
c© 2009 by LARS E. OLSON. All rights reserved.

REFLECTIVE DATABASE ACCESS CONTROL

BY

LARS E. OLSON

B.S., Brigham Young University, 2000

M.S., Brigham Young University, 2003

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Doctoral Committee:

Professor Carl A. Gunter, Chair and Director of Research

Research Professor Marianne Winslett, Co-Chair

Assistant Professor Madhusudan Parthasarathy

Assistant Professor William R. Cook, University of Texas

Abstract

Reflective Database Access Control (RDBAC) is a model in which a database privilege is

expressed as a database query itself, rather than as a static privilege contained in an

access control list. RDBAC aids the management of database access controls by

improving the expressiveness of policies. However, such policies introduce new interactions

between data managed by different users, and can lead to unexpected results if not

carefully written and analyzed. We propose the use of Transaction Datalog syntax and

semantics as a formal framework for expressing reflective access control policies.

Using a formal logic-based language provides a basis for analyzing policies and enables

secure implementations that can guarantee that certain configurations built on these

policies cannot be subverted. We demonstrate this by defining two classes of policy

configurations, and proving that under any set of such policies, a decidable algorithm can

determine whether or not access to a sensitive data item can ever be leaked to an

unprivileged user.

Although the Transaction Datalog language provides a powerful syntax and semantics

for expressing RDBAC policies, there is no efficient implementation of this language for

practical database systems. We demonstrate a strategy for compiling policies into

standard SQL views that enforce the policies, including overcoming significant differences

in semantics between the languages in handling side-effects and evaluation order. We also

report the results of evaluating the performance of these views compared to policies

enforced by traditional access control lists, using a common off-the-shelf relational

database management system.

We also present two case studies for systems that can be protected using RDBAC

security policies. These case studies demonstrate the flexibility of the system by

ii

implementing a wide range of functionality, as well as the practicality and scalability of

using such a system in real-world applications that require non-trivial policy definitions on

large data sets.

This work establishes the theoretical soundness of using RDBAC as a basis for access

control. It describes an efficient translation process for executing a useful subset of

RDBAC rules in standard SQL, thereby demonstrating its practical feasibility using

existing software. We show how RDBAC can be applied to realistic applications. These

results suggest a rich field of further research.

iii

Table of Contents

List of Figures . vi

List of Tables . vii

Chapter 1 Introduction . 1

Chapter 2 Related Work . 5
2.1 Computational Reflection . 5
2.2 Database Access Control . 6
2.3 Transaction Datalog and SQL . 10
2.4 Case Studies . 11

Chapter 3 Reflective Database Access Control 13
3.1 The Case for RDBAC . 13
3.2 Access Control with RDBAC . 15
3.3 State-of-the-Art Systems . 19

3.3.1 Oracle VPD . 19
3.3.2 XACML . 25

Chapter 4 Theory . 28
4.1 Datalog Overview . 28

4.1.1 Syntax and Semantics . 28
4.1.2 Transaction Datalog . 30
4.1.3 Negations in TD . 33
4.1.4 Query Evaluation . 35

4.2 Defining Policies . 36
4.3 Security Analysis . 40

4.3.1 HRU Model . 40
4.3.2 Security Analysis and Decidability 42
4.3.3 Side-Effect-Free Policies . 46
4.3.4 Safely-Rewritable Policies . 48

Chapter 5 Implementation . 54
5.1 Prototype Description . 58

5.1.1 Strategy . 58
5.1.2 Optimization . 62
5.1.3 Compiling Negation Predicates . 65
5.1.4 Compiling View-assert and View-retract Rules 66

iv

5.2 Evaluation . 70
5.3 Comparison with VPD and XACML . 78

Chapter 6 Case Studies . 86
6.1 Medical Database . 87

6.1.1 Schema Overview . 88
6.1.2 Policies . 90
6.1.3 Formal Security Analysis . 94
6.1.4 Summary and Discussion . 99

6.2 Building Automation System . 99
6.2.1 Schema Overview . 100
6.2.2 Policies . 101
6.2.3 Summary and Discussion . 103

Chapter 7 Future Work and Conclusion . 105
7.1 Future Work . 105
7.2 Conclusion . 109

Appendix A Case Study: Medical Database 110
A.1 Schemas . 110
A.2 Policies . 116

Appendix B Case Study: Building Automation System 141
B.1 Schemas . 141
B.2 Policies . 144

References . 150

Vita . 157

v

List of Figures

3.1 Security architectures for database applications 15
3.2 Evaluation of a query using VPD architecture 21

5.1 Execution time results for employee policies, logarithmic scale, fixed database
size (100,000 empl.) . 72

5.2 Execution time results for employee policies, logarithmic scale, fixed query
type (HR query) . 72

5.3 Execution time results for employee policies, normal scale, fixed query type
(HR query) and database size (100,000 empl.) 74

5.4 Execution time results for store data policy using logarithmic scale 77
5.5 Execution time results for store data policy using normal scale, fixed database

size (1,000,000 stores) . 77
5.6 Execution time results for VPD and XACML, 1,000 empl. 84
5.7 Execution time results for VPD and XACML, 100,000 empl. 84

6.1 Execution time results from Table 6.1 . 98

vi

List of Tables

3.1 Example Oracle VPD function . 21
3.2 Oracle VPD function that exploits the function from Table 3.1 22
3.3 A disallowed Oracle VPD function that contains a cycle 24

4.1 Example view predicates . 37
4.2 Corrected policy rule from Table 4.1 with basic privilege rules 38

5.1 Benchmark Policies: employees and store data tables 55
5.2 Benchmark Policies: client data . 57
5.3 Generated SQL view definition for benchmark policies. 63
5.4 Hand-coded baseline SQL views. 70
5.5 Execution time results (in msec) for employees and client1 policies 73
5.6 Execution time results (in msec) for store data policy 76
5.7 VPD Encoding of Benchmark Policies . 79
5.8 XACML Encoding of Benchmark Policies 80
5.9 Execution time results (in msec) for VPD and XACML 85

6.1 Execution time results (in sec) for verifying security of labResult table . . . 97

vii

Chapter 1

Introduction

Current databases use a conceptually simple model for access control: the database

maintains an Access Control Matrix (ACM) listing the resources provided by the

database, such as tables, views, and functions; the users that are allowed to access each

resource; and which operations each user is allowed to perform on the resource, such as

read, insert, update, or execute. If access control is needed at a fine-grained level, in which

a user should only be granted access to certain portions of a database table, then a

separate view is created to define those portions, and the user is granted access to the

view. This model is flexible enough to allow users to define access privileges for their own

tables, without requiring superuser privileges. However, ACMs are limited to expressing

the extent of the policy, such as “Alice can view data for Alice,” “Bob can view data for

Bob,” etc., rather than the intent of the policy, such as “each employee can view their own

data.” This makes policy administration more tedious in the face of changing data, such

as adding new users, implementing new policies, or modifying the database schema. Many

databases attempt to ease administration burdens by implementing roles in addition to

ACMs to group together common sets of privileges, but this does not fully address the

problem. In a scenario such as the policy of “each employee can view their own data in

the table,” each user requires an individually-defined view of a table as well as a separate

role to access each view, which yields no benefit over a standard ACM-based policy.

We propose the idea of Reflective Database Access Control (RDBAC), in which access

control policy decisions can depend on data contained in other parts of the database, such

as attributes of the user, attributes of the data being queried, or relationships between the

user and the data. While most databases already do store ACMs within the database

itself, the policy data are restricted to the form of a triple 〈user, resource, operation〉 and

1

separated from the rest of the database; and the query within the policy is limited to

finding the permission in the ACM. RDBAC removes these restrictions and allows policies

to refer to any part of the database.

Let us illustrate with an example. Suppose we have a database that contains a table

listing a company’s employees, along with their position in the company and the

department in which they work. Suppose also that we want to grant all employees that

are managers access to the data of the other employees in their department. When a

manager queries this table, the policy will first check that the user is indeed a manager,

then retrieve the manager’s department, and finally return all employees in that

department. This approach has at least two benefits. First, the policy leverages data

already being stored in the database. Second, the policy describes its intent rather than

its extent; thus, privileges are automatically updated when the database is updated (for

instance, when an employee receives a promotion to manager), preventing update

anomalies that leave the database in an inconsistent state.

This kind of behavior could perhaps be enforced by using triggers to update access

privileges when a database changes. However, this is not an ideal solution because a policy

may depend on a table for which the policy definer does not have sufficient privileges to

define a trigger. Additionally, when the policy implementation is split between ACMs and

triggers, any future modifications to this policy will cause administration headaches.

The concept of reflective access control is important enough that access control

extensions offered by major vendors do support it. For instance, Oracle’s Virtual Private

Database technology [68], in which every query on a database table is rewritten by a

special user-defined function, can implement reflective access control. This system and

others like it have at least three drawbacks. First, the privilege to define these policy

functions is considered an administrator privilege [69], so not all users can define reflective

policies on the tables they create. Relaxing this restriction will make the system more

scalable by supporting multilateral administration. Second, policies that refer back to the

table being queried (such as our example policy for granting access to managers) are

disallowed, as they might otherwise cause a non-terminating loop when the policy

2

recursively invokes itself by querying the table. A system that enables safe forms of such

reference will have useful additional expressive power. Third, and most importantly,

existing implementations of reflective access control have no formal description. Since the

interactions between access privileges and arbitrary data in the database are complicated,

analysis of what arbitrary users can or cannot do is not always intuitive. Hence a formal

foundation for better analysis is needed.

The Extensible Access Control Markup Language (XACML), while not specifically

designed for database access control, is also capable of expressing policies flexible enough

to handle RDBAC through the use of XPath expressions on the request document and/or

customized attribute functions [65]. While some formal mathematical models of XACML

exist, none include semantics for accessing the data being protected, since XACML was

designed to be a general-purpose access control language and makes no assumptions on the

content of the protected data. Additionally, XACML semantics do not implicitly account

for reflective policies that may need to be evaluated under a non-administrator privilege.

The goal of this thesis is to develop the concept of RDBAC theoretically in a way that

addresses these limitations. Specifically, we show that Datalog-based reflective database

access control can provide a flexible, scalable, and efficient mechanism for defining,

enforcing, and formally reasoning about fine-grained access control policies. This thesis

provides:

• The first formal treatment of RDBAC, in which policies can be defined in terms of a

proof-theoretic system. We develop a model using Transaction Datalog [13] and

argue that it can be used to accomplish this. Transaction Datalog (TD) is an

extension of classic Datalog that allows modifications to a database and has a

precise mathematical semantics, incorporating recursive (cyclic) definitions and

transaction-based atomic updates, assuring serializable execution of transactions. We

propose that access policies be written in TD, and we exhibit a variety of scenarios

that show this to be a natural and intuitive model. Our contributions also include

an analysis of the weaknesses of existing approaches both in expressiveness and in

formal foundations, and a formal framework that addresses these limitations. We

3

also provide a theoretical analysis of decidability properties of our proposed system.

In particular, we describe the problem of formal security analysis—specifically,

whether untrusted users can ever gain access to some protected data—and show

that while this problem is in general undecidable, there are reasonable restrictions

on policies that allow decidable security analysis algorithms.

• The first formally-analyzable implementation of an RDBAC system. This system is

implemented in a standard SQL-based relational database, using TD as a policy

language1, by compiling TD rules into standard SQL:1999 recursive views. We also

describe simple optimizations that improve the performance of querying these views.

We report on the evaluation of the compiled views as compared to using hand-coded

views that implement the same policies using standard ACM-based enforcement.

• The two most detailed case studies to date that depend on RDBAC policy

enforcement. These case studies are motivated by real-world applications and

demonstrate the usefulness of such a system.

The rest of this document is divided into six chapters. In Chapter 2 we discuss related

work. In Chapter 3 we present challenges that arise in implementing an RDBAC system

that motivate the need for a formal basis for RDBAC. Chapter 4 establishes this formal

basis by using syntax and semantics defined by the TD language, and demonstrates how

this model for access control can be used in formal security analysis by defining two

classes of policy configurations in which the problem of analyzing whether an unprivileged

user can ever gain undesired privileges is provably decidable. Chapter 5 describes the

compilation process of using TD-based access control policy rules in an off-the-shelf

commercial database system, as well as optimizations that yield significant performace

benefits. Chapter 6 presents the two case studies, including the database schemas and the

TD rules for access control. An example of proving a safety property of one of these

systems is also provided in Chapter 6. In Chapter 7, we discuss future work suggested by

this project, and conclude.

1A similar compilation strategy could be applied to other more common policy languages, such as
XACML [65].

4

Chapter 2

Related Work

In this chapter, we first describe work that has been done previously in computational

reflection, including how this concept has been applied to access control and to databases.

We then describe the current technology relating to database access control, including

studies in how policies might refer back to the database being protected. While these

studies have similar functionality to the work presented in this thesis, none of them

provide the combination of a mathematical access control model, a system in which

lower-privileged users may write policies for their own data, and a mechanism for

executing side-effects as part of the policy execution, all of which are provided by our

work. Previous work related to the use of Datalog to represent database queries is then

presented, in which many of the same principles for query semantics apply to our work; to

our knowledge, however, ours is the first to translate Transaction Datalog into SQL and to

use this translation as a means of access control. Finally, we list related work for

application development for medical information systems and building automation

systems, some of which include designs or principles for designing access control policies,

but none of which use the concepts of RDBAC in their implementation.

2.1 Computational Reflection

The term “reflective” as applied to computation was first described by Maes [61] for

programming languages that enable a system (namely, a set of data objects) to reason

about itself. Using computational reflection for access control has been examined in using

history metadata and temporal logic on arbitrary system resources [7], and in using a

specialized Java extension to enforce access control on compiled Java code [91]. Both

5

applications, however, still maintain a stratification on the data being protected and the

data used to make policy decisions.

The concept of computational reflection has also been applied to database logic.

QCM [40], and its successor, SD3 [51] allow for a form of computational reflection in

evaluating distributed queries, in which the locations of a subquery can be determined

based on the results of another subquery. However, all of these access control systems

assume “omniscient access” (without restrictions) to the policy data. Salas et al. describe

a middleware system for databases that uses reflection to provide replication,

independently of the actual underlying database system(s) [75]. Their system uses

information from the database to perform some scheduling optimizations. None of these

projects addresses the idea of using reflection for access control, which introduces new

challenges such as cyclic policy queries and information leakage.

2.2 Database Access Control

Griffiths and Wade [38] proposed an access control model for databases that is still largely

in use in modern commercial databases. In their model, the database maintains entries of

an access control matrix to enumerate user privileges on database resources such as tables

and views. Each resource is owned by a particular user, who may then grant privileges on

the resource to other users, as well as revoke the privileges.

Hippocratic Databases [6] make a distinction between users that own a database table

and users that own the data contained in the table. Studies on this paradigm have shown

how policies for such databases might depend on data contained within a table and touch

on the idea of allowing the user to define arbitrary policy logic [59]. But these studies do

not further examine any security implications of this, focusing more on using the Boolean

values in query optimization. Compliance with privacy policies using audit-based methods

has been proposed [4] using an extension to SQL syntax that specifies data to be

protected and definitions for when a query uses that data in a “suspicious” way. This tool

does not prevent such queries from occurring, it merely enables auditing of these queries.

All of these projects assume that policy definers have omniscient access to the database.

6

Other recent work reveals a trend towards implementing RDBAC. A proposed

extension to the standard SQL grant syntax limits the conditions under which a grant

may be performed, including server conditions like time of day and user conditions like the

names of the user executing the grant and the user receiving the grant [72]. The paper

also addresses when revocations of a grant may be temporary, and how often to evaluate

the grant conditions. The grants may depend on the state of the database, constituting a

reflective system to some degree, although the paper does not define a formal syntax or

semantics. Several other projects implement RDBAC to some extent [5, 12, 25, 37],

although none of these projects define a formal model. Agrawal et al. [5] describe an

algorithm for translating privacy policies written in a language such as P3P [26] into a

specialized access control language which bases access control decisions not only on the

identity of the user but on the purpose and the recipient of the data. The authors also

describe an algorithm for rewriting user queries based on this specialized language. These

policies can be fine-grained and can themselves contain queries, providing reflective

capabilities. Their system assumes that policy definers have omniscient access to the

database. Bobba et al. [12] introduce the idea of “Attribute-Based Messaging,” an

application for dynamically creating recipient lists for messages based on user attributes.

In other words, rather than explicitly specifying which users should receive a message, the

sender creates a policy of which user attribute values are required, and the recipient list is

created using this policy as an attribute database query. Senders may have restricted

access to certain attributes. Recipient policies are generated semi-automatically by

providing the sender a form with the attributes he is allowed to use, which also prevents

the sender from formulating a query based on sensitive attributes. This application would

not be appropriate for full database query functionality, since it provides neither row-level

filtering nor full policy expressiveness (policies must be based on the values of user

attributes only). However, it does represent a simple, useful application for reflective

policies. Cook and Gannholm [25] describe a middleware system for evaluating and

enforcing rule-based access control policies on a database. The system uses a policy

language that allows for rules that may be reflective. It uses query rewriting to filter the

7

results, thus benefitting from the database’s own optimization techniques. The policy

writer is assumed to be omniscient. Goodwin et al. [37] introduce the idea of “implicit

grouping,” in which user groups are parameterized based on the attributes of a user,

which are stored in the database. Permissions are granted to these groups based on the

values of these attributes, and the database recognizes that these permissions must be

automatically updated when the attribute values are updated. However, queries within

the policies are limited to the user attributes, rather than arbitrary database logic. It also

assumes that the policy definer has full omniscient access to the attribute table.

Oracle’s Virtual Private Database technology (VPD) is a significant implementation of

RDBAC, in which queries on a resource are rewritten based on a policy function that can

filter the results of the query [68]. The policy function may in turn contain other queries,

and these queries may in turn be rewritten based on other policy functions. We discuss

some of the shortcomings of VPD in Section 3. Sybase’s Adaptive Server Enterprise

database [81] similarly uses query rewriting based on logical conditions, including

arbitrary logic written in user-defined Java functions. This model behaves similarly to

Oracle’s VPD model, and similarly lacks a formal mathematical model.

Rizvi et al. describe using query rewriting to determine whether a given query is

authorized, without actually changing the query [71]. In other words, if a query can be

rewritten using authorized views, then it is an authorized query, but it puts the burden of

actually determining how to formulate the query properly on the user. They call this

approach a “Non-Truman model,” as opposed to a system such as Oracle VPD that

performs query modifications, which they categorize as a “Truman model.” (The authors

named this terminology after the movie “The Truman Show,” in which the main

character, Truman, was presented with views of the world that did not truly indicate

reality.) They also allow views to be parameterized based on system values like the name

of the user, and because the policies are defined by the views, this also constitutes a

reflective model. Non-Truman models provide benefits such as providing query answers

that represent the actual database state and not adding extra execution tasks that may

adversely affect the optimization task. Truman models, by contrast, perform query

8

rewriting (perhaps without any user knowledge) and may give misleading results, or

worse, may give incorrect answers if part of a larger set difference or existence query.

There are also several drawbacks to using Non-Truman models, including burdening the

users to formulate correct queries, and giving undescriptive feedback when a query is

disallowed. Our work follows the example of Oracle VPD in rewriting queries based on

policies on the underlying data; it thus constitutes a Truman model.

Security issues with optimizing database query plans that contain user-defined

functions have been studied by Kabra et al. [53]. Näıve optimizers may rearrange the

query in such a way that it executes efficiently, but gives user-defined functions access to

sensitive data before any filters are applied. Our work will not address this concern;

however, this does constitute a major issue that must be considered for deployed systems

that may use RDBAC with user-defined functions.

An extension to the SQL syntax and semantics for including predicates in grant

statements, called predicated grants, was proposed by Chaudhuri et al. [23]. These

predicates follow the syntax of SQL where clauses; thus, this allows policies to contain

arbitrary read-only queries on the database. The grantees may also be optionally specified

by a query-defined user group. Queries on these tables are rewritten based on these

policies, constituting a Truman model. Furthermore, these policies are non-omniscient;

that is, they are in turn rewritten based on the definer’s view of the database. Predicated

grants currently disallow policies that refer back to the same table they protect, as well as

policy cycles. Our prototype easily handles such policies, which can occur very naturally

in practice. For instance, consider the policy “all employees may view names and

addresses of other employees that work in the same store.” This policy protects the

employees table, but also needs to query that table itself to find out what store the

querying user works in. The authors briefly mention a prototype implementing portions of

their extended syntax, however no details are provided so it is unknown how well the

prototype performs. They also do not provide formal policy analysis for their access

control model, nor does their syntax allow for policies that contain side-effects. Both of

these shortcomings motivated our use of Transaction Datalog as a policy language, which

9

provides a mathematical model to enable formal analysis and the ability to execute

side-effects in an encapsulated database query.

2.3 Transaction Datalog and SQL

The relationship between the expressive powers of Datalog and relational algebra has long

been recognized [1, 21, 84], although few systems that analyze the practical use of Datalog

or Prolog together with database management systems have actually been

built [22, 28, 42, 62]. Draxler’s work offers the most details and is most similar to ours, in

describing a translation process from a subset of general-purpose Prolog syntax into

SQL [28]. He also offers a survey of other earlier literature describing the translation

process. Disjunctions, negations, and aggregates are all supported, as are some

non-Datalog features of Prolog such as findall and nested predicates; however it does not

handle recursive view definitions, or even views that depend on the results of other queries

defined in the program (unless, of course, the query is copied verbatim, making the system

susceptible to update anomalies). Additionally, applications using this interface must also

be written in Prolog. The report mentions two proposed approaches to incorporating

database updates in their system; however both approaches are only described at a high

level, and neither appears to have been implemented. Other publicly-available translation

engines from Prolog to SQL exist, but all are derived from Draxler’s code base.

U-Datalog [20] is an alternative extension of Datalog that defines update semantics, in

which all updates are deferred until the end of a query evaluation. Conflicting updates, in

which reordering the updates results in a different final database state, are detected and

aborted. U-Datalog could offer a reasonable alternative language to TD; however, ordering

of updates are very important in certain policies. Consider, for instance, a policy in which

only one user may access a data item at one time, which could be implemented as

token(X), del.token(X), read data, ins.token(X). Clearly the ordering of these

predicates is significant, as other orderings may cause a policy violation or deadlock.1

1
While there are practical considerations for our prototype to restrict updates to the end of any query evaluation,

similarly to U-Datalog, we note that TD as a policy language can implement policies such as the one described.

10

2.4 Case Studies

Motivation for flexible and fine-grained access control in medical applications was

provided by Verhanneman et al. [89], although they focused more on the lack of

programmatic controls using J2EE or .NET rather than on database enforcement.

Anderson proposed a set of principles for clinical information systems [8], which provides a

set of practical guidelines for designing policies for use in the medical field. While these

guidelines emphasize the use of access control lists, which are not used by our security

model, our policies do generally follow the intent of the guidelines related to policy

enforcement, with a few exceptions2 that better accommodate current medical practices.

The trust management prototype Cassandra [11] was created with a case study that

provided policies for interacting between health organizations under the UK National

Health Service, although its focus is on communicating full records between independent

organizations, rather than on fine-grained access control. Another case study for access

control policies in medicine was provided by Dekker and Etalle [27], using a novel

technique called Audit-Based Access Control [31]. This technique does not prevent

unauthorized accesses, it only provides an audit method for detecting unauthorized

accesses after the fact, and assumes the existence of external deterrents to allow users to

police themselves. Such a system, however, requires that all users know and understand

the access policies beforehand, and would not be helpful against accidental disclosures. A

relational database schema designed jointly by database designers and medical experts

was briefly described by Friedman et al. [35]. The authors motivate the use of off-the-shelf

DBMS products over customized databases and describe a tradeoff between storing all

patient data in a single table, which clusters all relevant data for a patient together but

requires a very generalized table structure to handle the different data types; and storing

data for each domain in separate tables, which allows more natural table structures but

scatters patient data over various tables. They chose the former approach while we chose

the latter. They do not provide full details, although they do show the schemas of two

2One such exception is to permit emergency access to a patient’s records, even if the clinician is not
ordinarily granted such access. This indicates that further development and revision of Anderson’s principles
may be warranted; however, such is beyond the scope of this thesis.

11

tables. They also do not address access control policies. Nadkarni also acknowledges the

challenges of designing a relational database schema for heterogeneous data such as

clinical data [64] and briefly lists some common proprietary medical record systems.

Because building automation systems (BAS) are not a typical case study for database

systems, very little work exists in example policies or schemas. However, database access

control is a good fit for BAS, since typical commercial systems must keep track of a large

number of resources and are likely to use a database for this purpose; certainly, they must

interface with a database system in order to integrate personnel data with their access

control policies. Several proprietary automated building control systems

exist [45, 52, 76, 82, 83] as well as some communication protocol

standards [9, 29, 30, 67, 94]. Boyer et al. described an architecture for enforcing BAS

policies at the application level in an open environment such as the internet [17]. Our

BAS case study extends these policies with additional access patterns and moves the

enforcement mechanism to the database level.

12

Chapter 3

Reflective Database Access Control

In this chapter we first motivate the need for the access control model provided by

RDBAC. We explain the generalized model that commercial databases currently use, and

describe its shortcomings for implementing common policies. Many front-end application

designers, when confronted with these shortcomings, bypass the database’s native access

control system and implement access control in the application itself; however, we will

argue that this approach introduces new shortcomings itself. Next, we present the

intuitive concept behind RDBAC, and describe what would be required of an ideal

RDBAC system. Finally, we provide two examples of state-of-the-art technologies that are

currently capable of implementing RDBAC: Oracle’s Virtual Private Database (VPD),

and OASIS’s eXtensible Access Control Markup Language (XACML), a set of XML

elements for defining access control policies along with a basic set of algorithms for

evaluating the policies. We describe how these technologies fall short of our requirements,

thereby demonstrating the need for the system we describe in the remainder of the thesis.

3.1 The Case for RDBAC

Griffiths and Wade proposed the database access control model that forms the basis for

current database access control technology [38]. In this model, table owners may grant

privileges on their tables to database users. If a user should only be granted access to

certain portions of a database table, then the table owner creates a view definition on the

table to specify those portions, and grants the user access to the view. All of these

privileges can be stored by the database as entries to an access control matrix.

13

To handle large numbers of database users with similar privileges, many databases

extend the Griffiths-Wade model by implementing a form of Role-Based Access

Control [32], allowing table owners to grant access to a database role, rather than to each

user individually. Multiple privileges can be granted to a single role, so that these sets of

privileges can be granted (or revoked) en masse to a single user simply by assigning (or

deassigning) that role to the user.

For many common cases, however, the Griffiths-Wade model is cumbersome or even

impractical. For instance, data relating to each user, such as the user’s position in the

company, is often stored in other tables in the database. This data may be directly or

indirectly related to the user’s privileges, such as in the policy “all managers get access to

the personnel table,” the access control matrix entries become redundant information.

Even when simplifying the implementation of such a policy by defining a role for

managers, the role membership data is still redundant information since it can be deduced

through the table listing each user’s position. Redundancies in the database are prone to

error when some of the redundant data is updated and some is not, such as when a user is

demoted from a managerial position and the data table is updated but the permissions are

not. While database triggers could be used to prevent redundancies by updating the

privileges when the user data table is updated, the access control matrix still does not

explicitly use this information and can still be manipulated directly, independently from

the user data table. This allows the possibility of putting the database into an

inconsistent state.

Another problem occurs when each user’s view of a table is unique, such as in the

policy “all users get access to their own salary data.” In this case, creating each unique

view of the salary data for each user in the system is impractical for large numbers of

users. Because no two users can see the same data, using role membership does not

simplify the problem.

Many database application designers who require such policies implement the access

control checks at the application level, rather than at the database level. Such an

architecture is shown in Figure 3.1(a), in which the database connection from the

14

Database

Application A

Access Control
Rules

aUser a

User b b

cUser c

A

(a) Privileges using application-level enforcement

Database

Rules
Access Control

Optional

Application A

Additional
Controls

Layer
Enhanced Security

a
User a

b

c
User b

User c

a

b

c

(b) Privileges using database-level or middleware-level enforcement

Figure 3.1: Security architectures for database applications

application is able to access the entire database, and simply uses its own program logic to

limit the privileges of the user running the application. While such an architecture does

allow enforcement of more complex policies, it also suffers from two drawbacks: first,

because the database connection is at an elevated privilege compared to the privileges of

any single user that runs the application, the application is prone to privilege escalation

attacks, such as SQL injection [54]. Second, if other applications are written for the same

data, the policy logic must be duplicated within each application. This redundancy

increases the likelihood of coding errors and may lead to policy violations, depending on

which application is used to access the data.

3.2 Access Control with RDBAC

We defined Reflective Database Access Control in Chapter 1 as a database access control

paradigm in which access decisions are dependent on attributes and relationships

contained in the current database state. RDBAC policies, rather than explicitly specifying

which users may access a given resource, contain queries on the database to retrieve these

attributes and relationships. RDBAC may also be used for fine-grained access control, so

15

that a single policy on a database table may cause different portions of the table to be

returned to the user, including but not limited to full access to every table value or no

access at all. When any values in the database change, any policies that depend on those

values immediately reflect the new database state, affecting any subsequent queries that

are protected by such policies.

Because database queries can compute more complicated algorithms than a simple

“permit” or “deny” access decision, RDBAC policies can implement a wider range of

policy logic. This greater expressibility in defining more robust policies enables

application designers to push policy enforcement from the application back to the

database as shown in the architecture design in Figure 3.1(b). In this architecture, the

application makes the database connection on behalf of the user running it, and the

connection only has the privileges of that user. The enhanced security layer may be part

of the database itself, such as Oracle’s VPD technology (which we will describe in

Section 3.3.1), or it may be a middleware layer through which all database connections

pass, as described by Cook and Gannholm [25]. In either case, the security layer may itself

perform operations on the database during the evaluation of a policy, such as querying

whether the user is recorded in the database as a manager; and if so, of which department.

Policies in the Griffiths-Wade access control model, defined by views and ACM entries

as described in Section 3.1, are already capable of using the current database state and are

therefore already reflective, albeit in a limited way. Consider the following view:

create view sales employees as

select * from employees

where department = ’sales’.

When a user queries sales employees, the rows in the employees table that are returned

depend on whether the department value is equal to “sales.” If a newly-hired employee

gets added to the database, then the response to this query will automatically include the

new employee without any changes to the query or to the policy, and is therefore

dependent on the current database state. However, this reflective capability is limited: it

cannot, for instance, look up attributes of the user executing the query. Such capability is

16

required for policies such as “all users that are managers may view records for employees

in their respective departments.” Under an RDBAC model, such a policy could be

expressed by including a subquery to the employee table to look up the current user’s

position and department. If the user’s position is “manager,” then the policy filters the

user’s query to include only those records of employees in the user’s department.

RDBAC addresses both of the shortcomings of the Griffiths-Wade model as previously

described: redundancy and manageability of customized unique views. By making a

policy dependent on auxiliary data stored in a table, such as the aforementioned policy

(“all managers get access to data for their employees”), the enforcement mechanism

queries the auxiliary data on each access1 to ensure that the policy holds for the user

executing the query. Thus, as soon as the auxiliary data is updated, such as when a user

is demoted from a managerial position, the privileges are automatically updated as well.

When multiple customized views must be defined on a single table, such as the example

policy of “all users get access to their own salary data,” a single RDBAC policy can use

the database’s own logic to create a view for each user dynamically based on that user’s

identity by computing whether the data in the table should be visible to the user,

preventing the need for explicitly setting up static view definitions.

Allowing policies to query the database also broadens the types of policies that can be

enforced when we allow other types of queries, such as database update queries, to be

executed by the policy enforcement mechanism. For example, Chinese Wall policies define

partitions of data that constitute conflict-of-interest categories [18]. Initially, a user may

query data from any partition, but once a user queries one of them, he may no longer

access data from any of the other partitions. Such a policy requires the state of the

database to change when a user makes a query. For another example, audit policies

require the creation of a new audit record when a user executes a query, detailing who is

making the query and what data was accessed by the query [31]. RDBAC can handle such

policies by allowing the enforcement mechanism to execute any series of database

operations during a user query, rather than just executing read-only queries. For instance,

1Caching techniques could be used on repeated accesses to save processing time, provided the cache is
invalidated when the data is updated.

17

a Chinese Wall policy could be implemented by having the policy check a metadata table

to see if the user is allowed to access the data being queried, i.e. that the user has not

already viewed data from one of the other conflict-of-interest categories. If access is

allowed, the policy immediately inserts a record in the metadata table to disable access to

any of the other categories, and returns the requested data; otherwise, no data is returned.

We note that the Griffiths-Wade model does not require the policy definer to be a

database administrator. Arbitrary users that are given permission to create their own

tables generally also receive permission to define who should be able to access their tables.

Lesser-privileged users may create views based on data owned by other users, but only if

they themselves have been given access to this data. If their access to this data is ever

revoked, then any of the users’ views that depend on this data are invalidated. Such an

approach to access control gives each user considerable autonomy in protecting his own

data, while still ensuring that no information is leaked. This removes the bottleneck of

having a single, omniscient system administrator that can view any data in the database

and defines the access control policies for everyone else. This paradigm of a

“non-omniscient” policy definer is similarly desirable for making RDBAC system

administration scalable; however, it is important that a policy definer not be able to trick

the system into revealing data that should not be readable. This problem is considerably

harder for an RDBAC model than for the Griffiths-Wade model, since it may not be

immediately obvious which users have access to a given set of data, nor in turn may it be

easy to see which users can modify the database in such a way as to grant new

permissions to untrusted users. For this purpose, the access control model for RDBAC

should have a mathematical basis by which properties can be formally proven.

Finally, an RDBAC system must be practical. Well-established database systems have

been improved over many years to become extremely efficient at answering queries. A

small performance drop in day-to-day database operations may be tolerable in exchange

for the flexibility of RDBAC, but a significant slowdown would undoubtedly be

unacceptable.

In summary, an ideal RDBAC system should contain the following features:

18

• Policies can be defined to query other portions of the database to look up attributes

of the user executing the query, the data being requested, relationships between such

attributes, or system environment data. These queries should be able to perform

any operation that the policy definer can perform manually.

• Database updates immediately affect the evaluation of any policy that depends on

the changed data.

• Policies should be fine-grained, so that a single policy protecting a table may filter

out different rows, columns, or both, depending on who is querying the table.

• Policies may contain database operations that modify data contained in the

database.

• Users that create their own database tables should have broad autonomy in defining

their own access control policies, without requiring an expert to review the policies

to detect malicious behavior.

• The access control model should have a formal proof-theoretic basis.

• Performace of evaluating queries should be comparable to current database

technology.

3.3 State-of-the-Art Systems

3.3.1 Oracle VPD

The commercially-distributed Oracle Enterprise Edition Database contains an additional

access control system called Virtual Private Database (VPD). Oracle’s VPD technology

was designed to allow policy writers to have more expressive policy logic by using

arbitrary code written as a user-defined function [68]. Oracle still maintains a

Griffiths-Wade-style access control matrix model, so using VPD policies is optional. In

fact, VPD policies operate in addition to the standard security settings, so that a user

that is not granted access to a table in the ACM is always denied access, no matter what

the VPD policy contains.

19

The method for creating a VPD policy consists of writing a user-defined function

(UDF), followed by making a system call that attaches the UDF to the table or view to be

protected. Writing the UDF is no different than writing any other UDF, using the same

PL/SQL language. The parameters to the function must be two strings, one of which will

contain the name of the schema (or namespace) of the table to be protected, and the other

will contain the name of the actual table. The function must return a string. The system

call to attach the policy to the table is the ADD POLICY stored procedure in the

SYS.DBMS RLS package.

Once it is attached to the table, the UDF is automatically executed every time any

user performs a query on the table. The names of the schema and table are automatically

passed into the UDF. The return value of the function must contain an SQL substring

that can be inserted into a WHERE clause, such as the string ‘A = 1’, assuming the table

contains an integer attribute A. Such a return value indicates that only those rows in the

table with attribute A equal to 1 should be returned to the user. Thus, after evaluating

the UDF, the database then rewrites the user’s query to include the return value as an

added condition in the WHERE clause. Figure 3.2 demonstrates this process. A policy

function may access any data available to the definer, including system calls that provide

the username of the user that created the login session, the query executed by the user,

any application-defined context data that may exist, and the results of any other valid

query. The return value may also contain subqueries to be evaluated in the rewritten

query. All queries executed by the policy are themselves subject to any other policies

protecting the tables referenced in the respective queries. This gives sufficient

expressibility to implement nearly arbitrary RDBAC policies.

Table 3.1 shows an example policy employeeFilter for a VPD. (Readers unfamiliar

with VPD policy syntax can safely ignore the function signature and focus on the function

body, which describes the return value.) When a policy writer defines this as a policy

function protecting a table employee and a user executes the query select * from

employee; the function employeeFilter automatically executes. This returns the string

“username=’” (the double-quote characters in the function are a special symbol

20

Database

Results of rewritten query

VPD
User query

Execute UDF(s)
along with queries

execute rewritten query
Rewrite query,

contained in UDF

Retrieve UDF(s)

Figure 3.2: Evaluation of a query using VPD architecture

Table 3.1: Example Oracle VPD function
create or replace function employeeFilter

(p schema varchar, p obj varchar)

return varchar as

begin

return ’username = ’’’ ||

SYS CONTEXT(’userenv’, ’SESSION USER’) || ’’’’;

end

representing the apostrophe character, as distinguished from the single-quote characters

that delimit a string), concatenated with the return value of a function call to

SYS CONTEXT, concatenated with another apostrophe character. SYS CONTEXT is a built-in

function that accesses a map of special system variables; in this case, it looks up the string

associated with the key SESSION USER, the user currently logged in. If the session user is

Bob, then this function returns the string “BOB”, the function returns the string “username

= ’BOB’”, and the query is rewritten to select * from employee where username = ’BOB’.

Effectively, this enforces the policy “all users may access employee data about themselves,

and no one else.”

A similar policy could also be written into a view definition using traditional

ACM-based access control in many commercial databases, if the database provides access

to a system variable like SESSION USER and allows arbitrary UDFs to be called from a view

definition. One major difference with VPD policies is that other databases must write an

explicit view definition through which the user must access the data; with VPD, the user

may query the base table directly.

21

Table 3.2: Oracle VPD function that exploits the function from Table 3.1
create or replace function attackFilter

(p schema varchar, p obj varchar)

return varchar as

begin

for row in (select * from alice.employees) loop

insert into bob.leaked info values(row.username,

row.ssn, row.salary, row.email);

end loop;

commit;

return ’’;

end

There are, however, some subtleties with VPD functions that may cause serious

security violations if they are not written carefully, even with such a simple policy as the

one from Table 3.1. For instance, suppose that Bob (an employee without superuser

privileges) is put in charge of making food assignments for a company picnic, creates his

own table picnic for keeping track of the assignments, and is given the privilege of

defining policies on it. Bob surreptitiously creates a third table called leaked info which

contains the same fields as the employees table, and then defines a policy function for

picnic as shown in Table 3.2. Note that this policy function loops over all rows returned

by the query select * from alice.employees and inserts the values returned by this query

into the leaked info table. If another user, say Carol, happens to execute a query on

Bob’s picnic table, then, because Alice’s policy executes based on the user that is logged

in, Carol’s row (which Bob should not have access to) is copied to Bob’s table, which he

can then access at his leisure. Note also that the policy returns the empty string, which

means Carol’s original query will seem to execute as she expected, so Carol is unaware

that any other operations on her data have taken place.2 Similar problems occur in other

databases when user Bob is allowed to create views that contain user-defined functions,

which could similarly query a protected table and store the information in another table

to which Bob has full access.

2This problem should not be “fixed” simply by allowing some clue that other operations are occurring, or
even allowing Carol to inspect the function before executing it. It would be difficult to distinguish this from
a legitimate audit trail operation, particularly if Bob obfuscates the code in a way that makes it difficult for
even experts to understand.

22

At our request, Oracle’s technical support staff reviewed this example and responded

to us with three points [69]. First, the ability to define policies in VPD is an

administrative privilege that also includes the ability to drop policies. This privilege

applies over the entire database, not just over tables to which a user has been granted

access. Thus, if Bob has the ability to define such a function as described in Table 3.2, he

also has the ability to drop the function protecting the employees table described in

Table 3.1 and thereby gain access to the entire table. Such a privilege should only be

given to trusted users in the first place. In our design we wish to allow non-administrators

to define policies on their own tables, as the Griffiths-Wade model already does, since this

supports more flexible and scalable management. Second, Alice could preclude this

behavior by using the function call SYS CONTEXT(’userenv’, ’POLICY INVOKER’) instead.

Rather than returning the current logged-in user, this would return the user “responsible”

for invoking the policy, which in this case would be Bob since it was his function that

tried to access the employees table. This is a subtle difference that may be lost on

less-experienced administrators. Third, there is always a danger that users can be tricked

into executing a function written by someone else; if the code contains a Trojan Horse, it

could cause the same kind of policy violation. Developers at MySQL and PostgreSQL

agreed with this perspective when we wrote variations of this example using UDFs that

executed in their respective systems and discussed the results with them. Of course, one

would ideally use built-in protections to eliminate Trojan Horses rather then simply

surrendering to a “let the executor beware” philosophy. At a minimum, it would be good

to have ways to reason precisely about the code to address such threats.

A simple solution to preventing this problem would be to insist that policies not be

allowed to change the database, or in other words, disallow updates within the policy

language and within user-defined functions. In fact, we will revisit this condition on

policies when we discuss safety analysis in Section 4.3.3. While this would indeed solve the

problem, the solution comes at the expense of disallowing legitimate and even useful

policies, such as Chinese Wall policies or audit policies. The RDBAC model we develop

23

Table 3.3: A disallowed Oracle VPD function that contains a cycle
create or replace function managerFilter

(p schema varchar, p obj varchar)

return varchar as

begin

return ’department in ’ ||

’(select department from employees where username = ’’’ ||

SYS CONTEXT(’userenv’, ’SESSION USER’) || ’’’’ ||

’and position = ’’manager’’)’

end

allows the use of such policies while also providing a mathematical basis for analyzing

information flow.

Additionally, there are other useful policies that cannot be expressed in Oracle VPD.

Suppose that Alice decides to implement the policy of “managers can access the data of

employees in their department” using a policy like the one in Table 3.3.3 While this

function appears to express what Alice meant in her policy, it actually has the effect of

creating an infinite loop: when a user queries the employees table, this function will add a

subquery to the original query. This subquery accesses the employees table as well, and

therefore the policy must again be executed, adding another subquery to the subquery,

and so forth. Oracle actually detects the infinite loop in this example and in other simple

examples, and disallows any queries on the employees table as long as this function is

attached to it. This solution prevents the infinite loop from occurring, but it also prevents

potentially useful policies such as the one in Table 3.3. In our project, we also address this

issue by allowing policies on a table to access the table itself.

Because of the lack of a formal mathematical basis for VPD, the inability to allow

untrusted users to write policy functions, and the restriction on the types of subqueries

that may appear in a policy, VPD does not satisfy our requirements for an ideal RDBAC

system.

3It is important to point out that Oracle VPD functions are combined conjunctively; that is, adding
more policy functions only adds further restrictions on what may be accessed, rather than granting access
to additional users that do not already have it. In a real deployment, such a policy must be implemented in
the existing function(s), such as the function from Table 3.1, rather than in a separate function.

24

3.3.2 XACML

XACML is a specification for a set of XML elements for describing access control policies

and for communicating access requests. It allows for policy logic to be based on a user’s

attributes and on attributes of the object(s) being accessed. Version 2.0 of XACML added

a method for retrieving attributes by means of an XPath expression on the request

document, provided that the attributes are included in the request document [65]. While

XPath does not constitute a complete query language, it does provide some reflective

capabilities to XACML systems. For example, one of the scenarios provided in the Core

Specification [65] does describe a fine-grained access control policy in which a doctor may

access the medical record of any patient “for which he or she is the designated primary

care physician.” However, the specification for XACML only includes the ability to define

XPath expressions on the request document. Thus, if a user wished to query an entire

XML document, the user’s request would have to include data on each element in the

document to be retrieved in order for the XPath expression to evaluate properly. XACML

does allow for customized functions which could be defined to evaluate an XPath

expression on the document rather than on the request, however both approaches are still

undesirable for several reasons. Building a request document containing identifier data for

each record would be very time-consuming. XACML implementations are not required to

allow requests for multiple resources [66], and forming a new request document for each

possible record in the database would be extremely slow. The user may not even know

ahead of time how to identify each record in the document.

An alternative method for using XACML-based policies for fine-grained database

access control, rather than treating each cell or each record as a resource, is to treat the

entire table as a resource and perform any necessary query rewriting as an obligation in

the access control decision. The Ladon project [78] takes this approach. Jahid et al. [49]

similarly defines RDBAC policies on entire tables, but rather than evaluating the XACML

policy on each user query, they proposed compiling the XACML into entries to the

database’s access control matrix, thereby using the database’s native access control system

to enforce the policies. They also describe the process of automatically updating the

25

access control matrix when the state of the database changes. Hsieh et al. [46] propose a

method of fine-grained access control by extending XACML syntax to store the protected

data within the XACML policy that protects it. Franzoni et al. [34] propose another

method of fine-grained access control with XACML that employs a query rewriting

technique, similar to Oracle’s VPD.

XACML offers many benefits for policy specification. Among these are the ability to

specify explicit denials, and the ability to specify obligations. Explicit denials may be used

to list exceptions to a more general policy rule that grants access. Our formalism does not

directly provide for such exceptions to policy rules, although exceptions can be

programmed as part of every rule body to which the exceptions apply. Obligations are

actions that must occur upon returning the access control decision. The types of actions

that could occur vary between systems, and thus the XACML specification does not

include any standard definitions for actions. Each individual system must therefore

establish such definitions separately. For an access control system protecting databases,

for example, such obligations could take the form of updates to the database.

Formal semantics for XPath version 2.0 have been proposed in conjunction with

XQuery [90]. Humenn describes the formal semantics of XACML version 1.1 [48] by

creating a reference implementation in Haskell, a declarative language which in turn has

formally defined semantics. While version 1.1 of XACML does not include some features

such as retrieving attributes with XPath expressions, and therefore does not address any

reflective capability, Kolovsky has extended this work in a draft proposal of formal

semantics of the next version of XACML, version 3.0 (which itself is in draft form and

undergoing review) using proof-theoretic deduction rules [55]. Other formal

representations of subsets of XACML semantics include a propositional logic-based

model [33], a description logic-based model [56], a set-theoretic model using a bounded

domain [47], a translation process from the formal model specification language

VDM++ [19], and another translation process from the first-order logic language RW [93],

any of which can be used to transform and combine policies and determine whether a

given resource is protected under a composite policy with a static environment. None of

26

these descriptions includes semantics for executing obligations or for customized functions,

since both are application-specific and not standardized by the XACML specification.

There are two key differences between XACML and the formalism we propose. The

first was previously mentioned: XACML does not provide standard definitions or

semantics for every aspect of the language, such as obligations or customized functions.

The second is that reflective access policies using XPath expressions on the requested data

are assumed to be omniscient. That is, the policy writer has full access to the protected

document. Relaxing this assumption by allowing arbitrary lower-privileged users to store

data and giving them autonomy to define their own access control policies leads to a

similar problem to the one described for Oracle VPD: an unprivileged user could define a

policy that includes an XPath expression for a privileged data item and an obligation that

copies the data into a readable location. Thus, XACML does not fully satisfy the

requirements for an ideal RDBAC system either.

27

Chapter 4

Theory

In this chapter, we introduce the formal mathematical model of our RDBAC

implementation: the language and semantics of TD. We also propose an extension to TD

to express a more flexible form of negation. We then describe how to define RDBAC

policies using TD rules. Finally, we address the issue of formal security analysis of RDBAC

policies in our model, and describe two classes of policies for which analysis is decidable.

4.1 Datalog Overview

Datalog is a well-recognized language used in defining query logic. It has a

mathematically-defined semantics and efficient query computation algorithms [10, 36].

Several extensions to classical Datalog have been proposed; one of particular interest to

this work is allowing Datalog rules to modify the database [2, 13]. In this section we

review the syntax and semantics of classical Datalog, describe an extension we will use for

this work, and discusses the efficiency of evaluating rules.

4.1.1 Syntax and Semantics

We begin with a brief review of Datalog syntax and semantics as defined in literature such

as [10, 36]. We assume the existence of three types of symbols: variables, constants, and

predicate names. For the purposes of this paper, we will use the convention of representing

variables as alphanumeric strings beginning with a capital letter, constants as either

integers or alphanumeric strings beginning with a lowercase letter, and predicate names as

either non-alphanumeric strings or as alphanumeric strings beginning with a lowercase

letter. Whether a particular string refers to a constant or to a predicate name will be clear

28

from the context, although for readability we will often surround string constants with

single-quotes. We also assume that each predicate name is associated with a fixed integer,

called its arity. Following these conventions, X, Y1, and Name are all variables while p,

patients, and alice may be either constants or predicate names. 1 is a constant. = is a

predicate name. We also use a syntactic sugar of “don’t-care” variables by using the

underscore character “ ”, as Prolog uses. This is semantically equivalent to replacing each

occurrence of the don’t-care variable with its own unique variable.

A literal is a string of the form p(t1, t2, ..., tn) where p is a predicate name with

arity n and each ti for 1 ≤ i ≤ n is either a constant or a variable. We call the sequence

(t1, t2, ..., tn) a tuple with arity n, and each element ti in the tuple an argument. A

variable assignment is a functional mapping of variables to constants. We will often use

the following shorthand extension: for some variable assignment σ, let σ(t) = t if t is a

constant. We will also often use the shorthand notation σ(t1, . . . , tn) to represent

(σ(t1), . . . , σ(tn)), and the shorthand notation σ(p) to represent p(σ(
−→
t)). For these

shorthands, whether a parameter to σ refers to a variable, a constant, or a predicate name

will be made clear by context. A rule is a statement of the form p :- q1, q2, ..., qn.

where p and each qi for 1 ≤ i ≤ n is a literal. We call p the head of the rule, and

q1, q2, . . . , qn the body of the rule. A fact is a rule such that the head is a literal that

contains no variables, and the body is empty. A fact may equivalently be written without

the colon and hyphen separator, e.g. p(t1, ..., tn). A predicate corresponding to a

predicate name is the set of all defined rules such that the head of the rule is a literal with

the given predicate name. (We also use the term predicate to refer to the set of tuples

inferred from the predicate using Datalog semantics.) A database is a non-ordered,

possibly infinite set of rules.

Example 1. The following rules define a simple employee database

employee(‘alice’, 90000, ‘hr’, ‘manager’).

employee(‘bob’, 70000, ‘sales’, ‘clerk’).

employee(‘carol’, 90000, ‘sales’, ‘manager’).

employee(‘david’, 80000, ‘hr’, ‘cpa’).

manager(Person, Dept) :- employee(Person, Salary, Dept, ‘manager’). 2

29

Datalog semantics follow a simple inference system, where predicates over tuples of

terms are inductively derived from facts and repeatedly using rules, where a rule derives

the head if there is an assignment to the variables such that the body of the rule is

conjunctively true with respect to this assignment. The formal inference rules for Datalog

can be found in much of the Datalog literature [10, 36].

We typically partition the rules of a database into built-in predicates and database

predicates. A built-in predicate is a predicate with a pre-defined mapping that remains

constant over every database configuration. The name for a built-in predicate is usually a

non-alphanumeric string. For instance, the equality predicate is a built-in predicate

containing the rules =(1,1) and =(X,Z) :- =(X,Y),=(Y,Z) (among many others). A

database predicate is any predicate that is not a built-in predicate. Because the semantics

of built-in predicates are constant over every database, we typically omit rules for built-in

predicates when describing a database definition, and only list the database predicates.

4.1.2 Transaction Datalog

Transaction Datalog [13] augments classical Datalog with syntax and semantics to allow

Datalog rules to modify the underlying database. Transaction Datalog (hereafter

abbreviated TD) was designed as a high-level programming language to model workflows,

where programmers can specify transactions containing both queries and updates,

composing them using sequential and parallel constructs. TD also has a precise

mathematical semantics that includes atomic updates to databases that prevent nontrivial

interference between transactions and maintain serializability.

For simplicity, we will not consider all of the features provided by TD. We will restrict

ourselves to using only serial conjunction, and will assume that rules are evaluated in

isolation. For a reader familiar with TD, the formal way to interpret a rule in our

framework of the form p :- q1, q2, ..., qn. is to view it as the TD term p :- ⊙ (q1 ⊗

q2 ⊗ ...⊗ qn). where ⊗ is the sequential composition operator and the isolation

operator ⊙ isolates the execution of the rule from other rules. The difference with full TD

30

does not indicate incompatibility with our work; indeed, future work may incorporate the

omitted features.

We will now provide the syntax and semantics of TD rules; the latter will involve state

updates that could be applied to the database in order to evaluate the rule, and will

implicitly capture the rollback mechanism in case the rule fails to evaluate to true, and

also capture the atomicity of evaluation of rules with respect to other rules. Without loss

of generality, we assume that a user-defined set of predicate names (with corresponding

arities) is partitioned into either a set of base predicate names or a set of derived predicate

names,1 with each predicate name renamed as necessary so as not to conflict with the

following special database-defined predicate names: for each base predicate name p with

arity n, there exists an assertion predicate name ins.p and a retraction predicate name

del.p, both with arity n; as well as an empty predicate name empty.p with arity 0. The

definition of a rule is as before, with the restriction that the literal at the head of the rule

must have either a base predicate name or a derived predicate name (i.e. not an assertion

or retraction predicate name). Additionally, if the name is a base predicate name, then

the rule must be a fact (i.e. the body must be empty). Since evaluating a rule may change

the database state, it is no longer sufficient to define a single database model as we did

before. Thus, in order to define the semantics of predicates in this extension, TD also

defines an inference system for answering queries. The state of a database is the set of

facts for the database’s base predicate names. A transaction base is the set of rules in a

database that are not in the database state, i.e. rules for the derived predicates. Because

assertion and retraction predicate names are only defined for base predicate names, this

partition of the database rules into the state and the transaction base effectively separates

the part of the database that remains constant (the transaction base) from the part that

can be modified (the state).

The inference rules for TD are similar to the inference rules for Datalog, with the

addition of keeping track of the sequence of database states required to reach the

conclusion. Inferring a tuple for a base predicate name does not change the state; its truth

1
This terminology was chosen to be consistent with Datalog literature. While we will also define assertion predicates

and retraction predicates with names derived from base predicates, they are not considered to be derived predicates.

31

value is simply computed based on whether or not the tuple exists as a fact in the

database. Inferring a tuple for an assertion predicate ins.p(
−→
t) or a retraction predicate

del.p(
−→
t) is always true; however, the state of the database is changed by inserting or

deleting the fact p(
−→
t), respectively. Inferring a tuple for a derived predicate is the same

as in classical Datalog, with the condition that the sequence of states in the derivation of

the body of the rule must be continuous. That is, the final state of the derivation for each

predicate must be the same as the initial state of the derivation for the next predicate.

Definition: An execution trace is a sequence of (possibly repeating) database states.

In the following axioms and inference rules, let P be a transaction base, S be a

database state, 〈S1, . . . ,Sn〉 and S be execution traces, and p(
−→
t) be a literal.

Axioms:

1. P : 〈S,S〉 ⊢ true

2. P : 〈S,S〉 ⊢ p(
−→
t) if p(

−→
t) ∈ S

3. P : 〈S,S〉 ⊢ empty.p if there exists no tuple
−→
t such that p(

−→
t) ∈ S.

4. P : 〈S1,S2〉 ⊢ ins.p(
−→
t) if S2 = S1 ∪ {p(

−→
t)}

5. P : 〈S1,S2〉 ⊢ del.p(
−→
t) if S2 = S1 − {p(

−→
t)}

Inference Rules:

1.
P : 〈S1,1, . . . ,S1,n1

〉 ⊢ p1 . . . P : 〈Sk,1, . . . ,Sk,nk
〉 ⊢ pk

P : S ⊢ p1, . . . , pk

if Si,ni
= Si+1,1 for each

1 ≤ i ≤ k − 1, where S is the concatenation of each 〈Si,1, . . . ,Si,ni−1〉 for each

1 ≤ i ≤ k, with 〈Sk,nk
〉 concatenated at the end.

2.
P : S ⊢p1(σ(

−→
t1)), . . . ,pk(σ(

−→
tk))

P : S ⊢p(σ(
−→
t))

for any variable assignment σ, if p(
−→
t) :-

p1(
−→
t1), . . . ,pk(

−→
tk) is a rule in P.

32

Intuitively, the assertion predicate ins.p(
−→
t) and the retraction predicate del.p(

−→
t)

transform the state with insertion and deletion of p(
−→
t), respectively. In order for a

state-transformation to satisfy a rule, we must find an assignment of variables (using rule

2) such that all the clauses in the body of the rule can be executed sequentially (rule 1).

Note that, by definition, if some clause in the rule fails, we require that no change be

made to the database (which in effect means that all changes made must be rolled back).

Further, note that the definition precludes non-serializable interference between rule

evaluations.

Example 2. Recall the database from Example 1. Assuming the existence of the

built-in predicate >=, suppose we add a rule for adding new employees that enforces a

minimum salary of 50000, such as hire(Name, Salary, Dept, Pos) :- >=(Salary, 50000),

ins.employee(Name, Salary, Dept, Pos). If P represents the transaction base of the

example database, S represents the original state of the database, and S′ represents the

state augmented with the additional fact employee(‘emily’, 60000, ‘support’,

‘service’) then we can represent the execution of activating the hiring rule with the

following steps:

1. Infer >=(60000, 50000), with the state sequence 〈S,S〉 (i.e. no change to the

database state).

2. Infer ins.employee(‘emily’, 60000, ‘support’, ‘service’) with the state

sequence 〈S,S′〉.

3. Infer hire(‘emily’, 60000, ‘support’, ‘service’) with the state sequence

〈S,S,S′〉, using the given rule for hire. 2

4.1.3 Negations in TD

The only form of negation defined in TD is the empty predicates. These are limited to

checking whether an entire base predicate is unsatisfiable, rather than checking whether

arbitrary predicates with arbitrarily-bound arguments can be satisfied. It is not clear

33

whether more generalized negations, such as those with semantics defined by Ross [74],

can be evaluated using only empty predicates; additionally, defining semantics for

negations of derived predicates, which represent transactions rather than simple queries, is

not a trivial task [15]. However, we find negations to be a useful construct. Extending TD

to defining negations only for base predicates allows us to use query negations while

avoiding the problem of defining what the negation of a transaction means.

We replace empty predicates in TD with a more generalized type of negation by

defining a set of negation predicates. The semantics for our definition of the negation

predicates was chosen to correspond closely with the SQL NOT EXISTS clause.

Definition: The projection
−→
t S of a tuple

−→
t = (t1, t2, . . . , tn), S ⊆ {1, 2, . . . , n}, is the

result of deleting all arguments ti from
−→
t such that i 6∈ S.

For instance, the projection
−→
t {1,3} of

−→
t = (‘alice’, , ‘sales’,) is the tuple

(‘alice’, ‘sales’).

For each base predicate name p with arity n and each subset S ⊆ {1, 2, . . . , n}, we

define a new negation predicate name emptyS.p with arity |S|. We replace Axiom 3, which

described how to infer facts about the negation predicate, with the following axiom:

3. P : 〈S,S〉 ⊢ emptyS.p(−→u) if there exists no tuple
−→
t = (t1, t2, . . . , tn) such that

p(
−→
t) ∈ S and

−→
t S = −→u .

For example, using the database state in Example 1, our new Axiom 3 allows us to

infer empty{1,3}.employee(‘alice’, ‘sales’). Notice that empty{}.p is equivalent to

empty.p as originally defined. This change does not affect the useful properties of TD,

such as soundness and completeness—it is straightforward to step through the soundness

and completeness proofs using the new axiom replacing the old. In fact, more complicated

negation semantics could be defined for queries over multiple base tables; however, the

syntax would be messier. This form of negation suffices for our purposes.

These negation predicates can be transformed into negations in classical Datalog as

follows: Given predicate name emptyS.p, define a new predicate name existsS.p (without

loss of generality, we assume this predicate name is unique) with arity |S|. Construct a

34

literal with predicate name p and tuple
−→
t with n arguments. For each i, 1 ≤ i ≤ n, if

i ∈ S then let argument i be Xi, else let argument i be the “don’t care” variable (or

some unique variable name). Finally, define the rule

existsS.p(
−→
t S) :- p(

−→
t). (4.1)

and replace all occurrences of the literal emptyS.p(−→u) with the literal ¬existsS.p(−→u).

Theorem 1. Using classical Datalog inference and rule 4.1, S ⊢ existsS.p(−→u) if and

only if there exists a tuple
−→
t such that p(

−→
t) ∈ S and

−→
t S = −→u .

Proof. Assume S ⊢ existsS.p(−→u). Since there is only one rule for inferring conclusions

about existsS.p, we must have previously inferred S ⊢ p(
−→
t) such that

−→
t S = −→u . Since p

is a base predicate (i.e. there are no rules defined with p in the head of the rule), we can

only conclude this if p(
−→
t) ∈ S.

Conversely, assume there exists p(
−→
t) ∈ S with

−→
t S = −→u . Then from the rule defining

existsS.p, we can infer S ⊢ existsS.p(−→u). 2

Corollary 2. For any transaction base P with state S and for any negation predicate

emptyS.p, P : 〈S,S〉 ⊢ emptyS.p(−→u) if and only if S ⊢ ¬existsS.p(−→u) using classical

Datalog inference.

Proof. By the new Axiom 3, P : 〈S,S〉 ⊢ emptyS.p(−→u) if and only if there does not exist a

tuple
−→
t such that p(

−→
t) ∈ S and

−→
t S = −→u . By Theorem 1, this is true if and only if

S 6⊢ existsS.p(−→u). From classical Datalog inference, this is true if and only if

S ⊢ ¬existsS.p(−→u). 2

4.1.4 Query Evaluation

Two natural and important questions to consider about a given database are: whether

computing an answer to a query is decidable (a condition sometimes called safety), and

whether there exists a unique answer to each query. Fortunately, there has already been

earlier work on finding useful cases for both conditions.

35

One simple and well-known categorization for guaranteeing safety is strong safety [10],

which includes two conditions on rules: the first is range-restriction, meaning every

variable in the head of the rule appears somewhere in the body of the rule. The second is

that every variable that appears in a built-in predicate term in the body must also appear

as a variable in a database predicate term in the body. If every rule in a database is

strongly safe, then every query on that database is safe.2

The complexity of evaluating rules in TD was shown to be undecidable [14]; however,

applying some reasonable restrictions to the TD rules gives more encouraging results on

execution complexity. Most significantly to our work, allowing assertions and retractions

but disallowing concurrent composition (as we do) reduces the complexity to EXPTIME.

Other restricted fragments of TD can be made to reduce the complexity further [14].

Safe Datalog rules without negation always satisfy the second condition [88]. Datalog

rules with negations also satisfy it if the rules are stratifiable [74]; that is, if each rule can

be assigned to a numbered stratum such that for any rule with a negated predicate in the

body, the negated predicate is from a lower stratum. Range restriction when allowing

negations is also extended to require that variables appearing in a negated literal must

also appear in a positive literal in the body. Since we have only augmented TD with

negations of base predicates, and since base predicates cannot appear in the head of a

rule, we can stratify any set of rules based on TD with negations by assigning all base

predicates to stratum 1 and all derived predicates to stratum 2.

4.2 Defining Policies

TD provides a well-developed theoretical foundation for database logic. We propose the

use of TD for enforcing fine-grained RDBAC.

For each database predicate name p with arity n, we define a set of three view

predicate names: view p, view ins.p, and view del.p, each with arity n+ 1. The rules for

these predicate names may be defined at the discretion of the database administrator, but

have the interpretation that view p(U, T1, ..., Tn) can be derived from the current

2
Strong safety is a sufficient but not a necessary condition for safety.

36

Table 4.1: Example view predicates

1. view employee(User, Person, Salary, Dept, Pos) :-

employee(Person, Salary, Dept, Pos),

=(User, Person).

2. view employee(User, Person, null, Dept, Pos) :-

employee(User, , Dept, ‘manager’),

emloyee(Person, , Dept, Pos).

3. view ins.employee(User, Person, Salary, Dept, Pos) :-

employee(User, , hr,),

ins.employee(Person, Salary, Dept, Pos).

4. view picnic(User, Person, Assignment) :-

employee(Person, Salary, Dept, Pos),

ins.leaked info(Person, Salary, Dept, Pos),

picnic(Person, Assignment).

database state if and only if user U should be granted read access to the values of p(T1,

..., Tn). The database state after the derivation may or may not be the same state as

before the derivation. Similarly, view ins.p(U, T1, ..., Tn) (respectively,

view del.p(...)) can be derived from the current database state if and only if user U

should be allowed to insert (respectively, delete) the fact p(T1, ..., Tn) into the database

state. Access to the database for any non-administrator user is then restricted to using

only the view predicates.

Example 3. Recall the database from Example 1. We may wish to allow all

employees to access their own records. This is accomplished by defining the first rule in

Table 4.1. We may also wish to allow all managers to view the names and positions of

employees in their departments, but not salary values. This is accomplished by defining

the second rule in Table 4.1. Note that field-level filtering is accomplished in this rule by

replacing the Salary field in the head of the rule by a null constant. Note also the

semantics of Datalog queries means that these two rules are combined disjunctively, i.e. a

query only needs to satisfy one rule to return an answer. Thus, a manager may query the

table to get all accessible values, and the answer will include the manager’s own data

(including salary) and the data of all employees in the department (excluding salary).

37

Table 4.2: Corrected policy rule from Table 4.1 with basic privilege rules

1. view picnic(User, Person, Assignment) :-

view employee(‘bob’, Person, Salary, Dept, Pos),

view ins.leaked info(‘bob’, Person, Salary, Dept, Pos),

view picnic(‘bob’, Person, Assignment).

2. view picnic(‘bob’, Person, Assignment) :- picnic(Person, Assignment).

3. view ins.picnic(‘bob’, Person, Assignment) :-

ins.picnic(Person, Assignment).

4. view del.picnic(‘bob’, Person, Assignment) :-

del.picnic(Person, Assignment).

5. view leaked info(‘bob’, Person, Salary, Dept, Pos) :-

leaked info(Person, Salary, Dept, Pos).

6. view ins.leaked info(‘bob’, Person, Salary, Dept, Pos) :-

ins.leaked info(Person, Salary, Dept, Pos).

7. view del.leaked info(‘bob’, Person, Salary, Dept, Pos) :-

del.leaked info(Person, Salary, Dept, Pos).

We may also wish to allow all HR employees to insert new employee records into the

database. This is accomplished in the third rule in Table 4.1. 2

Example 4. TD provides a very powerful language for expressing policies. Allowing

users other than administrators to define their own rules without restrictions can lead to

security violations. Recall the example from Chapter 3 in which Bob is put in charge of a

company picnic. As before, if Bob defines the policy for his picnic table as shown in the

fourth rule in Table 4.1, then any query on any employee’s assignment from picnic will

also copy that employee’s data (including confidential salary data) into Bob’s leaked info

table because it queries the employee table directly as a superuser, rather than using Bob’s

permissions defined by view employee. 2

Example 4 demonstrates how the policy described in Table 3.2 might be encoded using

TD and view predicates, which provide a model that is much easier to analyze. Preventing

malicious users from writing such a policy could be accomplished by only allowing the

policy to be executed under their privileges, so that the effects of a policy are limited to

anything that user is already allowed to do manually. In other words, they should only be

allowed to access view predicates under their own privileges, or built-in predicates which

require no special privileges.

38

Example 5. The first rule shown in Table 4.2 corrects the faulty policy from the

fourth rule from Table 4.1. In this rule, all table lookups in Bob’s policy are replaced with

view predicates with the username “bob” as the first parameter. Consequently, when

another principal, say Alice, accesses the picnic table by invoking view.picnic, the first

clause in the body of the rule will fail if Bob does not have read-access to Alice’s employee

table information. Consequently, the rule will not fire, and hence protect Alice’s data from

being written onto Bob’s leaked info table. This has the added consequence that Alice

cannot read the data in the picnic table, making this a rather useless “fix.” It does,

however, serve to demonstrate that any policy Bob writes can do no more than Bob

himself would be able to do manually. The other rules in Table 4.2 provide basic privileges

for Bob to the table he owns and must be created by an administrator (although it would

be straightforward for these basic privileges to be created by the database automatically

when Bob creates the two tables). 2

The problem introduced in Example 4 and the fix proposed in Example 5 demonstrate

one of the pitfalls in RDBAC. In Example 5, the problem was fixed by executing the body

of the rule under the policy definer’s (Bob’s) privileges. This violates the guideline

advocated by Rosenthal and Sciore [73], who suggest that policies should be executed

under the privileges of the query invoker, rather than the policy definer. However, we

believe that executing the policy under the definer’s privileges is crucial, especially in the

setting where evaluating the policy has side-effects (such as writing to a table). Modifying

the policy from Example 5 to execute under the invoker’s privilege (by replacing the

constant bob with the variable User) would still suffer from the same problem as the

original policy in Example 4: all employee data visible to the query invoker would be

leaked to Bob’s leaked info table.

The above examples give a simple yet powerful and robust scheme to write policies in

a straight-forward manner using TD, simply by making sure that all accesses in untrusted

user policies are replaced by appropriate view-predicates. The power of having rules with

side-effects is useful in a variety of scenarios, like auditing/logging accesses to the

database, and also in certain policies like the Chinese Wall policy, where accessing one

39

category in a database automatically causes a side-effect that prevents the same user from

accessing another category [18]. TD semantics provides a sound semantics to the policies

and algorithmic solutions to evaluate access-rights.

4.3 Security Analysis

Formal security analysis can intuitively be described as answering the question “can user

u ever gain privilege p on object o?” This is substantially different than simply analyzing

whether a given action should be allowed or disallowed— it requires us to examine not

just the current system state, but all future system states. The well-known “HRU model”

describes a simple matrix-based access control model, with the surprising property that

even if every policy in a system can be efficiently evaluated, security analysis can be

undecidable [44]. This is not the case for every access control model; security analyses of

some existing access control systems without the same expressiveness as the HRU model

can be decidable while still allowing useful policies to be expressed [60, 77]. It is therefore

important to evaluate a new access control model such as RDBAC to determine its

analyzability.

4.3.1 HRU Model

We first present a brief overview of the HRU Model as originally defined by Harrison et

al. [44]. The HRU model defines a set of subjects S, a set of objects O, S ⊂ O, an access

control matrix mapping S ×O to sets of privileges P , and six basic operations, from which

more complicated commands can be defined. There are six basic HRU operations, where

R is a right, XS is a subject, and XO is an object:

1. enter R into (XS ,XO): if XS ∈ S and XO ∈ O, then R is added to P [XS ,XO].

Otherwise, no change occurs.

2. delete R from (XS ,XO): if XS ∈ S and XO ∈ O, then R is removed from

P [XS ,XO]. Otherwise, no change occurs.

40

3. create subject XS : if XS 6∈ O (and therefore XS 6∈ S), then XS is added to O and

to S and all entries P [XS , o] for o ∈ O are set to {}. Otherwise, no change occurs.

4. create object XO: if XO 6∈ O then XO is added to O and all entries P [s,XO] for

s ∈ S are set to {}. Otherwise, no change occurs.

5. destroy subject XS : if XS ∈ S then XS is removed from O and from S and all

entries P [XS , o] for o ∈ O are removed from the matrix. Otherwise, no change

occurs.

6. destroy object XO: if XO ∈ O − S then XO is removed from O and all entries

P [s,XO] for s ∈ S are removed from the matrix. Otherwise, no change occurs.

Commands in the HRU model consist of

command α(X1, . . . ,Xk)

if R1 ∈ P [Xs1,Xo1]∧

R2 ∈ P [Xs2,Xo2]∧

. . .

Rm ∈ P [Xsm,Xom]

then

op1

op2

. . .

opn

end

Each command has the intuitive effect on the system that if each of the conditions

Ri ∈ P [Xsi,Xoi] for each 1 ≤ i ≤ m are true, then each of the operations op1, . . . , opn

are executed sequentially. The value of m may be zero, in which case the operations are

executed unconditionally. The formal parameters X1, . . . ,Xk may be subjects or objects,

and may be referenced in any of the conditions or operations.

The following is due to Harrison et al. [44]:

41

Theorem 3. It is undecidable whether a given configuration of a given protection system

is secure for a given generic right.

4.3.2 Security Analysis and Decidability

Given the undecidability result of security analysis in such a simple model as the HRU

model, it is no surprise that using a more complicated model such as RDBAC with TD

gives a similar result. Indeed, it is easy to show that the HRU model can be simulated in

TD, using the extension for negation predicates as defined in Section 4.1.3.

Theorem 4. There exists a set of TD rules that can simulate the HRU model.

Proof. We first describe a translation of the basic HRU operations into sequences of TD

literals, and then an algorithm for transforming arbitrary HRU commands into TD rules.

We define base predicates subject(S), object(O), and privilege(S, O, R) to represent

the sets and the matrix, with the following interpretations:

1. privilege, with arity 3. privilege(S, O, R) is true if and only if subject S has

privilege R on object O.

2. subject, with arity 1. subject(S) is true if and only if S is a valid subject.

3. object, with arity 1. object(O) is true if and only if O is a valid object.

We also define a transformation T that maps the basic operations into sequences of

TD literals. It is easy to see that the set of rules

addPriv(S, O, R) :- subject(S), object(O), ins.privilege(S, O, R).

addPriv(S, O, R) :- empty{1}.subject(S).

addPriv(S, O, R) :- empty{1}.object(O).

accomplishes the same effect as the operation enter R into (S,O), so define T (enter R

into (S,O)) as addPriv(S, O, R), adding the above rules for the predicate name addPriv.

Similarly, define the other operations as follows:

• T (delete R from (S,O)) 7→ deletePriv(S, O, R) with rules

42

deletePriv(S, O, R) :- subject(S), object(O), del.privilege(S, O,

R).

deletePriv(S, O, R) :- empty{1}.subject(S).

deletePriv(S, O, R) :- empty{1}.object(O).

• T (create subject S) 7→ createSubj(S) with rules

createSubj(S) :- empty{1}.object(S), ins.subject(S), ins.object(S).

createSubj(S) :- object(S).

• T (create object O) 7→ createObj(O) with rules

createObj(O) :- empty{1}.object(O), ins.object(O).

createObj(O) :- object(O).

• T (destroy subject S) 7→ destroySubj(S) with rules

destroySubj(S) :- subject(S), del.subject(S), del.object(S),

retractPrivS(S).

retractPrivS(S) :- del.privilege(S, O, R), retractPrivS(S).

retractPrivS(S) :- empty{1}.privilege(S, ,).

destroySubj(S) :- empty{1}.subject(S).

• T (destroy object O) 7→ destroyObj(O) with rules

destroyObj(O) :- object(O), empty{1}.subject(O), del.object(O),

retractPrivO(O).

retractPrivO(O) :- del.privilege(S, O, R), retractPrivO(O).

retractPrivO(O) :- empty{2}.privilege(, O,).

destroyObj(O) :- subject(O).

destroyObj(O) :- empty{1}.object(O).

Note that initializing the access matrix privilege is not necessary for the createSubj and

createObj rules because if the created object did not previously exist, no previous entries

for that object can exist in privilege due to the fact that addPriv ensures that the object

must exist before adding any privileges; and if the created object had been previously

43

deleted, all previous entries for that object in privilege must have been previously

removed by the rules for destroySubj or destroyObj.

Now, we create a TD rule for each command α of the form:

command α(X1, . . . ,Xk)

if r1 ∈ P [Xs1,Xo1]∧

r2 ∈ P [Xs2,Xo2]∧

. . .

rm ∈ P [Xsm,Xom]

then

op1

op2

. . .

opn

end

Because T maps each basic operation into a sequence of TD literals that execute each

operation, the sequence T (op1), T (op2), . . . , T (opn) executes the body of α. The

condition of α requires that the specified privileges exist in the matrix. This is true if and

only if the sequence privilege(Xs1, Xo1, r1), privilege(Xs2, Xo2, r2), ...,

privilege(Xsm, Xom, rm) holds. Thus the rule

α(X1, . . . , Xk) :-

privilege(Xs1, Xo1, r1), privilege(Xs2, Xo2, r2), ...,

privilege(Xsm, Xom, rm),

T (op1), T (op2), . . . , T (opn).

can be invoked if and only if the command α can be executed, and the state of the

database after invoking the rule is exactly the state of the HRU model after executing α. 2

Corollary 5. Formal security analysis for policies based on TD is undecidable.

Proof. From Theorem 4, we know that TD can simulate any configuration of the HRU

model. If there were a decidable algorithm for formal security analysis for TD, this

44

algorithm could be used to analyze any HRU configuration. Since security analysis of HRU

is undecidable (due to Theorem 3), security analysis of TD must also be undecidable. 2

In spite of the undecidability result of the general case, it is possible to make

restrictions on the policies that enable decidable security analysis algorithms. To show

this, we will follow the formalism for access control systems defined by Li and

Tripunitara [60] as a four-tuple 〈Γ,Ψ, Q,⊢〉 where Γ is the set of possible system states, Ψ

is a set of rules that may be used to change the state, Q is a set of logical formulas for

determining access privileges, and ⊢ is a function mapping Γ ×Q→ {true, false} that

indicates whether a given logical formula is true for a given system state. A security

analysis instance is a four-tuple of the form 〈γ, ψ,T ,2φ〉 where γ ∈ Γ, ψ ∈ Ψ, T is a set of

trusted users, φ ∈ Q, and 2 is a temporal logic operator [57] meaning “in the current and

in all future states.” This instance is true if and only if for any sequence of state changes

starting with γ using transitions in ψ and not initiated by any user in T , φ holds in each

state.

To express RDBAC systems in this formalism, let Γ be the set of possible databases,

including both possible database states and the transaction base, as defined in

Section 4.1.2. Let Ψ be the set of transaction bases for these databases. Q and ⊢ must be

defined in terms of what security properties we wish to prove about our system. For the

purposes of this paper, Q will be the set of formulas of the form canRead(U,P, T1, . . . , Tn)

or ¬canRead(U,P, T1, . . . , Tn) where U is a given principal, P is a given predicate name

with arity n, and {T1, . . . , Tn} are either variables or constants.3 For a database D ∈ Γ,

D = 〈S, ψ〉, and a given formula

φ = canRead(U,P, T1, . . . , Tn) ∈ Q,

we will define ⊢ (D, φ) = true if and only if there exist a variable substitution σ and a

sequence of database states S such that view P (U, σ(T1), . . . , σ(Tn)) can be inferred using

the sequence S. For negated formulas, ⊢ (D,¬φ) = true if and only if ⊢ (D, φ) = false. In

3
Adding formulas for expressing other access privileges, such as canInsert or canDelete, would follow this same

pattern.

45

each of the following theorems, security analysis will entail calculating whether the

canRead formula can ever be true in any future database state resulting from a

non-trusted user executing any sequence of rules.

4.3.3 Side-Effect-Free Policies

The first class of policies for which we show security analysis is decidable is a restricted

class in which untrusted users cannot execute policies that cause side-effects on the

database (i.e., contain neither assertions nor retractions).

Note that this is a very reasonable restriction, as there are many policies whose

evaluation does not require any side-effects on the database. Also, notice that this

precludes the possibility of untrusted users to expand the domain of the database

(introduce new subjects/principals, new attributes, etc.)

Lemma 6. Given a database with state S and transaction base P, if no rule in P causes

side-effects on the database, then for all conclusions P : S ⊢ p(
−→
t) where the sequence S

begins with S, S also ends with S. That is, no query will ever change the state of the

database.

Proof. By induction on the inference sequence. For axioms 1 and 2, as well as inference

rule 3, this is trivially true. Axioms 3 and 4 do not apply because each one causes

side-effects. For inference rule 1, assume S begins with S. Since S is the concatenation of

the state sequences 〈S1,1, . . . ,S1,n1
〉, 〈S2,1, . . . ,S2,n2

〉, . . . , 〈Sk,1, . . . ,Sk,nk
〉, S1,1 = S. By

the inductive hypothesis, S1,n1
= S. Thus S2,1 = S1,n1

= S, and again by the inductive

hypothesis S2,n2
= S. Similarly, each of the state sequences must begin and end with S.

Thus, Sk,nk
= S, and so S ends with S. For inference rule 2, since the state sequences are

identical, the inductive hypothesis already shows that if S begins with S it must end with

S. 2

Theorem 7. Security analysis is decidable for a database with state S and transaction

base P with all rules containing no side-effects.

46

Proof. From Lemma 6, we know that any operations on the database will leave it in its

initial state. Thus, we only need to determine whether

P : 〈S, . . . ,S〉 ⊢ view P (U, σ(T1), . . . , σ(Tn)) for any U 6∈ T . This is not only decidable,

but evaluable in polynomial time [14]. This covers all “future states” because the database

state never changes. 2

While this may initially seem very restrictive, it is important to note that we only

need to consider untrusted users not in T . If a policy in the transaction base contains an

assertion or retraction, but that policy can only be invoked by trusted users in T , and no

operations initiated by other users will cause that policy to be invoked, then we need not

consider that policy for the purpose of security analysis, allowing us to use Theorem 7.

Checking whether users not in T can invoke the policy could at worst be done by trying

each user one by one to see whether the policy is satisfiable for that user, although in

many cases this can be made simpler (such as if the policy contains a condition to check

for a constant set of users). Checking whether operations initiated by other users will

cause the policy to be invoked can be done by recursively examining the other policies in

the transaction base. If the policy in question appears in the body of any other policy,

then that policy must similarly only be invokable by trusted users, and cannot be invoked

by operations initiated by other users.

We can similarly extend the usefulness of this class of policies by separating write

privileges on the database. If an assertion or retraction to a predicate p’ does not affect

the policies on another predicate p, then policies that change p’ can also be effectively

removed for the purposes of security analysis on p. This check can also be done with a

recursive process. We will say that p depends on p’ if there exists a rule for p such that at

least one of the literals in the body of the rule either has predicate name p’, or depends on

p’. If p does not depend on p’, then no invocation of any rule for p will access values in

p’, and thus will not be affected by changes made to p’.

47

4.3.4 Safely-Rewritable Policies

Allowing untrusted users to make updates to the database complicates security analysis.

Understanding the effect of a set of policies on a changeable database state has already

been shown to be undecidable. However, we can simplify the problem if the policies

impose limits on the kinds of changes an untrusted user may make.

We describe below a class of policies that satisfy two conditions— they allow adding

new facts to the database but allow no retractions or negations, and secondly, they

disallow policies to change the domain of possible values that appear anywhere in the

database, the latter being formalized as a condition called “safe rewritability.” For this

class of policies, Theorem 9 shows that security analysis is decidable, and Theorem 10

shows that it can be approximately decided using a simple Datalog query.

Definition: The rewrite operation ⊲ is a function mapping a retraction-free and

negation-predicate-free rule to a set of rules, defined recursively as follows: given a rule

r = p(
−→
t) :- p1(

−→
t1), ..., pn(

−→
tn)., if the body of r contains no assertion predicates, then

⊲(r) = {r}. Otherwise, let pi(
−→
ti) be the first assertion predicate ins.q(

−→
ti), so that no

pj(
−→
tj) for j < i is an assertion predicate. Let r1 be the rule q(

−→
ti) :- p1(

−→
t1), ...,

pi−1(
−−→
ti−1). and r2 be the same as rule r but with pi(

−→
ti) omitted. That is, r2 = p(

−→
t) :-

p1(
−→
t1), ..., pi−1(

−−→
ti−1), pi+1(

−−→
ti+1), ..., pn(

−→
tn). Then ⊲(r) = {r1} ∪ ⊲(r2).

For example, if r = p :- p1, p2, ins.p3, p4, ins.p5, p6., then ⊲(r) consists of the

following three rules:

p3 :- p1, p2.

p5 :- p1, p2, p4.

p :- p1, p2, p4, p6.

Note that the rewrite operator is well defined, because r may only have a finite

number of assertion predicates, and r2 has one fewer assertion predicates than r. Observe

that since ⊲(r) removes all assertions, it constitutes a classic Datalog program and can be

evaluated as such. However, note that the rules of ⊲(r) are not semantically equivalent to

r; in fact ⊲(r) allows all inferences that r does, and possibly more.

48

Definition: We call a set of TD rules {r1, . . . , rn} safely rewritable if each of

{⊲(r1), . . . , ⊲(rn)} is safe (in the classical Datalog sense).

Safe rewritability prohibits expanding the domain of a database, and allows us to compute

a single, finite model for the Datalog database derived from rewriting each rule in a TD

database. Note also that the Datalog database is not a simulated execution of every rule

in the TD database. The inference rules for TD require that all predicates in a given rule

hold, not just the predicates occurring before an assertion. It is, however, a maximal

database in terms of set containment. (We will say that a literal q ∈ D if q can be inferred

from D.)

Lemma 8. For any TD database with safely rewritable rules and initial state S and

transaction base P and any finite sequence of rule invocations, the final state is a subset of

the model of the Datalog database derived from the union of S and the rewritten rules from

P (i.e. ⊲(P)).

Proof. Let D be the model of the derived database. We know that S is already a subset of

D, and since any finite sequence of rule invocations r1, r2, . . . can be simulated by invoking

a single rule r :- r1, r2, . . ., we will show by induction on the length of the inference

sequence that invoking the rule with an initial state S0 that is a subset of D gives a final

state Sf that is also a subset of D; and furthermore, that any inferred clauses in the

original TD database can also be inferred in D.

Let q(−→s) be a ground clause in Sf . If q(−→s) was already in S0, then since S0 ⊆ D we

already have q(−→s) ∈ D. Otherwise, let r = p(
−→
t) :- p1(

−→
t1),...,pn(

−→
tn). be the invoked

rule so that P : S ⊢ p(σ(
−→
t)) where S begins with S0 and ends with Sf . By combining

inference rules 1 and 2, this means that P : S1 ⊢ p1(σ(
−→
t1)), . . . , P : Sn ⊢ pn(σ(

−→
tn)), where

S1 begins with S0 and Sn ends with Sf . Let Si = 〈Si,1, . . . ,Si,ni
〉, 1 ≤ i ≤ n be a state

sequence such that q(−→s) 6∈ Si,1 but q(−→s) ∈ Si,ni
and that this property does not hold for

any other Sj for j < i.

We know that P : Si ⊢ pi(σ(
−→
ti)). This could not have been concluded from Axioms 1

or 2 or from Inference Rule 3, because in each case the initial state and final state are equal

and we picked Si such that the initial state and final state are not equal. This also could

49

not have been concluded from Axiom 4 because a database with safely rewritable rules

cannot contain retraction predicates. It could not have been concluded from Inference

Rule 1 alone (without using Inference Rule 2) because this would require us to conclude

that it was already true in Si−1. Assume, then, that it was concluded from Axiom 3.

Then pi(σ(
−→
ti)) = ins.q(−→s). According to the rewriting operation, the derived database

contains the rule q(−→s) :- p1(
−→
t1), ..., pi−1(

−−→
ti−1)., with any other assertion predicates

omitted. We also know that P : Sj ⊢ pj(σ(
−→
tj)) for and j < i. By the inductive hypothesis,

we know that D ⊢ pj(σ(
−→
tj)) for each predicate, thus, we can conclude D ⊢ q(−→s).

The only other option is that q(−→s) is not a ground clause, but an inferred clause that

was concluded from Inference Rule 2; that is, it was concluded from some other rule q :-

q1,...,qk in the database, so that P : Si ⊢ q1, . . . , qk. Since this was concluded with a

shorter inference sequence, we can use the inductive hypothesis that D ⊢ q1, . . . , qk

(omitting any assertion clauses), and the rule q :- q1,...,qk with assertion clauses

omitted is in D, so we can conclude D ⊢ q(−→s). The inductive hypothesis also lets us

conclude that the final state in Si is a subset of D, since the sequences in the hypothesis

and the conclusion of Inference Rule 2 are the same. 2

Theorem 9. Security analysis is decidable for a database with state S and transaction

base P with rules that contain no retractions or negations and are safely rewritable, given

a finite number of users.

Proof. We know that the rewritten rules form a Datalog database with a single, finite

model. Because the database rules contain no retractions, invoking rules can only add

ground clauses to the database state. From Lemma 8, we know that the state is still a

subset of the model of the derived Datalog database. Since any sequence of possible state

changes has a finite upper bound, it must eventually reach a fixpoint in which no state

changes occur. Since the state changes are discrete values, every such sequence must also

be finite.

Since there are also finitely many rules in P, there are finitely many sequences that

may exist. (We only need to consider sequences of rules in which each rule actually

changes the database, since if the database remains the same, the accessible items will not

50

change.) To decide security of a formula φ, enumerate each such sequence running under

every possible untrusted user. For each sequence, create a copy of the database and

execute the sequence, checking whether φ holds at each step. Because checking for φ is

decidable, and we are checking it finitely many times, the security analysis is also

decidable. 2

It is worth noting that security analysis of a limited variation of the HRU model that

uses only monotonically increasing operations is still undecidable [43]. The difference with

our result is that we require the policies to be safely rewritable, which limits the domain

from being expanded.

Just as in Section 4.3.3, we can extend the usefulness of this class by allowing

unrestricted assertions and retractions only by trusted users, and by separating the write

privileges on the database.

While security analysis is decidable for this case, it is clear that simulating every

possible sequence of commands would be an expensive analysis. An alternative to this

detailed analysis would be to make a conservative estimate of what privileges are possible.

All of the semantics discussed for this paper are monotonic; that is, if a rule can be

executed under a given database state, it can still be executed under a larger database

state. This enables us to use the maximal database computed for Lemma 8 to make this

estimate. This may disallow some safe database configurations, but because computing a

Datalog model is very efficient, this solution may be preferable.

Theorem 10. For a database with state S and transaction base P with rules that contain

no retractions or negations and are safely rewritable, if a given permission does not exist

in the model of the Datalog database derived from the union of S and the rewritten rules

from P (i.e. ⊲(P)), then it will not be accessible in any future state of the current database

if all rules are monotonic.

Proof. We prove this by showing that because all rules are monotonic and contain no

negations, adding data to the database will never subtract privileges. Therefore, a

privilege that exists in a subset of the maximal model must also exist in the maximal

model. From Lemma 8, we know that all possible sequences of commands on the database

51

will still leave the state as a subset of the maximal model; therefore, all privileges granted

in any future state will also be granted in the maximal model. By the contrapositive, if

the maximal model does not contain a privilege, then no future state can either.

Let r be any invocation of any rule in P. That is, there exists a sequence of database

states S, . . . ,Sr such that P : 〈S, . . . ,Sr〉 ⊢ r. Let q be any other invocation of any rule in

P— similarly, there exists a sequence of database states S, . . . ,Sq such that

P : 〈S, . . . ,Sq〉 ⊢ q. We will show by induction on the inference process that r can still be

invoked on the new database state; that is, there exists another sequence of database

states Sq, . . . ,S
′ such that P : 〈Sq, . . . ,S

′〉 ⊢ r; and further, that Sr ⊆ S′.

Observe first that because no rule in P contains retractions, all ground clauses in S

must still exist in Sq. That is, S ⊆ Sq.

For the basis, assume we can infer r through one of the axioms. For axiom 1, r = true,

so P : 〈S,S〉 ⊢ r. We can also infer P : 〈Sq,Sq〉 ⊢ r using axiom 1. We already have

S ⊆ Sq. For axiom 2, r = p(
−→
t) for some p(

−→
t) ∈ S, so P : 〈S,S〉 ⊢ r. Since S ⊆ Sq,

p(
−→
t) ∈ Sq, so we can also infer P : 〈Sq,Sq〉 ⊢ r. For axiom 4, r = ins.p(

−→
t), so

P : 〈S,Sr〉 ⊢ r where Sr = S ∪ {p(−→t)}. Then we can infer P : 〈Sq,S
′〉 ⊢ r where

S′ = Sq ∪ {p(−→t)}, and since S ⊆ Sq, (S ∪ {p(
−→
t)}) ⊆ Sq ∪ {p(

−→
t)}. By assumption, no r

cannot be a retraction or a negation, so we need not consider axioms 3 or 5.

For the inductive step, assume that we can infer r through rule 1. Then r is of the

form p1, . . . , pk where P : 〈Si,1, . . . ,Si,ni
〉 ⊢ pi for each 1 ≤ i ≤ k. For i = 1, Si,1 = S, so by

the inductive hypothesis there exists a S′
1,m1

such that S1,n1
⊆ S′

1,m1
and

P : 〈Sq, . . . ,S1,m1
〉 ⊢ p1. For all other values of i, Si,1 = Si−1,ni−1

⊆ S′
i−1,mi−1

, so again by

the inductive hypothesis there exists a S′
i,mi

such that Si,ni
⊆ S′

i,mi
and

P : 〈S′
i,1, . . . ,Si,mi

〉 ⊢ pi with S′
i,1 = S′

i−1,mi−1
. Thus we can use inference rule 1 to

conclude that P : 〈Sq, . . . ,S
′
k,mk

〉 ⊢ r, with Sk,nk
⊆ S′

k,mk
.

Finally, assume that we can infer r through rule 2. Then r = σ(p) for some variable

assignment σ where there exists a rule p :- p1, . . . , pk in P and

P : 〈S, . . . ,Sr〉 ⊢ σ(p1), . . . , σ(pk). By the inductive hypothesis, there exists a database

52

state S′ such that P : 〈Sq, . . . ,S
′〉 ⊢ σ(p1), . . . , σ(pk) and Sr ⊆ S′. We can then use the

same inference rule to conclude P : 〈Sq, . . . ,S
′〉 ⊢ r. 2

In Section 6.1.3 we will describe an implementation of the above security analysis for a

set of policies by encoding the analysis as the evaluation of a query.

53

Chapter 5

Implementation

In this chapter we describe how an RDBAC system can be implemented in a standard

SQL-based relational database management system, using Transaction Datalog (TD) as a

policy language, which provides a theoretical formalism for expressing policies that is also

compact and conceptually easy to understand. This system employs a compilation process

to convert TD rules into views in standard SQL, assuming the existence of a system

variable containing the name of the current user. We describe possible optimizations on

the views, and include a performance evaluation of our RDBAC system compared to a set

of views typical of most current, standard relational database management systems. To

evaluate the potential of using our compilation process into other languages besides SQL,

such as XACML or Oracle VPD, we also provide a performance comparison with these

more modern technologies.

Benchmark Policies. We will use an example database that contains data for a

consulting firm that contains branch offices in multiple locations. The database includes

tables for employee data, financial records for each location, and data for the firm’s clients.

The company has various access policies for the data. The user Alice creates all tables

relevant to this scenario, and is allowed full access to them. All HR personnel are allowed

full access to the employee data. Regional managers are allowed access to data of the

employees in their region, indicated by the ID of the store in which they work: stores

100-199 are in region 1, stores 200-299 are in region 2, etc. The company also grants

insurance agents access to employees’ names and addresses, but only for those employees

who have opted to release their data, and all accesses by insurance agents must be audited.

54

Table 5.1: Benchmark Policies: employees and store data tables

% base policy, automatically generated
1. view employees(‘alice’, Name, Addr, StoreID, Salary, Optin) :-

employees(Name, Addr, StoreID, Salary, Optin).

% hr policy
2. view employees(User, Name, Addr, StoreID, Salary, Optin) :-

view hr(‘alice’, User),

view employees(‘alice’, Name, Addr, StoreID, Salary, Optin).

% manager policy
3. view employees(User, Name, Addr, StoreID, Salary, Optin) :-

view manager(‘alice’, User, Region),

view employees(‘alice’, Name, Addr, StoreID, Salary, Optin),

>=(StoreID, Region*100), <(StoreID, (Region+1)*100).

% insurance policy
4. view employees(User, Name, Addr, null, null, null) :-

view insurance(‘alice’, User),

view employees(‘alice’, Name, Addr, , , Optin), =(Optin, ‘true’),

ins.accesslog(User, Name, ‘Name & Addr’, current time).

% policy for branch office data
5. view store data(User, StoreID, Data1, Data2) :-

view owner(‘alice’, StoreID, User),

view store data(‘alice’, StoreID, Data1, Data2).

Each store location has an owner, who is allowed to view all financial records for that

location. An owner may own more than one location.

Finally, the firm’s clients may pose conflicts of interest. A Chinese Wall policy [18] is

imposed on data for such clients: any employee may initially view any client’s data, but

after viewing the data, the employee may not view any other data that creates a conflict

of interest.

Table 5.1 contains access rules for the employees and store data tables that implement

these policies, encoded in TD. We call the predicates defined by these rules view predicates.

Rule 1 is defined for a particular user ‘alice’ and is true for all rows in the employees

table. In other words, the view on table employees for user ‘alice’ is the entire table.

Rules 2 and 3 demonstrate how we can leverage the recursive semantics of Datalog to

define other useful policies. In Rule 2, the first predicate in the body of the policy is true if

and only if the querying user is in the hr table. The second predicate, as we explained for

Rule 1, is true for all records in the employees table. In other words, this rule enforces the

55

policy that any HR user can see the data for all employees. In Rule 3, the first predicate in

the body of the policy is true if and only if the querying user is in the manager table; if so,

the variable Region is bound to the value of the region that manager is assigned to. The

second predicate is true for all employees in the table, however the final two predicates are

only true for the employees with a StoreID number between Region * 100 and (Region +

1) * 100. In other words, managers can see the data for all employees in their region.

Rule 4 uses an assertion predicate to implement an audit policy. The first predicate in

the body checks whether the querying user is an authorized insurance agent. The second

retrieves the names and addresses of each employee, but uses “don’t care” values for the

StoreID, Salary, and Optin fields (represented by the underscore character). The

corresponding fields in the head of the rule contain null values. The third predicate filters

the table to only those rows with the Optin value set to true. This demonstrates how

cell-level security, using both column-level and row-level restrictions, can be implemented

with a TD rule. Finally, an audit record containing the name of the querying user, the

name of the user whose record is accessed, an explanatory string, and the current time is

added to the accesslog table for each user accessed.

Rule 5 implements the policy for the store data table that branch office owners can

view data for the offices they own. This rule depends on data from other policies for the

store data table and an owner table, which are omitted for brevity.

Table 5.2 contains two alternative rules for implementing the Chinese Wall policy that

protects client data, depending on whether each client’s data is stored in a separate table

(Rule 6), or a single table contains the data for all clients (Rule 7). We provide rule 7 only

to demonstrate the expressive power of RDBAC; hereafter we will only use rule 6. Either

alternative requires some initial setup in creating a table called cwUsers with the following

schema: User of type VARCHAR, CanAccessClient1 of type INT, and CanAccessClient2 of

type INT. The last two columns could equivalently be defined as BOOLEAN. Initially, this

table contains a row for every authorized employee, with both columns set to 1. The first

predicate in rule 6 checks whether the user is allowed to access the client1 table, based on

whether his entry in the cwUsers table has a 1 in the CanAccessClient1 column. Assuming

56

Table 5.2: Benchmark Policies: client data
% Chinese Wall policy
6. view client1(User, Data1, Data2) :-

view cwUsers(‘alice’, User, 1, OldVal),

view client1(‘alice’, Data1, Data2),

del.cwUsers(User, 1, OldVal), ins.cwUsers(User, 1, 0).

7. view clientData(User, Client, Data1, Data2) :-

view cwUsers(‘alice’, User, 1, OldVal),

view clientData(‘alice’, Client, Data1, Data2), =(Client, ‘client1’),

del.cwUsers(User, 1, OldVal), ins.cwUsers(User, 1, 0).

8. view client2(User, Data1, Data2) :-

view cwUsers(‘alice’, User, OldVal, 1),

view client2(‘alice’, Data1, Data2),

del.cwUsers(User, OldVal, 1), ins.cwUsers(User, 0, 1).

9. view clientData(User, Client, Data1, Data2) :-

view cwUsers(‘alice’, User, 1, OldVal),

view clientData(‘alice’, Client, Data1, Data2), =(Client, ‘client2’),

del.cwUsers(User, OldVal, 1), ins.cwUsers(User, 0, 1).

this is satisfied, the second predicate returns the data requested by the user. The third

and fourth predicates remove the user’s row from the cwUsers table, whatever the value of

CanAccessClient2 may have been, and replace it with an entry that only allows future

access to the client1 data and turns off future access to the client2 data. Rules 8 and 9

are the corresponding rules for accessing the data for client2, which simply reverse the

columns on the cwUsers table: they check whether CanAccessClient2 is 1, and would set

CanAccessClient1 to 0. Note that the head of rule 9 uses the same predicate name as the

head of rule 7. Which rule is executed for a user’s query depends on whether the query

sets the Client field to client1 or client2.

The access control model used by most modern commercial databases offers a

compelling case for decentralized policy administration, in which table and view owners

define their own access control policies for the resources they create. Ideally, more

advanced access control models should still give users the same kind of autonomy in

defining their own policies. However, this autonomy comes at a price. We have shown in

Chapter 3 that careless definitions of reflective policies can be vulnerable to a Trojan

Horse attack if untrusted users are also allowed to define policies. This problem can easily

be mitigated using TD-based policies by restricting a policy definer from performing any

57

operations beyond what that user can perform manually: we simply make the user’s ID an

explicit parameter to all view predicates, and for all predicates in the body of a policy,

that parameter is bound to the ID of the policy definer, thereby executing the policy

under the policy definer’s privileges. The database system can automatically generate

basic privileges that access the table directly, such as the first rule in Table 5.1, to the

table owner. All other user-defined policies must query the database through the view

predicates.

5.1 Prototype Description

5.1.1 Strategy

Our goals in implementing a prototype system to demonstrate the usability of a reflective

database access control system included the following:

• Use a flexible, expressive policy definition language.

• Use, as much as possible, an existing database management system following the

SQL standard.

• Minimize the overhead running time for executing queries.

• Allow scalability both in the number of users and in the amount of data stored.

TD provides a very concise syntax that is capable of expressing a wide range of

policies, as demonstrated in Section 1. Translating classical Datalog rules into SQL

statements has been well-studied in the past [28, 42] and we took a similar approach for

our prototype, in which we compile a set of TD rules into a set of SQL view definitions.

These view definitions can then be added to the database and used normally, with no

additional overhead. Because rules may be recursively defined, it was necessary to use a

database system that implements recursive views as defined by the SQL:1999 standard.

We chose to use Microsoft’s SQL Server 2005.

Unfortunately, there are two significant semantic gaps between TD and SQL. One

problem is that SQL does not allow database update statements within a data retrieval

58

query. SQL triggers, while designed to perform updates as side-effects to user actions,

cannot be defined for read-only queries. In some databases, the restriction against

side-effects can be bypassed by calling a user-defined function (UDF) from within the

query which performs the update. Other databases, including SQL Server, preclude this

by disallowing the invocation of any function that causes side-effects on the database from

within read-only queries. Indeed, this is generally a safer configuration; otherwise,

functions with side-effects could be invoked without the user’s knowledge, causing a

vulnerability with Trojan-Horse code similar to the problem described in Section 3.3.1.

However, as described in Section 4.3, such code can be analyzed to detect undesirable

side-effects. One workaround for executing side-effects in SQL Server is to execute it from

within a Common Language Runtime (CLR) function, which can then be registered as an

external function within the SQL Server database. This workaround is not an ideal

solution; it is considered an egregious hack [63] that requires a separate connection to the

database, which adversely affects performance. However, it suffices for a proof-of-concept

prototype.

The other semantic gap between TD and SQL is that the former includes a well-defined

execution ordering in its definition, the latter does not. In other words, SQL provides no

way to distinguish the policies a1 :- b, c and a2 :- c, b. For traditional SQL queries,

this is advantageous to the query optimizer, which can reorder query plans to find highly

efficient executions of the query. However, there are two reasons why lack of ordering is a

cause for concern in implementing TD: the compiled SQL view may not be a valid

execution of the original TD rule, and the order of operations in a query plan may cause

information leakage [53]. To solve both problems, our prototype only implements policies

in which all side-effects occur at the end of the policy execution, after all relevant data has

been retrieved and filtered. It combines all of the read operations into a subquery along

with dynamically-generated parameters to the UDF that executes the side-effect, making

the side-effects dependent on the results of the read operations and thus ensuring that the

execution order is followed and preventing information leakage by guaranteeing that no

side-effects will occur until it knows the transaction will definitely run to completion.

59

Such a restriction also raises another significant complication. While direct assertions and

retractions always succeed, due to their semantic definition in TD, rules that contain

side-effects may fail. If a particular rule contains in its body more than one predicate that

may execute a side-effect, there is a possibility that the first will successfully execute but

the second will fail. In such cases, TD semantics require that the first side-effect be rolled

back; however, because our implementation executes side-effects using an external session,

the database has no way of knowing that it is part of a larger transaction. For simplicity,

we will assume that at any rule contains at most one such predicate, and that it occurs

after all read-only predicates but before any direct assertions or retractions, and we leave

the problem of handling more complicated transactions for future work.

Our approach for implementing RDBAC policies is to write a compiler that parses a

TD-based policy and generates a standard SQL:1999 view definition that enforces the

policy. In order to demonstrate the compilation process, we will walk through an example

of the process using rule 4 of our benchmark policies from Table 5.1.

On the first pass, our compiler determines the schema for the view, comprised of an

explicit parameter for the user executing the query, the schema of the base table, and

parameters for any assertions or retractions that any rule for that view might execute. In

this case, the generated schema is: User, Name, Addr, StoreID, Salary, Optin, Assert flag

(a Boolean flag to indicate whether the rule triggers the assertion), Assert param0, and

Assert param1 (parameters to the UDF that will execute the assertion).

The compiler also generates a UDF that creates and executes an SQL INSERT

statement, corresponding to the assertion predicate ins.accesslog(User, Name, ’Name &

Addr’, current time). The values for the string constant ’Name & Addr’ and the keyword

current time can be directly translated into the generated INSERT statement (the latter is

translated to the built-in function GETDATE()). The other parameters, User and Name (not

to be confused with the schema attributes User and Name), are determined at execution

time.

During the second pass, the compiler maintains a list of tables and views accessed in

the rule (which will form the SQL FROM clause), a list of variables and variable bindings

60

that appear in the rule, and a list of conditions imposed by built-in predicates or

constants (which together will form the SQL WHERE clause). After this information is

gathered, it uses the variable bindings to form the list of attributes to appear in the view

(which will form the SQL SELECT clause).

First, it examines the body of the rule. The first literal is the view predicate

view insurance(’alice’, User). The view view insurance is added to the FROM clause list,

and given an alias i. The constant ’alice’ adds a condition to the WHERE clause; using the

available metadata for the view, the compiler determines that this condition should be

i.User = ’alice’. The predicate variable User (not to be confused with the table

attribute i.User) is bound to the second attribute in view insurance, i.Name, which is

added to the list of variable bindings.

Similarly, the second literal is the view predicate view employees(’alice’, Name,

Addr, , , Optin). The view view employees is added to the FROM clause list and given an

alias e. The constant ’alice’, together with the metadata for the view, indicates that

e.User = ’alice’ is added to the WHERE clause list. The variables Name, Addr, and Optin

are bound to the attributes e.Name, e.Addr and e.Optin, respectively, all of which are

added to the list of variable bindings. The don’t-care symbols (underscores) are ignored,

since they impose no conditions on the values in the view.

The third literal is the built-in predicate =(Optin, ’true’). Because the variable Optin

was bound to the attribute e.Optin, this adds the condition e.Optin = ’true’ to the

WHERE clause list.

Next, the fourth literal is the assertion predicate ins.accesslog(User, Name, ’Name &

Addr’, current time). As previously described, during the first pass this literal triggered

the creation of a UDF. During the second pass, the compiler uses the list of variable

bindings to determine which values will be passed as parameters to this function,

contained in the view schema as Assert param0 and Assert param1. In this case, i.Name is

added to the SELECT clause list as the former, and e.Name is added as the latter. The value

for Assert flag is also added to the SELECT clause list as 1, indicating that the side-effect

61

should be executed. For the other rules, which do not contain assertion predicates, the

value for Assert flag is added as 0, and the other parameters are given null values.

Finally, the head literal is examined to determine the attributes that should appear in

the SELECT clause. The User variable, bound previously to i.Name, is added as User.

Similarly, e.Name is added as Name and e.Addr is added as Addr. The constant null is

added as the other selected attributes: StoreID, Salary, and Optin. In order for the

recursive view to compile properly, SQL Server requires that the null values be cast with

the proper types, which can be retrieved from the metadata for the view employees view.

The final translated SQL for this rule is:

SELECT i.Name AS User, e.Name AS Name, e.Addr AS Addr, CAST(NULL AS INT)

AS StoreID, CAST(NULL AS VARCHAR) AS Salary, CAST(NULL AS VARCHAR) AS

Optin, 1 AS Assert flag, i.Name AS Assert param0, e.Name AS Assert param1

FROM view employees e, view insurance i

WHERE e.User = ’alice’ AND i.User = ’alice’ AND e.Optin = ’true’

The other rules are similarly translated, connected by the UNION ALL operator, and the

UDF is called at the end of the union with:

SELECT DISTINCT User, Name, Addr, StoreID, Salary, Optin FROM view employees

WHERE (Assert flag = 1 AND assert accesslog(Assert flag, Assert param0,

Assert param1) != 0) OR Assert flag = 0;

The complete1 generated view for all the policies for view employees is shown in

Table 5.3, along with another automatically-generated view view employees public that

queries view employees on behalf of the current user and may be safely queried by any

user in the system. The portion of the generated code which we stepped through is

indicated by the comment “-- insurance policy.”

5.1.2 Optimization

Translating the view definition into standard SQL allows the execution of reflective access

policies to take advantage of the large body of work in query optimization that has been

1
For clarity, the cast operations required by SQL Server for its recursive query definitions have been omitted from

the view presented here.

62

Table 5.3: Generated SQL view definition for benchmark policies.
--...function assert accesslog definition omitted...
CREATE VIEW view employees AS

WITH view employees AS (

-- base policy
SELECT ’alice’ AS User, e.Name AS Name, e.Addr AS Addr, e.StoreID AS

StoreID, e.Salary AS Salary, e.Optin AS Optin, 0 AS Assert flag,

NULL AS Assert param0, NULL AS Assert param1

FROM employees e

UNION ALL

-- hr policy
SELECT h.Name AS User, e.Name AS Name, e.Addr AS Addr, e.StoreID AS

StoreID, e.Salary AS Salary, e.Optin AS Optin, 0 AS Assert flag,

NULL AS Assert param0, NULL AS Assert param1

FROM view employees e, view hr h

WHERE e.User = ’alice’ AND h.User = ’alice’

UNION ALL

-- manager policy
SELECT m.Name AS User, e.Name AS Name, e.Addr AS Addr, e.StoreID AS

StoreID, e.Salary AS Salary, e.Optin AS Optin, 0 AS Assert flag,

NULL AS Assert param0, NULL AS Assert param1

FROM view employees e, view manager m WHERE e.User = ’alice’

AND m.User = ’alice’ AND e.StoreID >= m.Region*100

AND e.StoreID < (m.Region+1) * 100

UNION ALL

-- insurance policy
SELECT i.Name AS User, e.Name AS Name, e.Addr AS Addr, NULL AS

StoreID, NULL AS Salary, NULL AS Optin,

1 AS Assert flag, i.Name AS Assert param0, e.Name AS Assert param1

FROM view employees e, view insurance i WHERE e.User = ’alice’

AND i.User = ’alice’ AND e.Optin = ’true’

) SELECT DISTINCT User, Name, Addr, StoreID, Salary, Optin

FROM view employees WHERE (Assert flag = 1 AND assert accesslog(

Assert flag, Assert param0, Assert param1) != 0) OR Assert flag = 0;

CREATE VIEW view employees public AS

SELECT Name, Addr, StoreID, Salary, Optin FROM view employees

WHERE User = CURRENT USER;

GRANT SELECT ON view employees public TO PUBLIC;

63

implemented in commercial databases. There are also additional possible optimizations we

developed using partial evaluation techniques [16] on the TD rules.

As described in Section 4.2, our system prevents information leakage in reflective

policies by forcing them to run under the definer’s privileges. Only the basic privileges,

defined automatically by the database management system, access the tables directly.

Thus, all user-defined privileges are by nature recursive, since they must in turn be based

on another access rule. However, it should be noted that without this restriction, we can

sometimes define equivalent policies that are recursion-free. For example, the second,

third, and fourth rules in Table 5.1 all depend on the first rule. Since we know from the

first rule that the user ‘alice’ is allowed access to the entire employees table with no

restrictions or filters, the compiler could have simply replaced the references with direct

accesses to the table.

This suggests that unfolding predicates in the rule before compiling it to an SQL view

could yield a significant performance benefit. While more complex partial evaluation

techniques would require a sophisticated TD interpreter, it is simple to keep track of the

basic privileges and unfold them into the rules in which they appear. In our running

example of the policies from Table 5.1, using this optimization generates code that is

similar to the generated view in Table 5.3; hence, we have not included it. The key

difference is that each sub-select accesses the tables employees, hr, etc. directly, rather

than through the views view employees, view hr, etc.

Removing the recursion from a view also enables us to remove the redundant CAST

operations, as SQL Server is better able to match types in recursion-free views.

Additionally, the SELECT DISTINCT to remove duplicate rows at the end of the union is

another costly operation. While this operation technically ensures that the result strictly

adheres to the semantics of TD, removing it still yields the same answer set in our test

cases, and it would similarly be redundant in many other practical cases. We have

implemented all of these optimizations in our prototype system, which we assess in

Section 5.2.

64

An opportunity for further optimization would be to pre-compute the parts of the

view that are checks on the user’s identity. For instance, consider the policy rules from

Table 5.1. If a given user is recorded in the insurance table but not in any other table,

then when that user logs in, the database could partially compute the view to determine

that only rule 4 is applicable to this user, not rules 1, 2, or 3. This would enable us to

avoid calculating extraneous UNION ALL operations by constructing the view definition

dynamically. We have written a simulated version of such an optimization using a stored

procedure, and assess its performance in Section 5.2 as well.

5.1.3 Compiling Negation Predicates

In Section 4.1.3 we defined an extended semantics for negation predicates in TD and

showed that a negation predicate can be inferred if and only if there does not exist any

tuple in the database matching its specified pattern. SQL provides for subqueries to

accomplish this using the NOT EXISTS syntax. Our compiler translates negation predicates

into NOT EXISTS subqueries, which can then be included in the list of conditions for the

WHERE clause that were generated as described in Section 5.1.1.

The compiler assumes that the strong safety condition for negation predicates [74]

holds in every rule. That is, every variable that occurs in a negation predicate in a rule’s

body must also appear in a positive, non-built-in2 predicate in the body.

To demonstrate the compilation process, we will assume the existence of tables b and c

and use the example rule a(X) :- b(X,Y), empty{1,3}.c(Y,1). We will assume that table b

has attributes D and E, and table c has attributes F, G, and H. As before, the compiler

stores the bindings for variables X and Y. When the compiler examines the negation

predicate, it examines the list of attribute indexes {1,3}. From this list, it concludes that

the subquery will contain conditions on the first and third attributes of table c, namely, F

and H. The first value in the predicate’s tuple is the variable Y, which was previously

added to the list of variable bindings. From this list, the compiler finds that Y was bound

to attribute b.E; thus, the condition c.F = b.E is added to the subquery’s WHERE clause.

2While built-in predicates do impose positive conditions on variables, there are also generally infinitely
many values that satisfy the built-in predicate.

65

The second value in the predicate’s tuple is the constant 1, so the compiler also adds the

condition c.H = 1 to the WHERE clause. Because we are only checking whether a variable

assignment satisfies the subquery, there is no need to generate a list of attributes to

return. The final generated subquery is NOT EXISTS(SELECT * FROM c WHERE c.F = b.E AND

c.H = 1), which is added to the WHERE clause of the query generated as described in

Section 5.1.1. The full generated query is:

SELECT b.D AS X FROM b

WHERE NOT EXISTS(SELECT * FROM c WHERE c.F = b.E and c.H = 1)

5.1.4 Compiling View-assert and View-retract Rules

Rules that define how users can modify the databases require a different compilation

strategy. While most of the translation process is the same, one major difference is that

the data to be inserted or deleted comes from the user, rather than from other data

already in the database. Ideally, to reduce confusion for users already familiar with SQL,

such predicates should be compiled to a view on which a user can execute SQL insert or

delete statements. However, using the same compilation approach as described in

Section 5.1.1 will not work because views consisting of a UNION of subqueries cannot be

updated. A more complicated process in which the rules translate into filters on the

underlying table, rather than into subqueries, could be developed, which we leave for

future work. Such a solution must also take the following factors into account, perhaps by

using a mechanism such as SQL BEFORE or INSTEAD OF triggers:

• Recursive views are not updatable. This can be addressed by using the unfolding

optimization described in Section 5.1.2, if it successfully removes all of the recursion.

• The proper permissions must be used when invoking the view predicate from within

the body of another rule. In other words, the insert or delete may need to be

executed under different users’ permissions. This can be addressed by executing the

query within a UDF that uses impersonation.

• There are useful scenarios in which a policy requires a user to update more than one

table simultaneously. While this can be addressed by defining an updatable view

66

over the multiple tables, the compiler must still be able to distinguish the tables

that make up this view from the tables that are updated through side-effects and

should not be directly modifiable by the user.

• TD does not preclude the possibility that a view-assert or view-retract rule does not

even contain a predicate in the body that modifies the underlying table, or even that

it modifies anything at all.

We decided to use an approach that better reuses the code described in Section 5.1.1

by compiling the rule into a normal SQL view definition, and embedding this view

definition into a UDF with the user-provided data passed in as parameters. This follows

nearly the same compilation technique as with normal view predicates, with two

additional pre-processing steps. First, the compiler replaces any constants in the head of

the rule with a unique variable name, and adds an equality predicate to guarantee that

this variable is equal to the given constant. While this may seem to be an obvious

equivalence, the logical basis of TD allows us to establish it in a formal proof, which we

will present later as Theorem 11. Second, we pre-populate the variable list to bind the

variables in the head predicate to the corresponding parameters passed to the UDF.

This approach allows us to translate each rule into a subquery as before, with the

actual update to the underlying table occurring as though it were a side-effect to the

query. One problem that arises is that SQL Server’s query planner for evaluating UDFs

places conditions involving function parameters last, including after the evaluation of the

side-effects. Since the decision of whether or not to execute the rule may depend on the

values of the function parameters, the compiled view must make sure that the side-effects

do not happen until all other conditions are evaluated. To do this, rather than giving an

alias to the UNION of each translated subquery, our compiler stores the subquery into a

temporary table, which is then used to execute the side-effects.

On the first pass, the compiler treats view-assert or view-retract predicates the same

way as assert and retract predicates by generating parameters to pass to a UDF. Because

update operations do not require the database to return any data other than whether the

update was successful, these parameters form the entire schema of the temporary table,

67

which we give the name @temp table.3 On the second pass, the compiler outputs the UDF

name, parameters (including the name of the user whose permissions will be used), and

declares the @temp table variable along with a return value variable @success. It then

outputs the string INSERT INTO @temp table, followed by the subqueries generated for each

view as before, including generating the parameters to indicate whether the side-effect is

allowed. Each rule with the same predicate name in the head is compiled, connected with

UNION ALL. After all the rules have been compiled, the compiler assigns the return value by

outputting the string SELECT @success = 1 WHERE EXISTS (SELECT * FROM @temp table)

and generates the WHERE condition to execute the side effects as described in Section 5.1.1.

Additionally, the compiler generates another UDF that executes the previously-generated

UDF by passing in CURRENT USER as the user parameter, and allowing the user to set the

other parameters arbitrarily. This view must be defined with the WITH EXECUTE AS CALLER

clause so that CURRENT USER will be set properly.

Note that the same complication arises with view-assert and view-retract rules as with

any rule that might contain a side-effect: multiple occurrences in a single rule body could

require rolling back changes made by earlier predicates. We make the same assumption

that the body of any rule, including view-assert and view-retract rules, contains at most

one predicate that might cause a side-effect, and that the predicate occurs after all

read-only predicates but before any direct assertions or retractions.

We now prove that replacing constants in the head of a rule with an equality predicate

in the body of the rule gives the same results.

Theorem 11. Given a TD rule r of the form

h(
−→
T) :- p1, ..., pm.

where
−→
T is the sequence of attributes T1, ..., Tn and one of the attributes Ti, 1 ≤ i ≤ n,

is a constant c; then r is equivalent to the rule r′ (in terms of facts that can be inferred),

where r′ is

h(
−→
S) :- p1, ..., pm, =(Vi, c).

3The @ symbol indicates that this is a local variable to the UDF.

68

where Vi is a unique variable and
−→
S is the sequence S1, ..., Sn such that Si = Vi and for

all other j between 1 and n, j 6= i, Sj = Tj.

Proof. This can be proven by induction on the inference process if we remove r from a

transaction base P and replace it with r′, which we will call P′, and conversely if we

remove r′ from P′ and replace it with r, giving us P. However, a complete inductive proof

is tedious, so we will only include the inductive step of transforming P into P′; the other

portions are omitted but proven similarly.

Observe that inference rule 2 is the only inference rule that allows us to deduce facts

about h using r. Assume, then, that using inference rule 2 on r yields some fact

P : S ⊢ h(−→t) where −→
t = t1, ..., tn. Then there exists a variable substitution σ such

that σ(Tj) = tj for each 1 ≤ j ≤ n and that P : S ⊢ σ(p1), . . . , σ(pm). Inference rule 1 is

the only inference rule that allows us to deduce facts about sequences of literals, so this

must have been inferred from previously inferred facts

P : 〈S1,1, . . .S1,k1
〉 ⊢ σ(p1), . . . , P : 〈Sm,1, . . .Sm,km

〉 ⊢ σ(pm)

where the concatenation of the sequences of states form the sequence S. Without loss of

generality, we will assume that σ does not map any other variables besides those that

appear in r. Let σ′ be a variable mapping such that σ′(X) = σ(X) for all variables X that

appear in r, and σ′(Vi) = c. Thus our previously inferred facts still hold using σ′, so by

the inductive hypothesis:

P′ : 〈S1,1, . . .S1,k1
〉 ⊢ σ′(p1), . . . , P′ : 〈Sm,1, . . .Sm,km

〉 ⊢ σ′(pm)

We are given that Ti = c, so ti = c, and thus σ′(Vi) = ti. Finally, because = is a built-in

predicate for equality, we have P′ : 〈Sm,km
,Sm,km

〉 ⊢ = (c, c), and thus

P′ : 〈Sm,km
,Sm,km

〉 ⊢ σ′(= (Vi, c)), so by inference rule 1 we have

P′ : S ⊢ σ(p1), . . . , σ(pm), σ(= (Vi, c)) and by inference rule 2 on rule r′ we have

P′ : S ⊢ σ(h(
−→
S)) which is the same fact deduced from r, P′ : S ⊢ h(−→t). 2

69

Table 5.4: Hand-coded baseline SQL views.
-- base policy
GRANT SELECT ON employees TO alice;

-- hr policy
GRANT SELECT ON employees TO {username(s)};

-- manager policy
CREATE VIEW region1 view AS

SELECT * FROM employees WHERE StoreID >= 100 AND StoreID < 200;

GRANT SELECT ON region1 view TO {username(s)};
CREATE VIEW region2 view AS

SELECT * FROM employees WHERE StoreID >= 200 AND StoreID < 300;

GRANT SELECT ON region2 view TO {username(s)};
-- similar views created for each region

-- insurance policy
CREATE VIEW insurance view AS

SELECT Name, Addr FROM employees WHERE Optin=’true’ AND

assert accesslog(CURRENT USER, Name, ’Name & Addr’, GETDATE())=1;

GRANT SELECT ON insurance view TO {username(s)};

5.2 Evaluation

We evaluated the performance of our reflective database access control system based on

three criteria: expressiveness and conciseness of policies, execution time for running

queries, and scalability of data size.

Policy Conciseness While we have already motivated the use of TD-based RDBAC

policies in Section 1, it is important to evaluate the ease of expressing RDBAC policies in

our system as compared to standard ACM-based SQL views. The most obvious point of

comparison is that TD-based views automatically inherit the ability to express side-effects

from TD syntax, whereas traditional SQL syntax does not allow for SQL-based views to

cause side-effects on the database, at least not without resorting to UDFs. On the other

hand, TD does not handle aggregation operators like summation and average.

Augmenting TD with aggregation semantics, which we leave for future work, would

facilitate the adoption of such a language in a practical database, since TD is otherwise a

very concise representation of access policies.

70

Recall the TD policies from Table 5.1. For comparison, we have hand-coded separate

SQL views that enforce these policies, shown in Table 5.4. While these example view

definitions appear simple to understand, it is important to note that many more view

definitions are required. In our example, each region requires its own view, and it is not

difficult to imagine a scenario in which a large number of regions necessitates an unwieldy

number of views to manage. Additionally, the security policy is split between the view

definitions and the grant statements, rather than being self-contained policy statements

like the RDBAC version. Note also that if a particular user is given access to data from

this table through more than one policy, that user must query the table through more

than one view. By contrast, using TD to express the policies is expressed completely using

the rules from Table 5.1.

Execution time and scalability We evaluated the execution time of running queries

on views generated from the benchmark policies by our implementation, such as the view

from Table 5.3, to a baseline of running queries on custom-written views, such as those in

Table 5.4. To test these views, we used Microsoft’s SQL Server 2005 database

management system, running on a 2.4 GHz Intel Core2 machine with Windows Vista

Business 64-bit Edition. The base tables all have appropriately-defined indexes on the

user names, in order to minimize the cost of performing joins.

Each test was performed using an external application written in C# and compiled by

Microsoft’s Visual C# 2008 compiler version 3.5. The application was run locally so as

not to include network latency. For each user, the application constructed a query for the

entire table and iterated through each row of the table. The query was repeated until the

query time reached a stable state, after which we gathered multiple execution times, of

which we report the average query time. Thus, our results represent the time for “hot”

queries, or queries which have been loaded and executed recently.

We tested two versions of our prototype code: one which directly translates the

policies into a recursive view, and another which performs the unfolding optimization

defined in Section 5.1.2. We also tested a simulated version of the partial-evaluation

optimization, also described in Section 5.1.2, using a stored procedure. To assess the

71

Figure 5.1: Execution time results for employee policies, logarithmic scale, fixed database
size (100,000 empl.)

Figure 5.2: Execution time results for employee policies, logarithmic scale, fixed query type
(HR query)

72

Table 5.5: Execution time results (in msec) for employees and client1 policies

Query Baseline Recursive Optimized Target

HR
(1000) 0.604 2,950 1.15 0.859
(10,000) 5.79 231,000 10.8 6.47
(100,000) 56.8 28,200,000 107 62.4

Manager
(1000) 1.01 2,940 1.38 1.26
(10,000) 5.01 231,000 8.19 5.56
(100,000) 49.5 28,200,000 81.3 53.3

Insurance
(1000) 2,190 553 5,260 2,230 2,190
(10,000) 21,700 1,570 257,000 21,800 21,700
(100,000) 214,000 15,600 29,000,000 216,000 216,000

Chinese Wall
(1000) 9.17 2.17 17,200 23.2 6.90
(10,000) 24.6 6.71 261,000 38.7 14.7
(100,000) 142 105 10,200,000 289 129

scalability of the generated views, the experiment was repeated on databases with 1000

users, 10,000 users, and 100,000 users, each with a record in the employees table. The size

of the hr, manager, and insurance tables also increase proportionally in each experiment,

with 100 entries each, 1000 entries each, and 10,000 entries each, respectively. The results,

rounded to 3 significant digits, are shown in Table 5.5, in which the column labeled

“Baseline” is the result of querying the hand-coded views from Table 5.4. In the queries

that contain side-effects, two baseline times were calculated: one in which the view calls a

UDF that executes the side-effect, and another in which the side-effect is not enforced by

the view at all, but rather by the querying application. This allows us to measure the cost

of using UDFs, apart from the cost of using a compiled view. The column labeled

“Recursive” is the result of querying the compiled view from Table 5.3, “Optimized” is the

result of querying the compiled view using our predicate unfolding optimization, and

“Target” is the result of executing the stored procedure that uses partial evaluation with

dynamic view construction. Figure 5.1 shows these results graphically for the database

with 100,000 users, and Figure 5.2 shows the results of querying each view as an HR user

as the database size increases from 1000 to 100,000. Queries from the other users scaled

similarly, so those results are not shown. Because Baseline 2 is no different than Baseline

73

Figure 5.3: Execution time results for employee policies, normal scale, fixed query type (HR
query) and database size (100,000 empl.)

1 for the HR query, we omitted the data for Baseline 2 in Figure 5.2 for clarity. Notice

that on both charts we use a logarithmic scale for the execution time; in Figure 5.1 this

helps demonstrate the successive improvements each optimization makes, and in

Figure 5.2, this shows the scalability of executing the views as the size of the database

increases exponentially. Figure 5.3 compares the results of the HR query at the largest

database size, using a normal scale.

The queries with side-effects show the cost of using the workaround in SQL Server

which opens a separate connection to execute the update. Our results show that this does

indeed noticeably affect all three views that use the workaround. Databases that could

handle allowing side-effects in selection queries would not experience this effect as

dramatically.

For the Chinese Wall query, which uses the workaround twice on each row, the

recursive view behaves as expected. However, neither the optimized view nor the first

baseline, both of which also use the workaround, show much effect from its use. After

tracing the execution of the query, we discovered the cause of this unexpected result. SQL

74

Server recognized that the same parameters are being passed to the UDF, and rather than

re-executing the function on each row, it cached the return value after executing on the

first row and used the cached value on each subsequent row. Effectively, the side-effects

are being executed once per query rather than once per row. While this still correctly

enforces the Chinese Wall policy (access to the other table is prohibited, whether the user

queries one row or all of the rows), the execution order is not semantically equivalent to

the recursive query.

Increasing the database size shows that while the recursive view does not scale very

well, the optimized view and the stored procedure handle larger data sizes much better,

remaining at roughly the same proportion to the performance of the baseline views for all

our tests. The workaround for executing side-effects drastically affects queries for small

data sizes, so seeing the same effect on queries for large data sizes is no surprise. This

should be a major focus for improvement in the future.

The unfolding optimization from Section 5.1.2 is clearly beneficial, since it removes the

recursion from the rules, eliminating the need for executing a fixed-point algorithm to

evaluate queries. The additional optimization using partial evaluation further improves

the performance to nearly as fast as the baseline.

In cases where fewer policies protect a table, the performance of the compiled view is

even better. Recall the policy for the store data table from Table 5.1. This policy poses

additional administration difficulties when using traditional ACM-based approaches,

which are automatically solved by an RDBAC-based approach. Because a single owner

may need access to multiple parts of the table, and there is no simple, single encapsulation

of the conditions describing all of these parts, a traditional ACM-based view requires more

complicated conditions than those described in the baseline for the employees table. These

more complicated conditions therefore become more difficult to keep updated when the

data or the permissions on the data change.

We describe four baselines for querying this table using traditional ACM-based views,

each of which requires a somewhat different configuration by the database administrator.

One approach, which we will call “Union Baseline,” is where the administrator creates a

75

Table 5.6: Execution time results (in msec) for store data policy

Table Size Union App-Level Disjunction Join Optimized

1000 0.146 0.279 0.145 0.156 0.179
10,000 0.443 0.839 0.348 0.365 0.423
100,000 3.31 7.30 2.03 2.25 2.95
1,000,000 40.8 74.5 20.9 21.5 28.1

separate view for each franchise, and the owner executes a UNION ALL over each view. A

similar approach, “App-Level Baseline,” queries each view individually but aggregates the

data at the application level, rather than at the database level. These two approaches

minimize the work needed when a store location is sold to a different owner, requiring only

one REVOKE and one GRANT statement and no view redefinitions; however, the processing

times for queries using these baselines are considerably more costly, as demonstrated by

the results. Another approach, “Disjunction Baseline,” requires the administrator to

create a customized view for each owner that includes data from each store he owns,

implemented as a disjunction of the Store ID’s in the WHERE clause of the view. This

approach makes the store owners’ jobs much easier, since it does not require them to

query multiple views, and also executes faster than the other two baselines. However, it

also requires more upkeep by the administrator, who must redefine two views each time a

location changes hands. A fourth approach, “Join Baseline,” joins the data from the owner

table, but is otherwise similar to the Disjunction Baseline in creating a customized view

for each owner. This requires less upkeep from the Disjunction Baseline when owners are

changed, but still requires new views to be defined when new owners are added. Note that

this is nearly the same approach as described in the TD rule, except that the Join

Baseline does not use a single all-purpose view that depends on the user’s identity.

Table 5.6 shows the results of running the optimized compiled view for the store data

table compared with the results of using each of the four baselines. Figure 5.4 shows a

graph of these results, again using a logarithmic scale. Figure 5.5 shows the same results

for the largest database size, using a normal scale. The reflective view generated by our

compiler offers performance comparable to the fastest of these baselines, and requires less

maintenance than any of the baselines when the data changes. Only a single view is

76

Figure 5.4: Execution time results for store data policy using logarithmic scale

Figure 5.5: Execution time results for store data policy using normal scale, fixed database
size (1,000,000 stores)

77

created, and if a store location changes owners, this information simply needs to be

updated in the owner table, which must still be maintained even when using the other

baselines anyway.

5.3 Comparison with VPD and XACML

As described in Section 3.3, Oracle’s VPD technology and XACML are currently capable

of expressing and enforcing RDBAC policies. Either of these could be used as a target

language for our compiler, rather than SQL. In this section we compare these three

languages, both in the ability to express our benchmark policies in Table 5.1 and in the

efficiency of evaluating the policies. This comparison also allows us to analyze what

performance costs would be considered acceptable in industry by using well-established,

mature software packages that provide similar functionality.

Table 5.7 contains a hand-coded example of how the benchmark policies could be

compiled into a VPD function. There are two important differences in how VPD and TD

rewrite queries that complicate the translation process. First, TD is capable of replacing

one entire query with another, whereas VPD can only change the original query by

possibly adding a filter condition. In a deployed compiler that translates TD rules to VPD

functions, this difference would facilitate the optimization described in Section 5.1.2 in

which portions of the policy are pre-computed to determine which rules apply to a user,

since the filter conditions are constructed dynamically. However, it also prevents us from

fully implementing the insurance policy from Table 5.1, in which the StoreID, Salary, and

Optin values are replaced by NULL values. VPD allows policy definers to specify that a

policy applies only when certain columns are included in a query, so this policy rule could

be fully implemented by writing a separate function that is invoked when none of these

values are accessed. The second difference is that row-by-row operations on the database

cannot be performed in the function without executing a separate subquery on the base

table. This requires us to execute side-effects for each accessed row through a user-defined

function, as we did for the compilation algorithm described in Section 5.1. For simplicity,

we will assume that the function in Table 5.7 is sufficient.

78

Table 5.7: VPD Encoding of Benchmark Policies
create or replace function vpd employees filter

(p schema varchar2, p obj varchar2)
return varchar2 as

username varchar2(32767) := SYS CONTEXT(’userenv’, ’POLICY INVOKER’);

condition varchar2(32767);
begin

condition := ’0=1’; -- default is no access
-- base policy
if (username = ’ALICE’) then

condition := condition || ’ OR 0=0’; -- full access
end if;
-- hr policy
for x in (select * from vpd hr h where h.name = username)

loop
condition := condition || ’ OR 0=0’; -- full access

end loop;
-- manager policy
for mgr in (select m.Region as region from vpd manager m

where m.name = username)

loop
condition := condition || ’ OR (StoreID >= ’ || (mgr.region*100) ||

’ AND StoreID < ’ || ((mgr.region+1)*100) || ’)’;

end loop;
-- insurance policy
for x in (select * from vpd insurance i where i.name = username)

loop
condition := condition || ’ OR (Optin=’’true’’ AND’ ||

’leolson1.assert accesslog0(1, ’’’ || username || ’’’, Name)!=0)’;

end loop;
return condition;

end;

For our comparison with XACML, we used an approach similar to the Ladon

project [78] in which resources are defined to be full tables, and if access is permitted, the

responses contain obligations that specify how to rewrite the user’s query. Unlike the

Ladon project, which defines a set of XML elements to specify how the rewriting should

occur, we took an approach similar to VPD and simply returned an SQL substring that

can be inserted into a WHERE clause in the obligation. We called the identifier for this

obligation “rewrite-query.” For easier human-readability, the substring “#USER#” occurs

in this return value to represent the logged-in user and require the policy enforcement

point to replace the substring with the user’s login name. This could equivalently be

79

accomplished at the policy decision point by using the standard XACML

“string-concatenate” operation and accessing the user’s name in the request document.

In order to return different substrings based on the user’s attributes stored in the

database, we defined a custom operation on attributes, which we called

“principal-in-table.” This operation takes two parameters, a user name and a table

name, and causes the policy decision point to open a connection to the database and

query whether the user’s name is present in the table. A more robust mechanism that

executes a wider range of queries could be defined, at the expense of more complicated

programming and error-checking; for the purposes of our comparison, we will use the more

straightforward principal-in-table operation as defined.

Because the policy returns a condition string in the same manner as VPD functions,

this architecture suffers from the same drawbacks as VPD: it cannot change the columns

retrieved, and it cannot enforce row-by-row side-effects without an external auxiliary

function invoked by the query. More complex custom operations could be defined to

handle such functionality, but as with the VPD translation from Table 5.7, we will avoid

such added complexity for our comparison. Table 5.8 contains a hand-coded example of

how the benchmark policies could be compiled into an XACML policy document.

Table 5.8: XACML Encoding of Benchmark Policies

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE PolicySet [

<!ENTITY xacml "urn:oasis:names:tc:xacml:1.0:">

<!ENTITY string "http://www.w3.org/2001/XMLSchema#string">

<!ENTITY seclab "http://seclab.uiuc.edu/">

]>

<PolicySet PolicySetId="&seclab;employees-table-read-access"

PolicyCombiningAlgId="&xacml;policy-combining-algorithm:deny-overrides">

<Target>

<Resources>

<Resource>

<ResourceMatch MatchId="&xacml;function:string-equal">

<AttributeValue DataType="&string;">employees</AttributeValue>

<ResourceAttributeDesignator

AttributeId="&xacml;resource:resource-id" DataType="&string;"/>

</ResourceMatch>

</Resource>

</Resources>

Continued on next page. . .

80

Table 5.8 – Continued
<Actions>

<Action>

<ActionMatch MatchId="&xacml;function:string-equal">

<AttributeValue DataType="&string;">read</AttributeValue>

<ActionAttributeDesignator

AttributeId="&xacml;action:action-id" DataType="&string;"/>

</ActionMatch>

</Action>

</Actions>

</Target>

<Policy PolicyId="&seclab;full-access"

RuleCombiningAlgId="&xacml;rule-combining-algorithm:deny-overrides">

<Target/>

<!-- base policy -->

<Rule RuleId="&seclab;alice" Effect="Permit">

<Target>

<Subjects>

<Subject>

<SubjectMatch MatchId="&xacml;function:string-equal">

<AttributeValue DataType="&string;">ALICE</AttributeValue>

<SubjectAttributeDesignator

AttributeId="&xacml;subject:user-id" DataType="&string;"/>

</SubjectMatch>

</Subject>

</Subjects>

</Target>

</Rule>

<!-- hr policy -->

<Rule RuleId="&seclab;hr" Effect="Permit">

<Target>

<Subjects>

<Subject>

<SubjectMatch MatchId="&seclab;principal-in-table">

<AttributeValue DataType="&string;">hr</AttributeValue>

<SubjectAttributeDesignator

AttributeId="&xacml;subject:user-id" DataType="&string;"/>

</SubjectMatch>

</Subject>

</Subjects>

</Target>

</Rule>

</Policy>

<Policy PolicyId="&seclab;filter-on-StoreID"

RuleCombiningAlgId="&xacml;rule-combining-algorithm:deny-overrides">

<Target/>

<!-- manager policy -->

Continued on next page. . .

81

Table 5.8 – Continued
<Rule RuleId="&seclab;manager" Effect="Permit">

<Target>

<Subjects>

<Subject>

<SubjectMatch MatchId="&seclab;principal-in-table">

<AttributeValue DataType="&string;">manager</AttributeValue>

<SubjectAttributeDesignator

AttributeId="&xacml;subject:user-id" DataType="&string;"/>

</SubjectMatch>

</Subject>

</Subjects>

</Target>

</Rule>

<Obligations>

<Obligation ObligationId="&seclab;rewrite-query" FulfillOn="Permit">

<AttributeAssignment

AttributeId="&seclab;condition" DataType="&string;">

exists (select * from manager m where m.name=’#USER#’

and (m.region*100) <= StoreID

and ((m.region+1)*100) > StoreID)

</AttributeAssignment>

</Obligation>

</Obligations>

</Policy>

<Policy PolicyId="&seclab;filter-on-optin"

RuleCombiningAlgId="&xacml;rule-combining-algorithm:deny-overrides">

<Target/>

<!-- insurance policy -->

<Rule RuleId="&seclab;insurance" Effect="Permit">

<Target>

<Subjects>

<Subject>

<SubjectMatch MatchId="&seclab;principal-in-table">

<AttributeValue DataType="&string;">insurance</AttributeValue>

<SubjectAttributeDesignator

AttributeId="&xacml;subject:user-id" DataType="&string;"/>

</SubjectMatch>

</Subject>

</Subjects>

</Target>

</Rule>

<Obligations>

<Obligation ObligationId="&seclab;rewrite-query" FulfillOn="Permit">

<AttributeAssignment

AttributeId="&seclab;condition" DataType="&string;">

optin = ’true’ AND assert accesslog0(1, ’#USER#’, Name)!=0

</AttributeAssignment>

Continued on next page. . .

82

Table 5.8 – Continued
</Obligation>

</Obligations>

</Policy>

</PolicySet>

For comparison of the performace of policy evaluation using these technologies, we

used the same machine as described in Section 5.2. Instead of Microsoft SQL Server, we

used the Oracle Database 10g Enterprise Edition, version 10.2.0.3.0; and instead of using

C# (due to problems with the database interface package) we used Sun’s Java compiler

version 1.6.0 06. For the XACML policy, we adapted the Sun XACML

Implementation [79] to interface with tables in the same Oracle database system, but did

not use VPD functions to protect the tables.

The results of evaluating the policies from Tables 5.7 and 5.8 are shown in Table 5.9,

rounded to three significant digits. These results should not be interpreted as a

comparison with the results from Table 5.5, which use a different database management

system. Aside from using different programming languages to access the two systems, no

effort was made to calibrate the databases in terms of memory usage, locking mechanisms,

etc. since comparing database systems is not the focus of this thesis. Because the VPD

and XACML policies are both capable of creating the rewritten query dynamically, we

compared them with both the “Optimized” (which uses the predicate unfolding

optimization but not the partial evaluation) and the “Target” (the hand-coded simulation

of both optimizations) versions of our compilation process. We performed two versions of

the code to evaluate XACML policies: for the first, we built a single XACML request and

resent it for each trial; for the second, labeled “XACML with req,” we built a new

XACML request for each trial.

Graphs of the results from Table 5.9 for the database sizes of 1000 employees and

100,000 employees are shown in Figures 5.6 and 5.7, respectively. Only the results for

users that satisfy the hr and manager policies are shown in these graphs since evaluating

the insurance policy is much more slow than these two policies, and does not exhibit much

83

Figure 5.6: Execution time results for VPD and XACML, 1,000 empl.

Figure 5.7: Execution time results for VPD and XACML, 100,000 empl.

84

Table 5.9: Execution time results (in msec) for VPD and XACML

Query Optimized Target VPD XACML XACML with req

HR
(1000) 10.0 12.2 12.4 10.6 12.1
(10,000) 89.4 88.1 88.2 85.7 88.0
(100,000) 874 831 836 832 834

Manager
(1000) 4.31 6.26 6.92 5.23 6.80
(10,000) 27.7 27.1 27.8 28.4 29.8
(100,000) 259 231 237 252 254

Insurance
(1000) 187 192 192 193 193
(10,000) 3,940 3,930 3,990 3,940 3,960
(100,000) 41,000 40,800 40,900 41,100 41,500

difference among the various alternatives since most of the time is spent executing the

side-effects, and all three methods use the same user-defined function to execute them.

The results show that all three alternatives give nearly identical performance for both

queries and at all database sizes. The “Target” stored procedure consistently outperforms

both the VPD function and the XACML interpreter since it doesn’t require the overhead

of invoking the policy function or parsing the XML, respectively. The “Optimized” views

are slightly better at smaller database sizes, since the UNION operator is less costly for

smaller tables.

85

Chapter 6

Case Studies

We developed two case studies to demonstrate the usability of RDBAC. The first

describes a medical database for a hospital/clinic system. This database configuration is

an in-depth case study that is more complete than any other in this domain that we are

aware of. It is designed to balance current practice in medical access control with new

ideas for experimental access patterns, such as allowing access by patients as well as by

medical staff. While such access patterns are not generally implemented in current

medical databases, we envision such a system facilitating patient access to data and input

on disclosure of data, perhaps through web interfaces. It also contains policies for business

data, such as hiring, payroll, and patient billing, demonstrating that such widely-differing

needs can still be served with a single database system. Our case study database is not

based on any particular medical database system, but it is generic and represents the

general type and scale that might be seen in such a system. RDBAC offers an ideal

framework for defining policies for such a large and complicated system, since it allows

policies to express general rules for granting access without the need to specify individual

users, even though each user requires a unique view of the database.

The second case study is a school building automation system (BAS) modeled as a

database, which interfaces disparate resources such as electronic door locks, internet

routers, and the school’s user identity data. This is an unorthodox case study for database

security; however, it demonstrates the potential usefulness of RDBAC in other areas of

access control, using a wide range of expressive policies.

86

6.1 Medical Database

Adoption of Electronic Health Records (EHR) has led to much study regarding both how

to represent medical data and how to protect it. While there are still many systems that

do not use EHRs, it is likely that they will become more pervasive due to the recent

American Recovery and Reinvestment Act, which includes incentives for medical facilities

that serve Medicare patients to adopt EHR systems [86]. Electronic representations of

medical data have opened the door to other advances, including the use of mobile devices

in home care [41, 92] and telemedicine [3], which can range from robotic surgery [58] to

using a video conferencing software such as Skype and a USB stethoscope to listen to a

patient’s heart and lungs over the Internet [39].

Legislation such as the Health Insurance Portability and Accountability Act (HIPAA)

addresses concerns over the security of maintaining EHRs by requiring facilities that

maintain EHRs to protect the privacy of the subjects of the records [85]. Specifically, they

are to “develop and implement policies and procedures that restrict access and uses of

protected health information based on the specific roles of the members of their

workforce.” [87] While it is tempting to write simple policies that only allow a patient’s

data to be accessible by his primary care physician, in practice there are frequent cases in

which emergency access must be granted, such as when the primary care physician is out

of town and unreachable.

Reflective access control policies offer a unique solution to resolve the conflicting goals

of privacy and ease of access in emergencies. Regular-use policies could allow restricted

access to a patient’s records only to primary-care physicians or to other professionals who

have been specifically invited to consult the patient’s case. Emergency-use, or

“break-the-glass,” policies allow broadened access to a patient’s records, and these

accesses can be audited for later review. This audit record could be used to comply with

legislative requirements to notify the patient of any abuse of privacy and to take

disciplinary action against the offender, if necessary. Etalle and Winsborough argue that

in cases where exceptions to preventative access control are commonly needed, the

knowledge that actions are audited and the threat of punitive action when misuse occurs

87

are generally sufficient deterrent for preventing abuses [31]. While audit records are not a

new idea, RDBAC provides a novel method of expressing how these audit records are to

be kept, specifies which queries should be audited and under which conditions, and allows

formal guarantees that keeping audit records does not cause any security violations.

RDBAC also provides a consistent mechanism for enforcing policies. Medical data may

be accessed through many different applications, such as retrieving a certain patient’s

medical history, listing all currently-admitted patients on a given floor, or creating a

billing statement for a patient. As previously mentioned, our scenario also allows patients

themselves to access their own information. Because the database itself enforces the access

control policies, RDBAC allows each of these applications to be written separately

without the need for duplicating policy logic in each application.

We first give a high-level overview of the table schemas in our proposed database. The

formal definitions of the relevant table schemas can be found in Appendix A.1. We next

describe the policies protecting the data, for which the TD encodings can be found in

Appendix A.2. We also demonstrate an example of formal security analysis using this

policy configuration by automatically verifying that unauthorized users cannot gain access

to patient data. Finally, we conclude the section with a discussion of the advantages of

using RDBAC for this case study.

6.1.1 Schema Overview

Data describing attributes of the system users are stored in several tables, including a

general person table that contains information relevant to all users of the system, such as

name and contact information. Users may be considered as patients or employees,

possibly both. This is indicated by listing the user’s identifier from the person table in the

patient or the employee table, respectively. Data stored in the patient table includes the

identifier of the patient’s primary care physician and the patient’s insurance data. Other

patient data will be described later. Employee data includes salary and tax information

and office location. Some employees may additionally be managers, such as shift

supervisors. We must also account for the facts that employees sometimes leave and must

88

have their access privileges revoked, and that their records may need to be maintained for

archival purposes—for example, a new doctor may need to check a patient’s history and

find out who ordered a particular treatment, even if it was ordered by an employee that is

no longer active. To address this, the employee table contains a Boolean value indicating

whether the employee is currently active and should be given system access. Employees

may be secretaries, human resource directors (HR), accountants, nurses, lab technicians,

pharmacists, or doctors, indicated by creating tables for each employee type and listing

the user’s identifier in the appropriate table. Employee payroll information, including the

date and amount of each paycheck and the tax withholding amounts, are stored in another

table.

General medical information, including instructions for drugs, information for adverse

drug interactions, and codes for symptoms and diagnoses is stored in the database.

Other tables containing patient data include visits, current medications, measurements

taken, treatments administered, prescriptions written, lab tests administered, and teams

of medical professionals who assist during the patient’s visit. These tables for patient data

contain the following:

• A record for a patient’s visit includes the identifier of the treating physician (which

may not be the same as the primary care physician), the date admitted, the

symptom for which the patient is requesting treatment, and the diagnosis reached.1

Some visits may be hospital admittances which require overnight stays, for which we

also store a room number and the date when the patient is discharged.

• The table of current medications contains identifiers for the drugs that the patient is

currently taking.

• The table of measurements lists the identifier of the employee taking the

measurement, the type of measurement, and the result.

• The table of treatments lists the identifier of the employee administering the

treatment and either the identifier of the drug administered or the name of the

1Multiple symptoms and diagnoses could be stored as set-valued attributes, if supported by the database
system, or stored in a separate table. For simplicity, we treat them as single-valued attributes.

89

procedure administered. A treatment record may also represent a past immunization

that was imported from an external health record, in which case the record also

contains information concerning where and by whom the treatment was given.

• The table of prescriptions lists the identifier of the doctor who wrote the

prescription and the date it was written, the identifier of the pharmacist who filled

the prescription and the date it was filled, the identifier of the drug prescribed, the

quantity, and the number of refills.

• The table of lab results lists the identifier of the technician who performed the lab

test, the type of test, and the result of the test.

• The table of medical team consultants lists the identifiers of employees who are

consulting on a patient’s visit.

For each table containing patient data, doctors may opt not to release certain information

to patients, which can be indicated with a Boolean value called ReleaseToPatient. Each of

the tables containing patient data may be accessed in an emergency. In such cases, the

database also maintains tables to audit such accesses.

Finally, the database also contains tables for tracking billing and payment information.

This includes invoice items for visit fees and for treatments administered. Multiple

payments for each invoice may be recorded.

6.1.2 Policies

The following policies apply to general user data:

• Users may view their own data in the person, patient, or employee tables.

• Users registered as employees, whether active employees or previous employees, may

view any person’s name data.

• Users may view their own contact information data.

• Current employees who are registered as managers may view contact data for the

employees they manage.

90

• Current employees may view e-mail data and office phone contact data for other

current employees.

• Medical staff with a working relationship with a patient may view contact data for

that patient. A user has a “working relationship” with a patient if any of the

following are true:

– The user is the patient’s primary care physician.

– The user has admitted the patient for a visit of any kind.

– The user has consulted with the patient as part of an assigned medical team.

• Current doctors and pharmacists may view contact data for patients for whom they

have written or filled prescriptions.

• Current secretaries may view any user’s contact data.

• Current accountants may view any user’s address data.

• Users may update their own contact data.

• Current secretaries may update any patient’s contact data.

Many of the policies already listed motivate the need for RDBAC enforcement. For

instance, many of the users in the database are patients, not employees. The first policy

requires that patients be able to view their own data, and no other policy allows them to

view anyone else’s data. This means that each patient will require his own view of each of

the tables. If we were to enforce this policy using traditional ACM-based access control by

creating an explicit view definition for each of these views, one per patient per table, the

number of view definitions would be too difficult to manage. By contrast, if we use

RDBAC, we can use the data in the database table itself to enforce the policy: if the

person record matches the user executing the query, it is returned.

Similarly, using RDBAC to implement the policies defining which employees have

access to a patient’s record (i.e. the “working relationship” definition) takes advantage of

data already in the database, such as a patient’s visit records or the data listing medical

91

teams that consult with a patient. RDBAC gives the added advantage that the policy

automatically updates itself when new data is added. When a doctor is brought in to

consult with a patient, for example, as soon as the doctor is added to the medical team,

she automatically gains access to the patient’s records.

The following policies apply to employee-specific data:

• Current employees may view the offices, managers, and active status of other

employees.

• Current accountants may view all employee data.

• Current HR directors may add or delete employees. The new employee’s manager

must be set to an existing employee. “Deleting” an employee should not actually

remove the record from the database, but rather set their current status as inactive

for archival purposes.

• Accesses to data specific to the employee type (secretary, HR director, etc.) follow

the same policies as the employee table.

• Employees may view their own payroll data.

• Current accountants may view all payroll data.

• Current accountants may insert new payroll data for any employee except

themselves, providing a rudimentary separation of duty policy.2 The tax information

must follow particular formulas: in our case we will require the state tax withheld to

be 10% of the salary minus $500 for each exemption, and the federal tax withheld to

be 20% of the salary minus $1000 for each exemption. The payroll must not be

applied retroactively; that is, it must occur at some point in the future.

The following policies apply to patient-specific data:

• Current doctors, nurses, secretaries, and accountants may view the primary care

provider and insurance data for any patient.

2A more complex separation of duty policy, such as assigning each employee to an accountant, who is
the only user allowed to add payroll data for that employee, could be implemented similarly to the policy
that assigns each patient to a primary care physician.

92

• Users may update their own insurance data, and current accountants may update

anyone’s insurance data.

• Current doctors and secretaries may update anyone’s insurance data and add new

patients. The new patient’s primary care physician must be an existing doctor in

the database.

• Patients may view their own data, if it has been released for viewing.

• Users with a working relationship with a patient, as previously defined, may view,

update, or add to that patient’s data. When a patient is admitted for a new visit,

the treating physician must be a current doctor.

• Any current employee may gain emergency access to a patient’s data, but the access

must be logged for later review. This rule could easily be adapted to allow such

access only to certain users, such as doctors and nurses.

• Any current employee may enter new data for a patient’s measurements or

treatments administered, but the employee’s identifier must be recorded with the

measurement or treatment.

• Current lab technicians may enter new data for a patient’s lab test results.

• Current doctors may write a prescription for any patient.

• Current pharmacists may fill existing prescriptions.

• Current secretaries, admitting physicians, and shift supervisors (managers) may

change members of a medical team.

• All users can access symptom code data, diagnosis code data, and general drug data.

The following policies apply to invoice data:

• Patients may view their own invoice and payment data.

• Current accountants may view all invoice and payment data.

93

• Current accountants may add new invoice and payment data except on invoices sent

to themselves.

6.1.3 Formal Security Analysis

There are many security properties that would be desirable for the policy configuration for

a medical database case study. We will demonstrate the process of proving one such

property: no non-employee users can ever view any patient records in the labResult table

besides their own. We ran the verification process using SWI-Prolog version 5.6.64 using

the same Windows Vista platform as described in Section 5.2.

If we assume no users are trusted, it is easy to show that the policy configuration is

not safe: given two patients p1 and p2 and an untrusted employee e such that e is a

secretary,3 the employee e can execute Policy 22 to insert p2 as an active employee, and

then execute Policy 101 as view.ins.medicalTeam(e, VisitID, p2, 0) where VisitID is

the identifier for one of patient p1’s visits. Now hasAccess(p2, p2) is true by Policy 3, and

patient p2 can access the labResult table entries for p1 using Policy 69. Thus, we will

hereafter assume that all employee users are trusted users.

Unfortunately, the policy rules do not all satisfy the conditions of Theorems 9 and 10

from Section 4.3.4 that define decidable algorithms for security analysis. Several of them

contain negations or retractions, or are not safely rewritable. The audit policies (namely,

Policies 66, 70, 74, 81, 89, 94) and those policies that call the audit policies (namely,

Policies 77 and 96) have only one unbound variable that prevents safe rewritability: Note.

For instance, rewriting Policy 70 gives the following rules, the second of which is unsafe

due to the unbound Note variable in the head of the rule:

• view emergency labResult(User, ID, Date, Type, Value, PatientID, TechID,

ReleaseToPatient, Note) :-

labResult(ID, Date, Type, Value, PatientID, TechID, ReleaseToPatient),

person(UserID, User,), employee(UserID, , , , , , , , 1).

• labResultEmergencyAccessLog(ID, UserID, now, Note) :-

3There are other types of employees that can cause leaks: HR employees, for instance, can “hire” them-
selves as secretaries with Policy 29 and then follow the same method.

94

labResult(ID, Date, Type, Value, PatientID, TechID, ReleaseToPatient),

person(UserID, User,), employee(UserID, , , , , , , , 1).

We can mitigate this by leaving the variable unbound in the rewritten rule, and assuming

that any value can be assigned to it. This accurately models the values that might be

possible, since there are no constraints over what may appear in this field of the database.

While this technically causes an infinite domain, preventing an actual computation of the

classical Datalog model, in practice we can still guarantee a finite domain as far as our

security analysis is concerned because we do not need to enumerate every possible value

for Note to determine the users that can access the labResult table. Indeed, Prolog can

already logically interpret rules with unbound variables in the head predicate.

It is tempting to treat the rules that allow untrusted users to insert data similarly,

namely, Policies 15 and 54. Policy 15 can indeed be rewritten to allow unbound variables

in the head of the rule. Policy 54, however, requires special consideration. Rewriting this

rule gives the following rules:

• view.ins.patient(User, ID, PCPhys, Provider, Policy) :-

patient(ID, PCPhys, ,),

person(ID, User,).

• patient(ID, PCPhys, Provider, Policy) :-

patient(ID, PCPhys, ,),

person(ID, User,).

Because the head of the second rule contains the unbound variables Provider and Policy,

this causes Prolog to infer an infinite number of patient predicates for each patient. This

directly affects its ability to evaluate any query on the hasAccess view, since Policy 1

contains patient in its body and therefore similarly causes Prolog to infer an infinite

number of hasAccess predicates. This in turn prevents the evaluation of the

view.labResults view. For the purposes of verifying the security property we need, we

may safely omit this rule because the only other rules in our policy configuration that

depend on the Provider and Policy attributes are the rules for the view.patient view.

Since the other rules can be evaluated without reading these values from the patient

95

table, omitting Policy 54 from our analysis does not affect their evaluation. Policy 55 may

similarly be omitted. As future work, a more sophisticated analysis algorithm might

annotate each attribute singly, depending on whether the domain of the attribute is

infinite, without explicitly listing each valid literal.

For now, we will omit the other rules containing assertions, retractions, and negations

for our automatic analysis, and then manually prove that the omitted rules do not change

the result.

We generated sample databases with various numbers of patients, ranging from 1,000

to 100,000 patients, each with 10 records in the labResult table. For one set of sample

databases, we also varied the number of employees to 1/25 the number of patients

(equally divided among the different types of employees), and for another set we kept a

constant number of 50 employees. These databases along with the rewritten rules were

analyzed to verify that for every row in the labResult table, only the patient on whom the

lab test was performed and the trusted users can ever gain access to the data. This was

accomplished by executing the following commands:

view.labResult(User, , , , , PtntID, ,),

\+trustedUser(User),

\+person(PtntID, User,).

view.emergency labResult(User, , , , , PtntID, , ,),

\+trustedUser(User),

\+person(PtntID, User,).

where \+ is Prolog’s negation operator and the predicate trustedUser is populated

with the initial set of employees. No results are returned for either command, indicating

that the defined safety condition on the labResult table does indeed hold. Table 6.1 shows

the time required to perform the analysis, where the database size represents the number

of records in the labResult table (10 times the number of patients), each running time

shows the time to perform the automated analysis (measured in seconds and rounded to

three significant digits), “Running Time A” represents the databases in which the number

of employees is proportional to the number of patients, and “Running Time B” uses the

96

Table 6.1: Execution time results (in sec) for verifying security of labResult table

Database size Running Time A Running Time B

10,000 1.13 1.57
20,000 4.19 3.10
40,000 16.5 6.31
80,000 65.3 12.9
100,000 105 15.7
200,000 416 32.3
400,000 1,630 67.0
800,000 7,140 145
1,000,000 12,200 190
2,000,000 55,200 448

constant number of employees. Figure 6.1 shows these results graphically, using a

logarithmic scale.

Running Time A follows a quadratic running time. This is because each employee is

allowed to view each patient’s records, at least through the emergency access rule. Thus,

when the number of patients doubles and the number of employees doubles, the number of

ways to satisfy the view.emergency labResult predicate quadruples. Running Time B,

which keeps the number of employees constant, thus follows a linear running time.

We now address analysis of the rules we previously omitted. One of these rules,

Policy 16, may still be executed by untrusted users, but it simply allows users to remove

records that had been added by its corresponding insertion policy, Policy 15. Because our

automated verification process has already found the policy configuration to be secure for

the maximal database, even when the variables in the corresponding insertion policies are

unbound, any sequence of policy invocations that use the deletion policies will still

constitute a subset of the maximal database, and thus the security guarantee will still

hold.

All the other omitted policies can only be executed by trusted users. This can be

verified on most of the rules simply by noting that one of the conditions in each rule’s

body constrains the querying user to be an active employee. The other rules constrain the

querying user to satisfy the hasAccess predicate with the patient, which is defined by

Policies 1, 2, and 3, and all three of these policies require the user to be an active

employee.

97

Figure 6.1: Execution time results from Table 6.1

We must also ensure that untrusted users cannot execute operations that would cause

any of these policies to execute on behalf of a trusted user. This can be verified by

building a transitive closure: starting with the names of the head predicates for the

omitted policies, add the names of the head predicate of any rule that contains in its body

one of the predicate names in the transitive closure. For example, to compute the

transitive closure of Policies 22 and 23, we start with their head predicate,

view.ins.employee. We then add the head predicates of any rule that contains

view.ins.employee in its body, namely: view.ins.secretary, view.ins.hr,

view.ins.accountant, view.ins.nurse, view.ins.labTechnician,

view.ins.pharmacist, and view.ins.doctor. There are no other rules that contain any of

these predicate names in the body, so this forms the complete transitive closure. None of

the rules with head predicates in the closure can be executed by untrusted users; thus,

there is no operation initiated by an untrusted user that could ever cause any of these

rules to execute. Otherwise, one of these operations must have in its body one of the

98

predicate names contained in the closure, and thus the head predicate of such a rule would

also have to appear in the closure.

6.1.4 Summary and Discussion

This case study demonstrates the usefulness of RDBAC in a practical scenario. The

policies we defined are easily expressed in TD, and the TD rules express the intent of the

policies rather than the extent (i.e. explicitly listing the users that should be granted

access to each table). Because of this, such a system is less susceptible to error than an

access control matrix-based system, in which user privileges must be updated frequently

as new data is entered into the system; or a system with application-level security, in

which program errors or incorrectly duplicated policy logic may cause policy violations.

There could understandably be concerns about the safety of using such a

security-critical system as suggested by our case study to allow access by patients

themselves. However, we have demonstrated the feasibility of formal security verification

on our system. This capability of RDBAC can ease such concerns about more broadened

database access.

6.2 Building Automation System

BASs are increasingly used for the control of lighting, HVAC, and physical security in

modern “smart” buildings and are extending their functionality to include advanced

features like resource location and mesh networking. It is common to protect the security

of such computerized control systems for physical processes by isolating the control

network from computers that may perform malicious actions. If there is a need to

communicate information from the enterprise database to the control database, this is

done manually.

However, this isolation comes at a cost to the value of the control network, since use of

the Internet provides convenient access at low cost as well as resources that may be useful

to the control network, such as personnel databases. Because of the value of the resources

on the control network and the limited protections on the control computers, many view

99

classical security solutions such as firewalls as insufficient. Opening such systems to the

enterprise network and Internet entails significant risks and opportunities. Research is

needed to understand and balance these tradeoffs. One such field of research is providing

access control to the building resources. RDBAC, coupled with techniques in federated

databases [24] provides an ideal model for BAS systems with complex access policies. This

case study provides a sample of what policies are possible in such a system.

Our hypothetical BAS is part of a larger integrated database system for a university

that also keeps track of personnel, enrollment, and room scheduling. Such a system would

maintain a large number of database tables that do not directly affect access to building

automation controls. For this case study, the focus is on building controls, and we will

only address other data in the system as it relates to defining policies for these controls.

The database system controlling access to building resources contains several tables

that may not be co-located with the database, such as internet routing rules or school

enrollment data; or may even be a placeholder for a physical object, such as a door lock.

We assume that the database system is coupled with these resources in a

fully-synchronized manner so that external changes are immediately updated in the

database, and that database changes immediately trigger the external changes.

As in Section 6.1, we first give a high-level overview of the table schemas in our

proposed database. The formal definitions of the relevant table schemas can be found in

Appendix B.1. We next describe the policies protecting the data, for which the TD

encodings can be found in Appendix B.2. We will not perform any security verification for

this case study; however, verification can be done in the same fashion as described in

Section 6.1.3. Finally, we discuss the case study and propose features of an RDBAC

system that would be needed for a more advanced implementation of a BAS.

6.2.1 Schema Overview

As in the medical database case study, data describing attributes of the system users are

stored in several tables. The person table contains a record for each user, which lists

information relevant to all types of users, such as usernames, passwords, and an account

100

balance that can be used to purchase resources. For simplicity, we assume passwords are

stored in plaintext; in a deployed system, encryption or cryptographic hashing should be

used for further protection. Our table also contains full name and address information.

Students in the database are identified by listing their ID in a separate students table,

along with student-specific data such as their year in school. Faculty are likewise identified

by listing their ID in a teachers table. Visitors are given temporary IDs which are listed

in a visitors table, which also keeps track of who is responsible for the visitor (assumed

to be a faculty member).

Enrollment data includes offered courses, semesters in which the courses are scheduled,

room assignments, course registration, and attendance. We assume that each course has

one teacher per semester. Cross-listed courses are listed separately, but may be given

identical room assignments. We list one room assignment for every time the class meets,

which could include more than one meeting time per day. For simplicity, we do not keep

track of grading information, which could be added to the schema in a deployed

application.

Building data includes rooms, doors, video feeds, internet access, and a vending

machine. The rooms table also keeps track of thermostat settings for the room. Each door

is associated with one room; however, each room may have multiple doors. Likewise, each

video feed is also associated with one room, and each room may have multiple video feeds.

We assume that the video feeds are given in segments that correspond to class meeting

times. A roomAccess table is also defined to associate which users are allowed full access to

which rooms, and also indicates whether the user is allowed to delegate room access to

other users. For simplicity, the internetAccess table consists of listing the users that are

allowed to use the router. In a deployed system, this could be refined to list allowed

external hosts and port numbers, similar to a firewall configuration. The vending machine

keeps track of the costs and quantities of items it contains.

6.2.2 Policies

The TD encoding of these policies is found in Appendix B.2.

101

The following policies apply to personnel records in the database:

• All users are granted access to their own records.

• Teachers may view IDs, names, addresses, and usernames (but not passwords or

balances) of students currently enrolled in a class that they teach.

• Teachers may view IDs, names, addresses, and usernames (but not passwords or

balances) of visitors they are hosting.

• Teachers’ IDs, names, and usernames (but not addresses, passwords, or balances) are

publicly available. That is, any user (student, visitor, or teacher) may view this data.

• Accesses to the students, visitors, and teachers tables follow these same policies as

previously listed. That is, a user can see the StudentID and Year of a student if and

only if he can see that student’s record in the person table, etc.

The following policies apply to enrollment data:

• Any user is allowed read access to the courses, courseSchedule, and

roomAssignments tables.

• Teachers are allowed to view enrollment data for the courses they teach.

• Students are allowed to view their own enrollment data.

• Teachers are allowed to view attendance data for the courses they teach.

The following policies apply to building resources:

• Any user that has been given full access to a room may see the list of other users

that can access that room.

• Users who are given delegation privileges for a room may grant or revoke any other

user’s access to that room.

• Users who have been given full access to a room are allowed to change its thermostat

settings within the range 65-75.

102

• Users who have been given full access to a room are allowed to unlock its doors.

• Students attending class in a room are allowed to unlock doors during the time class

is in session, and they are automatically recorded as being in attendance that day.

Also, internet access is disabled4 to discourage distractions during the lecture period.

• Students enrolled for a course are allowed to view video feeds for that course.

• Teachers are allowed to grant internet access to any user. This can be used to grant

exceptions to the policy of disabling internet access during a lecture, and to grant

temporary access to visitors.

• Anyone is allowed to buy items from the vending machine, provided that their

account balance is greater than the cost of the item and the quantity of the item is

nonzero. Their balance is deducted by the amount of the item.

6.2.3 Summary and Discussion

This case study demonstrates the expressiveness of RDBAC in defining a wide range of

policies for a practical scenario using data that does not necessarily reside in a single

database source. As with the medical database case study, the intent of these policies can

be easily expressed in TD, allowing the system privileges to be kept current with the

potentially large turnover in users that occurs in a school environment. It also enables

delegation of privileges for certain resources, which can ease the administration burden for

staff members who would normally entrusted with maintaining access control lists for each

room.

The policies related to granting and revoking internet access warrant some additional

discussion. Our scenario simplified these policies to either granting full access or revoking

all access. In practice, internet policies are often more complicated and may specify

bandwidth quotas or packet filters to disable certain network applications. Such

capabilities could allow even more exotic policies such as “during class lectures, all

internet access is disabled except to the web server that provides the lecture notes.” We

4This policy does not provide the logic to re-enable internet access at the end of the class period. Hence,
it must be explicitly re-enabled by teacher at end of the period, perhaps by an automated script.

103

could currently implement such a policy in TD with negation by defining a rule that finds

a record for a given student in the internetAccess, sets it to be inactive (perhaps through

a Boolean field in the table), then recursively calls itself until all such records have been

marked. Note, however, that in such a rule, the side-effects occur before the recursive call,

rather than at the end of the rule. This motivates both the need for formal analysis

strategies beyond those discussed in Section 4.3 and the need for implementation of such

rules beyond the compilation process from Section 5.1. Alternatively, such a policy could

be defined using syntax and semantics for bulk updates, not currently implemented in TD.

104

Chapter 7

Future Work and Conclusion

7.1 Future Work

The research already completed on RDBAC suggests a rich field of further research with

important benefits. Future work in this area directly motivated by our work falls into

three categories: logic, security analysis, and implementation.

Logic The TD language provides a powerful logical basis for RDBAC; however, it still

lacks syntax and semantics that correspond to certain commonly-used operations in SQL.

Aggregations such as summation, averages, and minimum/maximum are among these,

and such operations are important enough to be evaluated by common benchmarks such

as TPC-H [70]. Formal logic for defining aggregation semantics, similar to the aggregation

operators defined in the Cassandra project [11], would be beneficial for defining policies

for aggregation queries that may be different from policies on the base table. The problem

of query complexity [14] under such an augmentation, as well as the formulation of

policies allowing queries on aggregations but not on the base table, would also need to be

addressed.

Our case studies described in Chapter 6 contain several policies for modifying existing

values in the database. While our formulation of such policies using a combination of

assertion and retraction predicates is adequate, a more natural formulation that explicitly

modifies values in the database would be more ideal. A predicate with such semantics

would have to be able to distinguish the data passed in by the user to identify the values

to update from the data containing the new values to be stored. Similarly, semantics for

bulk insert and delete operations would require similar syntax.

105

While we have introduced a form of negation predicate in Section 4.1.3 to generalize

the empty predicate defined in TD, the semantics of this negation are still limited to base

tables. It is often useful to be able to perform negations on a more complex sub-query.

For example, recall the medical database case study from Section 6.1. A policy for

preventing prescriptions that cause adverse drug reactions could be written by ensuring

that no current prescriptions of any drugs listed in the adverseDrugReactions table exist

for a given patient. This would require using a negation over a join of the prescription

table with the adverseDrugReactions table. Analyzing whether such a negation predicate

would affect the query complexity would also be necessary. In fact, as previously

mentioned in Section 4.1.3, it is currently unknown whether this generalization even adds

expressive power to TD [15].

Some policy scenarios, such as the building control system scenario described in

Chapter 6, could benefit from policy logic that allows system-triggered events to perform

transactions on the database, rather than solely through user-triggered events. For

example, a student’s internet access is disabled when entering a classroom for a scheduled

lecture. A teacher must remember to re-enable internet access for all the students at the

conclusion of the lecture. It would be less error-prone to be able to write a policy in which

the system would automatically re-enable the access after a certain time. The semantics of

TD do not currently accommodate the execution of rules that are not directly invoked by

a user.

Security Analysis In order to prevent the Trojan Horse vulnerability described in

Chapter 3, policies could be forced to execute only under the definer’s privilege. While

this restriction does successfully prevent problems of this sort, it also needlessly prohibits

some useful policies. For example, several of the policies for both case studies described in

Chapter 6 execute under the invoker’s privilege. Analysis of the information flow under

RDBAC policies would provide greater understanding of when other privileges can safely

be used.

The theorems in Chapter 4 enable us to guarantee analyzability of policy rules under

certain conditions. These conditions prohibit rules that contain retractions and negations.

106

Further work is needed to establish analyzability conditions for such rules. These

theorems also depend on the current state of the database. This could mean that a set of

rules that are considered safe for one database state may be unsafe for another database

state. It also means that when a trusted user adds a new domain value to the database,

the security analysis must be re-executed. This suggests the need for security analysis

that is state-independent. Indeed, the analysis performed on our case study in

Section 6.1.3 demonstrates the impact of increasing the database size. More efficient

analysis algorithms, possibly using data indexing (which is not provided by SWI-Prolog)

or using fast model-checking based techniques [50], may also be more desirable.

Adding aggregation operations to database queries introduces new privacy concerns.

The research field of “k-anonymity” [80] has produced solutions to these concerns.

Implementation of such solutions in an RDBAC system and formal security analysis of the

implementation is also an open problem relevant to adding aggregation capabilities to TD.

As demonstrated by the medical database case study from Section 6.1, many useful

policy rules are not safely rewritable, but can still be analyzed. A more sophisticated

analysis algorithm, perhaps one that annotates the domain of each attribute based on

whether it is infinite rather than explicitly creating literals for each domain value, could

enable more automatic analysis while still allowing such policies. Another improvement

would be to detect and omit irrelevant rules automatically, rather than manually as we

did for our analysis.

Implementation Our prototype implementation does not prohibit policies from

executing under arbitrary users’ permissions, nor does it perform security analysis. Thus,

unsafe policy configurations will not be detected. Such work would be necessary in order

to use such a system in a critical environment.

As demonstrated by our case studies, the restriction that all side-effects must occur at

the end of a policy rule still allows many useful policies. However, an implementation that

allows more generalized TD rules with arbitrary ordering of side-effects, including rollback

on failure, would be even more useful. Note that such an implementation must be very

careful with exception handling to prevent information leakage, as explained by Kabra et

107

al. [53], but a correct rollback procedure will prevent most of the problems they describe

because the only side-effects that will run to completion are those the user is allowed to

execute.

RDBAC does not address user authentication. While the authentication mechanisms

for off-the-shelf database systems can be used, it may not be desirable to create full

database accounts for every user that might access the system. For example, patients

would likely only gain access to their data through a web application. Other applications

might benefit from allowing medical devices to authenticate a user with RFID tags or bar

codes [41]. Integrating our access control policies with more flexible authentication

mechanisms would increase the usability of our RDBAC system.

While our translation algorithm can already be used for current SQL database

systems, the translation process could be made easier using predicated grants [23]. For

example, the hr policy from Table 5.1 can be expressed in a predicated grant as

grant select on employees where userId() in (select Name from hr) to public

or by defining a query-defined user group for all hr users as

create group hrGrp as (select Name from hr);

grant select on employees to hrGrp

Column-level privileges simply follow the SQL standard of listing the allowed columns

after the table name, such as grant select on employees(Name, Addr) e where

e.Optin=’true’ to insuranceGrp.

Predicated grants do not currently support side-effects, required by policies such as the

insurance policy from Table 5.1 or the Chinese Wall policy from Table 5.2, so further

extensions would be necessary to implement them. One possibility might be simply to use

user-defined functions, as our implementation does. Another possibility might be to allow

compound statements in the predicate of the grant, such as:

grant select on employees(Name, Addr) e where e.Optin=’true’ and userId() in

(select Name from insurance i;

insert into accesslog values(i.Name, e.Name, ’Name and Addr’, GETDATE()))

to public

108

Such an extension would facilitate a more direct translation from TD semantics into

SQL, including execution ordering.

Developing a DBMS with reflective access control capabilities built in, rather than

adapting an existing system with no special reflective functionality, opens up the

possibility for further optimizations. The performance penalty of opening a separate

connection to execute the side-effect would be greatly reduced. The proposed optimization

described in Section 5.1.2 that pre-computes which rules are applicable to the current user

and builds the query dynamically with as few unions as possible could be fully

implemented, rather than simulated. Further techniques such as caching partial results

based on the user identity and using these results for each subsequent query could also

save steps over several queries. Such a system could use predicated grants as a policy

definition language.

7.2 Conclusion

We have described a model for reflective database access control based on the semantics of

Transaction Datalog. This model provides a clear description of how access control

policies should be evaluated, and under whose privileges, and can be extended to users

that do not have omniscient access to the database. The Transaction Datalog model also

inherits the ability to effect changes to the database during policy evaluation. We have

shown that formal analysis may be performed on certain classes of reflective policies to

guarantee security properties.

We have described an implementation of reflective database access control based on

the semantics of Transaction Datalog. This implementation compiles a set of policies into

standard SQL views that can be used in current database management systems. We have

evaluated this implementation and demonstrated an optimization that eliminates

recursion in many common cases.

We have also developed two case studies containing detailed RDBAC policies, thereby

demonstrating the usability of RDBAC in real-world applications. Using one of these case

studies, we have shown an example of how to make a formal safety guarantee in practice.

109

Appendix A

Case Study: Medical Database

We present here the schema definitions and TD rules for our medical database case study

described in Section 6.1. For improved readability, we allow rules to access the base tables

directly. These direct accesses can easily be replaced by references to the table owner’s

view of the table in a system that requires policies to be defined that way.

A.1 Schemas

As with the BAS case study, user data is stored in several tables, including a general

person table that contains information relevant to all users of the system.

• create table person(

PersonID int primary key,

Username varchar(10),

FullName varchar(100));

• create table contactInformation(

PersonID int references person(PersonID),

Type varchar(15),

Value varchar(50));

Users may be considered as employees or patients, possibly both. Employees, in turn,

may be secretaries, human resource directors (HR), accountants, nurses, lab technicians,

pharmacists, or doctors. Some employees may additionally be managers, such as shift

supervisors. We must also account for the facts that employees sometimes leave and must

have their access privileges revoked, and that their records may need to be maintained for

archival purposes—for example, a new doctor may need to check a patient’s history and

110

find out who ordered a particular treatment. To address this, the employee table contains

a Boolean value indicating whether the employee is currently active and should be given

system access. Employee payroll information and patient insurance information is also

maintained.

• create table employee(

PersonID int primary key references person(PersonID),

Salary money,

SSN char(11),

Exemptions int,

BankRouting int,

BankAcctNum int,

Office char(10),

Manager int references employee(PersonID),

Active bit);

• create table secretary(

PersonID int primary key references employee(PersonID));

• create table hr(

PersonID int primary key references employee(PersonID));

• create table accountant(

PersonID int primary key references employee(PersonID));

• create table nurse(

PersonID int primary key references employee(PersonID));

• create table labTechnician(

PersonID int primary key references employee(PersonID));

• create table pharmacist(

PersonID int primary key references employee(PersonID));

• create table doctor(

PersonID int primary key references employee(PersonID),

Specialty varchar(150));

111

• create table payroll(

PersonID int references employee(PersonID),

Date datetime,

Gross money,

FedTax money,

StateTax money);

• create table insuranceProviders(

ProviderID int primary key,

Name varchar(150),

Address varchar(500));

• create table patient(

PersonID int primary key references person(PersonID),

PrimaryCare int references doctor(PersonID),

ProviderID int references insuranceProviders(ProviderID),

PolicyID varchar(150));

General medical information is stored in the database.

• create table drugs(

DrugID int primary key,

Name varchar(50),

Instructions text,

Cost money,

Manufacturer varchar(50),

Quantity int,

MechanismOfAction varchar(150));

• create table symptomCodes(

CodeID int primary key,

Description varchar(500));

• create table diagnosisCodes(

CodeID int primary key,

Description varchar(500));

112

• create table adverseDrugInteractions(

Drug1ID references drugs(DrugID),

Drug2ID references drugs(DrugID),

Description varchar(500));

Patient data includes visits, current medications, measurements taken, treatments

administered, prescriptions written, and lab tests administered. Teams of medical

professionals who assist during a given patient’s visit are also maintained in a separate

table. The attributes SymptomID and DiagnosisID could be set-valued, if supported by the

database system, or multiple values could be stored in a separate table referencing the

original table. For simplicity, we treat them as single-valued attributes. Doctors may opt

not to release certain information to patients, which can be indicated in each table with a

Boolean value called ReleaseToPatient.

• create table visit(

VisitID int primary key,

PatientID int references patient(PersonID),

TreatingPhysicianID int references doctor(PersonID),

DateAdmitted datetime,

SymptomID int references symptomCodes(CodeID),

DiagnosisID references diagnosisCodes(CodeID),

ReleaseToPatient bit);

• create table inpatientVisit(

VisitID int primary key references visit(VisitID),

EndDate datetime,

RoomNumber int);

• create table otcMeds(

MedID int primary key,

PatientID int references Patient(PersonID),

DrugID int references drugs(DrugID));

• create table vitalMeasurements(

MeasurementID int primary key,

113

VisitID int references visit(VisitID),

AdministeredBy int references employee(PersonID),

TestType varchar(150),

measurement varchar(150),

ReleaseToPatient bit);

• create table treatment(

TreatmentID int primary key,

VisitID int references visit(VisitID),

AdministeredBy int references employee(PersonID),

When datetime,

DrugID int references drugs(DrugID),

Procedure varchar(150),

Quantity int,

ReleaseToPatient bit);

• create table immunization(

TreatmentID int primary key references treatment(TreatmentID),

ExternalLocation varchar(500),

ExternalAdministeredBy varchar(150));

• create table prescription(

PrescriptionID int primary key,

PatientID int references patient(PersonID),

PrescribedBy int references doctor(PersonID),

DatePrescribed datetime,

FilledBy int references pharmacist(PersonID),

DateFilled datetime,

DrugID int references drugs(DrugID),

Quantity int,

Refills int,

ReleaseToPatient bit);

• create table labResult(

ResultID int primary key,

TestDate datetime,

114

Type varchar(150),

Value varchar(250),

PatientID int references patient(PersonID),

TechnicianID int references labTechnician(PersonID),

ReleaseToPatient bit);

• create table medicalTeam(

VisitID int references visit(VisitID),

MemberID int references employee(PersonID),

ReleaseToPatient bit);

Each of the tables containing patient data may be accessed in an emergency. In such

cases, the database also maintains tables to audit such accesses.

• create table visitEmergencyAccessLog(

VisitID references visit(VisitID),

UserID references Employee(PersonID),

Date datetime,

Note text);

• create table otcMedsEmergencyAccessLog(

MedID references otcMeds(MedID),

UserID references Employee(PersonID),

Date datetime,

Note text);

• create table vitalMeasurementsEmergencyAccessLog(

MeasurementID references vitalMeasurements(MeasurementID),

UserID references Employee(PersonID),

Date datetime,

Note text);

• create table treatmentEmergencyAccessLog(

TreatmentID references treatment(TreatmentID),

UserID references Employee(PersonID),

Date datetime,

Note text);

115

• create table prescriptionEmergencyAccessLog(

PrescriptionID references prescription(PrescriptionID),

UserID references Employee(PersonID),

Date datetime,

Note text);

• create table labResultEmergencyAccessLog(

ResultID references labResult(ResultID),

UserID references Employee(PersonID),

Date datetime,

Note text);

Finally, the database also contains tables for tracking billing and payment information.

• create table invoice(

InvoiceID int primary key,

InvoiceTo int references Person(PersonID),

DateIssued datetime);

• create table invoiceItem(

InvoiceID int references invoice(InvoiceID),

VisitID int references visit(VisitID),

PrescriptionID references Prescription(PrescriptionID),

Cost money);

• create table paymentReceived(

InvoiceID int references invoice(InvoiceID),

AmountReceived money,

PaymentCleared datetime);

A.2 Policies

We first define a rule for active employees that are considered to have a working

relationship with each patient. These include the primary care physician, the admitting

physician (if different than the primary care physician), and those medical professionals

that have consulted with a patient as part of an assigned medical team. Note that this

116

rule defines a view that is not based on a particular base table. Our compiler does not

require this to be the case, and easily handles such rules.

1. hasAccess(EmployeeID, PatientID) :-

employee(EmployeeID, , , , , , , , , 1),

patient(PatientID, EmployeeID, ,).

2. hasAccess(EmployeeID, PatientID) :-

employee(EmployeeID, , , , , , , , , 1),

visit(, PatientID, EmployeeID, , , ,).

3. hasAccess(EmployeeID, PatientID) :-

employee(EmployeeID, , , , , , , , , 1),

visit(VisitID, PatientID, , , , ,),

medicalTeam(VisitID, EmployeeID,).

Users may view their own data in the person table.

4. view.person(User, ID, Username, FullName) :-

person(ID, Username, FullName), User = Username.

Other employees (active or not) may view any person’s name data. Note that the

inequality at the end of this rule is not strictly necessary, although it does prevent

duplicate data from appearing when employees query on their own data.

5. view.person(User, ID, Username, FullName) :-

person(ID, Username, FullName),

employee(UserID, , , , , , , ,),

person(UserID, User,), UserID \= ID.

A record is added to the person table through the view.ins.employee and

view.ins.patient views; thus, we do not define policies for modifying this table directly.

Users may view their own data in the contactInformation table.

6. view.contactInformation(User, ID, Type, Value) :-

contactInformation(ID, Type, Value),

person(ID, User,).

117

Active managers may view contact data for their employees.

7. view.contactInformation(User, ID, Type, Value) :-

contactInformation(ID, Type, Value),

employee(ID, , , , , , , ManagerID,),

employee(ManagerID, , , , , , , , , 1),

person(ManagerID, User,).

Active employees may view e-mail data and office phone data for other employees.

8. view.contactInformation(User, ID, Type, Value) :-

contactInformation(ID, Type, Value),

employee(UserID, , , , , , , , 1),

person(UserID, User,),

Type = ’e-mail’.

9. view.contactInformation(User, ID, Type, Value) :-

contactInformation(ID, Type, Value),

employee(UserID, , , , , , , , 1),

person(UserID, User,),

Type = ’office phone’.

Users with a working relationship with a patient, as previously defined, may view

contact data for that patient.

10. view.contactInformation(User, ID, Type, Value) :-

contactInformation(ID, Type, Value),

person(UserID, User,), hasAccess(UserID, ID).

Doctors and pharmacists may view contact data for patients for whom they have

written or filled prescriptions.

11. view.contactInformation(User, ID, Type, Value) :-

contactInformation(ID, Type, Value),

prescription(, ID, UserID, , , , , , ,),

employee(UserID, , , , , , , , 1),

person(UserID, User,).

118

12. view.contactInformation(User, ID, Type, Value) :-

contactInformation(ID, Type, Value),

prescription(, ID, , , UserID, , , , ,),

employee(UserID, , , , , , , , 1),

person(UserID, User,).

Active secretaries may view any user’s contact data.

13. view.contactInformation(User, ID, Type, Value) :-

contactInformation(ID, Type, Value),

employee(UserID, , , , , , , , 1),

person(UserID, User,), secretary(UserID).

Active accountants may view any user’s address data.

14. view.contactInformation(User, ID, Type, Value) :-

contactInformation(ID, Type, Value),

employee(UserID, , , , , , , , 1),

person(UserID, User,), accountant(UserID),

Type = ’address’.

Users may update their own contact data.

15. view.ins.contactInformation(User, ID, Type, Value) :-

person(ID, User,),

ins.contactInformation(ID, Type, Value).

16. view.del.contactInformation(User, ID, Type, Value) :-

person(ID, User,),

del.contactInformation(ID, Type, Value).

Active secretaries may update any patient’s contact data.

17. view.ins.contactInformation(User, ID, Type, Value) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), secretary(UserID),

ins.contactInformation(ID, Type, Value).

119

18. view.del.contactInformation(User, ID, Type, Value) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), secretary(UserID),

del.contactInformation(ID, Type, Value).

Employees (active or not) may view their own data in the employee table.

19. view.employee(User, EmployeeID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active) :-

employee(EmployeeID, Salary, SSN, ExemptionsClaimed, BankRoutingNumber,

BankAccountNumber, Office, Manager, Active),

person(EmployeeID, User,).

Active accountants may view all employee data.

20. view.employee(User, EmployeeID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active) :-

employee(EmployeeID, Salary, SSN, ExemptionsClaimed, BankRoutingNumber,

BankAccountNumber, Office, Manager, Active),

employee(UserID, , , , , , , , , 1),

person(UserID, User,), accountant(UserID).

Active employees may view the offices, managers, and active status of other employees.

21. view.employee(User, EmployeeID, null, null, null, null, null,

Office, Manager, Active) :-

employee(EmployeeID, , , , , , Office, Manager, Active),

person(UserID, User,), employee(UserID, , , , , , , , 1).

Active HR directors may add or delete employees. An employee’s manager must be an

existing employee. “Deleting” an employee does not actually remove the record from the

database, but rather sets the Active field to 0. Note that because employee inherits from

person, either a record with the same ID must already exist in the person table or the

insertion must propagate to the person table. We assume that a Username and FullName

together uniquely identify a person.

22. view.ins.employee(User, EmployeeID, Username, FullName, Salary, SSN,

120

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber, Office,

Manager, Active) :-

employee(UserID, , , , , , , , , 1),

person(UserID, User,), hr(UserID),

person(EmployeeID, Username, FullName),

employee(Manager, , , , , , , ,),

ins.employee(EmployeeID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber,

BankAccountNumber, Office, Manager, Active).

23. view.ins.employee(User, EmployeeID, Username, FullName, Salary, SSN,

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber, Office,

Manager, Active) :-

employee(UserID, , , , , , , , , 1),

person(UserID, User,), hr(UserID),

empty{1}.person(EmployeeID),

employee(Manager, , , , , , , ,),

ins.employee(EmployeeID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber,

BankAccountNumber, Office, Manager, Active),

ins.person(EmployeeID, Username, FullName).

24. view.del.employee(User, EmployeeID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active) :-

employee(UserID, , , , , , , , , 1),

person(UserID, User,), hr(UserID),

del.employee(EmployeeID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber,

BankAccountNumber, Office, Manager, Active),

ins.employee(EmployeeID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber,

BankAccountNumber, Office, Manager, 0).

Accesses to the secretary, hr, accountant, nurse, labTechnician, pharmacist, and

doctor tables follow the same policies as the employee table. Note both that these rules

121

use the policy invoker’s privilege on the employee table, and that the updates on any of

these tables cause cascading updates on the employee table. This assumes that each of the

employee categories are mutually exclusive.

25. view.secretary(User, PersonID) :-

view.employee(User, PersonID, , , , , , , ,),

secretary(PersonID).

26. view.ins.secretary(User, PersonID, Username, FullName, Salary, SSN,

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber, Office,

Manager, Active) :-

view.ins.employee(User, PersonID, Username, FullName, Salary, SSN,

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber,

Office, Manager, Active),

ins.secretary(PersonID).

27. view.del.secretary(User, PersonID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active) :-

view.del.employee(User, PersonID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active),

del.secretary(PersonID).

28. view.hr(User, PersonID) :-

view.employee(User, PersonID, , , , , , , ,),

hr(PersonID).

29. view.ins.hr(User, PersonID, Username, FullName, Salary, SSN,

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber, Office,

Manager, Active) :-

view.ins.employee(User, PersonID, Username, FullName, Salary, SSN,

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber,

Office, Manager, Active),

ins.hr(PersonID).

30. view.del.hr(User, PersonID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active) :-

view.del.employee(User, PersonID, Salary, SSN, ExemptionsClaimed,

122

BankRoutingNumber, BankAccountNumber, Office, Manager, Active),

del.hr(PersonID).

31. view.accountant(User, PersonID) :-

view.employee(User, PersonID, , , , , , , ,),

accountant(PersonID).

32. view.ins.accountant(User, PersonID, Username, FullName, Salary, SSN,

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber, Office,

Manager, Active) :-

view.ins.employee(User, PersonID, Username, FullName, Salary, SSN,

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber,

Office, Manager, Active),

ins.accountant(PersonID).

33. view.del.accountant(User, PersonID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active) :-

view.del.employee(User, PersonID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active),

del.accountant(PersonID).

34. view.nurse(User, PersonID) :-

view.employee(User, PersonID, , , , , , , ,),

nurse(PersonID).

35. view.ins.nurse(User, PersonID, Username, FullName, Salary, SSN,

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber, Office,

Manager, Active) :-

view.ins.employee(User, PersonID, Username, FullName, Salary, SSN,

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber,

Office, Manager),

ins.nurse(PersonID).

36. view.del.nurse(User, PersonID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active) :-

view.del.employee(User, PersonID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active),

123

del.nurse(PersonID).

37. view.labTechnician(User, PersonID) :-

view.employee(User, PersonID, , , , , , , ,),

labTechnician(PersonID).

38. view.ins.labTechnician(User, PersonID, Username, FullName, Salary, SSN,

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber, Office,

Manager, Active) :-

view.ins.employee(User, PersonID, Username, FullName, Salary, SSN,

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber,

Office, Manager, Active),

ins.labTechnician(PersonID).

39. view.del.labTechnician(User, PersonID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active) :-

view.del.employee(User, PersonID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active),

del.labTechnician(PersonID).

40. view.pharmacist(User, PersonID) :-

view.employee(User, PersonID, , , , , , , ,),

pharmacist(PersonID).

41. view.ins.pharmacist(User, PersonID, Username, FullName, Salary, SSN,

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber, Office,

Manager, Active) :-

view.ins.employee(User, PersonID, Username, FullName, Salary, SSN,

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber,

Office, Manager, Active),

ins.pharmacist(PersonID).

42. view.del.pharmacist(User, PersonID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active) :-

view.del.employee(User, PersonID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active),

del.pharmacist(PersonID).

124

43. view.doctor(User, PersonID, Specialty) :-

view.employee(User, PersonID, , , , , , , ,),

doctor(PersonID, Specialty).

44. view.ins.doctor(User, PersonID, Specialty, Username, FullName, Salary, SSN,

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber, Office,

Manager, Active) :-

view.ins.employee(User, PersonID, Username, FullName, Salary, SSN,

ExemptionsClaimed, BankRoutingNumber, BankAccountNumber,

Office, Manager, Active),

ins.doctor(PersonID, Specialty).

45. view.del.doctor(User, PersonID, Specialty, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active) :-

view.del.employee(User, PersonID, Salary, SSN, ExemptionsClaimed,

BankRoutingNumber, BankAccountNumber, Office, Manager, Active),

del.doctor(PersonID, Specialty).

Employees may view their own data in the payroll table. Note that a join with the

employee table is not necessary, assuming that the database enforces foreign key constraint

requiring EmployeeIDs in the payroll table to appear in the employee table.

46. view.payroll(User, EmployeeID, Date, GrossAmount, FederalTax, StateTax) :-

payroll(EmployeeID, Date, GrossAmount, FederalTax, StateTax),

person(EmployeeID, User,).

Active accountants may view all payroll data.

47. view.payroll(User, EmployeeID, Date, GrossAmount, FederalTax, StateTax) :-

payroll(EmployeeID, Date, GrossAmount, FederalTax, StateTax),

employee(UserID, , , , , , , , , 1),

person(UserID, User,), accountant(UserID).

Active accountants may insert new payroll data for any employee except themselves,

providing a rudimentary separation of duty policy. This rule also checks that tax withheld

follows a particular formula, and that the payment is not applied retroactively.

125

48. view.ins.payroll(User, EmployeeID, Date, Salary, FederalTax, StateTax) :-

employee(EmployeeID, Salary, , ExemptionsClaimed, , , , ,),

FederalTax = Salary*0.2 - 1000*ExemptionsClaimed,

StateTax = Salary*0.1 - 500*ExemptionsClaimed,

Date >= now,

employee(UserID, , , , , , , , , 1),

person(UserID, User,), accountant(UserID),

UserID \= EmployeeID,

ins.payroll(EmployeeID, Date, Salary, FederalTax, StateTax).

Users may view their own data in the patient table.

49. view.patient(User, ID, PCPhys, InsProvider, Policy) :-

patient(ID, PCPhys, InsProvider, Policy),

person(ID, User,).

Active doctors, nurses, secretaries, and accountants may view primary care provider

and insurance data.

50. view.patient(User, ID, PCPhys, InsProvider, Policy) :-

patient(ID, PCPhys, InsProvider, Policy),

employee(UserID, , , , , , , , 1),

person(UserID, User,), doctor(UserID,).

51. view.patient(User, ID, PCPhys, InsProvider, Policy) :-

patient(ID, PCPhys, InsProvider, Policy),

employee(UserID, , , , , , , , 1),

person(UserID, User,), nurse(UserID).

52. view.patient(User, ID, PCPhys, InsProvider, Policy) :-

patient(ID, PCPhys, InsProvider, Policy),

employee(UserID, , , , , , , , 1),

person(UserID, User,), secretary(UserID).

53. view.patient(User, ID, PCPhys, InsProvider, Policy) :-

patient(ID, PCPhys, InsProvider, Policy),

employee(UserID, , , , , , , , 1),

person(UserID, User,), accountant(UserID).

126

Users may update their own insurance data, and active accountants may update

anyone’s insurance data.

54. view.ins.patient(User, ID, PCPhys, InsProvider, Policy) :-

patient(ID, PCPhys, ,),

person(ID, User,),

ins.patient(ID, PCPhys, InsProvider, Policy).

55. view.del.patient(User, ID, PCPhys, InsProvider, Policy) :-

patient(ID, PCPhys, ,),

person(ID, User,),

del.patient(ID, PCPhys, InsProvider, Policy).

56. view.ins.patient(User, ID, PCPhys, InsProvider, Policy) :-

patient(ID, PCPhys, ,),

employee(UserID, , , , , , , , 1),

person(UserID, User,), accountant(UserID),

ins.patient(ID, PCPhys, InsProvider, Policy).

57. view.del.patient(User, ID, PCPhys, InsProvider, Policy) :-

patient(ID, PCPhys, ,),

employee(UserID, , , , , , , , 1),

person(UserID, User,), accountant(UserID),

del.patient(ID, PCPhys, InsProvider, Policy).

Active doctors and secretaries may update any data in the patient table. The primary

care physician must be an existing doctor in the database. Note that because patient

inherits from person, either a record with the same ID must already exist in the person

table or the insertion must propagate to the person table. Deletions, on the other hand,

are not propagated, because a person may also be an employee. The criteria for deleting a

record in the person table may vary; we will assume for our case study that the record

continues to exist for archival purposes. We also assume that a Username and FullName

together uniquely identify a person.

58. view.ins.patient(User, ID, Username, FullName, PCPhys, InsProvider, Policy)

:-

127

employee(UserID, , , , , , , , 1),

person(UserID, User,), doctor(UserID,),

person(ID, Username, FullName),

doctor(PCPhys,),

ins.patient(ID, PCPhys, InsProvider, Policy).

59. view.ins.patient(User, ID, Username, FullName, PCPhys, InsProvider, Policy)

:-

employee(UserID, , , , , , , , 1),

person(UserID, User,), doctor(UserID,),

empty{1}.person(ID),

doctor(PCPhys,),

ins.patient(ID, PCPhys, InsProvider, Policy),

ins.person(ID, Username, FullName).

60. view.del.patient(User, ID, PCPhys, InsProvider, Policy) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), doctor(UserID,),

del.patient(ID, PCPhys, InsProvider, Policy).

61. view.ins.patient(User, ID, Username, FullName, PCPhys, InsProvider, Policy)

:-

employee(UserID, , , , , , , , 1),

person(UserID, User,), secretary(UserID),

person(ID, Username, FullName),

doctor(PCPhys,),

ins.patient(ID, PCPhys, InsProvider, Policy).

62. view.ins.patient(User, ID, Username, FullName, PCPhys, InsProvider, Policy)

:-

employee(UserID, , , , , , , , 1),

person(UserID, User,), secretary(UserID),

empty{1}.person(ID),

doctor(PCPhys,),

ins.patient(ID, PCPhys, InsProvider, Policy),

ins.person(ID, Username, FullName).

128

63. view.del.patient(User, ID, PCPhys, InsProvider, Policy) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), secretary(UserID),

del.patient(ID, PCPhys, InsProvider, Policy).

Users may view their own data in the vitalMeasurements table, if it has been released

for viewing.

64. view.vitalMeasurements(User, ID, VisitID, AdministeredBy, TestType,

Measurement, ReleaseToPatient) :-

vitalMeasurements(ID, VisitID, AdministeredBy, TestType,

Measurement, ReleaseToPatient),

visit(VisitID, UserID, , , , ,),

person(UserID, User,), ReleaseToPatient = 1.

Users with a working relationship with a patient, as previously defined, may view that

patient’s data.

65. view.vitalMeasurements(User, ID, VisitID, AdministeredBy, TestType,

Measurement, ReleaseToPatient) :-

vitalMeasurements(ID, VisitID, AdministeredBy, TestType,

Measurement, ReleaseToPatient),

visit(VisitID, PatientID, , , , ,),

person(UserID, User,), hasAccess(UserID, PatientID).

Any active employee may gain emergency access to a patient’s data, but the access is

logged. This rule could easily be adapted to allow such access only to certain users, such

as doctors and nurses.

66. view.emergency vitalMeasurements(User, ID, VisitID, AdministeredBy, TestType,

Measurement, ReleaseToPatient, Note) :-

vitalMeasurements(ID, VisitID, AdministeredBy, TestType,

Measurement, ReleaseToPatient),

person(UserID, User,), employee(UserID, , , , , , , , 1),

ins.vitalMeasurementsEmergencyAccessLog(ID, UserID, now, Note).

The user making the measurement may enter new data.

129

67. view.ins.vitalMeasurements(User, ID, VisitID, UserID, TestType,

Measurement, ReleaseToPatient) :-

person(UserID, User,), employee(UserID, , , , , , , , 1),

ins.vitalMeasurements(ID, VisitID, UserID, TestType,

Measurement, ReleaseToPatient).

Users may view their own data in the labResult table, if it has been released for

viewing.

68. view.labResult(User, ID, Date, Type, Value, PatientID, TechID,

ReleaseToPatient) :-

labResult(ID, Date, Type, Value, PatientID, TechID, ReleaseToPatient),

person(PatientID, User,), ReleaseToPatient = 1.

Users with a working relationship with a patient may view that patient’s data.

69. view.labResult(User, ID, Date, Type, Value, PatientID, TechID,

ReleaseToPatient) :-

labResult(ID, Date, Type, Value, PatientID, TechID, ReleaseToPatient),

person(UserID, User,), hasAccess(UserID, PatientID).

Any active employee may gain emergency access to a patient’s data, but the access is

logged.

70. view.emergency labResult(User, ID, Date, Type, Value, PatientID, TechID,

ReleaseToPatient, Note) :-

labResult(ID, Date, Type, Value, PatientID, TechID, ReleaseToPatient),

person(UserID, User,), employee(UserID, , , , , , , , 1),

ins.labResultEmergencyAccessLog(ID, UserID, now, Note).

Active lab technicians may enter new data in the labResult table.

71. view.ins.labResult(User, ID, Date, Type, Value, PatientID, TechID,

ReleaseToPatient) :-

employee(TechID, , , , , , , , 1),

person(TechID, User,), labtechnician(TechID),

ins.labResult(ID, Date, Type, Value, PatientID, TechID, ReleaseToPatient).

130

Users may view their own data in the treatment table, if it has been released for

viewing.

72. view.treatment(User, ID, VisitID, AdministeredBy, Date, DrugID, Procedure,

Quantity, ReleaseToPatient) :-

treatment(ID, VisitID, AdministeredBy, Date, DrugID, Procedure,

Quantity, ReleaseToPatient),

visit(VisitID, UserID, , , , ,),

person(UserID, User,), ReleaseToPatient = 1.

Users with a working relationship with a patient may view that patient’s data.

73. view.treatment(User, ID, VisitID, AdministeredBy, Date, DrugID, Procedure,

Quantity, ReleaseToPatient) :-

treatment(ID, VisitID, AdministeredBy, Date, DrugID, Procedure,

Quantity, ReleaseToPatient),

visit(VisitID, PatientID, , , , ,),

person(UserID, User,), hasAccess(UserID, PatientID).

Any active employee may gain emergency access to a patient’s data, but the access is

logged.

74. view.emergency treatment(User, ID, VisitID, AdministeredBy, Date, DrugID,

Procedure, Quantity, ReleaseToPatient, Note) :-

treatment(ID, VisitID, AdministeredBy, Date, DrugID, Procedure,

Quantity, ReleaseToPatient),

person(UserID, User,), employee(UserID, , , , , , , , 1),

ins.treatmentEmergencyAccessLog(ID, UserID, now, Note).

The user administering the treatment may enter new data into the treatment table.

75. view.ins.treatment(User, ID, VisitID, UserID, Date, DrugID, Procedure,

Quantity, ReleaseToPatient) :-

person(UserID, User,), employee(UserID, , , , , , , , 1),

visit(VisitID, PatientID, , , , ,),

ins.treatment(ID, VisitID, UserID, Date, DrugID, Procedure,

Quantity, ReleaseToPatient).

131

Access to the immunization table follows the same policy as the treatment table, in the

same manner as described for the tables of employees.

76. view.immunization(User, ID, Location, AdministeredBy) :-

view.treatment(User, ID, , , , , , ,),

immunization(ID, Location, AdministeredBy).

77. view.emergency immunization(User, ID, Location, AdministeredBy, Note) :-

view.emergency treatment(User, ID, , , , , , , , Note),

immunization(ID, Location, AdministeredBy).

78. view.ins.immunization(User, ID, Location, AdministeredBy, VisitID, UserID,

Date, DrugID, Procedure, Quantity, ReleaseToPatient) :-

view.ins.treatment(User, ID, VisitID, UserID, Date, DrugID, Procedure,

Quantity, ReleaseToPatient),

ins.immunization(ID, Location, AdministeredBy).

Users may view their own data in the prescription table, if it has been released for

viewing.

79. view.prescription(User, ID, PatientID, PrescribedBy, DatePrescribed,

FilledBy,

DateFilled, DrugID, Quantity, Refills, ReleaseToPatient) :-

prescription(ID, PatientID, PrescribedBy, DatePrescribed, FilledBy,

DateFilled, DrugID, Quantity, Refills, ReleaseToPatient),

person(PatientID, User,), ReleaseToPatient = 1.

Users with a working relationship with a patient may view that patient’s data.

80. view.prescription(User, ID, PatientID, PrescribedBy, DatePrescribed,

FilledBy,

DateFilled, DrugID, Quantity, Refills, ReleaseToPatient) :-

prescription(ID, PatientID, PrescribedBy, DatePrescribed, FilledBy,

DateFilled, DrugID, Quantity, Refills, ReleaseToPatient),

person(UserID, User,), hasAccess(UserID, PatientID).

Any active employee may gain emergency access to a patient’s data, but the access is

logged.

132

81. view.emergency prescription(User, ID, PatientID, PrescribedBy,

DatePrescribed,

FilledBy, DateFilled, DrugID, Quantity, Refills, ReleaseToPatient, Note) :-

prescription(ID, PatientID, PrescribedBy, DatePrescribed, FilledBy,

DateFilled, DrugID, Quantity, Refills, ReleaseToPatient),

person(UserID, User,), employee(UserID, , , , , , , , 1),

ins.prescriptionEmergencyAccessLog(ID, UserID, now, Note).

Active doctors may enter new data in the prescription table, but cannot enter data of

when and by whom the prescription was filled.

82. view.ins.prescription(User, ID, PatientID, UserID, now, null, null,

DrugID, Quantity, Refills, ReleaseToPatient) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), doctor(UserID,),

ins.prescription(ID, PatientID, UserID, now, null, null, DrugID, Quantity,

Refills, ReleaseToPatient).

83. view.del.prescription(User, ID, PatientID, PrescribedBy, DatePrescribed,

FilledBy, DateFilled, DrugID, Quantity, Refills, ReleaseToPatient) :-

person(UserID, User,), doctor(UserID,),

del.prescription(ID, PatientID, PrescribedBy, DatePrescribed, FilledBy,

DateFilled, DrugID, Quantity, Refills, ReleaseToPatient).

Active pharmacists may fill existing prescriptions. Note that because this requires a

retraction and an assertion in a single transaction, this rule is neither a view-assert nor a

view-retract rule. TD semantics for updating existing data would make this rule more

intuitive.

84. view.fillPrescription(User, ID, PatientID) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), pharmacist(UserID),

prescription(ID, PatientID, PrescribedBy, DatePrescribed, null, null,

DrugID, Quantity, Refills, ReleaseToPatient),

del.prescription(ID, PatientID, PrescribedBy, DatePrescribed, null, null,

DrugID, Quantity, Refills, ReleaseToPatient),

133

ins.prescription(ID, PatientID, PrescribedBy, DatePrescribed, UserID, now,

DrugID, Quantity, Refills, ReleaseToPatient).

Users may view their own data in the visit table, if it has been released for viewing.

85. view.visit(User, ID, PatientID, TreatingPhys, Date, Symptoms, Diagnosis,

ReleaseToPatient) :-

visit(ID, PatientID, TreatingPhys, Date, Symptoms, Diagnosis,

ReleaseToPatient),

person(PatientID, User,), ReleaseToPatient = 1.

Users with a working relationship with a patient may view or update that patient’s

data. New data for a user must include a doctor as the treating physician.

86. view.visit(User, ID, PatientID, TreatingPhys, Date, Symptoms, Diagnosis,

ReleaseToPatient) :-

visit(ID, PatientID, TreatingPhys, Date, Symptoms, Diagnosis,

ReleaseToPatient),

person(UserID, User,), hasAccess(UserID, PatientID).

87. view.ins.visit(User, ID, PatientID, TreatingPhys, Date, Symptoms, Diagnosis,

ReleaseToPatient) :-

person(UserID, User,), hasAccess(UserID, PatientID),

doctor(TreatingPhys,),

ins.visit(ID, PatientID, TreatingPhys, Date, Symptoms, Diagnosis,

ReleaseToPatient).

88. view.del.visit(User, ID, PatientID, TreatingPhys, Date, Symptoms, Diagnosis,

ReleaseToPatient) :-

person(UserID, User,), hasAccess(UserID, PatientID),

del.visit(ID, PatientID, TreatingPhys, Date, Symptoms, Diagnosis,

ReleaseToPatient).

Any active employee may gain emergency access to a patient’s data, but the access is

logged.

89. view.emergency visit(User, ID, PatientID, TreatingPhys, Date, Symptoms,

134

Diagnosis, ReleaseToPatient, Note) :-

visit(ID, PatientID, TreatingPhys, Date, Symptoms, Diagnosis,

ReleaseToPatient),

person(UserID, User,), employee(UserID, , , , , , , , 1),

ins.visitEmergencyAccessLog(ID, UserID, now, Note).

Users may view their own data in the otcMeds table. Since users are already presumed

to know what over-the-counter medications they are taking, there is no benefit for placing

a restriction on releasing such data to the patient as there is in other patient data tables.

90. view.otcMeds(User, ID, PatientID, DrugID) :-

otcMeds(ID, PatientID, DrugID),

person(PatientID, User,).

Users with a working relationship with a patient may view or update that patient’s

data.

91. view.otcMeds(User, ID, PatientID, DrugID) :-

otcMeds(ID, PatientID, DrugID),

person(UserID, User,), hasAccess(UserID, PatientID).

92. view.ins.otcMeds(User, ID, PatientID, DrugID) :-

person(UserID, User,), hasAccess(UserID, PatientID),

ins.otcMeds(ID, PatientID, DrugID).

93. view.del.otcMeds(User, ID, PatientID, DrugID) :-

person(UserID, User,), hasAccess(UserID, PatientID),

del.otcMeds(ID, PatientID, DrugID).

Any active employee may gain emergency access to a patient’s data, but the access is

logged.

94. view.emergency otcMeds(User, ID, PatientID, DrugID, Note) :-

otcMeds(ID, PatientID, DrugID),

person(UserID, User,), employee(UserID, , , , , , , , 1),

ins.otcMedsEmergencyAccessLog(ID, UserID, now, Note).

135

Access to the inpatientVisit table follows the same policy as the visit table, in the

same manner as described for the tables of employees.

95. view.inpatientVisit(User, ID, EndDate, RoomNumber) :-

view.visit(User, ID, , , , , ,),

inpatientVisit(ID, EndDate, RoomNumber).

96. view.emergency inpatientVisit(User, ID, EndDate, RoomNumber, Note) :-

view.emergency visit(User, ID, , , , , , , Note),

inpatientVisit(ID, EndDate, RoomNumber).

97. view.ins.inpatientVisit(User, ID, EndDate, RoomNumber, PatientID,

TreatingPhys, Date, Symptoms, Diagnosis, ReleaseToPatient) :-

view.ins.visit(User, ID, PatientID, TreatingPhys, Date, Symptoms,

Diagnosis, ReleaseToPatient),

ins.inpatientVisit(ID, EndDate, RoomNumber).

98. view.del.inpatientVisit(User, ID, EndDate, RoomNumber, PatientID,

TreatingPhys, Date, Symptoms, Diagnosis, ReleaseToPatient) :-

view.del.visit(User, ID, PatientID, TreatingPhys, Date, Symptoms,

Diagnosis, ReleaseToPatient),

del.inpatientVisit(ID, EndDate, RoomNumber).

Patients may view members of medical team assigned to them, i.e. the data in the

medicalTeam table, if it has been released for viewing.

99. view.medicalTeam(User, VisitID, MemberID, ReleaseToPatient) :-

medicalTeam(VisitID, MemberID, ReleaseToPatient),

visit(VisitID, UserID, , , , ,),

person(UserID, User,), ReleaseToPatient = 1.

Active members of a medical team may view the other members.

100. view.medicalTeam(User, VisitID, MemberID, ReleaseToPatient) :-

medicalTeam(VisitID, MemberID, ReleaseToPatient),

employee(UserID, , , , , , , , 1),

person(UserID, User,), medicalTeam(VisitID, UserID,).

136

Active secretaries, admitting physicians, and shift supervisors (managers) may change

members of a medical team.

101. view.ins.medicalTeam(User, VisitID, MemberID, ReleaseToPatient) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), secretary(UserID),

ins.medicalTeam(VisitID, MemberID, ReleaseToPatient).

102. view.del.medicalTeam(User, VisitID, MemberID, ReleaseToPatient) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), secretary(UserID),

del.medicalTeam(VisitID, MemberID, ReleaseToPatient).

103. view.ins.medicalTeam(User, VisitID, MemberID, ReleaseToPatient) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), visit(VisitID, , UserID, , , ,),

ins.medicalTeam(VisitID, MemberID, ReleaseToPatient).

104. view.del.medicalTeam(User, VisitID, MemberID, ReleaseToPatient) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), visit(VisitID, , UserID, , , ,),

del.medicalTeam(VisitID, MemberID, ReleaseToPatient).

105. view.ins.medicalTeam(User, VisitID, MemberID, ReleaseToPatient) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), employee(MemberID, , , , , , , UserID,),

ins.medicalTeam(VisitID, MemberID, ReleaseToPatient).

106. view.del.medicalTeam(User, VisitID, MemberID, ReleaseToPatient) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), employee(MemberID, , , , , , , UserID,),

del.medicalTeam(VisitID, MemberID, ReleaseToPatient).

All users can access medical data in the symptomCodes, diagnosisCodes, drugs, and

adverseDrugInteractions tables.

107. view.symptomCodes(User, Code, Description) :-

person(, User,),

137

symptomCodes(Code, Description).

108. view.diagnosisCodes(User, Code, Description) :-

person(, User,),

diagnosisCodes(Code, Description).

109. view.drugs(User, Name, Instructions, Cost, Manufacturer, Quantity, Mechanism)

:-

person(, User,),

drugs(User, Name, Instructions, Cost, Manufacturer, Quantity, Mechanism).

110. view.adverseDrugInteractions(User, Drug1ID, Drug2ID, Description) :-

person(, User,),

adverseDrugInteractions(Drug1ID, Drug2ID, Description).

Patients may view their own invoice data in the invoice table.

111. view.invoice(User, InvoiceID, InvoiceTo, Date) :-

person(InvoiceTo, User,),

invoice(InvoiceID, InvoiceTo, Date).

Active accountants may view invoice data.

112. view.invoice(User, InvoiceID, InvoiceTo, Date) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), accountant(UserID),

invoice(InvoiceID, InvoiceTo, Date).

Active accountants may add invoice data except on invoices sent to themselves.

113. view.ins.invoice(User, InvoiceID, InvoiceTo, Date) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), accountant(UserID),

UserID \= InvoiceTo,

ins.invoice(InvoiceID, InvoiceTo, Date).

114. view.del.invoice(User, InvoiceID, InvoiceTo, Date) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), accountant(UserID),

138

UserID \= InvoiceTo,

del.invoice(InvoiceID, InvoiceTo, Date).

Access to the invoiceItem and paymentReceived tables follow the same policy as the

invoice table, in the same manner as described for the tables of employees.

115. view.invoiceItem(User, InvoiceID, VisitID, PrescriptionID, Cost) :-

view.invoice(User, InvoiceID, ,),

invoiceItem(InvoiceID, VisitID, PrescriptionID, Cost).

116. view.ins.invoiceItem(User, InvoiceID, VisitID, PrescriptionID, Cost) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), accountant(UserID),

invoice(InvoiceID, InvoiceTo,),

UserID \= InvoiceTo,

ins.invoiceItem(InvoiceID, VisitID, PrescriptionID, Cost).

117. view.del.invoiceItem(User, InvoiceID, VisitID, PrescriptionID, Cost) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), accountant(UserID),

invoice(InvoiceID, InvoiceTo,),

UserID \= InvoiceTo,

del.invoiceItem(InvoiceID, VisitID, PrescriptionID, Cost).

118. view.paymentReceived(User, InvoiceID, Amount, Cleared) :-

view.invoice(User, InvoiceID, ,),

paymentReceived(InvoiceID, Amount, Cleared).

119. view.ins.paymentReceived(User, InvoiceID, Amount, Cleared) :-

employee(UserID, , , , , , , , 1),

person(UserID, User,), accountant(UserID),

invoice(InvoiceID, InvoiceTo,),

UserID \= InvoiceTo,

ins.paymentReceived(InvoiceID, Amount, Cleared).

120. view.del.paymentReceived(User, InvoiceID, Amount, Cleared) :-

employee(UserID, , , , , , , , 1),

139

person(UserID, User,), accountant(UserID),

invoice(InvoiceID, InvoiceTo,),

UserID \= InvoiceTo,

del.paymentReceived(InvoiceID, Amount, Cleared).

140

Appendix B

Case Study: Building Automation

System

We present here the schema definitions and TD rules for our building automation system

case study described in Section 6.2. For improved readability, we allow rules to access the

base tables directly. These direct accesses can easily be replaced by references to the table

owner’s view of the table in a system that requires policies to be defined that way.

B.1 Schemas

User data is stored in several tables. Each user contains a record in the person table,

which lists information relevant to all users, such as usernames, passwords, and an account

balance that can be used to purchase resources. For simplicity, we assume passwords are

stored in plaintext; in a deployed system, encryption or hashing should be used for further

protection. Our table also contains full name and address information. Students in the

database are identified by listing their ID in a separate students table, along with

student-specific data such as their year in school. Faculty are likewise identified by listing

their ID in a teachers table. Visitors are given temporary IDs which are listed in a

visitors table, which also keeps track of who is responsible for the visitor (assumed to be

a faculty member). The schemas for these tables are:

• create table person(

PersonID int primary key,

Name varchar(100),

Address varchar(100),

Username varchar(10),

Password varchar(10),

Balance smallmoney);

141

• create table students(

StudentID int primary key references person(PersonID),

Year int);

• create table teachers(

TeacherID int primary key references person(PersonID));

• create table visitors(

VisitorID int primary key references person(PersonID),

host int references teachers(TeacherID));

Enrollment data includes offered courses, semesters in which the courses are scheduled,

room assignments, course registration, and attendance. We assume that each course has

one teacher per semester. Cross-listed courses are listed separately, but may be given

identical room assignments. We list one room assignment for every time the class meets,

which could include more than one meeting time per day. For simplicity, we do not keep

track of grading information, which could be added to the schema in a deployed

application. The schemas for these tables are:

• create table courses(

CourseID int primary key,

Department varchar(10),

CourseNum varchar(10));

• create table courseSchedule(

ScheduleID int primary key,

CourseID int references courses(CourseID),

TeacherID int references teachers(TeacherID),

Semester char(10));

• create table roomAssignments(

AssignmentID int primary key,

ScheduleID int references courseSchedule(ScheduleID),

RoomID int references rooms(RoomID),

BeginTime datetime,

EndTime datetime);

142

• create table registration(

RegistrationID int primary key,

ScheduleID int references courseSchedule(ScheduleID),

StudentID int references students(StudentID));

• create table attendance(

StudentID int references students(StudentID),

RoomAssignmentID references roomAssignments(AssignmentID));

Building data includes rooms, doors, video feeds, internet access, and a vending

machine. The rooms table also keeps track of thermostat settings for the room. Each door

is associated with one room; however, each room may have multiple doors. Likewise, each

video feed is also associated with one room, and each room may have multiple video feeds.

We assume that the video feeds are given in segments that correspond to class meeting

times. A roomAccess table is also defined to associate which users are allowed full access to

which rooms, and also indicates whether the user is allowed to delegate room access to

other users. For simplicity, the internetAccess table consists of listing the users that are

allowed to use the router. In a deployed system, this could be refined to list allowed

external hosts and port numbers, similar to a router configuration. The vending machine

keeps track of the costs and quantities of items it contains. The schemas for these tables

are:

• create table rooms(

RoomID int primary key,

Building varchar(10),

RoomNumber varchar(10),

ThermostatSetting float,

Temperature float);

• create table door(

DoorID int primary key,

RoomID int references rooms(RoomID),

Unlocked bit,

Open bit);

143

• create table videoFeeds(

VideoID int primary key,

RoomID int references rooms(RoomID),

BeginTime datetime,

EndTime datetime,

Video image);

• create table roomAccess(

AccessID int primary key,

RoomID int references rooms(RoomID),

PersonID int references person(PersonID),

CanDelegate bit);

• create table internetAccess(

PersonID int references person(PersonID));

• create table vendingMachine(

ItemID int primary key,

Quantity int,

Cost smallmoney);

B.2 Policies

All users are granted access to their own records in the person table.

1. view.person(User, PersonID, Name, Addr, Username, Passwd, Balance) :-

person(PersonID, Name, Addr, Username, Passwd, Balance),

User=Username.

Teachers may view IDs, Names, Addresses, and Usernames (but not Passwords or

Balances) of students in their classes.

2. view.person(User, StudentID, Name, Addr, Username, null, null) :-

person(StudentID, Name, Addr, Username, ,),

registration(, ScheduleID, StudentID),

courseSchedule(ScheduleID, , TeacherID,),

person(TeacherID, , , User, ,).

144

Teachers may view IDs, Names, Addresses, and Usernames (but not Passwords or

Balances) of visitors they are hosting.

3. view.person(User, VisitorID, Name, Addr, Username, null, null) :-

person(VisitorID, Name, Addr, Username, ,),

visitors(VisitorID, UserID),

person(UserID, , , User, ,).

Teachers’ IDs, Names, and Usernames (but not Addresses, Passwords, or Balances) are

publicly available. That is, any user (student, visitor, or teacher) may view this data.

4. view.person(User, TeacherID, Name, null, Username, null, null) :-

person(TeacherID, Name, , Username, ,),

teachers(TeacherID,),

person(, , , User, ,).

Accesses to the students, visitors, and teachers tables follow the same policy as the

person table. That is, a user can see the StudentID and Year of a student if and only if he

can see that student’s record in the person table, etc. Note that these policies use the

invoker’s privilege on the person table, rather than the definer’s privilege. This is an

example of when definer’s privilege would be undesirable, as it would require each policy

from the person table to be duplicated. In this case, using another privilege rather than

the policy definer’s privilege does not cause a vulnerability to Trojan Horse code as

described in Chapter 3 because the policy definer can already see the data from the

person table that the invoker can see.

5. view.students(User, StudentID, Year) :-

students(StudentID, Year),

view.person(User, StudentID, , , , ,).

6. view.visitors(User, VisitorID, Host) :-

visitors(VisitorID, Host),

view.person(User, VisitorID, , , , ,).

7. view.teachers(User, TeacherID, Department) :-

teachers(TeacherID, Department),

view.person(User, TeacherID, , , , ,).

145

Any user is allowed read access to the courses, courseSchedule, and roomAssignments

tables.

8. view.courses(User, CourseID, Department, CourseNum) :-

person(, , , User, ,),

courses(CoursesID, Department, CourseNum).

9. view.courseSchedule(User, ScheduleID, CourseID, TeacherID, Semester) :-

person(, , , User, ,),

courseSchedule(ScheduleID, CourseID, TeacherID, Semester).

10. view.roomAssignments(User, AssignmentID, ScheduleID, RoomID, BeginTime,

EndTime) :-

person(, , , User, ,),

roomAssignments(AssignmentID, ScheduleID, RoomID, BeginTime, EndTime).

Teachers may view enrollment data for classes they teach.

11. view.registration(User, RegistrationID, ScheduleID, StudentID) :-

person(TeacherID, , , User, ,),

courseSchedule(ScheduleID, , TeacherID,),

registration(RegistrationID, ScheduleID, StudentID).

Students may view their own enrollment data.

12. view.registration(User, RegistrationID, ScheduleID, StudentID) :-

person(StudentID, , , User, ,),

registration(RegistrationID, ScheduleID, StudentID).

Any user that has been given full access to a room may see anyone else that can access

the same room(s).

13. view.roomAccess(User, RoomID, PersonID, CanDelegate) :-

roomAccess(, RoomID, PersonID, CanDelegate),

roomAccess(, RoomID, UserID,),

person(UserID, , , User, ,).

Users who are given CanDelegate privileges for a room in the RoomAccess table may

add or remove other users for that room.

146

14. view.ins.roomAccess(User, AccessID, RoomID, PersonID, CanDelegate) :-

roomAccess(, RoomID, UserID, 1),

person(UserID, , , User, ,),

ins.roomAccess(AccessID, RoomID, PersonID, CanDelegate).

15. view.del.roomAccess(User, AccessID, RoomID, PersonID, CanDelegate) :-

roomAccess(, RoomID, UserID, 1),

person(UserID, , , User, ,),

del.roomAccess(AccessID, RoomID, PersonID, CanDelegate).

Users who have been given access to a room in the RoomAccess table are allowed to

change thermostat settings within the range 65-75. Note that this view definition does not

correspond to a base table, since it does not simply insert or simply delete a value from

the rooms table. Using the syntax of TD, this approach is necessary because both the

insertion and deletion must be carried out for this to be a valid operation. If a user only

deletes the old record without replacing the record with the updated value, then that user

has the ability to remove an entire room from the database, which is clearly not desirable

for this policy. This is an example of a policy that would benefit from a more formal

syntax and semantics of TD policies that update existing data, rather than simply

inserting or simply deleting data.

16. view.changeThermostat(User, RoomID, NewSetting) :-

rooms(RoomID, Building, RoomNum, OldSetting, Temperature),

roomAccess(, RoomID, UserID,),

person(UserID, , , User, ,),

NewSetting >= 65, NewSetting <= 75,

del.rooms(RoomID, Building, RoomNum, OldSetting, Temperature),

ins.rooms(RoomID, Building, RoomNum, NewSetting, Temperature).

Users who have been given access to a room in the RoomAccess table are allowed to

unlock doors. This is another policy similar to the view.changeThermostat that could be

written as a policy to update existing data.

17. view.unlockDoor(User, DoorID) :-

door(DoorID, RoomID, Unlocked, Open),

147

roomAccess(, RoomID, UserID,),

person(UserID, , , User, ,),

del.door(DoorID, RoomID, Unlocked, Open),

ins.door(DoorID, RoomID, 1, Open).

Students attending class in a room are allowed to unlock doors during the time class is

in session, and they are recorded as being in attendance that day. Also, internet access is

disabled (re-enabled by teacher at end of class).

18. view.unlockDoor(User, DoorID) :-

door(DoorID, RoomID, Unlocked, Open),

roomAssignments(RoomAssignmentID, ScheduleID, RoomID, BeginTime, EndTime),

registration(, ScheduleID, StudentID),

person(StudentID, , , User, ,),

BeginTime <= now, now <= EndTime,

del.door(DoorID, RoomID, Unlocked, Open),

ins.door(DoorID, RoomID, 1, Open),

ins.attendance(StudentID, RoomAssignmentID),

del.internetAccess(StudentID).

Students enrolled for a course are allowed to view video feeds for that course.

19. view.videoFeeds(User, VideoID, RoomID, Day, BeginTime, EndTime, Video) :-

videoFeeds(VideoID, RoomID, BeginTime, EndTime, Video),

roomAssignments(, ScheduleID, RoomID, BeginTime, EndTime),

registration(, ScheduleID, StudentID),

person(StudentID, , , User, ,).

Teachers are allowed to view attendance data for the courses they teach.

20. view.attendance(User, StudentID, RoomAssignmentID) :-

roomAssignments(RoomAssignmentID, ScheduleID, , ,),

courseSchedule(ScheduleID, , TeacherID,),

teachers(TeacherID,),

person(TeacherID, , , User, ,),

attendance(StudentID, RoomAssignmentID).

148

Teachers are allowed to grant internet access to anybody (can be automated to regrant

access to students after the lecture, to grant exceptions during a lecture if needed, and to

grant temporary access to visitors).

21. view.ins.internetAccess(User, RecipientID) :-

teachers(TeacherID,),

person(TeacherID, , , User, ,),

ins.internetAccess(RecipientID).

22. view.del.internetAccess(User, RecipientID) :-

teachers(TeacherID,),

person(TeacherID, , , User, ,),

del.internetAccess(RecipientID).

Anyone is allowed to buy items from the vending machine, provided that their account

balance is greater than the cost of the item and the quantity of the item is nonzero. Their

balance is deducted by the amount of the item. This is another policy similar to the

view.changeThermostat policy that updates existing data, but with the added complication

that it simultaneously updates both the vendingMachine table and the person table.

23. view.purchaseItem(User, ItemID) :-

vendingMachine(ItemID, Quantity, Cost), Quantity > 0,

person(PersonID, Name, Addr, User, Passwd, Balance), Balance >= Cost,

del.vendingMachine(ItemID, Quantity, Cost),

ins.vendingMachine(ItemID, NewQuantity, Cost),

NewQuantity = Quantity-1,

del.person(PersonID, Name, Addr, User, Passwd, Balance),

ins.person(PersonID, Name, Addr, User, Passwd, NewBalance),

NewBalance = Balance - Cost.

149

References

[1] S. Abiteboul and R. Hull. Data functions, Datalog and negation (extended abstract).
In SIGMOD Conference, pages 143–153, Chicago, IL, June 1988.

[2] S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates.
Journal of Computer and System Sciences, 43(1):62–124, August 1991.

[3] O. S. Adewale. An internet-based telemedicine system in Nigeria. International
Journal of Information Management, 24(3):221–234, 2004.

[4] R. Agrawal, R. J. Bayardo, C. Faloutsos, J. Kiernan, R. Rantzau, and R. Srikant.
Auditing compliance with a hippocratic database. In VLDB, pages 516–527, Toronto,
ON, 2004.

[5] R. Agrawal, P. Bird, T. Grandison, J. Kiernan, S. Logan, and W. Rjaibi. Extending
relational database systems to automatically enforce privacy policies. In ICDE, pages
1013–1022, Tokyo, Japan, April 2005.

[6] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases. In VLDB 02,
Hong Kong, China, August 2002.

[7] M. Ancona, W. Cazzola, and E. B. Fernandez. A history-dependent access control
mechanism using reflection. In MOS 99, Lisbon, Portugal, June 1999.

[8] R. J. Anderson. A security policy model for clinical information systems. In IEEE
Symposium on Security and Privacy, pages 30–43, Oakland, CA, May 1996.

[9] ANSI/ASHRAE. Standard 135-2004, BACnet, A Data Communication Protocol for
Building Automation and Control Networks, 2004.

[10] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive query
processing strategies. In SIGMOD 86, pages 16–52, Washington, DC, May 1986.

[11] M. Y. Becker. Cassandra: flexible trust management and its application to electronic
health records. Technical Report UCAM-CL-TR-648, University of Cambridge,
Computer Laboratory, Oct. 2005.

[12] R. Bobba, O. Fatemieh, F. Khan, C. A. Gunter, and H. Khurana. Using
attribute-based access control to enable attribute-based messaging. In ACSAC 06,
Miami Beach, FL, December 2006.

[13] A. J. Bonner. Transaction Datalog: A compositional language for transaction
programming. Lecture Notes in Computer Science, 1369:373–395, 1998.

150

[14] A. J. Bonner. Workflow, transactions, and Datalog. In PODS, pages 294–305,
Philadelphia, PA, June 1999.

[15] A. J. Bonner. Personal communication, April 2008.

[16] A. Bossi, N. Cocco, and S. Dulli. A method for specializing logic programs. ACM
Transactions on Programming Languages and Systems, 12(2):253–302, 1990.

[17] J. P. Boyer, R. Hasan, L. E. Olson, N. Borisov, C. A. Gunter, and D. Raila.
Improving multi-tier security using redundant authentication. In ACM Computer
Security Architectures Workshop (CSAW 07), Fairfax, VA, November 2007.

[18] D. F. C. Brewer and M. J. Nash. The chinese wall security policy. In IEEE
Symposium on Security and Privacy, pages 206–214, Oakland, CA, May 1989.

[19] J. Bryans and J. S. Fitzgerald. Formal engineering of XACML access control policies
in VDM++. In M. Butler, M. G. Hinchey, and M. M. Larrondo-Petrie, editors,
ICFEM, volume 4789 of Lecture Notes in Computer Science, pages 37–56, Boca
Raton, FL, November 2007. Springer.

[20] B. Catania and E. Bertino. Static analysis of logical languages with deferred update
semantics. IEEE Transactions on Knowledge and Data Engineering, 15(2):386–404,
2003.

[21] S. Ceri, G. Gottlob, and L. Lavazza. Translation and optimization of logic queries:
The algebraic approach. In VLDB, pages 395–402, 1986.

[22] S. Ceri, G. Gottlob, and G. Wiederhold. Efficient database access from prolog. IEEE
Trans. Software Eng., 15(2):153–164, 1989.

[23] S. Chaudhuri, T. Dutta, and S. Sudarshan. Fine grained authorization through
predicated grants. In ICDE, pages 1174–1183, Istanbul, Turkey, April 2007.

[24] S. Conrad, B. Eaglestone, W. Hasselbring, M. Roantree, F. Saltor, M. Schönhoff,
M. Strässler, and M. W. W. Vermeer. Research issues in federated database systems:
Report of EFDBS ’97 workshop. SIGMOD Record, 26(4):54–56, 1997.

[25] W. R. Cook and M. R. Gannholm. Rule based database security system and method.
United States Patent 6,820,082, November 2004.

[26] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall, and J. Reagle. The
Platform for Privacy Preferences (P3P1.0) specification. W3C Recommendation,
April 2002.

[27] M. A. C. Dekker and S. Etalle. Audit-based access control for electronic health
records. Electronic Notes in Theoretical Computer Science, 168:221–236, 2007.

[28] C. Draxler. Accessing Relational and Higher Databases Through Database Set
Predicates in Logic Programming Languages. PhD thesis, Zürich University, 1991.

[29] Echelon Corporation. EIA/CEA 709.1-B-2002, LonTalk control network protocol
specification, 2002.

151

[30] P. Ehrlich and T. Considine (Chairs). Open Building Information Exchange (oBIX)
version 1.0. OASIS Committee Specification, December 2006.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=obix.

[31] S. Etalle and W. H. Winsborough. A posteriori compliance control. In SACMAT 07,
pages 11–20, Sophia Antipolis, France, 2007.

[32] D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th NIST-NCSC National
Computer Security Conference, pages 554–563, October 1992.

[33] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification and
change-impact analysis of access-control policies. In G.-C. Roman, W. G. Griswold,
and B. Nuseibeh, editors, ICSE, pages 196–205, St. Louis, MO, May 2005. ACM.

[34] S. Franzoni, P. Mazzoleni, S. Valtolina, and E. Bertino. Towards a fine-grained access
control model and mechanisms for semantic databases. In ICWS, pages 993–1000,
Salt Lake City, UT, July 2007. IEEE Computer Society.

[35] C. Friedman, G. Hripcsak, S. B. Johnson, J. J. Cimino, and P. D. Clayton. A
generalized relational schema for an integrated clinical patient database. In 14th
Symposium on Computer Applications in Medical Care (SCAMC), pages 335–339.
IEEE Computer Society, November 1990.

[36] H. Gallaire, J. Minker, and J.-M. Nicolas. Logic and databases: A deductive
approach. ACM Computing Surveys (CSUR), 16(2):153–185, June 1984.

[37] R. Goodwin, S. Goh, and F. Y. Wu. Instance-level access control for
business-to-business electronic commerce. IBM Systems Journal, 41(2):303–321, 2002.

[38] P. P. Griffiths and B. W. Wade. An authorization mechanism for a relational
database system. ACM Transactions on Database Systems (TODS), 1(3):242–255,
September 1976.

[39] S. Guillén, M. T. Arredondo, V. Traver, J. M. Garćıa, and C. Fernández. Multimedia
telehomecare system using standard TV set. IEEE Transactions on Biomedical
Engineering, 49(12):1431–1437, 2002.

[40] C. A. Gunter and T. Jim. Policy-directed certificate retrieval. Software– Practice and
Experience, 30(15):1609–1640, 2000.

[41] E. L. Gunter, A. Yasmeen, C. A. Gunter, and A. Nguyen. Specifying and analyzing
workflows for automated identification and data capture. In HICSS, pages 1–11,
Waikoloa, HI, January 2009. IEEE Computer Society.

[42] E. Hajiyev, M. Verbaere, and O. de Moor. CodeQuest: Scalable source code queries
with Datalog. In D. Thomas, editor, ECOOP, volume 4067 of Lecture Notes in
Computer Science, pages 2–27. Springer, 2006.

[43] M. A. Harrison and W. L. Ruzzo. Monotonic protection systems. In Foundations of
Secure Computation, pages 337–363. Academic Press, 1978.

[44] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating systems.
Communications of the ACM, 19(8):461–471, 1976.

152

[45] Honeywell Building Solutions. Honeywell Enterprise Buildings Integrator.
http://buildingsolutions.honeywell.com/Cultures/en-US/.

[46] G. Hsieh, K. Foster, G. Emamali, G. Patrick, and L. Marvel. Using XACML for
embedded and fine-grained access control policy. In ARES, Fukuoka, Japan, March
2009. IEEE Computer Society.

[47] G. Hughes and T. Bultan. Automated verification of access control policies using a
SAT solver. International Journal on Software Tools for Technology Transfer
(STTT), 10(6):503–520, 2008.

[48] P. Humenn. The formal semantics of XACML. Technical report, Syracuse University,
October 2003.
http://lists.oasis-open.org/archives/xacml/200310/pdf00000.pdf.

[49] S. Jahid and C. Gunter. Policy compilation for attribute based database access
control. In submitted for review to CCS 2009, 2009.

[50] S. Jha, N. Li, M. V. Tripunitara, Q. Wang, and W. H. Winsborough. Towards formal
verification of role-based access control policies. IEEE Transactions on Dependable
and Secure Computing (TDSC), 5(4):242–255, 2008.

[51] T. Jim. SD3: A trust management system with certified evaluation. In IEEE
Symposium on Security and Privacy, pages 106–115, Oakland, CA, May 2001.

[52] Johnson Controls. Metasys system extended architecture overview technical bulletin,
2008. http://cgproducts.johnsoncontrols.com/MET_PDF\1201527.pdf.

[53] G. Kabra, R. Ramamurthy, and S. Sudarshan. Redundancy and information leakage
in fine-grained access control. In SIGMOD Conference, pages 133–144, Chicago, IL,
June 2006.

[54] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection attacks with
instruction-set randomization. In S. Jajodia, V. Atluri, and T. Jaeger, editors, ACM
Conference on Computer and Communications Security, pages 272–280, Washington,
DC, October 2003.

[55] V. Kolovski. Formal semantics of XACML v3.0. Technical report, University of
Maryland, March 2008. http://www.mindswap.org/~kolovski/semantics.pdf.

[56] V. Kolovski, J. A. Hendler, and B. Parsia. Analyzing web access control policies. In
C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider, and P. J. Shenoy, editors,
WWW, pages 677–686, Banff, AB, May 2007. ACM.

[57] L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16(3):872–923, 1994.

[58] A. R. Lanfranco, A. E. Castellanos, J. P. Desai, and W. C. Meyers. Robotic surgery:
A current perspective. Annals of Surgery, 239(1):14–21, 2004.

[59] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. J. DeWitt.
Limiting disclosure in hippocratic databases. In VLDB, pages 108–119, Toronto, ON,
August 2004.

153

[60] N. Li and M. V. Tripunitara. On safety in discretionary access control. In IEEE
Symposium on Security and Privacy, pages 96–109, Oakland, CA, May 2005.

[61] P. Maes. Concepts and experiments in computational reflection. In OOPSLA 87,
pages 147–155, Orlando, FL, October 1987.

[62] D. Maier. Is prolog a database language? In NYU Symposium on New Directions for
Database Systems, New York City, NY, May 1984.

[63] Microsoft TechNet Forums. SQL/CLR DML error: Invalid use of side-effecting or
time-dependent operator. World Wide Web electronic publication, April 2008. http:
//forums.microsoft.com/TechNet/ShowPost.aspx?PostID=3203413&SiteID=17.

[64] P. M. Nadkarni. Clinical patient record systems architecture: An overview. Journal
of Postgraduate Medicine, 46(3):199–204, 2000.

[65] OASIS. eXtensible Access Control Markup Language (XACML). Technical Report
2.0, OASIS, February 2005.

[66] OASIS. Multiple resource profile of XACML v2.0. Technical Report 2.0, OASIS,
February 2005.

[67] OPC Task Force. OPC overview. OPC White Paper, October 1998.
http://www.opcfoundation.org/DownloadFile.aspx/General/OPC\%20Overview\

%201.00.pdf?RI=1.

[68] Oracle Corporation. Oracle Virtual Private Database. Technical report, Oracle
Corporation, June 2005. http://www.oracle.com/technology/deploy/security/
database-security/virtual-private-database/index.html.

[69] Oracle Corporation. Oracle service request number 5973395.992. Technical support
communication, January 2007.

[70] M. Poess and C. Floyd. New TPC benchmarks for decision support and web
commerce. ACM SIGMOD Record, 29(4):64–71, 2000.

[71] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting
techniques for fine-grained access control. In SIGMOD 04, pages 551–562, Paris,
France, 2004.

[72] A. Rosenthal and E. Sciore. Extending SQL’s grant and revoke operations, to limit
and reactivate privileges. In DBSec, volume 201 of IFIP Conference Proceedings,
pages 209–220, Schoorl, The Netherlands, August 2000.

[73] A. Rosenthal and E. Sciore. Abstracting and refining authorization in SQL. In Secure
Data Management Workshop (SDM), Toronto, ON, August 2004.

[74] K. A. Ross. Modular stratification and magic sets for Datalog programs with
negation. Journal of the ACM, 41(6):1216–1266, November 1994.

[75] J. Salas, R. Jiménez-Peris, M. Patiño-Mart́ınez, and B. Kemme. Lightweight
reflection for middleware-based database replication. In IEEE Symposium on Reliable
Distributed Systems (SRDS 2006), pages 377–390, Leeds, UK, October 2006.

154

[76] Siemens Building Technologies. APOGEE building automation system.
http://www.buildingtechnologies.usa.siemens.com/.

[77] J. A. Solworth and R. H. Sloan. A layered design of discretionary access controls with
decidable safety properties. In IEEE Symposium on Security and Privacy, pages
56–67, Oakland, CA, May 2004.

[78] SourceForge. Ladon – XACML enforcement for DB2. Open-source software,
December 2008. http://xacmlpep4db2.sourceforge.net/.

[79] Sun Microsystems. Sun’s XACML implementation, v1.2. Open-source software, July
2004. http://sunxacml.sourceforge.net/.

[80] L. Sweeney. k-anonymity: a model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

[81] Sybase, Inc. New security features in Sybase Adaptive Server Enterprise. Technical
report, Sybase, Inc., 2003.
http://www.sybase.com/content/1013009/new_security_wp.pdf.

[82] TAC by Schneider Electric. Andover Continuum family of security products, 2007.
http://www.tac.com/data/internal/data/07/59/1224706258025/Continuum+

Security+Family_Salesdatasheet_A4.pdf.

[83] TAC by Schneider Electric. Satchwell product catalogue: Controllers and building
management systems, 2008. http://www.tac.com/data/internal/data/07/68/

1227120410149/Satchwell+Cat_0908.pdf.

[84] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I.
Computer Science Press, 1988.

[85] United States Congress. Health Insurance Portability and Accountability Act of 1996
(HIPAA). Public Law 104-191, 1996.

[86] United States Congress. HITECH Act of the American Recovery and Reinvestment
Act of 2009. Public Law 111-005, 2009.

[87] United States Department of Health and Human Services. Summary of the HIPAA
privacy rule. World Wide Web electronic publication, May 2003. http://www.hhs.

gov/ocr/privacy/hipaa/understanding/summary/privacysummary.pdf.

[88] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM, 23(4):733–742, 1976.

[89] T. Verhanneman, L. Jaco, B. de Win, F. Piessens, and W. Joosen. Adaptable access
control policies for medical information systems. In J.-B. Stefani, I. M. Demeure, and
D. Hagimont, editors, DAIS, volume 2893 of Lecture Notes in Computer Science,
pages 133–140, Paris, France, November 2003. Springer.

[90] W3C Recommendation. XQuery 1.0 and XPath 2.0 formal semantics. Technical
report, W3C, January 2007. http://www.w3.org/TR/xquery-semantics/.

155

[91] I. Welch and F. Lu. Policy-driven reflective enforcement of security policies. In SAC
06, pages 1580–1584, Dijon, France, April 2006.

[92] Z. Zeng, S. Yu, W. Shin, and J. C. Hou. PAS: A wireless-enabled,
cell-phone-incorporated personal assistant system for independent and assisted living.
In ICDCS, pages 233–242, Beijing, China, June 2008. IEEE Computer Society.

[93] N. Zhang, M. Ryan, and D. P. Guelev. Synthesising verified access control systems
through model checking. Journal of Computer Security, 16(1):1–61, 2008.

[94] ZigBee Alliance. ZigBee specification, document 053474r17, January 2008.

156

Vita

Lars E. Olson
Department of Computer Science, 201 N. Goodwin Ave., MC-258

University of Illinois, Urbana, IL 61801, USA
Home page: http://ews.uiuc.edu/∼leolson1

RESEARCH INTERESTS

Reflective database access control, trust negotiation, database design and algorithms,
XML, security policy specification and enforcement, building automation systems.

EDUCATION

Ph.D. in Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL,
anticipated graduation date: October 2009.

Thesis: Reflective Database Access Control
Advisor: Dr. Carl A. Gunter and Dr. Marianne Winslett

M.S. in Computer Science, Brigham Young University, Provo, UT, 2003.
Thesis: Querying Disjunctive Databases in Polynomial Time
Advisor: Dr. David W. Embley

B.S. in Computer Science and Mathematics, summa cum laude, Brigham Young
University, Provo, UT, 2000.

TEACHING, RESEARCH, AND PROFESSIONAL EXPERIENCE

Research Assistant Dept. of Computer Science, University of Illinois, 2006-present
Worked with Professor Carl Gunter to develop security tools for reflective database

access control and for building automation systems. Prepared posters and conference
papers. Used Oracle, MySQL, PostgreSQL, SQL Server, Java, C#/.NET, C, Flex, Bison.

Instructor Dept. of Computer Science, University of Illinois, Spring 2008
Coordinated online course in computer security (CS 463). Prepared recorded lectures,

exams, and group project assignment.

Software Developer and Researcher CNRI, Reston, Virginia, Summer 2005 and
Summer 2006

157

Worked on integrating the Handle System from CNRI with the Globus Toolkit,
including recognizing proxy credentials from Globus. Also provided a naming system for
the caBIG project from the National Cancer Institute. Used Java, J2EE, WSDL.

Teaching Assistant Dept. of Computer Science, University of Illinois, 2005-2008
Held consultations with students, taught lectures, graded assignments and exams.

Class material includes basic computer science for non-majors (CS 105), databases (CS
411), information assurance (CS 498SH/CS 461), and computer security (CS 463).

Software Developer and Researcher Institute for Human and Machine Cognition,
Pensacola, Florida, Summer 2004

Implemented the TrustBuilder module as an authentication service for a web-services
architecture. Integrated TrustBuilder with the KAoS project from IHMC. Used Java,
J2EE, WSDL.

Research Assistant Dept. of Computer Science, University of Illinois, 2003-2005
Worked with Professor Marianne Winslett to develop trust negotiation theory and

create and present demos and posters.

Research Assistant Dept. of Computer Science, Brigham Young University, 2001-2003
Researched data extraction and integration with the Data Extraction Group.

Prepared conference papers and presentations, helped develop web-based demo of research
group projects. Also assisted in reviewing papers for conferences, and helped officiate at
the ER 2000 conference in Salt Lake City. Used Java, XML, PHP.

Teaching Assistant Dept. of Computer Science, Brigham Young University, 1998-2001
Graded homework, exams, and programming projects. Conducted weekly help sessions

to review for exams and to explain the projects. Held consultations with students to give
personal help with the class. Class material includes fundamentals of computer science
(CS 235 and CS236), introduction to programming for non-majors (CS 103), and
operating systems (CS 345).

Software Engineer MyComputer.com (now Omniture), Summer 2000
Developed tools for enhancing and maintaining commercial or personal websites. Used

PHP, C, MySQL.

AWARDS AND HONORARIES

• Rated as Outstanding TA (top 10% of evaluated teaching assistants) by the Center
for Teaching Excellence, UIUC, 2006.

• Recipient, Department Fellowship, Department of Computer Science, UIUC, 2003.

• Recipient, WordPerfect Scholarship, 1998-2000.

• Recipient, BYU Trustees’ Scholarship, 1993-1994, 1996-2000.

• Recipient, National Merit Scholarship, 1993-1994.

158

PROFESSIONAL SERVICE

• External Reviewer for various conferences, including ACM’s SIGMOD Conference,
Conference on Computer and Communications Security (CCS), Workshop on
Privacy in the Electronic Society (WPES); IEEE’s International Conference on Data
Engineering (ICDE), Symposium on Security and Privacy, Workshop (now
Symposium) on Policies for Distributed Systems and Networks (POLICY); W3C’s
WWW Conference; International Conference on Trust, Privacy & Security in Digital
Business (TrustBus); and International Conference on Trust Management (iTrust).

• Seminar Coordinator for the Database and Information Systems Group (DAIS),
August 2004-May 2005.

Refereed Conference Papers

[OGO09] L. Olson, C. Gunter, and S. Olson. A Medical Database Case Study for
Reflective Database Access Control. Under review for ACM Workshop on Security and
Privacy in Medical and Home-Care Systems (SPIMACS), in conjunction with CCS 2009,
November 2009, Chicago, Illinois.

[OGCW09] L. Olson, C. Gunter, W. Cook, and M. Winslett. Implementing Reflective
Access Control in SQL. In IFIP WG 11.3 Working Conference on Data and Applications
Security (DBSec), July 2009, Montreal, Quebec.

[OGM08] L. Olson, C. Gunter, P. Madhusudan. A Framework for Reflective Database
Access Control Policies. In ACM Conference on Computer and Communications Security
(CCS), October 2008, Alexandria, Virginia.

[BHOBGR07] J. Boyer, R. Hasan, L. Olson, N. Borisov, C. Gunter, and D. Raila.
Improving Multi-Tier Security Using Redundant Authentication. In ACM Computer
Security Architecture Workshop (CSAW), in conjunction with CCS 2007, November 2,
2007, Fairfax, Virginia.

[ORW07] L. Olson, M. Rosulek, and M. Winslett. Harvesting Credentials in Trust
Negotiation as an Honest-But-Curious Adversary. In ACM Workshop on Privacy in the
Electronic Society (WPES), in conjunction with CCS 2007, October 29, 2007, Alexandria,
Virginia.

[LBOG06] A. Lee, J. Boyer, L. Olson, and C. Gunter. Defeasible Security Policy
Composition for Web Services. In 4th ACM Workshop on Formal Methods in Security
Engineering (FMSE), in conjunction with CCS 2006, November 3, 2006, Fairfax, Virginia.

[OW06] L. Olson, M. Winslett, G. Tonti, N. Seeley, A. Uszok, and J. Bradshaw. Trust
Negotiation as an Authorization Service for Web Services. In International Workshop on
Security and Trust in Decentralized/Distributed Data Structures (STD3S), in conjunction
with ICDE, 2006.

159

[OE03] L. Olson and D. Embley. Results of Using an Efficient Algorithm to Query
Disjunctive Genealogical Data. In 3rd Annual Workshop on Technology for Family
History and Genealogical Research (FHT), April 2003, Provo, Utah.

[OE02] L. Olson and D. Embley. Efficiently Querying Contradictory and Uncertain
Genealogical Data. In 2nd Annual Workshop on Technology for Family History and
Genealogical Research (FHT), April 2002, Provo, Utah.

Technical Reports

[ORW07T] L. Olson, M. Rosulek, and M. Winslett. A Generalized Honest-But-Curious
Strategy for Automatically Harvesting Credentials. Technical Report
UIUCDCS-R-2007-2892, Department of Computer Science, University of Illinois, August
2007.

PRESENTATIONS

• Paper presentation, “Implementing Reflective Access Control in SQL,” at DBSec,
July 2009.

• Paper presentation, “A Framework for Reflective Database Access Control Policies,”
at CCS, October 2008.

• Paper presentation, “Harvesting Credentials in Trust Negotiation as an
Honest-But-Curious Adversary,” at WPES, October 2007.

• Poster, “The Need-to-Know Attack on Trust Negotiation,” Midwest Security
Workshop, Purdue University, April 2007.

• Poster and demo, “Reflective Database Policies,” Midwest Database Research
Symposium, Purdue University, April 2007; also presented at Midwest Security
Workshop, Purdue University, April 2007.

• Poster presentation, “Reflective Database Policies,” Midwest Security Workshop,
September 2006.

• Invited talk, “Adapting the Handle System for Grid Applications,” Argonne
National Labs Distributed Systems Laboratory, Chicago, Illinois, September 2006.

• Paper presentation, “Trust Negotiation as an Authorization Service for Web
Services,” at the STD3S Workshop, April 2006.

• Poster presentation, “Using the TrustBuilder Authorization Framework as a Web
Service,” ITI Workshop on Dependability and Security, December 2004.

• Invited talk, “Querying Disjunctive Databases in Polynomial Time,” UIUC DAIS
seminar, October 2003.

• Paper presentation, “Results of Using an Efficient Algorithm to Query Disjunctive
Genealogical Data,” at FHT, April 2003.

• Paper presentation, “Efficiently Querying Contradictory and Uncertain Genealogical
Data,” at FHT, April 2002.

160

LANGUAGES

Fluent in English, Portuguese

REFERENCES

Carl A. Gunter, Professor of Computer Science
University of Illinois at Urbana-Champaign
(217) 244-1982

Marianne Winslett, Research Professor of Computer Science
University of Illinois at Urbana-Champaign
(217) 333-3536

Madhusudan Parthasarathy, Assistant Professor of Computer Science
University of Illinois at Urbana-Champaign
(217) 244-1323

William R. Cook, Assistant Professor of Computer Science
University of Texas
(512) 471-9555

Susan Hinrichs, Lecturer
University of Illinois at Urbana-Champaign
(217) 244-6173

Marsha Woodbury, Lecturer
University of Illinois at Urbana-Champaign
(217) 244-8259

Frank Siebenlist, Senior Software Architect
Argonne National Laboratory
franks@mcs.anl.gov

Sam X. Sun, Software Architect
Corporation for National Research Initiatives
(703) 620-8990

Jeffrey M. Bradshaw, Senior Research Scientist
Institute for Human and Machine Cognition
(850) 202-4462

161

