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ABSTRACT

This thesis presents the mathematical derivation and implementation of, and

improvements to, the discontinuous Galerkin method (DGM) for solving Maxwell’s equations.

Each step leading to the development of a computer code for this method is explained in detail,

and samples codes are included in the Appendix. This work also shows numerical results of

several experiments with the method, namely: simulation of simple electromagnetic problems

with a known analytical solution for comparison and error analysis; comparison of different time

discretization schemes, which are not strictly part of DGM; reduction of computation time with

the use of adaptive time steps; and analysis of accuracy of absorbing boundaries in scattering

problems. A discussion listing advantages and limitations of DGM concludes this work.
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1. INTRODUCTION

The solution of electromagnetic problems is an essential part of the development of many

new technologies, such as stealth airplanes, medical imaging devices, and a wide range of

components used in telecommunications. The increasing demand for these technologies creates

more complex problems, in which Maxwell’s equations cannot be solved analytically and so

require numerical methods.

Some of the current numerical methods for solving Maxwell’s equations are based on

finite difference schemes, which approximate derivatives. Standard finite difference schemes

require a rectangular grid, imposing a strong limitation on the geometry of the problem.

Nevertheless, these schemes are still often used because they enable very fast simulations and

low storage. Other numerical methods are based on finite elements and basis functions, into

which the main functions are decomposed, and the derivatives are calculated exactly. Finite

elements provide a greater geometrical flexibility and thus better accuracy than finite difference

schemes, but require more memory and longer simulations, because the use of basis functions

involves matrix calculations.

A method that has recently been introduced to solve electromagnetic problems is the

discontinuous Galerkin method (DGM). It was first proposed by Reed and Hill in 1973 to solve

the neutron transport equation [1], and since then, the method has been analyzed further

regarding convergence and stability, and more recently it has been applied to various areas, such

as fluid dynamics, acoustics, and electromagnetism [2]. DGM is also based on finite elements,

but it can achieve fast simulations by greatly reducing the order of matrices. The values are

calculated separately in each element, and any differences in adjacent elements are considered

through numerical fluxes across the boundary between elements. The inclusion of numerical

fluxes also facilitates the treatment of external boundaries. DGM only concerns the spatial

derivatives in Maxwell’s equations, and the time derivatives are usually dealt with using

advanced finite difference schemes, such as the Runge-Kutta method.

Some challenges exist in the application of DGM to Maxwell’s equations. For example,

to achieve stability, a certain relation between the element sizes and time steps must be satisfied,

and this requirement often results in longer simulations if there is considerable variation in

element sizes. One successful proposal to overcome this limitation is to use adaptive time steps

[3]. In scattering problems, another challenge is the need for a fictitious absorber, such as the
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perfectly matched layer (PML), which has also been applied to DGM [4]. The PML is very

efficient in absorbing incoming waves, but it requires many additional variables. These

challenges are not necessarily disadvantages of DGM, since they are present in other numerical

methods as well. However, some methods may be more efficient depending on specific

problems. For instance, the method of moments is often preferred for scattering problems, since

it does not need an absorber [5].

This work presents the theoretical basis of DGM, suggestions for its implementation,

examples of results, and improvements. Chapter 2 gives an overview of Maxwell’s equations and

of a finite difference scheme, defines basis functions, and discusses the finite element method.

This discussion is necessary for a better understanding of DGM. Chapter 3 presents a detailed

derivation of DGM applied to Maxwell’s equations, including the derivation of the numerical

flux, for use in two-dimensional problems. Chapters 4–6 concern different time discretization

schemes, implementation of variables, sources and boundaries, and validation of the method

through some problems. Chapter 7 suggests some improvements, such as adaptive time steps,

and shows the formulation of the PML, with examples. A discussion of the advantages and

limitations of DGM concludes this work.
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2. MAXWELL’S EQUATIONS AND NUMERICAL METHODS

Electromagnetic phenomena are described by Maxwell’s equations. In integral form, they

are

C S
d d

t
E l B s�

⌠ ⌠⌠
 
⌡ ⌡⌡

∂⋅ = − ⋅
∂

(2.1)

C S S
d d d

t
H l D s J s�

⌠ ⌠⌠ ⌠⌠
  
⌡ ⌡⌡ ⌡⌡

∂⋅ = ⋅ + ⋅
∂

(2.2)

 
VS

d dvD s� ρ⌠⌠ ⌠⌠⌠

⌡⌡⌡⌡⌡

⋅ = (2.3)

0
S

dB s�
⌠⌠

⌡⌡

⋅ = (2.4)

where E is the electric field intensity, H is the magnetic field intensity, D is the electric flux

density, B is the magnetic flux density, J is the electric current density, and ρ is the electric

charge density. When solving electromagnetic problems, it is often desirable to use the

divergence theorem to transform these equations into differential form:

t

B
E

∂∇ × = −
∂

(2.5)

t

D
H J

∂∇× = +
∂

(2.6)

D ρ∇ ⋅ = (2.7)

0B∇ ⋅ = . (2.8)

In this form, the equations must be accompanied by a set of boundary conditions, which concern

field discontinuities on an interface between different materials:

( )1 2ˆ 0n E E× − = (2.9)

( )1 2ˆ sn H H J× − = (2.10)

( )1 2ˆ sn D D ρ⋅ − = (2.11)

( )1 2ˆ 0n B B⋅ − = (2.12)

where the subscripts 1 and 2 refer to the media on each side of the interface, n̂ denotes the normal

to the interface, sJ  is the surface current density, and sρ  is the surface charge density, existing on

the boundary.

The solution of a set of differential equations is generally not simple, especially in the

case of Maxwell’s equations, since they involve two functions of four variables: E and H both

depend on the three space coordinates and on time. Therefore, several numerical methods exist to
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solve such equations. One of the simplest methods is the finite difference method in time domain

(FDTD), which approximates all derivatives with divisions:

( ) ( ) ( ) ( )
0

lim
x

f x x f x f x x f xdf

dx x x∆ →

+ ∆ − + ∆ −
= ≈

∆ ∆
. (2.13)

This method enables very fast simulations when compared to other methods. However, it

requires a constant ∆ for each variable, which poses a strong limitation on the geometry of the

problem. For example, in a two-dimensional problem with constant ∆x and ∆y, a circle must be

discretized with small rectangles, resulting in low accuracy. A better approximation could be

obtained with triangles, as shown in Figure 2.1 below, but the standard  FDTD does not support

this kind of discretization.

                  

Figure 2.1: Circle discretized with rectangles and with triangles.

The finite element method (FEM) is more flexible than FDTD regarding the geometry of

the problem, as FEM allows a discretization of the region of interest into any kind of elements,

including triangles. Instead of approximating the derivatives, this method consists of

approximating the fields in each element with a superposition of basis functions, whose

derivatives can be calculated exactly. Before introducing FEM, an overview of basis functions is

provided below.

2.1 Basis Functions

In a two-dimensional numerical problem, the region where the calculations are performed

can be discretized into small elements, usually polygons with the same number of sides,

generating a mesh. Triangles are most often used for this purpose for their ability to approximate
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any planar shape with good accuracy, as shown in Figure 2.1 above. An example of a triangular

element is presented in Figure 2.2 below.

Figure 2.2: Triangular element.

In each element, a scalar field can be approximately expanded with basis functions:

( ) ( ), ,
i i iE x y E N x y≈∑ , where iE  is the value of the field at vertex, or node, i, and iN  is the basis

function associated with that node. Therefore, to satisfy iE E=  at node i, the basis function must

have the value 1iN =  at node i and 0iN =  at the other nodes. In the rest of the element, the basis

functions can be defined by interpolation polynomials. For a linear interpolation in a triangular

element, the basis functions are [6]

( ),
2

i i i
i

a b x c y
N x y

+ +=
∆

(2.14)

where

1 2 2 1i i i i ia yx y x+ + + += − (2.15)

1 2i i ib yy + +−= (2.16)

2 1i i ic xx + +−= (2.17)

1, 2, 3i = , and ∆ is the area of the triangle, given by

1 1

2
i i i ib c b c+ +−∆ = . (2.18)

In this notation, whenever the subscripts 1i +  and 2i +  result in a value higher than 3, the sum is

decreased by 3. For example, if 2i = , 1ix +  represents 3x , and 2ix +  represents 1x .

It can be observed that Equation (2.14) satisfies the desired property of a basis function,

as ( ), 1i i iN x y =  and ( ) ( )1 1 2 2, 0,i i i i i iN x Ny x y+ + + += = . Also, Equation (2.18) results in the same

value for any i.

A vector field can also be expanded with basis functions: ( ) ( ), ,i ii
x y E x yE N≈ ∑ , where
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iE  is the magnitude of the tangential component of the field at side, or edge, i, and iN  is the basis

function associated with that edge. Each vector basis function should have a constant tangential

component along its associated edge, have only a normal component along the other edges, and

vary linearly from 1iN =  at edge i to 0iN =  at the opposite node. To ensure these properties [6],

( ) ( )1 1,i i i i i i i ix l N N Ny NN + += ∇ − ∇ (2.19)

where iN  is a scalar basis function, and il  is the length of edge i,

( ) ( ) 2 2
2

2

1 2

2

1i i i i i i il x yx y b c ++ ++ − −= + = + . (2.20)

For iN  defined in (2.14), (2.19) reduces to

( ) ( ) ( )2 22
, ˆ ˆi

i i i

l
x xy yy y x xN + +− = + − ∆

. (2.21)

Along edge i, there is only one point where iE E= . It is the point where the basis function

is completely tangential to its edge. To be at edge i, the point must satisfy

1 1

i i

i i i i

y y x

x

x

y xy+ +

− −=
− −

(2.22)

and for iN  to be tangential to the edge, the point must also satisfy

( )( ) ( )( )2 1 2 1i i i i i iy yy y x xx x+ + + += −− − − . (2.23)

The solution of these two equations is

2 2
22

i

i
i

b
x x

l
+

+
∆= − (2.24)

2 2
22

i

i
i

c
y y

l
+

+
∆= − . (2.25)

A line segment from this point to the opposite node is perpendicular to the edge, as shown in

Figure 2.3 below.

Figure 2.3: Points where the basis functions are tangential to their edges.
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2.2 Finite Element Method

Many electromagnetic problems involve the solution of the first two Maxwell’s

equations. Using the constitutive relations,

D Eε= (2.26)

B Hµ= (2.27)

J Eσ= (2.28)

and adding another term J for a current source, first two Maxwell’s equations can be written as

t

E
H E Jε σ∂ = ∇× − −

∂
(2.29)

t

H
Eµ ∂ = −∇×

∂
(2.30)

where ε is the electric permittivity, µ is the magnetic permeability, and σ is the electric

conductivity. This set of equations has two unknown functions, the electric and magnetic fields.

To discretize them, the fields and sources in each element can be expanded in terms of basis

functions: j Ejj EE N≈∑ , j Hjj HH N≈∑ , j Ejj JJ N≈∑ , where EjN  and HjN  are basis functions for

the electric and magnetic fields, respectively. EjN  and HjN  may be different from each other; for

example, in a problem where ˆzE zE =  and ˆ ˆx yH x H yH = + , the basis functions should be

ˆEj jN zN =  and Hj jN N= , where jN  is a scalar basis functions associated with a node, and jN  is a

vector basis function associated with an edge, as explained in the previous section.

Applying the basis function expansion, the equations for the fields at each element

become

( )j Ej j Ejj jj Hj j EE J H
t

N N N rε σ∂ + + − × ≈∇ ∂ 
∑ ∑ ∑ (2.31)

( )j Hj j Ejj j HH E
t

N N rµ ∂ + × ≈∇
∂
∑ ∑ (2.32)

where Er  and Hr  are the residuals due to the approximation. The Galerkin method in FEM

consists of minimizing the weighted residual, which is the product of the residual by a weighting

or test function, integrated over the entire element. The test functions are chosen to be the same

as the basis functions. Thus, Equations (2.31) and (2.32) are multiplied by a basis function and

integrated, and since vector functions are used in this case, the multiplication takes the form of a

scalar product:
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( )j Ej j Ej j H Ej E Ei Eij j j iE J H d d R
t

N N N N r Nε σ
Ω

Ω

⌠
⌠ 

 ⌡
⌡

 ∂ + + − ∇× ⋅ Ω = ⋅ Ω =  ∂  
∑ ∑ ∑ (2.33)

( ) Hi Hj Hj j Ej H ij j HiH E d d R
t

N N N r Nµ
Ω

Ω

⌠
⌠ 

 ⌡
⌡

∂ + ∇× ⋅ Ω = ⋅ Ω = ∂ 
∑ ∑ (2.34)

where EiR  and HiR  are the weighted residuals associated with node or edge i of the element, and Ω

represents the area of the element. With some substitutions, a set of matrix equations can be

formed:

[ ]{ } [ ]{ } [ ]{ } { }E E E EM E M J S H R
t

ε σ∂ + + − = ∂ 
(2.35)

[ ]{ } [ ]{ } { }H H HM H S H R
t

µ ∂ + =
∂

(2.36)

where { }E , { }H , { }J , { }ER  and { }HR  are vectors containing the values of the electric and magnetic

fields, the electric current source and the weighted residuals, respectively, [ ]EM  and [ ]HM  are

called mass matrices, and [ ]ES  and [ ]HS  are called stiffness matrices, whose elements are given by

jEij i EEM dN N
Ω

⌠

⌡

= ⋅ Ω (2.37)

( )Eij Hj EiS dN N
Ω

⌠

⌡

= ∇× ⋅ Ω (2.38)

jHij i HHM dN N
Ω

⌠

⌡

= ⋅ Ω (2.39)

( )Hij Ej HiS dN N
Ω

⌠

⌡

= ∇× ⋅ Ω . (2.40)

It is important to note that the pair of Equations (2.35) and (2.36) above refers to each

element separately, so { }ER  and { }HR  are not exactly the residuals to be minimized. Since most

nodes and edges belong to more than one element, the sum of all residuals referring to a node or

edge should be added, and this sum is the one to be minimized. This addition can be

accomplished by combining the pairs of matrix equations for each element into one pair of

matrix equations for the entire region of interest. In this combined system, the weighted residuals

can be set to zero:

[ ]{ } [ ]{ } [ ]{ } 0E E EM E M J S H
t

ε σ∂ + + − = ∂ 
(2.41)

[ ]{ } [ ]{ } 0H HM H S H
t

µ ∂ + =
∂

(2.42)

which can be solved with matrix inversion. With this combination of matrices, the whole system

reduces to one pair of matrix equations, but the order of matrices and vectors becomes very large,
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as this order is the number of nodes or edges in the entire region of interest, not in just one

element. However, since each node or edge belongs to only a few elements, the resulting

matrices are sparse, meaning that most values in the matrices are zero.

Hence, the FEM formulation usually generates very large and sparse matrices. Although

many computational methods exist to deal efficiently with sparse matrices, their large orders

usually result in large memory and time requirements. For example, for a matrix of order n, the

memory required to store it is proportional to 2n , and standard algorithms to invert matrices take

a computation time proportional to 3n .

The discontinuous Galerkin method (DGM) is essentially a modification of the Galerkin

method in FEM. The main advantage of DGM over FEM is that it solves the matrix equations

separately for each element, similarly to (2.35) and (2.36). Thus, DGM requires lower

computation costs, as the matrices involved in the calculations have low orders. The details of

this method are explained in the next chapter.
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3. DISCONTINUOUS GALERKIN METHOD

To solve a system of differential equations with DGM, it must be first written in a

conservation form, meaning that the sum of all changes equals zero:

( )Q 0
t

q
F q S

∂ + ∇ ⋅ − =
∂

. (3.1)

Maxwell’s equations fit this form with the following substitutions:

0
Q ,  ,  

0 0

E E J
q S

H

ε σ
µ

− −     
= = =     
     

(3.2)

( ) ( ) ˆ ˆ ˆ
ˆ ˆ ˆ  

ˆ ˆ ˆ

x y z
x y z

x y z

H H H H
F q F q

E E E E

−∇× − × − × − ×       
∇ ⋅ = ∴ = + +       ∇× × × ×       

. (3.3)

The fields and sources in each element are approximated with a basis function expansion:

jj j EEE N≈∑ , jj j HHH N≈∑ , jj j EJJ N≈∑ . As in FEM, this approximation creates a residual:

( )Q
t

q
F q S r

∂ + ∇ ⋅ − =
∂

. (3.4)

Instead of minimizing the residuals, as in the Galerkin method in FEM, DGM calculates

the fields separately in each element and uses the discontinuity of fields between adjacent

elements:

( ) ( )*ˆQ i id n d
t

q
F q S N F F N�

Γ
Ω

⌠
⌠ 

 ⌡
⌡

∂ + ∇ ⋅ − ⋅ Ω = ⋅ − ⋅ Γ ∂ 
(3.5)

where

Ei
i

Hi

N
N

N
 

=  
 

(3.6)

Γ is the contour that defines the area Ω of the element, n̂ is a unit vector normal to Γ, and *−F F

is called the numerical flux. Only its normal component ( )*n̂ ⋅ −F F  is used in this method, so for

simplicity the name numerical flux can also be used to refer to this component.

The specification of *F  starts with the Rankine-Hugoniot condition from the theory of

Riemann solvers [2]:

( ) ( ) ( )Q 0i q q q q
+−− +−Λ − + Π − Π = (3.7)

where n̂q FΠ = ⋅ , and iΛ  is an eigenvalue of 1Q− Π ( iΛ  is actually a matrix and not a scalar

eigenvalue, since 1Q− Π  is a block matrix). The superscripts indicate the two sides of the

boundary Γ: q− represents the fields at the boundary, within the element defined by Γ; q+
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represents the fields at the same boundary, but within an adjacent element, as shown in Figure

3.1 below. The same notation can be used for ε and µ.

Figure 3.1: Fields at adjacent elements.

Assuming that iΛ  may have three values, –Λ, Λ or 0, Equation (3.7) can be generalized

with intermediate states, represented by the superscripts * and **:

( ) ( ) ( ) ( )**Q 0q q q q
− −−Λ − + Π − Π = (3.8)

( ) ( )* ** 0q qΠ − Π = (3.9)

( ) ( ) ( ) ( )****Q 0q q q q
+ ++−Λ − + Π − Π = (3.10)

which reduce to

( ) ( ) ( ) ( )**Q 0q q q q
− −−Λ − + Π − Π =  (3.11)

( ) ( ) ( ) ( )**Q 0q q q q
+ ++−Λ − + Π − Π = . (3.12)

The numerical flux is obtained with the relation ( )**n̂ F q⋅ = Π , from the definition of Π.

To find the numerical flux for Maxwell’s equations, first the matrix Π and the

eigenvalues iΛ   must be found using the variables F, Q and q defined in Equation (3.2), before

the system (3.11–3.12) can be solved. Since the matrix Π is defined by n̂q FΠ = ⋅ , it can be

expressed by

0 N

N 0

− 
Π =  

 
(3.13)

where ˆN nE E= × , ˆN nH H= × . Using the notation 
x

y

z

E

E

E

E
 
 =  
  

, 
x

y

z

H

H

H

H
 
 =  
  

, N can be expressed by

11

E–

Η
–

ε–

µ–

E+

Η
+

ε+

µ+

Γ

Ω



0

N 0

0

z y

z x

y x

n n

n n

n n

 −
 = − 
 − 

(3.14)

where xn , yn  and zn  are the components of n̂. It is important to observe that N is singular,

antisymmetric, and that 3N N= − . The matrix 1Q− Π  is

1 0 0 N 0 N1
Q

0 N 0 N 0

µ ε
ε µµε

− − −     
Π = =     

     
(3.15)

and its eigenvalues can thus be found with the following equation:

2
2 N

det 0i µε
 
Λ + = 
 

. (3.16)

One solution is 0iΛ = . Other solutions can be found by

42
2 2N N

Ni i c
µε µε

Λ = − = ∴ Λ = ± (3.17)

where 
1

c
µε

= . Therefore, in Equations (3.8) to (3.12), 2NcΛ = . Solving (3.11) and (3.12), we

have

( ) ( ) ( ) ( ) ( )2 2 2 4*Q Q N Q N Q N Q Q Nc c c c c cq q q q q
+−−+ + + + + + − +− −− − −+ Π = Π + Π + − . (3.18)

In the first three terms of (3.18), the vectors q are multiplied by Π and 2N , so in effect 3N

multiplies E and H, while in the fourth term the fields are multiplied by 4N . Although N has no

inverse, the factor 2N  can be removed from all four terms in the equation because N is

antisymmetric. Defining Z µ ε=  and Y ε µ= , Equation (3.18) can be written as

( )
( )

*
ˆ ˆˆ ˆ0 0 0 0

ˆ
ˆ ˆˆ ˆ0 0 0 0

n nY Y Y n Y n Y Y
n

n nZ Z Z n Z n Z Z

− ++ − + − − + + −

− ++ − + − − + + −

             × × −+ − × − ×
⋅ = + +              × × −+ × ×             

E EH H
F

H HE E .

(3.19)

Solving for *n̂ ⋅F  yields

( )

( )
*

ˆ
ˆ

ˆ
ˆ

ˆ

Z Z n
n

Z Zn
Y Y n

n
Y Y

H H E E

F
E E H H

+ + − − − +

+ −

+ + − − − +

+ −

 + − × −
− × + ⋅ =
 + + × −

× + 

(3.20)

which can be used to find the term ( )*n̂ ⋅ −F F  in (3.5):
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( )
( ) ( )

( ) ( )
* *

ˆ
ˆ

ˆ
ˆ ˆ

ˆ ˆ
ˆ

E

H

Z n
n

n Z Zn n
n Y n

n
Y Y

+ + − + −

− + −

− + + − + −

+ −

 − − × −
×    − × + ⋅ − = − ⋅ = =   ×  − + × −    − × + 

H H E E
GH

F F F
GE E E H H

. (3.21)

With the numerical flux defined, the system in (3.5) can be separated into two equations:

EEi Eid d
t

E J H N G N�ε σ
Γ

Ω

⌠
⌠ 

 ⌡
⌡

 ∂ + + − ∇× ⋅ Ω = ⋅ Γ  ∂  
(3.22)

i HiHH d d
t

H
E N G N�µ

Γ
Ω

⌠
⌠ 

 ⌡
⌡

∂ + ∇× ⋅ Ω = ⋅ Γ ∂ 
(3.23)

with EG  and HG  defined in (3.21). Applying the basis function expansion to (3.22), we have

( )j Ej j Ej j Hj EEi Eij j j
E J H d d

t
N N N N G N�ε σ

Γ
Ω

⌠
⌠ 

 ⌡
⌡

 ∂ + + − ∇× ⋅ Ω = ⋅ Γ  ∂  
∑ ∑ ∑

( )Ei Ei Ej j Ej j ij Hj Ej E J d H d d
t

N N N N G N�ε σ
ΓΩ Ω

⌠⌠ ⌠
 
⌡⌡ ⌡

 ∂ + + ⋅ Ω = ∇× ⋅ Ω + ⋅ Γ  ∂  
∑ ∑

Eij j Eij jj j Eij j EijM E M J S H F
t

ε σ∂ + + = + ∂ 
∑ ∑ ∑ (3.24)

where

jEij i EEM dN N
Ω

⌠

⌡

= ⋅ Ω (3.25)

( )Eij Hj EiS dN N
Ω

⌠

⌡

= ∇× ⋅ Ω (3.26)

EiEi EF dG N�
Γ

⌠

⌡

= ⋅ Γ . (3.27)

Equation (3.24) can also be written in matrix form:

[ ]{ } [ ]{ } [ ]{ } { }E E E EM E M J S H F
t

ε σ∂ + + = + ∂ 

{ } [ ] [ ]{ } { }( ) { } { }1

E E EM S H F E JE

t

σ
ε

− + − −∂
=

∂
(3.28)

where [ ]EM  is called the mass matrix, [ ]ES  is called the stiffness matrix, and { }EF  is the numerical

flux vector. Similarly, (3.23) becomes

[ ]{ } [ ]{ } { }H H HM H S E F
t

µ ∂ = − +
∂

{ } [ ] [ ]{ } { }( )1

H H HM S E FH

t µ

− − +∂
=

∂
(3.29)

where the elements of [ ]HM , [ ]HS  and { }HF  are similar to (3.25–3.27), but with the subscripts E
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and H switched.

The evaluation of the mass and stiffness matrices and the numerical flux vector depends

on the choice of basis functions. Two cases are considered at the end of this chapter: transverse

magnetic (TM) and transverse electric (TE), in two dimensions.

Equations (3.28) and (3.29) calculate the fields in each element separately, and the

numerical flux accounts for the differences in the fields at adjacent elements. Thus, in DGM, a

set of matrix equations must be solved for each element, as opposed to one set for the entire

system in FEM. However, the order of matrices and vectors used in DGM is much smaller, since

this order is the number of nodes or edges in one element, not in the entire region of interest.

This result is the main advantage of DGM: both the memory required to store all values and the

time to perform all computations vary linearly with the number of elements.

Another important observation is that, since the fields are calculated separately in each

element, more than one value is obtained for the fields at the boundaries between elements. In

other words, the calculated fields are discontinuous, and this aspect is reflected in the name of the

method.

3.1 Transverse Magnetic

In a two-dimensional transverse magnetic (TM) problem, the basis functions are

ˆEi iN zN =  and Hi iN N= , where iN  is a scalar basis function and iN  is a vector basis function. For

triangular elements with linear interpolation, these basis functions are defined in (2.14–2.21).

Using this discretization, the elements of the mass and stiffness matrices and of the numerical

flux vector are evaluated as

( ),1
12Eij i j i jdNM N δ

Ω

⌠

⌡

∆= Ω = + (3.30)

( ) ˆ 
2 2 3

jy j j j
Eij j i i i

jxN N l l l
S N z d N d N d

x y
N

Ω
Ω Ω

⌠ ⌠
⌠  
  ⌡  

⌡ ⌡

∂ ∂   
= ∇× ⋅ Ω = − Ω = + Ω =   ∂ ∂ ∆ ∆   

(3.31)

( ) ( )

( ), , , 1 1
1

ˆ
ˆˆ ˆ  

j j j

Ei E

op j j op j j op j j
i i j

i i

j i j

Z n
F N z d n N z d

Z Z

Z H H E E E E
N d N N d N N d

Z Z Z Z Z Z

Γ
Γ

Γ Γ

+ + − + −

+ −

+
+ +

++ − + − Γ+ −

⌠
⌠ 

⌡
⌡

⌠ ⌠⌠
  
⌡ ⌡ ⌡

− − × −
= ⋅ Γ = × ⋅ Γ

+
 − − −
 = Γ + Γ + Γ

+ + +  
∑

H H E E
G� �
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( ) ( ) ( ) ( )( ) ( )
( )

, 2

, , , , 1 1 , 1

1
3 1 1

6

j i j

op j j op j j i j op j ij j j

l
Z H H E E E E

Z Z

δ
δ δ ++

+ + + + −

−
 = − + − + + − +  +

∑

(3.32)

( )( ) ( ) ( )

11
1 1

11
1 1

, 1, 1 , 1, , 1 , 1 , 2

2 2 2 2

2 2 2 2

1 1 1
48

jji i
Hij i j i i i j

ji i
i i i j

i j
i j i j i j i j i j i

j j

j
j

j

j

j i

c cc c
M d l N N l N N

b bb b
l N N l N N d

l l
f f f fδ δ δ

++
+ +

++
+ +

+ + + + + +

Ω
Ω

⌠
⌠ 
 ⌡ 

⌡

   = ⋅ Ω = − −   ∆ ∆ ∆ ∆   

  + − − Ω  ∆ ∆ ∆ ∆   

 = + + − + − + ∆

N N

(3.33)

( )

( )

 

1 1
1 1 , 1

ˆ

3 1
2 2 2 2 2 2 6

j j
Hij j i

j ji i i i i
i i i i i

y

i j

ix i

i

N N
S N z d N N d

y x

c bb b c c l
l N N l N N d δ+ +

+ +

Ω
Ω

Ω
+

⌠
⌠ 
 ⌡ 

⌡

⌠


⌡

∂ ∂ 
= ∇× ⋅ Ω = − Ω ∂ ∂ 

    = − − − Ω = −    ∆ ∆ ∆ ∆ ∆ ∆    

N

(3.34)

( ) ( )

( ) ( )

( ) ( ) ( )

, , 1 1,
1 ,

,
, , , 1 1

ˆ
ˆ  

2 .
2

j j j

Hi H i i

op j j op j jop j j
j j i j

j i j

j

op j j op j j op j jj

Y n
F d n d

Y Y

Y E E Y E EH H
d N d N d

Y Y Y Y Y Y

l
H H Y E E E E

Y Y

δ

δ

Γ
Γ

Γ

+ + − + −

+ −

+ +
+ +

++ − + − + −

+
+

Γ Γ

+ + −

⌠
⌠ 

⌡
⌡

⌠ ⌠⌠
  
⌡ ⌡ ⌡

− + × −
= ⋅ Γ = − × ⋅ Γ

+
 − −−
 = Γ + Γ + Γ

+ + +  

 = − + − + −  +

∑

∑

E E H H
G N N� �

(3.35)

In the expressions above, { }, 1,2,3i j ∈ , and whenever a sum involving one of these indices results

in a value higher than 3, the result is decreased by 3. The subscript op,j refers to the field at the

element opposite to edge j. The binary function ,i jδ  is defined by

,

0 , if 

1 , if i j

i j

i j
δ

≠
=  =

(3.36)

and the function ,i jf  is defined by

,i j i j i jf b b c c= + . (3.37)

3.2 Transverse Electric

In a two-dimensional transverse electric (TE) problem, the basis functions are Ei iN N=
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and ˆHi iN zN = . The mass and stiffness matrices in this case are very similar to the ones in the TM

case, but with the subscripts E and H switched. The numerical flux vector is also similar to the

previous case, as shown below.

( )( ) ( ) ( ), 1, 1 , 1, , 1 , 1 , 21 1 1
48

i j
Eij i j i j i j i j i j i j i j i j

l l
M d f f f fN N δ δ δ

Ω + + + + + +
⌠

⌡

 = ⋅ Ω = + + − + − + ∆
(3.38)

( ) ( ) , 1ˆ 3 1
6
i

Eij j i i j

l
S N z dN δ

Ω
+

⌠

⌡

= ∇× ⋅ Ω = − (3.39)

( ) ( )

( ) ( )

( ) ( ) ( )

, , 1 1,
1 ,

,
, , , 1 1

ˆ
ˆ  

2
2

j j j

Ei E i i

op j j op j jop j j
j j i j

j i j
op j j op j j op j

j

j j

Z n
F d n d

Z Z

Z H H Z H HE E
d N d N d

Z Z Z Z Z Z

l
E E Z H H H H

Z Z

δ

δ

Γ
Γ

Γ

+ + − + −

+ −

+ +
+ +

++ − + − + −

+
+

Γ Γ

+ + −

⌠
⌠ 

⌡
⌡

⌠ ⌠⌠
  
⌡ ⌡ ⌡

− − × −
= ⋅ Γ = × ⋅ Γ

+
 − −−
 = Γ − Γ − Γ

+ + +  

 = − − − + −  +

∑

∑

H H E E
G N N� �

(3.40)

( ),1
12Hij i j i jdNM N δ

Ω

⌠

⌡

∆= Ω = + (3.41)

( ) ˆ 
3
j

Hij j i

l
S N z dN

Ω

⌠

⌡

= ∇× ⋅ Ω = (3.42)

( ) ( )

( )

( ) ( )( ) ( )( )

, , , 1 1
1

, , , , 1 1 , 1

ˆ
ˆˆ ˆ  

3 1 1

j j j

Hi H

op j j op j j op j j
i i j i j

op j j op j j i j o j

i

p

i

j i j

j

Y n
F N z d n N z d

Y Y

Y E E H H H H
N d N N d N N d

Y Y Y Y Y Y

Y E E H H H Hδ δ

+ + − + −

+ −

+
+ +

Γ
Γ

Γ ++ − + − + −

+
+ + +

Γ Γ

⌠
⌠ 

⌡
⌡

⌠ ⌠⌠
  
⌡ ⌡ ⌡

− + × −
= ⋅ Γ = − × ⋅ Γ

+
 − − −
 = − Γ + Γ + Γ

+ + +  

= − − + − + + − +

∑

E E H H
G� �

( )
( )

, 21
.

6

j i j

j

l

Y Y

δ +

+ −

−
 
  +

∑

(3.43)
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4. TIME DISCRETIZATION

The DGM formulation in the previous chapter only concerns spatial derivatives. The time

derivatives in Maxwell’s equations can be approximated, for instance, with finite difference

schemes, as in FDTD. One of these schemes is called forward difference:

{ } { } { }
1n n n

E E E

t t
+

∂ −
≈

∂ ∆
(4.1)

where { }
n

E  and { } 1n
E

+
 are the values of the field at times n and n+1, respectively, and ∆t is the

difference between these two times, also called the time step. A similar expression can be used

for { }H . Substituting these expressions in Equations (3.28) and (3.29), we obtain

{ } { } [ ] [ ]{ } { }( ) { } { }
1

1

E E En n n n n n

t
E E M S H F E Jσ

ε+

−∆  = + + − −
 

(4.2)

{ } { } [ ] [ ]{ } { }( )1

1

H H Hn n n n

t
H H M S E F

µ
−

+

∆= + − + . (4.3)

The system above yields the solution of Maxwell’s equations through DGM and forward

difference. Given initial conditions and sources, the fields at all points in the region of interest

and at any later time can be calculated.

4.1 Stability

One problem that arises from the discretization of both space and time derivatives is

stability. If the relation between ∆x, the distance between nodes, and ∆t, the interval between two

time points, is not enough to approximate the real variation of the fields, the calculated values

may increase indefinitely with time. Hence, it is necessary to find a stability condition that

involves ∆x and ∆t.

Combining Equations (4.2) and (4.3), and ignoring sources and numerical fluxes, we have

{ } { } [ ] [ ]{ } ( ) [ ] [ ] [ ][ ]{ }
2

1

2 1

1 1

E E E H E Hn n n n

tt
E E M S H M M S S E

ε µε
−

+

− −

+

∆∆= + − . (4.4)

The calculated value { } 2n
E

+
 relates to one of its previous values, { }

n
E , through the factor

( ) [ ] [ ] [ ][ ]1 1
2

E H E H

t
M M S S

µε
− −∆

. Using either (3.30–3.35) or (3.38–3.43), and considering the most

common element of each matrix, this factor becomes
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( )
( )

2 2

4

12 48
4 2

3 6

t x x c t

xxµε
∆ ∆ ∆ ∆ ∆ =  ∆ ∆ ∆

(4.5)

where 
1

c
µε

= , the speed of an electromagnetic wave in the element, and ∆x represents the

length of one of the edges of the element. To ensure stability, the factor cannot be greater than 1:
2

4 2 1
c t

x

∆  ≤ ∆ 

4 2
x

c
t

∆ ≥
∆

. (4.6)

In this derivation, the numerical fluxes were ignored, the edges were considered to have the same

length, and the matrices were substituted with their most common elements, so the stability

condition in Equation (4.6) is approximate. Therefore, the value of 4 2 may not be enough to

achieve stability, and usually a slightly higher value is used.

4.2 Runge-Kutta Method

The simple approximation of time derivatives with forward difference can be easily

implemented in a computer program with a condition loop. However, the accuracy obtained with

this method is limited because it considers that the fields vary linearly between two consecutive

points in time. Therefore, to obtain high accuracy in fields with large time variations, many

points in time are required, which results in a large memory needed to store all values as well as

a long computation time.

The Runge-Kutta method is also widely used to approximate time derivatives because of

it can often achieve the same accuracy as FDTD schemes but with fewer points in time, thus

allowing faster computations. The classical version of this method involves calculating four

additional values in each approximation, so it is also referred to as the fourth-order Runge-Kutta

method (RK4). Considering the partial differential equation

( )x
f x

t

∂ =
∂

(4.7)

where x is a function of t, and discretizing this variable with

1n nt t t+ = + ∆ (4.8)

RK4 gives a solution of x by
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( )1 2 2
6n n n n n n

t
x x a b c d+

∆= + + + + (4.9)

where

( )n na f x= (4.10)

( )2n n nb f x a t= + ∆ (4.11)

( )2n n nc f x b t= + ∆ (4.12)

( )n n nd f x c t= + ∆ . (4.13)

A simpler version, which still has a comparable accuracy, is the second-order Runge-

Kutta method (RK2):

1n n nx x b t+ = + ∆ (4.14)

where

( )n na f x= (4.15)

( )2n n nb f x a t= + ∆ . (4.16)

To apply RK4 or RK2 to Equations (3.28) and (3.29), the function x can be considered as a

vector containing both { }E  and { }H .
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5. IMPLEMENTATION

Before Equations (3.28) and (3.29) can be implemented in a computer code using the

finite difference or the Runge-Kutta method for time derivatives, a large number of variables and

parameters must be defined.

5.1 Discretized Region, Matrices and Vectors

First of all, the region of interest should contain all objects and spaces relevant to the

electromagnetic problem to be solved, including sources, scatterers, dielectrics and free space.

Once defined, the region is discretized into small elements, usually triangles, such that the

boundaries of all objects are approximated with the edges of the elements. Figure 5.1 below

shows an example of a discretized region.

Figure 5.1: Discretized region with objects.

To deal with the discretization efficiently, it is useful to number all elements and nodes

uniquely, and to generate two matrices with this information: a matrix of elements, listing all

elements and their nodes, and a matrix of nodes, listing all nodes individually and their

coordinates. While the numbering of elements and nodes is arbitrary, in the matrix of elements it

is important that the nodes be listed in the same rotation order for every element, clockwise or

counterclockwise. In other words, the specific numbers assigned to each element and node are

irrelevant, but the order in which the nodes are listed for each element must be consistent. Figure

5.2 below gives an example of how the nodes should be listed.
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element node 1 node 2 node 3
1 1 9 8
2 1 8 2
3 2 8 7
4 2 7 3
5 3 7 6
6 3 6 4
7 4 6 5
8 5 6 12
9 6 7 12
10 7 11 12
11 7 8 11
12 8 10 11
13 8 9 10
14 9 16 10
15 10 16 15
16 10 15 11
17 11 15 14
18 11 14 12
19 12 14 13
20 12 13 2

Figure 5.2: Listing of nodes for each element, counterclockwise.

The fields E and H, as well as the source J, can be stored as vectors having three indices:

element number, node number in the element, and time point. For example, the electric field at

node i of element e, at time n, can be written as ( )
,
e

i nE .

The material parameters ε, µ and σ are usually considered to be invariant within each

element, so they can be stored as vectors with only one index, the element number. Moreover, if

the problem only includes one kind of dielectric, or only free space, and any conductors are

considered perfect, the material parameters can be stored as constants.

The mass and stiffness matrices can also be stored with three indices: element number e,

and the row and column numbers i and j, for instance ( )
, ,

e
E i jM  (the subscript E is not an index).

Their values can be calculated according to the expressions in Chapter 2, and with the help of the

matrix of elements and matrix of nodes, to find the correct indices and coordinate values easily.

The mass and stiffness matrices only need to be calculated once for each element, as they do not

change with time, so they should be stored for use at every time point.

The calculation of the numerical flux vectors includes the values of the fields and

material parameters at adjacent elements, and edge lengths. Since the fields change with time, the

numerical flux vectors must also be calculated for each element and at each time point. They do

not need to be stored, since they are only used in one time point. However, just for the purpose of

notation, they can be written with three indices: element number e, row number i, and time point
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n, such as ( )
, ,
e

E i nF . In addition, to avoid recalculating the edge lengths at every time point, it is

useful to store them as vectors with two indices: element number e, and edge number i, as ( )e
il .

The fields at adjacent elements must be carefully selected when calculating the numerical

flux. Using the notation that includes all indices, as explained above, the expressions in (3.32)

and (3.35), for the TM case, are written as

( ) ( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( )( )( )

( ) ( )
( ) ( )( )

, , , , 1, ,

, 1,

,

, 2

, 1

3 1

1
1

6

e op op e op e
E i n k n j n k n j nj

e
jop e

k n

i j

i j

ij n op ej

F Z H H E E

l
E E

Z Z

δ

δ
δ +

+

++

= − − + − +


−
+ − +
 +

∑

(5.1)
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and those in (3.40) and (3.43), for the TE case, as
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+ − +
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(5.4)

In the expressions above, the index op means the element adjacent to element e, opposite to edge 

j of element e. Edge k of element op and edge j of element e are the same edge; node k+1 of op

and node j of e are the same node; and node k of op and node j+1 of e are the same node as well.

The negative signs in ( )
,
op

k nH−  for the TM case and in ( )
,
op

k nE−  for the TE case are necessary because

these fields along the edges are oriented at opposite directions in adjacent elements. Figure 5.3

gives an example of two adjacent elements with all nodes, edges, and fields indexed, for the TM

case (for simplicity, the index n is omitted in all fields).

To facilitate finding the element opposite to a certain edge, it is useful to create a matrix

whose row and column numbers are the unique numbers of the nodes, and the matrix elements

are the numbers of the elements that share that edge. For instance, denoting this matrix by A, if

the edge between nodes p and q is shared between elements e and op, then ( ), ,A A ,p q q p e op= = . If

this edge is at the end of the region of interest, and only belongs to element e, a zero can be used

to represent the second element. If two nodes do not form an edge, as is the case for most pairs of
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Figure 5.3: Adjacent elements and fields in a TM problem.

nodes, zeros can be used for both elements. When calculating the numerical flux, this matrix can

be accessed using the numbers of the two nodes that define a certain edge of the element,

returning two values: one is the number of the element itself, the other is the number of the

adjacent element opposite to the edge.

5.2 Initial Conditions and Sources

Any scheme that approximates time derivatives requires known values of the functions at

the first time point. Therefore, the values of ( )
,0
e

iE  and ( )
,0
e

iH  for all e and i must be defined, and these

initial conditions depend on the type of problem being simulated. In scattering problems, for

instance, where an electromagnetic wave is incident on an object, usually the initial values of the

fields are set to zero at all points. In a resonance problem with no sources, the initial values may

represent the desired modes to be analyzed.

In case the initial field values are not zero, and dependent on position, they must be

calculated for specific points in the elements, where the basis functions are maximum. For

example, in a TM problem using triangles as elements, zE  should be calculated at the nodes,

while xH  and yH  should be calculated at the points given by (2.24) and (2.25). Then the initial

fields ( )
,0
e

iE  and ( )
,0
e

iH  are implemented with

( )
,0
e

i zE E= (5.5)

( ) 2 2
,0

x i y ie
i

i

H c H b
H

l
+ +−

= . (5.6)
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In a TE problem, where the initially set fields are xE , yE  and zH ,

( ) 2 2
,0

x i y ie
i

i

E c E b
E

l
+ +−

= (5.7)

( )
,0
e

i zH H= . (5.8)

The values of any sources, ( )
,
e

i nJ , must be defined for all elements and time points.

5.3 External Boundaries

The calculation of the fields in DGM is done separately for each element, but the field

values at adjacent elements are needed to compute the numerical flux. However, some elements

have an edge at an external boundary of the region of interest, so there is no defined element

opposite to these edges, and no adjacent field value is available for them. Thus, the adjacent field

values at the external boundaries must be chosen or estimated. For instance, in Figure 5.4 below,

the elements having an edge at the external boundary are shaded. The element op is not defined,

and in the TM case, the values ( )op
kE , ( )

1
op

kE +  and ( )op
kH  are unknown (the index n is omitted here).

Figure 5.4: Elements at the external boundary.

5.3.1 Conductors

There are several ways to treat the fields at the external boundaries, depending on the

problem. Often an external boundary is considered as a perfect electric conductor (PEC) or a
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perfect magnetic conductor (PMC). The former models metals with high conductivity, and the

latter, although not representing any real material, is useful to study some types of propagating

waves. Both kinds of boundaries are used in cavity and waveguide problems.

Inside a PEC, the impedance and the electric field are zero. These properties can be

applied to (3.21) with 0Z + =  and 0E+ =  [7]:

ˆ ˆ

ˆ

E

H

n n

Z
n

EG

G
E

−

−

−

 × ×
   =     ×  

. (5.9)

Alternatively, this expression can be achieved with Z Z+ −= , H H+ −= , and E E+ −= − . Therefore,

in Equations (5.1) and (5.2), the adjacent fields can be set as
( ) ( )
, ,
op e

k n j nH H= − , ( ) ( )
1, ,

op e
k n j nE E+ = − , ( ) ( )

, 1,
op e

k n j nE E += − (5.10)

and in (5.3) and (5.4) as
( ) ( )
, ,
op e

k n j nE E= , ( ) ( )
1, ,

op e
k n j nH H+ = , ( ) ( )

, 1,
op e

k n j nH H += (5.11)

both with ( ) ( )op eZ Z=  and ( ) ( )op eY Y= .

Inside a PMC, the admittance and the magnetic field are zero. Applying 0Y + =  and

0H + =  to (3.21), we have

ˆ

ˆ ˆ
E

H

n

n n

Y

H
G

HG

−

−

−

 − ×
   =  × ×     

(5.12)

which is equivalent to setting Y Y+ −= , E E+ −= , and H H+ −= − . In Equations (5.1) and (5.2), the

adjacent fields can be chosen as
( ) ( )
, ,
op e

k n j nH H= , ( ) ( )
1, ,

op e
k n j nE E+ = , ( ) ( )

, 1,
op e

k n j nE E += (5.13)

and in (5.3) and (5.4), as
( ) ( )
, ,
op e

k n j nE E= − , ( ) ( )
1, ,

op e
k n j nH H+ = − , ( ) ( )

, 1,
op e

k n j nH H += − (5.14)

both with ( ) ( )op eZ Z=  and ( ) ( )op eY Y= .

5.3.2 Absorbing boundary condition

If the external boundary is not a conductor, but free space or a dielectric, the values of the

adjacent fields at the boundary are not known. One idea is to place the external boundary very far

from any sources and scatterers, such that the waves propagating from these objects will be

attenuated to small values at the boundary, and the adjacent fields there can be set to zero. This
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approach is not practical, of course, because it requires the calculation of the fields at many

additional elements, and such values are not of interest to the problem being simulated. And

more importantly, the waves, although attenuated, would be reflected back to the region and

corrupt the simulation. Therefore, a better solution is to use a smaller region and estimate the

field values at the boundary, based on assumptions about the incident waves. As explained

below, these assumptions result in an absorbing boundary condition (ABC), so called because it

minimizes reflections of incident waves on the boundary.

In a plane wave propagating in the direction â, the electric and magnetic fields are related

by

â ZE H× = , â Y× = −H E. (5.15)

To create the ABC, â must be specified. One option is to assume that the wave is normally

incident on the boundary, so ˆ ˆa n= . In this case, the ABC is

n̂ Z× =E H , n̂ Y× = −H E . (5.16)

Applying these relations to +E  and +H  in Equation (3.21), and considering no change in the

material parameters across the boundary, the numerical flux becomes

ˆ
ˆ

2
ˆ

ˆ
2

E

H

Z n
n

Z

Y n
n

Y

H E
G

G E H

− −

− −

 − ×− ×  
 =  + ×   ×  

. (5.17)

If the wave is indeed normally incident, −E  and −H  also satisfy (5.16), and this numerical flux

becomes zero. Otherwise, a small reflection will occur from the boundary. To implement the

ABC, the expression in (5.17) can be achieved by simply setting the adjacent fields to zero. In

(5.1) and (5.2):
( )
, 0op

k nH = , ( )
1, 0op

k nE + = , ( )
, 0op

k nE = (5.18)

and in (5.3) and (5.4):
( )
, 0op

k nE = , ( )
1, 0op

k nH + = , ( )
, 0op

k nH = (5.19)

both with ( ) ( )op eZ Z=  and ( ) ( )op eY Y= .

The ABC presented above results in small reflections only for plane waves at small

incident angles with the boundary. For other kinds of waves or higher angles, there are additional

methods that can be used to limit reflections. A very common method in scattering problems is

the perfectly matched layer (PML), which basically consists of a layer of variable conductivity.

This method is covered in Chapter 7.
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6. VALIDATION

The method presented in the previous chapters was implemented in a computer code,

which can be found in the Appendix. To validate the code and evaluate the method’s accuracy,

simple electromagnetic problems with known solutions were tested.

6.1 Cavity

The first problem represents a two-dimensional rectangular cavity containing free space,

surrounded by a PEC. The discretized region is shown in Figure 6.1 below.

Figure 6.1: Rectangular cavity.

The cavity in this problem has finite dimensions in the xy plane, and is considered infinite

in the ̂z  direction. Therefore, the TM fields inside the cavity are given by [8]:

( ) ( ) ( )0 ˆsin sin sinx yE k x k y t zE ω= (6.1)

( ) ( ) ( ) ( ) ( ) ( )0 0ˆ ˆsin cos cos cos sin cosy x
x y x y

E k E k
k x k y t x k x k y t y

k k
H ω ω

η η
= − (6.2)

where 0E  is the amplitude of the electric field, η µ ε= , 2 2
x yk k k= + , kcω = , and xk  and yk  are

wave numbers given by:

x

m
k

a

π= , y

n
k

b

π= (6.3)

where a and b are the horizontal and vertical dimensions of the cavity, respectively, and m and n

are integers greater than zero that define the modes.

In a completely closed cavity without any sources inside, the fields can only oscillate or

decay, so it is necessary to define an initial state for the fields, according to (6.1) and (6.2). As
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explained in the previous chapter, the coordinates used to calculate E and H are the points where

the respective basis functions are maximum; thus, they are not the same for both fields. In this

TM case, the nodes are used for the electric field, and the points given by (2.24) and (2.25), for

the magnetic field, then ( )
,0
e

iE  and ( )
,0
e

iH  are obtained with (5.5) and (5.6). The adjacent fields at the

external boundaries must be chosen appropriately for the PEC, as in (5.10).

Figure 6.2 below presents the results of the cavity simulation for several levels of space

discretization and different time discretization schemes. In this example, 1m n= = , 1 ma = , and

0.5 mb = . To satisfy the stability condition, the time step was chosen with 6x t c∆ ∆ = , where x∆

is the smallest edge in the entire region. The results show that the accuracy strongly improves

with the increase in the number of elements per wavelength, as expected. The Runge-Kutta

method provides a much lower error than FDTD, while increasing the computation time only

slightly. In this simulation, RK2 and RK4 give the same accuracy, but RK4 uses a longer

computation time than RK2, so RK4 does not provide any advantage over RK2 in this

simulation. This result occurs probably because linear basis functions are used for space

discretization, so a fourth-order would only reduce the error if the basis functions also have a

higher polynomial order.

Figure 6.2: Results of the cavity simulation with various element sizes.

Figure 6.3 shows the results of the simulation with several time steps, again for different

time discretization schemes, and about 20 elements per wavelength. Although a strong reduction

in the error is observed with the decrease in element sizes, the interval between time points does
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not seem to interfere with the accuracy significantly, as long as it is small enough to ensure

stability.

Figure 6.3: Results of the cavity simulation with various time steps.

To verify the stability condition with Figure 6.3, Equation (4.6) can be rewritten in terms

of elements per wavelength, xλ ∆ , and time steps per period, T t∆ :

4 2
x T t

c t xλ
∆ ∆= ≥
∆ ∆

. (6.4)

Therefore, in this problem, the results should become stable if 4 2 113T t xλ∆ ≥ ∆ ≈ , which is

observed in Figure 6.3.

The error in the above figures was computed with:

, ,, ,

, ,

relative error
e i n analyticale i n

analyticale i n

E E

E

−
=
∑

∑
(6.5)

where analyticalE  refers to the electric field calculated by (6.1) and (6.2) for the same position and

time as , ,e i nE . A similar expression can be used to find the error for the magnetic field.

6.2 Waveguide

Another simple two-dimensional problem with a known analytical solution is the parallel-

plate waveguide, consisting of two PEC plates separated by a fixed distance. The plates are
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considered infinite, so the cross-section used in the simulation represents in fact only a part of the

waveguide. A rectangular region can be used; however, only two of the sides of the rectangle are

closed by the PEC, while the others are open, as shown in Figure 6.4 below.

Figure 6.4: Section of parallel-plate waveguide.

Considering a wave that travels inside the waveguide in the ̂x direction, the fields at the

two open sides, for all time points, as well as the initial state in the entire region, can be set

according to the analytical solution for this problem [8]:

( ) ( )0 ˆsin siny xE k y t k x zE ω= − (6.6)

( ) ( ) ( ) ( )0 0ˆ ˆcos cos sin siny x
y x y x

E k E k
k y t k x x k y t k x y

k k
H ω ω

η η
= − − − (6.7)

where 0E  is the amplitude of the electric field, η µ ε= , ω is the angular frequency of the wave,

k cω= , 2 2
x yk k k= − , and yk n bπ= , where b is the vertical dimension of the cavity, and n is an

integer greater than zero that defines the mode in the ̂y direction. The fields are calculated at the

points where the basis functions are maximum, similarly to the previous section.

Figure 6.5 presents the results of the waveguide simulation, again for several levels of

space discretization and different time discretization schemes. In this example, 1n = , 0.5mb = ,

500MHzf = , where 2 fω π= , and 6x t c∆ ∆ = . Similarly to the cavity simulation, the increase in

the number of elements per wavelength enhances the accuracy, and the Runge-Kutta method

further reduces the error, with a slight increase in the computation time, but RK2 and RK4 result

in the same accuracy. Figure 6.6 shows the results of the simulation with several time steps, for

about 13 elements per wavelength. As in the cavity simulation, the interval between time points

is only relevant for stability. Again, the results agree with the stability condition,

4 2 74T t xλ∆ ≥ ∆ ≈ .
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Figure 6.5: Results of the waveguide simulation with various element sizes.

Figure 6.6: Results of the waveguide simulation with various time steps.

Another way to implement the fields in the waveguide is to specify them with Equations

(6.6) and (6.7) only at one open side and use an ABC at the other open side. This implementation

is more useful for real applications because it does not require a prior knowledge of the field

values at all  external boundaries. The results of the simulation with the ABC can be seen in

Figure 6.7. The error with the ABC is still acceptable, but higher than the error due only to the

discretization in Figure 6.5. A more detailed analysis of the ABC and other absorbers is given in

the next chapter.
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Figure 6.7: Results of the waveguide simulation with ABC.

Based on the results of this chapter, all the remaining simulations in this work use RK2

and 6x t c∆ ∆ = .

32



7. IMPROVEMENTS

The previous chapters explain the derivation and implementation of DGM, and show

numerical results that validate the method and the code used in the simulations. Yet, there are

some modifications that can be employed to improve the efficiency of the method. Two

improvements are discussed in this chapter: the adaptive time steps, used to reduce the

computation time in meshes with a large variation in element sizes, and the perfectly matched

layer, which reduces reflections from the external boundaries and thus improves the accuracy of

the results. The computer code used to generate the results in this chapter can be found in the

Appendix.

7.1 Adaptive Time Steps

As explained in Chapter 4, the stability condition depends on the element sizes and the

time step. The element sizes are usually chosen to provide a desired level of accuracy; for

example, they can be specified as a fraction of the wavelengths involved. After that, the time step

to be used in the calculation can be obtained with Equation (4.6). As shown in the previous

chapter, reducing the time step below the value necessary for stability does not improve the

accuracy significantly, but it increases the computation time because more steps are needed to

cover the same total time. Thus, it is desirable to choose the largest time step that ensures

stability.

The stability condition must be satisfied in all elements, so if the same time step is used

for all elements, the length of the smallest edge in the entire region should be used to calculate

the time step. This restriction is not a problem in meshes having uniform element sizes, such as

the examples in Figures 6.1 and 6.4 in the previous chapter. However, if the region includes

objects that are small compared to the wavelengths considered, or objects that have complex

shapes with small details, the elements that discretize these objects or details need to be small as

well. These small elements restrict the time step, and if other elements in the region are

considerably larger, the time spent to calculate the fields in the larger elements will be

unnecessarily long, without much gain in accuracy. Hence, a region with a large variation in

element sizes cannot be handled efficiently if the same time step is used for all elements.

One solution is to use adaptive time steps. The ideal approach would be to apply the
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stability condition to every element and find a time step for each one. However, this approach is

not practical because the fields would be calculated for different time points in each element, and

the numerical flux requires known values of the fields at the same positions and times. Thus, an

efficient approach is to define classes of elements based on their size, and the time steps used for

the classes of larger elements are multiples of those used for the classes of smaller elements [3].

Since the larger time steps are multiples of the smaller ones, the time points coincide.

The following procedure explains how the classes are defined. First, the smallest edge in

the whole region, minx∆ , is identified and used to calculate the time step mint∆  with the stability

condition. All elements whose smallest edge is smaller than, for instance, min2 x∆  belong to the

first class and their fields are calculated using the time step mint∆ . The elements whose smallest

edge is larger than min2 x∆  but smaller than min4 x∆  belong to the second class and use time step

min2 t∆ , those with edges larger than min4 x∆  belong to the third class and use min4 t∆ , and so on. In

this example the classes were divided according to powers of two, but any integer may be used.

In general, the class number of an element can be calculated with the following expression:

( )
( )
min

min

floor log
e

d

l
C e

x

  
=    ∆   

(7.1)

where ( )C e  is the class of element e, ,minel  is the smallest edge of element e, and d is the integer

used to divide the classes (in the example above, 2d = ). The function ( )floor a  returns the largest

integer that is smaller than a.

Since higher classes use longer time steps, their fields are not calculated at every time

point. For example, in elements of a class using min4 t∆ , the fields are calculated at time 4n +  from

the values at time n, and the values at intermediate times 1n + , 2n +  and 3n +  can be obtained

through interpolation [3]. Also, the numerical flux uses field values from adjacent elements,

which may belong to different classes, so the fields in lower classes can only be calculated after

the interpolated values from higher classes are available. Therefore, it is important to observe the

order in which the fields are calculated, as illustrated in Figure 7.1, for three classes and 2d = . In

the figure, this order is denoted by the number on the top left corner of each rectangle. The fields

in each rectangle can only be computed after those in rectangles with lower numbers are

available. The calculation starts with known nE  and nH  in all elements.
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Figure 7.1: Order of calculation in elements of different classes.

In the general case, starting from time 0n = , the fields in element e should be calculated if

n is a multiple of ( )C ed . If so, the fields are calculated at ( )C en d+  from the values at time n and

using time step ( )
min

C ed t∆ , then at any intermediate time points between n and ( )C en d+  through

interpolation. This procedure conforms to the order of calculation described above.

Figures 7.2 and 7.3 present a comparison between the computation time using a single

time step and using adaptive time steps. The two problems analyzed were the same as in the

previous chapter, cavity and waveguide, but using different ranges of element sizes. As expected,

the reduction in computation time increases with the ratio between largest and smallest element

sizes. The error level is not significantly changed with adaptive time steps, only slightly lower.

Figure 7.2: Results of the cavity simulation with adaptive time steps.
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Figure 7.3: Results of the waveguide simulation with adaptive time steps.

7.2 Perfectly Matched Layer

As mentioned in Chapter 5, in problems where the external boundary is not a conductor,

the field values at the boundary are not known. The ABC estimates these values assuming that

the waves at the boundary are plane waves with normal incidence. Thus, the ABC is only

accurate if the incident angles on the boundary are small. If the region of interest is kept small,

with boundaries near the sources and scatterers, high incident angles may occur, resulting in

undesired reflections from the boundary back to the region. Therefore, accurate and efficient

simulations of scattering problems require a boundary that creates no reflections, regardless of

the type of waves or incident angles.

One type of boundary that possesses such properties, at least ideally, is the perfectly

matched layer (PML), first proposed by Berenger in 1994 and applied in FDTD [9]. It has since

become one of the most popular methods to treat boundaries in scattering problems. The PML is

not a simple boundary condition as the ABC, but a layer of varying unidirectional conductivity

that attenuates the incident waves without causing reflections.

7.2.1 Split-field formulation

The first form of the PML, developed by Berenger, is called a split-field formulation,

because one of the fields in Maxwell’s equations is split into two components. This formulation

is described below for the TM case [9]:

36



yzx
x zx

HE
E

t x
ε σ

∂∂ + =
∂ ∂

(7.2)
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µ σ∂ ∂+ = −

∂ ∂
(7.4)

*y z
x y

H E
H

t x
µ σ

∂ ∂+ =
∂ ∂

(7.5)

where z zx zyE E E= + , xσ  and yσ  are the electric conductivities in the x̂ and ̂y directions,

respectively, and *xσ  and *
yσ  are the magnetic conductivities, also in each direction. The magnetic

conductivities are not physical, but they can be implemented in the fictitious PML material. The

conductivities are zero except in layers near the external boundaries of the region, such that

* 0x xσ σ= =  in horizontal layers, and * 0y yσ σ= =  in vertical layers, as shown in Figure 7.4 below.

These absorbing layers form the PML region. In most of the region of interest, the conductivities

are all zero, and Equations (7.2–7.5) reduce to the regular Maxwell’s equations for the TM case.

Figure 7.4: Conductivities in the PML regions.

The reflection factor of a plane wave incident on an absorbing layer is:

( ) 2 cosR e δση θθ −= (7.6)

where σ is xσ  or yσ , and δ is the thickness of the layer. According to this expression, the layer

could be made extremely thin, as long as a high σ is used, and the reflection factor can still be

37

main region

σx = σx
* = σy = σy

* = 0
σx ≠ 0, σx

* ≠ 0,
σy = σy

* = 0

all σ ≠ 0 PML all σ ≠ 0

all σ ≠ 0all σ ≠ 0

σy ≠ 0, σy
* ≠ 0, σx = σx

* = 0

PML

PML

PML

PML

PML PMLPML

σy ≠ 0, σy
* ≠ 0, σx = σx

* = 0

σx ≠ 0, σx
* ≠ 0,

σy = σy
* = 0



arbitrarily small. However, Equation (7.6) assumes that the conductivity varies continuously

inside the layer, which is not true in a discretized region where each element has constant

material parameters. In this case, the discontinuities between elements cause numerical

reflections, so in practice the absorbing layer should include several elements to minimize these

discontinuities. Inside the layer, the conductivities vary from zero, at the edge near the main

region of interest, to maxσ , at the external boundary. A polynomial profile is commonly used to

express the variation of the conductivities:

( ) max

nρσ ρ σ
δ
 =  
 

, ρ δ< (7.7)

where ρ is the distance to the external boundary, and n is the polynomial order. Usually, 2n =  is

enough to approximate a smooth variation [5].

The split-field formulation is useful to understand the PML idea, for its simplicity, but it

can only be easily implemented in methods using grids, such as FDTD, because the field

components are calculated separately. A different formulation is needed for methods based in

elements, as explained below.

7.2.2 Coordinate-stretching formulation

Another form of PML is derived with coordinate stretching [10]. First, Maxwell’s

equations are written in frequency domain:

i E H Eωε σ− = ∇× − (7.8)

i H Eωµ = ∇ × (7.9)

where ω is the angular frequency of the fields. Next, the curl is redefined with the following

expression:

( ) ( ) ( )ˆ ˆ ˆ1 1 1

1 1 1x y z

x y z

i x i y i z

A A A
A

ω ω ω ω ω ω
∂ × ∂ × ∂ ×

∇× = + +
+ ∂ + ∂ + ∂

(7.10)

where xω , yω  and zω  are coordinate stretching variables that attenuate waves, similarly to xσ  and

yσ  in the previous formulation. Applying the redefined curl to the Equation in (7.8),

38



( ) ( ) ( )

( ) ( )

ˆˆ ˆ ˆ1 1
ˆ ˆ ˆ

1 1

ˆ ˆ1
ˆ ˆ ˆ .

1

y z z x
x y z

x y

x y

x y z
z

H z H y H x H z
i E x E y E z

i x i y

H y H x
E x E y E z

i z

ωε
ω ω ω ω

σ
ω ω

∂ − ∂ −
− + + = +

+ ∂ + ∂

∂ −
+ − + +

+ ∂
(7.11)

The ̂x component of (7.11) is:

1 1 1 1 1 1y y y yz z z z
x x

i i H ii i H i
i E E

y z

ω ω ωω ω ωωε σ
ω ω ω ω ω ω

∂     ∂     − + + = + − + − + +          ∂ ∂          

( )

( )
( )2 .

yx z
x y z x y z z z y y

x x
x y z y z

HE H
i E E H H

i y i z i

E E
E

i i

ωε ω ω ε ω ω ε ω ω
ω ω ω

σ ω ω ω ω
ω ω

 ∂ ∂ − + + + = + − +  − ∂ − ∂ −   

 
− + + + 

− −  
(7.12)

Then the equation can be returned to time domain:

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )

1 1 1

1 2

x
y z x y z x z z z y y y

x y z x y z x

E
E E H H H H

t y z

E E E

ε ω ω ε ω ω ε ω ω

σ σ ω ω σω ω

∂ ∂ ∂+ + + = + − +
∂ ∂ ∂

− − + − (7.13)

where
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t
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∂

, 
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1x
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∂
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∂
, 

( )1
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∂
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Defining ( )1
x x x xE E Eɶ ω= + , (7.13) can be written as:

( ) ( ) ( )( ) ( )

( )

1

2 .

y z x x y z x x y x z x

yz
y z x

E E
t

HH
E

y z

ε σ ε ω ω ω σ ω ω ω ε ω ω ω ω

σω ω

∂   + + + − + + − + − −   ∂ 

∂∂+ = −
∂ ∂

ɶ

ɶɶ
(7.15)

Finally, the procedure can be repeated to the ŷ and ̂z components, and similarly to Equation

(7.9). The result is [4]:

( ) ( ) ( ) ( )1 2P P Q R
t

E E E J Hɶ ɶ ɶ ɶε σ ε σ ε σ∂ + + + + + + = ∇× ∂ 
(7.16)

( ) ( )1P Q
t

H H Eɶ ɶ ɶµ µ µ∂ + + = −∇× ∂ 
(7.17)

where the auxiliary variables Eɶ , Hɶ , ( )1E , ( )2E  and ( )1H  are defined by:

( )1WE E Eɶ = + , ( )1WH H Hɶ = + , 
( )1

t

E
E

∂ =
∂

, 
( )

( )
2

1

t

E
E

∂ =
∂

, 
( )1

t

H
H

∂ =
∂

(7.18)
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and the matrices P, Q and R are:

( )P diag , ,y z x x z y x y zω ω ω ω ω ω ω ω ω= + − + − + − (7.19)

( )( ) ( )( ) ( )( )Q diag , ,x y x z y x y z z x z yω ω ω ω ω ω ω ω ω ω ω ω = − − − − − −  (7.20)

( )R diag , ,y z x z x yω ω ω ω ω ω= (7.21)

where ( )diag , ,a b c  means a 3×3 matrix whose diagonal elements are a, b and c, and whose off-

diagonal elements are zero.

In the derivation above, the source J was omitted. Equations (7.16) and (7.17) reduce to

the original Maxwell’s equations if 0x y zω ω ω= = = , and there should not be any sources inside

the PML region, so J was included only in the final result to give general equations applicable to

the whole region of interest.

The DGM procedure in Chapter 3 can be applied to (7.16) and (7.17) to transform it into

a pair of matrix equations. Equation (7.16) becomes:

{ } [ ] [ ]{ } { } [ ]{ } [ ] ( ){ }

[ ] ( ){ } { } { }

1 1

2

E E
E EP EP EQ

ER

S F
E M H M E M M E

t

J
M E E

σ
ε ε ε

σ σ
ε ε ε

− ∂   = + − − +   ∂  

− − −

ɶ ɶ ɶ

ɶ (7.22)

where

PEPij Ej EiM dN N
Ω

⌠

⌡

= ⋅ Ω (7.23)

QEQij Ej EiM dN N
Ω

⌠

⌡

= ⋅ Ω (7.24)

RERij Ej EiM dN N
Ω

⌠

⌡

= ⋅ Ω . (7.25)

Similarly, Equation (7.17) becomes:

{ } [ ] [ ]{ } { } [ ]{ } ( ){ }1 1H H
H HP HQ

S F
H M E M H M H

t
ɶ ɶ ɶ

µ µ
−  ∂

 = − + − −  ∂  
(7.26)

where

PHPij Hj HiM dN N
Ω

⌠

⌡

= ⋅ Ω (7.27)

QHQij Hj HiM dN N
Ω

⌠

⌡

= ⋅ Ω . (7.28)

The auxiliary equations in (7.18) can be written as:

( ){ } { } [ ] [ ] ( ){ } { }11 1
E EWE E M M E E

t
ɶ

−∂ = − =
∂

(7.29)
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( ){ } ( ){ }2 1E E
t

∂ =
∂

(7.30)

( ){ } { } [ ] [ ] ( ){ } { }11 1
H HWH H M M H H

t
ɶ

−∂ = − =
∂

(7.31)

where

WEWij Ej EiM dN N
Ω

⌠

⌡

= ⋅ Ω (7.32)

WHWij Hj HiM dN N
Ω

⌠

⌡

= ⋅ Ω . (7.33)

The matrices and vectors [ ]EM , [ ]ES , { }EF , [ ]HM , [ ]HS  and { }HF  are the same as in the general

DGM derivation.

The matrices defined in (7.23–7.25), (7.27–7.28) and (7.32–7.33) are further evaluated

below for the TM case. The basis functions are ˆEi iN zN =  and Hi iN N= , and 0zω = , so:

( )W 0,0,0EiN = , ( )W , ,0Hi x ix y iyN NN ω ω=

0EWijM = (7.34)

( )( ) ( ) ( ), 1, 1 , 1, , 1 , 1 , 21 1 1
48

i j
HWij Wi j Wi j i j Wi j i j Wi j i j

l l
M f f f fδ δ δ+ + + + + +

 = + + − + − + ∆
(7.35)

where

,Wi j x i j y i jf b b c cω ω= + (7.36)

( )P 0,0,Ei x y iNN ω ω = + , ( )Q 0,0,Ei x y iNN ω ω= , ( )R 0,0,Ei x y iNN ω ω=

( )x yPij EijEM Mω ω= + , x yQij ijE EM Mω ω= , x yRij ijE EM Mω ω= (7.37)

( ) ( )P , ,0Hi y x ix x y iyN NN ω ω ω ω = − − , ( ) ( )Q , ,0Hi x x y ix y y x iyN NN ω ω ω ω ω ω = − − 

( )( ) ( ) ( ), 1, 1 , 1, , 1 , 1 , 21 1 1
48

i j
Pi j Pi j i j Pi j i j PiHPi ij j j

l l
M f f f fδ δ δ+ + + + + +

 = + + − + − + ∆
(7.38)

where

( ) ( ),Pi j y x i j x y i jf b b c cω ω ω ω= − + − (7.39)

( ) ( ) ( ) ( ), 1, 1 , 1, , 1 , 1 , 21 1 1
48

i j
Qi j Qi j i j Qi j i j QiHQi ij j j

l l
M f f f fδ δ δ+ + + + + +

 = + + − + − + ∆
(7.40)

where

( ) ( ),Qi j x x y i j y y x i jf b b c cω ω ω ω ω ω= − + − . (7.41)

The variables { }Eɶ , { }Hɶ , ( ){ }1E , ( ){ }2E  and ( ){ }1H  should be calculated first, with Equations (7.22),

(7.26) and (7.29–7.31), then their values can be used to calculate { }E  and { }H , with Equations
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(7.29) and (7.31).

7.2.3 Numerical results

The coordinate-stretching formulation for the PML in DGM was implemented in a

computer program, which can be found in the Appendix. To compare the accuracy of the PML

and ABC, the first problem simulates a plane wave incident on an external boundary, for several

incident angles. The coordinate-stretching variables xω  and yω  vary quadratically inside the

absorbing layer, from zero near the main region of interest to maxω  at the external boundary. To

create the plane wave, the adjacent field values at three external boundaries of a rectangular

region are set to the field values of the incident wave, and the PML covers the fourth external

boundary, as seen in Figure 7.5 below. The ABC is also applied at the fourth external boundary.

Figure 7.5: Region for simulation of a plane wave with PML.

The relative error for several values of maxs ω ω=  is presented in the first graph of Figure

7.6. The line for 0s =  represents the simulation with only the ABC. As s increases, the reflection

at high angles is reduced, showing the efficiency of the PML, but the reflection at low angles

increases because the discontinuities between elements are more pronounced when s is high. On

average, the lowest error for this problem is found when 0.2s = , represented by the solid line in
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the graph. Moreover, the error can be further reduced, especially for high angles of incidence, if

the PML includes more elements and is thicker compared to the wavelength, as shown in the

second graph of Figure 7.6. These results shows that the PML combined with the ABC provides

a better accuracy than if only the ABC is used.

It is important to notice that this relative error is obtained by comparing the values from

the simulation with the theoretical field values of a plane wave, so the error is due to the

discretization and reflection combined.

Figure 7.6: Relative error of the PML for a plane wave.

The second problem simulates a current source at the center of the region, surrounded by

the PML. Since the method used is in the time domain, the source is represented by a causal

function, so there is no simple analytical solution for this problem. However, there is a way to

evaluate the accuracy of the PML by comparing two simulations. First, the current source

radiates in a very large region, such that during the period considered by the simulation the waves

propagate to the external boundary but there is not enough time for them to be reflected. The

field values are stored and considered as the reference values. Next, the region is truncated and

the PML covers the external boundary. The source radiates, the waves are reflected, and this

reflection is calculated by subtracting the reference values of the first simulation from the field

values of the second simulation. This procedure is illustrated in Figure 7.7.

Table 7.1 presents the results of the simulation of the radiation from a current source,

using several absorbers at the external boundary. The values in the table do not include the error
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Figure 7.7: Extended and truncated regions.

Table 7.1: Results of the simulation of the radiation from a current source.

a)  f = 300 MHz, PML thickness 0.5 m, low s = 0.15, high s = 2, quadratic

Absorber
Relative error

average near PML Reflection coefficient

PML with PEC, low s 36.29% 55.96% 30.37%
PML with PEC, high s   6.61%   8.45% 14.69%

ABC only   1.48%   2.55%   7.58%
PML with ABC, low s   1.06%   1.42%   2.72%
PML(low s) × ABC   0.54%   1.43%   2.30%

b)  f = 300 MHz, PML thickness 1 m, low s = 0.07, high s = 1.5, quadratic

Absorber
Relative error

average near PML
Reflection coefficient

PML with PEC, low s 14.60% 31.44% 22.34%
PML with PEC, high s   1.61%   2.32%   4.15%

ABC only   0.58%   1.05%   4.36%
PML with ABC, low s   0.55%   0.72%   1.91%
PML(low s) × ABC   0.09%   0.33%   0.97%

due to the discretization, only the reflection, since the reference and calculated values are both

obtained with simulations, as explained above. The reflection varies in time, as does the incident

wave, so relative error shown is the time average, while the reflection coefficient is obtained

from the reflection peaks. It is expected that the reflection coefficient of the PML combined with

the ABC will approximately be the product of two reflection coefficients: of the PML with a

PEC at the external boundary, and of only the ABC, as long as the PML with PEC and the PML
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with ABC use the same maxs ω ω= . This expectation is verified in the table. As in the previous

example, the best accuracy occurs when the PML is combined with the ABC.

The value of s used in the PML with ABC is optimized to provide the lowest reflection.

The optimal s for the PML with PEC is higher, which explains the high reflection when the same

s as for the PML with ABC is used. The reflection coefficient of the PML with PEC using the

higher optimal s is also shown in the table for comparison.

A more complex problem is the scattering of a plane wave due to a conducting cylinder.

To simulate this problem, the region around the cylinder should be surrounded by the PML, but

this arrangement prevents the use of the external boundaries to create the incident plane wave.

Therefore, a fictitious boundary is created between the PML and the cylinder, and the plane wave

is created there [11]. This fictitious boundary is called a Huygens boundary because it invokes

Huygens’s principle to create the wave inside it. Figure 7.8 below shows the region with the

scatterer, the PML and the Huygens boundary.

Figure 7.8: Huygens boundary and regions in a scattering problem.

The plane wave should be confined in the inner region, the region surrounded by the

Huygens boundary, and only the scattered waves should pass into the outer region. To implement

this restriction in DGM, the adjacent fields of elements with an edge at the Huygens boundary
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must be modified when calculating the numerical flux. For an element in the inner region, the

field values of the plane wave are added to adjacent fields from the outer region. Conversely, for

an element in the outer region, the field values of the plane wave are subtracted from the adjacent

fields from the inner region.

The figures below show the simulation of this scattering problem. Figure 7.9 presents the

electric field as calculated, and the Huygens boundary is clearly visible. Figures 7.10 and 7.11

show the scattered and total fields, respectively; these two figures were generated by adding or

subtracting the field values of the plane wave in the outer or inner regions.

Figure 7.9: Electric field as calculated in scattering by a conducting cylinder.
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Figure 7.10: Electric field scattered by a conducting cylinder.

Figure 7.11: Total electric field around a conducting cylinder.

To evaluate the accuracy, the same procedure of the previous simulation can be applied,

namely using a large region and then truncating it. Table 7.2 presents the relative error of the

numerical results, again showing that the PML combined with the ABC has a better accuracy
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than the ABC alone. In addition, the error decreases with a higher level of discretization, as

expected.

Table 7.2: Relative error of the scattering simulation.

Elements per
wavelength

Relative error
ABC only PML with ABC

16.8 5.68% 5.24%
22.5 3.88% 3.42%
28.3 3.02% 2.47%
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8. CONCLUSION

Several numerical methods exist for the solution of differential or integral equations in

electromagnetic problems. Finite difference in time domain (FDTD) approximates derivatives

and usually enables very fast simulations, but the method is not appropriate for an arbitrary

geometry if a high accuracy is desired. The finite element metod (FEM), on the other hand, uses

elements and basis functions, is more flexible regarding the geometry of the problem and gives

more accurate results, but it generally involves the inversion of large matrices and therefore

consumes a great amount of time and memory.

The discontinuous Galerkin method (DGM) presented in this work attempts to reduce the

time and memory requirements of FEM by calculating the fields in each element separately, thus

employing much smaller matrices, and accounting for the discontinuities across element

boundaries through numerical fluxes. The complete derivation given in Chapters 3 and 4, along

with the detailed implementation procedures in Chapter 5, allow the generation of a computer

code to solve any electromagnetic problem with DGM. Chapter 6 shows that the derivation and

implementation are valid and produce acceptable results. For the linear basis functions used in

the examples, it is found that the best time discretization scheme among those considered is the

second-order Runge-Kutta method, for its success in reducing the error, and because the fourth-

order method does not provide any further reduction. The stability condition is also analyzed and

verified.

Nevertheless, the are some limitations of DGM. The stability condition forces a

dependence of the time step on the size of smallest element, so using the same time step for every

element is very inefficient when the problem requires a large variation in element sizes. One

solution that reduces this inefficiency is the adaptive time steps, detailed in Chapter 7. The

solution is successful, but the ideal case of using the best time step for each element is not

practical, so the stability condition limits the efficiency of DGM.

Another limitation is the requirement of an absorbing boundary in scattering problems.

Two main kinds of absorbers are analyzed—the absorbing boundary condition (ABC) and the

perfectly matched layer (PML)—as well as their combination. The original PML formulation is

not suitable for methods based on elements, so another formulation is derived. It is also shown,

through several examples, that the PML combined with the ABC can achieve better accuracy

than the PML or ABC alone. However, the PML extends the computational domain and thus the
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decrease in the error is compensated by an increase in the time and memory used.

All simulations done in this work used linear basis functions. Although the error is shown

to decrease indefinitely with element sizes, the convergence rate may not be fast enough for

simulations requiring a high level of accuracy. Based on these results, it appears that the greatest

advantage of DGM is indeed its reduction of matrix orders. Therefore, DGM seems more

suitable for simulations requiring fast results, where accuracy is not as important.

Other works have been successful in obtaining very low error levels with DGM by

applying higher-order basis functions [12–14], but this approach increases the matrix orders and

thus requires more computation time and memory. Future work may concentrate on the

comparison of DGM and other numerical methods, regarding accuracy and efficiency.
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APPENDIX: MATLAB CODE

This appendix provides some of the Matlab codes used to generate the numerical results

of the previous chapters. The codes listed below are for cavity and waveguide problems, cavity

with adaptive time steps, plane wave, current source, and scattering by a conducting cylinder.

The last three codes include an implementation of the PML.

Cavity problem

%p: matrix of points (nodes)
%t: matrix of triangles (elements)
%e: matrix of points at the boundaries
% tic;
%2D, TM
ne=size(t,2); %number of elements
Me=zeros(ne,3,3); Se=Me; Mh=Me; Sh=Me;
b=zeros(ne,3); c=b; l=b;
A=zeros(ne,1); f=zeros(3,3);
method=1; scale=1;

np=size(p,2); %number of nodes
opposite=zeros(np,np,2);
for el=1:ne

for i=1:3
for j=1:3

if i~=j
if opposite(t(i,el),t(j,el),1)==0

opposite(t(i,el),t(j,el),1)=el;
else

opposite(t(i,el),t(j,el),2)=el;
end;
end;

end;
end;

end;

for el=1:ne
    b(el,1)=p(2,t(2,el))-p(2,t(3,el));
    b(el,2)=p(2,t(3,el))-p(2,t(1,el));
    b(el,3)=p(2,t(1,el))-p(2,t(2,el));
    c(el,1)=p(1,t(3,el))-p(1,t(2,el));
    c(el,2)=p(1,t(1,el))-p(1,t(3,el));
    c(el,3)=p(1,t(2,el))-p(1,t(1,el));
    l(el,1)=sqrt(c(el,3)^2+b(el,3)^2);
    l(el,2)=sqrt(c(el,1)^2+b(el,1)^2);
    l(el,3)=sqrt(c(el,2)^2+b(el,2)^2);
    A(el)=(b(el,1)*c(el,2)-b(el,2)*c(el,1))/2;
    for i=1:3
        for j=1:3
            Me(el,i,j)=A(el)/12*(1+(i==j));
            Se(el,i,j)=l(el,j)/3;
            f(i,j)=b(el,i)*b(el,j)+c(el,i)*c(el,j);
        end;
    end;
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    for i=1:3
        for j=1:3
            temp=(f(i+1-3*(i+1>3),j+1-3*(j+1>3))+f( i,j))*(1+(i==j));
            temp=temp-f(i+1-3*(i+1>3),j)*(1+(i==j+1 -3*(j+1>3)))-f(i,j+1-3*
(j+1>3))*(1+(i==j+2-3*(j+2>3)));
            Mh(el,i,j)=l(el,i)*l(el,j)/(48*A(el))*t emp;
            Sh(el,i,j)=l(el,i)/6*(3*(i==j+1-3*(j+1> 3))-1);
        end;
    end;
end;
lmin=min(min(l));

vc=299792458;
mu=pi*4e-7;
eps=1/(mu*vc^2);%free space
eta=sqrt(mu/eps);
ky=1*pi/(max(p(2,:))-min(p(2,:)));
kx=1*pi/(max(p(1,:))-min(p(1,:)));
k=sqrt(kx^2+ky^2);
freq=vc*k/(2*pi);
snumber=1;
dt=lmin/vc/4.5;
Nt=floor(1/freq/dt);         %number of points of t
time=0:dt:dt*Nt; time=time(:);
xd=p(1,:); yd=p(2,:); Ed=zeros(np,size(time,1));
xd=xd(:);yd=yd(:);
tri=delaunay(xd,yd);
clear scenes;

%initial E and H
E=zeros(ne,3,size(time,1));
H=zeros(ne,3,size(time,1));
for el=1:ne

for i=1:3
x=p(1,t(i,el))-min(p(1,:));
y=p(2,t(i,el))-min(p(2,:));
nt=1;
%for nt=1:size(time,1)

        E(el,i,nt)=1*sin(2*pi*freq*time(nt))*sin(kx *x)*sin(ky*y);
%end;
x=p(1,t(i+2-3*(i+2>3),el))-2*A(el)*b(el,i+2-3*(i+2> 3))/(l(el,i)

^2)-min(p(1,:));
        y=p(2,t(i+2-3*(i+2>3),el))-2*A(el)*c(el,i+2 -3*(i+2>3))/(l(el,i)^2)-
min(p(2,:));

nt=1;
%for nt=1:size(time,1)

        Hy=-1*kx/(k*eta)*sin(ky*y)*cos(2*pi*freq*ti me(nt))*cos(kx*x);
        Hx=1*(k^2-kx^2)/(ky*k*eta)*cos(ky*y)*cos(2* pi*freq*time(nt))*sin
(kx*x);
        H(el,i,nt)=Hx*c(el,i+2-3*(i+2>3))/l(el,i)-H y*b(el,i+2-3*(i+2>3))/l
(el,i);

%end;
end;

end;

for nt=1:size(time,1)-1
%plot
nt
Edpoints=zeros(np,1);
for el=1:ne

for i=1:3
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Ed(t(i,el),nt)=Ed(t(i,el),nt)+E(el,i,nt);
Edpoints(t(i,el))=Edpoints(t(i,el))+1;

end;
end;
for el=1:np

Ed(el,nt)=Ed(el,nt)/Edpoints(el);
end;

%  figure(2);
% trisurf(tri,xd,yd,Ed(:,nt));%-Ead(:,nt));
% xlim([min(p(1,:)) max(p(1,:))]); ylim([min(p(2,:) ) max(p(2,:))]);
% zlim([-2 2]); caxis([-2 2]); %shading interp;
% axis square; view([0 0]);
% scenes(nt)=getframe;

%calculate
for el=1:ne

        Met=zeros(3,3); Mht=Met; Set=Met; Sht=Met;
        Et=zeros(3,1); Ht=Et; Fe=Et; Fh=Et;
        for i=1:3
            Et(i)=E(el,i,nt);
            Ht(i)=H(el,i,nt);
            for j=1:3
                Met(i,j)=Me(el,i,j);
                Mht(i,j)=Mh(el,i,j);
                Set(i,j)=Se(el,i,j);
                Sht(i,j)=Sh(el,i,j);
            end;
        end;
        Met=inv(Met); Mht=inv(Mht);
        for i=1:3
            for j=1:3
    op=opposite(t(j,el),t(j+1-3*(j+1>3),el),1);
    if op==el
    op=opposite(t(j,el),t(j+1-3*(j+1>3),el),2);
    end;
    if op==0
    Eop0=-Et(j);
                    Eop1=-Et(j+1-3*(j+1>3));
    Hop=-Ht(j);
                else
    opj=0;
    if opposite(t(1,op),t(2,op),1)==el || opposite( t
(1,op),t(2,op),2)==el
    opj=1; end;
    if opposite(t(2,op),t(3,op),1)==el || opposite( t
(2,op),t(3,op),2)==el
    opj=2; end;
    if opposite(t(3,op),t(1,op),1)==el || opposite( t
(3,op),t(1,op),2)==el
    opj=3; end;
    Hop=H(op,opj,nt);
    Eop0=E(op,opj+1-3*(opj+1>3),nt);
                    Eop1=E(op,opj,nt);
    end;
                temp=eta*(-Hop-Ht(j))*3+(Eop0-Et(j) )*(1+(i==j));
                temp=temp+(Eop1-Et(j+1-3*(j+1>3)))* (1+(i==j+1-3*(j+1>3)));
                temp=temp*l(el,j)/6*(1-(i==j+2-3*(j +2>3)))/(eta+eta);
                Fe(i)=Fe(i)+temp;
                temp=(-Hop-Ht(j))*2;
                temp=temp+(1/eta)*(Eop0-Et(j)+Eop1- Et(j+1-3*(j+1>3)));
                Fh(i)=Fh(i)+temp*l(el,j)/2*(i==j)/( 1/eta+1/eta);
            end;
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        end;
%FDTD
Erka=1/eps*Met*(Set*Ht+Fe);
Hrka=1/mu*Mht*(-Sht*Et+Fh);
E(el,:,nt+1)=(Et+Erka*dt)';
H(el,:,nt+1)=(Ht+Hrka*dt)';

        %second-order Runge-Kutta method
% Erkb=1/eps*Met*(Set*(Ht+Hrka*dt/2)+Fe);
% Hrkb=1/mu*Mht*(-Sht*(Et+Erka*dt/2)+Fh);
% E(el,:,nt+1)=(Et+Erkb*dt)';
% H(el,:,nt+1)=(Ht+Hrkb*dt)';
        %fourth order
% Erkc=1/eps*Met*(Set*(Ht+Hrkb*dt/2)+Fe);
% Hrkc=1/mu*Mht*(-Sht*(Et+Erkb*dt/2)+Fh);
% Erkd=1/eps*Met*(Set*(Ht+Hrkc*dt)+Fe);
% Hrkd=1/mu*Mht*(-Sht*(Et+Erkc*dt)+Fh);
% E(el,:,nt+1)=(Et+(Erka+2*Erkb+2*Erkc+Erkd)*dt/6)' ;
% H(el,:,nt+1)=(Ht+(Hrka+2*Hrkb+2*Hrkc+Hrkd)*dt/6)' ;

end;
end;
% comptime(method,scale)=toc;
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Waveguide problem

%p: matrix of points (nodes)
%t: matrix of triangles (elements)
%e: matrix of points at the boundaries
tic;
%2D, TM
ne=size(t,2); %number of elements
Me=zeros(ne,3,3); Se=Me; Mh=Me; Sh=Me;
b=zeros(ne,3); c=b; l=b;
A=zeros(ne,1); f=zeros(3,3);
method=2; scale=3;

np=size(p,2); %number of nodes
opposite=zeros(np,np,2);
for el=1:ne

for i=1:3
for j=1:3

if i~=j
if opposite(t(i,el),t(j,el),1)==0

opposite(t(i,el),t(j,el),1)=el;
else

opposite(t(i,el),t(j,el),2)=el;
end;
end;

end;
end;

end;

xmin=min(p(1,:));
ymin=min(p(2,:));

%boundary
bpointsh=[];
ecorrection=(e(5,size(e,2))>4);
for el=1:size(e,2)

if e(5,el)==4-ecorrection
bpointsh=[bpointsh [e(1,el);e(2,el)]];

end;
end;
for el=1:ne

for i=1:3
for j=1:size(bpointsh,2)

if t(i,el)==bpointsh(2,j) && t(i+1-3*(i+1>3),el)==b pointsh
(1,j)

opposite(t(i,el),t(i+1-3*(i+1>3),el),2)=-1;
opposite(t(i+1-3*(i+1>3),el),t(i,el),2)=-1;

end;
end;

end;
end;
bpointsh=[];
ecorrection=(e(5,size(e,2))>4);
for el=1:size(e,2)

if e(5,el)==2-ecorrection
bpointsh=[bpointsh [e(1,el);e(2,el)]];

end;
end;
for el=1:ne

for i=1:3
for j=1:size(bpointsh,2)
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if t(i,el)==bpointsh(2,j) && t(i+1-3*(i+1>3),el)==b pointsh
(1,j)

opposite(t(i,el),t(i+1-3*(i+1>3),el),2)=-2;
opposite(t(i+1-3*(i+1>3),el),t(i,el),2)=-2;

end;
end;

end;
end;

for el=1:ne
    b(el,1)=p(2,t(2,el))-p(2,t(3,el));
    b(el,2)=p(2,t(3,el))-p(2,t(1,el));
    b(el,3)=p(2,t(1,el))-p(2,t(2,el));
    c(el,1)=p(1,t(3,el))-p(1,t(2,el));
    c(el,2)=p(1,t(1,el))-p(1,t(3,el));
    c(el,3)=p(1,t(2,el))-p(1,t(1,el));
    l(el,1)=sqrt(c(el,3)^2+b(el,3)^2);
    l(el,2)=sqrt(c(el,1)^2+b(el,1)^2);
    l(el,3)=sqrt(c(el,2)^2+b(el,2)^2);
    A(el)=(b(el,1)*c(el,2)-b(el,2)*c(el,1))/2;
    for i=1:3
        for j=1:3
            Me(el,i,j)=A(el)/12*(1+(i==j));
            Se(el,i,j)=l(el,j)/3;
            f(i,j)=b(el,i)*b(el,j)+c(el,i)*c(el,j);
        end;
    end;
    for i=1:3
        for j=1:3
            temp=(f(i+1-3*(i+1>3),j+1-3*(j+1>3))+f( i,j))*(1+(i==j));
            temp=temp-f(i+1-3*(i+1>3),j)*(1+(i==j+1 -3*(j+1>3)))-f(i,j+1-3*
(j+1>3))*(1+(i==j+2-3*(j+2>3)));
            Mh(el,i,j)=l(el,i)*l(el,j)/(48*A(el))*t emp;
            Sh(el,i,j)=l(el,i)/6*(3*(i==j+1-3*(j+1> 3))-1);
        end;
    end;
end;
lmin=min(min(l));

vc=299792458;
mu=pi*4e-7;
eps=1/(mu*vc^2);%free space
eta=sqrt(mu/eps);
freq=5e8;
k=2*pi*freq/vc;
ky=1*pi/(max(p(2,:))-ymin);
kx=sqrt(k^2-ky^2);
snumber=2;
dt=lmin/vc/6;
Nt=floor(1/freq/dt);         %number of points of t
time=0:dt:dt*Nt; time=time(:);
xd=p(1,:); yd=p(2,:); Ed=zeros(np,size(time,1));
xd=xd(:);yd=yd(:);
tri=delaunay(xd,yd);
clear scenes;

%initial E and H
E=zeros(ne,3,size(time,1));
H=zeros(ne,3,size(time,1));
for el=1:ne

for i=1:3

58



x=p(1,t(i,el))-xmin;
y=p(2,t(i,el))-ymin;
nt=1;
%for nt=1:size(time,1)

        E(el,i,nt)=1*sin(2*pi*freq*time(nt)-kx*x)*s in(ky*y);
%end;
x=p(1,t(i+2-3*(i+2>3),el))-2*A(el)*b(el,i+2-3*(i+2> 3))/(l(el,i)

^2)-xmin;
        y=p(2,t(i+2-3*(i+2>3),el))-2*A(el)*c(el,i+2 -3*(i+2>3))/(l(el,i)^2)-
ymin;

nt=1;
%for nt=1:size(time,1)

        Hy=-1*kx/(k*eta)*sin(ky*y)*sin(2*pi*freq*ti me(nt)-kx*x);
        Hx=1*ky/(k*eta)*cos(ky*y)*cos(2*pi*freq*tim e(nt)-kx*x);
        H(el,i,nt)=Hx*c(el,i+2-3*(i+2>3))/l(el,i)-H y*b(el,i+2-3*(i+2>3))/l
(el,i);

%end;
end;

end;

for nt=1:size(time,1)-1
%plot
nt

% Edpoints=zeros(np,1);
% for el=1:ne
% for i=1:3
% Ed(t(i,el),nt)=Ed(t(i,el),nt)+E(el,i,nt);
% Edpoints(t(i,el))=Edpoints(t(i,el))+1;
% end;
% end;
% for el=1:np
% Ed(el,nt)=Ed(el,nt)/Edpoints(el);
% end;
%  figure(2);
% trisurf(tri,xd,yd,Ed(:,nt));%-Ead(:,nt));
% xlim([min(p(1,:)) max(p(1,:))]); ylim([min(p(2,:) ) max(p(2,:))]);
% zlim([-2 2]); caxis([-2 2]); %shading interp;
% axis square; view([0 0]);
% scenes(nt)=getframe;

%calculate
for el=1:ne

        Met=zeros(3,3); Mht=Met; Set=Met; Sht=Met;
        Et=zeros(3,1); Ht=Et; Fe=Et; Fh=Et;
        for i=1:3
            Et(i)=E(el,i,nt);
            Ht(i)=H(el,i,nt);
            for j=1:3
                Met(i,j)=Me(el,i,j);
                Mht(i,j)=Mh(el,i,j);
                Set(i,j)=Se(el,i,j);
                Sht(i,j)=Sh(el,i,j);
            end;
        end;
        Met=inv(Met); Mht=inv(Mht);
        for i=1:3
            for j=1:3
    op=opposite(t(j,el),t(j+1-3*(j+1>3),el),1);
    if op==el
    op=opposite(t(j,el),t(j+1-3*(j+1>3),el),2);
    end;
                if op==0
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    Eop0=-Et(j);
                    Eop1=-Et(j+1-3*(j+1>3));
    Hop=-Ht(j);
                else
                if op==-1

x=p(1,t(j,el))-xmin;
y0=p(2,t(j,el))-ymin;
y1=p(2,t(j+1-3*(j+1>3),el))-ymin;
y2=p(2,t(j+2-3*(j+2>3),el))-ymin;
Eop0=1*sin(2*pi*freq*time(nt)-kx*x)*sin(ky*y0);
Eop1=1*sin(2*pi*freq*time(nt)-kx*x)*sin(ky*y1);
Hop=(-1+2*(y1>y0))*kx/(k*eta)*sin(2*pi*freq*time

(nt)-kx*x)*sin(ky*y2);
                else
                if op==-2
                    Eop0=Et(j);
                    Eop1=Et(j+1-3*(j+1>3));
    Hop=-Ht(j);

else
    opj=0;
    if opposite(t(1,op),t(2,op),1)==el || opposite( t
(1,op),t(2,op),2)==el
    opj=1; end;
    if opposite(t(2,op),t(3,op),1)==el || opposite( t
(2,op),t(3,op),2)==el
    opj=2; end;
    if opposite(t(3,op),t(1,op),1)==el || opposite( t
(3,op),t(1,op),2)==el
    opj=3; end;
    Hop=H(op,opj,nt);
    Eop0=E(op,opj+1-3*(opj+1>3),nt);
                    Eop1=E(op,opj,nt);
                end;
                end;
                end;
                temp=eta*(-Hop-Ht(j))*3+(Eop0-Et(j) )*(1+(i==j));
                temp=temp+(Eop1-Et(j+1-3*(j+1>3)))* (1+(i==j+1-3*(j+1>3)));
                temp=temp*l(el,j)/6*(1-(i==j+2-3*(j +2>3)))/(eta+eta);
                Fe(i)=Fe(i)+temp;
                temp=(-Hop-Ht(j))*2;
                temp=temp+(1/eta)*(Eop0-Et(j)+Eop1- Et(j+1-3*(j+1>3)));
                Fh(i)=Fh(i)+temp*l(el,j)/2*(i==j)/( 1/eta+1/eta);
        end;end;
        %FDTD

Erka=1/eps*Met*(Set*Ht+Fe);
Hrka=1/mu*Mht*(-Sht*Et+Fh);

% E(el,:,nt+1)=(Et+Erka*dt)';
% H(el,:,nt+1)=(Ht+Hrka*dt)';
        %second-order Runge-Kutta method

Erkb=1/eps*Met*(Set*(Ht+Hrka*dt/2)+Fe);
Hrkb=1/mu*Mht*(-Sht*(Et+Erka*dt/2)+Fh);
E(el,:,nt+1)=(Et+Erkb*dt)';
H(el,:,nt+1)=(Ht+Hrkb*dt)';

        %fourth order
% Erkc=1/eps*Met*(Set*(Ht+Hrkb*dt/2)+Fe);
% Hrkc=1/mu*Mht*(-Sht*(Et+Erkb*dt/2)+Fh);
% Erkd=1/eps*Met*(Set*(Ht+Hrkc*dt)+Fe);
% Hrkd=1/mu*Mht*(-Sht*(Et+Erkc*dt)+Fh);
% E(el,:,nt+1)=(Et+(Erka+2*Erkb+2*Erkc+Erkd)*dt/6)' ;
% H(el,:,nt+1)=(Ht+(Hrka+2*Hrkb+2*Hrkc+Hrkd)*dt/6)' ;
end;end;comptime(method,scale)=toc;
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Cavity with adaptive time steps

%p: matrix of points (nodes)
%t: matrix of triangles (elements)
%e: matrix of points at the boundaries
tic;
%2D, TM
ne=size(t,2); %number of elements
Me=zeros(ne,3,3); Se=Me; Mh=Me; Sh=Me;
b=zeros(ne,3); c=b; l=b;
A=zeros(ne,1); class=A; f=zeros(3,3);

np=size(p,2); %number of nodes
opposite=zeros(np,np,2);
for el=1:ne

for i=1:3
for j=1:3

if i~=j
if opposite(t(i,el),t(j,el),1)==0

opposite(t(i,el),t(j,el),1)=el;
else

opposite(t(i,el),t(j,el),2)=el;
end;
end;

end;
end;

end;

for el=1:ne
    b(el,1)=p(2,t(2,el))-p(2,t(3,el));
    b(el,2)=p(2,t(3,el))-p(2,t(1,el));
    b(el,3)=p(2,t(1,el))-p(2,t(2,el));
    c(el,1)=p(1,t(3,el))-p(1,t(2,el));
    c(el,2)=p(1,t(1,el))-p(1,t(3,el));
    c(el,3)=p(1,t(2,el))-p(1,t(1,el));
    l(el,1)=sqrt(c(el,3)^2+b(el,3)^2);
    l(el,2)=sqrt(c(el,1)^2+b(el,1)^2);
    l(el,3)=sqrt(c(el,2)^2+b(el,2)^2);
    A(el)=(b(el,1)*c(el,2)-b(el,2)*c(el,1))/2;

for i=1:3
        for j=1:3
            Me(el,i,j)=A(el)/12*(1+(i==j));
            Se(el,i,j)=l(el,j)/3;
            f(i,j)=b(el,i)*b(el,j)+c(el,i)*c(el,j);
        end;

end;
    for i=1:3
        for j=1:3
            temp=(f(i+1-3*(i+1>3),j+1-3*(j+1>3))+f( i,j))*(1+(i==j));
            temp=temp-f(i+1-3*(i+1>3),j)*(1+(i==j+1 -3*(j+1>3)))-f(i,j+1-3*
(j+1>3))*(1+(i==j+2-3*(j+2>3)));
            Mh(el,i,j)=l(el,i)*l(el,j)/(48*A(el))*t emp;
            Sh(el,i,j)=l(el,i)/6*(3*(i==j+1-3*(j+1> 3))-1);
        end;
    end;
end;
lmin=min(min(l));

vc=299792458;
mu=pi*4e-7;
eps=1/(mu*vc^2);%free space
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eta=sqrt(mu/eps);
ky=1*pi/(max(p(2,:))-min(p(2,:)));
kx=1*pi/(max(p(1,:))-min(p(1,:)));
k=sqrt(kx^2+ky^2);
freq=vc*k/(2*pi);
snumber=4;
division=2;
dt=lmin/vc/6;
Nt=floor(1/freq/dt);         %number of points of t
time=0:dt:dt*Nt; time=time(:);
xd=p(1,:); yd=p(2,:); Ed=zeros(np,size(time,1));
xd=xd(:);yd=yd(:);
tri=delaunay(xd,yd);
clear scenes;
for el=1:ne

class(el)=floor(log(min(l(el,:))/lmin)/log(division ));
end;

%initial E and H
E=zeros(ne,3,size(time,1));
H=zeros(ne,3,size(time,1));
for el=1:ne

for i=1:3
x=p(1,t(i,el))-min(p(1,:));
y=p(2,t(i,el))-min(p(2,:));
nt=1;
%for nt=1:size(time,1)

        E(el,i,nt)=1*sin(2*pi*freq*time(nt))*sin(kx *x)*sin(ky*y);
%end;
x=p(1,t(i+2-3*(i+2>3),el))-2*A(el)*b(el,i+2-3*(i+2> 3))/(l(el,i)

^2)-min(p(1,:));
        y=p(2,t(i+2-3*(i+2>3),el))-2*A(el)*c(el,i+2 -3*(i+2>3))/(l(el,i)^2)-
min(p(2,:));

nt=1;
%for nt=1:size(time,1)

        Hy=-1*kx/(k*eta)*sin(ky*y)*cos(2*pi*freq*ti me(nt))*cos(kx*x);
        Hx=1*(k^2-kx^2)/(ky*k*eta)*cos(ky*y)*cos(2* pi*freq*time(nt))*sin
(kx*x);
        H(el,i,nt)=Hx*c(el,i+2-3*(i+2>3))/l(el,i)-H y*b(el,i+2-3*(i+2>3))/l
(el,i);

%end;
end;

end;

for nt=1:size(time,1)-1
%plot

% nt
% Edpoints=zeros(np,1);
% for el=1:ne
% for i=1:3
% Ed(t(i,el),nt)=Ed(t(i,el),nt)+E(el,i,nt);
% Edpoints(t(i,el))=Edpoints(t(i,el))+1;
% end;
% end;
% for el=1:np
% Ed(el,nt)=Ed(el,nt)/Edpoints(el);
% end;
%  figure(2);
% trisurf(tri,xd,yd,Ed(:,nt));%-Ead(:,nt));
% xlim([min(p(1,:)) max(p(1,:))]); ylim([min(p(2,:) ) max(p(2,:))]);
% zlim([-2 2]); caxis([-2 2]); %shading interp;
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% axis square; view([0 0]);
% scenes(nt)=getframe;

%calculate
for el=1:ne
classfactor=division^class(el);
if mod(nt-1,classfactor)==0

Met=zeros(3,3); Mht=Met; Set=Met; Sht=Met;
Et=zeros(3,1); Ht=Et; Fe=Et; Fh=Et;
for i=1:3

Et(i)=E(el,i,nt);
Ht(i)=H(el,i,nt);
for j=1:3

Met(i,j)=Me(el,i,j);
Mht(i,j)=Mh(el,i,j);
Set(i,j)=Se(el,i,j);
Sht(i,j)=Sh(el,i,j);

end;
end;
Met=inv(Met); Mht=inv(Mht);
for i=1:3

for j=1:3
op=opposite(t(j,el),t(j+1-3*(j+1>3),el),1);
if op==el

op=opposite(t(j,el),t(j+1-3*(j+1>3),el),2);
end;
if op==0

Eop0=-Et(j);
Eop1=-Et(j+1-3*(j+1>3));
Hop=-Ht(j);

else
opj=0;
if opposite(t(1,op),t(2,op),1)==el || opposite(t

(1,op),t(2,op),2)==el
opj=1; end;

if opposite(t(2,op),t(3,op),1)==el || opposite(t
(2,op),t(3,op),2)==el

opj=2; end;
if opposite(t(3,op),t(1,op),1)==el || opposite(t

(3,op),t(1,op),2)==el
opj=3; end;

Hop=H(op,opj,nt);
Eop0=E(op,opj+1-3*(opj+1>3),nt);
Eop1=E(op,opj,nt);

end;
temp=eta*(-Hop-Ht(j))*3+(Eop0-Et(j))*(1+(i==j));
temp=temp+(Eop1-Et(j+1-3*(j+1>3)))*(1+(i==j+1-3*

(j+1>3)));
temp=temp*l(el,j)/6*(1-(i==j+2-3*(j+2>3)))/(eta+eta );
Fe(i)=Fe(i)+temp;
temp=(-Hop-Ht(j))*2;
temp=temp+(1/eta)*(Eop0-Et(j)+Eop1-Et(j+1-3*(j+1>3) ));
Fh(i)=Fh(i)+temp*l(el,j)/2*(i==j)/(1/eta+1/eta);

end;
end;
%second-order Runge-Kutta method
Erka=1/eps*Met*(Set*Ht+Fe);
Hrka=1/mu*Mht*(-Sht*Et+Fh);
Erkb=1/eps*Met*(Set*(Ht+Hrka*dt/2*classfactor)+Fe);
Hrkb=1/mu*Mht*(-Sht*(Et+Erka*dt/2*classfactor)+Fh);
E(el,:,nt+classfactor)=(Et+Erkb*dt*classfactor)';
H(el,:,nt+classfactor)=(Ht+Hrkb*dt*classfactor)';
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for i=1:classfactor-1
E(el,:,nt+i)=(Et+Erkb*dt*i)';
H(el,:,nt+i)=(Ht+Hrkb*dt*i)';

end;
end;
end;

end;
comptime2(snumber)=toc;
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Plane wave with PML

%p: matrix of points (nodes)
%t: matrix of triangles (elements)
%e: matrix of points at the boundaries

%frequency, number of periods and incident angle fr om plane.m
abcorpec=0; %0 for ABC, 1 for PEC
smax=2*pi*freq*0;
sorder=2;
snumber=2;

%2D, TM
ne=size(t,2); %number of elements
Me=zeros(ne,3,3); Se=Me; Mh=Me; Sh=Me;
b=zeros(ne,3); c=b; l=b;
A=zeros(ne,1); f=zeros(3,3);
%additional matrices and variables for PML
Mhw=Me; Mhp=Me; Mhq=Me;
fw=f; fp=f; fq=f; sx=A; sy=A;

np=size(p,2); %number of nodes
opposite=zeros(np,np,2);
for el=1:ne

for i=1:3
for j=1:3

if i~=j
if opposite(t(i,el),t(j,el),1)==0

opposite(t(i,el),t(j,el),1)=el;
else

opposite(t(i,el),t(j,el),2)=el;
end;
end;

end;
end;

end;

%find extreme points
xmax=max(p(1,:)); xmin=min(p(1,:));
ymax=max(p(2,:)); ymin=min(p(2,:));

%set conductivity components sx and sy
boundaryx=zeros(2,2);
for region=1:2

tempx=[]; tempy=[];
for el=1:ne

if(t(4,el)==region)
tempx=[tempx p(1,t(1,el)) p(1,t(2,el)) p(1,t(3,el)) ];

end;
end;
boundaryx(region,1)=min(tempx); boundaryx(region,2) =max(tempx);

end;
%regions are numbered 1 to 2, from left to right
boundary=zeros(2,1);
for region=1:2

if boundaryx(region,1)==xmin
boundary(1)=region; end;

if boundaryx(region,2)==xmax
boundary(2)=region; boundary4=boundaryx(region,1); end;

end;
for el=1:ne
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region=t(4,el);
centerx=(p(1,t(1,el))+p(1,t(2,el))+p(1,t(3,el)))/3;
centery=(p(2,t(1,el))+p(2,t(2,el))+p(2,t(3,el)))/3;
if region==boundary(2)

sx(el)=smax*((centerx-boundary4)/(xmax-boundary4))^ 2; end;
end;
%clear boundary* temp* center*;

%boundary
bpointsh=[];
for el=1:size(e,2)

if (e(6,el)==0 || e(7,el)==0) %&& (e(6,el)==boundar y(1) || e(7,el)
==boundary(1))

bpointsh=[bpointsh [e(1,el);e(2,el)]];
end;

end;
for el=1:ne

for i=1:3
for j=1:size(bpointsh,2)

if ((t(i,el)==bpointsh(2,j) && t(i+1-3*(i+1>3),el)= =bpointsh
(1,j))...
            || (t(i,el)==bpointsh(1,j) && t(i+1-3*( i+1>3),el)==bpointsh
(2,j)))...
            && (abs(p(1,t(i,el))-xmax)>1e-10 || abs (p(1,t(i+1-3*(i+1>3),el))-
xmax)>1e-10)

opposite(t(i,el),t(i+1-3*(i+1>3),el),2)=-1;
opposite(t(i+1-3*(i+1>3),el),t(i,el),2)=-1;

end;
end;

end;
end;

for el=1:ne
    b(el,1)=p(2,t(2,el))-p(2,t(3,el));
    b(el,2)=p(2,t(3,el))-p(2,t(1,el));
    b(el,3)=p(2,t(1,el))-p(2,t(2,el));
    c(el,1)=p(1,t(3,el))-p(1,t(2,el));
    c(el,2)=p(1,t(1,el))-p(1,t(3,el));
    c(el,3)=p(1,t(2,el))-p(1,t(1,el));
    l(el,1)=sqrt(c(el,3)^2+b(el,3)^2);
    l(el,2)=sqrt(c(el,1)^2+b(el,1)^2);
    l(el,3)=sqrt(c(el,2)^2+b(el,2)^2);
    A(el)=(b(el,1)*c(el,2)-b(el,2)*c(el,1))/2;
    for i=1:3
        for j=1:3
            Me(el,i,j)=A(el)/12*(1+(i==j));
            Se(el,i,j)=l(el,j)/3;
            f(i,j)=b(el,i)*b(el,j)+c(el,i)*c(el,j);

fw(i,j)=sx(el)*b(el,i)*b(el,j)+sy(el)*c(el,i)*c(el, j);
fp(i,j)=(sy(el)-sx(el))*b(el,i)*b(el,j)+(sx(el)-sy( el))*c

(el,i)*c(el,j);
fq(i,j)=sx(el)*(sx(el)-sy(el))*b(el,i)*b(el,j)+sy(e l)*(sy

(el)-sx(el))*c(el,i)*c(el,j);
        end;
    end;
    for i=1:3
        for j=1:3
            temp=(f(i+1-3*(i+1>3),j+1-3*(j+1>3))+f( i,j))*(1+(i==j));
            temp=temp-f(i+1-3*(i+1>3),j)*(1+(i==j+1 -3*(j+1>3)))-f(i,j+1-3*
(j+1>3))*(1+(i==j+2-3*(j+2>3)));
            Mh(el,i,j)=l(el,i)*l(el,j)/(48*A(el))*t emp;
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            Sh(el,i,j)=l(el,i)/6*(3*(i==j+1-3*(j+1> 3))-1);
temp=(fw(i+1-3*(i+1>3),j+1-3*(j+1>3))+fw(i,j))*(1+( i==j));

            temp=temp-fw(i+1-3*(i+1>3),j)*(1+(i==j+ 1-3*(j+1>3)))-fw(i,j+1-3*
(j+1>3))*(1+(i==j+2-3*(j+2>3)));
            Mhw(el,i,j)=l(el,i)*l(el,j)/(48*A(el))* temp;

temp=(fp(i+1-3*(i+1>3),j+1-3*(j+1>3))+fp(i,j))*(1+( i==j));
            temp=temp-fp(i+1-3*(i+1>3),j)*(1+(i==j+ 1-3*(j+1>3)))-fp(i,j+1-3*
(j+1>3))*(1+(i==j+2-3*(j+2>3)));
            Mhp(el,i,j)=l(el,i)*l(el,j)/(48*A(el))* temp;

temp=(fq(i+1-3*(i+1>3),j+1-3*(j+1>3))+fq(i,j))*(1+( i==j));
            temp=temp-fq(i+1-3*(i+1>3),j)*(1+(i==j+ 1-3*(j+1>3)))-fq(i,j+1-3*
(j+1>3))*(1+(i==j+2-3*(j+2>3)));
            Mhq(el,i,j)=l(el,i)*l(el,j)/(48*A(el))* temp;
        end;
    end;
end;
lmin=min(min(l));

vc=299792458;
mu=pi*4e-7;
eps=1/(mu*vc^2);%free space
eta=sqrt(mu/eps);
k=2*pi*freq/vc;
dt=lmin/vc/6;
Nt=floor(periods/freq/dt);         %number of point s of t
time=0:dt:dt*Nt; time=time(:);
xd=p(1,:); yd=p(2,:); Ed=zeros(np,size(time,1));
xd=xd(:);yd=yd(:);
tri=delaunay(xd,yd);
clear scenes;

%initial E and H
E=zeros(ne,3,size(time,1)); H=E;
E1=E; J=E; H1=E; Hz=E;
% for nt=1:size(time,1)
% for el=1:ne
% for i=1:3
% if(t(i,el)==center)
% J(el,i,nt)=1*sin(2*pi*freq*time(nt));
% end;
% end;
% end;
% end;

for nt=1:size(time,1)-1
%plot
nt
Edpoints=zeros(np,1);
for el=1:ne

for i=1:3
Ed(t(i,el),nt)=Ed(t(i,el),nt)+E(el,i,nt);
Edpoints(t(i,el))=Edpoints(t(i,el))+1;

end;
end;
for el=1:np

Ed(el,nt)=Ed(el,nt)/Edpoints(el);
end;

%  figure(1);
% trisurf(tri,xd,yd,Ed(:,nt));%-Ead(:,nt));
% xlim([xmin xmax]); ylim([ymin ymax]);
% zlim([-2 2]); caxis([-1 1]); %shading interp;
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% view([30 30]); axis square;
% scenes(nt)=getframe;

%calculate
for el=1:ne

        Met=zeros(3,3); Mht=Met; Set=Met; Sht=Met;
        Et=zeros(3,1); Ht=Et; Fe=Et; Fh=Et;

Mhwt=Met; Mhpt=Met; Mhqt=Met;
E1t=Et; Jt=Et; H1t=Et; Hzt=Et;

        for i=1:3
            Et(i)=E(el,i,nt);
            Ht(i)=H(el,i,nt);

E1t(i)=E1(el,i,nt);
            Jt(i)=J(el,i,nt);

H1t(i)=H1(el,i,nt);
            Hzt(i)=Hz(el,i,nt);
            for j=1:3
                Met(i,j)=Me(el,i,j);
                Mht(i,j)=Mh(el,i,j);
                Set(i,j)=Se(el,i,j);
                Sht(i,j)=Sh(el,i,j);

Mhwt(i,j)=Mhw(el,i,j); Mhpt(i,j)=Mhp(el,i,j); Mhqt
(i,j)=Mhq(el,i,j);
            end;
        end;
        Met=inv(Met); Mht=inv(Mht);
        for i=1:3
            for j=1:3
    op=opposite(t(j,el),t(j+1-3*(j+1>3),el),1);
    if op==el
    op=opposite(t(j,el),t(j+1-3*(j+1>3),el),2);
    end;
                if op==0
    Eop0=-Et(j)*abcorpec;
                    Eop1=-Et(j+1-3*(j+1>3))*abcorpe c;
    Hop=-Ht(j)*abcorpec;
                else
    if op==-1

x0=p(1,t(j,el))-xmin;
y0=p(2,t(j,el))-ymin;

                    x1=p(1,t(j+1-3*(j+1>3),el))-xmi n;
                    y1=p(2,t(j+1-3*(j+1>3),el))-ymi n;

x2=p(1,t(j+2-3*(j+2>3),el))-xmin;
                    y2=p(2,t(j+2-3*(j+2>3),el))-ymi n;
                    Eop0=1*sin(k*(x0*cos(theta)+y0* sin(theta))-2*pi*freq*time
(nt))...
                        *(time(nt)>(x0*cos(theta)+y 0*sin(theta))/vc);
                    Eop1=1*sin(k*(x1*cos(theta)+y1* sin(theta))-2*pi*freq*time
(nt))...
                        *(time(nt)>(x1*cos(theta)+y 1*sin(theta))/vc);
                    if abs(y1-y0)>1e-10 %vertical b oundary
                        Hop=-cos(theta)/eta*sin(k*( x0*cos(theta)+y2*sin
(theta))-2*pi*freq*time(nt))...
                            *(1-2*(y1>y0))*(time(nt )>(x0*cos(theta)+y2*sin
(theta))/vc);
                    else %horizontal boundary
                        Hop=-sin(theta)/eta*sin(k*( x2*cos(theta)+y0*sin
(theta))-2*pi*freq*time(nt))...
                            *(1-2*(x0>x1))*(time(nt )>(x2*cos(theta)+y0*sin
(theta))/vc);
                    end;

else
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opj=0;
    if opposite(t(1,op),t(2,op),1)==el || opposite( t
(1,op),t(2,op),2)==el
    opj=1; end;
    if opposite(t(2,op),t(3,op),1)==el || opposite( t
(2,op),t(3,op),2)==el
    opj=2; end;
    if opposite(t(3,op),t(1,op),1)==el || opposite( t
(3,op),t(1,op),2)==el
    opj=3; end;
    Hop=H(op,opj,nt);
    Eop0=E(op,opj+1-3*(opj+1>3),nt);
                    Eop1=E(op,opj,nt);
    end;
                end;
                temp=eta*(-Hop-Ht(j))*3+(Eop0-Et(j) )*(1+(i==j));
                temp=temp+(Eop1-Et(j+1-3*(j+1>3)))* (1+(i==j+1-3*(j+1>3)));
                temp=temp*l(el,j)/6*(1-(i==j+2-3*(j +2>3)))/(eta+eta);
                Fe(i)=Fe(i)+temp;
                temp=(-Hop-Ht(j))*2;
                temp=temp+(1/eta)*(Eop0-Et(j)+Eop1- Et(j+1-3*(j+1>3)));
                Fh(i)=Fh(i)+temp*l(el,j)/2*(i==j)/( 1/eta+1/eta);
            end;
        end;
        %second-order Runge-Kutta method

%Runge-Kutta a
Erka=1/eps*Met*(Set*Hzt+Fe)-(sx(el)+sy(el))*Et-sx(e l)*sy(el)*E1t-

Jt/eps;
Hzrka=Mht*((-Sht*Et+Fh)/mu-Mhpt*Hzt-Mhqt*H1t);
E1rka=Et;
H1rka=Hzt-Mht*Mhwt*H1t;
Jt=(Jt+J(el,:,nt+1)')/2;
%Runge-Kutta b
Erkb=1/eps*Met*(Set*(Hzt+Hzrka*dt/2)+Fe)-(sx(el)+sy (el))*

(Et+Erka*dt/2)-sx(el)*sy(el)*(E1t+E1rka*dt/2)-Jt/ep s;
Hzrkb=Mht*((-Sht*(Et+Erka*dt/2)+Fh)/mu-Mhpt*(Hzt+Hz rka*dt/2)-Mhqt*

(H1t+H1rka*dt/2));
E1rkb=Et+Erka*dt/2;
H1rkb=Hzt+Hzrka*dt/2-Mht*Mhwt*(H1t+H1rka*dt/2);
%update next values
E(el,:,nt+1)=(Et+Erkb*dt)';
E1(el,:,nt+1)=(E1t+E1rkb*dt)';
H1(el,:,nt+1)=(H1t+H1rkb*dt)';
Hz(el,:,nt+1)=(Hzt+Hzrkb*dt)';
H(el,:,nt+1)=(Hzt+Hzrkb*dt-Mht*Mhwt*(H1t+H1rkb*dt)) ';

end;
end;
Edpml=Ed;
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Current source with PML

%p: matrix of points (nodes)
%t: matrix of triangles (elements)
%e: matrix of points at the boundaries

abcorpec=0; %0 for ABC, 1 for PEC
%frequency, periods and lmin from pml.m
smax=2*pi*freq*0.07;
sorder=2;
snumber=4;

%remove region 1
np=size(p,2); %number of nodes
xmax=max(p(1,:)); xmin=min(p(1,:));
ymax=max(p(2,:)); ymin=min(p(2,:));
centerx=(xmax+xmin)/2;
centery=(ymax+ymin)/2;
center=1;
for el=1:np

if (p(1,el)-centerx)^2+(p(2,el)-centery)^2<(p(1,cen ter)-centerx)^2+(p
(2,center)-centery)^2

center=el;
end;

end;
ne=size(t,2); %number of elements
boundaryx=zeros(10,2); boundaryy=boundaryx;
for region=1:10

tempx=[]; tempy=[];
for el=1:ne

if t(4,el)==region
tempx=[tempx p(1,t(1,el)) p(1,t(2,el)) p(1,t(3,el)) ];
tempy=[tempy p(2,t(1,el)) p(2,t(2,el)) p(2,t(3,el)) ];

end;
end;
boundaryx(region,1)=min(tempx); boundaryx(region,2) =max(tempx);
boundaryy(region,1)=min(tempy); boundaryy(region,2) =max(tempy);

end;
boundaryx(1,:)=[]; boundaryy(1,:)=[];
xmin=min(boundaryx(:,1)); xmax=max(boundaryx(:,2));
ymin=min(boundaryy(:,1)); ymax=max(boundaryy(:,2));
newp=zeros(np,1);
tempp=[];
counterp=1;
for el=1:np

if p(1,el)>=xmin-1e-10 && p(1,el)<=xmax+1e-10 && p( 2,el)>=ymin-1e-10 &&
p(2,el)<=ymax+1e-10

tempp=[tempp [p(1,el);p(2,el)]];
newp(el)=counterp;
counterp=counterp+1;

end;
end;
p=tempp;
center=newp(center);
tempt=[];
for el=1:ne

if t(4,el)~=1
tempt=[tempt [newp(t(1,el));newp(t(2,el));newp(t(3, el));t(4,el)-

1]];
end;

end;
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t=tempt;

%2D, TM
ne=size(t,2); %number of elements
Me=zeros(ne,3,3); Se=Me; Mh=Me; Sh=Me;
b=zeros(ne,3); c=b; l=b;
A=zeros(ne,1); f=zeros(3,3);
%additional matrices and variables for PML
Mhw=Me; Mhp=Me; Mhq=Me;
fw=f; fp=f; fq=f; sx=A; sy=A;

np=size(p,2); %number of nodes
opposite=zeros(np,np,2);
for el=1:ne

for i=1:3
for j=1:3

if i~=j
if opposite(t(i,el),t(j,el),1)==0

opposite(t(i,el),t(j,el),1)=el;
else

opposite(t(i,el),t(j,el),2)=el;
end;
end;

end;
end;

end;

%set conductivity components sx and sy
boundaryx=zeros(9,2); boundaryy=boundaryx;
for region=1:9

tempx=[]; tempy=[];
for el=1:ne

if t(4,el)==region
tempx=[tempx p(1,t(1,el)) p(1,t(2,el)) p(1,t(3,el)) ];
tempy=[tempy p(2,t(1,el)) p(2,t(2,el)) p(2,t(3,el)) ];

end;
end;
boundaryx(region,1)=min(tempx); boundaryx(region,2) =max(tempx);
boundaryy(region,1)=min(tempy); boundaryy(region,2) =max(tempy);

end;
%regions are numbered 1 to 8, starting from the top  left and increasing
clockwise
boundary=zeros(8,1);
for region=1:9

if abs(boundaryx(region,1)-xmin)<1e-10 && abs(bound aryy(region,2)-ymax)
<1e-10

boundary(1)=region; end;
if boundaryx(region,1)>xmin+1e-10 && boundaryx(regi on,2)<xmax-1e-10 &&

abs(boundaryy(region,2)-ymax)<1e-10
boundary(2)=region; boundary2=boundaryy(region,1); end;

if abs(boundaryx(region,2)-xmax)<1e-10 && abs(bound aryy(region,2)-ymax)
<1e-10

boundary(3)=region; end;
if abs(boundaryx(region,2)-xmax)<1e-10 && boundaryy (region,1)>ymin+1e-10

&& boundaryy(region,2)<ymax-1e-10
boundary(4)=region; boundary4=boundaryx(region,1); end;

if abs(boundaryx(region,2)-xmax)<1e-10 && abs(bound aryy(region,1)-ymin)
<1e-10

boundary(5)=region; end;
if boundaryx(region,1)>xmin+1e-10 && boundaryx(regi on,2)<xmax-1e-10 &&

abs(boundaryy(region,1)-ymin)<1e-10
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boundary(6)=region; boundary6=boundaryy(region,2); end;
if abs(boundaryx(region,1)-xmin)<1e-10 && abs(bound aryy(region,1)-ymin)

<1e-10
boundary(7)=region; end;

if abs(boundaryx(region,1)-xmin)<1e-10 && boundaryy (region,1)>ymin+1e-10
&& boundaryy(region,2)<ymax-1e-10

boundary(8)=region; boundary8=boundaryx(region,2); end;
end;
for el=1:ne

region=t(4,el);
centerx=(p(1,t(1,el))+p(1,t(2,el))+p(1,t(3,el)))/3;
centery=(p(2,t(1,el))+p(2,t(2,el))+p(2,t(3,el)))/3;
if region==boundary(1) || region==boundary(2) || re gion==boundary(3)

sy(el)=smax*((centery-boundary2)/(ymax-boundary2))^ sorder; end;
if region==boundary(3) || region==boundary(4) || re gion==boundary(5)

sx(el)=smax*((centerx-boundary4)/(xmax-boundary4))^ sorder; end;
if region==boundary(5) || region==boundary(6) || re gion==boundary(7)

sy(el)=smax*((centery-boundary6)/(ymin-boundary6))^ sorder; end;
if region==boundary(7) || region==boundary(8) || re gion==boundary(1)

sx(el)=smax*((centerx-boundary8)/(xmin-boundary8))^ sorder; end;
end;
%clear boundary boundaryx boundaryy temp*;

for el=1:ne
    b(el,1)=p(2,t(2,el))-p(2,t(3,el));
    b(el,2)=p(2,t(3,el))-p(2,t(1,el));
    b(el,3)=p(2,t(1,el))-p(2,t(2,el));
    c(el,1)=p(1,t(3,el))-p(1,t(2,el));
    c(el,2)=p(1,t(1,el))-p(1,t(3,el));
    c(el,3)=p(1,t(2,el))-p(1,t(1,el));
    l(el,1)=sqrt(c(el,3)^2+b(el,3)^2);
    l(el,2)=sqrt(c(el,1)^2+b(el,1)^2);
    l(el,3)=sqrt(c(el,2)^2+b(el,2)^2);
    A(el)=(b(el,1)*c(el,2)-b(el,2)*c(el,1))/2;
    for i=1:3
        for j=1:3
            Me(el,i,j)=A(el)/12*(1+(i==j));
            Se(el,i,j)=l(el,j)/3;
            f(i,j)=b(el,i)*b(el,j)+c(el,i)*c(el,j);

fw(i,j)=sx(el)*b(el,i)*b(el,j)+sy(el)*c(el,i)*c(el, j);
fp(i,j)=(sy(el)-sx(el))*b(el,i)*b(el,j)+(sx(el)-sy( el))*c

(el,i)*c(el,j);
fq(i,j)=sx(el)*(sx(el)-sy(el))*b(el,i)*b(el,j)+sy(e l)*(sy

(el)-sx(el))*c(el,i)*c(el,j);
        end;
    end;
    for i=1:3
        for j=1:3
            temp=(f(i+1-3*(i+1>3),j+1-3*(j+1>3))+f( i,j))*(1+(i==j));
            temp=temp-f(i+1-3*(i+1>3),j)*(1+(i==j+1 -3*(j+1>3)))-f(i,j+1-3*
(j+1>3))*(1+(i==j+2-3*(j+2>3)));
            Mh(el,i,j)=l(el,i)*l(el,j)/(48*A(el))*t emp;
            Sh(el,i,j)=l(el,i)/6*(3*(i==j+1-3*(j+1> 3))-1);

temp=(fw(i+1-3*(i+1>3),j+1-3*(j+1>3))+fw(i,j))*(1+( i==j));
            temp=temp-fw(i+1-3*(i+1>3),j)*(1+(i==j+ 1-3*(j+1>3)))-fw(i,j+1-3*
(j+1>3))*(1+(i==j+2-3*(j+2>3)));
            Mhw(el,i,j)=l(el,i)*l(el,j)/(48*A(el))* temp;

temp=(fp(i+1-3*(i+1>3),j+1-3*(j+1>3))+fp(i,j))*(1+( i==j));
            temp=temp-fp(i+1-3*(i+1>3),j)*(1+(i==j+ 1-3*(j+1>3)))-fp(i,j+1-3*
(j+1>3))*(1+(i==j+2-3*(j+2>3)));
            Mhp(el,i,j)=l(el,i)*l(el,j)/(48*A(el))* temp;
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temp=(fq(i+1-3*(i+1>3),j+1-3*(j+1>3))+fq(i,j))*(1+( i==j));
            temp=temp-fq(i+1-3*(i+1>3),j)*(1+(i==j+ 1-3*(j+1>3)))-fq(i,j+1-3*
(j+1>3))*(1+(i==j+2-3*(j+2>3)));
            Mhq(el,i,j)=l(el,i)*l(el,j)/(48*A(el))* temp;
        end;
    end;
end;
%lmin=min(min(l));

vc=299792458;
mu=pi*4e-7;
eps=1/(mu*vc^2);%free space
eta=sqrt(mu/eps);
k=2*pi*freq/vc;
dt=lmin/vc/6;
Nt=floor(periods/freq/dt);         %number of point s of t
time=0:dt:dt*Nt; time=time(:);
xd=p(1,:); yd=p(2,:); Ed=zeros(np,size(time,1));
xd=xd(:);yd=yd(:);
tri=delaunay(xd,yd);
clear scenes;

%initial E and H
E=zeros(ne,3,size(time,1)); H=E;
E1=E; J=E; H1=E; Hz=E;
for nt=1:size(time,1)

for el=1:ne
for i=1:3

if(t(i,el)==center)
J(el,i,nt)=1*sin(2*pi*freq*time(nt));

end;
end;

end;
end;

for nt=1:size(time,1)-1
%plot
nt
Edpoints=zeros(np,1);
for el=1:ne

for i=1:3
Ed(t(i,el),nt)=Ed(t(i,el),nt)+E(el,i,nt);
Edpoints(t(i,el))=Edpoints(t(i,el))+1;

end;
end;
for el=1:np

Ed(el,nt)=Ed(el,nt)/Edpoints(el);
end;

%  figure(2);
% trisurf(tri,xd,yd,Ed(:,nt));%-Ead(:,nt));
% xlim([xmin xmax]); ylim([ymin ymax]);
% zlim([-8 8]); caxis([-4 4]); %shading interp;
% %view([0 90]); axis square;
% scenes(nt)=getframe;

%calculate
for el=1:ne

        Met=zeros(3,3); Mht=Met; Set=Met; Sht=Met;
        Et=zeros(3,1); Ht=Et; Fe=Et; Fh=Et;

Mhwt=Met; Mhpt=Met; Mhqt=Met;
E1t=Et; Jt=Et; H1t=Et; Hzt=Et;

        for i=1:3
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            Et(i)=E(el,i,nt);
            Ht(i)=H(el,i,nt);

E1t(i)=E1(el,i,nt);
            Jt(i)=J(el,i,nt);

H1t(i)=H1(el,i,nt);
            Hzt(i)=Hz(el,i,nt);
            for j=1:3
                Met(i,j)=Me(el,i,j);
                Mht(i,j)=Mh(el,i,j);
                Set(i,j)=Se(el,i,j);
                Sht(i,j)=Sh(el,i,j);

Mhwt(i,j)=Mhw(el,i,j); Mhpt(i,j)=Mhp(el,i,j); Mhqt
(i,j)=Mhq(el,i,j);
            end;
        end;
        Met=inv(Met); Mht=inv(Mht);
        for i=1:3
            for j=1:3
    op=opposite(t(j,el),t(j+1-3*(j+1>3),el),1);
    if op==el
    op=opposite(t(j,el),t(j+1-3*(j+1>3),el),2);
    end;
    if op==0
    Eop0=-Et(j)*abcorpec;
                    Eop1=-Et(j+1-3*(j+1>3))*abcorpe c;
    Hop=-Ht(j)*abcorpec;
                else
    opj=0;
    if opposite(t(1,op),t(2,op),1)==el || opposite( t
(1,op),t(2,op),2)==el
    opj=1; end;
    if opposite(t(2,op),t(3,op),1)==el || opposite( t
(2,op),t(3,op),2)==el
    opj=2; end;
    if opposite(t(3,op),t(1,op),1)==el || opposite( t
(3,op),t(1,op),2)==el
    opj=3; end;
    Hop=H(op,opj,nt);
    Eop0=E(op,opj+1-3*(opj+1>3),nt);
                    Eop1=E(op,opj,nt);
    end;
                temp=eta*(-Hop-Ht(j))*3+(Eop0-Et(j) )*(1+(i==j));
                temp=temp+(Eop1-Et(j+1-3*(j+1>3)))* (1+(i==j+1-3*(j+1>3)));
                temp=temp*l(el,j)/6*(1-(i==j+2-3*(j +2>3)))/(eta+eta);
                Fe(i)=Fe(i)+temp;
                temp=(-Hop-Ht(j))*2;
                temp=temp+(1/eta)*(Eop0-Et(j)+Eop1- Et(j+1-3*(j+1>3)));
                Fh(i)=Fh(i)+temp*l(el,j)/2*(i==j)/( 1/eta+1/eta);
            end;
        end;
        %second-order Runge-Kutta method

%Runge-Kutta a
Erka=1/eps*Met*(Set*Hzt+Fe)-(sx(el)+sy(el))*Et-sx(e l)*sy(el)*E1t-

Jt/eps;
Hzrka=Mht*((-Sht*Et+Fh)/mu-Mhpt*Hzt-Mhqt*H1t);
E1rka=Et;
H1rka=Hzt-Mht*Mhwt*H1t;
Jt=(Jt+J(el,:,nt+1)')/2;
%Runge-Kutta b
Erkb=1/eps*Met*(Set*(Hzt+Hzrka*dt/2)+Fe)-(sx(el)+sy (el))*

(Et+Erka*dt/2)-sx(el)*sy(el)*(E1t+E1rka*dt/2)-Jt/ep s;
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Hzrkb=Mht*((-Sht*(Et+Erka*dt/2)+Fh)/mu-Mhpt*(Hzt+Hz rka*dt/2)-Mhqt*
(H1t+H1rka*dt/2));

E1rkb=Et+Erka*dt/2;
H1rkb=Hzt+Hzrka*dt/2-Mht*Mhwt*(H1t+H1rka*dt/2);
%update next values
E(el,:,nt+1)=(Et+Erkb*dt)';
E1(el,:,nt+1)=(E1t+E1rkb*dt)';
H1(el,:,nt+1)=(H1t+H1rkb*dt)';
Hz(el,:,nt+1)=(Hzt+Hzrkb*dt)';
H(el,:,nt+1)=(Hzt+Hzrkb*dt-Mht*Mhwt*(H1t+H1rkb*dt)) ';

end;
end;
Edpml=Ed;
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Scattering by a conducting cylinder with PML

%p: matrix of points (nodes)
%t: matrix of triangles (elements)
%e: matrix of points at the boundaries

freq=2e8;
periods=4;
theta=0/180*pi; %incident angle
abcorpec=0; %0 for ABC, 1 for PEC
smax=2*pi*freq*0.2;
sorder=2;
snumber=2;

%2D, TM
ne=size(t,2); %number of elements
Me=zeros(ne,3,3); Se=Me; Mh=Me; Sh=Me;
b=zeros(ne,3); c=b; l=b;
A=zeros(ne,1); f=zeros(3,3);
%additional matrices and variables for PML
Mhw=Me; Mhp=Me; Mhq=Me;
fw=f; fp=f; fq=f; sx=A; sy=A;

np=size(p,2); %number of nodes
opposite=zeros(np,np,2);
for el=1:ne

for i=1:3
for j=1:3

if i~=j
if opposite(t(i,el),t(j,el),1)==0

opposite(t(i,el),t(j,el),1)=el;
else

opposite(t(i,el),t(j,el),2)=el;
end;
end;

end;
end;

end;

%find extreme points
xmax=max(p(1,:)); xmin=min(p(1,:));
ymax=max(p(2,:)); ymin=min(p(2,:));

%find limits of regions
boundaryx=zeros(11,2); boundaryy=boundaryx;
for reg=1:11

tempx=[]; tempy=[];
for el=1:ne

if t(4,el)==reg
tempx=[tempx p(1,t(1,el)) p(1,t(2,el)) p(1,t(3,el)) ];
tempy=[tempy p(2,t(1,el)) p(2,t(2,el)) p(2,t(3,el)) ];

end;
end;
boundaryx(reg,1)=min(tempx); boundaryx(reg,2)=max(t empx);
boundaryy(reg,1)=min(tempy); boundaryy(reg,2)=max(t empy);

end;
%PML regions are numbered 1 to 8, starting from the  top left and increasing
clockwise
region=zeros(11,1);
for reg=1:11

if abs(boundaryx(reg,1)-xmin)<1e-10 && abs(boundary y(reg,2)-ymax)<1e-10
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region(1)=reg; end;
if boundaryx(reg,1)>xmin+1e-10 && boundaryx(reg,2)< xmax-1e-10 && abs

(boundaryy(reg,2)-ymax)<1e-10
region(2)=reg; boundary2=boundaryy(reg,1); end;

if abs(boundaryx(reg,2)-xmax)<1e-10 && abs(boundary y(reg,2)-ymax)<1e-10
region(3)=reg; end;

if abs(boundaryx(reg,2)-xmax)<1e-10 && boundaryy(re g,1)>ymin+1e-10 &&
boundaryy(reg,2)<ymax-1e-10

region(4)=reg; boundary4=boundaryx(reg,1); end;
if abs(boundaryx(reg,2)-xmax)<1e-10 && abs(boundary y(reg,1)-ymin)<1e-10

region(5)=reg; end;
if boundaryx(reg,1)>xmin+1e-10 && boundaryx(reg,2)< xmax-1e-10 && abs

(boundaryy(reg,1)-ymin)<1e-10
region(6)=reg; boundary6=boundaryy(reg,2); end;

if abs(boundaryx(reg,1)-xmin)<1e-10 && abs(boundary y(reg,1)-ymin)<1e-10
region(7)=reg; end;

if abs(boundaryx(reg,1)-xmin)<1e-10 && boundaryy(re g,1)>ymin+1e-10 &&
boundaryy(reg,2)<ymax-1e-10

region(8)=reg; boundary8=boundaryx(reg,2); end;
end;
%set conductivity components sx and sy
for el=1:ne

reg=t(4,el);
centerx=(p(1,t(1,el))+p(1,t(2,el))+p(1,t(3,el)))/3;
centery=(p(2,t(1,el))+p(2,t(2,el))+p(2,t(3,el)))/3;
if reg==region(1) || reg==region(2) || reg==region( 3)

sy(el)=smax*((centery-boundary2)/(ymax-boundary2))^ sorder; end;
if reg==region(3) || reg==region(4) || reg==region( 5)

sx(el)=smax*((centerx-boundary4)/(xmax-boundary4))^ sorder; end;
if reg==region(5) || reg==region(6) || reg==region( 7)

sy(el)=smax*((centery-boundary6)/(ymin-boundary6))^ sorder; end;
if reg==region(7) || reg==region(8) || reg==region( 1)

sx(el)=smax*((centerx-boundary8)/(xmin-boundary8))^ sorder; end;
end;
%outer Huygens region
for reg=1:11

if abs(boundaryx(reg,1)-boundary8)<1e-10 && abs(bou ndaryx(reg,2)-
boundary4)<1e-10...

&& abs(boundaryy(reg,1)-boundary6)<1e-10 && abs(bou ndaryy(reg,2)-
boundary2)<1e-10

region(9)=reg;
end;

end;
%scatterer region
centerx=(xmax+xmin)/2;
centery=(ymax+ymin)/2;
center=1;
for el=1:ne

centerpx=mean([p(1,t(1,el)) p(1,t(2,el)) p(1,t(3,el ))]);
centerpy=mean([p(2,t(1,el)) p(2,t(2,el)) p(2,t(3,el ))]);
centercx=mean([p(1,t(1,center)) p(1,t(2,center)) p( 1,t(3,center))]);
centercy=mean([p(2,t(1,center)) p(2,t(2,center)) p( 2,t(3,center))]);
if (centerpx-centerx)^2+(centerpy-centery)^2<(cente rcx-centerx)^2+

(centercy-centery)^2
center=el;

end;
end;
region(11)=t(4,center);
%inner Huygens region
for reg=1:11

if boundaryx(reg,2)>boundaryx(region(11),2)+1e-10.. .
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&& boundaryx(reg,2)<boundaryx(region(9),2)-1e-10
region(10)=reg;

end;
end;
reg=region(10);
boundary2h=boundaryy(reg,2); boundary4h=boundaryx(r eg,2);
boundary6h=boundaryy(reg,1); boundary8h=boundaryx(r eg,1);
%clear boundaryx boundaryy temp* center*;

for el=1:ne
    b(el,1)=p(2,t(2,el))-p(2,t(3,el));
    b(el,2)=p(2,t(3,el))-p(2,t(1,el));
    b(el,3)=p(2,t(1,el))-p(2,t(2,el));
    c(el,1)=p(1,t(3,el))-p(1,t(2,el));
    c(el,2)=p(1,t(1,el))-p(1,t(3,el));
    c(el,3)=p(1,t(2,el))-p(1,t(1,el));
    l(el,1)=sqrt(c(el,3)^2+b(el,3)^2);
    l(el,2)=sqrt(c(el,1)^2+b(el,1)^2);
    l(el,3)=sqrt(c(el,2)^2+b(el,2)^2);
    A(el)=(b(el,1)*c(el,2)-b(el,2)*c(el,1))/2;
    for i=1:3
        for j=1:3
            Me(el,i,j)=A(el)/12*(1+(i==j));
            Se(el,i,j)=l(el,j)/3;
            f(i,j)=b(el,i)*b(el,j)+c(el,i)*c(el,j);

fw(i,j)=sx(el)*b(el,i)*b(el,j)+sy(el)*c(el,i)*c(el, j);
fp(i,j)=(sy(el)-sx(el))*b(el,i)*b(el,j)+(sx(el)-sy( el))*c

(el,i)*c(el,j);
fq(i,j)=sx(el)*(sx(el)-sy(el))*b(el,i)*b(el,j)+sy(e l)*(sy

(el)-sx(el))*c(el,i)*c(el,j);
        end;
    end;
    for i=1:3
        for j=1:3
            temp=(f(i+1-3*(i+1>3),j+1-3*(j+1>3))+f( i,j))*(1+(i==j));
            temp=temp-f(i+1-3*(i+1>3),j)*(1+(i==j+1 -3*(j+1>3)))-f(i,j+1-3*
(j+1>3))*(1+(i==j+2-3*(j+2>3)));
            Mh(el,i,j)=l(el,i)*l(el,j)/(48*A(el))*t emp;
            Sh(el,i,j)=l(el,i)/6*(3*(i==j+1-3*(j+1> 3))-1);

temp=(fw(i+1-3*(i+1>3),j+1-3*(j+1>3))+fw(i,j))*(1+( i==j));
            temp=temp-fw(i+1-3*(i+1>3),j)*(1+(i==j+ 1-3*(j+1>3)))-fw(i,j+1-3*
(j+1>3))*(1+(i==j+2-3*(j+2>3)));
            Mhw(el,i,j)=l(el,i)*l(el,j)/(48*A(el))* temp;

temp=(fp(i+1-3*(i+1>3),j+1-3*(j+1>3))+fp(i,j))*(1+( i==j));
            temp=temp-fp(i+1-3*(i+1>3),j)*(1+(i==j+ 1-3*(j+1>3)))-fp(i,j+1-3*
(j+1>3))*(1+(i==j+2-3*(j+2>3)));
            Mhp(el,i,j)=l(el,i)*l(el,j)/(48*A(el))* temp;

temp=(fq(i+1-3*(i+1>3),j+1-3*(j+1>3))+fq(i,j))*(1+( i==j));
            temp=temp-fq(i+1-3*(i+1>3),j)*(1+(i==j+ 1-3*(j+1>3)))-fq(i,j+1-3*
(j+1>3))*(1+(i==j+2-3*(j+2>3)));
            Mhq(el,i,j)=l(el,i)*l(el,j)/(48*A(el))* temp;
        end;
    end;
end;
lmin=min(min(l));

vc=299792458;
mu=pi*4e-7;
eps=1/(mu*vc^2);%free space
eta=sqrt(mu/eps);
k=2*pi*freq/vc;
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dt=lmin/vc/6;
Nt=floor(periods/freq/dt)         %number of points  of t
time=0:dt:dt*Nt; time=time(:);
xd=p(1,:); yd=p(2,:);
xd=xd(:);yd=yd(:);
tri=delaunay(xd,yd);
Ed=zeros(np,size(time,1));
clear scenes;

%initial E and H
E=zeros(ne,3,size(time,1)); H=E;
E1=E; J=E; H1=E; Hz=E;
% for nt=1:size(time,1)
% for el=1:ne
% for i=1:3
% if(t(i,el)==center)
% J(el,i,nt)=1*sin(2*pi*freq*time(nt));
% end;end;end;end;

for nt=1:size(time,1)-1
%plot
nt
Edpoints=zeros(np,1);
for el=1:ne

for i=1:3
Ed(t(i,el),nt)=Ed(t(i,el),nt)+E(el,i,nt);
Edpoints(t(i,el))=Edpoints(t(i,el))+1;

end;
end;
for el=1:np

Ed(el,nt)=Ed(el,nt)/Edpoints(el);
end;

%  figure(1);
% trisurf(tri,xd,yd,Ed(:,nt));%-Ead(:,nt));
% xlim([xmin xmax]); ylim([ymin ymax]);
% zlim([-2 2]); caxis([-1 1]); shading interp;
% view([0 90]); axis square;
% scenes(nt)=getframe;

%calculate
for el=1:ne

        Met=zeros(3,3); Mht=Met; Set=Met; Sht=Met;
        Et=zeros(3,1); Ht=Et; Fe=Et; Fh=Et;

Mhwt=Met; Mhpt=Met; Mhqt=Met;
E1t=Et; Jt=Et; H1t=Et; Hzt=Et;

        for i=1:3
            Et(i)=E(el,i,nt);
            Ht(i)=H(el,i,nt);

E1t(i)=E1(el,i,nt);
            Jt(i)=J(el,i,nt);

H1t(i)=H1(el,i,nt);
            Hzt(i)=Hz(el,i,nt);
            for j=1:3
                Met(i,j)=Me(el,i,j);
                Mht(i,j)=Mh(el,i,j);
                Set(i,j)=Se(el,i,j);
                Sht(i,j)=Sh(el,i,j);

Mhwt(i,j)=Mhw(el,i,j); Mhpt(i,j)=Mhp(el,i,j); Mhqt
(i,j)=Mhq(el,i,j);
            end;
        end;
        Met=inv(Met); Mht=inv(Mht);
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        for i=1:3
            for j=1:3
    op=opposite(t(j,el),t(j+1-3*(j+1>3),el),1);
    if op==el
    op=opposite(t(j,el),t(j+1-3*(j+1>3),el),2);
    end;
                if op==0
    Eop0=-Et(j)*abcorpec;
                    Eop1=-Et(j+1-3*(j+1>3))*abcorpe c;
    Hop=Ht(j)*abcorpec;

else
opj=0;

    if opposite(t(1,op),t(2,op),1)==el || opposite( t
(1,op),t(2,op),2)==el
    opj=1; end;
    if opposite(t(2,op),t(3,op),1)==el || opposite( t
(2,op),t(3,op),2)==el
    opj=2; end;
    if opposite(t(3,op),t(1,op),1)==el || opposite( t
(3,op),t(1,op),2)==el
    opj=3; end;
    Hop=-H(op,opj,nt);
    Eop0=E(op,opj+1-3*(opj+1>3),nt);
                    Eop1=E(op,opj,nt);

if t(4,el)==region(9) && t(4,op)==region(10)
x0=p(1,t(j,el))-boundary8h;
y0=p(2,t(j,el))-boundary6h;
x1=p(1,t(j+1-3*(j+1>3),el))-boundary8h;
y1=p(2,t(j+1-3*(j+1>3),el))-boundary6h;
x2=p(1,t(j+2-3*(j+2>3),el))-boundary8h;
y2=p(2,t(j+2-3*(j+2>3),el))-boundary6h;
Eop0=Eop0-1*sin(k*(x0*cos(theta)+y0*sin

(theta))-2*pi*freq*time(nt))...
*(time(nt)>(x0*cos(theta)+y0*sin

(theta))/vc);
Eop1=Eop1-1*sin(k*(x1*cos(theta)+y1*sin

(theta))-2*pi*freq*time(nt))...
*(time(nt)>(x1*cos(theta)+y1*sin

(theta))/vc);
if abs(y1-y0)>1e-10 %vertical boundary

Hop=Hop-cos(theta)/eta*sin(k*(x0*cos
(theta)+y2*sin(theta))-2*pi*freq*time(nt))...

*(1-2*(y1>y0))*(time(nt)>
(x0*cos(theta)+y2*sin(theta))/vc);

else %horizontal boundary
Hop=Hop-sin(theta)/eta*sin(k*(x2*cos

(theta)+y0*sin(theta))-2*pi*freq*time(nt))...
*(1-2*(x0>x1))*(time(nt)>

(x2*cos(theta)+y0*sin(theta))/vc);
end;

end;
if t(4,el)==region(10) && t(4,op)==region(9)

x0=p(1,t(j,el))-boundary8h;
y0=p(2,t(j,el))-boundary6h;
x1=p(1,t(j+1-3*(j+1>3),el))-boundary8h;
y1=p(2,t(j+1-3*(j+1>3),el))-boundary6h;
x2=p(1,t(j+2-3*(j+2>3),el))-boundary8h;
y2=p(2,t(j+2-3*(j+2>3),el))-boundary6h;
Eop0=Eop0+1*sin(k*(x0*cos(theta)+y0*sin

(theta))-2*pi*freq*time(nt))...
*(time(nt)>(x0*cos(theta)+y0*sin
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(theta))/vc);
Eop1=Eop1+1*sin(k*(x1*cos(theta)+y1*sin

(theta))-2*pi*freq*time(nt))...
*(time(nt)>(x1*cos(theta)+y1*sin

(theta))/vc);
if abs(y1-y0)>1e-10 %vertical boundary

Hop=Hop+cos(theta)/eta*sin(k*(x0*cos
(theta)+y2*sin(theta))-2*pi*freq*time(nt))...

*(1-2*(y1>y0))*(time(nt)>
(x0*cos(theta)+y2*sin(theta))/vc);

else %horizontal boundary
Hop=Hop+sin(theta)/eta*sin(k*(x2*cos

(theta)+y0*sin(theta))-2*pi*freq*time(nt))...
*(1-2*(x0>x1))*(time(nt)>

(x2*cos(theta)+y0*sin(theta))/vc);
end;

end;
if t(4,el)==region(10) && t(4,op)==region(11)

Eop0=-Et(j);
Eop1=-Et(j+1-3*(j+1>3));
Hop=Ht(j);

end;
if t(4,el)==region(11)

Eop0=0;
Eop1=0;
Hop=0;

end;
                end;
                temp=eta*(Hop-Ht(j))*3+(Eop0-Et(j)) *(1+(i==j));
                temp=temp+(Eop1-Et(j+1-3*(j+1>3)))* (1+(i==j+1-3*(j+1>3)));
                temp=temp*l(el,j)/6*(1-(i==j+2-3*(j +2>3)))/(eta+eta);
                Fe(i)=Fe(i)+temp;
                temp=(Hop-Ht(j))*2;
                temp=temp+(1/eta)*(Eop0-Et(j)+Eop1- Et(j+1-3*(j+1>3)));
                Fh(i)=Fh(i)+temp*l(el,j)/2*(i==j)/( 1/eta+1/eta);
        end;end;
        %second-order Runge-Kutta method

%Runge-Kutta a
Erka=1/eps*Met*(Set*Hzt+Fe)-(sx(el)+sy(el))*Et-sx(e l)*sy(el)*E1t-

Jt/eps;
Hzrka=Mht*((-Sht*Et+Fh)/mu-Mhpt*Hzt-Mhqt*H1t);
E1rka=Et;
H1rka=Hzt-Mht*Mhwt*H1t;
Jt=(Jt+J(el,:,nt+1)')/2;
%Runge-Kutta b
Erkb=1/eps*Met*(Set*(Hzt+Hzrka*dt/2)+Fe)-(sx(el)+sy (el))*

(Et+Erka*dt/2)-sx(el)*sy(el)*(E1t+E1rka*dt/2)-Jt/ep s;
Hzrkb=Mht*((-Sht*(Et+Erka*dt/2)+Fh)/mu-Mhpt*(Hzt+Hz rka*dt/2)-Mhqt*

(H1t+H1rka*dt/2));
E1rkb=Et+Erka*dt/2;
H1rkb=Hzt+Hzrka*dt/2-Mht*Mhwt*(H1t+H1rka*dt/2);
%update next values
E(el,:,nt+1)=(Et+Erkb*dt)';
E1(el,:,nt+1)=(E1t+E1rkb*dt)';
H1(el,:,nt+1)=(H1t+H1rkb*dt)';
Hz(el,:,nt+1)=(Hzt+Hzrkb*dt)';
H(el,:,nt+1)=(Hzt+Hzrkb*dt-Mht*Mhwt*(H1t+H1rkb*dt)) ';

end;
end;
Edpml=Ed;
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