);

I)*sy(el)*E1t-

(el))*
rka*dt/2)-Mhqt*

