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Abstract

This thesis proposes runtime monitoring as a central principle in developing reliable software.

Two major research directions are investigated. The first, called monitoring-oriented programming

(MOP), aims at detecting and recovering from requirements violations at runtime. In MOP, a user

develops specifications together with code; specifications are synthesized into monitors at compile

time, and the monitors are then weaved within the application resulting in a system that is aware

of its own execution and can correct itself. The second major monitoring-based research direction

addressed in this thesis is predictive runtime analysis (PRA), which aims at detecting errors in pro-

grams before deployment. In PRA, the program is executed and a causal model is extracted from

the observed execution; the causal model is then exhaustively analyzed for potential violations, this

way PRA is able to detect errors that did not necessarily occur in the observed execution but that

could appear in other executions. MOP and PRA are intrinsically related, both using the same

specification formalisms and monitor synthesis algorithms; the difference is that MOP detects errors

contemporaneously with their occurrence, and can thus also recover from them, while PRA detects

potential errors that can take place in other –unobserved, but causally possible– executions of the

system, and thus the system designer can fix them before deployment. Both techniques are sound,

in that all reported errors are real.

Two prototype systems have been implemented that prove the feasibility of the proposed tech-

niques. JavaMOP is a monitoring-oriented programming system for Java, which compiles require-

ments specifications and recovery actions into optimized aspects, which are further weaved within

the Java application using off-the-shelf AspectJ compilers. jPredictor is a predictive runtime analy-

sis for concurrent Java applications. It is based on a low-level instrumentation of binary code which,

when executed, emits events together with causal information to an external observer. The observer

then exhaustively investigates the resulting causal model, detecting all potential concurrency errors

witnessed by the observed execution.
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iii



Acknowledgments to Feng Chen

Due to a tragic event that led to a premature end of Feng Chen’s life, this section was

written on the 12th of August 2009 by Feng Chen’s Ph.D. adviser, and it is a short

acknowledgment to Feng Chen and his amazing accomplishments during his doctoral

studies at the University of Illinois at Urbana-Champaign. Feng successfully defended

his PhD thesis on 20th of July 2009 and, with the exception of this unfortunate section,

this thesis was completely written and revised by himself.

Both Feng and I started our academic lives at the University of Illinois at Urbana-Champaign seven

years ago, in the fall of 2002. Feng had very strong credentials even at that early stage in his

career, having worked at the prestigious Bell Laboratories in Beijing and having published papers

in top conferences, so I had no doubt that we would have a fruitful collaboration over the years

to come. We have together founded and developed a research agenda in formal methods, software

engineering and programming languages – an agenda that eventually led to the creation of the

Formal Systems Laboratory (FSL). Feng has not only been my dear student, but in time he has

become an invaluable colleague and eventually a very good friend, one whose opinion I always asked

when important decisions had to be taken in our group.

Feng’s seminal work in runtime verification, some of it included in this thesis, serves as a scientific

foundation that challenged several research groups around the world. For example, his work on

parametric trace slicing and monitoring turned out to lead to systems that can verify their own

executions at runtime with a runtime overhead lower than 10%, which significantly outperformed

existing similar systems. Also, his work on sliced causality and predictive runtime analysis has lead

to systems whose predictive power exceeded by far that of other existing systems. His research

accomplishments have been published and presented in the best international conferences. In fact,

Feng’s Curriculum Vitae speaks by itself: Feng has published more than twenty high quality papers

in top conferences such as ICSE, OOPSLA, CAV, TACAS, ASE, SAS, etc. He gave countless

iv



presentations of his work, and was invited to be an intern at Microsoft Research in Redmond several

times. Feng’s research accomplishments have been rewarded both by colleagues directly interested

in his work and by the Department of Computer Science of our university interested in rewarding

the best students in all areas: Feng has obtained the ACM SIGSOFT Distinguished Paper Award

for his paper in the ASE 2008 conference, and the C.L. and Jane Liu Award offered once a year

to a most promising graduate student in the Department of Computer Science of the University of

Illinois at Urbana-Champaign, regardless of his or her area.

This tragic event saddens us even deeper when we think of the bright future that Feng had in front

of him. Early this year Feng interviewed and accepted a tenure-track assistant professor position

in the Department of Computer Science at Iowa State University. After depositing this thesis in

mid-August 2009, Feng’s plan was to move to Iowa to start his career as a Professor. Moreover, we

co-founded a start-up company, targeted at further developing and eventually commercializing the

technologies initiated by Feng during his doctoral studies. His professorship position at a very good

university, together with his software company co-founder status, put Feng in an elite category of

computer scientists, comprising no more than a handful of such distinguished professionals.

Feng’s sudden death has generated shock-waves both in the Department of Computer Science at

the University of Illinois and in the scientific community. Uncountably many messages have been

received from colleagues and friends all over the world, expressing their sorrows for the unbelievable

loss. Nevertheless, no matter how big the loss of Feng is to the scientific community and his friends,

it cannot be compared to the loss of a son, a brother, and a fiancè. Feng’s numerous colleagues,

professors, friends, and myself, convey our condolences to Feng’s father Guofan Chen, to Feng’s

mother Yamei Wu, to Feng’s brother Jun Chen, and to Feng’s fiancé Gehui Zhang. Feng was highly
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Chapter 1

Introduction

As we are in a society increasingly dependent on software, the consequences of programming errors

are becoming increasingly important. Significant material values, sometimes even our lives, may

depend on the correct behavior of software. The discovery and prevention of software errors has

therefore become an extremely important yet very difficult problem involving many aspects, such as

incorrect or incomplete specifications, errors in coding, or faults and failures in hardware or operating

system. This thesis addresses two related aspects of the problem, namely, checking that the behavior

of a system meets its specification and modifying the system’s behavior if its specification is violated.

Our research results in a systematic and tool-supported software development methodology that

regards runtime monitoring as a basic development principle to improve software reliability.

Many engineering disciplines consider and accept monitoring as a major design principle to in-

crease safety, reliability and dependability of their products, such as fuses and watchdogs. Similarly,

runtime monitoring of requirements in software development can increase the reliability of the re-

sulting software systems. On the one hand, if monitoring is used as integral part of a system to

detect and recover from requirements violations at runtime, then monitoring can increase the de-

pendability and safety of the deployed system, by guiding the running system to avoid catastrophic

failures; in aircraft and spacecraft systems, for example, automatic, rather fancy controllers are typ-

ically monitored to ensure that their predicted state stays within a “stability envelope”, from where

the system can always be safely controlled in a timely manner using slower but better understood

and safer procedures. On the other hand, if used to detect errors in programs before deployment,

monitoring can bring more rigor and more power to testing. Monitors can verify not only states of

programs at specific points, but also temporal behaviors referring to complex patterns and histories

of actions. Monitors can even predict potential behaviors of the monitored program, which may

have not occurred, from what have been observed, significantly increasing the coverage of testing.

We have developed a generic and automated framework for application of runtime monitoring

in software development, called monitoring-oriented programming (MOP). MOP aims at reducing
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the gap between formal specification and implementation by integrating the two and allowing them

together to form a system. Monitors are automatically synthesized from formal specifications and

integrated at appropriate places in the program, according to user-configurable attributes. Moreover,

specification and implementation can and should interact with each other by design, rather than by

grafting monitoring requirements on an existing system to increase its safety. In MOP, runtime

violations and/or validations of specifications can result in adding functionality by executing any

user-defined code at any user-defined places in the program. For example, outputting debugging

information and/or executing recovery code when the specification is violated is very important, but

in our framework it is just one specific use of monitoring among others.

In MOP, one specifies requirements specification using extensible specification formalisms. Prac-

tice has shown that there is no “silver bullet” logic to express all requirements. Some can be best

expressed using a certain logical formalism, for example temporal logics, while others can be best

expressed using other logics, like that of regular expressions. For these reasons, the MOP framework

provides the capability of adding new monitoring logics through an extensible logic framework. More

precisely, as part of our MOP methodology, we introduced the general concept of a logic plug-in,

as a formalization of the informal notion of “monitoring logic”, i.e., specification formalism. Every

logic plug-in encapsulates a monitor synthesis algorithm for a particular logic. The interface of

logic plug-ins is standardized, allowing one to extend MOP with her/his own logics. A set of logic

plug-ins have been created and developed within the MOP framework, supporting a broad range of

monitoring logics from finite state machines (FSM) to context-free grammars (CFG).

In practice, many requirements specifications are unavoidably parametric. Parametric specifica-

tions are specifications with free variables, i.e., parameters, which are instantiated to concrete values

at runtime. Efficient monitoring of parametric specifications is highly challenging due to the fact

that the connection among parameters can be sophisticated and the number of parameter instances

created during an execution can be tremendous. To address this problem, we have developed a

logic-independent and efficient solution in MOP for monitoring parametric properties. Our solution

maintains a monitor instance for every parameter instance encountered at runtime and uses the

parameter information as the indexing mechanism to search for corresponding monitor instances.

Every monitor instance is regarded as a black box that checks its own trace which contains only

relevant events. The MOP framework assumes no knowledge about internal details of the monitor

and the monitor does not need to handle parameters unless it chooses to. This way, parameter

handling is separated from actual property verification, allowing us to develop a framework that is
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not only optimized for monitoring parameter properties but also generic in specification formalisms.

Shortly, one can understand MOP from at least three perspectives:

1. As a discipline allowing one to improve safety, reliability and dependability of a system by

monitoring its requirements against its implementation at runtime;

2. As an extension of programming languages with logics. One can add logical statements any-

where in the program, referring to past or future states of the program. These statements are

like any other programming language boolean expressions, so they give the user a maximum

of flexibility on how to use them: to terminate the program, guide its execution, recover from

a bad state, add new functionality, throw exceptions, etc.;

3. As a lightweight formal method. While firmly based on logical formalisms and mathematical

techniques, MOP’s purpose is not program verification. Instead, the idea is to avoid verifying

an implementation before operation, by not letting it go wrong at runtime.

MOP can be used to monitor and verify program executions in software testing. Our evaluation

has shown that MOP provides an effective solution to detect semantics-related errors that are usually

omitted by ordinary software testing (Section 5.3.2). However, MOP’s capability of finding errors

is limited by the coverage of the underlying testing technique, since MOP checks only what have

occurred in the testing process, just like any other monitoring-based approaches. This limitation

is especially critical for concurrency-related errors. Many, if not most, real-world software systems

are concurrent. Concurrent systems may exhibit different behaviors due to different thread/process

interleavings when executed at different times, even with the same input. This inherent nonde-

terminism makes concurrent programs very difficult to analyze, test and debug. To address this

problem, we have developed predictive runtime analysis, a technique to infer potential behaviors of

a concurrent system from its executions that have been observed. In other words, predictive runtime

analysis allows us to see beyond what have occurred and to predict hidden concurrent errors in the

monitored system even before the errors have actually happened.

Predictive runtime analysis extracts from an observed execution trace a causal partial-order

dependence relation and then generates all the consistent linearizations of that partial-order, which

have been proven to be valid executions of the observed concurrent system even if they have yet

occurred. The inferred executions can be checked against requirements specification, which can

be either generic, such as race conditions, or program specific, e.g., user-specified properties, using

any existing monitoring techniques, such as MOP. Any violation of the given specification by some

3



inferred execution reveals a potential error in the system. In other words, by observing an execution

trace that may not violate the requirements, one can correctly predict faulty execution traces without

the need to run the program again.

The causal partial order extracted from the observed execution determines the prediction capa-

bility of predictive runtime analysis. The more relaxed is the partial order, the more linearizations

can be generated, meaning that more potential executions can be inferred and thus better prediction

capability can be achieved. Based on this observation, we have proposed sliced causality, a loose

“happen-before” causality. Based on an apriori static dependence analysis, sliced causality drasti-

cally cuts the causal partial order extracted from the observed execution by removing unnecessary

dependencies; this way, a significantly larger number of consistent runs can be inferred and thus

analyzed. Sliced causality does not sacrifice soundness of the analysis results, i.e., it does not report

any false positives, for the increased analysis coverage: every linearization computed using sliced

causality is provn to be a feasible execution of the concurrent system under analysis.

We have developed an MOP tool for Java programs, called JavaMOP. JavaMOP instantiates

the MOP framework and provides different interfaces to the user, namely, a web-based interface,

a Eclipse-based graphic interface, and a command-line interface. Many monitoring logics are sup-

ported in JavaMOP based on the extensible MOP logic framework, including linear temporal logics

(LTL), extended regular expressions (ERE), and context-free grammars (CFG). We have also imple-

mented jPredictor, a predictive runtime analysis tool for Java. jPredictor combines sliced causality

with lock atomicity, which captures the semantics of locking mechanisms in Java, providing en-

hanced predication capability for finding errors in multi-threaded Java programs. Both tools have

been applied to many real-world Java programs and detected tricky bugs in popular open-source

applications, outperforming other similar tools in both effectiveness and efficiency.

Outline. This thesis is organized as follows. Chapter 2 gives an brief overview of approaches pre-

sented in this thesis using a real-world example. Chapter 3 discusses the underlying philosophy of

MOP, including the MOP monitoring model and the extensible logic framework. Chapter 4 focuses

on the logic-independent framework provided by MOP for efficiently monitoring parametric prop-

erties. Chapter 5 discusses the implementation and evaluation of JavaMOP. Chapter 6 introduces

predictive runtime analysis and defines sliced causality. Chapter 7 presents jPredictor and evaluates

its effectiveness in practice. Chapter 8 discusses related work and Chapter 9 concludes.
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Chapter 2

Overview

Here we give an overview of approaches presented in this thesis using a safety example in the Java

Util library. We first show how one can specify and check the desired safety property using the MOP

framework. Then we discuss the example in the context of concurrent programs, illustrating how

to predict potential violations of the property even when the observed execution did not violate the

property.

2.1 Monitoring-Oriented Programming

Every practical programming language provides libraries that contains fundamental and important

functions shared by different programs, e.g., input/output and basic data-structures. Proper us-

age of the libraries is critical for developing reliable programs and often requires to follow certain

contracts of the libraries, e.g., certain orders or patterns of calling related library functions. The

library contracts are usually described informally in the library specification, but some of them are

considered so important that language designers feel it appropriate to include corresponding run-

time safety checks as built-in part of programming languages. For example, a Java virtual machine

(JVM) will raise a ConcurrentModificationException when running the following piece of code,

in which Vector is a Java library class encoding the data-structure for vectors and Iterator is a

Java interface that can be used to enumerate a set of elements:

Vector v = new Vector();

v.add(new Integer(10));

Iterator i = v.iterator();

v.add(new Integer(20));

System.out.println(i.next());

The first line of code creates a new Vector object, v, and the second line adds a new element into

v. The third line creates an Iterator object, i, for v; this way, one can enumerate the elements in v
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using i. In the fourth line of code, another element is added into v. At the end, in the fifth line, the

program tries to print out the next available element in i, which will trigger a runtime exception as

mentioned above. That is because any Iterator object returned by Vector’s iterator() method

is assumed fail-fast in Java: the underlying vector is not allowed to be modified while some of its

iterators access its elements, or a ConcurrentModificationException will be thrown.

The fail-fast property captures unsafe usage of Iterator at runtime and prevents other problems

that may be caused by the unsafe usage. But another similar interface provided by Java, named

Enumeration, which is also used to enumerate elements and can be obtained by Vector’s elements()

method, is not assumed fail-fast, and, obviously, neither are any other user-defined iterator-like

objects. The lack of support for the fail-fast Enumeration may lead to tricky problems in practice:

we have detected a bug in an open source application, jHotDraw [55], caused by a violation of the

fail-fast property for Enumeration using the MOP approach discussed below. Since no exception

was thrown when an Enumeration object was used unsafely, the program generated unexpected

output at a point that is far away from the unsafe usage of the Enumeration object, making it

difficult to locate the real cause of the problem using ordinary testing techniques.

It is not trivial for a programmer to manually implement the runtime checking of the fail-fast

property efficiently and correctly because it involves interaction between two objects and also needs

to avoid problems caused by concurrency. Moreover, since Enumeration is an interface, every

its concrete implementation needs to implement the runtime checking if one wants to enforce the

fail-fast property for all Enumeration objects. We next show that using an MOP tool, one can

have the fail-fast runtime checking for Enumeration automatically generated and integrated into

any program using Enumeration, avoiding all the complexity of manual implementation. Also, the

automatic monitor generation and integration provides stronger guaranty for correctness with regard

to the checked property without sacrificing efficiency: our evaluation shows that the monitoring

code generated by MOP is as efficient as manually optimized implementation and better than other

existing runtime verification systems in most cases (Section 5.3).

In MOP, one first needs to formally specify the desired property using some specification for-

malism. Figure 2.1 gives the JavaMOP specification for the fail-fast Enumeration. A complete and

rigorous syntactic definition of JavaMOP specifications is given in Section 5.1. We here only explain

the above specification informally. The first line in the specification in Figure 2.1 names the specified

property, UnsafeEnum in this case, and states that this property uses two parameters: Vector v

and Enumeration+ e; the “+” means that this property (and its monitors) is inherited by all the
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UnsafeEnum(Vector v, Enumeration+ e) {
event create after(Vector v)

returning(Enumeration+ e) :
call(Enumeration Vector+.elements())

&& target(v) {}
event updatesource after(Vector v) :

(call(* Vector+.remove*(..))
|| call(* Vector+.add*(..))
|| call(* Vector+.clear(..))
|| call(* Vector+.insertElementAt(..))
|| call(* Vector+.set*(..))
|| call(* Vector+.retainAll(..)))
&& target(v){}

event next before(Enumeration+ e) :
call(* Enumeration+.nextElement())

&& target(e){}
ere : create next* updatesource updatesource* next
@match {

System.out.println("improper enumeration usage at " + __LOC);
}

}

Figure 2.1: Property UnsafeEnum in JavaMOP

subclasses of Enumeration. Three events invovled in the property are then defined using AspectJ-

like syntax [58]. Event create is issued whenever an Enumeration object is created for a Vector

object. It contains two parameter, namely, v for the target vector and e for the created enumeration.

Event updatesource is issued when methods modifying a Vector are called with one parameter,

namely, v for the target vector. Event next is issued when the nextElement() method is called

on an Enumeration object and uses the parameter e for the target enumeration. After the event

definitions, an ERE formula, essentially a regular expression in this example, is given to express the

fail-fast pattern: at least one updatesource event is seen after the create event and before some

next event. Note that events in the formula are assumed parameterized as above. Therefore, the

specified formula should be interpreted as: for any pair of Vector v and Enumeration e, we have

that e is created for v and then v is updated, after which e is used to access the elements in v.

A match of the specified ERE pattern indicates a violation of the fail-fast property. Hence, in

the specification in Figure 2.1, we associate a @match handler with the specified pattern, which will

be executed when the pattern is matched. In this example, the @match handler simply reports the

line of code at which the pattern is matched, i.e., where an Enumeration object is used after the

underlying vector has been changed. A JavaMOP reserved keyword LOC is used in this handler,

which gives the line of code at which the latest event is issued.
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JavaMOP will translate the given specification into AspectJ code. One can use any off-the-shelf

AspectJ compiler to weave the generated monitoring code into any program using Enumeration and

Vector to enforce the fail-fast property for Enumeration. The generated monitoring code will create

many monitors at runtime, each for a corresponding pair of v and e generated during the execution of

the program, and will dispatch the events correspondingly; for example, if several enumerations are

created for the same Vector object v, then an updatesource event with parameter v is sent to each

monitor corresponding to each enumeration of v. The monitor will check the received events against

the specified pattern and execute the associated @match handler when the pattern is matched. The

process of creating and locating monitors at a received event can be sophisticated, considering all

the possible parameter combinations of events. For example, JavaMOP generates about 200 lines of

AspectJ code from the specification in Figure 2.1, which can be nontrivial if implemented manually.

More details about the monitoring process are discussed in Chapter 4.

2.2 Predictive Runtime Analysis

Figure 2.2: Multi-threaded execution

MOP provides an effective solu-

tion to detect errors that actu-

ally occur during an execution.

But it suffers from the same lim-

ited coverage as testing with re-

gards to error detection. In other

words, if the observed execu-

tion does not violate the speci-

fied property, the monitor gener-

ated by MOP will not be able to find any error even when there is a bug in the monitored program.

This limitation is especially critical for detecting concurrent errors. Let us consider the example in

Figure 2.2.

There are two threads in the program in Figure 2.2, namely, the main thread and the task thread.

Three variables are used: vector is a Vector object, enum is an Enumeration object created for

vector, and flag is used for synchronization between the main thread and the task thread. All

three variables are shared between the two threads. The main thread changes vector and the task

thread uses enum. Synchronization is unnecessary, since only the main thread modifies flag. This
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program is buggy because one of its execution may match the UnsafeEnum property discussed above.

It is because the developer makes a (rather common [39]) mistake, using if instead of while in the

task thread. Suppose now that we observed a successful run of the program, as shown by the arrow,

which has much higher probability to happen during testing than the buggy execution. The monitor

generated from the JavaMOP specification in Figure 2.1 will not find the bug because the observed

execution does not match the specified pattern in this particular run. However, with the predictive

runtime analysis technique that we have developed, one will be able to predict the bug from the

observed, successful execution without the need to re-run the program to actually hit the bug.

Our approach was inspired by the happen-before causality proposed in [63]. Several approaches

have been introduced to detect concurrency bugs based on happen-before techniques, e.g., [72, 81,

82]. They extract causal partial orders from analyzing exclusively the dynamic thread communication

in executions. But as discussed in [83], without additional information about the structure of the

program that generated the event trace, the least restrictive causal partial order that an observer

can extract is the one in which each write event of a shared variable precedes all the corresponding

subsequent read events and which is a total order on the events generated by each thread. Since

this causality considers all interactions among threads, e.g., all reads/writes of shared variables,

the obtained causal partial orders are rather restrictive, or rigid, in the sense of allowing a reduced

number of linearizations and thus of errors that can be detected; in general, the larger the causality

(as a binary relation) the fewer linearizations it has. Hence, those happen-before based approaches

provide limited capability of predicting concurrent bugs. For example, they will not be able to find

the bug in Figure 2.2, due to the causality induced by the read/write of flag.

We have defined sliced causality, a causal partial order relation significantly reducing the size

of the computed causality without giving up soundness or genericity of properties to check: it

works with any monitorable (safety) properties, including regular patterns, temporal assertions,

data-races, atomicity, etc. Based on sliced causality, we have developed the predictive runtime

analysis technique that is more effective and more accurate than other existing techniques. Let

us use the example in Figure 2.2 to intuitively explain our approach. In the program in Figure

2.2, the use of enum is not controlled by the preceeding if statement in the task thread, since the

while loop will executed no matter what choice is made at the if statement1. Therefore, our

technique will ignore the causality induced by the write/read on flag because it does not affect the

events relevant to the UnsafeEnum propety (updates of vector and uses of enum). Consequently, the

1It is more complicated to decide the control dependence when more control flow statements, e.g., exception
throwing, are considered. Interested readers can refer to [32] for details.
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resulting sliced causality extracted from the observed execution does not impose any order between

vector.addAll() and enum.hasNextElement(). This means that these two statements can be

executed in any order, including one matching the UnsafeEnum pattern. The bug is predicted. When

the bug is fixed by replacing if with while in the task thread, the while loop on enum is controlled

by the while loop on flag (since it is a potentially non-terminating loop). Our technique then

will take the causality induced by the write/read on flag into account, resulting in a causal order

between vector.addAll() and enum.hasNextElement(). No violation will be reported in this case.

The sliced causality is constructed by making use of dependence information obtained both

statically and dynamically. Briefly, instead of computing the causal partial order on all the observed

events like in the traditional happen-before based approaches, our approach first slices the trace

according to the desired property and then computes the causal partial order on the achieved slice;

the slice contains all the property events, i.e., events relevant to the property, as well as all the

relevant events, i.e., events upon which the property events depend, directly or indirectly. This way,

irrelevant causality on events is trimmed without breaking the soundness of the approach, allowing

more permutations of relevant events to be analyzed and resulting in better coverage of the analysis.

In short, based on an apriori static analysis, sliced causality drastically cuts the usual happen-

before causality by removing unnecessary dependencies. It thus allows for a significantly larger

number of consistent runs to be inferred and thus analyzed. Experiments show that, on average,

the sliced causality relation has 50% or less direct inter-thread causal dependencies compared to

happen-before [30]. Since the number of linearizations of a partial order tends to be exponential

with the size of the complement of the partial order (as a binary relation), any linear reduction in size

of the sliced causality compared to traditional happen-before, is expected to increase exponentially

the coverage of the analysis. Indeed, the use of sliced causality allowed us to detect concurrency

errors that are unlikely be detected using conventional happen-before causalities.
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Chapter 3

The MOP Philosophy

Monitoring oriented programming (MOP) is a generic framework for runtime verification. Run-

time verification (RV) [48, 84, 16] aims at combining testing with formal methods in a mutually

beneficial way. The idea underlying runtime verification is that system requirements specifications,

typically formal and referring to temporal behaviors and histories of events or actions, are rigorously

checked at runtime against the current execution of the program, rather than statically against all

hypothetical executions. If used for bug detection, runtime verification gives a rigorous means to

state and test complex temporal requirements, and is particularly appealing when combined with

test case generation [8] or with steering of programs [60]. A large number of runtime verification

techniques, algorithms, formalisms, and tools such as Tracematches [3], PQL [66], PTQL [44], MOP

[25], Hawk/Eraser [34], MAC [60], PaX [47], etc., have been and are still being developed, showing

that runtime verification is increasingly adopted not only by formal methods communities, but also

by programming language designers and software engineers.

Most RV approaches focus on particular application domains to achieve better effectiveness

and/or efficiency, bound to specific programming languages and specification formalisms (see Section

8.1 for more discussion), despite the fact that they share many fundamental issues, including how

to observe the program execution and how to check the observed execution. We focus on genericity

in MOP, aiming at providing fundamental support for runtime monitoring instead of a domain-

specific solution. More precisely, MOP is generic in both programming languages and specifications

formalisms, thanks to its well-defined monitoring model and carefully designed architecture. One

can easily instantiate it to fit in different applications domains, greatly facilitating application of

runtime verification in practice.

In the rest of this chapter, we first explain the monitoring model and architecture of MOP

and then introduce its extensible logic repository. At the end, a generic and efficient parametric

monitoring mechanism is presented.
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3.1 MOP Monitoring Model

Many properties can be monitored at the same time in MOP. The execution trace against which the

various properties are checked is extracted from the running program as a sequence of events taking

state snapshots. Events produce sufficient information about the concrete program state in order

for the monitors to correctly check their properties. A monitor is typically interested in a subset of

events. Figure 3.1 illustrates the monitoring model adopted by MOP.

… …

Property
Monitor1

Property
Monitor2

Property
Monitor2

snapshot1

snapshot2
snapshotn

event1 event2 eventn

Running Program

Concrete Trace

Abstract Traces

Monitors

Abstraction

Filtering

Figure 3.1: MOP Monitoring Model

In MOP, the runtime monitoring process of each property consists of two orthogonal mechanisms:

observation and verification. The observation mechanism extracts property-relevant and filtered

system states at designated points, e.g., when property-specific events happen. The verification

mechanism checks the obtained abstract trace against the (monitor corresponding to the) property

and triggers desired actions in case of violations or validations. For instance, for the simple global

property “always (x > 0)”, the events to observe are the updates of the variable x and the relevant

state information (or snapshot) to extract is the value of x. This observation process yields a

sequence of values of x: the relevant abstract trace. The corresponding monitor checks whether the

value of x is larger than zero. Observation and verification are therefore independent: the running

mode of the monitor and/or the algorithm used within the monitor does not affect how the execution

is observed, and vice versa. This clear separation in the MOP monitoring model results a highly

configurable and extensible monitoring framework, as discussed in what follows.
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3.2 Configurable Monitoring

The monitoring model in Figure 3.1 makes no assumption or restriction on the way that the monitor

works. This makes MOP a highly configurable and extensible runtime verification framework. A

monitor can be used in different ways and can interact with the monitored program at different

places, depending on specific needs of the application under consideration. For example, in some

applications, the monitor may need to use the same resources as the rest of the program, in others

one may want to run the monitors as different processes. The user should be allowed to configure

the monitor for her/his needs. MOP thus provides several options that one can use to configure a

monitor for different requirements. We next discuss each of them in depth. Note that these options

are general, that is, they are not specific to a particular application. An MOP instance may choose

to implement some or all of them according to different requirements; also, an MOP instance provide

additional configuration options based on its application domain. Some related discussion can be

found in Sections 5.1 and 5.2.

Inline or outline, online or offline.

Depending on where the monitoring code is executed, one can distinguish between inline monitoring

and outline monitoring. Under inline monitoring, the monitor runs as a embeded component in the

monitore program, using the same resource space as the program. The monitor is usually inserted

as one or more pieces of code into the monitored program. In the outline mode, the monitoring

code is executed as a different process, potentially on a different machine or CPU. The in-line

monitor can often be more efficient because it does not need inter-process communication and can

take advantage of compiler optimizations. However, an inline monitor cannot detect whether the

program deadlocks or stops unexpectedly. Outline monitoring has the advantage that it allows,

but does not enforce, a centralized computation model, that is, one monitor server can be used

to monitor multiple programs. In order to reduce the runtime overhead of out-line monitoring in

certain applications, one can define communication strategies; for example, the monitored program

can send out the concrete values of the relevant variables and the outline monitor evaluates the

state predicates, or, alternatively, the monitored program sends out directly the boolean values of

the state predicates.

Depending on when the desired property is checked against the observed execution, one can

distinguish between online monitoring and offline monitoring. Under online monitoring, which is

the most used case in runtime verification, specifications are checked against the execution of the
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program dynamically and run-time actions are taken as the specifications are violated or validated.

The off-line mode is mostly used for debugging purposes: the program is instrumented to log an

appropriate execution trace in a user-specified file and a program is generated which can analyze

the execution trace. The advantage of off-line monitoring is that the monitor has random access

to the execution trace. Indeed, there are common logics for which online monitoring is exponential

while offline monitoring is linear [76].

Note that the above two pairs of running mode options are orthogonal to each other. In par-

ticular, an inline offline configuration inserts instrumentation code into the original program for

generating and logging the relevant states as the program executes. Alternatively, an outline offline

configuration generates an observer process which receives events from the running program and

generates and then logs the states relevant to the corresponding specification. The latter may be

desirable, for example, when specifications involve many atomic predicates based on a relatively

small number of program variables; in this case, the runtime overhead may be significantly reduced

if the program is instrumented to just send those variables to the observer and let the latter evaluate

the predicates.

Synchronous monitors.

This option states whether the execution of the monitor should block the execution of the monitored

program or not. For critical properties, synchronous monitors are preferred so that actions can be

carried out before the detected violations cause actual problems. If the properties under verification

do not require immediate actions or take a long time verifiy, one may use asynchrounous monitors

which allow the monitored program to contiue when the properties are checked. There can be

different ways to implement this option. In in-line monitoring, for example, a synchronous monitor

may be executed within the same thread as the surrounding code, while an asynchronous one may

create a new execution thread and thus reduce the runtime overhead on multi-threaded/multi-

processor platforms.

Synchronous monitors should be distinguished from synchronized monitors. The latter is related

to concurrent programs and specific to the underlying programming language: in a concurrent

program, different monitors may run in different threads or processes and share certain resources;

in such case, synchronized monitors can be used to avoid races on the resources shared by monitors.

Synchronicity also plays a role in synthesizing code from logic formulae, because, for some logics,

asynchronous monitoring is more efficient than synchronous monitoring. Consider, for example, the
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temporal formula “next F and next not F” which is obviously not satisfiable: a synchronous monitor

must report a violation right away, while an asynchronous one can wait one more event, derive the

formula to “F and not F”, and then easily detect the violation by boolean simplification. Note that

synchronous monitoring requires running a satisfiability test, which for most logics is very expensive

(PSPACE-complete or worse).

Suffix matching.

According to application requirements, one may want to check the desired property against either the

whole execution trace or every suffix of a trace. Total matching has been adopted by many runtime

verification approaches to detect pattern failures of properties, e.g., JPaX [47] and JavaMaC [61].

Suffix matching has been used mainly by monitoring approaches that aim to find pattern matches

of properties, e.g., Tracematches [13]. PQL has a skip semantics, wherein a specification is matched

against the trace, but events may be skipped. A precise explanation of PQL’s semantics is available

in [66]. To define suffix and total matching we first must define traces and properties:

Definition 1 Let E be a set of events. An E-trace, or simply a trace when E is understood from

context, is any finite sequence of events in E, that is, an element in E∗.

In the context of monitoring, an execution trace is a sequence of events observed up to the

current moment, thus execution traces are always finite.

Definition 2 An E-property P, or simply a property, is a pair of disjoint sets (P+, P−) in E∗×E∗;

P+ is the set of pattern matching traces and P− is its set of pattern failing traces1.

Therefore, our notation of property is quite general; for each particular specification formalism,

one need associate an appropriate property to each formula or pattern in that formalism. Total

matching and suffix matching are then defined as follows:

Definition 3 The total matching semantics of P is a function

JP Ktotal : E∗ → {pattern match, pattern fail, ?}
1We generalize this concept to generic categories beyond just match and fail in Chapter 4. However, match and

fail are sufficient for the discussion.
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defined as follows for each w ∈ E∗:

JP Ktotal(w) =


pattern match if w ∈ P+,

pattern fail if w ∈ P−,

? otherwise

The suffix matching semantics of P is a function

JP Ksuffix : E∗ → {pattern match, ?}

defined as follows for each w ∈ E∗:

JP Ksuffix(w) =



pattern match if ∃w1, w2 such that w = w1w2 and

JP Ktotal(w2) = pattern match

? otherwise

For example, for a regular pattern “A* B”, a sequence of events “A B B” will be matched only

once at the first “B” event and then cause a failure at the second “B” using the total matching

semantics. Using the suffix matching s, the pattern will be matched twice, once for each “B” event:

the first matches either the whole trace “A B” or the partial trace consisting of just the first “B”

with zero occurrences of “A”, while the second matches the subsequent partial trace “B” (the second

“B” in the trace) with zero occurrences of “A”.

It is relatively easy to support suffix trace matching in a total matching and vice versa. For

example, to capture suffix matching in a total matching setting, all one needs to do is to maintain

a set of states, while a new monitor state is produced at each event; the set will contain at most

as many states as the property monitor can have. Conversely, to capture total trace matching in a

suffix matching setting such as Tracematches’, all one needs to do is to generate an artificial event

only once at the beginning of the trace, say “start”, and then automatically change any pattern

“P” to “start P”. More details about implementing suffix matching in a total matching setting is

discussed in Section 5.2.

16



Figure 3.2: MOP architecture

3.3 Generic, Extensible Framework

Figure 3.2 shows the architecture of MOP. The architecture separates monitor generation and inte-

gration following the separation of observation and verification in the MOP monitoring model and

provides a generic, extensible framework for runtime monitoring. More precisely, there are two kinds

of components in MOP, namely logic repositories and language clients. The logic repository, shown

in the bottom of Figure 3.2, contains various logic plugins and a logic plugin manager component.

The former is the core component to generate monitoring code from formulas written in a specific

logic; for example, the PTLTL plugin synthesizes state machines from PTLTL formulas. The out-

put of logic plugins is usually pseudocode and not bound to any specific programming language.

This way, the essential monitoring generation can be shared by different instances of MOP using

different programming languages. The logic plugin manager bridges the communication between the

languages client and the logic plugin. More specifically, it receives the monitor generation request

from the language client and distributes the request to an appropriate plugin. After the plugin

synthesizes the monitor for the request, the logic plugin manager collects the result and sends it

back to the language client. This way, one can easily add new logic plugins into the repository to

support new specification formalisms in MOP without changing the language client.
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The language client hides the programming-language-independent logic repository and provides

language specific support for applying MOP in particular programming languages. Every language

client is usually composed of three layers: the bottom layer contains language translators that trans-

late the abstract output of logic plugins into concrete code in a specific programming language; the

middle layer is the specification processor that extracts formulas from the given property specifica-

tion and then instruments the generated monitoring code into the target program; at last, the top

layer provides usage interfaces to the user. Presently, two language clients, namely, JavaMOP that

is an MOP instance for Java and BusMOP that is an MOP instance for hardware monitoring. This

thesis presents only JavaMOP (Chapter 5); more details about BusMOP can be found in [73].

This architecture provides a generic, extensible framework for MOP, in terms of programming

languages and specification formalisms. One to instantiate MOP with specific programming lan-

guages and specification formalisms to support different domains. In fact, as discussed in Section

8.1, many existing RV systems can be captured as special instances of this framework.

Logic Plugins

Every logic plugin implements and encapsulates a monitor synthesis algorithm for a particular

requirements specification formalism. The logic plugin accepts as the input a set of abstract events

and a formula written in the underlying formalism and outputs an abstract monitor, usually a

piece of pseudocode, which checks a trace of events against the given formula. Presently, we have

implemented the following logic plugins in the MOP logic repository (interested readers may refer

to corresponding citations for more details about the monitor synthesis algorithm):

• FSM: a simple logic plugin that accepts a finite state machine as the input and output an

identical state machine with auxillary information.

• PTLTL [27]: a logic plugin accepts as the input a past-time linear temporal logic formula that

can refer to the past of the execution. It outputs a vector of bits representing the state of the

monitor, together with a set of equations that update the vector at every received event.

• FTLTL [78]: a logic plugin accepts as the input a future-time linear temporal logic formula

that can refer to the future of the execution and outputs an automaton that checks the input

formula against an execution trace.

• ERE [77]: a logic plugin accepts extended regular expressions, i.e., ordinary regular expressions

extended with negation, and generates automata checking the input regular expressions.
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• PTCaRet [79]: a logic plugin accepts past-time linear temporal logic formualae that are ex-

tended with calls and returns. Such formulae can be used to specify properties referring to

the call stack during the execution. The logic plugin outputs a vector of bits and a stack of

vectors as the state of the monitor and a set of equations and stack operations that update

the monitor state at every event.

• CFG [67]: a logic plugin accepts context-free grammars and outputs monitoring code based

on Action and Goto tables.
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Chapter 4

Parametric Monitoring in MOP

More recently, monitoring of parametric specifications, i.e., specifications with free variables, has

received increasing interest due to its effectiveness at capturing system behaviors, as shown in the

following example about interaction between the classes Map, Collection and Iterator in Java.

Motivating Example: UnsafeMapIterator

Map and Collection implement data structures for mappings and collections, respectively. Iterator

is an interface used to enumerate elements in a collection-typed object. One can also enumerate

elements in a Map object using Iterator. But, since a Map object contains key-value pairs, one needs

to first obtain a collection object that represents the contents of the map, e.g., the set of keys

or the set of values stored in the map, and then create an iterator from the obtained collection.

An intricate safety property in this usage, according to the Java API specification, is that when

the iterator is used to enumerate elements in the map, the contents of the map should not be

changed, or unexpected behaviors may occur. A violating behavior with regards to this property,

which we call UnsafeMapIterator, can be naturally specified using future time linear temporal logic

(FTLTL) with parameters: given that m, c, i are objects of Map, Collection and Iterator, respectively,

∀m, c, i. � (create coll〈m, c〉 ∧ �(create iter〈c, i〉 ∧ �(update map〈m〉 ∧ �use iter〈i〉))), where create coll

is creating a collection from a map, create iter is creating an iterator from a collection, update map is

updating the map, and use iter is using the iterator; � means eventually in the future. The formula

describes the following sequence of actions: Collection c is obtained from a Map m, an iterator i is

created from c, m is changed, and then i is accessed. It can also be specified as an ERE pattern:

∀m, c, i.create collupdate map∗create iteruse iter∗update mapupdate map∗use iter. When an observed

execution satisfies the FTLTL formula or the ERE pattern, the UnsafeMapIterator property is broken

in the execution.

It is highly non-trivial to monitor such parametric specifications efficiently. We may see a tremen-

dous number of parameter instances during the execution; for example, it is not uncommon to see
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hundreds of thousands of iterators in one execution. Also, some events may contain partial infor-

mation about parameters, making it more difficult in locating other relevant parameter bindings

during the monitoring process; for example, in the above specification, when a update map〈m〉 is

received, we need to find all create coll〈m, c〉 events with the same binding for m, and transitively,

all create iter〈c, i〉 with the same c as that create coll.

Several approaches were introduced to support the monitoring of parametric specifications, in-

cluding Eagle [15], Tracematches [3, 13], PQL [66] and PTQL [44]. However, they are all limited in

terms of supported specification formalisms or viable execution traces. Most techniques, e.g., Eagle,

Tracematches, PQL and PTQL, follow a formalism-dependent approach, that is, they have their

parametric specification formalisms hardwired, e.g., regular patterns (like Tracematches), context-

free patterns (like PQL) with parameters, etc., and then develop algorithms to generate monitoring

code for the particular formalisms. Although this approach provides a feasible solution to monitor-

ing parametric specifications, we argue that it not only has limited expressiveness, but also causes

unnecessary complexity in developing optimal monitor generation algorithms, often leading to ineffi-

cient monitoring. In fact, experiments in Section 5.3 show that our formalism-independent solution

generates more efficient monitoring code than other existing tools.

Following the genericity of the MOP framework, we have developed a general technique to build

optimized parametric monitors from non-parametric monitors, which is based on a general solution

for handling parametric trace. In this novel technique, we apply knowledge about the monitored

property to improve efficiency. The needed knowledge, encoded as enable sets, depends only on the

property and not on the formalism in which it is specified. It can be easily computed as a side

effect when generating a monitor from the property, as discussed in Section 4.4.3. Our experiments

show that this technique of optimization based on enable sets, combined with the general parametric

trace slicing algorithm, represents the first efficient, modular technique for monitoring fully general

properties (i.e., the properties do not need to instantiate all the parameters in the creation events

or use a fixed logical formalism). In fact, it is more efficient than the systems that do use a fixed

formalism (see Sectionsec:javamop-eval).

In the rest of this chapter is organized as follows. Section 4.1 gives a high-level overview of

our approach. Section 4.2 introduces a general solution for parametric trace slicing that provides

the foundation for parametric monitoring. Section 4.3 discusses general algorithsm for parametric

monitoring and Section 4.4 proposes enable-set-based optimization for parametric monitoring. The

presented technique has been implemented and evaluated in JavaMOP, as discussed in Section 5.2.

21



4.1 Approach Overview

# Event # Event
1 create coll〈m1, c1〉 7 update map〈m1〉
2 create coll〈m1, c2〉 8 use iter〈i2〉
3 create iter〈c1, i1〉 9 create coll〈m2, c3〉
4 create iter〈c1, i2〉 10 create iter〈c3, i4〉
5 use iter〈i1〉 11 use iter〈i4〉
6 create iter〈c2, i3〉

Figure 4.1: Possible Execution Trace Over the Events Specified in UnsafeMapIterator.

Our approach to monitoring parametric traces against parametric properties is based on the

observation that each parametric trace actually contains multiple non-parametric trace slices, each

for a particular parameter binding instance. The formal definition of the trace slice can be found

in Section 4.2.1, but intuitively, a slice of a parametric trace for a particular parameter binding

consists of names of all the events that have less informative parameter bindings. Informally, a

parameter binding b1 is less informative than a parameter binding b2 if and only if the parameters

for which they have bindings agree, and b2 binds either an equal number of parameters or more

parameters: parameter 〈m1, c2〉 is less informative than 〈m1, c2, i3〉 because the parameters they

both bind, m and c, agree on their values, m1 and c2, respectively, and 〈m1, c2, i3〉 binds one more

parameter. Figure 4.2 shows the trace slices and their corresponding parameter bindings contained

in the trace in Figure 4.1. The Status column denotes the output category that the slice falls into

(for ERE). In this case everything but the slice for 〈m1, c1, i2〉, which matches the property, is in

the “?” (undecided) category. For example, the trace for the binding 〈m1, c1〉 contains create coll

update map (the first and seventh events in the trace) and the trace for the binding 〈m1, c1, i2〉 is

create coll create iter update map use iter (the first, fourth, seventh, and eighth events in the trace).

Based on this observation, our approach creates a set of monitor instances during the monitoring

Instance Slice Status
〈m1〉 update map ?
〈m1, c1〉 create coll update map ?
〈m1, c2〉 create coll update map ?
〈m2, c3〉 create coll ?
〈m1, c1, i1〉 create coll create iter use iter update map ?
〈m1, c1, i2〉 create coll create iter update map use iter match
〈m1, c2, i3〉 create coll create iter update map ?
〈m2, c3, i4〉 create coll create iter use iter ?

Figure 4.2: Slices for the Trace in Figure 4.1.
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 m1, c1

 m1, c1, i1 m1, c1, i2

 m1, c2

 m1, c2 ,i3

 m2, c3 ,i4

 m2, c3

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are
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Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.
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different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
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evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
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if its corresponding monitor state, i.e., ∆(θ), is defined(line
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eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor
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state for θ (lines 7 and 8 in main); otherwise, a new moni-
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to process e, namely, those whose corresponding parameter
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stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
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the monitor state for the second instance. Both functions
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It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
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Figure 4.3: A Monitor Set (Parametric Monitor) with Corresponding Parameter Instance Monitors.

process, each handling a trace slice for a parameter binding. Figure 4.3 shows the set of monitors

created for the trace in Figure 4.1, each monitor labeled by the corresponding parameter binding.

This way, the monitor does not need to handle the parameter information and can employ any

existing technique for ordinary, non-parametric traces, including state machines and push-down

automata, providing a formalism-independent way to check parametric properties. When an event

comes, our algorithm will dispatch it to related monitors, which will update their states accordingly.

For example, the seventh event in Figure 4.1, update map〈m1〉, will be dispatched to monitors for

〈m1, c1〉, 〈m1, c2〉, 〈m1, c1, i1〉, 〈m1, c1, i2〉, and 〈m1, c2, i3〉. New monitor instances will be created

if the event contains new parameter instances. For example, when the third event in Figure 4.1,

create iter〈c1, i1〉, is received, a new monitor will be created for 〈m1, c1, i1〉 by combining 〈m1, c1〉

in the first event with 〈c1, i1〉. Detailed discussion about the monitoring algorithm can be found in

Section 4.4.1.

An algorithm to build parameter instances from observed events, like the one introduced in

[31], may create many useless monitor instances leading to prohibitive runtime overheads. For

example, Figure 4.2 does not need to contain the binding 〈m1, c3, i4〉 even though it can be created

by combining the parameter instances of update map〈m1〉 (the seventh event) and create iter〈c3, i4〉

(the tenth event). It is safe to ignore this binding here because m1 is not the underlying map for

c3, i4. It is critical to minimize the number of monitor instances created during monitoring. The

advantage is twofold: (1) that it reduces the needed memory space, and (2), more importantly,

monitoring efficiency is improved since fewer monitors are triggered for each received event.

We present an effective solution in this paper to minimize the created monitors, based on the

concept of the enable set, which is formally discussed in Section 4.4.2. An enable set is constructed

for each event, say e, defined for a particular property. The enable set associated with e is a set
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of sets of parameters. Each of these sets of parameters denotes parameters that must have been

seen before the arrival of event e, for e to be acceptable by a monitor instance. Consider the event

update map, it may occur anywhere in a matching trace, except for as the first event. Because the

first event must be create coll in a matching trace, and because create coll instantiates both m and c,

one of the sets in the enable set for update map must be {m, c}. However, update map may (in fact,

must, to match the pattern) occur after the create iter event. Because create iter many not occur

before create coll we also have the set {m, c, i} in the enable set for update map. The final result for

the enable set for update map is thus: {{m, c}, {m, c, i}}. Therefore, when update map〈m1〉 arrives

(the seventh event), the instance monitors for 〈m1, c1〉 and 〈m1, c2〉 must be updated because they

bind {m, c}, and the instance monitors for 〈m1, c1, i1〉, 〈m1, c1, i2〉, and 〈m1, c2, i3〉 must be updated

because they bind {m, c, i}, and have the same value for m (m1). In this example all of the instances

to update have already been created by the time the event arrives, but it should also be noted that

no new instances can be created because at least m and c must be bound before update map can

occur.

It is worth mentioning that one may reduce the needed monitors using static program analysis,

e.g., the one introduced in [21]. However, such techniques are based on the program targeted for

monitoring and lead to drawbacks in practice: (1) it is a more complex and thus slower analysis

and (2) the analysis must be run for every target program, making the approach non-modular. For

example, if the property to monitor is related to some library, one will have to run the analysis for

every program using the library, which can be expensive, and often infeasible. The analysis needed

by our approach, on the other hand, is usually much quicker1, because properties tend to be much

smaller than the programs they are designed to monitor. Moreover, our optimization technique

requires no additional analysis when used in a situation, like for a library, where a property is

checked for different programs, because the enable set is derived from the property itself instead of

the targeted program.

4.2 Background: Parametric Trace Slicing

We next formalize the notions of parametric traces and properties and then introduce a general

algorithm to slice a parametric trace into a set of non-parametric trace slices.
1The analysis is upper bounded by the number of acyclic paths from the start state/symbol through a finite state

machine/context free grammar, because convergence is achieved through one cycle. Finite state machines and context
free grammars for properties tend to be small.
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4.2.1 Parametric Traces and Properties

Here we introduce the notions of event, trace and property, first non-parametric and then parametric.

Traces are sequences of events. Parametric events can carry data-values, as instances of parameters.

Parametric traces are traces over parametric events. Properties are trace classifiers, that is, mappings

partitioning the space of traces into categories (violating traces, validating traces, don’t know traces

etc.). Parametric properties are parametric trace classifiers and provide, for each parameter instance,

the category to which the trace slice corresponding to that parameter instance belongs. Trace slicing

is defined as a reduct operation that forgets all the events that are unrelated to the given parameter

instance.

The Non-Parametric Case

Definition 4 Let E be a set of (non-parametric) events, called base events or simply events. An

E-trace, or simply a (non-parametric) trace when E is understood or not important, is any finite

sequence of events in E, that is, an element in E∗. If event e ∈ E appears in trace w ∈ E∗ then we

write e ∈ w.

Our parametric trace slicing and monitoring techniques in Sections 4.2.4 and 4.3.2 can be easily

adapted to also work with infinite traces. Since infinite versus finite traces is not an important aspect

of the work reported here, we keep the presentation free of unnecessary technical complications and

consider only finite traces.

Example. (part 1 of simple running example) Consider a certain resource (e.g., a synchronization

object) that can be acquired and released during the lifetime of a given procedure (between its begin

and end). Then E = {acquire, release, begin, end} and execution traces corresponding to this resource

are sequences of the form “begin acquire acquire release end begin end”, “begin acquire acquire”,

“begin acquire release acquire end”, etc. For now there are no “good” or “bad” execution traces. �

There is a plethora of formalisms to specify trace requirements. Many of these result in specifying

at least two types of traces: those validating the specification (i.e, correct traces), and those violating

the specification (i.e., incorrect traces).

Example. (part 2) Consider a regular expression specification, (begin(ε | (acquire(acquire | release)∗

release))end)∗, stating that the procedure can (non-recursively) take place multiple times and, if the

resource is acquired during the procedure then it is released by the end of the procedure. Assume

that the resource can be acquired and released multiple times, with the effect of acquiring and
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respectively releasing it precisely once; regular expressions cannot specify matched acquire/release

events, we are going to do so using context-free patterns in the next section. The validating traces

for this property are those satisfying the pattern, e.g., “begin acquire acquire release end begin end”.

At first sight, one may say that all the other traces are violating traces, because they are not in

the language of the regular expression. However, there are two interesting types of such “violating”

traces: ones which may still lead to a validating trace provided the right events will be received in

the future, e.g., “begin acquire acquire”, and ones which have no chance of becoming a validating

trace, e.g. “begin acquire release acquire end”. �

In general, traces are not enforced to correspond to terminated programs (this is particularly

useful in monitoring); if one wants to enforce traces to correspond to terminated programs, then

one can have the system generate a special “end-of-trace” event and have the property specification

require that event at the end of each trace.

Therefore, a trace property may partition the space of traces into more than two categories. For

some specification formalisms, for example ones based on fuzzy logics or multiple truth values, the

set of traces may be split into more than three categories, even into a continuous space of categories.

Definition 5 An E-property P , or simply a (base or non-parametric) property, is a function

P : E∗ → C partitioning the set of traces into categories C. It is common, though not enforced,

that C includes “validating”, “violating”, and “don’t know” (or “?”) categories. In general, C, the

co-domain of P , can be any set.

We believe that the definition of non-parametric trace property above is general enough that

it can easily accommodate any particular specification formalism, such as ones based on linear

temporal logics, regular expressions, context-free grammars, etc. All one needs to do in order to

instantiate the general results in this paper for a particular specification formalism is to decide upon

the desired categories in which traces are intended to be classified, and then define the property

associated to a specification accordingly.

For example, if the specification formalism of choice is that of regular expressions over E and one

is interested in classifying traces in three categories as in our example above, then one can pick C to be

the set {validating, violating, don’t know} and, for a given regular expression E, define its associated

property PE : E∗ → C as follows: PE(w) = validating iff w is in the language of E, PE(w) = violating

iff there is no w′ ∈ E∗ such that ww′ is in the language of E, and PE(w) = don’t know otherwise;

this is the monitoring semantics of regular expressions in JavaMOP [29].
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Other semantic choices are possible even for the simple case of regular expressions; for example,

one may choose C to be the set {matching, don’t care} and define PE(w) = matching iff w is in the

language of E, and PE(w) = don’t care otherwise; this is the semantics of regular expressions in

Tracematches [3], where, depending upon how one writes the regular expression, matching can mean

either a violation or a validation of the desired property.

In some applications, one may not be interested in certain categories of traces, such as in those

classified as don’t know or don’t care; if that is the case, then those applications can simply ignore

these, like Tracematches and JavaMOP do. It may be worth making it explicit that in this paper

we do not attempt to propose or promote any particular formalism for specifying properties about

execution traces. Instead, our approach is to define properties as generally as possible to capture

the various specification formalisms that we are aware of as special cases, and then to develop our

subsequent techniques to work with such general properties.

An additional benefit of defining properties so generally, as mappings from traces to categories,

is that parametric properties, in spite of their much more general flavor, are also properties (but,

obviously, over different traces and over different categories).

The Parametric Case

Events often carry concrete data instantiating abstract parameters.

Example. (part 3) In our running example, events acquire and release are parametric in the re-

source being acquired or released; if r is the name of the generic “resource” parameter and r1 and r2

are two concrete resources, then parametric acquire/release events have the form acquire〈r 7→ r1〉,

release〈r 7→ r2〉, etc. Not all events need carry instances for all parameters; e.g., the begin/end para-

metric events have the form begin〈⊥〉 and end〈⊥〉, where ⊥, the partial map undefined everywhere,

instantiates no parameter. �

We let [A→B] and [A⇁B] denote the sets of total and respectively partial functions from A to

B.

Definition 6 (Parametric events and traces). Let X be a set of parameters and let VX be a

set of corresponding parameter values. If E is a set of base events like in Definition 4, then let

E〈X〉 denote the set of corresponding parametric events e〈θ〉, where e is a base event in E and

θ is a partial function in [X⇁V ]. A parametric trace is a trace with events in E〈X〉, that is, a

word in E〈X〉∗.
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Therefore, a parametric event is an event carrying values for zero, one, several or even all the

parameters, and a parametric trace is a finite sequence of parametric events. In practice, the number

of values carried by an event is finite; however, we do not need to enforce this restriction in our

theoretical developments. Also, in practice the parameters may be typed, in which case the set of

their corresponding values is given by their type. To simplify writing, we occasionally assume the

set of parameter values VX implicit.

Example. (part 4) A parametric trace for our running example can be the following: begin〈⊥〉

acquire〈θ1〉 acquire〈θ2〉 acquire〈θ1〉 release〈θ1〉 end〈⊥〉 begin〈⊥〉 acquire〈θ2〉 release〈θ2〉 end〈⊥〉, where

θ1 maps r to r1 and θ2 maps r to r2. To simplify writing, we only list the parameter instance values

when writing parameter instances, that is, 〈r1〉 instead of 〈r 7→ r1〉, or τ�r2 instead of τ�r 7→r2 , etc.

With this notation, the above trace becomes: begin〈〉 acquire〈r1〉 acquire〈r2〉 acquire〈r1〉 release〈r1〉

end〈〉 begin〈〉 acquire〈r2〉 release〈r2〉 end〈〉. This trace involves two resources, r1 and r2, and it really

consists of two trace slices, one for each resource, merged together. The begin and end events belong

to both trace slices. The slice corresponding to θ1 is “begin acquire acquire release end begin end”,

while the one for θ2 is “begin acquire end begin acquire release end“. �

Definition 7 (Trace slicing) Given parametric trace τ ∈ E〈X〉∗ and partial function θ in [X⇁V ],

we let the θ-trace slice τ�θ ∈ E∗ be the non-parametric trace in E∗ defined as follows:

• ε�θ= ε, where ε is the empty trace/word, and

• (τ e〈θ′〉)�θ=

 (τ�θ) e when θ′ v θ

τ�θ when θ′ 6v θ
,

where θ′ v θ iff for any x ∈ X, if θ′(x) is defined then θ(x) is also defined and θ′(x) = θ(x).

Therefore, the trace slice τ�θ first filters out all the parametric events that are not relevant for

the instance θ, i.e., which contain instances of parameters that θ does not care about, and then,

for the remaining events relevant to θ, it forgets the parameters so that the trace can be checked

against base, non-parametric properties.

Specifying properties over parametric traces is rather challenging, because one may want to spec-

ify a property for one generic parameter instance and then say “and so on for all the other instances”.

In other words, one may want to specify a universally quantified property over base events, but,

unfortunately, the underlying specification formalism may not allow universal quantification over

data; for example, none of the conventional formalisms to specify properties on linear traces listed
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above (i.e, linear temporal logics, regular expressions, context-free grammars) or mentioned in the

rest of the paper has universal data quantification.

Definition 8 Let X be a set of parameters together with their corresponding parameter values

VX , like in Definition 6, and let P : E∗ → C be a non-parametric property like in Definition 5.

Then we define the parametric property ΛX.P as the property (over traces E〈X〉∗ and categories

[[X⇁V ]→ C])

ΛX.P : E〈X〉∗ → [[X⇁V ]→ C]

defined as (ΛX.P )(τ)(θ) = P (τ�θ) for any τ ∈ E〈X〉∗ and any θ ∈ [X⇁V ]. If X = {x1, ..., xn}

we may write Λx1, ..., xn.P instead of (Λ{x1, ..., xn}.P . Also, if Pϕ is defined using a pattern or

formula ϕ in some particular trace specification formalism, we take the liberty to write ΛX.ϕ instead

of ΛX.Pϕ.

Parametric properties ΛX.P over base properties P : E∗ → C are therefore properties taking

traces in E〈X〉∗ to categories [[X⇁V ]→C], i.e., function domains from parameter instances to base

property categories. ΛX.P is defined as if many instances of P are observed at the same time on

the parametric trace, one property instance for each parameter instance, each property instance

concerned with its events only, dropping the unrelated ones.

Example. (part 5) Let P be the non-parametric property specified by the regular expression

in the second part of our running example above (using the mapping of regular expressions to

properties discussed in the second part of our running example and after Definition 5 – i.e., the

JavaMOP semantic approach to parametric monitoring [29]). Since we want P to hold for any

resource instance, we then define the following parametric property (i.e., Λr.P ):

Λr.(begin (ε | (acquire (acquire | release)∗ release)) end)∗.

If τ is the parametric trace and θ1 and θ2 are the parameter instances in the fourth part of our

running example, then the semantics of the parametric property above on trace τ is validating for

parameter instance θ1 and violating for parameter instance θ2. �

4.2.2 Least Upper Bound Closures of Partial Maps

In this section we first discuss some basic notions of partial functions and least upper bounds of them,

then we introduce least upper bounds of sets of partial functions and least upper bound closures of
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sets of partial functions. This section is rather mathematical. We need these mathematical notions

because, as already seen, parameter instances are partial maps from the domain of parameters to

the domain of parameter values. As shown later, whenever a new parametric event is observed, it

needs to be dispatched to the interested parts (trace slices or monitors), and those parts updated

accordingly: these informal operations can be rigorously formalized as existence of least upper

bounds and least upper bound closures over parameter instances, i.e., partial functions.

Partial Functions

We think of partial functions as “information carriers”: if a partial function θ is defined on an element

x of its domain, then “θ carries the information θ(x) about x ∈ X”. Some partial functions can

carry more information than others; two or more partial functions can, together, carry compatible

information, but can also carry incompatible information (when two or more of them disagree on

the information they carry for a particular x ∈ X). Recall that [X→VX ] and [X⇁V ] represent the

sets of total and of partial functions from X to VX , respectively.

Definition 9 The domain of θ ∈ [X⇁V ] is the set Dom(θ) = {x ∈ X | θ(x) defined}. Let ⊥ ∈

[X⇁V ] be the map undefined everywhere, that is, Dom(⊥) = ∅. If θ, θ′ ∈ [X⇁V ] then we say that

θ is less informative than θ′, written θ v θ′, if for any x ∈ X, θ(x) defined implies θ′(x) also

defined and θ′(x) = θ(x).

It is known that ([X⇁V ],v,⊥) is a complete (i.e., any v-chain has a least upper bound) partial

order with bottom (i.e., ⊥).

Definition 10 Given Θ ⊆ [X⇁V ] and θ′ ∈ [X⇁V ],

• θ′ is an upper bound of Θ iff θ v θ′ for any θ ∈ Θ; Θ has upper bounds iff there is a θ′

which is an upper bound of Θ;

• θ′ is the least upper bound (lub) of Θ iff θ′ is an upper bound of Θ and θ′ v θ′′ for any

other upper bound θ′′ of Θ;

• θ′ is the maximum (max) of Θ iff θ′ ∈ Θ and θ′ is a lub of Θ.

Intuitively, a set of partial functions has an upper bound iff the partial functions in the set are

compatible, that is, no two of them disagree on the value of a particular element in their domain.

Least upper bounds and maximums may not always exist for any Θ ⊆ [X⇁V ]; if a lub or a maximum

for Θ exists, then it is, of course, unique (v is a partial order, so antisymmetric).
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Definition 11 Given Θ ⊆ [X⇁V ], let tΘ and max Θ be the lub and the max of Θ, respectively,

when they exist. When Θ is finite, one may write θ1 t θ2 t · · · t θn instead of t{θ1, θ2, . . . , θn}.

If Θ has a maximum, then it also has a lub and tΘ = max Θ. Here are several common properties

that we use frequently:

Proposition 1 The following hold (θ, θ1, θ2, θ3 ∈ [X⇁V ]): ⊥tθ exists and ⊥tθ = θ; θ1tθ2 exists

iff θ2 t θ1 exists, and, if they exist then θ1 t θ2 = θ2 t θ1; θ1 t (θ2 t θ3) exists iff (θ1 t θ2)t θ3 exists,

and if they exist then θ1 t (θ2 t θ3) = (θ1 t θ2) t θ3.

Proposition 2 Let Θ ⊆ [X⇁V ]. Then

1. Θ has an upper bound iff for any θ1, θ2 ∈ Θ and x ∈ X, if θ1(x) and θ2(x) defined then

θ1(x) = θ2(x);

2. If Θ has an upper bound then tΘ exists and, for any x ∈ X,

(tΘ)(x) =

 undefined if θ(x) undefined for any θ ∈ Θ

θ(x) if there is a θ ∈ Θ with θ(x) defined.

Proof: Since Θ has an upper bound θ′ ∈ [X⇁V ] iff θ v θ′ for any θ ∈ Θ, if θ1, θ2 ∈ Θ and x ∈ X

with θ1(x) and θ2(x) defined then θ′(x) is also defined and θ1(x) = θ2(x) = θ′(x). Suppose now that

for any θ1, θ2 ∈ Θ and x ∈ X, if θ1(x) and θ2(x) defined then θ1(x) = θ2(x). All we need to show in

order to prove both results is that we can find a lub for Θ. Let θ′ ∈ [X⇁V ] be defined as follows:

for any x ∈ X, let

θ′(x) =

 undefined if θ(x) undefined for any θ ∈ Θ

θ(x) if there is a θ ∈ Θ such that θ(x) defined

First, note that θ′ above is indeed well-defined, because we assumed that for any θ1, θ2 ∈ Θ and

x ∈ X, if θ1(x) and θ2(x) defined then θ1(x) = θ2(x). Second, note that θ′ is an upper bound for

Θ: indeed, if θ ∈ Θ and x ∈ X such that θ(x) defined, then θ′(x) is also defined and θ′(x) = θ(x),

that is, θ v θ′ for any θ ∈ Θ. Finally, θ′ is a lub for Θ: if θ′′ is another upper bound for Θ and

θ′(x) defined for some x ∈ X, that is, θ(x) defined for some θ ∈ Θ and θ′(x) = θ(x), then θ′′(x) also

defined and θ′(x) = θ(x) (as θ v θ′′), so θ′ v θ′′. �

Proposition 3 The following hold:

1. The empty set of partial functions ∅ ⊆ [X⇁V ] has upper bounds and t∅ = ⊥;

2. The one-element sets have upper bounds and t{θ} = θ for any θ ∈ [X⇁V ];
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3. The bottom “⊥” does not influence the least upper bounds: t({⊥} ∪ Θ) = tΘ for any Θ ⊆

[X⇁V ];

4. If Θ,Θ′ ⊆ [X⇁V ] s.t. tΘ′ exists and for any θ ∈ Θ there is a θ′ ∈ Θ′ with θ v θ′, then tΘ

exists and tΘ v tΘ′; e.g., if tΘ′ exists and Θ ⊆ Θ′ then tΘ exists and tΘ v tΘ′;

5. Let {Θi}i∈I be a family of sets of partial functions with Θi ⊆ [X⇁V ]. Then t ∪ {Θi | i ∈ I}

exists iff t{tΘi | i ∈ I} exists, and, if both exist, t ∪ {Θi | i ∈ I} = t{tΘi | i ∈ I}.

Proof: 1., 2. and 3. are straightforward. For 4., since for each θ ∈ Θ there is some θ′ ∈ Θ′

with θ v θ′, and since θ′ v tΘ′ for any θ′ ∈ Θ′, it follows that θ v tΘ′ for any θ ∈ Θ, that

is, that tΘ′ is an upper bound for Θ. Therefore, by Proposition 2 it follows that tΘ exists and

tΘ v tΘ′ (the latter because tΘ is the least upper bound of Θ). We prove 5. by double implication,

each implication stating that if one of the lub’s exist then the other one also exists and one of the

inclusions holds; that indeed implies that one of the lub’s exists if and only if the other one exists

and, if both exist, then they are equal. Suppose first that t ∪ {Θi | i ∈ I} exists, that is, that

∪{Θi | i ∈ I} has an upper bound, say u. Since Θi ⊆ ∪{Θi | i ∈ I} for each i ∈ I, it follows first

that each Θi also has u as an upper bound, so all tΘi for all i ∈ I exist, and second by 4. above

that tΘi v t ∪ {Θi | i ∈ I} for each i ∈ I. Item 4. above then further implies that t{tΘi | i ∈ I}

exists and t{tΘi | i ∈ I} v t{t ∪ {Θi | i ∈ I}} = t ∪ {Θi | i ∈ I} (the last equality follows by

2. above). Conversely, suppose now that t{tΘi | i ∈ I} exists. Since for each θ ∈ ∪{Θi | i ∈ I}

there is some i ∈ I such that θ v tΘi (an i ∈ I such that θ ∈ Θi), item 4. above implies that

t ∪ {Θi | i ∈ I} also exists and t ∪ {Θi | i ∈ I} v t{tΘi | i ∈ I}. �

Least Upper Bounds of Families of Sets of Partial Maps

The notions of partial function, upper bound and least upper bound above are broadly known, and

many of their properties are folklore. Motivated by requirements and optimizations of our trace

slicing and monitoring algorithms in Sections 4.2.4 and 4.3.2, we next define several less known

notions. We are actually not aware of other places where these notions are defined, so they could

be novel.

We first extend the notion of lub from one associating a partial function to a set of partial

functions to one associating a set of partial functions to a family (or set) of sets of partial functions:

Definition 12 If {Θi}i∈I is a family of sets in [X⇁V ], then we let the least upper bound (also

lub) of {Θi}i∈I be defined as:
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t{Θi | i ∈ I} def= {t{θi | i ∈ I} | θi ∈ Θi for each i ∈ I

s.t. t {θi | i ∈ I} exists}.
As before, we use the infix notation when I is finite, e.g., we may write Θ1 tΘ2 t . . . tΘn instead

of t{Θi | i ∈ {1, 2, . . . , n}}.

Therefore, t{Θi | i ∈ I} is the set containing all the lub’s corresponding to sets formed by

picking for each i ∈ I precisely one element from Θi. Unlike for sets of partial functions, the lub’s

of families of sets of partial functions always exist; t{Θi | i ∈ I} is the empty set when no collection

of θi ∈ Θi can be found (one θi ∈ Θi for each i ∈ I) such that {θi | i ∈ I} has an upper bound.

There is an admitted slight notational ambiguity between the two least upper bound notations

introduced so far. We prefer to purposely allow this ambiguity instead of inventing a new notation

for the lub’s of families of sets, hoping that the reader is able to quickly disambiguate the two by

checking the types of the objects involved in the lub: if partial functions then the first lub is meant, if

sets of partial functions then the second. Note that such notational ambiguities are actually common

practice elsewhere; e.g., in a monoid (M, ∗ :M×M→M, 1) with binary operation ∗ and unit 1, the

∗ is commonly extended to sets of elements M1,M2 in M as expected: M1 ∗M2 = {m1 ∗m2 | m1 ∈

M1,m2 ∈M2}.

Proposition 4 The next hold (Θ,Θ1,Θ2,Θ3 ⊆ [X⇁V ]):

1. t∅ = {⊥}, where, in this case, ∅ ⊆ P([X⇁V ]);

2. t{Θ} = Θ; in particular t{∅} = ∅, where ∅ ⊆ [X⇁V ];

3. t{{θ} | θ ∈ Θ} =

 {tΘ} if Θ has a lub, and

∅ if Θ does not have a lub;

4. ∅ tΘ = ∅, where ∅ ⊆ [X⇁V ];

5. {⊥} tΘ = Θ;

6. If Θ1 ⊆ Θ2 then Θ1 tΘ3 ⊆ Θ2 tΘ3; in particular, if ⊥ ∈ Θ2 then Θ3 ⊆ Θ2 tΘ3;

7. (Θ1 ∪Θ2) tΘ3 = (Θ1 tΘ3) ∪ (Θ2 tΘ3).

Proof: Recall that the least upper bound t{Θi | i ∈ I} of sets of sets of partial functions is built

by collecting all the least upper bounds of sets {θi | i ∈ I} containing one element θi from each of

the involved sets Θi. When |I| = 0, that is when I is empty, there is precisely one set {θi | i ∈ I},

the empty set of partial functions. Then 1. follows by 1. in Proposition 3. When |I| = 1, that is
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when {Θi | i ∈ I} = {Θ} for some Θ ⊆ [X⇁V ] like in 2., then the sets {θi | i ∈ I} are precisely

the singleton sets corresponding to the elements of Θ, so 2. follows by 2. in Proposition 3. 3. holds

because there is only one way to pick an element from each singleton set {θ}, namely to pick the θ

itself; this also shows how the notion of a lub of a family of sets generalizes the conventional notion

of lub. When |I| ≥ 2 and at least one of the involved sets of partial functions is empty, like in 4.,

then there is no set {θi | i ∈ I}, so the least upper bound of the set of sets is empty (regarded,

again, as the empty set of sets of partial functions). 5. follows by 1. in Proposition 1. The first

part of 6. is immediate and the second part follows from the first using 5.. Finally, 7. follows by

double implication: (Θ1 tΘ3) ∪ (Θ2 tΘ3) ⊆ (Θ1 ∪Θ2) tΘ3 follows by 6. because Θ1 and Θ2 are

included in Θ1 ∪Θ2, and (Θ1 ∪Θ2)tΘ3 ⊆ (Θ1 tΘ3)∪ (Θ2 tΘ3) because for any θ1 ∈ Θ1 ∪Θ2, say

θ1 ∈ Θ1, and any θ3 ∈ Θ3, if θ1 t θ3 exists then it also belongs to Θ1 tΘ3. �

Proposition 5 Let {Θi}i∈I be a family of sets of partial maps in [X⇁V ] and let I = {Ij}j∈J be a

partition of I: I = ∪{Ij | j ∈ J} and Ij1 ∩ Ij2 = ∅ for any different j1, j2 ∈ J . Then

t{Θi | i ∈ I} = t{t{Θij | ij ∈ Ij} | j ∈ J}.

Proof: For each j ∈ J , let Qj denote the set t{Θij | ij ∈ Ij}. Definition 12 then implies the

following: Qj
def= {t{θij | ij ∈ Ij} | θij ∈ Θij for each ij ∈ Ij , such that t {θij | ij ∈ Ij} exists}.

Definition 12 also implies the following: t{Qj | j ∈ J} def= {t{qj | j ∈ J} | qj ∈ Qj for each j ∈

J, such that t{qj | j ∈ J} exists}. Putting the two equalities above together, we get that t{t{Θij |

ij ∈ Ij} | j ∈ J} equals the following:

{ t{t{θij | ij ∈ Ij} | j ∈ J}

| θij ∈ Θij for each j ∈ J and ij ∈ Ij , such that

t{θij | ij ∈ Ij} exists for each j ∈ J and

t{t{θij | ij ∈ Ij} | j ∈ J} exists}.

Since {Ij}j∈J is a partition of I, the indices ij generated by “for each j ∈ J and ij ∈ Ij” cover

precisely all the indices i ∈ I. Moreover, picking partial functions θij ∈ Θij for each j ∈ J and ij ∈ Ij
is equivalent to picking partial functions θi ∈ Θi for each i ∈ I, and, in this case, {θi | i ∈ I} =

∪{{θij | ij ∈ Ij} | j ∈ J}. By 5. in Proposition 3 we then infer that t{θi | i ∈ I} exists if and only if

t{t{θij | ij ∈ Ij} | j ∈ J} exists, and if both exist then t{θi | i ∈ I} = t{t{θij | ij ∈ Ij} | j ∈ J};

if both exist then t{θij | ij ∈ Ij} also exists for each j ∈ J (because {θij | ij ∈ Ij} ⊆ {θi | i ∈
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I} = ∪{{θij | ij ∈ Ij} | j ∈ J}). Therefore, we can conclude that t{t{Θij | ij ∈ Ij} | j ∈ J}

equals {t{θi | i ∈ I} | θi ∈ Θi for each i ∈ I, such that t {θi | i ∈ I} exists}, which is nothing but

t{Θi | i ∈ I}. �

Corollary 1 The following hold:

1. {⊥} tΘ = Θ (already proved as 5. in Proposition 4);

2. Θ1 tΘ2 = Θ2 tΘ1;

3. Θ1 t (Θ2 tΘ3) = (Θ1 tΘ2) tΘ3;

Proof: These follow from Proposition 5 for various index sets I and partitions of it: for 1. take

I = {1} and its partition I = ∅ ∪ I, take Θ1 = Θ, and then use 1. in Proposition 4 saying that

t∅ = {⊥}; for 2. take partitions {1}∪{2} and {2}∪{1} of I = {1, 2}, getting Θ1 tΘ2 = Θ2 tΘ1 =

t{Θi | i ∈ {1, 2}}; finally, for 3. take partitions {1}∪ {2, 3} and {1, 2}∪ {3} of I = {1, 2, 3}, getting

Θ1 t (Θ2 tΘ3) = (Θ1 tΘ2) tΘ3 = t{Θi | i ∈ {1, 2, 3}}. �

Least Upper Bound Closures

We next define lub closures of sets of partial maps, a crucial operation for the the algorithms

discussed next in the paper.

Definition 13 Θ ⊆ [X⇁V ] is lub closed iff tΘ′ ∈ Θ for any Θ′ ⊆ Θ admitting upper bounds.

Proposition 6 {⊥} and {⊥, θ} are lub closed (θ ∈ [X⇁V ]).

Proof: It follows easily from Definition 13, using the facts that t∅ = ⊥ (1. in Proposition 3),

t{θ} = θ (2. in Proposition 3), and t{⊥, θ} = θ (3. in Proposition 3 for Θ = {θ}). �

Proposition 7 If Θ ⊆ [X⇁V ] and {Θi}i∈I is a family of sets of partial functions in [X⇁V ], then:

1. If Θ is lub closed then ⊥ ∈ Θ; in particular, ∅ is not lub closed;

2. If Θ has upper bounds and is lub closed then it has a maximum;

3. Θ is lub closed iff t{Θ | i ∈ I} = Θ for any I;

4. If Θ is lub closed and Θi ⊆ Θ for each i ∈ I then t{Θi | i ∈ I} ⊆ Θ;
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5. If Θi is lub closed for each i ∈ I then t{Θi | i ∈ I} is lub closed and ∪{Θi | i ∈ I} ⊆ t{Θi |

i ∈ I};

6. If I finite and Θi finite for all i ∈ I, then t{Θi | i ∈ I} finite;

7. If Θi lub closed for all i ∈ I then ∩{Θi | i ∈ I} is lub closed;

8. ∩{Θ′ | Θ′ ⊆ [X⇁V ] with Θ ⊆ Θ′ and Θ′ is lub closed} is the smallest lub closed set including

Θ.

Proof: 1. follows taking Θ′ = ∅ in Definition 13 and using t∅ = ⊥ (1. in Proposition 3).

2. follows taking Θ′ = Θ in Definition 13: tΘ ∈ Θ, so max Θ exists (and equals tΘ).

3. Definition 12 implies that t{Θ | i ∈ I} equals {t{θi | i ∈ I} | θi ∈ Θ for each i ∈

I, such that t {θi | i ∈ I} exists}, which is nothing but {tΘ′ | Θ′ ⊆ Θ such that tΘ′ exists}; the

later can be now shown equal to Θ by double inclusion: {tΘ′ | Θ′ ⊆ Θ such that tΘ′ exists} ⊆ Θ

because Θ is lub closed, and Θ ⊆ {tΘ′ | Θ′ ⊆ Θ such that t Θ′ exists} because one can pick

Θ′ = {θ} for each θ ∈ Θ and use the fact that t{θ} = θ (2. in Proposition 3).

4. Let θ be an arbitrary partial function in t{Θi | i ∈ I}, that is, θ = t{θi | i ∈ I} for some

θi ∈ Θi, one for each i ∈ I, such that {θi | i ∈ I} has upper bounds. Since Θ is lub closed and

Θi ⊆ Θ for each i ∈ I, it follows that θ ∈ Θ. Therefore, t{Θi | i ∈ I} ⊆ Θ.

5. Let Θ′ be a set of partial functions included in t{Θi | i ∈ I} which admits an upper bound;

moreover, for each θ′ ∈ Θ′, let us fix a set {θθ′i | i ∈ I} such that θθ
′

i ∈ Θi for each i ∈ I and

θ′ = t{θθ′i | i ∈ I} (such sets exist because θ′ ∈ Θ′ ⊆ t{Θi | i ∈ I}). Let Θθ′ be the set

{θθ′i | i ∈ I} for each θ′ ∈ Θ′, let Θ′i be the set {θθ′i | θ′ ∈ Θ′} for each i ∈ I, and let Θ be the

set {θθ′i | θ′ ∈ Θ′, i ∈ Iθ
′}. It is easy to see that Θ = ∪{Θθ′ | θ′ ∈ Θ′} = ∪{Θ′i | i ∈ I} and

that Θ′i ⊆ Θi for each i ∈ I. Since tΘ′ exists (because Θ′ has upper bounds) and tΘ′ = t{θ′ |

θ′ ∈ Θ′} = t{tΘθ′ | θ′ ∈ Θ′}, by 5. in Proposition 3 it follows that tΘ exists and tΘ′ = tΘ.

Since Θ = ∪{Θ′i | i ∈ I} and tΘ exists, by 5. in Proposition 3 again we get that t{tΘ′i | i ∈ I}

exists and is equal to tΘ, which is equal to tΘ′. Since Θ′i ⊆ Θi and Θi is lub closed, we get that

tΘ′i ∈ Θi. That means that t{tΘ′i | i ∈ I} ∈ t{Θi | i ∈ I}, that is, that tΘ′ ∈ t{Θi | i ∈ I}.

Since Θ′ ⊆ t{Θi | i ∈ I} was chosen arbitrarily, we conclude that t{Θi | i ∈ I} is lub closed. To

show that ∪{Θi | i ∈ I} ⊆ t{Θi | i ∈ I}, let us pick an i ∈ I and let us partition I as {i} ∪ (I\{i}).

By Proposition 5, t{Θi | i ∈ I} = Θi t (t{Θj | j ∈ I\{i}}). The proof above also implies that

t{Θj | j ∈ I\{i}} is lub closed, so by 1. we get that ⊥ ∈ t{Θj | j ∈ I\{i}}. Finally, 6. in
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Proposition 4 implies Θi v Θi t (t{Θj | j ∈ I\{i}}), so Θi ⊆ t{Θi | i ∈ I} for each i ∈ I, that is,

∪{Θi | i ∈ I} ⊆ t{Θi | i ∈ I}.

6. Recall from Definition 12 that t{Θi | i ∈ I} contains the existing least upper bounds of sets

of partial functions containing precisely one partial function in each Θi. If I and each of the Θi for

each i ∈ I is finite, then | t {Θi | i ∈ I}| ≤
∏
i∈I |Θi|, because there at most

∏
i∈I |Θi| combinations

of partial functions, one in each Θi, that admit an upper bound. Therefore, t{Θi | i ∈ I} is also

finite.

7. Let Θ′ ⊆ ∩{Θi | i ∈ I} be a set of partial functions admitting an upper bound. Then

Θ′ ⊆ Θi for each i ∈ I and, since each Θi is lub closed, tΘ′ ∈ Θi for each i ∈ I. Therefore,

tΘ′ ∈ ∩{Θi | i ∈ I}.

8. Anticipating the definition of and notation for lub closures (Definition 13), we let Θ denote

the set ∩{Θ′ | Θ′ ⊆ [X⇁V ] with Θ ⊆ Θ′ and Θ′ is lub closed}. It is clear that Θ ⊆ Θ and, by 7.,

that Θ is lub closed. It is also the smallest lub closed set including Θ, because all such sets Θ′ are

among those whose intersection defines Θ. �

Definition 14 Given θ′ ∈ [X⇁V ] and Θ ⊆ [X⇁V ], let

(θ′]Θ
def= {θ | θ ∈ Θ and θ v θ′}

be the set of partial functions in Θ that are less informative than θ′.

Proposition 8 If θ, θ′, θ′′, θ1, θ2 ∈ [X⇁V ] and if Θ ⊆ [X⇁V ] is lub closed, then:

1. (θ′]Θ is lub closed and max (θ′]Θ exists;

2. If θ′ ∈ {θ} tΘ then {θ′′ | θ′′ ∈ Θ and θ′ = θ t θ′′} has maximum and that equals max (θ′]Θ;

3. If θ1, θ2 ∈ {θ} tΘ such that θ1 = max (θ2]Θ, then θ1 = θ2.

Proof: 1. First, note that θ′ is an upper bound for (θ′]Θ as well as for any subset Θ′ of it, so any

Θ′ ⊆ (θ′]Θ has upper bounds, so by 2. in Proposition 2, tΘ′ exists for any Θ′ ⊆ (θ′]Θ. Moreover,

if Θ′ ⊆ (θ′]Θ then tΘ′ v θ′, and since Θ is lub closed it follows that tΘ′ ∈ Θ, so tΘ′ ∈ (θ′]Θ.

Therefore, (θ′]Θ is lub closed. 2. in Proposition 7 now implies that (θ′]Θ has maximum; to be

concrete, max (θ′]Θ is nothing but t (θ′]Θ, which belongs to (θ′]Θ (because one can pick Θ′ = (θ′]Θ

above).
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2. Let Q be the set of partial functions {θ′′ | θ′′ ∈ Θ and θ′ = θt θ′′}. Note that Q is non-empty

(because θ′ ∈ {θ} tΘ, so there is some θ′′ ∈ Θ such as θ′ = θ t θ′′) and has upper-bounds (because

θ′ is an upper bound for it), but that it is not necessarily lub closed (because, unless θ′ = θ, Q does

not contain ⊥, contradicting 1. in Proposition 7). Hence Q has a lub (by 2. in Proposition 2), say

q, and q = tQ v θ′; since θ v θ′, it follows that θ t q v θ′. On the other hand θ′ v θ t q by 4. in

Proposition 3, because there is some θ′′ ∈ Q such that θ′ = θt θ′′ and θ′′ v q. Therefore, θ′ = θt q.

Since Θ is lub closed, it follows that q ∈ Θ. Therefore, q ∈ Q, so q is the maximum element of Q.

Let us next show that q = max (θ′]Θ. The relation q v max (θ′]Θ is immediate because q ∈ (θ′]Θ

(we proved above that q ∈ Θ and q v θ′). For max (θ′]Θ v q it suffices to show that max (θ′]Θ ∈ Q,

that is, that θ t max (θ′]Θ = θ′: θ t max (θ′]Θ v θ′ follows because θ v θ′ and max (θ′]Θ v θ′,

while θ′ v θ t max (θ′]Θ follows because there is some θ′′ ∈ Θ such that θ′ = θ t θ′′ and, since

θ′′ v max (θ′]Θ, θ t θ′′ v θ tmax (θ′]Θ (by 4. in Proposition 3).

3. admits a direct proof simpler than that of 2.; however, since 2. is needed anyway, we prefer

to use 2. Note that θ v θ1 v θ2. By 2., θ1 = max {θ′′ | θ′′ ∈ Θ and θ2 = θ t θ′′}, which implies

θ2 = θ t θ1 = θ1. �

Definition 15 Given Θ ⊆ [X⇁V ], we let Θ, the least upper bound (lub) closure of Θ, be

defined as follows:

Θ def= ∩{Θ′ | Θ′ ⊆ [X⇁V ] with Θ ⊆ Θ′ and Θ′ is lub closed}.

Proposition 9 The next hold (Θ ⊆ [X⇁V ], θ ∈ [X⇁V ]):

1. Θ is the smallest lub closed set including Θ;

2. ∅ = {⊥} = {⊥};

3. {θ} = {⊥, θ}.

Proof: 1. follows by 7. in Proposition 7. For 2. and 3., first note that {⊥} and {⊥, θ} are lub

closed by Proposition 6; second, note that they are indeed the smallest lub closed sets including ⊥

and resp. θ, as any lub closed set must include ⊥ (1. in Proposition 7). �

Proposition 10 The lub closure map · : 2[X⇁V ] → 2[X⇁V ] is a closure operator, that is, for any

Θ,Θ1,Θ2 ⊆ [X⇁V ],
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1. (extensivity) Θ ⊆ Θ;

2. (monotonicity) If Θ1 ⊆ Θ2 then Θ1 ⊆ Θ2;

3. (idempotency) Θ = Θ.

Proof: Extensivity and idempotency follow immediately from the definitions of Θ and Θ (which

are lub closed by 1. in Proposition 9). For monotonicity, one should note that Θ2 satisfies the

properties of Θ1 (i.e., Θ1 ⊆ Θ2 and Θ2 is lub closed); since Θ1 is the smallest with those properties,

it follows that Θ1 ⊆ Θ2. �

Proposition 11 ∪{Θi | i ∈ I} = t{Θi | i ∈ I} for any family {Θi}i∈I of partial functions in

[X⇁V ].

Proof: Since Θi is lub closed for any i ∈ I, 5. in Proposition 7 implies that t{Θi | i ∈ I} is lub

closed and ∪{Θi | i ∈ I} ⊆ t{Θi | i ∈ I}. Since 1. in Proposition 10 implies Θi ⊆ Θi for each i ∈ I

and since ∪{Θi | i ∈ I} is the smallest lub closed set including ∪{Θi | i ∈ I} (1. in Proposition 9),

the inclusion ∪{Θi | i ∈ I} ⊆ t{Θi | i ∈ I} holds. Conversely, 2. in Proposition 10 implies that

Θi ⊆ ∪{Θi | i ∈ I} for any i ∈ I, so t{Θi | i ∈ I} ⊆ ∪{Θi | i ∈ I} holds by 4. in Proposition 7. �

Corollary 2 For any θ ∈ [X⇁V ] and any Θ ⊆ [X⇁V ], the equality {θ} ∪Θ = {⊥, θ} tΘ holds.

Proof: {θ} ∪Θ = {θ} tΘ by Proposition 11, and further {θ} = {⊥, θ} by 3. in Proposition 9. �

Corollary 3 If Θ ⊆ [X⇁V ] is finite then Θ is also finite.

Proof: Suppose that Θ = {θ1, θ2, . . . , θn} for some n ≥ 0. Iteratively applying Corollary 2, Θ =

{⊥, θ1} t {⊥, θ2} t · · · {⊥, θn}; in obtaining that, we used 2. in Proposition 9 and 1. in Corollary 1.

The result follows now by 6. in Proposition 7. �

4.2.3 Slicing with Less

Consider a parametric trace τ in E〈X〉∗ and a parameter instance θ. Since there is no apriori

correlation between the parameters being instantiated by θ and those by the various parametric

events in τ , it may very well be the case that θ contains parameter instances that never appear in

τ . In this section we show that slicing τ by θ is the same as slicing it by a “smaller” parameter
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instance than θ, namely one containing only those parameters instantiated by θ that also appear as

instances of some parameters in some events in τ . Formally, this smaller parameter instance is the

largest partial map smaller than θ in the lub closure of all the parameter instances of events in τ ;

this partial function is proved to indeed exist. We first formalize a notation used informally so far

in this paper:

Notation 1 When the domain of θ is finite, which is always the case in our examples in this paper

and probably will also be the case in most practical uses of our trace slicing algorithm, and when the

corresponding parameter names are clear from context, we take the liberty to write partial functions

compactly by simply listing their parameter values; for example, we write a partial function θ with

θ(a) = a2, θ(b) = b1 and θ(c) = c1 as the sequence “a2b1c1”. The function ⊥ then corresponds to

the empty sequence.

Example. Here is a parametric trace with events parametric in {a, b, c} taking values in {a1, a2, b1, c1}:

τ = e1〈a1〉 e2〈a2〉 e3〈b1〉

e4〈a2b1〉 e5〈a1〉 e6〈〉 e7〈b1〉 e8〈c1〉 e9〈a2c1〉 e10〈a1b1c1〉 e11〈〉. It may be the case that some of the

base events appearing in a trace are the same; for example, e1 may be equal to e2 and to e5. It is

actually frequently the case in practice (at least in PQL [66], Tracematches [3], JavaMOP [29]) that

parametric events are specified apriori with a given (sub)set of parameters, so that each event in E

is always instantiated with partial functions over the same domain, that is, if e〈θ〉 and e〈θ′〉 appear

in some parametric trace, then Dom(θ) = Dom(θ′). While this restriction is reasonable, our trace

slicing and monitoring algorithms do not need it. �

Recall from Definition 7 that the trace slice τ�θ keeps from τ only those events that are relevant

for θ and drops their parameters.

Example. Consider again the sample parametric trace above with events parametric in {a, b, c}:

τ = e1〈a1〉 e2〈a2〉 e3〈b1〉 e4〈a2b1〉

e5〈a1〉 e6〈〉 e7〈b1〉 e8〈c1〉 e9〈a2c1〉 e10〈a1b1c1〉 e11〈〉. Several slices of τ are listed below:
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τ�a1 = e1e5e6e11

τ�a2 = e2e6e11

τ�a1b1 = e1e3e5e6e7e11

τ�a2b1 = e2e3e4e6e7e11

τ� = e6e11

τ�a1b1c1 = e1e3e5e6e7e8e10e11

τ�a2b1c1 = e2e3e4e6e7e8e9e11

τ�a1b2c1 = e1e5e6e8e11

τ�b2c2 = e6e11

In order for the partial functions above to make sense, we assumed that the set VX in which

parameters X = {a, b, c} take values includes {a1, a2, b1, b2, c1, c2}. �

Definition 16 Given parametric trace τ ∈ E〈X〉∗, we let Θτ denote the lub closure of all the

parameter instances appearing in events in τ , that is, Θτ = {θ | θ ∈ [X⇁V ], e〈θ〉 ∈ τ}.

Proposition 12 Θτ is a finite lub closed set for any τ ∈ E〈X〉∗.

Proof: Θτ is already defined as a lub closed set; since τ is finite, Corollary 3 implies that Θτ is

finite. �

Proposition 13 Given τ e〈θ〉 ∈ E〈X〉∗, the following equality holds: Θτ e〈θ〉 = {⊥, θ} tΘτ .

Proof: It follows by the following sequence of equalities:

Θτ e〈θ〉 = {θ′ | θ′ ∈ [X⇁V ], e′〈θ′〉 ∈ τ e〈θ〉}

= {θ} ∪ {θ′ | θ′ ∈ [X⇁V ], e′〈θ′〉 ∈ τ}

= {θ} ∪Θτ

= {⊥, θ} tΘτ

= {⊥, θ} tΘτ .

The first equality follows by Definition 16, the second by separating the case e′〈θ′〉 = e〈θ〉, the third

again by Definition 16, the fourth by Corollary 2, and the fifth by Proposition 12. Therefore, Θτ e〈θ〉

is the smallest lub closed set that contains θ and includes Θτ . �

Proposition 14 Given τ ∈ E〈X〉∗ and θ ∈ [X⇁V ], the following equality holds: τ�θ= τ�max (θ]Θτ
.

Proof: We prove the following more general result:
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“let Θ ⊆ [X⇁V ] be lub closed and let θ ∈ [X⇁V ];

then τ�θ= τ�max (θ]Θ for any τ ∈ E〈X〉∗ with Θτ ⊆ Θ.”

First note that the statement above is well-formed because max (θ]Θ exists whenever Θ is lub closed

(1. in Proposition 8), and that it is indeed more general than the stated result: for the given

τ ∈ E〈X〉∗ and θ ∈ [X⇁V ], we pick Θ to be Θτ . We prove the general result by induction on the

length of τ :

- If |τ | = 0 then τ = ε and ε�θ= ε�max (θ]Θ= ε.

- Now suppose that τ�θ= τ�max (θ]Θ for any τ ∈ E〈X〉∗ with Θτ ⊆ Θ and |τ | = n ≥ 0, and let us

show that τ ′�θ= τ ′�max (θ]Θ for any τ ′ ∈ E〈X〉∗ with Θτ ′ ⊆ Θ and |τ ′| = n+ 1. Pick such a τ ′ and let

τ ′ = τ e〈θ′〉 for a τ ∈ E〈X〉∗ with |τ | = n and an e〈θ′〉 ∈ E〈X〉. Since Θτ ′ ⊆ Θ, by 6. in Proposition

4 and by Proposition 13 it follows that Θτ ⊆ {⊥, θ′} tΘτ ⊆ Θ, so the induction hypothesis implies

τ�θ= τ�max (θ]Θ . The rest follows noticing that θ′ v θ iff θ′ v max (θ]Θ, which is a consequence of

the definition of max (θ]Θ because θ′ ∈ {⊥, θ′} ⊆ {⊥, θ′} t Θτ ⊆ Θ (again by 6. in Proposition 4

and by Proposition 13).

Alternatively, one could have also done the proof above by induction on τ , not on its length, but

the proof would be more involved, because one would need to prove that the domain over which the

property is universally quantified, namely “any τ ∈ E〈X〉∗ with Θτ ⊆ Θ” is inductively generated.

We therefore preferred to choose a more elementary induction schema. �

4.2.4 Parametric Trace Slicing Algorithm A〈X〉

We next define an algorithm A〈X〉 that takes a parametric trace τ ∈ E〈X〉∗ incrementally (i.e.,

event by event), and builds a partial function T ∈ [[X⇁V ]⇁E∗] of finite domain that serves as a

quick lookup table for all slices of τ . More precisely, Theorem 1 shows that, for any θ ∈ [X⇁V ],

the trace slice τ�θ is T(max (θ]Θ) after A〈X〉 processes τ , where Θ = Θτ is the domain of T, a finite

lub closed set of partial functions also calculated by A〈X〉 incrementally. Therefore, assuming that

A〈X〉 is run on trace τ , all one has to do in order to calculate a slice τ�θ for a given θ ∈ [X⇁V ]

is to calculate max (θ]Θ followed by a lookup into T. This way the trace τ , which can be very

long, is processed/traversed only once, as it is being generated, and appropriate data-structures are

maintained by our algorithm that allow for retrieval of slices for any parameter instance θ, without

having to traverse the trace τ again, as an algorithm blindly following the definition of trace slicing

would do.
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Algorithm A〈X〉
Input: parametric trace τ ∈ E〈X〉∗
Output: map T ∈ [[X⇁V ]⇁E∗] and set Θ ⊆ [X⇁V ]

1 T← ⊥; T(⊥)← ε; Θ← {⊥}
2 for all parametric event e〈θ〉 in order (fist to last) in τ do
3

... for all θ′ ∈ {θ} tΘ do
4

...
... T(θ′)← T(max (θ′]Θ) e

5
... endfor

6
... Θ← {⊥, θ} tΘ

7 endfor

Figure 4.4: Parametric trace slicing algorithm A〈X〉.

Figure 4.4 shows our trace slicing algorithm A〈X〉. In spite of A〈X〉’s small size, its proof of

correctness is surprisingly intricate, making use of almost all the mathematical machinery developed

so far in the paper. The algorithm A〈X〉 on input τ , written more succinctly A〈X〉(τ), traverses

τ from its first event to its last event and, for each encountered event e〈θ〉, updates both its data-

structures, T and Θ. After processing each event, the relationship between T and Θ is that the

latter is the domain of the former. Line 1 initializes the data-structures: T is undefined everywhere

(i.e., ⊥) except for the undefined-everywhere function ⊥, where T(⊥) = ε; as expected, Θ is then

initialized to the set {⊥}. The code (lines 3 to 6) inside the outer loop (lines 2 to 7) can be triggered

when a new event is received, as in most online runtime verification systems. When a new event is

received, say e〈θ〉, the mapping T is updated as follows: for each θ′ ∈ [X⇁V ] that can be obtained

by combining θ with the compatible partial functions in the domain of the current T, update T(θ′)

by adding the non-parametric event e to the end of the slice corresponding to the largest (i.e., most

“knowledgeable”) entry in the current table T that is less informative or as informative as θ′; the Θ

data-structure is then extended in line 6.

Example.

Consider again the sample parametric trace above with events parametric in {a, b, c}, namely

τ = e1〈a1〉 e2〈a2〉 e3〈b1〉

e4〈a2b1〉 e5〈a1〉 e6〈〉 e7〈b1〉 e8〈c1〉 e9〈a2c1〉 e10〈a1b1c1〉 e11〈〉. Table 4.2.4 shows how A〈X〉 works on

τ . An entry of the form “〈θ〉 : w” in a table cell corresponding to a “current” parametric event

e〈θ〉 means that T(θ) = w after processing all the parametric events up to and including the current

one; T is undefined on any other partial function. Obviously, the Θ corresponding to a cell is the

union of all the θ’s that appear in pairs “〈θ〉 : w” in that cell. Note that, as each parametric event

e〈θ〉 is processed, the non-parametric event e is added at most once to each slice, and that the Θ
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e1〈a1〉 e2〈a2〉 e3〈b1〉 e4〈a2b1〉
〈〉 : ε
〈a1〉 : e1

〈〉 : ε
〈a1〉 : e1
〈a2〉 : e2

〈〉 : ε
〈a1〉 : e1
〈a2〉 : e2
〈b1〉 : e3
〈a1b1〉 : e1e3
〈a2b1〉 : e2e3

〈〉 : ε
〈a1〉 : e1
〈a2〉 : e2
〈b1〉 : e3
〈a1b1〉 : e1e3
〈a2b1〉 : e2e3e4

e5〈a1〉 e6〈〉 e7〈b1〉
〈〉 : ε
〈a1〉 : e1e5
〈a2〉 : e2
〈b1〉 : e3
〈a1b1〉 : e1e3e5
〈a2b1〉 : e2e3e4

〈〉 : e6
〈a1〉 : e1e5e6
〈a2〉 : e2e6
〈b1〉 : e3e6
〈a1b1〉 : e1e3e5e6
〈a2b1〉 : e2e3e4e6

〈〉 : e6
〈a1〉 : e1e5e6
〈a2〉 : e2e6
〈b1〉 : e3e6e7
〈a1b1〉 : e1e3e5e6e7
〈a2b1〉 : e2e3e4e6e7

e8〈c1〉 e9〈a2c1〉 e10〈a1b1c1〉 e11〈〉
〈〉 : e6
〈a1〉 : e1e5e6
〈a2〉 : e2e6
〈b1〉 : e3e6e7
〈a1b1〉 : e1e3e5e6e7
〈a2b1〉 : e2e3e4e6e7
〈c1〉 : e6e8
〈a1c1〉 : e1e5e6e8
〈a2c1〉 : e2e6e8
〈b1c1〉 : e3e6e7e8
〈a1b1c1〉 : e1e3e5e6e7e8
〈a2b1c1〉 : e2e3e4e6e7e8

〈〉 : e6
〈a1〉 : e1e5e6
〈a2〉 : e2e6
〈b1〉 : e3e6e7
〈a1b1〉 : e1e3e5e6e7
〈a2b1〉 : e2e3e4e6e7
〈c1〉 : e6e8
〈a1c1〉 : e1e5e6e8
〈a2c1〉 : e2e6e8e9
〈b1c1〉 : e3e6e7e8
〈a1b1c1〉 : e1e3e5e6e7e8
〈a2b1c1〉 : e2e3e4e6e7e8e9

〈〉 : e6
〈a1〉 : e1e5e6
〈a2〉 : e2e6
〈b1〉 : e3e6e7
〈a1b1〉 : e1e3e5e6e7
〈a2b1〉 : e2e3e4e6e7
〈c1〉 : e6e8
〈a1c1〉 : e1e5e6e8
〈a2c1〉 : e2e6e8e9
〈b1c1〉 : e3e6e7e8
〈a1b1c1〉 : e1e3e5e6e7e8e10
〈a2b1c1〉 : e2e3e4e6e7e8e9

〈〉 : e6e11
〈a1〉 : e1e5e6e11
〈a2〉 : e2e6e11
〈b1〉 : e3e6e7e11
〈a1b1〉 : e1e3e5e6e7e11
〈a2b1〉 : e2e3e4e6e7e11
〈c1〉 : e6e8e11
〈a1c1〉 : e1e5e6e8e11
〈a2c1〉 : e2e6e8e9e11
〈b1c1〉 : e3e6e7e8e11
〈a1b1c1〉 : e1e3e5e6e7e8e10e11
〈a2b1c1〉 : e2e3e4e6e7e8e9e11

Table 4.1: A run of the trace slicing algorithm A〈X〉 (top-left table first, followed by bottom-left
table, followed by the right table).

corresponding to each cell is lub closed. �

A〈X〉 compactly and uniformly captures several special cases and subcases that are worth dis-

cussing. The discussion below can be formalized as an inductive (on the length of τ) proof of cor-

rectness for A〈X〉, but we prefer to keep this discussion informal and give a rigorous proof shortly

after. The role of this discussion is twofold: (1) to better explain the algorithm A〈X〉, providing the

reader with additional intuition for its difficulty and compactness, and (2) to give a proof sketch for

the correctness of A〈X〉.

Let us first note that a partial function added to Θ will never be removed from Θ; that’s because

Θ ⊆ {⊥, θ}tΘ. The same holds true for the domain of T, because line 4 can only add new elements

to Dom(T); in fact, the domain of T is extended with precisely the set {θ} t Θ after each event

parametric in θ is processed by A〈X〉. Moreover, since Dom(T) = Θ = Θε = {⊥} initially and

since 5. and 7. in Proposition 4 imply Θ ∪ ({θ} tΘ) = {⊥, θ} tΘ while Proposition 13 states that

Θτ e〈θ〉 = {⊥, θ} t Θτ , we can inductively show that Dom(T) = Θ = Θτ each time after A〈X〉 is

executed on a parametric trace τ .

Each θ′ considered by the loop at lines 3-5 has the property that θ v θ′, and at (precisely)

one iteration of the loop θ′ is θ; indeed, θ ∈ {θ} t Θ because ⊥ ∈ Θ. Thanks to Proposition 14,

the claimed Theorem 1 holds essentially iff T(θ′) = τ�θ′ after T(θ′) is updated in line 4. A tricky

observation which is crucial for this is that 3. in Proposition 8 implies that the updates of T(θ′) do
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not interfere with each other for different θ′ ∈ {θ} t Θ; otherwise the non-parametric event e may

be added multiple times to some trace slices T(θ′).

Let us next informally argue, inductively, that it is indeed the case that T(θ′) = τ�θ′ after T(θ′)

is updated in line 4 (it vacuously holds on the empty trace). Since max (θ′]Θ ∈ Θ, the inductive

hypothesis tells us that T(max (θ′]Θ) = τ�max (θ′]Θ ; these are further equal to τ�θ′ by Proposition

14. Since θ v θ′, the definition of trace slicing implies that (τ e〈θ〉)�θ′= τ�θ′ e. Therefore, T(θ′) is

indeed (τ e〈θ〉)�θ′ after line 4 of A〈X〉 is executed while processing the event e〈θ〉 that follows trace

τ . This concludes our informal proof sketch; let us next give a rigorous proof of correctness for our

trace slicing algorithm.

Definition 17 Let A〈X〉(τ).T and A〈X〉(τ).Θ be the two data-structures (T and Θ) of A〈X〉 after

it processes τ .

Theorem 1 The following hold for any τ ∈ E〈X〉∗:

1. Dom(A〈X〉(τ).T) = A〈X〉(τ).Θ = Θτ ;

2. A〈X〉(τ).T(θ) = τ�θ for any θ ∈ A〈X〉(τ).Θ;

3. τ�θ= A〈X〉(τ).T(max (θ]A〈X〉(τ).Θ) for any θ ∈ [X⇁V ].

Proof: Since A〈X〉 processes the events in the input trace in order, when given the input τ e〈θ〉,

the Θ and T structures after A〈X〉 processes τ but before it processes e〈θ〉 (i.e., right before the last

iteration of the loop at lines 2-7) are precisely A〈X〉(τ).Θ and A〈X〉(τ).T, respectively. Further,

the loop at lines 3-5 updates T on all θ′ ∈ {θ} t Θ; in case T was not defined on such a θ′, then it

will be defined after e〈θ〉 is processed. The definitional domain of T is thus continuously growing or

potentially remains stationary as parametric events are processed, but it never decreases.

With these observations, we can prove 1. easily by induction on τ . If τ = ε then Dom(A〈X〉(ε).T) =

A〈X〉(ε).Θ = Θε = {⊥}. Suppose now that Dom(A〈X〉(τ).T) = A〈X〉(τ).Θ = Θτ holds for

τ ∈ E〈X〉∗, and let e〈θ〉 ∈ E〈X〉 be any parametric event. Then the following concludes the

proof of 1.:
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Dom(A〈X〉(τ e〈θ〉).T)

= Dom(A〈X〉(τ).T) ∪ ({θ} t A〈X〉(τ).Θ)

= A〈X〉(τ).Θ ∪ ({θ} t A〈X〉(τ).Θ)

= ({⊥} t A〈X〉(τ).Θ) ∪ ({θ} t A〈X〉(τ).Θ)

= {⊥, θ} t A〈X〉(τ).Θ

= A〈X〉(τ e〈θ〉).Θ

= {⊥, θ} tΘτ

= Θτ e〈θ〉

where the first equality follows from how the loop at lines 3-5 updates T, the second by the induction

hypothesis, the third by 5. in Proposition 4, the fourth by 7. in Proposition 4, the fifth by how

Θ is updated at line 6, the sixth again by the induction hypothesis, and, finally, the seventh by

Proposition 13.

Before we continue, let us first prove the following property:

A〈X〉(τ e〈θ〉).T(θ′) = A〈X〉(τ).T(max (θ′]A〈X〉(τ).Θ) e for any e〈θ〉 ∈ E〈X〉 and any θ′ ∈

{θ} t A〈X〉(τ).Θ.

One should be careful here to not get tricked thinking that this property is straightforward, because

it says only what line 4 of A〈X〉 does. The complexity comes from the fact that if there were two

different θ1, θ2 ∈ {θ}tA〈X〉(τ).Θ such that θ1 = max (θ2]A〈X〉(τ).Θ, then an unfortunate enumeration

of the partial functions θ′ in {θ}tA〈X〉(τ).Θ by the loop at lines 3-5 may lead to the non-parametric

event e to be added twice to a slice: indeed, if θ1 is processed before θ2, then e is first added to

the end of T(θ1) when θ′ = θ1, and then T(θ1) e is assigned to T(θ2) when θ′ = θ2; this way,

T(θ2) ends up accumulating e twice instead of once, which is obviously wrong. Fortunately, since

A〈X〉(τ).Θ is lub closed (by 1. above and Proposition 12), 3. in Proposition 8 implies that there

are no such different θ1, θ2 ∈ {θ} t A〈X〉(τ).Θ. Therefore, there is no interference between the

various assignments at line 4, regardless of the order in which the partial functions θ′ ∈ {θ} t Θ

are enumerated, which means that, indeed, A〈X〉(τ e〈θ〉).T(θ′) = A〈X〉(τ).T(max (θ′]A〈X〉(τ).Θ) e for

any e〈θ〉 ∈ E〈X〉 and for any θ′ ∈ {θ} t A〈X〉(τ).Θ. This lack of interference between updates of

T also suggests an important implementation optimization: the loop at lines 3-5 can be parallelized

without having to duplicate the table T! Of course, the loop can be parallelized anyway if the table

is duplicated and then merged within the original table, in the sense that all the writes to T(θ′)

are done in a copy of T. However, experiments show that the table T can be literally huge in real

applications, in the order of billions of entries, so duplicating and merging it can be prohibitive.
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2. can be now proved by induction on the length of τ . If τ = ε then A〈X〉(ε).Θ = {⊥}, so

θ′ ∈ A〈X〉(ε).Θ can only be⊥; then A〈X〉(ε).T(⊥) = τ�⊥= ε. Suppose now that A〈X〉(τ).T(θ′) = τ�θ′

for any θ′ ∈ A〈X〉(τ).Θ and let us show that A〈X〉(τ e〈θ〉).T(θ′) = (τ e〈θ〉)�θ′ for any θ′ ∈

A〈X〉(τ e〈θ〉).Θ. As shown in the proof of 1. above, A〈X〉(τ e〈θ〉).Θ = A〈X〉(τ).Θ ∪ ({θ} t

A〈X〉(τ).Θ), so we have two cases to analyze. First, if θ′ ∈ {θ} t A〈X〉(τ).Θ then θ v θ′ and

so (τ e〈θ〉)�θ′= τ�θ′ e; further,

A〈X〉(τ e〈θ〉).T(θ′) = A〈X〉(τ).T(max (θ′]A〈X〉(τ).Θ) e

= τ�max (θ′]A〈X〉(τ).Θ
e

= τ�θ′ e

= (τ e〈θ〉)�θ′ ,

where the first equality follows by the auxiliary property proved above, the second by the induction

hypothesis using the fact that max (θ′]A〈X〉(τ).Θ ∈ A〈X〉(τ).Θ, and the third by Proposition 14.

Second, if θ′ ∈ A〈X〉(τ).Θ but θ′ 6∈ {θ}tA〈X〉(τ).Θ then θ 6v θ′ and so (τ e〈θ〉)�θ′= τ�θ′ ; further,

A〈X〉(τ e〈θ〉).T(θ′) = A〈X〉(τ).T(θ′)

= τ�θ′

= (τ e〈θ〉)�θ′ ,

where the first equality holds because θ′ is not considered by the loop in lines 3-5 in A〈X〉, that is, θ′ 6∈

{θ} t A〈X〉(τ).Θ, and the second equality follows by the induction hypothesis, as θ′ ∈ A〈X〉(τ).Θ.

Therefore, A〈X〉(τ e〈θ〉).T(θ′) = (τ e〈θ〉)�θ′ for any θ′ ∈ A〈X〉(τ e〈θ〉).Θ, which completes the proof

of 2.

3. is the main result concerning our trace slicing algorithm and it follows now easily:

τ�θ = τ�max (θ]Θτ

= τ�max (θ]A〈X〉(τ).Θ

= A〈X〉(τ).T(max (θ]A〈X〉(τ).Θ)

The first equality follows by Proposition 14, the second by 1. and the third by 2., as max (θ]A〈X〉(τ).Θ ∈

A〈X〉(τ).Θ. This concludes the correctness proof of our trace slicing algorithm A〈X〉. �

4.3 Parametric Monitoring

We next formalize the notion of parametric monitors and introduces two algorithms for parametric

monitoring.
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4.3.1 Parametric Monitors

In this section we first define monitors M as a variant of Moore machines with potentially infinitely

many states; then we define parametric monitors ΛX.M as monitors maintaining one state of M

per parameter instance. Like for parametric properties, which turned out to be just properties over

parametric traces, we show that parametric monitors are also just monitors, but for parametric

events and with instance-indexed states and output categories. We also show that a parametric

monitor ΛX.M is a monitor for the parametric property ΛX.P , with P the property monitored by

M .

The Non-Parametric Case

We start by defining non-parametric monitors as a variant of Moore machines [69] that allows

infinitely many states:

Definition 18 A monitor M is a tuple (S, E , C, i, σ : S × E → S, γ : S → C), where S is a set

of states, E is a set of input events, C is a set of output categories, i ∈ S is the initial state, σ

is the transition function, and γ is the output function. The transition function is extended to

σ : S × E∗ → S as expected: σ(s, ε) = s and σ(s, we) = σ(σ(s, w), e) for any s ∈ S, e ∈ E, and

w ∈ E∗.

The notion of a monitor above is rather conceptual. Actual implementations of monitors need

not generate all the state space apriori, but on a “by need” basis. Consider, for example, a monitor

for a property specified using an NFA: the monitor performs an NFA-to-DFA construction on the

fly, as events are received, thus generating only those states in the DFA that are needed by the

monitored execution trace; since generation of next set of states is fast, one need not even hash the

generated DFA states, the entire memory needed by monitor staying linear in the size of the NFA.

Allowing monitors with infinitely many states is a necessity in our context. Even though only

a finite number of states is reached during any given (finite) execution trace, there is, in general,

no bound on how many states are reached. For example, monitors for context-free grammars like

the ones in [67] have potentially unbounded stacks as part of their state. Also, as shown shortly,

parametric monitors have domains of functions as state spaces, which are infinite as well. What is

common to all monitors though is that they can take a trace event-by-event and, as each event is

processed, classify the observed trace into a category. The following is natural:
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Definition 19 M = (S, E , C, i, σ, γ) is a monitor for property P : E∗ → C iff γ(σ(i, w)) = P (w)

for each w ∈ E∗.

Since we allow monitors to have infinitely many states, there is a strong correspondence between

properties and monitors:

Proposition 15 Every monitor M defines a property PM with M a monitor for PM . Every prop-

erty P defines a monitor MP with MP a monitor for P . For any property P , PMP
= P .

Proof: Given M = (S, E , C, i, σ, γ), let PM : E∗ → C be the property PM (w) = γ(σ(i, w)); note that

M is indeed a monitor for PM . Given P : E∗ → C, let MP be the monitor (SP , E , C, iP , σP , γP )

with SP = E∗, iP = ε, σP (w, e) = we, γP (w) = P (w). MP is a monitor for P as γP (σP (iP , w)) =

γP (σP (ε, w)) = γP (εw) = γP (w) = P (w). Finally, PMP
(w) = γP (σP (iP , w)) = P (w) for any

w ∈ E∗, so PMP
= P . �

The equality of monitors MPM = M does not hold for any monitor M ; it does hold when

M =MP for some property P .

Definition 20 Monitors M and M ′ are property equivalent, or just equivalent, written M ≡

M ′, iff they are monitors for the same property; with the notation above, M ≡M ′ iff PM = PM ′ .

Corollary 4 With the notation in Proposition 15, MPM ≡M .

The Parametric Case

We next define parametric monitors in the same style as the other parametric entities defined in this

paper: starting with a base monitor and a set of parameters, the corresponding parametric monitor

can be thought of as a set of base monitors running in parallel, one for each parameter instance.

Definition 21 Given parameters X with corresponding values VX and monitor M = (S, E , C, i, σ :

S × E → S, γ : S → C), we define the parametric monitor ΛX.M as the monitor

([[X⇁V ]→S], E〈X〉, [[X⇁V ]→C], λθ.i,ΛX.σ,ΛX.γ),

with ΛX.σ : [[X⇁V ]→S]×E〈X〉 → [[X⇁V ]→S] and ΛX.γ : [[X⇁V ]→S]→ [[X⇁V ]→C] defined
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as

(ΛX.σ)(δ, e〈θ′〉)(θ) =

 σ(δ(θ), e) if θ′ v θ

δ(θ) if θ′ 6v θ

(ΛX.γ)(δ)(θ) = γ(δ(θ))

for any δ ∈ [[X⇁V ]→S] and any θ, θ′ ∈ [X⇁V ].

Therefore, a state δ of parametric monitor ΛX.M maintains a state δ(θ) of M for each parameter

instance θ, takes parametric events as input, and outputs categories indexed by parameter instances

(one output category of M per parameter instance).

Proposition 16 If M is a monitor for property P then parametric monitor ΛX.M is a monitor

for parametric property ΛX.P , or, with the notation in Proposition 15, PΛX.M = ΛX.PM .

Proof: We show that (ΛX.γ)((ΛX.σ)(λθ.i, τ)) = (ΛX.P )(τ) for any τ ∈ E〈X〉∗, i.e., after applica-

tion on θ ∈ [X⇁V ], that γ((ΛX.σ)(λθ.i, τ)(θ)) = P (τ�θ) for any τ ∈ E〈X〉∗ and θ[X⇁V ]. Since

M is a monitor for P , it suffices to show that (ΛX.σ)(λθ.i, τ)(θ) = σ(i, τ�θ) for any τ ∈ E〈X〉∗ and

θ[X⇁V ]. We prove it by induction on τ . If τ = ε then (ΛX.σ)(λθ.i, ε)(θ) = (λθ.i)(θ)= i=σ(i, ε) =

σ(i, ε�θ). Suppose now that (ΛX.σ)(λθ.i, τ)(θ) = σ(i, τ�θ) for some arbitrary but fixed τ ∈ E〈X〉∗

and for any θ ∈ [X⇁V ], and let e〈θ′〉 be any parametric event in E〈X〉 and let θ ∈ [X⇁V ] be any

parameter instance. The inductive step is then as follows:

(ΛX.σ)(λθ.i, τ e〈θ′〉)(θ) = (ΛX.σ)((ΛX.σ)(λθ.i, τ), e〈θ′〉)(θ)

= (ΛX.σ)(σ(i, τ�θ), e〈θ′〉)(θ)

=

 σ(σ(i, τ�θ), e) if θ′ v θ

σ(i, τ�θ) if θ′ 6v θ

=

 σ(i, τ�θ e) if θ′ v θ

σ(i, τ�θ) if θ′ 6v θ

= σ(i, (τ e〈θ′〉)�θ)

The first equality above follows by the second part of Definition 18), the second by the induction

hypothesis, the third by Definition 21, the fourth again by the second part of Definition 18, and the

fifth by Definition 7. This concludes our proof. �
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Algorithm B〈X〉(M = (S, E , C, i, σ, γ))
Input: finite parametric trace τ ∈ E〈X〉∗
Output: mapping Γ : [[X⇁V ]⇁C] and set Θ ⊆ [X⇁V ]

1 ∆← ⊥; ∆(⊥)← i; Θ← {⊥}
2 for all parametric event e〈θ〉 in order in τ do
3

... for all θ′ ∈ {θ} tΘ do
4

...
... ∆(θ′)← σ(∆(max (θ′]Θ), e)

5
...

... Γ(θ′)← γ(∆(θ′)) // a message may be output here
6

... endfor
7

... Θ← {⊥, θ} tΘ
8 endfor

Figure 4.5: Parametric monitoring algorithm B〈X〉

4.3.2 General Parametric Monitoring Algorithm B〈X〉

We next propose a monitoring algorithm for parametric properties. Analyzing the definition of a

parametric monitor (Definition 21), the first thing we note is that its state space is not only infinite,

but it is not even enumerable. Therefore, a first challenge in monitoring parametric properties is

how to represent the states of the parametric monitor. Inspired by the algorithm for trace slicing in

Figure 4.4, we encode functions [[X⇁V ]⇁S] as tables with entries indexed by parameter instances in

[X⇁V ] and with contents states in S. Following similar arguments as in the proof of the trace slicing

algorithm, such tables will have a finite number of entries provided that each event instantiates only

a finite number of parameters.

Figure 4.5 shows our monitoring algorithm for parametric properties. Given parametric property

ΛX.P and M a monitor for P , B〈X〉(M) yields a monitor that is equivalent to ΛX.M , that is,

a monitor for ΛX.P . Section 4.3.3 shows one way to use this algorithm: a monitor M is first

synthesized from the base property P , then that monitor M is used to synthesize the monitor

B〈X〉(M) for the parametric property ΛX.P . B〈X〉(M) follows very closely the algorithm for trace

slicing in Figure 4.4, the main difference being that trace slices are processed, as generated, by M :

instead of calculating the trace slice of θ′ by appending base event e to the corresponding existing

trace slice in line 4 of A〈X〉, we now calculate and store in table ∆ the state of the “monitor instance”

corresponding to θ′ by sending e to the corresponding existing monitor instance (line 4 in B〈X〉(M));

at the same time we also calculate the output corresponding to that monitor instance and store it

in table Γ. In other words, we replace trace slices in A〈X〉 by local monitors processing online those

slices. In our implementation in Section 4.3.3, we also check whether Γ(θ′) at line 5 violates the

property and, if so, an error message including θ′ is output to the user.
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Definition 22 Given τ ∈ E〈X〉∗, let B〈X〉(M)(τ).Θ and B〈X〉(M)(τ).∆ and B〈X〉(M)(θ).Γ be the

three data-structures maintained by the algorithm B〈X〉(M) in Figure 4.5 after processing τ . Let

⊥ 7→ i = B〈X〉(M)(ε).∆ ∈ [[X⇁V ]⇁S] be the partial map taking ⊥ ∈ [X⇁V ] to i and undefined

elsewhere.

Corollary 5 The following hold for any τ ∈ E〈X〉∗:

1. Dom(B〈X〉(M)(τ).∆) = B〈X〉(M)(τ).Θ = Θτ ;

2. B〈X〉(M)(τ).∆(θ) = σ(i, τ�θ) and

B〈X〉(M)(τ).Γ(θ) = γ(σ(i, τ�θ))

for any θ ∈ B〈X〉(M)(τ).Θ;

3. σ(i, τ�θ) = B〈X〉(M)(τ).∆(max (θ]B〈X〉(M)(τ).Θ) and

γ(σ(i, τ�θ)) = B〈X〉(M)(τ).Γ(max (θ]B〈X〉(M)(τ).Θ)

for any θ ∈ [X⇁V ].

Proof: Follows from Theorem 1 and the discussion above. �

We next associate a monitor to the algorithm in Figure 4.5:

Definition 23 For the algorithm B〈X〉(M) in Figure 4.5, let MB〈X〉(M) = (R, E〈X〉, [[X⇁V ]→

C], ,⊥ 7→ i,next, out) be the monitor defined as follows: R ⊆ [[X⇁V ]⇁S] is the set {B〈X〉(M)(τ).∆ |

τ ∈ E〈X〉∗} of reachable ∆’s in B〈X〉(M), and next : R × E〈X〉 → R and out : R → [[X⇁V ]→C]

are the functions defined as follows (τ ∈ E〈X〉∗, e ∈ E, θ ∈ [X⇁V ]):

next(B〈X〉(M)(τ).∆, e〈θ〉) = B〈X〉(M)(τ e〈θ〉).∆, and

out(B〈X〉(M)(τ).∆)(θ) = B〈X〉(M)(τ).Γ(max (θ]B〈X〉(M)(τ).Θ).

Theorem 2 MB〈X〉(M) ≡ ΛX.M for any monitor M .

Proof: We have to show that, for any τ ∈ E〈X〉∗, out(next(⊥ 7→ i, τ)) and (ΛX.γ)((ΛX.σ)(λθ.i, τ))

are equal as total functions in [[X⇁V ]→C]. Let θ ∈ [X⇁V ]; then:

out(next(⊥ 7→ i, τ))(θ) = out(B〈X〉(M)(τ).∆)(θ)

= B〈X〉(M)(τ).Γ(max (θ]B〈X〉(M)(τ).Θ)

= γ(σ(λθ.i, τ�θ))

= γ((ΛX.σ)(λθ.i, τ)(θ))

= (ΛX.γ)((ΛX.σ)(λθ.i, τ))(θ).
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The first equality above follows inductively by the definition of next (Definition 23), noticing that

⊥ 7→ i = B〈X〉(M)(ε).∆. The second equality follows by the definition of out (Definition 23) and

the third by 3. in Corollary 5. The fourth equality above follows inductively by the definition of

ΛX.σ (Definition 21) and has already been proved as part of the proof of Proposition 16. Finally,

the fifth equality follows by the definition of ΛX.γ (Definition 21).

Therefore, MB〈X〉(M) and ΛX.M define the same property. �

Corollary 6 If M is a monitor for P and X is a set of parameters, then MB〈X〉(M) is a monitor

for parametric property ΛX.P .

Proof: With the notation in Proposition 15, Theorem 2 implies that PMB〈X〉(M) = PΛX.M . By

Proposition 16 and the fact that P = PM , we conclude that PMB〈X〉(M) = ΛX.P . �

4.3.3 Online Parametric Monitoring Algorithm C〈X〉

Algorithm C〈X〉 in Figure 4.6 refines Algorithm B〈X〉 in Figure 4.5 for efficient online monitoring.

Since no complete trace is given in online monitoring, C〈X〉 focuses on actions to carry out when

a parametric event e〈θ〉 arrives; in other words, it essentially expands the body of the outer loop

in B〈X〉 (lines 3 to 7 in Figure 4.5). We chose not to use B〈X〉 directly for our implementation for

efficiency concerns: the inner loop in B〈X〉 requires search for all parameter instances in Θ that are

compatible with θ; this search can be very expensive. C〈X〉 introduces an auxiliary data structure

and illustrates a mechanical way to accomplish the search, which also facilitates optimizations to

improve the performance of monitoring. While B〈X〉 did not require that θ in e〈θ〉 be of finite

domain, C〈X〉 needs that requirement to terminate. Note that in practice Dom(θ) is always finite

(because the program state is finite).

C〈X〉 uses three tables: ∆, U and Γ. ∆ and Γ are the same as ∆ and Γ in B〈X〉, respectively. U is

an auxiliary data structure used to optimize the search “for all θ′ ∈ {θ}tΘ” in B〈X〉 (line 3 in Figure

4.5). It maps each parameter instance θ into the finite set of parameter instances encountered in ∆

so far that are strictly more informative than θ, i.e., U(θ) = {θ′ | θ′ ∈ Dom(∆) and θ @ θ′}. Another

major difference between B〈X〉 and C〈X〉 is that C〈X〉 does not maintain Θ during computation;

instead, Θ is implicitly captured by the domain of ∆ in C〈X〉. Intuitively, Θ at the beginning/end of

the body of the outer loop in B〈X〉 is Dom(∆) at the beginning/end of C〈X〉, respectively. However,

Θ is fixed during the loop at lines 3 to 6 in B〈X〉 and updated atomically in line 7, while Dom(∆)

can be changed at any time during the execution of C〈X〉.
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Algorithm C〈X〉(M = (S, E , C, i, σ, γ))
Globals: mapping ∆ : [[X⇁V ]⇁S] and

mapping U : [X⇁V ]→ Pf ([X⇁V ]) and
mapping Γ : [[X⇁V ]⇁C]

Initialization: U(θ)← ∅ for any θ ∈ [X⇁V ],∆(⊥)← i

function main(e〈θ〉)
1 if ∆(θ)undefinedthen
2

... for all θmax @ θ (in reversed topological order) do
3

...
... if ∆(θmax) definedthen

4
...

...
... goto 7

5
...

... endif
6

... endfor
7

... defineTo(θ, θmax)
8

... for all θmax @ θ (in reversed topological order) do
9

...
... for all θcomp ∈ U(θmax) that is compatible with θ do

10
...

...
... if ∆(θcomp t θ) undefined then

11
...

...
...

... defineTo(θcomp t θ, θcomp)
12

...
...

... endif
13

...
... endfor

14
... endfor

15 endif
16 for all θ′ ∈ {θ} ∪ U(θ) do
17

... ∆(θ′)← σ(∆(θ′), e)
18

... Γ(θ′)← σ(∆(θ′))
19 endfor

function defineTo(θ, θ′)
1 ∆(θ)← ∆(θ′)
2 for all θ′′ @ θ do
3

... U(θ′′)← U(θ′′) ∪ {θ}
4 endfor

Figure 4.6: Online parametric monitoring algorithm C〈X〉

C〈X〉 is composed of two functions, main and defineTo. The defineTo function takes two param-

eter instances, θ and θ′, and adds a new entry corresponding to θ into ∆ and U . Specifically, it sets

∆(θ) to ∆(θ′) and adds θ into the set U(θ′′) for each θ′′ @ θ.

The main function differentiates two cases when a new event e〈θ〉 is received and processed. The

simpler case is that ∆ is already defined on θ, i.e., θ ∈ Θ at the beginning of the iteration of the

outer loop in B〈X〉. In this case, {θ}tΘ = {θ′ | θ′ ∈ Θ and θ v θ′} ⊆ Θ, so the lines 3 to 6 in B〈X〉

become precisely the lines 16 to 19 in C〈X〉. In the other case, when ∆ is not already defined on

θ, main takes two steps to handle e. The first step searches for new parameter instances introduced

by {θ} t Θ and adds entries for them into ∆ (lines 2 to 15). We first add an entry to ∆ for θ at

lines 2 to 7. Then we search for all parameter instances θcomp that are compatible with θ, making
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use of U (line 8 and 9); for each such θcomp, an appropriate entry is added to ∆ for its lub with θ,

and U updated accordingly (lines 10 to 12). This way, ∆ will be defined on all the new parameter

instances introduced by {θ} tΘ after the first step. In the second step, the related monitor states

and outputs are updated in a similar way as in the first case (lines 16 to 19). It is interesting to

note how C〈X〉 searches at lines 2 and 8 for the parameter instance max (θ]Θ that B〈X〉 refers to

at line 4 in Figure 4.5: it enumerates all the θmax @ θ in reversed topological order (from larger to

smaller); 1. in Proposition 8 guarantees that the maximum exists and, since it is unique, our search

will find it.

Correctness of C〈X〉. We next prove the correctness of C〈X〉 by showing that it is equivalent to

the body of the outer loop in B〈X〉. Suppose that parametric trace τ has already been processed

by both C〈X〉 and B〈X〉, and a new event e〈θ〉 is to be processed next.

Let us first note that C〈X〉 terminates if Dom(θ) is finite. Indeed, then there is only a finite

number of partial maps less informative than θ, that is, only a finite number of iterations for the

loops at lines 2 and 8 in main; since U is only updated at line 3 in defineTo, U(θ) is finite for any

θ ∈ [X⇁V ] and thus the loop at line 9 in main also terminates. Assuming that running the base

monitor M takes constant time, the worse case complexity of C〈X〉(M) is O(n×m) to process e〈θ〉,

where n is 2|Dom(θ)| and m is the number of incompatible parameter instances in τ . Parametric

properties often have a fixed and small number of parameters, in which case n is not significant.

Depending on the trace, m can unavoidably grow arbitrarily large; in the worst case, each event

may carry an instance incompatible with the previous ones.

Lemma 1 U(θ) = {θ′ | θ′ ∈ Dom(∆) and θ @ θ′} before and after each execution of defineTo, for

all θ ∈ [X⇁V ].

Proof: By how C〈X〉 is initialized, for any θ ∈ [X⇁V ] we have ∅ = U(θ) = {θ′ | θ′ ∈ Dom(∆) and θ @

θ′} before the first execution of defineTo. Now suppose that U(θ) = {θ′ | θ′ ∈ Dom(∆) and θ @ θ′}

for any θ ∈ [X⇁V ] before an execution of defineTo and show that it also holds after the execution

of defineTo. Since defineTo(θ, θ′) adds a new parameter instance θ into Dom(∆) and also adds θ into

the set U(θ′′) for any θ′′ ∈ [X⇁V ] with θ′′ @ θ, we still have U(θ) = {θ′ | θ′ ∈ Dom(∆) and θ @ θ′}

for any θ ∈ [X⇁V ] after the execution of defineTo. Also, the only way C〈X〉 adds a new parameter

instance θ into Dom(∆) is using defineTo. Therefore the lemma holds. �

Next result establishes the correctness of our implementation. We use the following notation.

Recall that we fixed parametric trace τ and event e〈θ〉. Let UC, ∆C, and ΓC be the three data-
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structures maintained by C〈X〉(M) for some M . Let ∆b
C and ΓbC be the ∆C and ΓC when main(e〈θ〉)

begins (“b” stays for “at the beginning”); let ∆e
C and ΓeC be the ∆C and ΓC when main(e〈θ〉) ends

(“e” stays for “at the end”; and let ∆m
C and UmC be the ∆C and UC when main(e〈θ〉) reaches line 16

(“m stays for “in the middle”).

Theorem 3 The following hold:

1. Dom(∆m
C ) = {⊥, θ} tDom(∆b

C);

2. ∆m
C (θ′)=∆m

C (max(θ′]Dom(∆b
C)), for all θ′∈Dom(∆m

C );

3. If ∆b
C = B〈X〉(M)(τ).∆ and ΓbC = B〈X〉(M)(τ).Γ, then ∆e

C = B〈X〉(M)(τ e〈θ〉).∆ and ΓbC =

B〈X〉(M)(τ e〈θ〉).Γ.

Proof: Let ΘC = Dom(∆b
C) = Dom(∆B(τ)) and ∆B(τ) = B〈X〉(M)(τ〈θ〉).∆ for simplicity.

1. There are two cases to analyze, depending upon θ is in ΘC or not. If θ ∈ ΘC then lines 2 to 14

are skipped and Dom(∆C) remains unchanged, that is, {⊥, θ} tΘC = ΘC = Dom(∆b
C) = Dom(∆m

C )

when main(e〈θ〉) reaches line 16. If θ /∈ ΘC then lines 2 to 14 are executed to add new parameter

instances into Dom(∆C). First, an entry for θ will be added to ∆C at line 7. Second, an entry for

θcomp t θ will be added to ∆C at line 11 (if ∆C not already defined on θcomp t θ) eventually for any

θcomp ∈ ΘC compatible with θ: that is because θmax can also be ⊥ at line 8, in which case Lemma

1 implies that U(θmax) = ΘC. Therefore, when line 16 is reached, Dom(∆m
C ) is defined on all the

parameter instances in {θ} ∪ ({θ} t ΘC). Since ⊥ ∈ ΘC, the latter equals {θ} t ΘC, and since ∆m
C

remains defined on ΘC, we conclude that ∆m
C is defined on all instances in ({θ} tΘC) ∪ΘC, which

by 5. and 7. in Proposition 4 equals {⊥, θ} tΘC.

2. We analyze the same two cases as above. If θ ∈ ΘC then lines 2 to 14 are skipped and Dom(∆C)

remains unchanged. Then max (θ′]ΘC = θ′ for each θ′ ∈ Dom(∆m
C ), so the result follows. Suppose

now that θ /∈ ΘC. By 1. and its proof, each θ′ ∈ Dom(∆m
C ) is either in ΘC or otherwise in

({θ} t ΘC) − ΘC. The result immediately holds when θ′ ∈ ΘC as max (θ′]ΘC = θ′ and ∆(θ′) stays

unchanged until line 16. If θ′ ∈ ({θ} tΘC)−ΘC then ∆(θ′) is set at either line 7 (θ′ = θ) or at line

11 (θ′ 6= θ):

(a) For line 7, the loop at lines 2 to 6 checks all the parameter instances that are less informative

than θ to find the first one in ΘC in reversed topological order (i.e., if θ1 @ θ2 then θ2 will be checked

before θ1). Since by 1. in Proposition 8 we know that max (θ]ΘC ∈ ΘC exists (and it is unique), the

loop at lines 2 to 6 will break precisely when θmax = max (θ]ΘC , so the result holds when θ′ = θ
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because of the entry introduced for θ in ∆C at line 7 and because the remaining lines 8 to 14 do not

change ∆C(θ).

(b) When ∆C(θ′) is set at line 11, note that the loop at lines 8 to 14 also iterates over all θmax @ θ

in reversed topological order, so θ′ = θcomp t θ for some θcomp ∈ ΘC compatible with θ such that

θmax @ θcomp, where θmax @ θ is such that there is no other θ′max with θmax @ θ′max @ θ and

θ′ = θ′comp t θ for some θ′comp ∈ ΘC compatible with θ such that θ′max @ θ′comp. We claim that

there is only one such θcomp, which is precisely max (θ′]ΘC : Let θ′comp be the parameter instance

max (θ′]ΘC . The above implies that θcomp v θ′comp v θ′. Also, θ′comptθ = θ′ because θ′ = θcomptθ v

θ′comp t θ v θ′. Let θ′max be θ′comp u θ, that is, the largest with θ′max v θ′comp and θ′max v θ (we let

its existence as exercise). It is relatively easy to see now that θcomp @ θ′comp implies θmax @ θ′max

(we let it as an exercise, too), which contradicts the assumption of this case that ∆C was not defined

on θ′. Therefore, θcomp = max (θ′]ΘC before line 11 is executed, which means that, after line 11 is

executed, ∆C(θ′) = ∆C(max (θ′]ΘC); moreover, none of these will be changed anymore until line 16

is reached, which proves our result.

3. Since Γ is updated according to ∆ in both C〈X〉 and B〈X〉, it is enough to prove that ∆e
C =

∆B(τe). For B〈X〉, we have

1) Dom(∆B(τe)) = {⊥, θ} tΘC = ({θ} tΘC) ∪ΘC;

2) ∀ θ′ ∈ {θ} tΘC, ∆B(τe)(θ′) = σ(∆B(τ)(max, (θ′]ΘC), e);

3) ∀ θ′ ∈ ΘC − {θ} tΘC, ∆B(τe)(θ′) = ∆B(τ)(θ′).

So we only need to prove that

1) Dom(∆e
C) = {⊥, θ} tΘC;

2) ∀ θ′ ∈ {θ} tΘC, ∆e
C(θ′) = σ(∆b

C(max, (θ′]ΘC), e);

3) ∀ θ′ ∈ ΘC − {θ} tΘC, ∆e
C(θ′) = ∆b

C(θ′).

By 1., we have Dom(∆m
C ) = {⊥, θ}tΘC. Since lines 16 to 19 do not change Dom(∆C), Dom(∆e

C) =

Dom(∆m
C ) = {⊥, θ} tΘC. 1) holds.

By 2. and Lemma 1, ∆m
C (θ′) = ∆b

C(max, (θ′]ΘC) for any θ′ ∈ Dom(∆m
C ). Also, notice that line

17 sets ∆C(θ′) to σ(∆C(θ′), e), which is σ(∆b
C(max, (θ′]ΘC), e), for the θ′ in the loop. So, to show 2)

and 3), we only need to prove that the loop at line 16 to 19 iterates over {θ} t ΘC. Since lines 16

to 19 do not change UC, we need to show {θ} ∪ UmC (θ) = {θ} tΘC. Since Dom(∆m
C ) = {⊥, θ} tΘC,

we have {θ} t Dom(∆m
C ) = {θ} t ({⊥, θ} t ΘC) = {θ} t (({θ} t ΘC) ∪ ΘC). By Proposition 4,

{θ} t Dom(∆m
C ) = ({θ} t ({θ} t ΘC)) ∪ ({θ} t ΘC) = ({θ} t ΘC) ∪ ({θ} t ΘC) = {θ} t ΘC. Also,

as θ ∈ Dom(∆m
C ), we have {θ} t Dom(∆m

C ) = {θ′ | θ′ ∈ Dom(∆m
C ) and θ v θ′} = {θ} t UmC (θ) by
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Lemma 1. So {θ} ∪ UmC (θ) = {θ} tΘC. �

4.4 Optimized Online Parametric Monitoring

In this section, we show how to optimize parametric monitoring using extra information that can

be easily extracted from specified properties.

4.4.1 Monitoring with Creation Events : C+〈X〉

The monitor creation events are those events that are the first event in matching traces. The point

of monitor creation events is to delay the expensive creation of monitor instances until a point where

a pattern can actually be matched. For instance, using the UnsafeMapIterator example, there is no

way a trace beginning with update map〈m1〉 can ever match the patterns or validate the formulae,

so creating a monitor instance for m1 is a waste of both time and memory.

The first challenge to online monitoring of a parametric property is that the state space of

potential parameter instances is infinite. We encode partial functions [[X⇁V ]⇁Y ], which map

some parameter instances [X⇁V ] to elements in Y , as tables with entries indexed by parameter

instances in [X⇁V ] and with elements in Y . It can be easily seen that, in what follows, such

tables will have a finite number of entries provided that each event instantiates a finite number of

parameters, which is always the case.

Figure 4.7 shows the algorithm C+〈X〉 for online monitoring of parametric property ΛX.P , given

that M is a monitor for P . The algorithm shows which actions to perform, e.g., creating a new

monitor state and/or updating the state of related monitors, when an event is received. It is a

slightly different variant of algorithm C〈X〉 in [31]. C+〈X〉 is justified and motivated by experience

with implementing and evaluating C〈X〉 in Section 4.3, mainly by the following observation: one

often chooses to starting monitoring at the witness of a specific set of events (instead of monitoring

from the beginning of the program). For example, when we monitor the UnsafeMapIterator property,

we can choose to start monitoring on a pair of m and c objects, (m1, c1), only when a create coll

event is received, ignoring all the update map〈m1〉 events before the creation. We call such events

that lead to creation of new monitor states (monitor) creation events. Algorithm C+〈X〉 extends

C〈X〉 in [31] to support creation events. It is easy to see that C〈X〉 can be regarded as a special

case of C+〈X〉, when all the events are creation events. Note that [31] used creation events in the

evaluation, but they were not formalized in the algorithm. The proof of C+〈X〉 is tedious, but is
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easily derived from the above proof of C〈X〉.

Algorithm C+〈X〉(M = (S, E , C, i, σ, γ))
Globals: mapping ∆ : [[X⇁V ]⇁S]

mapping U : [X⇁V ]→ Pf ([X⇁V ])
Initialization: U(θ)← ∅ for any θ ∈ [X⇁V ]

function main(e〈θ〉)
1 if ∆(θ) undefined then
2

... for all θm @ θ (in reversed topological order) do
3

...
... if ∆(θm) defined then

4
...

...
... goto 7

5
...

... endif
6

... endfor
7

... if ∆(θm) defined then
8

...
... defineTo(θ, θm)

9
... elseif e is a creation event then

10
...

... defineNew(θ)
11

... endif
12

... for all θm @ θ (in reversed topological order) do
13

...
... for all θcomp ∈ U(θm) compatible with θ do

14
...

...
... if ∆(θcomp t θ) undefined then

15
...

...
...

... defineTo(θcomp t θ, θcomp)
16

...
...

... endif
17

...
... endfor

18
... endfor

19 endif
20 for all θ′ ∈ {θ} ∪ U(θ) do
21

... ∆(θ′)← σ(∆(θ′), e)
22 endfor
function defineNew(θ)
1 ∆(θ)← i
2 for all θ′′ @ θ do
3

... U(θ′′)← U(θ′′) ∪ {θ}
4 endfor
function defineTo(θ, θ′)
1 ∆(θ)← ∆(θ′)
2 for all θ′′ @ θ do
3

... U(θ′′)← U(θ′′) ∪ {θ}
4 endfor

Figure 4.7: Monitoring Algorithm C+〈X〉.

Two mappings are used: ∆ and U . ∆ stores the monitor states for parameter instances , and U

maps a parameter instance θ to all the parameter instances that have been defined and are properly

more informative than θ. In what follows, “the monitor state for θ” refers to ∆(θ) to facilitate

reading in some contexts, and, accordingly, “to create a parameter instance θ” and “to create a

monitor state for parameter instance θ” have the same meaning: to define ∆(θ).

When parametric event e〈θ〉 arrives, the algorithm first checks whether θ has been encountered
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yet by checking if its corresponding monitor state, i.e., ∆(θ), has been defined(line 1 in main). If

θ is encountered for the first time, new parameter instances may need be created. In such a case,

we first try to locate the maximum parameter instance (θm) which is less informative than θ and

for which a monitor state has been created (lines 2 - 6). If such θm is found, its monitor state is

used to initialize the monitor state for θ (lines 7 and 8); otherwise, a new monitor state is created

for θ only if e is a creation event (lines 9 and 10). Also, new parameter instances can be created

by combining θ with existing parameter instances that are compatible with θ, i.e., they do not have

conflicting parameter bindings. An observation here is that if parameter instance θcomp has been

created and is compatible with θ then θcomp can be found in U(θm) for some θm @ θ according to

the definition of U . Therefore, algorithm C+〈X〉 searches through all the θm @ θ to find all possible

θcomp, examining whether any new parameter instance should be created (lines 12 - 17).

If θ has been seen before, or otherwise after all the new monitor states have been created/initialized

as explained above, algorithm C+〈X〉 invokes all the monitors that need to process e, namely, those

whose corresponding parameter instances are more informative than or equal to θ (lines 20 - 22).

The updates make use of the sets stored in U to know which instances are more informative (line

20). There are two auxiliary functions: defineNew and defineTo. The former initializes a new monitor

state for the input parameter instance and the latter creates a monitor state for the first input

parameter instance using the monitor state for the second instance. Both functions add θ to the

sets in table U for the bindings less informative than θ.

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Figure 4.8: Sample Run of C+〈X〉. The first row gives the received events; the second and the
third rows give the content of ∆ and U , respectively, after every event is processed. Monitor states
are represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

We next use an example run, illustrated in Figure 4.8, to show how C+〈X〉 works. In Figure 4.8,

we show the contents of ∆ and U after every event (given in the first row of the table) is processed.
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The observed trace is update map〈m1〉 create coll〈m1, c1〉 create coll 〈m2, c2〉 create iter〈c1, i1〉. We

assume that create coll is the only creation event.

The first event, update map〈m1〉, is not a creation event and nothing is added to ∆ and U . The

second event, create coll〈m1, c1〉, is a creation event. So a new monitor state is defined in ∆ for

〈m1, c1〉, which is also added to the lists in U for ⊥, 〈m1〉 and 〈c1〉. Note that ⊥ is less informative

than any other parameter instances. The third event create coll〈m2, c2〉 is another creation event,

incompatible with the second event . Hence, only one new monitor state is added to ∆. U is updated

similarly. The last event create iter〈c1, i1〉 is not a creation event. So no monitor instance is created

for 〈c1, i1〉. It is compatible with the existing parameter instance 〈m1, c1〉 introduced by the second

event but not compatible with 〈m2, c2〉 due to the conflict binding on c. The compatible instance

〈m1, c1〉 can be found from the list for 〈c1〉 in U . Therefore, a new monitor instance is created for

the combined parameter instance 〈m1, c1, i1〉 using the state for 〈m1, c1〉 in ∆. U is also updated to

add the combined parameter instance into lists of parameter instances that are less informative.

4.4.2 Limitations of C+〈X〉 and Enable Sets

C+〈X〉 does not make any assumption on the given monitor M . In other words, one may monitor

properties written in any specification formalism, e.g., ERE, CFG, PTLTL etc., as long as one also

provides a monitor generation algorithm for said formalism. However, this generality leads to extra

monitoring overhead in some cases. Thus we introduce our novel optimization based on the concept

of enable sets.

To motivate the optimization, let us continue the run in Figure 4.8 to process one more event,

use iter〈i1〉. The result is shown in Figure 4.9. use iter〈i1〉 is not a creation event and no monitor

instance is created for 〈i1〉. Since 〈i1〉 is compatible with 〈m2, c2〉, a new monitor instance is defined

for 〈m2, c2, i1〉. The monitor instance for 〈m1, c1, i1〉 is then updated according to use iter because

〈i1〉 is less informative than 〈m1, c1, i1〉. U is also updated to add 〈m2, c2, i1〉 to the lists for all

the parameter instances less informative than 〈m2, c2, i1〉. New entries are added into U during the

update since some of less informative parameter instances, e.g., 〈m2, i1〉, have not been used before

this event.

Creating the monitor instance for 〈m2, c2, i1〉 is needed for the correctness of C+〈X〉, but it can

be avoided when more information about the program or the specification is available. For example,

according to the semantics of Iterator, no event create iter〈c2, i1〉 will occur in the following execution

since an iterator can be associated to only one collection. Hence, the monitor for 〈m2, c2, i1〉 will
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Event use iter〈i1〉

∆
〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(σ(i, create coll), create iter), use iter)
〈m2, c2, i1〉:σ(σ(i, create coll), use iter)

U ⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m2, c2, i1〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉, 〈m2, c2, i1〉
〈c2〉:〈m2, c2〉, 〈m2, c2, i1〉
〈i1〉:〈m2, c2, i1〉, 〈m1, c1, i1〉
〈m2, c 7→ c2〉:〈m2, c2, i1〉
〈m2, i1〉:〈m2, c2, i1〉
〈c2, i1〉:〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Figure 4.9: Following the Run of Figure 4.8.

never reach the validation state and we do not need to create it from the beginning. However, such

semantic information about the program is very difficult to infer automatically. Below, we show a

simpler yet effective solution to avoid unnecessary monitor creations by analyzing the specification

to monitor.

When monitoring a program against a specific property, usually only a certain subset of property

categories, (C in Definition 5), is checked. For example, the regular expression for the UnsafeMapIt-

erator specifies a defective interaction among related Map, Collection and Iterator objects. To find an

error in the program using monitoring is thus to detect matches of the specified pattern during the

execution. In other words, we are only interested in the validation category of the specified pattern.

Obviously, to match the pattern, for a parameter instance of parameter set {m, c, i}, create coll and

create iter should be observed before use iter is encountered for the first time in monitoring. Otherwise,

the trace slice for {m, c, i} will never match the pattern. Based on this information, we next show

that creating the monitor state for 〈m2, c2, i1〉 in Figure 4.9 is not needed. When event use iter〈i1〉

is encountered, if the monitor state for a parameter instance 〈m2, c2〉 exists without the monitor

state for 〈m2, c2, i1〉, like in Figure 4.9, it can be inferred that in the trace slice for 〈m2, c2, i1〉,

only events create coll and/or update map occur before use iter because, otherwise, if create iter also

occurred before use iter, the monitor state for 〈m2, c2, i1〉 should have been created. Therefore, we

can infer, when event use iter〈i1〉 is observed and before the execution continues, that no match of

the specified pattern can be reached by the trace slice for 〈m2, c2, i1〉, that is to say, the monitor for

〈m2, c2, i1〉 will never reach the validation state.

This observation shows that the knowledge about the specified property can be applied to avoid
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Event enableEG(Event)
create coll {∅}
create iter

{{create coll},
{create coll, update map}}

use iter
{{create coll, create iter},
{create coll, create iter, update map}}

update map

{{create coll},
{create coll, create iter},
{create coll, create iter, use iter}}

Figure 4.10: Property Enable Set for UnsafeMapIterator.

unnecessary creation of monitor states. This way, the sizes of ∆ and U can be reduced, reducing

the monitoring overhead. We next formalize the information needed for the optimization and argue

that it is not specific to the underlying specification formalism, and that it can be computed easily.

How this information is used is discussed in Section 4.4.3.

Enable Sets

Definition 24 Given τ ∈ E∗ and e, e′ ∈ τ , we denote that e′ occurs before the first occurrence of e

in τ as e′  τ e. Let the trace enable set of e ∈ E be the function enableτ : E → Pf (E), defined as:

enableτ (e) = {e′ | e′  τ e}.

Note that if e 6∈ τ then enableτ (e) = ∅. The trace enable set can be used to examine whether

the execution under observation may generate a particular trace of interest, or not: if event e is

encountered during monitoring but some event e′ ∈ enableτ (e) has not been observed, then the (in-

complete) execution being monitored will not produce the trace τ when it finishes. This observation

can be extended to check, before an execution finishes, whether the execution can generate a trace

belonging to some designated property categories. The designated property categories are called the

goal of the monitoring in what follows.

Definition 25 Given P : E∗ → C and a set of categories G ⊆ C as the goal, the property enable

set is defined as a function enableEG : E → Pf (Pf (E)) with enableEG(e) = {enableτ (e) | P (τ) ∈ G}.

Intuitively, if event e is encountered during monitoring but none of event sets enableEG(e) has been

completely observed, the (incomplete) execution being monitoring will not produce a trace τ s.t.

P (τ) ∈ G. For example, given the UnsafeMapIterator property specified by ERE, where G contains only

the match, violation, and ? categories, Figure 4.10 shows the property enable set for UnsafeMapIterator.
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The property enable set provides a sound and fast way to decide whether an incomplete trace

slice has the possibility of reaching the desired categories by looking at the events that have already

occurred. In the above example, if a trace slice starts with create coll use iter, it will never reach

the match category, because {create coll} 6∈ enableEG(use iter). In such case, no monitor state need be

created even when the newly observed event may lead to new parameter instances. For example,

suppose that the observed (incomplete) trace is create coll〈m1, c1〉 use iter〈i1〉. At the second event,

use iter〈i1〉, a new parameter instance can be constructed, namely, 〈m1, c1, i1〉, and a monitor state

s will be created for 〈m1, c1, i1〉 if algorithm C+〈X〉 is applied. However, since the trace slice for s

is create coll use iter, we can immediately know that s cannot reach the match state, and thus there

is no need to create and maintain s during monitoring if match is the target category.

A direct application of the above idea to optimize C+〈X〉 requires maintaining observed events for

every created monitor and comparing event sets when a new parameter instance is found, reducing

the improvement of performance. Therefore, we extend the notion of the enable set to be based on

parameter sets instead of event sets.

Definition 26 Given a property P : E∗ → C, a set of categories G ⊆ C as the goal, a set of

parameters X and a parameter definition DE , the property parameter enable set of event e ∈ E

is defined as a function enableXG : E → Pf (Pf (X)) as follows: enableXG (e) = {∪{DE(e′) | e′ ∈

enableτ (e)} | P (τ) ∈ G}.

From now on, we use “enable set” to refer to “property parameter enable set” for simplicity. For

example, given the ERE-based UnsafeMapIterator property and G = {validating}; Figure 4.11 shows

the parameter enable set for UnsafeMapIterator. Then, given again the trace {create coll}〈m1, c1〉

use iter〈i1〉, no monitor state need be created at the second event for 〈m1, c1, i1〉 since the parameter

instance used to initialize the new monitor state, namely, 〈m1, c1〉, is not in enableXG (use iter). In

other words, one may simply compare the parameter instance used to initialize the new parameter

instance with the enable set of the observed event to decide whether a new monitor state is needed

or not. Note that in JavaMOP, the property parameter enable sets are generated from the property

enable sets provided by the formalism plugin in question. This allows the plugins to remain totally

parameter agnostic. The following result guarantees the correctness of this approach:

Proposition 17 When algorithm C+〈X〉 receives event e〈θ〉, if we use θ′ to define θ t θ′ and

Dom(θ′) 6∈ enableXG (e), then ∆(θ t θ′) 6∈ G during the whole monitoring process.
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Event enableXG (Event)
create coll {∅}
create iter {{m, c}}
use iter {{m, c, i}}
update map {{m, c}, {m, c, i}}

Figure 4.11: Parameter Enable Set for UnsafeMapIterator.

Computing Enable Sets

The definition of the enable set is general and does not depend on a specific formalism to write the

property. Although computing the enable set from a specified property requires understanding of

the used formalism. It can be achieved as a “side-effect” of the monitor generation process, in which

full knowledge about the property is available.

Algorithm EN fsm(FSM = (E , S, s0, δ, F ))
Globals: mapping Vµ : S → Pf (Pf (E))

mapping enableEG : E → Pf (Pf (E))
set R ⊆ S

Initialization: fix G′ ⊆ S, compute R for G′

function main()
1 auxiliary(s0, ∅)

function auxiliary(s, µ)
1 for all e ∈ E do
2

... if δ(s, e) ∈ R then
3

...
... enableEG(e)← enableEG(e) ∪ {µ− e}

4
... endif

5
... let µ′ ← µ ∪ {e}

6
...

... if µ′ 6∈ Vµ(s)
7

...
...

... Vµ(s)← Vµ(s) ∪ {µ′}
8

...
...

... auxiliary(δ(s, e), µ′)
9

...
... endif

10 endfor

Figure 4.12: FSM Enable Set Computation Algorithm.

Case 1: FSM The algorithm in Figure 4.12 computes the property enable sets for a finite state

machine. We use this algorithm to compute the enable sets for any logic that is reducible to a finite

state machine, including ERE, PTLTL, and FTLTL. The algorithm assumes a finite state machine,

defined as FSM = (E , S, s0 ∈ S, δ : S × E → S, F ⊆ S). E is the alphabet, traditionally listed

as Σ but changed for consistency, since the alphabets of our FSMs are event sets. s0 is the start

state, corresponding to i in the definition of a monitor. δ is the transition function, taking a state
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and an event and mapping to a next state for the machine. F is the set of accept states. In the

initialization we compute goal reachability set S by fixing a goal G′ as an arbitrary set of states,

such as the error state for violation, or accept states for matching a pattern originally specified as

an ERE. More specifically, G′ is the subset of S corresponding to the subset of G in which we are

interested. For state s ∈ S, s ∈ R if and only if there is a path from s to an s′ ∈ G′. It is computed

using a straight-forward depth first search from the initial state. Vµ is a mapping from states to

sets of events; it is used to check for algorithm termination. enableEG is the output property enable

set, which is converted into a parameter enable set by JavaMOP.

Function auxiliary is first called with µ = ∅ and the initial state s0 (the Initialization section). If we

think of the FSM as a graph, µ represents the set of edges we have seen at least once in a traversal.

For each event in E (line 1), we check to see if the next state, computed by δ(s, e) reaches our goal

(line 2). If it does, that means we have seen a viable prefix set. From the definition of enableEG ,

we know we need to add this prefix set to enableEG for the event e, which we do (line 3). Also on

line 3, we make sure that we remove e from µ, as an enable set for e is not supposed to contain e.

Line 5 begins the recursive step of the algorithm. We let µ′ = µ ∪ {e}, because we have traversed

another edge, and that edge is labeled as e. The map Vµ tells us which µ have been seen in previous

recursive steps, in a given state. If a µ has been seen before, in a state, taking a recursive step can

add no new information. Because of this, line 6 ensures that we only call the recursive step on line

8, if new information can be added. Line 7 keeps V consistent. Thus the algorithm terminates only

when every viable µ has been seen in every reachable state, effectively computing a fixed point.

Case 2: CFG We also provide an algorithm to compute the enable set for a context-free pattern,

which has an infinite monitor state space, as briefly explained in what follows2. This is a modification

of the algorithm in Figure 4.12.

Let G = {match}. For enableEG and a given CFG G = (NT, E , P, S) we begin with all productions

S → γ and the set µ0 = ∅ ∈ Pf (E). For each production, we investigate each s ∈ γ (where ∈ is, by

abuse of notation, used to denote a symbol in a right hand side) from left to right. If s ∈ E we add

µi to enableEG(s), thus if s is the first symbol in γ we add µ0. We then add s to µi forming µi+1. If

s ∈ NT we recursively invoke the algorithm, but rather than use µ0, we use µi, and each production

investigated will be of the form s → γ. We keep track of which s ∈ NT have been processed, to

ensure termination.

Discussion. The general definition of the enable set allows us to separate the concerns of generating
2We assume a certain familiarity with context free patterns; definitions can be found in [67], together with expla-

nations on CFG monitoring.
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efficient monitoring code. On the framework level, such as the algorithms discussed in this paper, we

can focus on applying the information encoded in the enable set to generate an efficient monitoring

process for parametric properties, while on the logic level, where a monitor is generated for a given

non-parametric property written in a specific formalism, one can focus on creating the fastest monitor

that verifies the input trace against the property and also on producing the enable set information.

The enable set represents static information about the given property and only need be generated

once. As mentioned, the static analysis presented in [21], while effective, requires a complex analysis

of the target program, which must be performed for every program one wants to monitor.

Other possibilities for optimization are exhibited in the example in Figure 4.9. We discuss two of

them here. The first is to make use of the semantics of the program. In this example, we know that

an i object is created from a c object and does not relate to other c objects. Hence, we can avoid

creating a combination of 〈m2, c2〉 and 〈i1〉 because i1 is created from c1. However, such semantic

information is very difficult to achieve automatically and may require human input. The enable set,

on the contrary, can be easily computed by statically analyzing the specification without analyzing

any program or human interferences; indeed, the specified property already indicates some semantics

of the involved parameters. Nevertheless, we believe that static analysis on the program to monitor,

such as that in [21], can and should be applied in conjunction with enable sets to further reduce the

monitoring overhead, whenever it is feasible.

Other optimizations are based on heuristics. One reasonable heuristic which can be applied

here is that we may only combine parameter instances that are connected to one another through

some events which have been observed (we cannot rely on future events in online monitoring). For

example, 〈i1〉 and 〈m1, c1〉 need to be combined to build a new parameter instance because c1 and i1

are connected in the second event, create coll〈m1, c1〉, in Figure 4.9, but 〈i1〉 and 〈m2, c2〉 should not

combined due to the heuristic. The intuition is that if two parameter instances do not interact in any

event, it may imply that they are not relevant to each other even if they are compatible. However,

because no information about future events available, such a heuristic can break, for example, an

event connecting the two parameter instances comes afterward. The enable set provides a sound

optimization, and we believe that it performs as well as, if not better than, such heuristics in most

cases.
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4.4.3 Monitoring with Enable Sets: D〈X〉

In this section we integrate the concept of enable sets with algorithm C+〈X〉, to improve performance

and memory usage. To ease reading, all proofs related to this algorithm can be found in Section

4.4.3.

Given a set of desired value categories G, Proposition 17 guarantees that we can omit creating

monitor states for certain parameter instances when an event is received using the enable set without

missing any trace belonging to G. However, skipping the creation of monitor states may result in

false alarms, i.e., a trace that is not in G can be reported to belong to G. Let us consider the

following example. We monitor to find matching of a regular pattern e1e3 and the event definition

is (e1 7→{P1}, e2 7→{P2}, e3 7→{P1, P2}) the observed trace is e1〈p1〉e2〈p2〉e3〈p1, p2〉. Also, suppose e1

is the only creation event. Obviously, the trace does not match the pattern. Figure 4.13 shows the

run using the optimization based on the enable set. Only the content of ∆ is given for simplicity.

At e1, a monitor state is created for 〈p1〉 since it is the creation event. At e2, no action is taken

since enableXG (e2) = ∅. At e3, a monitor state will be created for 〈p1, p2〉 using the monitor state for

〈P1 7→ p1〉 since enableXG e3 = {P1}. This way, e2 is forgotten and a match of the pattern is reported

even though it is not correct to do so.

Event e1〈p1〉 e2〈p2〉 e3〈p1, p2〉

∆
〈p1〉:σ(i, e1) 〈p1〉:σ(i, e1) 〈p1〉:σ(i, e1)

〈p1, p2〉:σ(σ(i, e1), e3)

Figure 4.13: Unsound Usage of the Enable Set.

Timestamping Monitors: Algorithm D〈X〉

To avoid unsoundness, we introduce the notion of disable stamps of events. disable : [[X⇁V ]⇁integer]

maps a parameter instance to an integer timestamp. disable(θ) gives the time when the last event

with θ was received. We maintain timestamps for monitors using a mapping T : [[X⇁V ]⇁integer].

T maps a parameter instance for which a monitor state is defined to the time when the original

monitor state is created from a creation event. Specifically, if a monitor state for θ is created using

the initial state when a creation event is received (i.e., using the defineNew function in algorithm

C+〈X〉), T (θ) is set to the time of creation; if a monitor state for θ is created from the monitor state

for θ′, T (θ′) is passed to T (θ). Figure 4.14 shows the evolution of disable and T while processing

the trace in Figure 4.13.

disable and T can be used together to track “skipped events”: when a monitor state for θ is created
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using the monitor state for θ′, if there exists some θ′′ @ θ s.t. θ′′ 6@ θ′ and disable(θ′′) > T (θ′) then

the trace slice for θ does not belong to the desired value categories G. Intuitively, disable(θ′′) > T (θ′)

implies that an event e〈θ′′〉 has been encountered after the monitor state for θ′ was created. But

θ′′ was not taken into account (θ′′ 6@ θ′). The only possibility is that e is omitted due to the

enable set and thus the trace slice for θ does not belong to G according to the definition of the

enable set. Therefore, in Figure 4.14, no monitor instance is created for 〈p1, p2〉 at e3 because

disable(〈p2〉) > T (〈p1〉).

Event e1〈p1〉 e2〈p2〉 e3〈p1, p2〉

∆
〈p1〉:σ(i, e1) 〈p1〉:σ(i, e1) 〈p1〉:σ(i, e1)

T 〈p1〉:1 〈p1〉:1 〈p1〉:1

disable 〈p1〉:2 〈p1〉:2
〈p2〉:3

〈p1〉:2
〈p2〉:3
〈p1, p2〉:4

Figure 4.14: Sound Monitoring Using Enable Sets and Timestamps.

The above discussion applies when the skipped event occurs after the initial creation of the

monitor state. The other case, i.e., an event is omitted before the initial monitor state is created,

can also be handled using timestamps. First, if the skipped event is not a creation event, it does not

affect the soundness of the algorithm to omit the event because of the definition of creation events.

In the above example, if the observed trace is e2〈p2〉e1〈p1〉e3〈p1, p2〉, we will ignore e2 and report the

matching at e3 since e1 is the only creation event. The situation becomes more sophisticated when

the skipped event is a creation event. For example, we assume that both e1 and e2 are creation

events in the above example. Figure 4.15 then shows the monitoring process for the parametric

trace e2〈p2〉e1〈p1〉e3〈p1, p2〉.

At e2, ∆(〈p2〉) is defined because it is a creation event. At e1, ∆(〈p1〉) is defined, but no monitor

state is created for 〈p1, p2〉 because {P2} 6∈ enableXG (e1). At e3, we cannot use ∆(〈p2〉) to define

∆(〈p1, p2〉) since disable(〈p1〉) > T (〈p2〉). Moreover, we cannot use ∆(〈p1〉) to define ∆(〈p1, p2〉),

either, because ∆(〈p2〉) was defined before ∆(〈p1〉) but was not used to create ∆(〈p1, p2〉) at e1 due

to the use of the enable set, indicating that the trace slice for 〈p1, p2〉 does not belong to G, and

it should be ignored during monitoring. This intuition can be captured as the following condition:

T (〈p2〉) < T (〈p1〉) and 〈p2〉 6v 〈p1〉. To reiterate, if ∆(θ′) is used to define ∆(θ) and there exists

some θ′′ @ θ s.t. θ′′ 6v θ′ and T (θ′′) < T (θ′), then the trace slice for θ does not belong to the desired

category set G, because θ would have been in the enable set of θ′ if it were in G. Such a situation

happens at the following conditions: 1) a creation event, e〈θ′′〉, is encountered before ∆(θ′) is defined
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at event e′; 2) e is omitted when ∆(θ′) is defined (otherwise ∆(θ′′tθ′) should have been defined and

should be used to define θ instead of θ′). The second condition implies that Dom(θ′′) 6∈ enableXG (e′).

Therefore, when we combine θ′′ and θ′ in θ, the trace slice for θ cannot belong to G, due to the

definition of enable set.

Event e2〈p2〉 e1〈p1〉 e3〈p1, p2〉

∆
〈p2〉:σ(i, e2) 〈p2〉:σ(i, e2)

〈p1〉:σ(i, e1)
〈p2〉:σ(i, e2)
〈p1〉:σ(i, e1)

T 〈p2〉:1 〈p2〉:1
〈p1〉:3

〈p2〉:1
〈p1〉:3

disable 〈p2〉:2 〈p2〉:2
〈p1〉:4

〈p2〉:2
〈p1〉:4
〈p1, p2〉:5

Figure 4.15: Another Monitoring Using Enable Sets and Timestamps.

Based on the above discussion, we develop a new parametric monitoring algorithm that optimizes

algorithm C+〈X〉 using the enable set and timestamps, as shown in Figure 4.16. This algorithm

makes use of the mappings discussed above, namely, enableXG , ∆, U , disable and T , and maintains

an integer variable to track the timestamp. Similar to algorithm C+〈X〉, when event e〈θ〉 is re-

ceived, algorithm D〈X〉 first checks whether ∆(θ) is defined or not (line 1 in main). If not, monitor

states may be generated for new encountered parameter instances, which is achieved by function

createNewMonitorStates in algorithm D〈X〉. Unlike in algorithm C+〈X〉, where all the parameter

instances less informative than θ are searched to find all the compatible parameter instances using

U , createNewMonitorStates enumerates parameter sets in enableXG (e) and looks for parameter instances

whose domains are in enableXG (e) and which are compatible with θ, also using U . The inclusion check

at line 2 in createNewMonitorStates is to omit unnecessary search since if Dom(θ) ⊆ Xe then no new

parameter instance will be created from θ. This way, createNewMonitorStates creates all the parameter

instances that combine θ with compatible parameter instances that also satisfy the enable set of e

using fewer lists in U .

If e is a creation event then a monitor state for θ is initialized (lines 3 - 5 in main). Note that

∆(θ) can be defined in function createNewMonitorStates if ∆(θ′) has been defined for some θ′ @ θ.

disable(θ) is set to the current timestamp after all the creations and the timestamp is increased. The

rest of function main in D〈X〉 is the same as in C+〈X〉: all the relevant monitor states are updated

according to e.

Function defineNew in D〈X〉 is similar to the one in C+〈X〉. The only difference is that T (θ) is

set to the current timestamp, and the timestamp is incremented. Function defineTo in D〈X〉 checks

disable and T as discussed above to decide whether ∆(θ) can be defined using ∆(θ′). If ∆(θ) is
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Algorithm D〈X〉(M = (S, E , C, i, σ, γ))
Input: mapping enableXG : [E⇁Pf (Pf (X))]
Globals: mapping ∆ : [[X⇁V ]⇁S]

mapping T : [[X⇁V ]⇁integer]
mapping U : [X⇁V ]→ Pf ([X⇁V ])
mapping disable : [[X⇁V ]⇁integer]
integer timestamp

Initialization: U(θ)← ∅ for any θ, timestamp← 0

function main(e〈θ〉)
1 if ∆(θ) undefined then
2

... createNewMonitorState(e〈θ〉)
3

... if ∆(θ) undefined and e is a creation event then
4

...
... defineNew(θ)

5
... endif

6
... disable(θ)← timestamp

7
... timestamp← timestamp + 1

8 endif
9 for all θ′ ∈ {θ} ∪ U(θ) s.t. ∆(θ′) defined do

10
... ∆(θ′)← σ(∆(θ′), e)

11 endfor
function createNewMonitorStates(e〈θ〉)

1 for all Xe∈enableXG (e)
(in reversed topological order) do

2
... if Dom(θ) 6⊆ Xethen

3
...

... θm ← θ′ s.t. θ′ @ θ and Dom(θ′) = Dom(θ) ∩Xe

4
...

... for all θ′′ ∈ U(θm) ∪ {θm} s.t. Dom(θ′′) = Xe do
5

...
...

... if ∆(θ′′) defined and ∆(θ′′ t θ) undefined then
6

...
...

...
... defineTo(θ′′ t θ, θ′′)

7
...

...
... endif

8
...

... endfor
9

... endif
10 endfor
function defineNew(θ)

1 for all θ′′ @ θ do
2

... if ∆(θ′′) defined then return endif
3 endfor
4 ∆(θ)← i, T (θ)← timestamp

5 timestamp← timestamp + 1
6 for all θ′′ @ θ do
7

... U(θ′′)← U(θ′′) ∪ {θ}
8 endfor

function defineTo(θ, θ′)
1 for all θ′′ v θ s.t. θ′′ 6v θ′ do
2

... if disable(θ′′) > T (θ′) or T (θ′′) < T (θ′) then
3

...
... return

4
... endif

5 endfor
6 ∆(θ)← ∆(θ′), T (θ)← T (θ′)
7 for all θ′′ @ θ do U(θ′′)← U(θ′′) ∪ {θ} endfor

Figure 4.16: Optimized Monitoring Algorithm D〈X〉.
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defined using ∆(θ′), T (θ) is set to T (θ′).

In all of our tested cases D〈X〉 performs better than C+〈X〉; in fact, in most cases that caused

notable monitoring overhead, the efficiency of D〈X〉 is significantly better than C+〈X〉. For example,

in two extreme cases, C+〈X〉 could not finish, while D〈X〉 had no problems. In terms of memory

usage D〈X〉 also performs better, as expected, except for a few cases where C+〈X〉 generates more

garbage collections, reducing peak memory usage at the expense of performance.

Proofs of Correctness

The goal of this section is to show that algorithms D〈X〉 and C+〈X〉 produce the same mapping ∆

for the same given trace. C〈X〉 is already known to be correct for our definition of parametric trace

monitoring due to the results in [31]. As mentioned C+〈X〉 is a straight-forward extension of C〈X〉.

Thus by showing that D〈X〉 and C+〈X〉 produce the same ∆ (i.e., showing that they behave the

same), we show that D〈X〉, itself, is correct for our definition of parametric monitoring.

We fix a trace τ = e1e2...en, a monitor M = (S, E , C, i, σ, γ) and a desired value set G in what

follows. We use ∆C〈X〉 and ∆D to refer to the ∆ in algorithms C+〈X〉 and D〈X〉, respectively. For

convenience, we also let timestamp : [integer⇁integer] be the function defined as follows: timestamp(k)

is the value of timestamp in D〈X〉 at the event ek for 0 < k ≤ n; otherwise timestamp(k) is undefined.

timestamp and T in D〈X〉 have the following properties:

Proposition 18 The follow holds for timestamp and T used in algorithm D〈X〉.

1. For 0 < k, k′ ≤ n, k ≥ k′ iff timestamp(k) ≥ timestamp(k′).

2. ∆D(θ) is defined iff T (θ) is defined.

Proof: 1. is obvious since timestamp is monotonic along the observed trace. 2. holds because ∆D(θ)

and T (θ) are always defined together (lines 1 and 2 in defineNew and lines 6 and 7 in defineTo). �

We next define two functions that describe when and how a monitor state is created for a

parameter instance.

Definition 27 Function set : [[X⇁V ]⇁integer] is defined as follows: set(θ) = k if ∆(θ) is initialized

at ek. Function MT : [[X⇁V ]⇁[X⇁V ]∗] is defined as follows: MT(θ) = θ1...θm where θm = θ, θ1

is initialized with i, and ∆(θi) is initialized using ∆(θi−1) at some event e for any 1 < i ≤ m.
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Obviously, for both C+〈X〉 and D〈X〉, set(θ) is defined if and only if MT(θ) is defined. Let

setC〈X〉 and setD be the set in algorithm C+〈X〉 and D〈X〉, respectively, and let MTC〈X〉 and MTD

be the MT in algorithm C+〈X〉 and D〈X〉, respectively.

Proposition 19 For algorithms C+〈X〉 and D〈X〉, the following hold for set and MT:

1. For θi and θj in MT(θ), θi @ θj if i < j.

2. If MTD(θ)=θ1...θm then T (θ)=timestamp(setD(θ1)).

3. If setD(θ) is defined then setC〈X〉(θ) is defined and setC〈X〉(θ) ≤ setD(θ).

4. If setC〈X〉(θ) = setD(θ) and ∆C〈X〉(θ) = ∆D(θ) when they are initialized, then ∆C〈X〉(θ) =

∆D(θ) during the whole monitoring process.

5. If setC〈X〉(θ) = setD(θ) and MTC〈X〉(θ) = MTD(θ) then ∆C〈X〉(θ) = ∆D(θ) during the whole

monitoring process.

Proof:

1. It follows by Definition 27 and line 6 in createNewMonitorStates in D〈X〉.

2. Prove by induction on the length of MTD(θ). If MTD(θ) = θ, suppose that ∆D(θ) is defined at

event ek, i.e., setD(θ) = k. Obviously, ∆D(θ) is defined using defineNew in D〈X〉. Hence, T (θ) =

timestamp(k) according to line 2 in defineNew. Now suppose that for 0 < j and any θ′′ s.t. MTD(θ′′) =

θ1...θm and m < j, T (θ′′) = timestamp(setD(θ1)). If MTD(θ) = θ1...θj then θ = θj and ∆D(θ) is

defined using ∆D(θj−1) by Definition 27. T (θj) = T (θj−1) according to line 7 in defineTo in D〈X〉.

By induction, T (θ) = T (θj−1) = timestamp(setD(θ1)).

3. Prove by induction on the length of MTD(θ). We only need to show that if ∆D(θ) is defined

at event ek and ∆C〈X〉(θ) is undefined before ek then ∆C〈X〉(θ) is defined at ek. If MTD(θ) = θ,

suppose setD(θ) = k and ek〈θ′〉. Since θ is not initialized with another parameter instance, it should

be defined using defineNew function in D〈X〉, which only occurs via line 4 in main. Hence, θ′ = θ and

ek is a creation event. If ∆C〈X〉(θ) is undefined before ek, it will be defined at ek because line 10 in

the main function in C+〈X〉 will be executed if ∆C〈X〉(θ) is undefined before line 9.

Now suppose that for any parameter instance θ′′ s.t. setD(θ′′) is defined and the length of MTD(θ′′)

is less than j, setC〈X〉(θ′′) ≤ setD(θ′′). If setD(θ) is defined and MTD(θ) = θ1...θj where θj = θ, let

setD(θ) = k and ek〈θ′〉. By Definition 27, ∆D(θ) is defined using ∆D(θj−1). Hence, setD(θj−1) < k

and θ′ t θj−1 = θ according to line 6 in the createNewMonitorStates function in D〈X〉. By induction,
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setC〈X〉(θj−1) ≤ setD(θj−1) < k, that is, ∆C〈X〉(θj−1) is defined before ek. Therefore, if ∆C〈X〉(θ)

is undefined before ek, ∆C〈X〉(θj) will be defined in C+〈X〉 at ek because: if θ′ = θ then ∆C〈X〉(θ)

will be defined at line 8 in main in C+〈X〉 (θj−1 @ θ by 1.); otherwise, it will be defined at line 15

in main (θ′ t θj−1 = θ).

4. In both C+〈X〉 and D〈X〉, after ∆(θ) is defined at ek, it will be updated using any event ej〈θ′〉

with θ′ v θ and k < j. If setC〈X〉(θ) = setD(θ) and MTC〈X〉(θ) = MTD(θ) then MTC〈X〉(θ) and

MTD(θ) will be updated using the same events afterward and therefore equivalent during the whole

monitoring.

5. It can be easily proved by induction on the length of MTD(θ) and 4.

�

The following lemma shows that C+〈X〉 and D〈X〉 are equivalent for monitors that are created

from the initial state.

Lemma 2 The following hold for MT:

1. If MTC〈X〉(θ) = θ then MTD(θ) = θ and setC〈X〉(θ) = setD(θ).

2. If MTD(θ) = θ then MTC〈X〉(θ) = θ and setC〈X〉(θ) = setD(θ).

Proof:

1. If MTC〈X〉(θ) = θ, suppose that setC〈X〉(θ) = k. Obviously, ∆C〈X〉(θ) is defined by the defineNew

function in C+〈X〉, which only occurs when ek is a creation event and comes with the parameter

instance θ. Also, for all θ′ @ θ, ∆C〈X〉(θ′) is undefined before ek; otherwise, ∆C〈X〉(θ) should

be defined using ∆C〈X〉(θ′) at line 8 in main in C+〈X〉. By Proposition 19 3., ∆D(θ) and ∆D(θ′),

for all θ′ @ θ, are undefined before ek. So ∆D(θ) cannot be defined in the createNewMonitorStates

function in D〈X〉 using some θ′ @ θ when ek is encountered. Hence, the condition at line 3 in main in

D〈X〉 is satisfied and line 4 will be executed to initialize ∆D(θ) using defineNew in D〈X〉. Therefore,

MTD(θ) = θ and setD(θ) = k = setC〈X〉(θ).

2. By Proposition 19.3., if MTD(θ) = θ and setD(θ) = k then MTC〈X〉(θ) is defined before or at ek.

Assume that MTC〈X〉(θ) = θ1..θm and m > 1. Then we have 1) θ1 @ θ by Proposition 19 1.; 2)

MTD(θ1) = MTC〈X〉(θ1) = θ1 and setC〈X〉(θ1) = setD(θ1) 1.; 3) setC〈X〉(θ1) < setC〈X〉(θ) ≤ setD(θ)

by Proposition 19.3. Let ek〈θ′〉. Since MTD(θ) = θ, ∆D(θ) is defined using defineNew via line 4 in

main in D〈X〉 when ek is encountered. Hence, θ = θ′. However, since ∆D(θ1) is defined before ek,

the condition at line 2 in defineNew is satisfied and ∆D(θ) cannot be defined at ek. Contradiction

reached. Therefore, MTC〈X〉(θ) = θ. By 1., setC〈X〉(θ) = setD(θ). �
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Proposition 20 For algorithms C+〈X〉 and D〈X〉, the following hold:

1. If MTC〈X〉(θ) = MTD(θ) then for any θ′ ∈ MTC〈X〉(θ), setC〈X〉(θ′) = setD(θ′).

2. If MTC〈X〉(θ) = MTD(θ) then ∆C〈X〉(θ) = ∆D(θ) during the whole monitoring.

Proof:

1. Suppose MTC〈X〉(θ) = θ1, .., θm. Prove by induction on MTC〈X〉(θ). For θ1, since MTC〈X〉(θ1) =

θ1, setC〈X〉(θ1) = setD(θ1) by Lemma 2.1. Now suppose that for some 1 < jleqm, setC〈X〉(θi) =

setD(θi) for any 0 < i < j. Assume that setC〈X〉(θj) 6= setD(θj). We have setC〈X〉(θj) < setD(θj) by

Proposition 19.3. Let setC〈X〉(θj) = k and ek〈θ′′〉. Since θ′′ t θj−1 = θj , we have θ′′ 6@ θj−1. Also,

disable(θ′′) > timestamp(k) > T (θj−1) after ek. Let setD(θ) = g. We have that ∆D(θj) cannot be

defined at eg using ∆D(θj−1) because g > k and θ′′ will satisfy the condition at line 2 in defineTo in

D〈X〉. Contradiction found. Therefore, setC〈X〉(θj) = setD(θj).

2. Follow by 1. and Proposition 19.5. �

Let ∆τ
C〈X〉 be the ∆ after C+〈X〉 processes τ and ∆τ

D be the ∆ after D〈X〉 processes τ .

Proposition 21 The following holds:

1. If γ(∆τ
C〈X〉(θ)) ∈ G and for any θi ∈ MTC〈X〉(θ), i > 1, let setC〈X〉(θi) = k, we have

Dom(θi−1) ∈ enableXG (ek).

2. If γ(∆τ
C〈X〉(θ)) ∈ G then MTC〈X〉(θ) = MTD(θ).

Proof:

1. Suppose that the sliced trace for θ is τθ = e′1〈θ′1〉...e′h〈θ′h〉. Then σ(τθ) = ∆τ
C(θ), according to

Theorem 3 in [31]. Since γ(∆τ
C〈X〉(θ)) ∈ G, P (τθ) ∈ G. Also, since ∆C〈X〉(θi) is defined at ek,

ek ∈ τθ and it is the first occurrence of ek in τθ. Suppose that e′n is the first occurrence of ek

in τθ. Then enableτ (ek) = {e′1, ..., e′n−1} by Definition 24. For any 0 < j < n, let e′j〈θ′′〉, then

θ′′ v θi−1; otherwise, e′j should not be contained in the slice for θi−1 and thus not in the slice for

θi (since ∆C〈X〉(θi) is initialized using ∆C〈X〉(θi−1).) Hence, ∪X{e′1,...,e′n−1}
= Dom(θi−1), that is,

Dom(θi−1) ∈ enableXG (ek) by Definition 26.

2. Suppose that MTC〈X〉(θ) = θ1, ..., θm. Prove by induction on MTC(θ). For θ1, MTC〈X〉(θ1) = θ1.

Hence, MTD(θ1) = θ1 by Lemma 2. Now suppose that for some 1 < j ≤ m, we have MTD(θj−1) =

MTC(θj−1) = θ1, ..., θj−1. Let setC〈X〉(θj) = k and ek〈θ′〉. By Proposition 19 3., ∆D(θj) is undefined

before ek. Also, θ′ t θj−1 = θj due to line 15 in main in C+〈X〉.
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By 1., Dom(θj−1) ∈ enableXG (ek). Hence, ∆D(θj) will be defined at ek because of the loop

from line 4 - 8 in createNewMonitorStates in D〈X〉. We only need to show that ∆D(θj) is defined

using ∆D(θj−1). Assume that ∆D(θj) is defined using ∆D(θ′′) and θ′′ 6= θj−1. Then we have

θ′′ t θ′ = θj . θ′′ 6@ θj−1 because the loop from line 1 to line 10 in createNewMonitorStates in D〈X〉

is carried out in a reverse topological order. Also, θj−1 6@ θ′′ because the loops from line 2 to

line 6 and from line 12 to line 18 in main in C+〈X〉 are carried out in a reverse topological order.

Such situation, i.e., θj does not have a maximum sub-instance, is impossible according to the proof

for algorithm A〈X〉 in [31]. Contradiction found. Therefore, ∆D(θj) is defined using ∆D(θj−1)

at ek. We then have MTD(θj) = MTD(θj−1)θj = MTC〈X〉(θj−1)θj = MTC〈X〉(θj). By induction,

MTC〈X〉(θm) = MTD(θm).

�

Proposition 22 If ∆τ
D(θ) is defined then MTC〈X〉(θ) = MTD(θ).

Proof: Suppose that MTD(θ) = θ1, ..., θm. Prove by induction on MTD(θ). For θ1, MTD(θ1) =

θ1. Hence, MTC〈X〉(θ1) = θ1 by Lemma 2.2. Now suppose that for some 1 < j ≤ m, we have

MTD(θj−1) = MTC(θj−1) = θ1, ..., θj−1. Let setD(θj) = k and ek〈θ′〉.

Suppose that MTC〈X〉(θj) = θj1...θ
j
h where θjh = θj . We first show that θ1 = θj1 by contradiction.

Assume θ1 6= θj1. Let setC〈X〉(θj1) = pj and setD(θ1) = p. Since MTC〈X〉(θj1) = θj1 and MTD(θ1) = θ1,

we have that epj 〈θj1〉, ep〈θ1〉 and they are both creation events. We also have TD(θ1) = timestamp(p).

By Proposition 19.2, ∆D(θj1) is not defined before pj . Hence, ∆D(θj1) is defined at pj and TD(θj1) =

timestamp(pj). Also, disable(θj1) > TD(θj1) since line 6 in main of algorithm D〈X〉 is executed after

TD(θj1) is defined at line 4. Since θ1 6= θj1, pj 6= p; in other words, either pj < p or pj > p.

Therefore, either TD(θj1) < TD(θ1) or TD(θ1) < TD(θj1) < disable(θj1) by Proposition 18.1. Let θn be

the first parameter instance in MTD(θj) s.t. θj1 @ θn and θj1 6@ θn−1, n > 1, and let setD(θn) = pn.

Then ∆D(θn) is defined in the defineTo function in D〈X〉 at epn using ∆D(θn−1). However, it is

impossible since θj1 satisfies the condition at line 2 in defineTo and prevents defining ∆D(θn) at epn .

Contradiction found and θ1 = θj1.

Assume that MTC〈X〉(θj) 6= MTD(θj). We can find l > 1 s.t. θjl 6= θl and θji = θi for any

0 < i < l. Let setC〈X〉(θjl ) = k and setC〈X〉(θl) = g. Suppose enl〈θ′′〉. We have θjl−1 t θ′′ = θjl ;

so θ′′ 6@ θjl−1. Also, disable(θ′′) > T (θjl ) = T (θj1) = T (θ1) after ek. k < g is impossible; otherwise,

∆D(θl) cannot be defined at eg using ∆D(θl−1) because θ′′ will satisfy the condition at line 2 in

defineTo in D〈X〉. Hence, k > g ≥ setC〈X〉(θl) by Proposition 19.3. In other words, ∆C〈X〉(θl) is
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defined before ek. Therefore, θl 6∈ MTC〈X〉(θj) but θl ⊆ θj . Then we can find θjp ∈ MTC〈X〉(θj) s.t.

θl @ θjp and θl 6@ θi for any 0 < i < p. However, suppose setC〈X〉(θjp) = n, then at event en, we have

θl @ θjp and θl 6@ θjp−1. According to the proof for algorithm A〈X〉 in [31], we should have θjp−1 @ θl,

which means that ∆C〈X〉(θjp) should be defined using ∆C〈X〉(θl). Contradiction found. Therefore,

MTC〈X〉(θj) = MTD(θj).

�

Theorem 4 The following holds:

1. if γ(∆τ
C〈X〉(θ)) ∈ G then γ(∆τ

D(θ)) = γ(∆τ
C〈X〉(θ));

2. if γ(∆τ
D(θ)) ∈ G then γ(∆τ

C〈X〉(θ)) = γ(∆τ
D(θ));

3. γ(∆τ
C〈X〉(θ)) ∈ G iff γ(∆τ

D(θ)) = γ(∆τ
C〈X〉(θ)) iff γ(∆τ

D(θ)) ∈ G.

Proof:

1. By Proposition 21 and Proposition 20.2, ∆τ
D(θ) = ∆τ

C〈X〉(θ). Hence, γ(∆τ
D(θ)) = γ(∆τ

C〈X〉(θ)).

2. Follow by Proposition 22 and Proposition 20.2.

3. Follow by 1 and 2. �

Theorem 4 states that a trace slice for θ is reported by C+〈X〉 to be in G if and only if it is also

reported by D〈X〉 to be in G. In other words,C+〈X〉 and D〈X〉 are equivalent for those parameter

instances whose trace slices are in G. Thus D〈X〉 is complete and sound.
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Chapter 5

JavaMOP

JavaMOP is a language instance of the MOP framework for Java. It provides several interfaces,

including a web-based interface, a command-line interface and an Eclipse-based GUI, providing the

developer with different means to manage and process MOP specifications. The JavaMOP imple-

mentation follows the server-clicient architecture of MOP, as shown in Figure 3.2, to flexibly support

these various interfaces, as well as for portability reasons. AspectJ [9] is employed for monitor in-

tegration: JavaMOP translates the given JavaMOP specification into AspectJ code, which is then

merged within the original program by the AspectJ compiler. All the logic plugins implemented the

MOP framework are supported in JavaMOP.

One might expect some loss of efficiency for MOP’s genericity of logics. However, the JavaMOP-

generated monitors can yield very reasonable runtime overhead in practice, even for properties

requiring intensive runtime checking: on the order of 10% or lower, and as efficient as the hand

optimized monitoring code in most cases.

5.1 JavaMOP Specifications

Figure 5.1 shows the syntax of JavaMOP Specifications. The syntax is defined in BackusCNaur Form

(BNF) [19] extended with {p} for zero or more and [p] for zero or one repetitions of p. We next give

an itemized explanation of the syntactic definitions and also two examples for better understanding.

JavaMOP specification syntax is defined on the Java syntax and the AspectJ syntax; one can refer

to [53] for the former and [10] for the latter.

〈Specification〉. Every JavaMOP specification is composed of the following components: a list of

modifiers, a name for the specification, a list of parameters which can be empty, a list of declarations

that define internal variables of the generated monitor, a list of event definitions, and a list of

property specifications. All the components are optional except for the name and parameters of the

specification.
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〈Specification〉 ::= {〈Modifier〉} 〈Id〉 〈Parameters〉 “{”
{〈Declaration〉}
{〈Event〉}
{ 〈Property〉 {〈Property Handler〉}}

“}”
〈Modifier〉 ::= “unsynchronized” | “decentralized” | “perthread” | “suffix”
〈Event〉 ::= “event” 〈Id〉 〈Event Definition〉 〈Action〉
〈Property〉 ::= 〈Logic Name〉 “ : ” 〈Logic Syntax〉
〈Property Handler〉 ::= “@”〈Logic State〉 〈Action〉
〈Event Definition〉 ::= 〈Advice Specification〉 “ : ” 〈Extended Pointcut〉
〈Action〉 ::= “{” [〈Statements〉] “}”
〈Extended Pointcut〉 ::= 〈Pointcut〉 | 〈Extended Pointcut〉 “&&” 〈Extended Pointcut〉

| “thread” “(” 〈Id〉 “)”
| “condition” “(” 〈Boolean Expression〉 “)”

〈Parameters〉 ::= “(” [〈Parameter〉{ “, ” 〈Parameter〉}] “)”
〈Parameter〉 ::= 〈Type Pattern〉 〈Id〉
〈Type Pattern〉 ::= 〈!−−AspectJ Type Pattern −−〉
〈Id〉 ::= 〈!−−Java Identifier −−〉
〈Declaration〉 ::= 〈!−−Java variable declaration −−〉
〈Statements〉 ::= 〈!−−Java statements −−〉
〈Boolean Expression〉 ::= 〈!−−Java boolean expressions−−〉
〈Advice Specification〉 ::= 〈!−−AspectJ AdviceSpec −−〉
〈Pointcut〉 ::= 〈!−−AspectJ Pointcut −−〉
〈Logic Name〉 ::= 〈!−−Name of the used logic−−〉
〈Logic Syntax〉 ::= 〈!−−Property specified in the used logic−−〉
〈Logic State〉 ::= 〈!−−State of the generated monitor−−〉

Figure 5.1: JavaMOP Specification Syntax in BNF

〈Modifier〉. JavaMOP supports four modifiers which can be used to configure the running mode

of the monitor. As the grammar shows, modifiers are placed at the beginning of the specification

definition. Presently, four modifiers are supported by JavaMOP:

• “unsynchronized”: When this modifier is specified, the monitor state is not protected against

concurrent accesses during monitoring; otherwise, the accesses to the monitor state will be

synchronized. The unsynchronized monitor is faster, but may suffer from races on its state

updates, if the monitored program has multiple threads.

• “decentralized”: When this modifier is specified, decentralized monitor indexing is used to

store the monitor for different parameter instances. If it is not specified, the default mode is

centralized monitor indexing. Decentralized indexing means that the indexing trees used to

search for monitors are scattered all over the running system as additional fields of objects of

interest, while centralized indexing means the indexing trees are stored in a common place.

Decentralized indexing typically yields lower runtime overhead, but it does not work for all
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settings, such as when the objects of interest cannot be modified with aspects. Section 5.2

explains how centralized and decentralized indexing work.

• “perthread”: When this modifier is specified, each thread is monitored separately, and every

monitor never receives events from more than one thread. JavaMOP will optimize the moni-

toring code accordingly. For example, perthread monitors are automatically unsynchronized.

• “suffix”: When this modifier is specified, suffix matching is used. If it is not specified, the

default mode is total matching. In total matching, the given property is checked against the

whole execution trace. In suffix matching, the given property is checked against every suffix

of the execution trace (see Section 3.2). For example, for a regular pattern a b and a trace a

a b, total matching will find no match of the pattern, while suffix matching will generate one

match for the suffix a b starting from the second a.

〈Event〉. The event declaration defines events that will be observed at runtime and referred to in

the specified property (see below). Every event declaration begins with keyword event followed by

an 〈Id〉 that gives the name of the event. 〈Event Definition〉 and 〈Action〉 define a condition and its

behavior when triggered.

〈Property〉. Every JavaMOP specification may contain zero or more properties. A property con-

sists of a named formalism (〈Logic Name〉), followed by a colon, followed by a property specification

using the named formalism (〈Logic Syntax〉) and usually referring to the declared events. Java-

MOP, like all MOP instances, is not bound to any particular property specification formalism. New

formalisms can be added to a JavaMOP installation by means of logic plugins (see Section 3.3).

A JavaMOP specification containing no property specification is called raw. Raw specifications

are useful when no existing logic plugin is powerful or efficient enough to specify the desired property;

in that case, one embeds the custom monitoring code manually within the event action.

〈Property Handler〉. Property handlers can be defined for certain states (those states are des-

ignated by 〈Logic State〉) of the generated monitor. A property handler consists of any arbitrary

Java statements that will be invoked whenever the designated state is reached in the generated

monitor. Just as the event action, the handler may modify the program or the monitor state. The

monitor states to which one can associate handlers are determined by the underlying formalism,

e.g., validation or violation in linear temporal logic specifications, match or fail for ERE or CFG, or

a particular state in a finite state machine description.
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〈Event Definition〉. 〈Event Definition〉 in JavaMOP makes uses of AspectJ syntax. It consists

of 〈Advice Specification〉 and 〈Extended Pointcut〉, which define where the event is triggered by the

program.

〈Action〉. Events and handlers can also have arbitrary code associated with them, called an action.

The action is run when the associated event is observed, or the handler triggered. An action is

surrounded by curly braces (”” and ””), and can contain any arbitrary Java statements. 〈Action〉s

may modify the program or the monitor state. They have access to the special expressions defined

in the 〈Statements〉.

〈Extended Pointcut〉. 〈Extended Pointcut〉 extends the AspectJ Pointcut with the following two

JavaMOP-specific pointcuts:

• thread captures the current thread and takes an identifier as the parameter. The identifier

is bound to the running thread object. The captured thread object is stored into the given

variable so that the monitor can access it later.

• condition takes a boolean expression as the parameter. The event is triggered only when the

given boolean expression evaluates to true.

〈Parameters〉, 〈Parameter〉, and 〈Type Pattern〉. 〈Parameters〉 is a comma-separated list of

parameters. 〈Parameter〉 is composed of a type pattern (〈Type Pattern〉) that defines the type of

the parameter and an identifier (〈Id〉) that gives the name of the parameter. TypePattern is the

AspectJ type pattern, which allows for using wildcards, such as + and *, to define patterns of types.

The list of parameters defines which parameters may be used in the events of the specification.

〈Id〉, 〈Declaration〉, 〈Statements〉, and 〈Boolean Expression〉. 〈Id〉 and 〈Declaration〉 are

the ordinary Java identifier and the Java declaration, respectively. 〈Statements〉 are ordinary Java

statements. 〈Statements〉 also support three special expressions that can be used in the property

handler:

• RESET: a special expression (evaluates to void) that resets the monitor to its initial state;

• LOC: a string variable that evaluates to the line number where the current event is generated;

• MONITOR: a special variable that evaluates to the current monitor object, so that one can

read/write monitor variables.
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BExp is the ordinary Java boolean expression.

〈Advice Specification〉 and 〈Pointcut〉. 〈Advice Specification〉 and 〈Pointcut〉 refer to the Ap-

sectJ AdviceSpec and Pointcut, respectively. JavaMOP borrows AspectJ syntax for its expressive-

ness and also to facilitate code synthesis.

〈Logic Name〉, 〈Logic Syntax〉, and 〈Logic State〉. 〈Logic Name〉 designates the logic to spec-

ify the desired property. The current version of JavaMOP provides the following logic names that

one can use in the property specification:

• FSM: Finite State Machines

• ERE: Extended Regular Expressions

• CFG: Context Free Grammars

• PTLTL: Past Time Linear Temporal Logic

• FTLTL: Future Time Linear Temporal Logic

• PTCARET: Past Time LTL with Calls and Returns

〈Logic Syntax〉 is the property specified using the named logic and 〈Logic State〉 chooses certain

states of the generated monitor with which one can associate an action. They both vary from one

logic to another and the interested reader may refer to [26] for more explanation of each supported

logic.

Examples

In addition to the example in Section 2.1, we next show two examples to illustrate JavaMOP

specifications. The first one, shown in Figure 5.2, is a multi-formulae specification that expands the

UnsafeMapIter example discussed at the beginning of Chapter 4. More precisely, Figure 5.2 shows

a JavaMOP specification of the UnsafeMapIter property using five different formalisms: finite state

machines (FSM), extended regular expressions (ERE), context-free grammars (CFG), future-time

linear temporal logic (FTLTL), and past-time linear temporal logic (PTLTL). Because each of the

properties in Figure 5.2 is the same, five messages will be reported whenever an Iterator is incorrectly

used after an update to the underlying Map. We show all five of them to emphasize the formalism-

independence of our approach. On the first line, we name the specified property and give the
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start s1
create_coll

update_map

s2
create_iter

use_iter

s3
update_map

update_map

end
use_iter

start s1
create_coll

update_map

s2
create_iter

use_iter

s3
update_map

update_map

end
use_iter

start s1
create_coll

update_map

s2
create_iter

use_iter

s3
update_map

update_map

end
use_iter

start s1
create_coll

update_map

s2
create_iter

use_iter

s3
update_map

update_map

end
use_iter

start s1
create_coll

update_map

s2
create_iter

use_iter

s3
update_map

update_map

end
use_iter

UnsafeMapIterator(Map m, Collection c, Iterator i){
event create_coll after(Map m) returning(Collection c) : (call(* Map.values()) || call(* Map.keySet())) && target(m) {}
event create_iter after(Collection c) returning(Iterator i) : call(* Collection+.iterator()) && target(c) {}
event use_iter before(Iterator i) : call(* Iterator+.next()) && target(i) {}
event update_map after(Map m) : (call(* Map.remove*(..)) || call(* Map.put*(..))

|| call(* Map.putAll*(..)) || call(* Map.clear())) && target(m) {}

fsm: start [ create_coll -> s1 ]
s1 [ update_map -> s1, create_iter -> s2 ]
s2 [ use_iter -> s2, update_map -> s3 ]
s3 [ update_map -> s3, use_iter -> end ]
end []

@end{ System.out.println("ere: Accessed Invalid Iterator!"); __RESET; }

ere : create_coll update_map* create_iter use_iter* update_map update_map* use_iter
@match{ System.out.println("ere: Accessed Invalid Iterator!"); __RESET; }

cfg : S -> create_coll Updates create_iter Nexts update_map Updates use_iter,
Nexts -> Nexts use_iter | epsilon,
Updates -> Updates update_map | epsilon

@match{ System.out.println("cfg: Accessed Invalid Iterator!"); __RESET;}

ftltl: <>(create_coll /\ <> (create_iter /\ <> (update_map /\ <> use_iter)))
@validation{ System.out.println("ftltl: Accessed Invalid Iterator!"); __RESET; }

ptltl: use_iter -> ((<*> (create_iter /\ (<*> create_coll))) -> ((!update_map) Since create_iter))
@violation{ System.out.println("ptltl: Accessed Invalid Iterator!"); __RESET; }

}

Figure 1. FSM, ERE, CFG, FTLTL, and PTLTL UnsafeMapIterator

and c using the target and the return value of the method
call. The crucial point is that this example could not be
monitored using the original MOP parametric monitoring
algorithm [6] because create coll, which must always be the
first event in any matching pattern2, does not instantiate
the Iterator parameter i.

Observation code is then automatically synthesized from
the specification and instrumented into the program to mon-
itor. This way, executions of the monitored program will
produce traces made up of events defined in the specifica-
tion, as those in Figure 1. Consider the example trace in
Figure 2 generated for the specification in Figure 1, which
contains eleven events. Every event in the trace starts
with the name of the event, e.g., create coll, followed by the
parameter binding information, e.g., 〈m1, c1〉 that binds
parameters m and c with a map object m1 and a collection
c1, respectively. Such a trace is called a parametric trace
since it contains events with parameters. Our approach to
monitor parametric traces against parametric properties is
based on such an observation that each parametric trace
actually contains multiple non-parametric trace slices, each
for a particular parameter binding instance. The formal
definition of the trace slice can be found in Section 3, but
intuitively, a slice of a parameter trace for a particular pa-
rameter binding consists of names of all the events that have
parameter instances compatible with the parameter bind-
ing. Informally, two parameter instances are compatible if
and only if the parameters for which they have bindings
agree: parameter instances 〈m2, c2〉 and 〈m2, c2, i3〉 are an
example of compatible instances, because the parameters
they both bind, m and c, agree on their values, m2 and c2,

2Events which may start a matching trace are known as
monitor creation events.

Instance Slice Status
〈m1〉 update map ?
〈m1, c1〉 create coll update map ?
〈m1, c2〉 create coll update map ?
〈m2, c3〉 create coll ?
〈m1, c1, i1〉 create coll create iter use iter update map ?
〈m1, c1, i2〉 create coll create iter update map use iter match
〈m1, c2, i3〉 create coll create iter update map ?
〈m2, c3, i4〉 create coll create iter use iter ?

Figure 3. Slices for the Trace in Figure 2

respectively. Therefore, Figure 3 shows the trace slices and
their corresponding parameter bindings contained in the
trace in Figure 2. For example, the trace for the binding
〈m1, c1〉 contains create coll update map (the first and seventh
events in the trace) and the trace for the binding〈m1, c1, i2〉
is create coll create iter update map use iter (the first, fourth,
seventh, and eighth events in the trace).

Based on this observation, our approach creates a set of
monitor instances during the monitoring process, each han-
dling a trace slice for a parameter binding. Figure 4 shows
the set of monitors created for the trace in Figure 2, each
monitor labeled by the corresponding parameter binding.
This way, the monitor does not need to handle the parameter
information and can employ any existing technique for ordi-
nary, non-parametric traces, including state machines and
push-down automata, providing a formalism-independent
way to check parametric properties. When an event comes,
our algorithm will dispatch it to related monitors accord-
ing to its parameters and the monitors will update their
states accordingly. For example, the seventh event in Fig-
ure 2, update map〈m1〉, will be dispatched to monitors for
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UnsafeMapIterator(Map m, Collection c, Iterator i){
event create_coll after(Map m) returning(Collection c) : (call(* Map.values()) || call(* Map.keySet())) && target(m) {}
event create_iter after(Collection c) returning(Iterator i) : call(* Collection+.iterator()) && target(c) {}
event use_iter before(Iterator i) : call(* Iterator+.next()) && target(i) {}
event update_map after(Map m) : (call(* Map.remove*(..)) || call(* Map.put*(..))

|| call(* Map.putAll*(..)) || call(* Map.clear())) && target(m) {}

fsm: start [ create_coll -> s1 ]
s1 [ update_map -> s1, create_iter -> s2 ]
s2 [ use_iter -> s2, update_map -> s3 ]
s3 [ update_map -> s3, use_iter -> end ]
end []

@end{ System.out.println("fsm: Accessed Invalid Iterator!"); __RESET; }

ere : create_coll update_map* create_iter use_iter* update_map update_map* use_iter
@match{ System.out.println("ere: Accessed Invalid Iterator!"); __RESET; }

cfg : S -> create_coll Updates create_iter Nexts update_map Updates use_iter,
Nexts -> Nexts use_iter | epsilon,
Updates -> Updates update_map | epsilon

@match{ System.out.println("cfg: Accessed Invalid Iterator!"); __RESET;}

ftltl: <>(create_coll /\ <> (create_iter /\ <> (update_map /\ <> use_iter)))
@validation{ System.out.println("ftltl: Accessed Invalid Iterator!"); __RESET; }

ptltl: use_iter -> ((<*> (create_iter /\ (<*> create_coll))) -> ((!update_map) Since create_iter))
@violation{ System.out.println("ptltl: Accessed Invalid Iterator!"); __RESET; }

}

Figure 1. FSM, ERE, CFG, FTLTL, and PTLTL g UnsafeMapIterator. Inset: Graphical Depiction of the Property.
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Figure 5.2: FSM, ERE, CFG, FTLTL, and PTLTL UnsafeMapIter. Inset: Graphical Depiction of
the Property.

parameters used in the specification. Then we define the involved events using the AspectJ syntax.

For example, create coll is defined as the return value of functions values and keyset of Map. We

adopt AspectJ syntax to define events in JavaMOP because it is an expressive language for defining

observation points in a Java program. As mentioned, every event may instantiate some parameters

at runtime. This can be seen in Figure 5.2: create coll will instantiate parameters m and c using the

target and the return value of the method call.

Figure 5.3 shows a raw MOP specification that detects SQL-injection attacks [4]: malicious users

try to corrupt a database by inserting unsafe SQL statements into the input to the system.

In SQL injection, a string is “tainted” when it depends upon some user input; when a tainted

string is used as a SQL query, it should be checked to avoid potential attacks. In Figure 5.3, a

set is declared to store all tainted strings in the generated monitor. Three types of events need

to be monitored: userInput occurs when a string is obtained from user input (by calling ServletRe-

quest.getParameter()); propagate occurs when a new string is created from another string; finally, usage

occurs at using a string as a query.

Appropriate actions are triggered at observed events: at userInput, the user input string is added

to the tainted set; at propagate, if the new string is created from a tainted string then it is marked as

tainted, too; at usage, if the query string is tainted then a provided method, called Util.checkSafeQuery,

is called to check the safety of the query. Thus the safety check, which can be an expensive operation,

is invoked dynamically, on a by-need basis. In particular, for efficiency and separation of concerns
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SQLInjection () {
Set taintedStrings = new IdentitySet();
event userInput after() returning (String tainted):

call(String ServletRequest.getParameter(..))
{ taintedStrings.put(tainted); }

event propagate after(String s) returning (StringBuffer newS) :
call(StringBuffer StringBuffer.new(..)) && args(s)

|| call(StringBuffer StringBuffer.append(..)) && args(s)
...
{ if (taintedStrings.contains(s)) taintedStrings.put(newS.toString()); }

event usage before(String s) : call(* Statement.executeQuery(..)) && args(s)
{ if taintedStrings.contains(s) Util.checkSafeQuery(s); }

}

Figure 5.3: Raw MOP specification for SQL injection

reasons, a developer may even ignore the SQL injection safety aspect when writing code; the raw

MOP specification above will take care of this aspect entirely.

This example shows that the event/action abstraction provided by raw MOP specifications is

easy to master and useful for defining interesting safety properties compactly and efficiently. Event

names were not needed here, so they could have been omitted. No property specifications are needed

in raw MOP specifications; the developer fully implements the monitoring process by providing event

actions using the target programming language.

5.2 Implementation

As mentioned in Section 3.3, JavaMOP mainly implements the Java language client of the MOP

framework. We next discuss the implementation of suffix matching and parametric monitoring in

JavaMOP in more details.

5.2.1 Suffix Matching

Based on the discussion of suffix matching in Section 3.2, we have implemented a logic-independent

extension of JavaMOP to also support suffix matching. As discussed, although total matching and

suffix matching have inherently different semantics, it is not difficult to support suffix matching in a

total matching setting, if one maintains a set of monitor states during monitoring and creates a new

monitor instance at each event (this amounts to checking the property on each suffix incrementally).

However, the situation becomes more complicated when one wants to develop a logic-independent
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solution, since different logical formalisms can have different state representations. For example, the

monitor state can be an integer when the monitor is based on a state machine, a vector like the

past-time LTL monitor, or a stack such as the CFG monitor discussed below. Hence, our solution

is to treat every monitor as a blackbox without assumptions on its internal state. Also, instead of

maintaining a set of monitor states in the monitor, we use a wrapper monitor that keeps a set of

total matching monitors as its state for suffix matching. For simplicity, from now on, when we say

“monitor” without specific constraints, we mean the monitor generated for total matching. When

an event is received, the wrapper monitor for suffix matching operates as follows:

1. create a new monitor and add it to the “suffix matching” monitor set;

2. invoke every monitor in the monitor set to handle the received event;

3. if a monitor enters its “pattern fail” state, remove it from the monitor set;

4. if a monitor enters its “pattern match” state, report the pattern match.

The third step is used to keep the “suffix matching” monitor set small by removing unnecessary

monitors. Informally, this implements suffix matching semantics because each total monitor is

monitoring a suffix of the current trace and “pattern match” is only reported if one of the suffixes

is valid.

Using our current implementation of suffix matching in JavaMOP, one may further improve the

monitoring efficiency if the monitor provides an optional interface, namely, an equals method that

compares two monitors with regard to their internal states, and a hashCode method used to reduce

the amount of calls to equals. This interface is used to populate a Java HashSet: the combination of

the definition of hashCode and equals ensures the monitors in the HashSet are declared duplicates,

and removed, based on monitor state rather than memory location. This interface can be easily

generated by each JavaMOP logic plugin, because it has full knowledge of the monitor semantics. It

is important to note that our approach does not depend on the underlying specification formalism.

Moreover, JavaMOP already requires the logic plugin to designate creation events that are the

starting events of a validating trace, in order to avoid the overhead of unnecessary monitor creation.

A new monitor instance need be created only at creation events. This feature is especially useful

when combined with suffix matching, which requires creating a new monitor at every event, if no

creation events are chosen.
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Monitor instances
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Figure 5.4: Centralized indexing for MOP spec in Figure 2.1

5.2.2 Parametric Monitoring

JavaMOP implements the logic-independent parametric monitoring framework instroduced in Chap-

ter 4, which allows one to write parametric specifications in JavaMOP using any of the existing

logic-plugins in MOP. One would expect that such a genericity must come at a performance price.

However, as shown in Section 7.2, our generic technique presented next produces significantly less

runtime overhead than other existing RV systems, including Tracematches and PQL.

As shown in algorithm D〈X〉 in Figure 4.16, a monitor instance checking the specified property

will be created for every specific group of values of parameters; if a monitor instance m is created for

a group of values containing o, then we say that m is related to o. For the UnsafeEnum specification

in Figure 2.1, a monitor instance will be created for every pair of concrete v and e if e is the

enumeration of v. When a relevant event occurs, concrete values are bound to the event parameters

and used to look up related monitor instances; related monitors are then invoked to handle the

observed event. Several monitors can be triggered by an event since the event may contain fewer

parameters than the parameters of the enclosing specification. For the UnsafeEnum example, when

an updatesource event occurs, the target Vector object is bound to the parameter v and used to

find all the related monitors to process updatesource (there may be several enumerations of v).

The monitor lookup process is external to the monitor in our approach and makes no assumption

on the implementation of the monitor; consequently, it is independent of the monitor generation
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algorithm. Also, the monitor does not need to be aware of the parameter information and can proceed

solely according to the observed event. Hence, the monitoring process for parametric specifications

is divided into two parts in MOP: the logic-specific monitor (generated by the logic plugin) and the

logic-independent lookup process (synthesized by the specification processor).

Current runtime verification approaches supporting logics with universal quantifiers construct a

centralized monitor whose state evolves according to the parameter information contained in received

events. Our approach, on the contrary, creates many isolated monitor instances, but it maintains

indexing information so that it can quickly find relevant monitors. Experiments (Section 5.3) show

that our “decentralized-monitoring” strategy performs overall better than the centralized ones. The

rest of this section presents two instances of our decentralized monitoring technique, both supported

by JavaMOP: one using centralized indexing and the other using decentralized indexing.

Centralized Indexing

Efficient monitor lookup is crucial to reduce the runtime overhead. The major requirement here is

to quickly locate all related monitors given a set of parameter instances. Recall that different events

can have different sets of parameters: e.g., in Figure 2.1, all three events declare different parameter

subsets. Our centralized indexing algorithm constructs multiple indexing trees according to the

event definitions to avoid inefficient traversal of the indexes; more specifically, for every distinct

set of event parameters found in the specification, an indexing tree is created to map the set of

parameters directly into the list of corresponding monitors.

The number and structure of indexing trees needed for a specification can be determined by a

simple static analysis of event parameter declarations. For example, for the parametric specification

in Figure 2.1, since there are three different sets of event parameters, namely <v,e>, <v> and <e>,

three indexing trees will be created to index monitors, as illustrated in Figure 5.4: the first tree uses

a pair of v and e to find the corresponding monitor, while the other two map v and, respectively, e

to the list of related monitors.

We use hash maps in JavaMOP to construct the indexing tree. Figure 5.5 shows the generated

monitor look up code for the updatesource event in Figure 2.1. This code is inserted at the end of

every call to Vector.add or other vector changing methods, according to the event definition. One

parameter is associated to this event, namely, the vector v on which we invoke the method. A map,

UnsafeEnum v map, is created to store the indexing information for v, i.e., the {v}Map in Figure

5.4. When such a method call is encountered during the execution, a concrete vector object will
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public aspect SafeEnumMonitorAspect {
...

static Map UnsafeEnum_v_Map = null;
pointcut UnsafeEnum_updatesource1(Vector v) :

((call(* Vector+.add*(..)) || ...)
&& target(v));

after (Vector v) : UnsafeEnum_updatesource1(v) {
Object obj = null;
Map m = UnsafeEnum_v_Map;
if(m == null) m = UnsafeEnum_v_Map = makeMap(v);
synchronized(UnsafeEnum_v_Map) {

obj = m.get(v);
}
if (obj != null) {

synchronized(obj) {
for(UnsafeEnumMonitor_1 monitor : (List<UnsafeEnumMonitor_1>)obj) {

monitor.MOP_thisJoinPoint = thisJoinPoint;
monitor.updatesource(v);
if(monitor.MOP_match()) {

System.out.println(...);
monitor.reset();

}// end of if
}// end of for

}// end of synchronized
}// end of if

}// end of advice
...
}

Figure 5.5: Centralized indexing monitoring code generated by JavaMOP for updatesource (from
spec in Figure 2.1)

be bound to v and the monitoring code will be triggered to fetch the list of related monitors using

UnsafeEnum v map. Then all the monitors in the list will be invoked to process the event.

An important question is when to create a new monitor instance. This is a non-trivial problem in

its full generality, because one may need to create “partially instantiated” monitors when events with

fewer parameters are observed before events with more parameters. While this partial instantiation

can be achieved in a logic-independent manner, motivated by practical needs we adopted a simpler

solution in JavaMOP: we let the logic-plugin tell which events are allowed to create new monitors;

these events are also required to be parametric by all the specification parameters, such as the

create<v,e> event in Figure 2.1. All MOP’s logic-plugins have been extended to mark their monitor-

initialization events. Thus, if an event is generated and a monitor instance for its parameters cannot

be found, then a new monitor instance is created for its parameters only if the event is marked;

otherwise the event is discarded. This way, no unnecessary monitor instances are created; indeed,
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Figure 5.6: Decentralized indexing for monitor in Figure 5.4

it would be pointless and expensive to create monitor instances for all vector updates just because

they can be potentially associated with enumerations – monitor instances are created only when

enumerations are actually created.

A performance-related concern in our implementation of JavaMOP is to avoid memory leaks

caused by hash maps: values of parameters are stored in hash maps as key values; when these values

are objects in the system, this might prevent the Java garbage collector from removing them even

when the original program has released all references to them. We use weakly referenced hash maps

in JavaMOP. The weakly referenced hash map only maintains weak references to key values; hence,

when an object that is a key in the hash map dies in the original program, it can be garbage collected

and the corresponding key-value pair will also be removed from the hash map. This way, once a

monitor instance becomes unreachable, it can also be garbage collected and its allocated memory

released.

Note that a monitor instance will be destroyed only only when it will never be triggered in the

future. Since we have an indexing tree per event parameter set, if a monitor m can potentially be

triggered in the future by some event e with a parameter set (p1, .., pn), where n can also be 0, then:

1. m appears in the indexing tree corresponding to the parameters (p1, .., pn); that is also because

of our assumption/limitation that, when m is created, all its possible parameters, including

p1, ..., pn but potentially more, were available; when m was created, it was added to all the
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indexing trees corresponding to (subsets of) its parameters, including that of (p1, .., pn); and

2. if e is ever generated in the future, m will be referred from the indexing tree for (p1, .., pn).

This is because if e really occurs at some moment in the future, then p1, .., pn should all be

live objects and thus the mapping in the corresponding indexing tree has not been destroyed.

Therefore, if a future event can ever trigger m, then m is not garbage collectible. This guarantees

the soundness of our usage of weak references. One interesting corner case here is when n is 0, i.e.,

when some event has no parameter. In such case, the corresponding indexing tree (for the empty

set of parameters) is actually a list instead of a map. Thus, even if all parameters die, the monitor

will still be kept alive because there is a reference to it in that list. But this only happens when at

least one of the events in the specification has no parameters.

Optimization: Decentralized Indexing

The centralized-indexing-decentralized-monitor approach above can be regarded as a centralized

database of monitors. This solution proves to be acceptable wrt runtime overhead in many of

the experiments that we carried out; in particular, it compares favorably with centralized-monitor

approaches (see Section 5.3). However, reducing runtime overhead is and will always be a concern

in runtime verification. We next propose a further optimization based on decentralizing indexing.

This optimization is also implemented in JavaMOP.

In decentralized indexing, the indexing trees are piggybacked into states of objects to reduce the

lookup overhead. For every distinct subset of parameters that appear as a parameter of some event,

JavaMOP automatically chooses one of the parameters as the master parameter and uses the other

parameters, if any, to build the indexing tree using hash maps as before; the resulting map will then

be declared as a new field of the master parameter. For example, for the updatesource event in

Figure 2.1, since it has only the <v> parameter, v is selected as master parameter and a new field

will be added to its Vector class to accommodate the list of related monitor instances at runtime.

Figure 5.6 shows the decentralized version of the centralized indexing example in Figure 5.4, and

Figure 5.7 shows the generated decentralized indexing monitoring code for the updatesource event.

Comparing Figures 5.7 and 5.5, one can see that the major difference between the centralized

and the decentralized indexing approaches is that the list of monitors related to v can be directly

retrieved from v when using decentralized indexing; otherwise, we need to look up the list from a

hash map. Decentralized indexing thus scatters the indexing over objects in the system and avoids

unnecessary lookup operations, reducing both runtime overhead and memory usage. It is worth
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public aspect SafeEnumMonitorAspect {
...

List Vector.UnsafeEnum_v_List = null;
pointcut UnsafeEnum_updatesource1(Vector v) :

((call(* Vector+.add*(..))
|| ...) && target(v));

after (Vector v) : UnsafeEnum_updatesource1(v) {
Object obj = null;
if(v.UnsafeEnum_v_List == null) v.UnsafeEnum_v_List = makeList();
{

obj = v.UnsafeEnum_v_List;
}
if (obj != null) {

synchronized(obj) {
for(UnsafeEnumMonitor_1 monitor : (List<UnsafeEnumMonitor_1>)obj) {

monitor.MOP_thisJoinPoint = thisJoinPoint;
monitor.updatesource(v);
if(monitor.MOP_match()) {

System.out.println(...);
monitor.reset();

}// end of if
}// end of for

}// end of synchronized
}// end of if

}// end of advice
...
}

Figure 5.7: Decentralized indexing monitoring code automatically generated by JavaMOP for
updatesource

noting that decentralized indexing does not affect the behavior of disposing unnecessary monitor

instances as discussed in the previous section: when an object is disposed, all the references to

monitor instances based on this object will also be discarded, no matter whether they are stored in

maps using weak references or whether they are embedded as fields of the object.

On the negative side, decentralized indexing involves more instrumentation than the centralized

approach, sometimes beyond the boundaries of the monitored program, since it needs to modify

the original signature of the master parameter: for the monitoring code in Figure 5.7, the Java

library class Vector has to be instrumented (add a new field). This is usually acceptable for

testing/debugging purposes, but may not be appropriate if we use MOP as a development paradigm

and thus want to leave monitors as part of the released program. If that is the case, then one should

use centralized indexing instead, using the attribute centralized.

The choice of the master parameter may significantly affect the runtime overhead. In the speci-

fication in Figure 2.1, since there is a one-to-many relationship between vectors and enumerations,
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it would be more effective to choose the enumeration as the master parameter of the create event.

Presently, JavaMOP picks the first parameter encountered in the analysis of the MOP specification

as the master parameter for each set of event parameters. Hence, the user can control the choice of

the master parameter by putting, for each set of parameters P , the desired master parameter first

in the list of parameters of the first event parametric over P .

5.3 Evaluation

We have applied JavaMOP on tens of programs, including several large-scale open source programs,

e.g., the DaCapo benchmark suite [18], the Tracematches benchmark suite [12], and Eclipse [36].

Our evaluation mainly focuses on two aspects: the expressivity of the specification language and the

runtime overhead of monitoring. The properties used in our experiments come from two sources:

properties used in other works (e.g., [44, 66, 12, 22]) and our own formalization of informal descrip-

tions in software documentation.

With the currently supported logic-plugins and the generic support for parameters, JavaMOP

is able to formally and concisely express most of the collected properties. One interesting excep-

tion is the SQL injection from PQL [66], which we implemented using the raw MOP specification

shown in Figure 5.3. A large portion, nearly half, of the properties that we have tried are recover-

able/enforceable. Many violations of properties were revealed in our experiments, although we did

not focus on error detection; when violations occurred, we were able to quickly locate their causes

using JavaMOP. The rest of this section focuses on performance evaluation, on discussing some of

the detected violations, and on current limitations of our implementation.

5.3.1 Performance Evaluation

The monitoring code generated by JavaMOP caused low runtime overhead, below 10%, in most ex-

periments even with centralized indexing. By turning on the decentralized indexing, few experiments

showed noticeable runtime overhead. In what follows, we evaluate JavaMOP’s runtime overhead us-

ing the DaCapo benchmark, and also compare JavaMOP with other runtime verification techniques,

namely, Tracematches and PQL.

Our experiments were carried out on a machine with 1.5GB RAM and Pentium 4 2.66GHz

processor. The operating system used was Ubuntu Linux 7.10. We used the DaCapo benchmark

version 2006-10; it contains eleven open source programs [18]: antlr, bloat, chart, eclipse, fop,
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hsqldb, jython, luindex, lusearch, pmd, and xalan. The provided default input was used together

with the -converge option to execute the benchmark multiple times until the execution time falls

within a coefficient of variation of 3%. The average execution time of six iterations after convergence

are then used to compute the runtime overhead. Therefore, the runtime overhead percentages in

Tables 5.3 and 5.4 and should be read “±3” (meaning negative numbers are possible).

Properties

The following general properties, some of which were borrowed from [22], were checked using Java-

MOP:

1. UnsafeEnum: Do not update Vector while enumerating its elements using the Enumeration

interface (Figure 2.1).

2. UnsafeMapIter: Do not update a Map when using the Iterator interface to iterate its contents

(Figure 5.2).

3. HashMap: The hash code of an object should not be changed when the object is used as a key

in a hash map.

4. HasNext: Always call the hasNext() method of an iterator before calling its next() method.

5. SafeFileWriter: SafeFileWriter ensures that all writes to a FileWriter happen between cre-

ation and close of the FileWriter, and that the creation and close events are matched pairs.

6. LeakingSync: Only access a Collection via its synchronized wrapper once the wrapper is

generated by the Collections.synchronized* methods. Note that the original LeakingSync

specified in [22] only allows synchronized accesses to synchronized collections. This causes

spurious failures because the synchronized methods call the unsynchronized versions. Our

version improves it by allowing calls to the unsynchronized methods so long as they happen

within synchronized calls. It cannot be expressed in Tracematches because it is not a regular

pattern.

More properties have been checked in our experiments; we choose these six properties to include

in this thesis because they generate a comparatively larger runtime overhead. We excluded those

with little overhead. Three of these properties are recoverable: HashMap (the monitor can main-

tain a shadow map based on IdentityHashMap as backup), HasNext (make a call to hasNext()
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before next()), and LeakingSync (redirect call to the synchronized wrapper). SafeFileWriter

and LeakingSync are CFG properties and others are ERE properties.

For every property, we provided three MOP specifications: a formal specification for decentralized

indexing, the same formal specification for centralized indexing, and a (hand-optimized) raw MOP

specification. The last one is supposedly the best monitoring code for that property and was used to

evaluate the effectiveness of our monitor generation algorithm. The AspectJ compiler 1.5.3 (AJC)

was used in these experiments to compile the generated monitoring AspectJ code.

Statistics and Results of the Evaluation

UnsafeEnum UnsafeMapIter HashMap HasNext SafeFileWriter LeakingSync
DaCapo 1147 6663 1729 2639 2966 12855

Table 5.1: Instrumentation statistics: instrumentation points in the DaCapo benchmark

UnsafeEnum UnsafeMapIter HashMap HasNext SafeFileWriter LeakingSync
antlr 10K 0 1K 0 0 0 0 0 0 0 8472 0
bloat 0 0 90M 1M 391K 46K 155M 1M 385 231 5.5M 0
chart 57 0 569K 815 8K 3K 6K 815 0 0 634K 0

eclipse 16K 0 38K 31 31K 19K 1K 31 0 0 74K 0
fop 7 1 49K 79 17K 6K 277 79 0 0 182K 0

hsqldb 174 0 0 0 0 0 0 0 0 0 0 0
jython 50K 0 174K 50 443 439 106 50 0 0 23M 0
luindex 457K 14K 82K 8K 9K 9K 28K 8K 0 0 1.5M 0
lusearch 335K 0 405K 0 416 416 0 0 0 0 1.2M 0

pmd 717 0 25M 1M 11K 105 46M 8M 32 20 26M 0
xalan 5K 0 199K 0 124K 78K 0 0 0 0 5M 0

Table 5.2: Monitoring statistics: generated events(left column) and monitor instances(right column).
K = ×103, M = ×106

Tables 5.1 and 5.2 show the instrumentation and monitoring statistics for monitoring the above

properties in DaCapo: Table 5.1 gives the number of points statically instrumented for monitoring

each of the properties; Table 5.2 gives the number of events and the number of monitor instances

generated at runtime using centralized indexing. Both these numbers are collected from a single

execution of the benchmark. The first row in each table gives the names of the properties, and the

first column in Table 5.2 gives the programs. We do not split the static instrumentation points by

different programs because they are merged together in the benchmark suite; some of them even

share common packages. Decentralized indexing does not change the number of generated events or

monitor instances; it only affects the monitor indexing.
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UnsafeEnum UnsafeMapIter HashMap
antlr 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 1.1
bloat 2.4 0.0 0.0 385 176 24.2 2.4 1.8 1.4
chart 0.0 0.0 0.0 0.3 0.0 0.0 4.8 3.6 4.8

eclipse 2.4 4.1 0.8 0.0 0.0 1.4 3.6 3.7 0.5
fop 0.4 1.2 0.6 1.7 1.5 0.0 0.0 0.0 0.0

hsqldb 0.0 3.3 0.0 0.0 0.9 1.2 0.0 0.0 2.1
jython 0.5 0.6 0.0 1.6 0.8 0.5 0.7 0.2 0.3
luindex 2.6 1.6 0.2 3.2 1.9 0.5 0.6 1.2 1.8
lusearch 6.6 0.5 0.0 9.5 0.0 0.0 0.0 0.0 0.0

pmd 0.0 0.0 0.0 272 44.8 11.3 0.5 0.0 0.0
xalan 0.0 3.5 4.4 4.8 6.7 5.4 7.2 4.7 6.5

HasNext SafeFileWriter LeakingSync
antl 0.0 0.4 0.0 0.9 1 0.5 2.7 0.0 0.0
bloat 323 154 36.3 0.1 27 3.2 13.5 3.2 2.2
chart 0.0 0.0 0.0 0.1 0.1 0.2 0.1 0.5 0.0

eclipse 0.0 3.8 1.5 0.2 -2 0.2 0.8 3.0 3.1
fop 1.7 0.8 1.5 -1.0 -2.0 1.0 14.7 0.5 1.0

hsqldb 0.0 0.8 0.0 0.0 2 1.0 1.1 1.4 1.4
jython 1.3 0.0 0.6 0.2 1 -1.0 30.2 0.0 2.3
luindex 0.9 0.3 0.0 0.0 0.0 0.0 4.3 3.2 2.2
lusearch 0.3 0.0 32.4 0.2 0.1 0.3 32.4 1.1 0.6

pmd 353 25.4 13.7 1.0 -2 0.3 34.3 5.4 8.0
xalan 0.0 2.8 3.0 0.1 -2.5 0.0 3.0 1.5 1.7

Table 5.3: Runtime overhead (in percentage; e.g., 14.7 means 14.7% slower) of JavaMOP: centralized
| decentralized | raw

These two tables show that the properties selected in our experiments imposed heavy runtime

monitoring on the programs: a large number of points, ranging from one thousand to twelve thou-

sand, in the original programs were instrumented to insert the monitoring code. The monitoring

code was frequently triggered during the execution, especially for those properties involving the

Java Collection classes, e.g., UnsafeMapIter, HashMap, and HasNext. Some properties gener-

ated numerous runtime checks but only a few, even zero, monitor instances were created (e.g.,

UnsafeEnum and LeakingSync). The reason is that these properties observe some frequently visited

methods, but the events that we allowed to create monitor instances rarely or never occurred. For

example, LeakingSync checks all the method calls on the Collection interface, but no calls to

Collections.synchronized* methods happened in these experiments, so no monitor-initialization

events were created. Such experiments are particularly useful to evaluate the effectiveness of the

generated monitoring code to filter dynamically irrelevant events, i.e., events that have no effect

on the current monitor states. Also, a big difference between the number of events and the num-

ber of created monitor instances (e.g., jython-UnsafeEnum and bloat-LeakingSync) indicates a real
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potential for static analysis optimizations.

Table 5.3 summarizes the runtime overhead measured in our experiments, represented as a slow-

down percentage of the monitored program over the original program. For every property-program

combination, three monitoring runtime overhead numbers are given: with centralized indexing, with

decentralized indexing, and using a hand-optimized raw MOP specification. Among all 66 exper-

iments (recall that we already excluded some results with little overhead), only 11 (bold) caused

more than 10% slow-down with centralized indexing; for the decentralized indexing version, this

number reduces to 4. Except for the 4 worst cases, with decentralized indexing JavaMOP generates

monitoring code almost as efficient as the hand-optimized code.

Analyzing Tables 5.3 and 5.2, one can see that decentralized indexing handles the dynamically

irrelevant events much better than centralized indexing, e.g., when checking the LeakingSync prop-

erty. This is caused by the fact that, when there is no related monitor instance, decentralized

indexing only checks an object field, while centralized indexing needs to make an expensive hash

map lookup. The runtime overhead is determined not only by the frequency of reaching monitoring

code, but also by the execution time of the monitored action. For example, HashMap required quite

heavy monitoring on many programs but did not cause any noticeable performance impact. This

is because the methods checked for HashMap, including put, remove, and contains, are relatively

slow. On the other hand, checking bloat and pmd against UnsafeMapIter and HasNext is as bad

as it can be: the monitored actions take very little time to execute (e.g., the hasNext and next

methods of Iterator) and they are used very intensively during the execution (indicated by the

massive numbers in Table 5.2). Even for such extreme cases, the monitoring code generated by

JavaMOP with decentralized indexing may be considered acceptable: slowdown between 2 and 3

times. However, one can always choose to implement a hand-optimized raw MOP specification for

the property of interest; in our case, the raw MOP specification reduced the runtime overhead to

only 20-30%.

Comparing JavaMOP, Tracematches, and PQL

Attempts have also been made to compare JavaMOP with other existing trace monitoring tools.

However, some of them are not publicly available, others have limitations that prevented us from

using them in our experiments. Consequently, we only succeeded to compare JavaMOP thoroughly

with Tracematches and partially with PQL.

Table 5.4 compares the percent overheads of JavaMOP, PQL, and Tracematches. N/E refers
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to specifications that were not expressible. Negative numbers can be attributed to the 3% noise in

the measurements. Tracematches is unable to support LeakingSync because the property is truly

context-free. PQL is also unable to support it because it requires events corresponding to the

beginning and end of synchronized method calls, and PQL can only trigger events on the end of

method calls.

UnsafeEnum UnsafeMapIter HashMap
MOP PQL TM MOP PQL TM MOP PQL TM

antlr 2 82 0 2 82 -2 3 6 0
bloat 627 8694 11258 925 crashes >10000 14 9 -2
chart 2 50 11 0 50 -1 -1 1 -1

eclipse -2 1 2 1 1 8 0 1 1
fop -1 24 5 -3 24 11 3 2 0

hsqldb 0 78 17 0 78 29 0 3 15
jython 0 12 16 7 12 57 0 23 15
luindex 3 181 9 5 181 7 1 8 1
lusearch 4 132 34 -1 132 9 1 1 8

pmd 178 1334 175 196 crashes >10000 -1 0 3
xalan 1 53 10 4 53 10 0 5 1

HasNext SafeFileWriter LeakingSync
MOP PQL TM MOP PQL TM MOP PQL TM

antlr 1 2 3 2 22 N/E 1 N/E N/E
bloat 1112 5929 2452 27 97 N/E 13 N/E N/E
chart -1 3 0 0 37 N/E 4 N/E N/E

eclipse 0 2 -1 -2 1 N/E 1 N/E N/E
fop 0 2 -1 -2 47 N/E 1 N/E N/E

hsqldb 0 6 15 2 95 N/E 1 N/E N/E
jython 0 0 13 1 crashes N/E 41 N/E N/E
luindex -2 93 2 0 33 N/E 1 N/E N/E
lusearch -1 59 9 0 49 N/E 2 N/E N/E

pmd 191 1870 52 -2 658 N/E 36 N/E N/E
xalan 0 0 2 -2.5 164 N/E 3 N/E N/E

Table 5.4: Average percent runtime overhead for JavaMOP CFG (MOP), PQL, and Tracematches
(TM) (convergence within 3%); N/E means “not expressible”.

Table 5.4 shows that JavaMOP generates more efficient monitoring code than Tracematches and

PQL, often close to the hand-optimized code when using decentralized indexing. Since JavaMOP

generates standard AspectJ code, it gives us the freedom to choose off-the-shelf compilers. In our

experiments, ABC tended to take more time to compile the code than AJC, e.g., it took ABC nearly

an hour to compile Aprove but AJC needed only a few minutes. Also, JavaMOP provides better

expressivity than both Tracematches and PQL thanks to JavaMOP’s genericity in logics.

PQL and Tracematches have their own strengths and the above comparison should not be in-
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terpreted as an argument against them. PQL provides a general specification formalism extending

context-free grammars; it is therefore not surprising that it generates a larger runtime overhead.

Tracematches implements a sound and specialized algorithm to support universally quantified reg-

ular patterns. The parametric framework discussed in our paper is generic and logic-independent,

therefore the present JavaMOP implementation does not provide any logic-specific optimizations or

specializations like those in Tracematches.

5.3.2 Violation Detection

As mentioned, error detection was not the main focus in our experiments; we consider that, for error

detection, runtime verification needs to be combined with test case generation. However, we still

encountered unexpectedly many violations during the evaluation of JavaMOP. One reason is that

many safety properties in our experiments were devised for checking performance, and are therefore

not strictly required to hold in all programs. Consequently, many violations do not lead to actual

errors in the program. For example, violations of the hasNext property were found in some Java

library classes, e.g., AbstractCollection and TreeMap. It turned out that these implementations

use the size of the collection instead of the hasNext method to guard the iteration of elements. We

also found violations indicating possible semantic problems of programs, which are subtle and thus

difficult to find by ordinary testing. We next discuss some of these.

Potential Errors.

There is a known problem in jHotDraw about using objects of Enumeration: one can edit a drawing,

which may update a vector in the program, while making the animation for the drawing, which uses

an enumerator of the vector. As expected, JavaMOP was able to find this problem.

We also found violations of some interface contracts, i.e., rules to use interfaces, in Eclipse. These

can lead to resource leaks as pointed out in [44] and [66]. Three kinds of properties were checked in

our Eclipse experiments:

1. The dispose method needs to be called to release acquired resources before a GUI widget is

finalized.

2. The remove*Listener should be called by a host object to notify its listeners (registered by

calling add*Listener) to release resources before it is finalized. * represents the name of the

listener.
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3. Eclipse uses Lucene [65] as its search engine; in Lucene, it is required that, before a Dir object

is closed (by calling its close method), all the file readers created by the Dir object should

be closed.

We instrumented the GUI package of Eclipse with these three properties and also the JDT pack-

age with the second property (note that there are many different add*Listener-remove*Listener

pairs in these two packages). Then we used the instrumented Eclipse in our development work (no

noticeable slow-down was experienced during the evaluation). More than 30 violations were detected

in the GUI package, while none was found in the JDT package – this may indicate the importance

of the second property. In summary, the GUI package, which is more complex and harder to test,

seems less reliable w.r.t. to memory leaks.

Inappropriate Programming Practice

Several unexpected violations were encountered during our experiments. For example, we ran into

some violations in Xalan [90] when checking a simple property about the Writer class in Java: no

writes can occur after the writer is closed (by calling the close method). This is, according to the

Java documentation which states that an exception should be raised, a must-have property. Despite

these violations, no errors occurred in Xalan. Using JavaMOP, we located the places causing the

violations without much insight of the program and a quick review showed that a pool of writer

instances is used in Xalan to avoid unnecessary re-creations, but the writer can be closed before it is

returned to the pool. However, the program uses StringWriter, whose close method happens to

have no effect. Although it is not an error in this implementation, we believe that it is inappropriate

programming practice: the writer should be cleared instead of closed when returned to the pool.

5.3.3 Limitations of MOP and JavaMOP

The current MOP logic-plugins encapsulate monitor synthesis algorithms only for non-parametric

trace logics. Even though the new MOP specification language allows universal parameters to be

added to any of these logics, there is no way to add nested parameters, or existential ones. We

intend to soon add a logic-plugin for Eagle [15], a “super-logic” generalizing both ERE and LTL,

and also allowing arbitrary quantification and negation, but do not expect it to have a stimulating

runtime overhead.

The gap between dynamic events for monitoring and static monitor integration based on AOP

can lead to some limitations of MOP tools. Ideally, for variable update events, the MOP tool should
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instrument all the updates of involved variables. But, statically locating all such updates requires

precise alias analysis. Therefore, JavaMOP only allows update events for variables of primitive

types. In addition, static instrumentation may cause extra performance penalty of monitoring. For

the specification in Figure 2.1, one can see that the monitor is not “interested” in next events after

create until an updatesource event is encountered. But since we instrument the program statically,

the monitor keeps receiving next events even when they are not needed. These limitations may be

relaxed by utilizing dynamic AOP tools, but more discussion on this direction is out of the scope

of this paper. However, since MOP can also be used to add new functionality to a program, one

may not want to miss any related event: some action may be executed even when the event does

not affect the monitor state.
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Chapter 6

Predictive Runtime Analysis

In this section, we present the predictive runtime analysis based on sliced causality. We first recall

the previous work on happen-before causality and introduce a paramtric framework for defining and

proving feasible causalities, which naturally captures the existing happend-before causality. We then

define sliced causality and prove its soundness within the parametric causality framework . We also

propose an algorithm to efficiently compute sliced causality from multithreaded program executions

using vector clocks. This algorithm is combined with lock-atomicity to achieve even more powerful

predictive runtime analysis.

6.1 Happen-Before Causalities

The first happen-before relation was introduced almost 3 decades ago by Lamport [63], to formally

model and reason about concurrent behaviors of distributed systems. Since then, a plethora of

variants of happen-before causal partial order relations have been introduced in various frameworks

and for various purposes. The basic idea underlying happen-before relations is to observe the events

generated by the execution of a distributed system and, based on their order, their type and a

straightforward causal flow of information in the system (e.g., the receive event of a message follows

its corresponding send event), to define a partial order relation, the happen-before causality. Two

events related by the happen-before relation are causally linked in that order.

When using a particular happen-before relation for (concurrent) program analysis, the crucial

property of the happen-before relation is that, for an observed execution trace τ , other sound

permutations of τ , also called linearizations or linear extensions or consistent runs or even topological

sortings in the literature, are also possible computations of the concurrent system. Consequently,

if any of these linearizations violates or satisfies a property ϕ, then the system can indeed violate

or satisfy the property, regardless of whether the particular observed execution that generated the

happen-before relation violated or satisfied the property, respectively. For example, [33] defines
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formulae Definitely(ϕ) and Possibly(ϕ), which hold iff ϕ holds in all and, respectively, in some

possible linearizations of the happen-before causality.

The soundness/correctness of a happen-before causality can be stated as follows: given a happen-

before causal partial order extracted from a run of the concurrent system under consideration, all

its linearizations are feasible, that is, they correspond to other possible execution of the concurrent

system. To prove it, one needs to formally define the actual computational model and what a

concurrent computation is; these definitions tend to be rather intricate and domain-specific. For

that reason, proofs need to be redone in different settings facing different “details”, even though they

follow conceptually the same idea. In the next section we present a simple and intuitive property

on traces, called feasibility, which ensures the desired property of the happen-before causality and

which appears to be easy to check in concrete situations.

To show how the various happen-before causalities fall as special cases of our parametric ap-

proach, we recall two important happen-before partial orders, one in the context of distributed

systems where communication takes place exclusively via message passing, and another in the con-

text of multithreaded systems, where communication takes place via shared memory. In the next

section we show that their correctness [24, 82] follow as corollaries of our main theorem. In Section

6.3 we define another happen-before causality, called sliced causality, which non-trivially uses static

analysis information about the multithreaded program. The correctness of sliced causality will also

follow as a corollary of our main theorem in the next section.

In the original setting of [63], a distributed system is formalized as a collection of processes

communicating only by means of asynchronous message passing. A process is a sequence of events.

An event can be a send of a message to another process, a receive of a message from another process,

or an internal (local) event.

Definition 28 Let τ be an execution trace of a distributed system consisting of a sequence of events

as above. Let E be the set of all events appearing in τ and let the happen-before partial order “→”

on E be defined as follows:

1. if e1 appears before e2 in some process, then e1 → e2;

2. if e1 is the send and e2 is the receive of the same message, then e1 → e2;

3. e1 → e2 and e2 → e3 implies e1 → e3.

A space-time diagram to illustrate the above definition is shown in Figure 6.1 (A), in which

e1 is a send message and e2 is the corresponding receive message; e1 → e2 and e1 → e3, but e2
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P1 P2

e1: send(g, P2)

e2: receive(g, P1)

e3

(A) HB in distributed systems

T1 T2

e1: access(x)

e2:access(x)

e3

(B) HB in multi-threaded systems

e1 or e2 is write

Figure 6.1: Happen-before partial-order relations

and e3 are not related. It is easy to prove that (E,→) is a partial order. The soundness of this

happen-before relation, i.e., all the permutations of τ consistent with → are possible computations

of the distributed system, was proved in [24] using a specific formalization of the global state of a

distributed system. This property will follow as an immediate corollary of our main theorem in the

next section.

Happen-before causalities have been devised in the context of multithreaded systems for various

purposes. For example, [71, 72] propose datarace detection techniques based on intuitive multi-

threaded variants of happen-before causality, [82] proposes a happen-before relation that drops

read/read dependencies, and [83] even drops the write/write conflicts but relates each write with all

its subsequent reads atomically.

T1 T2

e1: write(x)

e2:read(x)

T3

e3:write(x)

Figure 6.2: Happen-before causality in multi-threaded systems

Finding appropriate happen-before causalities for multithreaded systems is a non-trivial task.

The obvious approach would be to map the inter-thread communication in a multi-threaded system

into send/receive events in some corresponding distributed system. For example, starting a new
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thread generates two events, namely a send event from the parent thread and a corresponding

receive event from the new thread; releasing a lock is a send event and acquiring a lock is a receive

event. A write on a shared variable is a send event while a read is a receive event. However, such a

simplistic mapping suffers from several problems related to the semantics of shared variable accesses.

First, every write on a shared variable can be followed by multiple reads whose order should not

matter; in other words, some “send” events now can have multiple corresponding “receive” events.

Second, consider the example in Figure 6.2. Since e3 may write a different value into x other than

e1, the value read at where e2 occurs may change if we observe e3 after e1 but before e2 appears.

Therefore, e1e3e2 may not be a trace of some feasible execution since e2 will not occur any more.

Hence, a causal order between e2 and e3 should be enforced, which cannot be captured by the

original definition in [63].

The various causalities for multithreaded systems address these problems (among others). How-

ever, each of them still needs to be proved correct: any sound permutation of events results in a

feasible execution of the multithreaded system. If one does not prove such a property for one’s

desired happen-before causality, then one’s analysis techniques can lead to false alarms. We next

recall one of the simplest happen-before relations for multi-threaded systems [82]:

Definition 29 Let τ be an execution of a multithreaded system, let E be the set of all events in τ ,

and let the happen-before partial order “ ” on E be defined as follows:

1. if e1 appears before e2 in some thread, then e1  e2;

2. if e1 and e2 are two accesses on the same shared variable such that e1 appears before e2 in the

execution and at least one of them is a write, then e1  e2;

3. e1  e2 and e2  e3 implies that e1  e3.

In Figure 6.1 (B), e1  e2 and e1  e3, but e2 and e3 are not comparable under  .

6.2 Parametric Framework for Causality

We here define a parametric framework that axiomatizes the notion of causality over events and

feasibility of traces in a system-independent manner. We show that proving the feasibility of the

linearizations of a causal partial order extracted from an execution can be reduced to checking a

simpler “closure” local property on feasible traces.
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Let Events be the set of all events. A trace τ is a finite ordered set of (distinct) events {e1 <

e2 < · · · < en}, usually identified with the Events∗ word e1 · · · en. Let ξτ = {e1, e2, . . . , en} be called

the alphabet of τ and <τ be the total order on ξτ induced by τ . Let Traces denote the set of all

such traces. Given a set X, let PO(X) denote the set of partial orders defined on subsets of X, that

is, the set of pairs (ξ,<) where ξ ⊆ X and <⊆ ξ × ξ is a partial order.

Definition 30 A causality operator is a partial function C : Traces→◦ PO(Events) s.t.:

1. If C(τ) = (ξ,<), then ξ = ξτ and <⊆<τ ; and

2. For any τ = τ1e1e2τ2 such that C(τ) = (ξ,<) with e1 6< e2, C(τ1e2e1τ2) is also defined and

equal to C(τ).

Let Dom(C) denote the domain of C.

Lemma 3 If C(τ) = (ξ,<), then for any linearization τ ′ of C(τ), C(τ ′) is defined and equal to

C(τ).

Proof: Any permutation of a trace is a product of adjacent transpositions [56]. So τ ′ can be achieved

by a sequence of transpositions from τ , each of which exchanges two adjacent events e1, e2 ∈ ξ such

that e1 6< e2. Therefore, it is straightforward to prove the lemma by induction on the number of

transpositions using condition (ii) in Defintion 30. �

Note that condition (ii) in the definition above is closely related to that of trace equivalence in-

troduced by Mazurkiewicz in [50]. However, the theory of Mazurkiewicz traces starts with a given

dependency relation on events and considers equivalence of traces according to that fixed depen-

dency, while in our framework, we prefer to associate a separate dependency relation to each trace,

assuming that only at runtime we can get enough information about the causality for a given trace;

for example, acquiring lock l and writing shared variable x can be or not dependent events, depend-

ing on the particular execution of the program. This allows us to be more precise while still using

part of the generic Mazurkiewicz trace theory to simplify our correctness proofs.

Any concurrent system can produce only a particular subset of feasible traces, which are in the

following relationship with the corresponding causality operator:

Definition 31 Given a causality operator C, a set F of traces is C-feasible iff C is defined on F

and for any τ ∈ F with C(τ) = (ξ,<), F contains all the linearizations of C(τ) (i.e., all traces τ ′

such that ξτ ′ = ξ and<⊆<τ ′).
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Theorem 5 F is C-feasible iff C is defined on F and for any τ = τ1e1e2τ2 ∈ F such that C(τ) =

(ξ,<), e1 6< e2 implies τ1e2e1τ2 ∈ F .

Proof: if F is C-feasible iff C is defined on F then it is obvious that for any τ = τ1e1e2τ2 ∈ F

such that C(τ) = (ξ,<), e1 6< e2 implies τ1e2e1τ2 ∈ F according to Definition 31. If for any

τ = τ1e1e2τ2 ∈ F such that C(τ) = (ξ,<), e1 6< e2 implies τ1e2e1τ2 ∈ F , then for any linearization

τ of C(τ), τ ′ ∈ F , using the same observation in Lemma 3. Hence, F is C-feasible. �

Corollary 7 Dom(C) is C-feasible, More precisely, if C(τ) = (ξ,<) then for any τ ′, C(τ ′) = C(τ)

if and only if ξτ ′ = ξ and <⊆<τ ′ .

Proof: The result follows immediately from Definition 30 and Theorem 5. �

The two variants of happen-before relations discussed in Section 6.1 can be captured as instances

of our parametric framework. For the happen-before relation defined in Definition 28, let Eventshb

be the set of all the send, receive and internal events.

Corollary 8 For an observed trace τ , any permutation of τ consistent with → is a possible compu-

tation of the distributed system.

Proof: Let Chb be the partial function Traceshb→◦ PO(Eventshb) with Chb(τ) = (ξτ ,→) for any

τ ∈ Traceshb. Let Fhb be the set of computation traces of the distributed system as defined in [24].

The result follows from Theorem 5, noticing that Chb is a causality operator and Fhb is Chb-feasible.

�

For the happen-before relation in Definition 29, let Eventsmhb be the set of all the write and read

events on shared variables as well as all internal events.

Corollary 9 For an observed trace τ of a multi-threaded system, any permutation of τ consistent

with  is a possible execution of the multi-threaded system.

Proof: Let Cmhb be the partial function Tracesmhb→◦ PO(Eventsmhb) with Cmhb(τ) = (Eτ , ) for

any τ ∈ Tracesmhb. Let Fmhb be the set of traces that are generated by all feasible executions of

the multi-threaded system (see, e.g., [82] for a formalization of multi-threaded systems). The result

follows from Theorem 5, noticing that Cmhb is a causality operator and Fmhb is Cmhb-feasible. �
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6.3 Sliced Causality

Without additional information about the structure of the program that generated the event trace

τ , the least restrictive causal partial order that an observer can extract from τ is the one which is

total on the events generated by each thread and in which each write event of a shared variable

precedes all the corresponding subsequent read events. This is investigated and discussed in detail

in [83]. In what follows we show that one can construct a much more general causal partial order,

called sliced causality, by making use of dependence information obtained statically and dynamically.

Briefly, instead of computing the causal partial order on all the observed events like in the traditional

happen-before based approaches, our approach first slices τ according to the desired property and

then computes the causal partial order on the achieved slice; the slice contains all the events relevant

to the property, as well as all the events upon which the relevant events depend. This way, irrelevant

causality on events is trimmed without breaking the soundness of the approach, allowing more

permutations of relevant events to be analyzed and resulting in better coverage of the analysis.

We employ dependencies among events to assure the correct slicing. The dependence discussed

here somehow relates to program slicing [51], but we focus on finer grained units here, namely events,

instead of statements. Our analysis keeps track of actual memory locations in every event, available

at runtime, avoiding inter-procedural analysis. Also, we need not maintain the entire dependence

relation, since we only need to compute the causal partial order among events that are relevant to

the property to check. This leads to an effective vector clock (VC ) algorithm ([28]).

Intuitively, event e′ depends upon event e in τ , written e @ e′, iff a change of e may change or

eliminate e′. This tells the observer that e should occur before e′ in any consistent permutation of τ .

There are two kinds of dependence: (1) control dependence, written e @ctrl e
′, when a change of the

state of e may eliminate e′; and (2) data-flow dependence, written e @data e
′, when a change of the

state of e may lead to a change in the state of e′ . While the control dependence only relates events

generated by the same thread, the data-flow dependence may relate events generated by different

threads: e may write some shared variable in a thread t, which is then read in another thread t′.

6.3.1 Events and Traces

Events represent atomic steps observed in the execution of the program. In this paper, we focus

on multi-threaded programs and consider the following types of events (other types can be easily

added): write/read of variables, beginning/ending of function invocations, acquiring/releasing locks,

and starts and exits of threads. A statement in the program may produce multiple events. Events
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need to store enough information about the program state in order for the observer to perform its

analysis.

Definition 32 An event is a mapping of attributes into corresponding values. A trace is a

sequences of events. We let τ , τ ′, etc., denote traces. From now on in the paper, we assume an

arbitrary but fixed trace τ and let ξ denote ξτ (recall ξτ = {e | e ∈ τ}) for simplicity; events in ξ

are called concrete events.

For example, one event can be e1 : (counter = 8, thread = t1, stmt = L11, type = write, target =

a, state = 1), which is a write on location a with value 1, produced at statement L11 by thread

t1. One can easily include more information into an event by adding new attribute-value pairs. We

use key(e) to refer to the value of attribute key of event e. The attribute state contains the value

associated to the event; specifically, for the write/read on a variable, state(e) is the value written

to/read from the variable; for ending of a function call, state(e) is the return value if there is one; for

the lock operation, state(e) is the lock object; for other events, state(e) is undefined. To distinguish

among different occurrences of events with the same attribute values, we add a designated attribute

to every event, counter, collecting the number of previous events with the same attribute-value pairs

(other than the counter). This way, all events appearing in a trace can be assumed different.

6.3.2 Control Dependence on Events

i>0

x = 1 y = 1

z = x

C1

S1 S2

S3

T F

Figure 6.3: Control dependence

Informally, if a change of state(e) may affect the occur-

rence of e′, then we say that e′ has a control dependence

on e, and write e @ctrl e
′. For example, in Figure 6.3, the

write on x at S1 and the write on y at S2 have a control

dependence on the read on i at C1, while the write on

z at S3 does not have such control dependence. Control

dependence occurs inside of a thread, so we first define

the total order within one thread:

Definition 33 Let < denote the union of the total or-

ders on events of each thread, i.e., e < e′ iff thread(e) =

thread(e′) and e <τ e′.

The control dependence among events in sliced causality is parametric in a control dependence

relation among statements. In particular, one can use off-the-shelf algorithms for classic [42] or
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for weak [74] control dependence. We chose to use the termination-sensitive control dependence

(TSCD) introduced in [32] in our implementation of jPredictor[28]. Nevertheless, all we need to

define sliced causality is a function returning the control scope of any statement C, say scope (C),

which is the set of statements whose reachability depends upon the choice made at C, that is, the

statements that control depend on C, for some appropriate or preferred notion of control dependence.

Our approach also regards the lock acquire statement as a control statement that controls all the

following statements, since the thread has to wait for the lock to continue its execution.

We assume that any control statement generates either a read event (the lock acquire is regarded

as a read on the lock) or no event (the condition is a constant) when checking its condition. For the

control statement with a complex condition, e.g., involving function calls and side effects, we can

always transform the program to simplify its condition to a simple check of a boolean variable: one

can compute the original condition before the control statement, store its result in a fresh boolean

variable, and then modify the control statement to check only that variable in its condition.

Definition 34 e @ctrl e′ iff e < e′, stmt(e′) ∈ scope(stmt(e)), and e is “largest” with this property,

i.e., there is no e′′ such that e < e′′ < e′ and stmt(e′) ∈ scope(stmt(e′′)).

Intuitively, an event e is control dependent on the latest event issued by some statement upon which

stmt(e) depends. For example, in Figure 6.3, a write of x at S1 is control dependent on the most

recent read of i at C1 and not on previous reads of i at C1.

The soundness of analysis based on sliced causality is contingent to the correctness (no false

negatives) of the employed control dependence: the analysis produces no false alarms when the

scope function returns for each statement at least all the statements that control-depend on it. An

extreme solution is to include all the statements in the program in each scope, in which case sliced

causality becomes precisely the classic happen-before relation. As already pointed out in Section 2.2

and empirically shown in Section 7.2, such a choice significantly reduces the coverage of analysis.

A better solution, still over-conservative, is to use weak dependence when calculating the control

scopes. If termination information of loops is available, termination-sensitive control dependence

can be utilized to provide correct and more precise results. One can also try to use the classic

control dependence instead, but one should be aware that false bugs may be reported (e.g., when

synchronization is implemented based on “infinite” loops).

109



6.3.3 Data Dependence on Events

If a change of state(e) may affect state(e′) then we say e′ has a data dependence on e and write

e @data e′. Formally,

Definition 35 For events e and e′, e @data e′ iff e <τ e
′ and one of the following holds:

1. e < e′, type(e) = read and stmt(e′) uses target(e) to compute state(e′);

2. type(e) = write, type(e′) = read, target(e) = target(e′), and there is no other e′′ with e <τ

e′′ <τ e
′, type(e′′) = write, and target(e′′) = target(e′);

3. e < e′, type(e′) = read, stmt(e′) /∈ scope (stmt(e)), and there exists some statement S in

scope (stmt(e)) such that S can change the value of target(e′).

The first case in this definition encodes the common data dependence. For example, for an assign-

ment x := E, the write of x has data dependence on the reads generated by the evaluation of E. The

second case in Definition 35 captures the interference dependence [62] in multithreaded programs,

saying that a read depends on the most recent write of the same memory location. For instance,

in Figure 6.3, if the observed execution is C1S1S3 then the read of x at S3 is data dependent on

the most recent write of x at S1. We treat lock release as a write on the lock and lock acquire as a

read. The third case in Definition 35 is more intricate and relates to the relevant dependence in [45].

Assuming another execution of Figure 6.3, say C1S2S3, no data dependence defined in cases 1 and

2 can be found in this run. However, the change of the value of the read of i at C1 can potentially

change the value of the read of x at S3: if the value of i changes then C1 may choose to execute

the branch of S1, resulting in a new write of x that may change the value of the read of x at S3.

Therefore, we say that the read of x at S3 is data dependent on the read of i at C1, as defined in

case 3. Note that although this dependence is caused by a control statement, it can not be caught

by the control dependence; for example, the read of x at S3 is not control dependent on the read

of i at C1 since S3 /∈ scope(C1). Aliasing information is needed to correctly compute dependence

defined in case 3, which one can obtain using any available techniques.

An important observation of Definition 35 is that there are no write-write, read-read, read-write

data dependencies. Specifically, case 2 only considers the write-read data dependence, enforcing the

read to depend upon only the latest write of the same variable. In other words, a write and the

following reads of the same variable form an atomic block of events. This captures in a more general

setting the work in [83].
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6.3.4 Slicing Causality Using Relevance

When checking a trace τ against a property ϕ, not all the events in τ are relevant to ϕ; for example, to

check dataraces on a variable x, accesses to other variables or function calls are irrelevant. Moreover,

the state attributes of some relevant events may not be relevant; for example, the particular values

written to or read from x for datarace (on x) detection. We next assume a generic filtering function

that can be instantiated, usually automatically, to concrete filters depending upon the property ϕ

under consideration:

Definition 36 Let α: Events→◦ Events be a partial function, called a filtering function. The image

of α, that is α(Events), is written more compactly Eventsα; its elements are called abstract relevant

events, or simply just relevant events. All thread start and exit events are relevant: α(e) defined

whenever type(e) = start or type(e) = exit.

Let us assume an arbitrary but fixed property ϕ in what follows. Intuitively, α(e) is defined if and

only if e is relevant to ϕ; if α(e) is defined, then key(α(e)) = key(e) for any attribute key 6= state,

while state(α(e)) is either undefined or equal to state(e).

Definition 37 Let α(τ), written more compactly as τα, be the trace of relevant events achieved by

applying α on events in τ . Let ξα denote ξτα for simplicity.

This relevance-based abstraction plays a crucial role in increasing the predictive power of our analysis

approach: in contrast to the concrete event set ξ, the corresponding abstract event set ξα allows

more permutations of abstract events; instead of calculating permutations of ξ and then abstracting

them into permutations of ξα like in traditional happen-before based approaches, we will calculate

valid permutations of a slice of ξ ∪ ξα that contains only events (directly or indirectly) relevant to

ϕ. This slice is defined using the dependence on concrete and abstract events.

Definition 38 All dependence relations are extended to abstract relevant events:

If e < / @ctrl / @data e′ then also α(e) < / @ctrl / @data e′, e < / @ctrl / @data α(e′),

and α(e) < / @ctrl / @data α(e′), whenever α(e) and/or α(e′) is defined;

@data is extended only when state(α(e′)) is defined.

We next define a novel dependence relation, called relevance dependence, which is concerned with

potential occurrences of relevant events. Consider Figure 6.3 again. Suppose that relevant events

include writes of y and z. For the execution C1S1S3, only one relevant event is observed, namely the
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write of z at S3 (e′), which is not control dependent on the read of i generated at C1 (e). Consider

now another execution C1S2S3; in addition to e′, a new relevant event will be generated, namely

the write of y at S2, caused by the different choice made at C1. Hence, a change of state(e) may

affect the number of generated relevant events. Formally, we define relevance dependence as follows:

Definition 39 For e ∈ ξ, e′ ∈ ξα, we write e @rlvn e′ iff e < e′, stmt(e′) /∈ scope(stmt(e)), and

there is a statement S ∈ scope(stmt(e)) that may generate a relevant event.

Intuitively, if e @rlvn e′ then e′ is not control dependent on e, but when state(e) changes, some

new relevant events may occur before e′. This may invalidate some permutations of ξα since valid

permutations should preserve the exact number of relevant events.

Definition 40 Let @ be the relation (@data ∪ @ctrl ∪ @rlvn)+. If e and e′ are concrete or relevant

events such that e @ e′, then we say that e′ depends upon e.

Definition 41 Let ξα ⊆ ξ ∪ ξα be the relevant slice of events, extending ξα with events e ∈ ξ such

that e @ e′ for some e′ ∈ ξα. Let τα be the abstract trace of τ , i.e., the permutation of ξα consistent

with <τ .

Intuitively, ξα contains all the events that are directly or indirectly relevant to the property α. Our

goal here is to define an appropriate notion of causal partial order on ξα and then to show that any

permutation consistent with it is sound. Recall that we fixed a trace τ ; in what follows, τ ′ is used

to refer to any arbitrary trace.

Definition 42 Let ≺τ⊆ ξα × ξα be the relation (< ∪ @)+, which we call the sliced causality (or

sliced causal partial order) of τ .

From here on, by “causal partial order” we mean the sliced one. We next show that sliced causality

is an instance of the parametric framework in Section 6.2.

Definition 43 Let Cα: Traces→◦ PO(Events) be the partial function defined as Cα(τ ′) = (ξτ ′ ,≺τ
′
)

for each τ ′ ∈ Traces. Let Fα ⊆ Traces be the set of all possible abstract traces: for each τF ∈ Fα,

there is some execution generating τ ′ such that τ ′α = τF .

We next give an informal proof of soundness of sliced causality. The proof is straightforward but

a formal proof requires a formal semantics of the underlying programming language, like the one for

Java defined in [40], which is beyond the scope of this thesis. Therefore, an informal description of

the proof is given here, which can be easily expanded when the needed formalization is available.
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In the rest of this section, we use ω, ω′, ..., to denote fragments of traces and π, π′, ..., to denote

executions.

Definition 44 A trace ω ∈ Fα is a feasible prefix (of τ ′) if and only if there exist an execution

whose correspoing trace is τ ′ and also a trace ω′ ∈ Fα such that τ ′α = ωω′.

Intuitively, if ω is a feasible prefix then there exists an incomplete execution that generates ω.

Proposition 23 If ωe and ω′ are both feasible prefixes and for any e′ ≺ω e, e′ ∈ ω′ then ω′e is also

a feasible prefix.

Proof:[skechy] Since ωe1e2 is a feasible prefix, there exists an execution π generating ωe1e2. From

π we can construct another execution π′ to generate ωe2e1 as follows. First, we follow the same

execution as π from the beginning until ω is generated. Then we choose to continue on thread

thread(e2) instead of thread(e1). By the formal semantics of the underlying programming language

and based on by Definitions 34 and 35 (control- and date- dependence), we can prove that e2 will be

generated. Also, by Definition 39, we can prove that no new relevant event will be introduced before

e2. After e2 is generated, we continue on thread thread(e1) and similarly, we can prove that e1 will

be generated without causing any new relevant event. This way, we can achieve a new execution

generating ωe2e1. �

Corollary 10 If ωe and ω′ are both feasible prefixes and ξω = ξω′ then ω′e is also a feasible prefix.

Proof: The result follows immediately from Proposition 23. �

Lemma 4 If ωω′′ and ω′ are both feasible prefixes and ξω = ξω′ then ω′ω′′ is also a feasible prefix.

Proof: It can be easily proved by induction on ω′′ and by Corollary 10. �

Lemma 5 If ωe1e2 is a feasible prefix and e1≺/ωe2 then ωe2e1 is also a feasible prefix.

Proof: Since e1≺/ωe2, for any e ≺ω e2, e ∈ ξω. By Proposition 23, ωe2 is a feasible prefix. Also, for

any e ≺ω e1, e ∈ ξω ⊂ ξωe2 . Hence, by Proposition 23, ωe2e1 is a feasible prefix. �

Now we are ready to prove the main theorem:

Theorem 6 Fα is C-feasible, where C is Cα restricted to Fα. That is, for any abstract trace

τF ∈ Fα, each liniearization of ≺τF corresponds to some possible execution of the multi-threaded

system.
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Proof: Obviously, Cα restricted to Fα is defined and total on Fα. For any τ ′ = ωe1e2ω
′ ∈ Fα, if

C(τ ′) = (ξτ ′ , <) then <=≺τ ′ . It is easy to prove that if e1≺/τ
′
e2 then e1≺/ωe1e2e2. Since ωe1e2 is

feasible prefix, by Lemma 5 ωe2e1 is also a feasible prefix. By Lemma 4, ωe2e1ω
′ ∈ Fα. The result

then follows from Theorem 5. �

We can therefore analyze the permutations of relevant events consistent with sliced causality to

detect potential violations without re-executing the program.

6.4 Predictive Runtime Analysis with Sliced Causality

Predictive runtime analysis with sliced causality is composed of two steps, namely, extracting sliced

causality from the observed execution and checking the extracted sliced causality against desired

property. For the former, we have developed an efficient algorithm using vector clocks and combined

it with lock-atomicity to further increase the analysis coverage. For the latter, we have developed a

width-first algorithm to generate all potential execution traces from the computed causality model,

which can then be checked using the runtime morning technique discussed above. In Section 7.1,

we also show that in practice, one may avoid the complexity of trace generation when focusing on

generic concurent properties, like dataraces and atomicity violations.

6.4.1 Extracting Sliced Causality

We here describe a technique to extract from an execution trace of a multithreaded system the

sliced causality relation corresponding to some property of interest ϕ. Our technique is offline, in

the sense that it takes as input an already generated execution trace; that is because it needs to

traverse the trace backwards. Our technique consists of two steps: (1) all the irrelevant events

(those which are neither property events nor relevant events) are removed from the original trace,

obtaining the (ϕ)-sliced trace; and (2) a vector clock (VC) based algorithm is applied on the sliced

trace to capture the sliced causality partial order.

Slicing Traces

Our goal here is to take a trace ξ and a property ϕ, and to generate a trace ξϕ obtained from

ξ filtering out all its events which are irrelevant for ϕ. When slicing the execution trace, one

must nevertheless keep all the property events. Moreover, one must also keep any event e with

e (@ctrl ∪ @data)+ e′ for some property event e′. This can be easily achieved by traversing the
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original trace backwards, starting with ξϕ empty and accumulating in ξϕ events that either are

property events or have events depending on them already in ξϕ. One can employ any off-the-shelf

analysis tool for data- and control- dependence; e.g., our predictive analysis tool, jPredictor, uses

termination-sensitive control dependence [32].

Thread t1:

x = 0

x = 1

y = 0

Thread t2:

y = 1;

if (x == 0) {

x = y

}

e3: read xe2: write x

T1
T2

e6: write y

e4: write x

e1write y

e5: read y

A. Example program B. Example Trace

Figure 6.4: Example for relevance dependence

The algorithm informally described above is a variant of dynamic program slicing [2], where the

slicing criterion is not the conventional reachability of a particular program statement, but, more

generally, a set of event patterns determined by the desired property (e.g., reads/writes of a shared

location for dataraces, etc.). Unfortunately, one backwards traversal of the trace does not suffice

to correctly calculate all the relevant events. Let us consider the example in Figure 6.4. When the

backward traversal first reaches e4, it is unclear whether e4 is relevant or not, because we have not

seen e3 and e2 yet. Thus a second scan of the trace is needed to include e4. Once e4 is included

in ξϕ, it may induce other relevance dependencies, requiring more traversals of the trace to include

them. This process ceases only when no new relevant events are detected and thus resulting sliced

trace stabilizes.

As the discussion preceding Theorem 6 shows, if one misses relevant events like e4 then one may

“slice the trace too much” and, consequently, one may produce false alarms. Because at each trace

traversal some event is added to ξϕ, the worse-case complexity of the sound trace slicing procedure is

square in the number of events. Since execution traces can be huge, in the order of billions of events,
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any trace slicing algorithms that is worse than linear may easily become prohibitive. For that reason,

jPredictor slices the trace only once, thus achieving an approximation of the complete slice that

can, in theory, lead to false alarms. However, our experiments show that this approximation is

actually very precise in practice: all the programs that we have evaluated follow our approximation

(Section 7.2).

Capturing Sliced Causality with Vector Clocks

Vector clocks [63] are routinely used to capture causal partial orders in distributed and concurrent

systems. A VC -based algorithm was presented in [82] to encode a conventional multithreaded-system

“happen-before” causal partial order on the unsliced trace. We next adapt that algorithm to work on

our sliced trace and thus to capture the sliced causality. Recall from [82] that a vector clock (VC ) is a

function from threads to integers, VC : T → Int. We say that VC ≤ VC′ iff ∀t ∈ T,VC(t) ≤ VC′(t).

The max function on VCs is defined as: max(VC1, ...,VCn)(t) = max(VC1(t), ...,VCn(t)).

Before we explain our VC algorithm, let us introduce our event and trace notation. An event is

a mapping of attributes into corresponding values. One event can be, e.g., e1 : (counter = 8, thread =

t1, stmt = L11, type = write, target = a, state = 1), which is a write on location a with value

1, produced at statement L11 by thread t1. One can include more information into an event by

adding new attribute-value pairs. We use key(e) to refer to the value of attribute key of event e.

To distinguish different occurrences of events with the same attribute values, we add a designated

attribute to every event, counter, collecting the number of previous events with the same attribute-

value pairs (other than the counter). A trace is a finite sequence of events. From here on, our

default trace is the ϕ-sliced trace ξϕ obtained in Section 6.4.1.

Intuitively, vector clocks are used to track and transmit the causal partial ordering information

in a concurrent computation, and are typically associated with elements participating in such com-

putations, such as threads, processes, shared variables, messages, signals, etc. If VC and VC′ are

vector clocks such that VC(t) ≤ VC’(t) for some thread t, then we can say that VC’ has newer

information about t than VC. In our VC technique, every thread t keeps a vector clock, VCt, main-

taining information about all the threads obtained both locally and from thread communications

(reads/writes of shared variables). Every shared variable is associated with two vector clocks, one

for writes (VCwx ) used to enforce the order among writes of x, and one for all accesses (VCax) used

to accumulate information about all accesses of x. They are then used together to keep the order

between writes and reads of x. Every property event e found in the analysis is associated a VC
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attribute, which represents the computed causal partial order. We next show how to update these

VCs when an event e is encountered (the third case can overlap the first two; if so, the third case

will be handled first):

1. type(e) = write, target(e) = x, thread(e) = t (the variable x is written in thread t) and x is

a shared variable. In this case, the write vector clock VCwx is updated to reflect the newly

obtained information; since a write is also an access, the access VC of x is also updated; we

also want to capture that t committed a causally irreversible action, by updating its VC as

well: VCt ← VCax ← VCwx ← max(VCax,VCt).

2. type(e) = read, target(e) = x, thread(e) = t (the variable x is read in t), and x is a shared

variable. Then the thread updates its information with the write information of x (we do not

want to causally order reads of shared variables!), and x updates its access information with

that of the thread: VCt ← max(VCwx ,VCt) and then VCax ← max(VCxa,VCt).

3. e is a property event and thread(e) = t. In this case, let VC(e) := VCt. Then VCt(t) is

increased to capture the intra-thread total ordering: VCt(t)← VCt(t) + 1.

The vector clocks associated with property events as above soundly, but incompletely, capture the

sliced causality:

Theorem 7 e ≺ e′ implies VC(e) ≤ VC(e′).

The proof of Theorem 7 can be (non-trivially) derived from the one in [82]. The extension here

is that the dependence is taken into account when computing the sliced trace. Note that, unlike

in [82], the partial order ≤ among VCs is stronger than the causality. This is because when VCs

are computed, the write-after-read order is also taken into account (the first case above), which the

sliced causality ≺ does not need to encode. We do not know how to faithfully capture the sliced

causality using VCs yet. Nevertheless, soundness is not affected because Theorems 6 and 7 yield

the following:

Corollary 11 Any permutation of property events consistent with ≤ (on events’ VCs) is sound

w.r.t. the sliced causality ≺.

6.4.2 Causality with Lock-Atomicity

Happen-before techniques for detecting/predicting concurrency bugs typically rely on checking, di-

rectly or indirectly, linearizations of events consistent with a causal partial order. Two happen-before
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techniques that we are aware of generalize the concept of causality beyond a partial-order. One ex-

ample is [72], which proposes a hybrid approach combining the happen-before causality with lock-set

techniques for detecting data-races. The algorithm in [72] is, unfortunately, unsound and specialized

for detecting data-races, so it cannot be used to generate sound linearizations of events to check

against arbitrary properties. Another example is [83], which groups a write atomicity with all its

subsequent reads; the resulting causality is extended with atomicity information and new lineariza-

tions of events are allowed, namely those that permute groups of events in the same atomic block. In

this subsection we present another generalization of causality beyond a partial-order, one borrowing

the idea of atomic blocks from the technique in [83], but whose atomicity is given by the semantics

of locks rather than by writes and subsequent reads of shared variables. Unlike the technique in

[72], our novel causality is general purpose, in the sense that it still allows for sound linearizations of

events, so it can be used in combination with any trace property, data-races being only a special case.

Even though in this paper we use this improved causality as a generalization of our sliced causality,

the idea is general and can be used in combination with any other happen-before causality.

Thread t1:

e11(type = read, target = y …)
e12(type = write, target = y …)
e13(type = acquire, target = lock …)
e14(type = read, target = x …)
e15(type = write, target = x …)
e16(type = release, target = lock …)

Figure 6.5: Event trace containing lock operations

Our causality with lock-atomicity below is

reminiscent of the notion of synchronization de-

pendence defined in [46] and used for static

slicing there. However, our causality is based

on runtime events instead of statements in the

control-flow graph, and is used to assure the

(dynamic) causal atomicity of lock-protected

blocks.

A simple sound approach to partially incor-

porating lock semantics into causality, followed

for example in [82], is to regard locks as shared

variables and their acquire and release as reads and writes. This way, blocks protected by the same

lock are ordered and kept separate. However, this ordering is stronger than the actual lock seman-

tics (which only requires mutual exclusion). We extend our sliced causality to take into account

the actual semantics of lock-atomicity: the set of events generated within a lock-protected block are

considered lock-atomic. Two lock-atomic event sets w.r.t. the same lock cannot be interleaved, but

can be permuted if there are no other causal constraints on them. Consider two more types of events

for lock operations, acquire and release, whose target is the accessed lock. If there are embedded
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same-lock lock operations (a thread can acquire the same lock multiple times), only the outermost

acquire-release event pair is considered. Figure 6.5 shows a trace containing lock events.

From here on, let τ be any execution trace. Let “<” be the union of the total intra-thread orders

induced by τ , that is, e < e′ iff thread(e) = thread(e′) and e appears before e′ in τ . Let ≺ be any

partial order on the events in τ . The lock-atomicity technique described below can be therefore used

in combination with any (causal) partial order. We are, however, going to apply the subsequent

results for a particular causality, namely the sliced causality restricted to relevant and property

events (see Corollary 12). When doing that, we also discard all those irrelevant acquire/release

events (i.e., those synchronizing only irrelevant events).

Definition 45 Events e1 and e2 are l-atomic, written e1 ml e2, if and only if there is some event e

such that type(e) = acquire, target(e) = l, e < e1, e < e2, and there is no e′ with type(e′) = release,

target(e) = l, and e < e′ < e1 or e < e′ < e2. For each lock l, we let [e]l denote the l-atomic

equivalence class of e.

In Figure 6.5, e14 mlock e15. We capture the lock-atomicity as follows. A counter cl is associated

with every lock l. Each thread stores the set of locks that it holds in LSt. Events are enriched with a

new attribute, LS, which is a partial mapping from locks into corresponding counters. When event

e is processed, the lock information is updated as follows:

1. if type(e) = acquire, thread(e) = t, and target(e) = l, then cl = cl + 1, LSt = LSt ∪ {l};

2. if type(e) = release, thread(e) = t, and target(e) = l, then LSt = LSt − {l}.

3. LS(e)(l) = cl for all l ∈ LSthread(e) and LS(e)(l) undefined for any other l;

If we write LS(e)(l) = LS(e′)(l) then we mean that the two are defined and equal. The following

important result holds:

Theorem 8 e ml e′ iff LS(e)(l) = LS(e′)(l).

Intuitively, a permutation of events is consistent, (or sound, or realizable, or possible during an

execution) if and only if it preserves both the sliced causality and the lock-atomicity relation above.

Definition 46 A cut Σ is a set of events in τ . Σ is consistent if and only if for all e, e′ ∈ τ ,

(a) if e′ ∈ Σ and e ≺ e′ then e ∈ Σ; and

(b) if e, e′ ∈ Σ and e′ /∈ [e]l for a lock l, then [e′]l ⊆ Σ or [e]l ⊆ Σ.
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The first item says that for any event in Σ, all the events upon which it depends should also be in Σ.

The second property states that there is at most one incomplete lock-atomic set for every particular

lock l in Σ. Otherwise, the lock-atomicity is broken. Essentially, Σ contains the events in the prefix

of a consistent permutation. When an event e can be added to Σ without breaking the consistency,

e is called enabled for Σ.

Definition 47 Event e′ ∈ τ − Σ is enabled for consistent cut Σ iff

(a) for any event e ∈ τ , if e ≺ e′ then e ∈ Σ; and

(b) for any e ∈ Σ and any lock l, either e′ ∈ [e]l or [e]l ⊆ Σ.

Hence, e is enabled for consistent cut Σ iff Σ ∪ {e} is also consistent.

Definition 48 A consistent permutation e1e2...e|τ | of τ is one that generates a sequence of

consistent cuts Σ0Σ1...Σ|τ |: for all 1 ≤ r ≤ |τ |, Σr−1 is consistent, er is enabled for Σr−1, and

Σr = Σr−1 ∪ {er}.

The following result holds and shows the soundness of lock-atomicity:

Theorem 9 Any consistent permutation of τ corresponds to some possible execution of the multi-

threaded system.

The proof is non-trivial and can be done by extending the proof of Theorem 6 (using the parametric

framework for causality like in [30]) to incorporate lock-atomicity.

Corollary 12 Consider now our original trace ξ together with its ϕ-sliced trace ξϕ. Then any

permutation of property events that is consistent with the sliced causality and the lock-atomicity

corresponds to some possible execution of the multi-threaded system.

6.4.3 Generating Potential Runs

We here discuss an algorithm to check all the consistent permutations of events against the desired

property ϕ. The actual permutations of events are not generated, because that would be prohibitive.

Instead, a monitor is assumed for the property ϕ which is run synchronously with the generation

of the next level in the computation lattice, following a breadth-first strategy. Figure 6.6 gives a

high-level pseudocode to generate and verify, on a level-by-level basis, potential runs consistent with

the sliced causality with lock-atomicity. ξϕ is the set of relevant events. CurrentLevel and NextLevel

are sets of cuts. We encode cuts Σ as: a VC(Σ) which is the max of the VCs of all its threads
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globals ξϕ ← ϕ-sliced trace, CurrentLevel← {Σ0...0}
procedure main()

while (ξϕ 6= ∅) do verifyNextLevel()
endprocedure

procedure verifyNextLevel()
local NextLevel← ∅
for all e ∈ ξϕ and Σ ∈ CurrentLevel do

if enabled(Σ, e) then NextLevel← NextLevel ∪ createCut(Σ, e)
CurrentLevel← NextLevel
ξϕ ← removeRedundantEvents()

endprocedure

procedure enabled(Σ, e)
return VC(e)(thread(e)) = VC(Σ)(thread(e)) + 1 and

VC(e)(t) ≤ VC(Σ)(t) for all t 6= thread(e) and
LS(e)(l) = LS(Σ)(l) when both defined, for all locks l

endprocedure

procedure createCut(Σ, e)
Σ′ ← new copy of Σ
VC(Σ′)(thread(e))← VC(Σ)(thread(e)) + 1
if type(e) = acquire and target(e) = l then LS(Σ′)(l)← LS(e)(l)
if type(e) = release and target(e) = l then LS(Σ′)(l)← undefined
MS(Σ′)← runMonitor(MS(Σ), e)
if MS(Σ′) = “error” then reportViolation(Σ, e)
return Σ′

endprocedure

Figure 6.6: Consistent runs generation algorithm

(updated as shown in procedure createCut); a partial mapping LS(Σ) which keeps for each lock l

its current counter cl (updated as also shown in createCut); and the current state of the property

monitor for this run, MS. The property monitor can be any program, in particular those generated

automatically from specifications, like in MOP [29].

Figure 6.7 shows a simple example for generating consistent permutations. Figure 6.7 (A) is an

observed execution of a two-thread program. The solid arrow lines are threads, the dotted arrows

are dependencies, and the dotted boxes show the scopes of synchronized blocks. Both synchronized

blocks are protected by the same lock, and all events marked here are relevant. Figure 6.7 (B)

illustrates a run of the algorithm in Figure 6.6, where each level corresponds to a set of cuts generated

by the algorithm. The labels of transitions between cuts give the added events. Initially, there is

only one cut, Σ00, on Level 0. The algorithm first checks every event in ξϕ and every cut in the

current level to generate cuts of the next level by appending enabled events to current cuts. The

enabled procedure implements the definition of a consistent permutation (compares the VCs between

a candidate event and a cut, then checks for the compatibility of their lock-atomicity). For example,

only e11 is enabled for the initial cut, Σ00; e12 is enabled for Σ10 on Level 1, but e21 is not because of
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Figure 6.7: Example for consistent run generation

the lock-atomicity. On Level 2, after e11 and e12 have been consumed, e21 and e13 are both enabled

for the cut Σ20. If an event e is enabled for a cut Σ, e is added to Σ to create a new cut Σ′, as

depicted by the transitions in Figure 6.7. The vector clocks and lock set information of Σ′ will be

computed according to e. After the next level is generated, redundant events, e.g., e11 after Level 1,

will be removed from ξϕ. Also, the property monitor in Σ will be run (see the createCut procedure)

and its new state stored in Σ′; violations are reported as soon as detected.

The pseudocode in Figure 6.6 glossed over many implementation details that make it efficient.

For example, ξϕ can be stored as a set of lists, each corresponding to a thread. Then the VC of a

cut Σ can be seen as a set of pointers into each of these lists. The potential event e for the loop in

verifyNextLevel can only be among the next events in these lists. The function removeRedundan-

tEvents() eliminates events at the beginning of these lists when their VCs are found to be smaller

than or equal to the VCs of all the cuts in the current level. In other words, to process an event, a

good implementation of the algorithm in Figure 6.6 would take time O(|Threads|).
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Chapter 7

jPredictor

The proposed predictive runtime analysis technique have been implemented in a tool for multi-

threaded Java programs, called jPredictor. We have applied jPredictor to a comprehensive set of

real-world applications to evaluate its effectiveness in practice. The results are encouraging: after

the programs under analysis were executed only once, jPredictor found all the errors reported by

other tools; it also found errors missed by other tools, including static race detectors, as well as

unknown errors in popular systems like Tomcat and the Apache FTP server.

7.1 Implementation

jPredictor is a runtime analysis tool to detect concurrent bugs in Java programs using sliced

causality with lock-atomicity. In addition to an efficient implementation of the vector-clock-based

algorithm discussed above, jPredictor also provides an optimal instrumentation framework to log

and replay program execution, as well as specialized property checkers for data races and atomicity.

Interested readers can find more information on jPredictor at its website [57], where it is also

available for download.

7.1.1 Architecture

jPredictor is composed of two major components: the program instrumentor and the trace pre-

dictor (Figure 7.1). The program instrumentor instruments the program under testing with instruc-

tions that log the execution. To reduce the runtime overhead caused by monitoring, only partial

information is logged during execution. The trace predictor analyzes the logged execution trace to

predict potential bugs using sliced causality. If a possible bug is detected, jPredictor generates

an abstract execution trace leading to it, which explains how the bug can be hit in a real execution.

As shown in Figure 7.2, the trace predictor consists of four stages: the pre-processor, the trace

slicer, the VC calculator, and the property checker. The role of the pre-processor is two-fold. First,
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it constructs a more informative trace from the partially logged trace using static analysis on the

original program, providing a foundation for the subsequent analysis. Second, it identifies all the

shared locations in the observed execution, which are critical for a precise predictive analysis. The

slicer scans the re-constructed trace, producing a trace slice for every property to check. The gener-

ated slices are fed into the VC calculator, which computes the sliced causality as discussed in Section

6.4.1. In the last stage, the property checker verifies the execution against the desired property using

the computed sliced causal with lock-atomicity. All these stages communicate using plain ASCII

text, making the tool easy to extend. For example, we also implemented a conventional happen-

before slicer to generate trace slices containing all the shared variable accesses. This way, we were

able to compute the traditional happen-before causality without changing any other components of

jPredictor; it has been used in [30] for comparison purposes. We next give more details about

each component of jPredictor.

7.1.2 Partial Monitoring

Program monitoring plays a fundamental role in predictive runtime analysis. For sliced causality,

complete monitoring, i.e., observing every instruction of the program, is desired for an accurate

data-flow analysis. However, such monitoring imposes huge runtime overhead that we want to avoid

in practice. An important observation here is that, by using static analysis, one can replay the

execution with much less observation of the program. The more complicated the static analysis, the

fewer observation points and the less monitoring overhead one can achieve. For example, one could
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symbolically execute the program and only need runtime information when the symbolic execution

cannot decide how to proceed. How to achieve minimum but sufficient information by runtime

monitoring in order to replay an execution is an interesting question by itself, but out of the scope

of this paper. In what follows, we briefly discuss an effective solution adopted by jPredictor,

which aims at reducing the monitoring overhead with relatively simple static analysis.

Two components of jPredictor are involved in obtaining a complete trace via partial moni-

toring, namely the program instrumentor and the pre-processor of the trace predictor (Figures 7.1

and 7.2). The program instrumentor, built on top of Soot [85], a Java bytecode engineering pack-

age, is used to insert logging instructions into the original program. Three kinds of program points

are observed: beginnings of methods, targets of conditionals, and accesses to objects/arrays (i.e.,

field/element access or method invocations). To faithfully replay an execution, we need to know

which method implementation was actually executed when a method invocation is encountered. Be-

cause of the polymorphism and the virtual method mechanism of Java, it can be difficult to identify

the actual target method implementation at a specific program point by static analysis, while logging

the entry of the method at runtime is a simple and precise solution. Similarly, static conditional

analysis is often difficult and imprecise but can be totally avoided using runtime information. For

object accesses, static aliasing analysis is usually expensive and often imprecise in the absence of

runtime information. Admittedly, monitoring every object/array access is fairly heavy and can be

improved by advanced aliasing analysis, but we leave that to future research; the current solution

yielded reasonable runtime overhead in our experiments.

The information logged for every event is as follows. Each event should carry along the id of the

thread which issued it. In addition, the begin method event records a full signature of the method,

so that we can locate the actual method implementation later; the branch target event needs to

store the line number of the target; the object/array access event contains the id of the accessed

object/array and, for the array access, the index of the element. Instead of analyzing this partial

trace directly to compute the sliced causality, jPredictor first re-constructs a complete trace out

of it using the pre-processor. The constructed complete trace can be reused by different trace

slicers to verify different properties. Also, the trace slicer becomes simpler and independent of the

instrumentation strategy. The pre-processor also works at the Java bytecode level. It goes through

the instructions of the program following the control flow information recorded in the logged trace,

supplementing the trace with useful information ignored by the monitoring. More specifically, the

following information is added into the trace: return points of method executions, origins of jump
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statements, field names of object accesses, starts of threads, and lock/unlock events. The first two

are needed because the slicing is performed in a backward manner; field names are used to achieved

fine grained data analysis; thread start events and lock-related events are needed to compute correct

VCs and lock-atomicity.

It is impossible or undesired to instrument all the methods used in a program, e.g., the (native)

Java library functions. jPredictor by default does not instrument any Java library function un-

less requested by the user. However, without further knowledge, the data-flow dependence analysis

of jPredictor may lose information and produce imprecise results. For example, when the Ar-

rayList.addAll(Collection c) is called, the target ArrayList object will be changed according to the

input argument c. A conservative solution is to assume all the instrumented methods impure, i.e.,

they may change the target object and any of the input arguments. This assumption is often too

restrictive, because many functions simply return the state of the object. Hence, jPredictor al-

lows the user to input purity information about functions that are used but not instrumented in the

program. If no information is provided for a certain function, the function will be considered impure.

The purity information can be reused for different programs and we have pre-defined the purity of

many Java library functions; that was sufficient to do our experiments entirely automatically.
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7.1.3 Trace Slicing and VC Calculator

The trace slicer implements the dynamic slicing algorithm described in Section 6.4.1 to extract

property-specific trace slices from the completed trace. jPredictor handles all thread-related,

e.g., start and join, and all synchronization events specially, according to the Java semantics. Also,

for efficiency purposes, only one pass of the backward slicing is performed in the present implemen-

tation. This may result in a trace slice that does not contain all the relevant events and thus lose

the soundness of the predictive analysis. In other words, the current jPredictor prototype may

produce false alarms due to incomplete trace slices. However, this deliberately unsound implemen-

tation proved to be sufficiently effective in our evaluation: no false alarm has been reported in our

experiments.

The trace slice is then used by the VC calculator to compute VCs based on the algorithm

described in Section 6.4.1. Similarly to the slicer, Java-specific language features are specially

handled during the VC computation to ensure the correctness and accuracy of the results, for

example, the beginning of a thread execution should depend on the corresponding thread creation

event. The output of the VC calculator is a sequence of property events associated with VCs and

lock-atomicity information. This output is then verified against the desired property as explained

below.

7.1.4 Verifying Properties

The property checker of jPredictor implements the algorithm in Figure 6.7 to generate consistent

permutations of property events, providing a generic way to verify temporal properties against the

observed execution using the sliced causality. In other words, jPredictor is not bound to any par-

ticular type of property: one can hook up any property monitor to jPredictor to predict possible

violations of the desired property which can be specified using any trace specification language, e.g.,

regular expressions, temporal properties, or context-free languages. This way, combining it with the

automatic monitor generation framework provided by JavaMOP [29], jPredictor gives an auto-

mated platform to formally specify and dynamically verify trace properties against concurrent Java

programs.

Unfortunately, generating all the consistent permutations of a partial order is a #P-complete

problem [23] and can be unnecessarily expensive for those properties for which we can have more

efficient solutions. jPredictorprovides two specialized checkers to detect data races and atomicity

violations efficiently using sliced causality and lock-atomicity. We next discuss both of them briefly.
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First, we need to determine the property events for these two types of properties: the property

events for detecting races of a specific memory location (i.e., the same object field or array element)

are all the writes/reads of the memory location; the property events for analyzing the atomicity of

atomic blocks are all the accesses of shared locations used within those blocks. Let ≺xrace be the

sliced causality for detecting the data race of the shared location x. We then formally define a data

race as follows:

Definition 49 For two events, e1 and e2, if they access the same memory location x and at least

one of them is a write, then we say that they cause a data race on x iff e1 and e2 are not comparable

under ≺xrace and they are not protected by the same lock.

Therefore, the data race can be detected by comparing events generated in different threads.

In our implementation, the property events, writes/reads of the shared variable in this case, are

processed following the order in the logged trace (i.e., the order in the original execution). When a

new property event is processed, it is checked against those events processed in other threads using

the above race condition. The complexity of this algorithm is square to the number of property

events.

Thanks to the genericity of jPredictor with regards to properties, one is allowed to use existing

algorithms, e.g., the reduction based algorithm in [43] or the causality based algorithm in [41], to

check the atomicity on the consistent permutations generated by jPredictor. The specialized

efficient algorithm implemented in jPredictor to identify atomicity violations is based on the

problematic scenarios proposed in [87]. In short, jPredictor first constructs all the atomic blocks

from the execution trace; then each pair of blocks generated in different threads is examined to see if

any of the 11 violation patterns in [87] can be matched under the sliced causality and lock-atomicity

constraints. Since those patterns involve at most two different variables, the complexity of checking

each pair is O(m2), where m is the number of events in both blocks. The worse case complexity of

this atomicity algorithm is therefore O(n4), where n is the number of all the property events.

When both data races and atomicity are checked, the analysis cost can be further reduced by

reusing the trace slices generated for race detection in the atomicity analysis. More specifically, if

an atomic block B contains accesses of shared variables x1, ...xi, the trace slice for checking the

atomicity of B is the union of the slices for checking races on x1, ..., xi. The formal proof of the

correctness is left out of this paper. Intuitively, for two sets of events, E1 and E2, if trace slices ξ1

and ξ2 contain all the events affecting E1 and E2, respectively, then ξ1∪ξ2 should also contain all the

events affecting E1 ∪ E2. This way, one does not need to re-slice the trace for atomicity analysis if
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Program LOC Threads S.V. Slowdown
Banking 150 3 10 0.34
Elevator 530 4 123 N/A

tsp 706 4 648 7.05
sor 17.7k 4 102 0.47

hedc 39.9k 10 119 0.56
StringBuffer 1.4k 3 7 0.61

Vector 12.1k 18 49 0.79
IBM Web Crawler unknown 7 76 0.01
StaticBucketMap 748 6 381 35.6

Pool 1.2 5.8k 2 119 0.29
Pool 1.3 7.0k 2 95 0.32

Apache Ftp Server 22.0k 12 281 N/A
Tomcat Components 4.0k 3 13 0.1

Table 7.1: Benchmarks

race detection has been carried out. As our experiments show, merging trace slices is much cheaper

than generating slices (Section 7.2.3). So the analysis performance can be significantly improved by

reusing existing slices.

7.2 Evaluation

Here we present evaluation results of jPredictor on two types of common and well-understood

concurrency properties, which need no formal specifications to be given by the user and whose

violation detection is highly desirable: dataraces and atomicity. jPredictor has also been tried

on properties specified formally and monitors generated using the MOP [29] logic-plugins, but we

do not discuss those here; the interested reader is referred to [28]. We discuss some case studies,

showing empirically that the proposed predictive runtime verification technique is viable and that

the use of sliced causality significantly increases the predictive capabilities of the technique. All

experiments were performed on a 2.6GHz X2 AMD machine with 2GB memory. Interested readers

can find detailed result reports on jPredictor’s website at [57].
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7.2.1 Benchmarks

Table 7.1 shows the benchmarks that we used, along with their size (lines of code),1 number of

threads created during their execution, number of shared variables (S.V.) detected, and slowdown

ratios after instrumentation 2. Banking is a simple example taken over from [39], showing relatively

classical concurrent bug patterns. Elevator, tsp, sor and hedc come from [88]. Elevator is a discrete

event simulator of an elevator system. tsp is a parallelized solution to the traveling salesman prob-

lem. sor is a scientific computation application synchronized by barriers instead of locks. hedc is

an application developed at ETH that implements a meta-crawler for searching multiple Internet

achieves concurrently.

StringBuffer and Vector are standard library classes of Java 1.4.2 [52]. IBM web crawler is a

component of the IBM Websphere tested in [37]. 3 StaticBucketMap, Pool 1.2 and 1.3 are part of

the Apache Commons project [5]: StaticBucketMap is a thread-safe implementation of the Java Map

interface; Pool 1.2 and 1.3 are two versions of the Apache Commons object pooling components.

Apache FTP server [6] is a pure Java FTP server designed to be a complete and portable FTP server

engine solution. Tomcat [86] is a popular open source Java application server. The version used

in our experiments is 5.0.28. Tomcat is so large, concurrent, and has so many components, that it

provides a base for almost unlimited experimentation all by itself. We only tested a few components

of Tomcat, including the class loaders and logging handlers.

For most programs, we used the test cases contained in the original packages. The Apache

Commons benchmarks, i.e., StaticBucketMap and Pool 1.2/1.3, provide no concurrent test drivers,

but only sequential unit tests. We manually translated some of these into concurrent tests by

executing the tests concurrently and modifying the initialization part of each unit test method to use

a shared global instance. For StringBuffer and Vector, some simple test drivers were implemented,

which simply start several threads at the same time to invoke different methods on a shared global

object. The present implementation of jPredictor tracks accesses of array elements, leading to

the large numbers of shared variables and significant runtime overhead in tsp and StaticBucketMap.

For other programs, the runtime overhead is quite acceptable.

Each test was executed precisely once and the resulting trace has been analyzed. While multiple
1Different papers give different numbers of lines of code for the same program due to different settings. In our

experiments, we counted those files that were instrumented during the testing, which can be more than the program
itself. For example, the kernel of hedc contains around 2k lines of code; but some other classes used in the program were
also instrumented and checked, e.g., a computing library developed at ETH. This gave us a much larger benchmark
than the original hedc.

2Not applicable for some programs, e.g., Elevator.
3No source code is available for this program.

130



Program Var Trace Size Running Time (seconds) per S.V. Races
Logged Complete Preprocess Slice VC Verify Harmful Benign False

Banking 10 244 320 0.01 0.04 0.01 0.01 1 0 0
Elevator 48 62314 71269 1.0 8.1 1.2 0.15 0 0 0

tsp 47 141239 237801 2.2 26.1 2.3 0.23 1 0 0
sor 17 10968 12654 0.3 1.9 0.2 0.01 0 0 0

hedc 43 128289 183317 2.1 17.9 0.16 0.01 4 0 0
StringBuffer 4 738 871 0.06 0.28 0.05 0.01 0 0 0

Vector 47 876 1086 0.08 0.3 0.06 0.01 0 1 0
IBM Web Crawler 59 3128 3472 0.18 0.6 0.16 0.01 1 3 0
StaticBucketMap 39 319482 366743 7.6 131.6 12.2 0.03 1 0 0

Pool 1.2 54 20541 24072 0.26 1.42 0.34 0.01 35 0 0
Pool 1.3 45 1426 1669 0.16 0.76 0.23 0.01 1 0 0

Apache FTP Sever 71 19765 20047 0.69 3.87 0.34 0.02 11 5 0
Tomcat Components 13 3240 3698 0.21 0.62 0.2 0.01 2 2 0

Table 7.2: Race detection results. Var: variables to check. S.V.: Shared Variable.

runs of the system, and especially combinations of test case generation and random testing with

predictive runtime analysis would almost certainly increase the coverage of predictive runtime anal-

ysis and is worth exploring in depth, our explicit purpose in this paper is to present and evaluate

predictive runtime analysis based on sliced causality in isolation. Careful inspection of the evalu-

ation results revealed that the known bugs that were missed by jPredictor were missed simply

because of limited test inputs: their corresponding program points were not touched during the

execution. Any dynamic analysis technique suffers from this problem. Our empirical evaluation

of jPredictor indicates that the use of sliced causality in predictive runtime analysis makes it

less important to generate “bad” thread interleavings in order to find concurrent bugs, but more

important to generate test inputs with better code coverage.

7.2.2 Race Detection

The results of race detection are shown in Table 7.2. The second column gives the number of shared

variables checked in the analysis, which is in some cases smaller than the number of shared variables

in Table 7.1 for the following reasons. Some shared variables were introduced by the test drivers

and therefore not needed to check. Also, as already mentioned, many shared variables are just

different elements of the same array and it is usually redundant to check all of them. jPredictor

provides options to turn on an automatic filter that removes undesired shared variables (using class

names) or randomly picks only one element in each array to check. This filter was kept on during

our experiments, resulting in fewer shared variables to check. The third and the fourth columns

report the size of the trace (i.e., the number of events) logged at runtime and the size of the trace

constructed after preprocessing, respectively. The difference between these shows that, with the help

of static analysis, the number of events to log at runtime is indeed reduced, implying a reduction of
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runtime overhead.

Columns 5 to 8 show the times used in different stages of the race detection. Because jPredictor

needs to repeat the trace slicing, the VC calculation, and the property checking for every shared

variable, the times shown in Table 7.2 for these three stages are the average times for one shared

variable. Considering the analysis process is entirely automatic, the performance is quite reasonable.

Among all the four stages, the trace slicing is the slowest, because it is performed on the complete

trace. In spite of its highest algorithmic complexity, the actual race detection is the fastest part of

the process. This is not unexpected though, since it works on the sliced trace containing only the

property events, which is much shorter than the complete one.

The last section of Table 7.2 reports the number of races detected in our experiments. The races

are categorized into three classes: harmful, benign (do not cause real errors in the system) and false

(not real races). jPredictorreported no false alarms and, for all the examples used in other works

except for the FTP server, e.g., hedc and Pool 1.2, it found all the previously known dataraces. Note

that we only count the races on the same field once, so our numbers in Table 2 may appear to

be smaller than those in other approaches that use the number of unsafe access pairs. Some races

in the FTP server reported in [70] were missed by jPredictor because the provided test driver

is comparatively simple and preformed limited testing of the server, avoiding the execution of the

buggy code.

Surprisingly, jPredictor found some races in Pool 1.2 that were missed by the static race

detector in [70], which is expected to have a very comprehensive coverage of the code (at the expense

of false alarms). jPredictor also reported some unknown harmful races in StaticBucketMap, Pool

1.3 and Tomcat. The race in StaticBucketMap is caused by unprotected accesses to the internal

nodes of the map via the Map.Entry interface. It leads to a harmful atomicity violation, explained

in more detail in the next subsection. Although Pool 1.3 fixed all the races found in Pool 1.2,

jPredictor still detected a race when an object pool is closed: in GenericObjectPool, a concrete

subclasses of the abstract BaseObjectPool class, the close process first invokes the close function in

the super class without proper synchronization. Hence, other methods can interfere with the close

function, leading to unexpected exceptions.

For Tomcat, jPredictor found four dataraces: two of them are benign and the other two are

real bugs. Our investigation showed that they have been previously submitted to the bug database

of Tomcat by other users. Both bugs are hard to reproduce and only rarely occur, under very

heavy workloads; jPredictor was able to catch them using only a few working threads. More
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if ((entry == null) || (entry.binaryContent == null)
&& (entry.loadedClass == null))
throw new ClassNotFoundException(name);

Class clazz = entry.loadedClass;
if (clazz != null) return clazz;

Figure 7.3: Buggy code in WebappClassLoader

if (entry == null)
throw new ClassNotFoundException(name);

Class clazz = entry.loadedClass;
if (clazz != null) return clazz;
synchronized (this) {
if (entry.binaryContent == null && entry.loadedClass == null)

throw new ClassNotFoundException(name);
}

Figure 7.4: Patched code in WebappClassLoader

interestingly, one bug was claimed to be fixed, but when we tried the patched version, the bug was

still there. Let us take a close look at this bug.

This bug resides in findClassInternal of org.apache.catalina.loader. WebappClassLoader. This

bug was first reported by jPredictor as dataraces on variables entry.binaryContent and en-

try.loadedClass at the first conditional statement in Figure 7.3. The race on entry.loadedClass

does not lead to any errors, and the one on entry.binaryContent does no harm by itself, but together

they may cause some arguments of a later call to definePackage(packageName, entry.manifest, en-

try.codeBase)4 to be null, which is illegal. It seems that a Tomcat developer tried to fix this bug

by putting a lock around the conditional statement, as shown in Figure 7.4. However, jPredictor

showed that the error still exists in the patched code, which was a part of the latest version of

Tomcat 5 when we carried out our experiments. We reported the bug with a fix and it has been

accepted by the Tomcat developers.

7.2.3 Atomicity Violation Detection

The results of evaluating jPredictor on atomicity analysis are shown in Table 7.3. Although

jPredictor allows the user to define different kinds of atomic blocks, we only checked for the

atomicity of methods in these experiments. Not all benchmarks were checked: we do not have
4There is another definePackage function with eight arguments that allows null arguments.
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Program Running Time (seconds) Violations
Slice VC Verify Actual False

Banking 0.01 0.01 0.01 1 0
Elevator 0.4 3.2 0.6 0 0

tsp 0.5 2.5 0.6 1 0
sor 0.1 0.6 0.46 0 0

hedc 0.02 0.18 0.02 1 0
StringBuffer 0.01 0.05 0.01 1 0

Vector 0.06 0.15 0.06 4 0
StaticBucketMap 8 14 0.03 1 0

Pool 1.2 0.23 1.87 3.4 10 0
Pool 1.3 0.19 0.61 0.03 0 0

Table 7.3: Atomicity analysis results

enough knowledge of the IBM Web Crawler to judge atomicity (its source code is not public), while

method atomicity is not significant for FTP and Tomcat, since their methods are complex and

usually not atomic (finer grained atomic blocks are more desirable there, but this is beyond our

purpose in this paper).

We do not need to repeat the pre-processing stage for atomicity analysis. Hence, only the times

for slicing, VC calculation and atomicity checking are shown in columns 2 to 4 in Table 7.3. As

discussed in Section 7.1.4, our evaluation of atomicity analysis reused the trace slices generated for

race detection to reduce the slicing cost, which turned out to be effective according to the results. The

other two stages took more time in atomicity analysis than in race detection because the analyzed

trace slice was larger. The last part of Table 7.3 shows the number of detected atomicity violations,

which are divided into two categories: actual violations and false alarms. No benign violations were

found in our evaluation, probably because the definition of atomicity that we adopted is based on

problematic patterns of event sequences.

jPredictor did not report any atomicity false alarm in its analysis. It also found all the

previously known harmful atomicity violations in the examples also analyzed by other approaches,

e.g., [89] and [43]. Moreover, jPredictor found harmful atomicity violations in tsp and hedc that

were missed by [89] and [43] using the same test drivers. This indicates that jPredictor, through

its combination of static dependence analysis and sliced causality, provides a better capability of

predicting atomicity violations. Some unknown violations in StaticBucketMap and Pool 1.2 were

also detected. We next briefly explain the violation in StaticBucketMap.

In StaticBucketMap, fine grained internal locks are used to provide thread-safe map operations.

Specifically, every bucket in the map is protected by a designated lock. A data race was still detected

134



StaticBucketMap map;
...
Map.Entry entry = (Map.Entry)map.entrySet().iterator().next();
entry.setValue(null);

Figure 7.5: Unprotected modification of the map entry

class MapPrinter implements Runnable{
public void run(){
Iterator it = map.entrySet().iterator();
while (it.hasNext()) {

Map.Entry entry = (Map.Entry)it.next();
if (entry.getValue() != null)
System.out.println(entry.getValue().toString());

}
}
public void atomicPrint(){
map.atomic(this);

}
}

Figure 7.6: Atomic iteration on the map

by jPredictor in this well synchronized implementation, caused by the usage of the Map.Entry

interface. As shown in Figure 7.5, one can obtain a map entry, which represents a key-value pair,

via an iterator of the map and use the setValue method to change the entry. jPredictor showed

that the setValue method is not correctly synchronized and causes a data race. This data race

is benign in most cases, because no new entry can be added or removed through the Map.Entry

interface and also because the bulk operations of the map, e.g., iteration, are not guaranteed to

be atomic. However, StaticBucketMap provides an atomic(Runnable r) method to support atomic

bulk operations. This method accepts a Runnable object and executes the run() method of the

object atomically with regards to the map. Figure 7.6 shows an example of using this method to

print out all the values in the map atomically. However, this atomicity guarantee can be violated

when another thread accesses the map’s elements using the unsafe setValue method, like the code

in Figure 7.6, which can cause an unexpected null pointer exception. jPredictor detected this

violation (without directly hitting it during the execution) in our experiments, generating a warning

message that clearly points out the cause of the violation.
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Chapter 8

Related Work

Numerous approaches have been introduced based on runtime monitoring and analysis. Here we

mainly focus on those related to runtime verification and concurrent program analayis.

8.1 Runtime Monitoring Related

We next discuss relationships between MOP and other related paradigms, including AOP, design

by contract, runtime verification, and other trace monitoring approaches. Broadly speaking, all

the monitoring approaches discussed below are runtime verification approaches; however, in this

section only, we group into the runtime verification category only those approaches that explicitly

call themselves runtime verification approaches. Interestingly, even though most of the systems

mentioned below target the same programming languages, no two of them share the same logical

formalism for expressing properties. This observation strengthens our belief that probably there is

no silver bullet logic (or super logic) for all purposes. A major objective in the design of MOP was

to avoid hardwiring particular logical formalisms into the system. In fact, as shown in Section 3.3,

MOP specifications are generic in four orthogonal directions:

MOP[logic, scope, running mode, handlers].

The logic answers how to specify the property. The scope answers where to check the property; it

can be class invariant, global, interface, etc. The running mode answers where the monitor is; it can

be inline, online, offline. The handlers answer what to do if; there can be violation and validation

handlers. For example, a particular instance can be

MOP[ERE, global, inline, validation],

where the property is expressed using the ERE logic-plugin for extended regular expressions (EREs),

the corresponding monitor is global and inline, and validation of the formula (pattern matching in

this case) is of interest.

136



Most approaches below can be seen as such specialized instances of MOP for particular logics,

scopes, running modes and handlers. There are, of course, details that make each of these approaches

interesting in its own way.

8.1.1 Aspect Oriented Programming (AOP) Languages

Since its proposal in [59], AOP has been increasingly adopted and many tools have been developed

to support AOP in different programming languages, e.g., AspectJ and JBoss [54] for Java and

AspectC++ [7] for C++. Built on these general AOP languages, numerous extensions have been

proposed to provide domain-specific features for AOP. Among these extensions, Tracematches [3]

and J-LO [20] support history(trace)-based aspects for Java.

Tracematches enables the programmer to trigger the execution of certain code by specifying a

regular pattern of events in a computation trace, where the events are defined over entry/exit of

AspectJ pointcuts. When the pattern is matched during the execution, the associated code will be

executed. In this sense, Tracematches supports trace-based pointcuts for AspectJ. J-LO is a tool for

runtime-checking temporal assertions. These temporal assertions are specified using LTL and the

syntax adopted in J-LO is similar to Tracematches’ except that the formulae are written in a different

logic. J-LO mainly focuses on checking at runtime properties rather than providing programming

support. In J-LO, the temporal assertions are inserted into Java files as annotations that are then

compiled into runtime checks. Both Tracematches and J-LO support parametric events, i.e., free

variables can be used in the event patterns and will be bound to specific values at runtime for

matching events. Conceptually, J-LO can be captured by MOP, because LTL is supported by MOP

and J-LO’s temporal assertions can be easily translated into MOP specifications that contain only

action events and validation handlers.

Both Tracematches and J-LO hardwire logics for specifying properties, making them less expres-

sive than MOP. Also, as shown in Section 5.3, the Java instance of MOP, JavaMOP, generates more

efficient monitoring code than Tracematches. It is also worth mentioning that Tracematches and

J-LO are implemented using Java bytecode compilation and instrumentation, while MOP acts as

an aspect synthesizer, making it easier to port to other target languages provided they have AOP

tool support.
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8.1.2 Runtime Verification

In runtime verification, monitors are automatically synthesized from formal specifications, and can

be deployed offline for debugging, or online for dynamically checking properties during execution.

MaC [60], PathExplorer (PaX) [47], and Eagle [15] are runtime verification frameworks for logic based

monitoring, within which specific tools for Java – Java-MaC, Java PathExplorer, and Hawk [34],

respectively – are implemented. All these runtime verification systems work in outline monitoring

mode and have hardwired specification languages: MaC uses a specialized language based on interval

temporal logic, JPaX supports just LTL, and Eagle adopts a fixed-point logic. Java-Mac and Java

PathExplorer integrate monitors via Java bytecode instrumentation, making them difficult to port

to other languages. Our approach supports inline, outline and offline monitoring, allows one to define

new formalisms to extend the MOP framework, and is adaptable to new programming languages.

Temporal Rover [35] is a commercial runtime verification tool based on future time metric tem-

poral logic. It allows programmers to insert formal specifications in programs via annotations, from

which monitors are generated. An Automatic Test Generation (ATG) component is also provided

to generate test sequences from logic specifications. Temporal Rover and its successor, DB Rover,

support both inline and offline monitoring. However, they also have their specification formalisms

hardwired and are tightly bound to Java.

Although our current JavaMOP prototype does not support all these techniques yet, it is expected

that all the RV systems would fall under the general MOP architecture, provided that appropriate

logic-plugins are defined.

8.1.3 Design by Contract

Design by Contract (DBC) [68] is a technique allowing one to add semantic specifications to a

program in the form of assertions and invariants, which are then compiled into runtime checks. It

was first introduced by Meyer as a built-in feature of the Eiffel language [38]. Some DBC extensions

have also been proposed for a number of other languages. Jass [17] and jContractor [1] are two

Java-based approaches.

Jass is a precompiler which turns the assertion comments into Java code. Besides the standard

DBC features such as pre-/post- conditions and class invariants, it also provides refinement checks.

The design of trace assertions in Jass is mainly influenced by CSP [49], and the syntax is more like a

programming language. jContractor is implemented as a Java library which allows programmers to

associate contracts with any Java classes or interfaces. Contract methods can be included directly
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within the Java class or written as a separate contract class. Before loading each class, jContractor

detects the presence of contract code patterns in the Java class bytecode and performs on-the-fly

bytecode instrumentation to enable checking of contracts during the program’s execution. jCon-

tractor also provides a support library for writing expressions using predicate logic quantifiers and

operators such as Forall, Exists, suchThat, and implies. Using jContractor, the contracts can be

directly inserted into the Java bytecode even without the source code.

Java modeling language (JML)[64] is a behavioral interface specification language for Java. It

provides a more comprehensive modeling language than DBC extensions. Not all features of JML can

be checked at runtime; its runtime checker supports a DBC-like subset of JML, a large part of which

is also supported by JavaMOP. Spec# [14] is a DBC-like extension of the object-oriented language

C#. It extends the type system to include non-null types and checked exceptions and also provides

method contracts in the form of pre- and post-conditions as well as object invariants. Using the

Spec# compiler, one can statically enforce non-null types, emit run-time checks for method contracts

and invariants, and record the contracts as metadata for consumption by downstream tools.

We believe that the logics of assertions/invariants used in DBC approaches fall under the uniform

format of our logic engines, so that an MOP environment following our principles would naturally

support monitoring DBC specifications as a special methodological case. In addition, our MOP

design also supports outline monitoring, which we find important in assuring software reliability but

which is not provided by any of the current DBC approaches that we are aware of.

8.1.4 Other Related Approaches

Acceptability-oriented computing [75] aims at enhancing flawed computer systems to respect basic

acceptability properties. For example, by augmenting the compiled code with bounds checks to de-

tect and discard out-of-bound memory accesses, the system may execute successfully through attacks

that trigger otherwise fatal memory errors. Acceptability-oriented computing is mainly a philosophy

and methodology for software development; one has to devise specific solutions to deal with differ-

ent kinds of failures. We do believe though that MOP can serve as a platform to experiment with

and support acceptability-oriented computing, provided that appropriate specification formalisms

express the “acceptability policy” and appropriate recovery ensures that it is never violated.

Program Query Language (PQL) allows programmers to express design rules that deal with

sequences of events associated with a set of related objects [66]. Both static and dynamic tools have

been implemented to find solutions to PQL queries. The static analysis conservatively looks for
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potential matches for queries and is useful to reduce the number of dynamic checks. The dynamic

analyzer checks the runtime behavior and can perform user-defined actions when matches are found,

similar to MOP handlers.

PQL has a “hardwired” specification language based on context-free grammars (CFG) and sup-

ports only inline monitoring. CFGs can potentially express more complex languages than regular

expressions, so in principle PQL can express more complex safety policies than Tracematches. There

is an unavoidable trade-off between the generality of a logic and the efficiency of its monitors; exper-

iments performed by Tracematches colleagues [11] and confirmed by us (see Section 7.2) show that

PQL adds, on average, more than twice as much runtime overhead as Tracematches. We intend to

soon take a standard CFG-to-pushdown-automata algorithm and to implement it as an MOP logic-

plugin; then MOP will also support (the rare) CFG specifications that cannot be expressed using

parametric extended regular expressions or temporal logics, and MOP[CFG,global,inline,validation]

will provide an alternative and more general implementation of PQL.

Program Trace Query Language (PTQL) [44] is a language based on SQL-like relational queries

over program traces. The current PTQL compiler, Partiqle, instruments Java programs to execute

the relational queries on the fly. PTQL events are timestamped and the timestamps can be explicitly

used in queries. PTQL queries can be arbitrary complex and, as shown in [44], PTQL’s runtime

overhead seems acceptable in many cases but we were unable to obtain a working package of PTQL

and compare it in our experiments because of license issues. PTQL properties are globally scoped

and their running mode is inline. PTQL provides no support for recovery, its main use being to

detect errors. It would be interesting to investigate the possibility of developing an SQL logic-plugin

for MOP and then to compare the corresponding MOP instance to Partiqle.

8.2 Concurrent Program Analysis

There are several other approaches also aiming at detecting potential concurrency errors by ex-

amining particular execution traces. Some of these approaches aim at verifying general purpose

properties [81, 82], including temporal ones, and are inspired from debugging distributed systems

based on Lamport’s happens-before causality [63]. Other approaches work with particular proper-

ties, such as data-races and/or atomicity. [80] introduces a first lock-set based algorithm to detect

data-races dynamically, followed by many variants aiming at improving its accuracy. For example,

an ownership model was used in [88] to achieve a more precise race detection at the object level.
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[72] combines the lock-set and the happen-before techniques. The lock-set technique has also been

used to detect atomicity violations at runtime, e.g., the reduction based algorithms in [43] and [89].

[89] also proposes a block-based algorithm for dynamic checking of atomicity built on a simplified

happen-before relation, as well as a graph-based algorithm to improve the efficiency and precision

of runtime atomicity analysis.

Previous efforts tend to focus on either soundness or coverage: those based on happens-before try

to be sound, but have limited coverage over interleavings, resulting in more false negatives; lock-set

based approaches have better coverage but suffer from false alarms. Our runtime analysis technique

proposed in this thesis aims at covering more interleavings from one execution without giving up

soundness or genericity of properties (errors may still be missed, e.g., when the code causing errors

is not executed in one execution).
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Chapter 9

Conclusion

This thesis presents runtime monitoring-based approaches to detect and react to system errors on

the fly. We first introduce monitoring oriented programming, which is a generic, efficient runtime

verification framework. MOP automatically synthesizes efficient monitoring code from user-specified

properties and integrates the monitoring code into the program to monitor. The logic that one can

use to specify properties in MOP is extensible: a new logic can be easily plugged into MOP through

an MOP logic plugin that encapsulates a corresponding monitor generation algorithm. MOP also

provides logic-independent support for monitoring of parametric properties, allowing one to re-use

any monitoring algorithm for non-parametric specifications to support parametric specifications

without much effort. We have developed an MOP instance for the Java language, named JavaMOP.

JavaMOP has been applied to a large number of applications and properties. It generates more

efficient monitoring code than any other existing monitoring techniques and helped us to find tricky

bugs in popular programs.

MOP provides an effective solution to finding semantics-related errors from observed executions.

However, it suffers from the same limited coverage as testing, especially for concurrent programs.

We thus developed predictive runtime analysis, which increases the coverage of runtime analysis

and predicts concurrent errors even when they have not occured. In predictive runtime analysis,

causal partial orders are extracted from an observed executions and then used to infer potential

executions by generating their consistent linearizations. Hence, the restrictiveness of the computed

causal partial orders determines the prediction capabilty. We have devised sliced causality, which

rastically cuts the usual partial order set extracted by the happen-before causality by removing

unnecessary dependencies, resulting better capability of detecting potential errors. The predictive

runtime analysis technique has been implemented in jPredictor, a tool to detect concurrent errors

in Java programs. The evaluation results show that jPredictor is effective and accurate in finding

concurrent errors.

142



References

[1] P. Abercrombie and M. Karaorman. jContractor: Bytecode instrumentation techniques for
implementing DBC in Java. In Runtime Verification, volume 70.4 of ENTCS, 2002.

[2] Hiralal Agrawal and Joseph Robert Horgan. Dynamic program slicing. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’90), 1990.

[3] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendren, Sascha Kuzins,
Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble. Adding
trace matching with free variables to AspectJ. In OOPSLA’05, pages 345–364. ACM, 2005.

[4] Chris Anley. Advanced SQL injection in SQL server applications. NGSSoftware, 2002.

[5] Apache Commons project. http://commons.apache.org/.

[6] Apache FTP server project. incubator.apache.org/ftpserver/.

[7] AspectC++. http://www.aspectc.org/.

[8] C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu, G. Rosu, and
W. Visser. Experiments with test case generation and runtime analysis. In ASM’03, volume
2589 of LNCS, pages 87–107, 2003.

[9] AspectJ. http://eclipse.org/aspectj/.

[10] AspectJ language. http://www.eclipse.org/aspectj/doc/released/progguide/language.html.

[11] Pavel Avgustinov, Eric Bodden, Elnar Hajiyev, Laurie Hendren, Ondrej Lhotak, Oege de Moor,
Neil Ongkingco, Damien Sereni, Ganesh Sittampalam, Julian Tibble, and Mathieu Verbaere.
Aspects for trace monitoring. In FATES/RV’06, volume 4262 of LNCS, pages 20–39, 2006.

[12] Pavel Avgustinov, Julian Tibble, Eric Bodden, Ondrej Lhotak, Laurie Hendren, Oege de Moor,
Neil Ongkingco, and Ganesh Sittampalam. Efficient trace monitoring. Technical Report abc-
2006-1, Oxford University, 2006.

[13] Pavel Avgustinov, Julian Tibble, and Oege de Moor. Making trace monitors feasible. In
OOPSLA’07, pages 589–608. ACM, 2007.

[14] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview. In CASSIS’04, volume 3362 of LNCS, pages 49–69, 2004.

[15] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime Verification. In
VMCAI’04, volume 2937 of LNCS, pages 44–57, 2004.

[16] Howard Barringer, Bernd Finkbeiner, Yuri Gurevich, and Henny Sipma. Runtime Verification
(RV’05). Elsevier, 2005. ENTCS 144.

[17] Detlef Bartetzko, Clemens Fischer, Michael Moller, and Heike Wehrheim. Jass-Java with As-
sertions. In Runtime Verification, volume 55.2 of ENTCS, 2001.

143



[18] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
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[30] Feng Chen and Grigore Roşu. Parametric and sliced causality. In CAV’07, volume 4590 of
LNCS, pages 240–253, 2007.
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and Grigore Roşu. Proceedings of the 22nd ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), Montreal,

Quebec, Canada, October 21 - 25, 2007. ACM Press, pages 569-588. (Acceptance rate: 21%)

CAV 2007. “Parametric and Sliced Causality”, Feng Chen and Grigore Roşu. Proceedings of the
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Feng Chen and Grigore Roşu. Proceedings of the 5th Workshop on Runtime Verification

(RV), Edinburgh, UK, July 12, 2005. Electronic Notes in Theoretical Computer Science,

Volume 144, pages 3-20.

TACAS 2005. “Java-MOP: A Monitoring Oriented Programming Environment for Java”, Feng
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ings of the 18th IEEE International Conference on Automated Software Engineering (ASE),

system paper, Montreal, Quebec, Canada, October 6-10, 2003. IEEE Computer Society, pages

304-309. (Acceptance rate: 13%)

RV 2003. “Towards Monitoring-Oriented Programming:A Paradigm Combining Specification and
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