© 2009 Steven Y. Ko



EFFICIENT ON-DEMAND OPERATIONS IN
LARGE-SCALE INFRASTRUCTURES

BY

STEVEN Y. KO

B.S., Yonsei University, 1999
M.S., Seoul National University, 2002

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Doctoral Committee:

Assistant Professor Indranil Gupta, Chair
Professor Klara Nahrstedt

Associate Professor Tarek Abdelzaher

Dr. Dejan Milojicic, HP Labs



Abstract

In large-scale distributed infrastructures such as clouds, Grids, peer-to-peer sys-
tems, and wide-area testbeds, users and administrators typically desire to per-
form on-demand operations that deal with the most up-to-date state of the
infrastructure. However, the scale and dynamism present in the operating en-
vironment make it challenging to support on-demand operations efficiently, i.e.,
in a bandwidth- and response-efficient manner.

This dissertation discusses several on-demand operations, challenges associ-
ated with them, and system designs that meet these challenges. Specifically, we
design and implement techniques for 1) on-demand group monitoring that allows
users and administrators of an infrastructure to query and aggregate the up-
to-date state of the machines (e.g., CPU utilization) in one or multiple groups,
2) on-demand storage for intermediate data generated by dataflow program-
ming paradigms running in clouds, 3) on-demand Grid scheduling that makes
worker-centric scheduling decisions based on the current availability of compute
nodes, and 4) on-demand key/value pair lookup that is overlay-independent
and perturbation-resistant. We evaluate these on-demand operations using
large-scale simulations with traces gathered from real systems, as well as via

deployments over real testbeds such as Emulab and PlanetLab.
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Chapter 1

Introduction

The growth of the Internet has brought to us the daily use of large-scale dis-
tributed infrastructures. Web users interact with data centers daily via Web-
based applications. Computer science researchers perform systems and network-
ing experiments on wide-area testbeds such as PlanetLab [83] and local-area
testbeds such as Emulab [26]. Scientific communities utilize various computa-
tional Grids to perform their experiments [28]. Recently, the promises of cloud
computing initiatives by industry leaders and academics such as the OpenCirrus
Cloud Computing Testbed [11], Amazon [2], Google [34], IBM [35], and HP [42]
provide evidence that this trend will likely continue for years to come.

These infrastructures are often geographically distributed, and comprise tens
of thousands of servers networked via the Internet and LANs. Workloads on
these infrastructures are diverse and include Web 2.0 applications such as search
and collaborative document editing, dataflow programming frameworks such as
MapReduce [23], Pig [77], and Dryad [46], data-intensive scientific applications,
etc. In addition, management software runs in the background in order to
automate management of resources.

We believe that an important class of operations in these large-scale infras-
tructures is on-demand operations, defined broadly as operations that act upon
the most up-to-date state of the infrastructure. These on-demand operations are
necessitated either by the need from users and administrators or by the char-
acteristics of workloads running on the infrastructures. For example, a data
center administrator typically desires to have on-demand monitoring capability
for systems characteristics of the data center. This capability for querying the
up-to-date state (e.g., CPU utilization, software versions, etc.) of a data center
on-demand allows the administrator the ability to understand the inner-working
of the data center for trouble-shooting purposes, as well as to make well-informed
decisions for management tasks such as capacity planning and patch manage-
ment. Another example is on-demand scheduling in computational Grids, where
scheduling decisions often need to reflect the most current resource availability
such as the availability of compute nodes. Thus, supporting these on-demand
operations efficiently is both desirable and necessary.

The challenges in supporting such operations arise from two categories —

scale and dynamism. Each of these challenges appears in a variety of flavors



Research testbeds Worker-Centric Scheduling
* CCT, PlanetLab, Emulab, ...

* For computer scientists

* TeraGrid, Grid5000, ...
* For scientific communities

Moara & ISS

Wide-area peer-to-peer
« Amazon, Google, HP, IBM, ... * BitTorrent, LimeWire, etc.
* For Web users

* For Web users, app developers

Figure 1.1: On-Demand Operations and Types of Infrastructures in This Dis-
sertation

unique to the specific on-demand operation at hand. For example, scale comes
not only from tens of thousands of physical machines in the infrastructure, but
also from millions of attributes to monitor in the case of on-demand monitoring,
petabytes of data in the cases of on-demand replication and scheduling, and
tens of thousands of tasks to process in the case of on-demand scheduling.
Dynamism comes not only from the failures of services and machines, but also
from the changes in resource availability (e.g., CPU, bandwidth, and online-
offline status), usage, workload, etc.

In this dissertation, we present various on-demand operations and detail each
one of them in the next few chapters. We believe that exploring on-demand
operations reveals the many faces of dynamism and scale present in large-scale
infrastructures. By doing so, we can revisit well-known aspects of dynamism and
scale, as well as uncover new aspects of them that were previously overlooked.
Ultimately, the collective knowledge accumulated from this exploration can form

a basis of reasoning when designing new large-scale infrastructures or services.

1.1 Thesis and Contributions

Our thesis is that on-demand operations can be implemented efficiently in the
face of scale and dynamism in a variety of distributed systems. We validate this
thesis by proposing on-demand operations for a variety of large-scale dynamic
infrastructures. We evaluate our proposed on-demand operations using large-
scale simulators and testbeds such as Emulab [26] and PlanetLab [81], using
traces gathered from real systems and synthetic workloads that mimic users
behaviors.

Our contributions are the design of four systems that advocate the necessity
and benefits of on-demand operations. The four systems have been chosen to
cover four diverse and popular types of distributed infrastructures — research

testbeds, Grids, wide-area peer-to-peer environments, and clouds. We believe



System Scale Dynamism

Moara Machines, Group Churn

Monitoring Data, and Workload

and Groups
ISS Machines Resource Availability
and Intermediate Data
W-C Scheduling Machines Resource

and Data and Data Availability

MPIL Machines Perturbation

Table 1.1: Types of Scale and Dynamism for Each System

that this is a comprehensive list of large-scale infrastructures, and any large-
scale distributed system can be classified into one of the four categories.

In addition, each of the four systems implements an essential on-demand
operation in each category. Moara in Chapter 2 implements on-demand mon-
itoring, which is an essential operation in research testbeds and clouds. ISS
in Chapter 3 implements on-demand replication, which is another essential op-
eration in research testbeds and clouds. Worker-centric scheduling algorithms
in Chapter 4 implement on-demand scheduling algorithms essential in Grids.
Lastly, MPIL in Chapter 5 implements an on-demand key /value lookup mecha-
nism that is essential in wide-area peer-to-peer environments. Figure 1.1 shows
the operations and types of infrastructures that this dissertation discusses.

All four systems address the challenges of scale and dynamism. Table 1.1
summarizes the different types of scale and dynamism each system addresses,
and Figure 1.2 shows the taxonomy of the solution space. As shown in Fig-
ure 1.2, each of the four systems provides a solution for a large-scale and dy-
namic environment, in which current infrastructures are operating. Other three
regions (small-scale static, small-scale dynamic, and large-scale static environ-
ments) represent environments in which traditional distributed systems have
been operating. In each chapter, we revisit this taxonomy and discuss it in
detail for the specific operation at hand.

We briefly summarize each system below.

Moara — an On-Demand Group Monitoring System [56] : We argue
that a monitoring system should be 1) group-based, as users and administra-
tors typically desire to monitor implicit groups of machines (e.g., web servers,
databases, etc.), and 2) on-demand, as the users should be able to query the most
up-to-date data about the groups. Although previous systems have developed
techniques to support aggregation queries, they target “global” aggregation —
each machine in the whole infrastructure receives and answers every aggrega-
tion query, thus wasting bandwidth if a query actually targets only a group
of machines. Our system called Moara is the first system (to the best of our
knowledge) that implements a distributed technique for aggregating data from

a group (or multiple groups) in a bandwidth-efficient way without contacting
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Figure 1.2: Taxonomy of the Solution Space

all machines in the infrastructure.

Our on-demand group aggregation technique addresses a new dimension
added to the challenges of scale with respect to the number of machines and the
number of attributes to monitor - the number of groups. This new dimension
has been recognized in the context of multicast [5]. However, since aggregation
employs different techniques such as in-network processing, we need a solution
that is tailored towards the harmony with the techniques for aggregation.

The challenge of dynamism comes from two sources, group churn (i.e., group
membership change) and workload. To be more specific, the size and composi-
tion of each group can change over time due to joining and leaving of machines
as well as changes in the attribute-value space. In addition, a user may need to
aggregate data from different groups at different times, so we can expect that
the query rate and target might vary significantly over time. Thus, a group
aggregation system has to be adaptive to the group churn and changes in the
user workload.

Moara addresses these challenges with three techniques that we detail in
Chapter 2.

ISS (Intermediate Storage System) [54]: We argue for the need to de-
sign a storage system that treats distributed intermediate data as the first-class
citizen. Intermediate data is generated by emerging new multi-stage dataflow
programming frameworks such as MapReduce [23], Hadoop [108], Pig [77], and
Hive [29] in the clouds, and plays a critical role in execution of dataflow pro-
grams. Specifically, a failure during a job execution resulting in a loss of the
intermediate data greatly hampers the overall performance, resulting in cas-
caded re-execution, i.e., some tasks in every stage from the beginning have to
be re-executed sequentially up to the stage where the failure happened. As a
result, the job completion time increases dramatically.

Our approach to this problem is on-demand replication that provides inter-



mediate data availability. The challenge of dynamism arises from replication
interfering with foreground dataflow programs as their resource usages of disks
and network conflict with each other. We especially identify network bandwidth
as the bottleneck, and hence argue that it is important to minimize network in-
terference. The challenge of scale comes from two main sources of machine scale
and data scale, as dataflow programming paradigms aim to scale up to several
thousands of machines handling petabytes of data.

We detail how we address these challenges in Chapter 3.

On-Demand Worker-Centric Scheduling [55]: We argue that efficient
scheduling algorithms for data-intensive tasks are on-demand, i.e., they make
scheduling decisions based on the most up-to-date state such as the availability
of compute nodes (or “workers”) and the characteristics of the current input
data. This is due to the challenges of scale and dynamism. The challenge of
scale comes from the number of workers and the amount of data that needs
to be processed. The challenge of dynamism arises from dynamically-changing
resource availability and the availability of data at each worker.

In order to address this scale and dynamism, we have developed a fam-
ily of on-demand worker-centric scheduling algorithms for data-intensive tasks.
These algorithms consider the availability of workers and the availability of data
at each worker as the primary criterion. Our algorithms make a scheduling de-
cision for a task to a worker only when the worker can start executing the task
immediately. Our worker-centric scheduling algorithms are different from task-
centric scheduling (e.g., [94, 13, 86]), in which a central scheduler assigns a task
to a worker without considering whether or not the worker can start executing
the task immediately after the task assignment.

This is discussed in detail in Chapter 4.

On-Demand Key/Value Store [53] We argue that an on-demand key/value
store such as peer-to-peer distributed hash tables (DHTSs) (e.g., Pastry [93],
Chord [100], Tapestry [111], Kelips [36], etc.) needs to be 1) overlay-independent,
i.e., it should run over any arbitrary overlay structure without requiring aggres-
sive maintenance, and 2) perturbation-resistant, i.e., it should be resistant to
ordinary stresses in the operating environment such as churn, short-term unre-
sponsiveness, etc.

These two requirements come from the challenges of scale and dynamism
that on-demand key/value stores face when running in the real environment.
The challenge of scale comes from a well-known fact that a large number of ma-
chines participate in wide-area peer-to-peer systems. The challenge of dynamism
arises from the operating environment, i.e., the Internet, where short-term un-
responsiveness of peers is common. Overlay-independence helps to meet both
challenges, as it reduces bandwidth consumption in dynamic environments in

a scalable manner. Perturbation-resistance helps to meet the challenge of dy-



namism as it tolerates short-term unresponsiveness of each peer.

Our system called MPIL (Multi-Path Insertion and Lookup) satisfies both re-
quirements of overlay-independence and perturbation-resistance. MPIL achieves
this with low maintenance cost with slightly increased per-lookup cost compared
to DHTs.

We detail the design in Chapter 5.

1.2 Related Work

There is a large body of work that can be classified as on-demand operations.
This dissertation contributes to this research literature by identifying scale and
dynamism as a collective set of challenges and concretely showing how on-
demand operations can be efficient in spite of them in large-scale distributed
systems. In comparison, previous work in the literature has been focusing only
on the designs of operations themselves.

In this section, we discuss related work for on-demand operations in general.
We focus on-demand operations pertaining to large-scale infrastructures such
as clouds, Grids and PlanetLab. In each subsequent chapter, we discuss related
work for the specific on-demand operation we discuss in that chapter.

MON [62] is among the first systems that support on-demand management
operations for large-scale infrastructures. It supports propagation of one-shot
management commands. In PlanetLab, there are other management tools that
support on-demand operations, such as vxargs and PSSH [84]. However, these
tools are mainly centralized, and thus they do not address scalability explicitly.

A few Grid scheduling algorithms can be considered as on-demand scheduling
since they make scheduling decisions based on the current status of the Grid.
Examples include a pull-based scheduler proposed by Viswanathan et al. [106]
and theoretical work by Rosenberg et al. [91, 92]. Our work on worker-centric
scheduling in Chapter 4 shares the on-demand philosophy with these approaches.
However, our contribution is not just the design, but also the concrete discussion
about why and how on-demand approaches work better for the requirements of
scalability and dynamism.

There are many on-demand operations that are not the focus of this disser-
tation. Recently, cloud computing services such as Amazon Web Services [2],
Google AppEngine [34], and Microsoft Azure [3], Right Scale [90] have started
to provide on-demand scale-up and scale-down — these platforms automatically
add or reduce CPU, memory, disk, and network allocation to a hosted service
depending on the user traffic the service receives.

Gossip-based multicast systems [8, 37, 52] perform multicast on-demand.
These systems typically do not impose and maintain certain structures over
participating nodes. Instead, they employ robust gossip-based mechanisms to
perform multicast over dynamic non-deterministic structures. As a result, these

systems are successful in combating dynamism among participating nodes.
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1.3 Dissertation Organization

This dissertation is organized as follows. Chapter 2 presents Moara, a system for
on-demand monitoring in large-scale infrastructures. We discuss the use cases
of Moara, and three techniques that we develop in order to achieve Moara’s
goals of scalability, flexibility, and efficiency. We present the evaluation results
of Moara using large-scale simulations and testbeds such as Emulab and Plan-
etLab. Chapter 3 presents ISS, a new storage system for managing intermediate
data in dataflow programming paradigms. We discuss the problem of manag-
ing intermediate data, requirements of a solution, and the design of ISS. We
present the evaluation results of ISS using Emulab. Chapter 4 presents worker-
centric scheduling strategies for data-intensive Grid applications. We discuss
the problems of task-centric scheduling strategies, and show why worker-centric
scheduling strategies are effective in dealing with the problems. We present the
evaluation results using simulations driven by a real application trace. Chap-
ter 5 discusses MPIL, an on-demand key/value store. We discuss how MPIL
achieves desired properties of overlay-independence and perturbation-resistance
in dynamic environments. We present the evaluation results of MPIL using

large-scale simulations. Finally, Chapter 6 concludes with future directions.



Chapter 2

Moara: An On-Demand
Group Monitoring System

This chapter presents the motivation, use cases, design, and evaluation of Moara,
an on-demand group monitoring system. Moara addresses the challenge of scale
stemming from the number of machines, the amount of monitoring data, and
the number of groups. In addition, Moara addresses the challenge of dynamism
arising from group churn and workload. We detail how Moara addresses each

challenge in this chapter, starting from the motivation behind Moara.

2.1 Motivation

A frequent need of the users and the administrators of such infrastructures is
monitoring and querying the status of groups of machines in the infrastructure,
as well as the infrastructure as a whole. These groups may be static or dy-
namic, e.g., the PlanetLab slices, the machines running a particular service in
a data center, or the machines with CPU utilization above 50%. Further, users
typically desire to express complex criteria for the selection of the host groups
to be queried. For example, “find top-3 loaded hosts where (ServiceX = true)
and (Apache = true)” is a query that targets two groups - hosts that run ser-
vice X and hosts that run Apache. Dynamic groups mean that the size and
composition of groups vary across different queries as well as time.

In general, users and administrators desire to monitor the performance of
these groups, to troubleshoot any failures or performance degradations, and to
track usage of allocated resources. These requirements point to the need for a
group-based on-demand querying system that can provide instantaneous answers
to queries over in-situ data targeting one or more groups. In fact, several existing
distributed aggregation systems [74, 88, 109] can be considered as a special case
of group-based querying systems, as they target querying of only a single group,
i.e., the entire system.

Any group-based querying system should satisfy three requirements: flexi-
bility, efficiency, and scalability. First, the system should be flexible to support
expressive queries that deal with multiple groups, such as unions and inter-
sections of different groups. Second, the system should be efficient in query
resolution—it should minimize the message overhead while responding quickly

with an answer. Third, the system should scale with the number of machines,



the number of groups, and the rate of queries.

We propose Moara, a new group-based distributed aggregation system that
targets all three requirements. A query in Moara has three parts: (query-
attribute, aggregation function, group-predicate), e.g., (Mem-Util, Average, Apache
= true). Moara returns the resulting value from applying the aggregation func-
tion over the values of query-attribute at the machines that satisfy the group-
predicate.

Moara resolves a query on-demand, i.e., it propagates a query to end-hosts
that are monitored. Each end-host manages and stores its own monitoring data
locally, and there is no periodic collection of monitoring data. Each end-host
also participates in the query execution.

Moara makes two novel design contributions over existing systems [74, 88,
109]. First, Moara maintains aggregation trees for different groups adaptively
based on the underlying environment and the injected queries to minimize the
overall message cost and query response time. Basically, the aggregation tree
for a group in Moara is an optimized sub-graph of a global spanning tree, which
spans all nodes in the group. By aggregating data over these group-based ag-
gregation trees, Moara achieves lower message cost and response latency for
queries compared to other aggregation systems that contact all nodes. Further,
we adapt each aggregation tree to deal with dynamism.

Second, Moara’s query processor supports composite queries that target mul-
tiple groups simultaneously. Composite queries supported by Moara are arbi-
trary nested set expressions built by using logical operators or and and, (re-
spectively set operations U and N) over simple group-predicates. Simple group-
predicates are of the form (attribute op value), where op € {<,>, <, >, =, #}.
Consider our previous example “find top-3 loaded hosts where (ServiceX = true)
and (Apache = true)”, which is a composite query that targets the intersection
of two groups - hosts that run service X and hosts that run Apache. Instead of
blindly querying all the groups present in a query, Moara’s query processor an-
alyzes composite queries and intelligently decides on contacting a set of groups
that minimizes the communication overhead.

We implemented a prototype of Moara by leveraging the FreePastry DHT
(Distributed Hash Table) [93] and SDIMS [109] systems. Our evaluation consists
of experiments on Emulab [26] and PlanetLab, as well as large-scale simulations.
Our experimental results indicate that, compared to previous global hierarchical
aggregation systems, Moara reduces response latency by up to a factor of 4 and
achieves an order of magnitude bandwidth savings. Our scalability experiments
confirm that Moara’s overhead for answering a query is independent of the
total number of nodes in the system, and only grows linearly with the group
size. Finally, we show that Moara can answer complex queries within hundreds
of milliseconds in systems with hundreds of nodes under high group churn.

In this work, we focus on efficiently supporting one-shot queries (as opposed

to repeated continuous queries) over a common set of groups, since we expect



this type of queries to be more common in the kind of infrastructures we are
targeting at — data centers and federated computing systems. We expect most
users will be performing one-shot queries over common groups (e.g., the same
PlanetLab slice, machines in a data center, etc) during the time when their
service or experiment is running. Further, a user interested in monitoring groups
continually can invoke one-shot queries periodically. Our use cases in Section 2.3
motivates this design decision further.

Any distributed system subjected to dynamism in the environment, suffers
from the CAP dilemma [9], which states that it is difficult to provide both
strong consistency guarantees and high availability in failure-prone distributed
settings. Moara treads this dilemma by preferring to provide high availability
and scalability, while providing eventual consistency guarantees on aggregation
results. This philosophy is in line with that of existing aggregation systems such
as Astrolabe [88] and SDIMS [109]. Moara could also allow the use of metrics
proposed by Jain et al. [47, 48] in order to track the imprecision of the query

results; however, studying these is beyond the scope of this dissertation.

2.2 Taxonomy

Figure 2.1 shows the taxonomy of the monitoring solution space. Traditionally,
popular monitoring solutions used a centralized DB-based approach, where all
monitoring data is collected and stored periodically in a DB. This approach
works well in small-scale environments (the bottom two regions in Figure 2.1)
because the collection time can be short and the rate of collection can be fre-
quent. Even in a large-scale static environment (the upper left region), a scalable
DB-based approach such as a replicated DB can be used, since attribute values
do not change; after collecting the values once, there is no need to collect them
again. However, anectotal evidence from the industry suggests that this mon-
itoring data collection time can take up to several hours with a few thousands
of machines, which led to the development of on-demand monitoring solutions.
Moara implements an on-demand monitoring operation that provides a solution

for a large-scale dynamic environment.

2.3 Use Cases

We highlight the need for on-demand flexible querying and for dealing with
dynamism by presenting two motivating scenarios - data centers and federated
infrastructures.

Consolidated Data Centers: In the last few years, medium and large-
scale enterprises have moved away from maintaining their own clusters, towards
subscribing to services offered by consolidated data centers. Such consolidated

data centers consist of multiple locations, with each location containing several
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Figure 2.1: Taxonomy of the Monitoring Solution Space

thousands of servers. Each server runs heterogeneous operating systems includ-
ing virtual machine hosts. While such consolidation enables running unified
management tasks, it also introduces the need to deal with scale.

Workloads on these data centers typically include Terminal Services, SOA-
based transaction workloads (e.g., SAP), and Web 2.0 workloads, e.g., search-
ing and collaboration. Table 2.1 presents some on-demand one-shot queries
that data center managers and service owners typically desire to run on such
a virtualized enterprise. Several of these one-shot queries are for aggregating
information from a common group of nodes including cases where groups are
expressed as unions of groups (e.g., the third query in table), or intersections
(e.g., the last query). We would like to generalize this to provide managers with
a powerful tool supporting flexible queries using arbitrarily nested unions and
intersections of groups. In addition, these workloads vary in intensity over time,
causing considerable dynamism in the system, e.g., terminal services facing high
user turnaround rates.

Federated Computing Infrastructures: In today’s federated computing
infrastructures such as PlanetLab [83] and global Grids [28], as well as in pro-
posed infrastructures, e.g., GENI [76], users wish to query current statistics for
their distributed applications or experiments. For instance, PlanetLab creates
virtual subgroups of nodes called “slices” in order to run individual distributed
applications. Monitoring is currently supported by tools such as CoMon [80]
and Ganglia [70], which periodically collect CPU, memory, and network data
per slice on PlanetLab [83]. Due to their periodic nature, they are not open
to on-demand queries that require up-to-date answers. Further, increasing the
frequency of data collection is untenable due to storage and communication
costs.

In contrast to the above systems, we need a system to answer one-shot
queries that seek to obtain up-to-date information over a common group of

machines, that can be run on-demand or periodically by an end-host, and are

11



Tasks Queries
Resource Allocation Average utilization for servers belonging to
(i) floor F, (ii) cluster C, and (iii) rack R
Number of machines/VMs in a given cluster C
VM Migration Average utilization of VMs
running application X version 1 or version 2
List of all VMs running application X
are VMWare based
Auditing/Security Count of all VMs/machines running firewall
Count of all VMs running ESX server
and Sygate firewall
Dashboard Max response time for Service X
Count of all machines that are up
and running Service X
Patch management | List of version numbers being used for service X
Count of all machines that are in cluster C
and running service X.version Y

Table 2.1: Illustrative Queries for Managing the Virtualized Enterprise

flexibly specified. Some examples of our target queries include: number of slices
containing at least one machine with CPU utilization > 90% (basic query), CPU
utilization of nodes common to two given slices (intersection query), or free disk
space across all slices in a given organization (union query).

Need for Group-based Aggregation: As illustrated by above two target
scenarios, we expect that most of the queries are one-shot queries over common
groups of machines. Moreover, the predicate in a query specified as a logical
expression involves several groups, e.g., some groups in the above examples
include the set of nodes in a PlanetLab slice, the set of nodes running a given
Grid task, the set of nodes with CPU utilization > 90%, etc. In the worst case,
such a group may span the entire system.

In practice though, we expect the group sizes to vary across different queries
and with time. In Figure 2.2, we plot the distribution of PlanetLab slice sizes,
analyzed from an instance of CoMon [80] data. Notice that there is a consider-
able spread in the sizes. As many as 50% of the 400 slices have fewer than 10
assigned nodes, thus a monitoring system that contacts all nodes to answer a
query for a slice is very inefficient. If we consider only nodes that were actually
in use (where a slice has more than one process running on a node), as many
as 100 out of 170 slices have fewer than 10 active nodes. In another example
case, Figure 2.3 presents the behavior of two jobs over a 20-hour period from a
real 6-month trace of a utility computing environment at HP with 500 machines
receiving animation rendering batch jobs. This plot shows the dynamism in
each group over time.

These trace studies indicate that group sizes can be expected to be varying
across time in both consolidated centers as well as in federated computing in-

frastructures. Thus, an efficient querying system has to avoid treating the entire
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Figure 2.3: Usage of HP’s utility computing environment by different animation
rendering jobs. We show the number of machines each job uses.

system as a single group and globally broadcasting queries to all nodes.

2.4 The Basics of Moara

In this section, we first discuss how Moara end-nodes maintain data and how
queries are structured. Then we discuss how Moara builds trees for individual

groups.

2.4.1 Data and Query Model

Information at each node is represented and stored as (attribute, value) tuples.
For example, a machine with CPU capacity of 3Ghz can have an attribute
(CPU-Mhz, 3000). Moara has an agent running at each node that monitors the

node and populates (attribute, value) pairs.
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A query in Moara comprises of three parts: (query-attribute, aggregation
function, group-predicate). The first field specifies the attribute of interest to be
aggregated, while the second field specifies the aggregation function to be used
on this data. We require this aggregation function to be partially aggregatable.
In other words, given two partial aggregates for multiple disjoint sets of nodes,
the aggregation function must produce an aggregate that corresponds to the
union of these node sets [88, 109]. This admits aggregation functions such as
enumeration, max, min,sum, count, or top-k. Average can be implemented by
aggregating both sum and count.

The third field of the query specifies the group of machines on which the
above aggregation is performed. If no group is specified, the default is to aggre-
gate values from all nodes in the system. A group-predicate (henceforth called
a “predicate”) is specified as a boolean expression with and and or operators,
over simple predicates of the following form: (group-attribute op value), where
op € {<,>,=,<,>,#}. Note that this set of operators allows us to implicitly
support not in a group predicate. Any attribute that a Moara agent populates
can be used as either query-attribute or group-attribute.

A simple query contains a simple predicate. For example, the simple pred-
icate (ServiceX = true) defines all machines running ServiceX. Thus, a user
wishing to compute the maximum CPU usage across machines where ServiceX is
running will issue the following query: (CPU-Usage, MAX, (ServiceX = true)).
Alternately, the user could use a composite predicate, e.g., (ServiceX = true and
Apache = true). This composite query is defined with set operators U and N.

Note that the query model can be easily extended so that instead of a query-
attribute, a querier can specify any arbitrary program that operates upon simple
(attribute, value) pairs. For example, a querier can specify a program that
evaluates (CPU-Available > CPU-Needed-For-App-A) as query-attribute, to see
how many nodes are available for the application A. Similarly, group-predicate
can be extended to contain multiple attributes by defining new attributes. For
example, we can define a new attribute att as (CPU-Available > CPU-Needed-
For-App-A), which takes a boolean value of true/false. Then att can be used
to specify a group. However, for this dissertation, we mainly focus on the
techniques for efficiently answering the queries for given group-predicates and

hence restrict query model to contain only simple attributes.

2.4.2 Scalable Aggregation

We describe here how Moara aggregates data for each group.

DHT trees: For scalability with large number of nodes, groups, and queries,
Moara employs a peer-to-peer in-network aggregation approach that leverages
the computing and network resources of the distributed infrastructure itself
to compute results. These trees are used for spreading queries, and aggregat-

ing answers back towards the source node. In our architecture, a lightweight
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Figure 2.4: DHT tree for an ID with prefix 000

Moara agent runs at each server from which data needs to be aggregated. These
agents participate in a structured overlay routing algorithm such as Pastry [93],
Tapestry [111], or Chord [100]. These systems allow routing within the over-
lay, from any node to any other node, based on the IDs of these nodes in the
system. Moara uses this mechanism for building aggregation trees called DHT
trees, akin to existing systems [17, 16, 109]. A DHT tree contains all the nodes
in the system, and is rooted at a node that maps to the ID of the group. For
instance, Figure 2.4 shows the tree for an ID with prefix 000 using Pastry’s
algorithm with one-bit prefix correction. We choose to leverage a DHT, since it
handles physical membership churn (such as failures and join/leave) very mod-
ularly and efficiently. Also, we can construct aggregation trees clearly, given a
group predicate.

Basics of Resolving Queries: Given a simple query with predicate p,
Moara uses MD-5 to hash the group-attribute field in p and derives a bit-string
that stands for the group ID. The DHT tree for this ID is then used to perform
aggregation for this query, e.g., Figure 2.4 shows the DHT tree for an attribute
“ServiceX” that hashes to 000.

When a simple query is generated at any node in Moara, it is first forwarded
to the root node of the corresponding DHT tree via the underlying DHT routing
mechanism. The root then propagates it downwards along the DHT tree to the
leaves. When a leaf receives a query, it evaluates the predicate p in the query
(e.g., ServiceX=true). If the result is true, it replies to its parent the local value
for the query attribute ( e.g., CPU-Usage). Otherwise, it sends a null reply to
its parent. An internal node waits to reply to its parent until all its children

have replied or until a timeout occurs (using values in Section 2.8). Then, it
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aggregates the values reported by its children, including its own contribution
if the predicate is satisfied locally, and forwards the aggregate to its parent.
Finally, the root node replies to the original querying node with the aggregated
value.

Moara Mechanisms: The above “global aggregation” approach has every
node in the system receive every query. Hence, it is inefficient in resolving queries
targeting specific groups. Moara addresses this via three mechanisms.

First, Moara attempts to prune out branches of the tree that do not contain
any node satisfying the predicate p. We call this tree a pruned tree or a group
tree for p. For example, in Figure 2.4, if nodes 111, 110, and 010 do not satisfy
the predicate, then the root does not forward the query to 010. However, this
raises a challenge — how do internal nodes know whether any of their descendants
satisfy the predicate. For instance, if node 110 decides to install ServiceX and
thus satisfies the predicate, the path from the root to this node will need to
be added to the tree. Further, if the composition of a group changes rapidly,
then the cost for maintaining the group tree can become higher than query
resolution costs. Section 2.5 presents Moara’s dynamic adaptation mechanism
that addresses this dilemma.

Second, Moara reduces network cost and response latency by short-circuiting
the group trees, thus reducing the number of internal tree nodes that do not
satisfy the predicate. For instance, in Figure 2.4, if node 010 does not satisfy
the predicate but node 110 does, then the former can be eliminated from the
tree by having 110 receive queries directly from the root. Section 2.6 describes
how this reduces the bandwidth cost of aggregating a group with m nodes in a
system of N nodes, from O(mlog N) to O(m).

Third, Moara efficiently resolves composite queries involving multiple groups
by rewriting the predicate into a more manageable form, and then selecting a
minimal set of groups to resolve the query. For example, an intersection query
(CPU-Util, avg, (floor=F1 and cluster=C12)) is best resolved by sending the
query to only one of the two groups - either (floor=F1) or (cluster=C12) -

whichever is cheaper. This design decision of Moara is detailed in Section 2.7.

2.5 Dynamic Maintenance

Given a tree for a specific group, Moara reduces bandwidth cost by adaptively
pruning out parts of the tree, while still guaranteeing correctness via eventual
completeness. Eventual completeness is defined as follows - when the set of
predicate-satisfying nodes as well as the underlying DHT overlay do not change
for a sufficiently long time after a query injection, a query to the group will
eventually return answers from all such nodes. For now, we assume that the
dynamism in the system is only due to changes in the composition of the groups
(“group churn”); we will describe how our system handles node and network

reconfigurations (churn in system) later in Section 2.8.
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To resolve queries efficiently, Moara could prune out the branches of the
corresponding DHT tree that do not contain any nodes belonging to the group.
However, to maintain completeness of the query resolution, Moara can perform
such aggressive pruning only if it maintains up-to-date information at each node
about the status of branches at that node. For groups with high churn in mem-
bership relative to the number of queries (e.g., CPU-Util < 50), maintaining
group status at each node for all its branches can consume high bandwidth -
broadcasting queries system-wide may be cheaper. For relatively stable groups
however (e.g., (sliceX = true) on PlanetLab), proactively maintaining the group
trees can reduce bandwidth and response times. Instead of implementing ei-
ther of these two extreme solution points, Moara uses a distributed adaptation
mechanism that, at each node, tracks the queries in the system and group churn
events from children for a group predicate and decides whether or not to spend
any bandwidth to inform its parent about its status.

Basic Pruning Mechanism: Each Moara node maintains a binary lo-
cal state variable prune for each group predicate. If prune for a predicate is
true (PRUNE state), then the branch rooted at this node can be pruned from
the DHT tree while querying for that predicate. Whenever a node goes from
PRUNE to NO-PRUNE state, it sends a NO-PRUNE message to its parent;
the reverse transition causes a PRUNE message to be sent. When the root or
an internal node receives a query for this predicate, it will forward the query to
only those of its children that are in NO-PRUNE state.

Note that it is incorrect for an internal node to set its state for a predicate
to PRUNE based merely on whether it satisfies the predicate or not. One or
more its descendants may satisfy the predicate, and hence the branch rooted
at the node should continue to receive any queries for this predicate. Further,
an internal or a leaf node should also consider the churn in the predicate satis-
fiability before setting the prune variable. For example, suppose the predicate
is (CPU-Util < 50) and a leaf node’s utilization is fluctuating around 50% at
a high rate. In this case, the leaf node will be setting and unsetting prune
variable, leading to a large number of PRUNE/NO-PRUNE messages.

Due to the above reasons, we define the prune variable as a variable de-
pending on two additional local state variables—sat and update. sat is a binary
variable to track if the subtree rooted at this node should continue receiving
queries for the predicate. Thus sat is set to 1 (SAT) if either the local node
satisfies the predicate or any child node is in NO-PRUNE state.

update is a binary state variable that denotes whether the node will update
its prune variable or not. So, when update = 1 (UPDATE state), the node
will update the prune variable; but, when update = 0 (NO-UPDATE state),
the node will cease to perform any updates to the prune variable irrespective
of any changes in the local satisfiability, or any messages from its children. In
other words, a node does not send any PRUNE or NO-PRUNE messages to

its parent when it is in NO-UPDATE state. So, to ensure correct operation,
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Procedure 1 Updating sat variable for each predicate

Initial Value: sat < 0
Procedure Call: whenever there is a local attribute change or an update from
any child
ent — 0
for each child do
if there is no state associated with this child regarding the given predicate
then
// by default, a parent does not maintain any state on its children
// Also, states can be garbage-collected after a period of inactivity
cnt++
else if child is in NO-PRUNE state then
cni++
end if
end for
if the predicate is locally satisfied then
cnt++
end if
if ent > 0 then
sat =1
else
sat =0
end if

a node can move into NO-UPDATE state only after setting prune = 0. This
guarantees that its parent will always send the queries for the predicate to this

node. Formally, we maintain the following invariants:

update =1 AND sat =1 = prune =0
update =1 AND sat = 0 = prune =1
update =0 = prune =0

The transition rules for the state machine at each node is illustrated in
Figure 2.5. Note that a node sends a status update message to its parent
whenever it moves from PRUNE to NO-PRUNE state or vice-versa. This state
machine ensures the following invariant — each node in the system performs at
least one of the following: (a) sends status updates upwards to its parent, or (b)
recetves all queries from its parent. This invariant suffices to guarantee eventual
completeness because after the group stops changing, any node that satisfies
the predicate will be in SAT state. Therefore, the node and its ancestors will
all be in NO-PRUNE state, and thus the node will receive the next query.

Procedure 1, 2, and 3 show pseudo-code on how Moara evaluates each vari-
able.

Adaptation Policy: To decide the transition rules for the update state
variable, Moara employs an adaptation mechanism that allows different policies.
Our goal is to use a policy that minimizes the overall message cost, i.e., sum
of both update and query costs. In Moara, each node tracks the total number

of recent queries and local changes it has seen (in the tree) - we will explain
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Procedure 2 Updating update variable for each predicate

Initial Value: update < 0 // in the beginning, a node receives every query
Procedure Call: whenever there is a new query received or a sat variable
change
if 2 X g, < ¢ then
update «— 0
else if 2 x ¢, > c then
update «— 1
end if

Procedure 3 Updating prune variable for each predicate
Procedure Call: whenever there is a change in either update or sat
if update == 1&& sat == 1 then
prune < 0
else if update == 1&& sat == 0 then
prune «— 1
else if update == 0 then
prune «— 0
end if

recentness soon. Each node keeps two query counts - ¢, the number of queries
recently received by the system while the node is in NO-SAT state, and ¢, the
number of recent queries received by the system while it was in SAT state. The
node also keeps track of the number of times the sat variable toggled between
0 and 1, denoted as c.

A node in NO-UPDATE state would exchange a total of Byy = 2 X (g, +¢s)
messages with its parent (two per query), while a node in UPDATE state would
exchange Byp = ¢+ 2 X g5 messages (one per change, and two per query).
Thus, to minimize bandwidth, the transition rules are as follows: (1) a node in
UPDATE state moves to NO-UPDATE if Byy < Byp, i.e., 2 X g, < ¢; (2) a
node in NO-UPDATE state moves to UPDATE if Byy > Byp, i.e., 2X g, > c.
In order to avoid flip-flopping around the threshold, we could add in hysteresis,
but our current design performs well without it.

Remembering Recent Events: Each node in Moara maintains a recent
“window” of events for the counters mentioned above (g, ¢s, and ¢). We use
a window of kypparg events if the node is in UPDATE state, and a win-
dow of kxyo_uppare events if it is NO-UPDATE. In practice, we found that
kuppare = 1, kyo_uppaTe = 3 works well, and we use these values in our
implementation. For illustration purposes though, Figure 2.6 depicts the state
machine for kyppare = kEno—uppare = 1. In this case, notice that whenever
anode: (i) is in the PRUNE state and observes a change in sat (¢ = 1, ¢, = 0),
it switches to (NO-UPDATE, SAT); (ii) is in (NO-UPDATE, NO-SAT) and
receives a query (g, = 1,c¢ = 0), it switches to UPDATE.

One corner issue with the above approach is that when a node is in the
PRUNE state, it does not receive any more queries and thus cannot accurately

track ¢,. Note that this does not affect the correctness (i.e., eventual com-
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NO-SAT < — NO-SAT
NO-PRUNE

PRUNE Decided by
dynamic
SAT 0—> adaptation policy SAT 1->0
SAT 1->0 SAT 0->
UPDATE NO-UPDATE
NO-PRUNE NO-PRUNE

Figure 2.5: State machine for dynamic adaptation mechanism

Query/Send PRUNE
UPDATE, NO-SAT - NO-UPDATE, NO-SAT

Chang Change

Change/Send NO-PRUNE

NO-UPDATE, SAT

ﬁ Query

Start

Figure 2.6: State changes at a Moara node for kypparg = 1 and
kno—vppare = 1. With these values, (UPDATE, SAT) is not reachable, thus
is not shown here.

pleteness) of our protocol but may cause unnecessary status update messages.
To address this, the root node of an aggregation tree in Moara assigns a se-
quence number for each query and sends that number piggybacked along with
the queries. Thus, any node that receives a query with sequence number s is
able to track ¢, using the difference between s and its own last-seen query se-
quence number. In addition, our implementation suffers only minimally since
we use small kypparg values. For instance, for kypparg = 1, when a node
in (UPDATE, SAT) undergoes a local change, it immediately switches to NO-
UPDATE, and sends no more messages to its parent.

State Maintenance: By default, each node does not maintain any state,
which is considered as being in NO-UPDATE state. A node starts maintaining
states only when a query arrives at the node. Without dynamic maintenance,
merely maintaining pruned trees for a large number of predicates (e.g., a tree
for each slice in the PlanetLab case or a tree for each job in the data center)
could consume very high bandwidth in an aggregation system. With dynamic
maintenance, pruning is proactively performed for only those predicates that
are of interest at that time. Once queries stop, nodes in the aggregation tree

start moving into NO-UPDATE state with any new updates from their children
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and hence stop sending any further updates to their parents.

We note that a node in NO-UPDATE state for a predicate can safely garbage-
collect state information (e.g., predicate itself, recent events information, etc)
for that predicate without causing any incorrectness in the query resolution. So,
once a predicate goes out of interest, eventually no state is maintained at any
node and no messages are exchanged between nodes for that predicate. Several
policies for deciding when to garbage-collect state information are possible: we
could 1) garbage-collect each predicate after a timeout expires, 2) keep only the
last k predicates queried, 3) garbage-collect the least frequently queried pred-
icate every time a new query arrives, etc. However, studying these policies is
beyond the scope of this dissertation. We also note that we do not consider
DHT maintenance overhead. In addition, note that global aggregation trees
are implicit from the DHT routing and hence require no separate maintenance
overhead.

Finally, since Moara maintains state information for each predicate, it could
be more efficient if we aggregated different predicates. For example, predicates
such as CPU-Util > 50, CPU-Util > 60, and CPU-Util > 70 could be aggregated
as one predicate, CPU-Util > 50, so that Moara could maintain only one tree.
This design choice requires careful study on the tradeoff between the state main-
tenance overhead and the bandwidth overhead incurred by combining different
trees with the same attribute. This is outside of the scope of this dissertation,
since we focus on the tradeoff of the bandwidth overhead based on the query

rate and the group churn rate.

2.6 Separate Query Plane

Given a tree that contains m predicate-satisfying nodes, using the pruned DHT
trees of the previous section may lead to O(mlog N) additional nodes being
involved in the tree. These extra nodes would typically be internal tree nodes
that are forwarding queries down or responses up the tree, but which do not
satisfy the predicate themselves. This section proposes modifications to the
protocol described in Section 2.5 in order to reduce the traffic through these
internal nodes.

Our idea is to bypass the internal nodes, thus creating a separate query plane
which involves mostly nodes satisfying the predicate. This optimizes the tree
that we built (Section 2.5) further by eliminating unnecessary internal nodes.
This reduces the tree to contain only O(m) nodes, and thus resolves queries with
message costs independent of the number of nodes in the system. Note that this
technique has similarities to adaptations of multicast trees (e.g., Scribe [17]), but
Moara needs to address the challenging interplay between dynamic adaptation
and this short-circuiting.

To realize a separate query plane, each node uses the states, constraints and

transitions as described in Section 2.5. In addition, each node runs operations
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No-Sat Sat Sat Sat Sat

Figure 2.7: Separate Query Plane for threshold=1. We assume all nodes are in
UPDATE mode. Each node’s ¢Set is shown next to it, and updateSet on the
link to its parent.

using two locally maintained sets: (i) updateSet is a list of nodes that it forwards
to its parent; (ii) ¢Set is a list of children or descendant nodes, to which it
forwards any received queries. We consider first, for ease of exposition, modified
operations only for nodes in the UPDATE state. When a leaf node in UPDATE
state begins to satisfy the tree predicate, it changes to SAT state as described in
Section 2.5 and sets its UpdateSet to contain its ID. In addition, when sending
a NO-PRUNE message to its parent, it also sends the updateSet. Each internal
node in turn maintains its ¢gSet as the union of the latest received updateSets
from all its children, adding its own ID (IP and port) if the tree predicate is
satisfied locally. The leaf nodes do not need to maintain ¢Sets since they do not
forward queries.

Finally, each internal node maintains its updateSet by continually monitor-
ing if |gSet| < threshold, where threshold is a system parameter. If so, then
updateSet is the same as ¢Set, otherwise updateSet contains a single element
that is the node’s own ID regardless of whether the predicate is satisfied locally
or not. Whenever the updateSet changes at a node and is non-empty, it sends a
NO-PRUNE message to its parent along with the new updateSet informing the
change. Otherwise, it sends a PRUNE message.

The above operations are described assuming that all nodes are in UPDATE
state. When a node is NO-UPDATE state, it maintains ¢Set and updateSet as
described above, but does not send any updates to its parent. For correctness,
a node moving from UPDATE to NO-UPDATE state sends its own ID along
with the NO-PRUNE message to its parent so that it receives future queries.
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If parameter threshold=1, the above mechanisms produce the pruned DHT
tree described in Section 2.5, while threshold > 1 gives trees based on a separate
query plane. This is because with threshold=1, an internal node that receives
an updateSet from any of its children will pass along to its parent an updateSet
containing its own ID, even if the predicate is not satisfied locally. However, with
threshold > 1, the only internal nodes that do not satisfy the predicate locally
but receive queries, are ones that are maintaining a ¢Set of size > threshold.
Such nodes are required to receive queries so that they can be forwarded to its
descendants. However, the tree bypasses several other nodes that do not satisfy
the predicate, thus obtaining bandwidth savings. Specifically, an internal node
that has |¢Set| < threshold and does not satisfy the predicate, does not include
its own ID in the updateSet, and thus does not receive queries.

Having a high value of threshold in the system bypasses several internal
nodes in the tree. However, this comes at the expense of a higher update traffic
since any updateSet changes need to be communicated to the parent. Figure 2.7
shows an example with threshold=1.

Adaptation and SQP: Our SQP design with updateSet and ¢Set variables
at nodes, as described above, allow us to easily use the adaptation policy rules
described in Section 2.5. In this case, g, at a node is the number of queries
received by the system when that node’s updateSet does not contain its ID
(similar to NO-SAT state) and ¢, is the number of queries received at other
times. The number of changes c¢ is the number of changes to the updateSet
variable. With these definitions, a node can use same adaptation policies as
described in Section 2.5. One exception is the use of the query sequence number:
for correct calculation of ¢, at a bypassed node, each node piggybacks its last
seen sequence number alongside all its status update messages to its parent.

Overhead analysis: For a group with m nodes, we analyze the overhead
for forwarding a query in the separate query plane, assuming all nodes are in
UPDATE state. First, notice that all leaf nodes in this tree satisfy the predicate
- if some leaf did not, then it would be pruned out by the above rules. Second,
the tree has the maximum links when all m predicate-satisfying nodes are at the
leaves of this tree. This means that since threshold > 1, no internal node (other
than the root node) in the tree has fewer than 2 children - if it did, it would
be bypassed by the above rules. However, no tree with m leaves and internal
node degree > 2 has more than m internal nodes. Thus, the total number of
nodes, other than the root, receiving the query is < 2-m = O(m), independent

of system size.

2.7 Composite Queries

So far, we have described how to build and maintain a single tree corresponding
to one simple predicate. We now describe how a query with a composite predi-

cate is satisfied. Specifically, we first expand on the multiple possible trees, one
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tree per simple predicate in the composite query, that such a query entails (Sec-
tion 2.7.1). Then, we explain how Moara plans a given query (Section 2.7.2),
and how it selects a low-cost groups of nodes to execute a given composite query
(Section 2.7.3).

2.7.1 Maintaining Multiple Trees

Section 2.5 explains the maintenance of trees for simple predicates, starting
from the time a predicate is first encountered. If this predicate does not reap-
pear again in subsequent queries in the system, then all nodes in the tree will
eventually move to NO-UPDATE state (due to group churn events), and thus
there will be no load, either query or update, along the tree. Thus, Moara trees
become silent and incurs zero bandwidth cost if not used, obviating the need
to explicitly delete trees for simple predicates. Furthermore, Moara does not
maintain trees for composite queries, since these might be exponentially large
in number - instead, it decides which simple predicate trees (existing or not)
will be selected to execute a given composite query. This decision process is

described next.

2.7.2 Composite Query Planning

Consider the following composite query: “find the average free memory across
machines where service X and Apache are running”. Suppose we have one group
tree for (ServiceX=true) and another tree for (Apache=true). A naive way to
resolve the query would be to query both trees in parallel. However, we observe
that bandwidth can be saved, without compromising completeness of answers,
by (1) sending the query to any one of the trees (because it is an intersection
query), and (2) choosing the tree that incurs a lower query cost.

Based on this observation, Moara answers arbitrary nested queries involving
and and or boolean expressions across simple predicates by selecting a small
cover. A cover for a given composite query @ is defined as a set of groups
(selected from among simple predicates inside @) which together contain all
nodes that satisfy the composite predicate in Q. Thus, we only need to send @
to a cover to obtain a complete answer.

We can compute a cover for a query Q by exploring the boolean expression

structure recursively as follows:
e cover(Q=“A”) = {A} if A is a predefined group.
e cover(Q=*“A or B”) = cover(A) U cover(B).
e cover(Q=“A and B”) = cover(A), cover(B), or (cover(A) U cover(B)).

For example, for a query with expression ((A and B) or C), the above rules derive
{A,C}, {B,C}, and {A,B,C} as possible covers. We call such covers as structural

covers since we infer them from the structure of the boolean expression.

24



((AorB)and (A orC)) or D

i CNF Conversion

(AorBorD)and (A or CorD)

i Cover Evauation
min(JA[ + [B| + D], |A| + |C| + D)

Figure 2.8: Example query processing

Once the query originating node calculates the cover for a given query @,
the composite query is forwarded to the roots of trees corresponding to each
group in the cover, the answers from these trees are aggregated, and finally
returned to the querying node. Notice that it is possible for some node(s) to
receive multiple copies of the query, if they are present in multiple trees which
appear in the cover for . Such nodes reply with the attribute value to only one
of the trees they are present in, eliminating duplicate answers. This requires
nodes to remember the query ids (based on sender IP and sequence number).
Such information is cached for 5 minutes in our Moara implementation.

To further save on bandwidth, we would like to select a low-cost cover. This
is done by minimizing both the number of groups in the selected cover, as well
as the total cost of querying this cover. We explore below three ways of deriving
a low-cost cover: (1) structural optimizations, which rewrite the nested query
to select a low-cost structural cover consisting of simple predicates that already
appear within the query, (2) estimates of query costs for individual trees, and (3)
semantic optimizations, which take into account semantic information obtained

from users or query attributes.

2.7.3 Query Optimization: Finding Low-Cost Covers

Given a composite query, Moara first transforms it into a Conjunctive Normal
Form (CNF) expression using distributive laws of and and or operators. A CNF
form is a two level expression of and’s across a series of or terms.

It is important to notice that in the CNF form of a composite predicate for
query @, each series of or terms is a possible cover - this is due to the same
reason as our intersection optimization explained earlier. Thus, if Moara can
evaluate the query cost of each of these structural covers (as a sum of the query
costs for all sets in the cover), then it can select the minimal cost cover for
executing the query Q. We will describe query cost calculation soon, but before
that we give an example of the query rewriting as well as proof sketch of why
the CNF form gives the minimal-cost cover for a composite predicate.

Figure 2.8 shows an example transformation. Consider a query targeting
((A or B) and (A or C)) or D. Moara first transforms the expression to the
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Semantic information

(A or B)

(A and B)

ANB=0¢

{A.B}

{

ANB# ¢and AD Band AC B {A}
= (A=B)

{A}

ANB#¢and AD Band A¢ B {A}

{B}

ANB#¢and AP Band ACB {B}

(A}

ANB#¢and AP Band A B

{A.B}

{A}.{B}

Table 2.2: Semantic info to reduce cover sizes

Relation between Description Example pair of groups
pair of groups

Intersection Two groups (CPU-Util < 50),
(without inclusion) | intersect properly (CPU-Util > 20)
Discontinuous The intersection is (CPU-Util < 50),
Intersection not continuous (CPU-Util # 20)
Equivalence Two groups are (CPU-Util < 50),
identical (CPU-Util < 50)
Inclusion One group is (CPU-Util < 50),
a subset of another (CPU-Util < 20)
Disjointedness Two groups (CPU-Util < 50),
do not intersect (CPU-Util > 80)

Table 2.3: Defining operators of groups that allow relation inference between
two groups

equivalent CNF: (A or B or D) and (A or C or D). Moara chooses one cover
between the two structural covers - either {A, B, D} or {4, C, D}, whichever
has a lower cost.

If query cost estimates for individual groups are up-to-date and available at
the tree roots, we can prove by contradiction that our structural optimizations
produce a cover that is minimum in cost. Suppose that the given CNF expression
is F = A; and A; and ...and A,,, where each term A; is an or of positive literals
and hence a structural cover for E. Assume the contrary, i.e., suppose there
exists a structural cover C with a lower cost than our covers. In each term A;
of expression F, if we substitute the literals from set C' with 0, the expression
should evaluate to 0 (since C' is a structural cover). However, since A;’s are
and-ed, there has to be some A; that evaluates to 0 in this substitution. Thus,
all groups in this A; have to be a part of C. However, this is a contradiction
since A; is a cover with cost no more than C'

Estimating Query Costs for Trees: In order to enable low-cost cover
calculation, the root node of each tree for a simple predicate continually main-
tains the query cost for that tree. The query cost is fetched by the querying
node and used in the low-cost cover calculation described above. Within the
tree, the cost for each query is simply 2 x np, where np is the number of nodes
in NO-PRUNE state. The values of np are aggregated continually up the tree.
Each internal node stores this count for its own subtree, modifies the count

according to its own state, and piggybacks this information atop all updates
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and query responses to its parents. Although this lazy updating of the counts
means the query costs may be stale at times, this only affects communication
overhead, but not the correctness of the response.

Using Semantic Optimizations: If semantic information is available
about the groups, then Moara can further optimize the communication costs
by choosing a better cover. We explore two kinds of semantic information in
our system: (i) information from description of the group, and (ii) user supplied
semantic information. For example, consider two groups A and B defined as fol-
lows: A = {nodes with memory < 2G} and B = {nodes with memory < 1G}.
Then, we can infer from these definitions that B C A. In Table 2.3, we list re-
lations between two groups that Moara infers by analyzing the operations that
define those pair of groups. Once we have semantic information either inferred
from the description of the groups or supplied by a user, Moara applies the opti-
mizations detailed in Table 2.2 to obtain a low-cost cover. As another instance,
Moara implicitly supports not operator by observing complement relations in

the specified groups (the last row in Table 2.3), and the following optimizations:
e (Aor B)and (Aor C)=A,if C=not (B)
e (Aor C)and B = A and B, if C = not (B)

e (A or B) and C = A and not (B), if C = not (B)

2.8 Implementation and Evaluation

We have built a prototype of Moara using SDIMS [109] and FreePastry [93]. All
other Moara protocols, described in Section 2.4 through Section 2.7, are built
atop these systems. Here, we discuss our implementation details and evaluation
methodology.

Moara Front-End: The Moara front-end is a client-side interface of Moara.
It includes an interactive shell, a query parser, and a query optimizer. Through
the interactive shell, a user can submit SQL-like aggregation queries to Moara.
The query parser parses the queries, and the query optimizer determines the
groups that need to be queried through the algorithm described in Section 2.7.
Once the front-end determines the groups to be queried, it generates a sub-query
for each group. Each sub-query is resolved exactly the same way as a normal
query, except that the front-end waits until it receives all the results from sub-
queries, aggregates the results returned by the sub-queries, and returns the final
aggregate to the user.

Reconfigurations: To handle reconfigurations, we leverage the underlying
FreePastry mechanism for failure detection and neighbor set repair. When a
node gets a new parent for a predicate, it sends its current state information
(e.g., updateSet) for that predicate to the new parent. Also, when a node is
waiting for a response from a child and if the underlying DHT notifies that
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the child has failed or is not reachable, then the node will proceed assuming a
NULL response from the child. In addition to this, Moara also implements a
time-out mechanism (in waiting for a child’s reply to a query) to ensure that all
queries are responded to independent of FreePastry’s timeout values for failure
detection.

Evaluation Environments: We use simulation, Emulab, and PlanetLab,
and choose a suitable environment to evaluate each of our design choices. We
use simulation exclusively for measuring bandwidth consumption in a large-scale
environment. We use Emulab and PlanetLab to mainly measure the latency in
realistic environments, namely, a medium-scale data center (Emulab) and a
wide-area infrastructure (PlanetLab).

For each design choice (group-based aggregation, dynamic maintenance, sep-
arate query plane, and composite query processor), we choose the evaluation
environments that are most suitable. First, we evaluate group-based aggrega-
tion on Emulab and PlanetLab, since group-based aggregation is designed to
reduce both latency and bandwidth consumption. Second, we evaluate dynamic
maintenance and separate query plane using simulation, since both mechanisms
are designed for bandwidth optimization and have wide choices of parameters.
However, we evaluate the separate query plane on Emulab as well to measure
the latency. Lastly, we evaluate our composite query processor on Emulab, since
it only affects latency.

Workload: The workload is characterized by two factors - group churn rate
and query rate. First, since a group is defined over a particular attribute, the
group churn rate depends on how dynamic the attribute is (e.g., a group of (OS
= Linux) is likely to be static, while a group of (CPU-util < 60%) is likely to
be dynamic). Second, the query rate depends on the usage of Moara and is
expected to vary widely. For example, a data center operator might typically
query a group once an hour on a day, but several times a minute on days with
high workloads or unscheduled downtimes. Thus, we parameterize these factors

and present the performance of Moara over the parameter range.

2.8.1 Simulation Results

We perform simulation experiments to measure the bandwidth overhead of
Moara’s dynamic tree maintenance and separate query plane. Our simulations
are performed with the FreePastry simulator environment, simulating up to
16,384 nodes. Each node maintains an attribute A with value € {0,1}. All
queries are simple queries for (4, SUM, A = 1), which counts the number of
nodes where A is set to 1.

Dynamic Maintenance: To study the dynamic maintenance mechanism
under different workload types, we stress the system by injecting two types of
events - query events and group churn events - at different ratios. For example,

a query:churn ratio of 0:500 represents an extreme type of workload where there
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Figure 2.9: Bandwidth usage with various query-to-churn ratios

is high group churn, but no queries at all. On the other hand, the query:churn
ratio of 500:0 represents the other extreme where there is high query rate, but
no group churn. Each group churn event selects m nodes at random, and toggles
the value of their attribute A. The value of m determines the “burst size” of
attribute churn. We fix the total number of events to 500, and randomly inject
query or group churn events at the chosen ratio. All data points are averaged
over 3 runs.

Figure 2.9 shows the average number of messages per node in Moara under
various query:churn ratios, in a system of 10,000 nodes with m = 2000-sized
group churn events. In addition to Moara, we also plot the number of messages
generated by two other static approaches that lie at the opposing extremes.
These are: 1) the Global approach, where no group trees are maintained and
queries are sent to all the nodes on the DHT trees, and 2) Moara (Always-
Update) approach, where a tree is aggressively maintained by having each child
send an update to its parent on each attribute churn event.

The Global approach is inexpensive when there are fewer queries in the sys-
tem, since it avoids the overhead of tree maintenance. On the other hand, with a
high-query:low-churn ratio, Moara (Always-Update) performs well because it al-
ways maintains group trees and hence incurs lower traffic than Global approach.
The plots show that Moara meets or lowers the message overhead in compari-
son to either of these extreme design choices, at all values of query:churn ratios.
When group churn is high, Moara suppresses attribute churn events from prop-
agating to other nodes. With more queries than group churn events, Moara re-
duces query cost by maintaining trees aggressively. Thus, Moara is able to adapt
to various workload patterns. In the above experiment, we use kyppare=1 and
kno_uppare=3. Here, we study the sensitivity of the performance for differ-
ent values for these knobs. Figure 2.10 plots the average number of messages
per node in a system of 500 Moara nodes under a range of query:churn ratios

for different threshold values. Although we have tried a wide range of values
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Figure 2.10: Bandwidth usage with various (kuppare, kno—vrPpATE). Al-
though we have tried a wide range of values in our simulation, we only show a
few representative pairs for clarity of presentation.

(each up to 10), we only show a few representative pairs that are sufficient to
show the conclusion, in order to prevent the plot from being too crowded. When
there are very few query events in the system (compared to churn events), dif-
ferent threshold values perform similarly. However, when the number of queries
is high (e.g., # Queries=400), large kypparre values (e.g., (3,1) and (2,1))
coupled with small kxyo_uppare values lead to slightly more overall messages.
This is because with larger kypparp and smaller kxyo_yppare, more Moara
nodes stay in UPDATE state - thus, each child updates its parent more often,
even with small churn rates. Overall, we observe that the sensitivity of the
performance to different thresholds is very small. For all other experiments, we
use the default values of kyppare=1 and kxyo_upPpaTE=3.

Separate Query Plane: In Figure 2.11, we plot the query cost against
the number of nodes in the system for different threshold values and different
group sizes. Note that the threshold value of 1 implies the absence of a separate
query plane, while higher threshold values create a separate query plane (refer
to Section 2.6). For this experiment, we do not introduce any group churn
during the experiment. We perform 1,000 queries and compute the average of
the query cost. Even though there is no group churn, there are updates sent by
nodes to their parents as they move into UPDATE state with the first query
message. We count those messages as the update cost.

Figure 2.11 shows that without the separate query plane (threshold=1), the
query cost increases logarithmically as the total system size is raised. However,
while maintaining a separate query plane (threshold>1), the query cost reaches
a constant value and stays flat, independent of the number of nodes in the
system. While increasing the value of threshold decreases query cost, it can
lead to more update messages as discussed in Section 2.6. In Figure 2.12, we

plot the query costs for different threshold values as a percentage of the query
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Figure 2.12: Query costs (qc) and update costs (uc) of the separate query plane
in a 8192-node system

cost for threshold=1 and also plot the percentage increase in the update costs
in comparison to threshold=1. From these two plots, we observe that (1) with
small groups and large total nodes (e.g., 8192 total nodes with group size=8 or
32), using a query plane saves more than 50% bandwidth in query costs, and
(2) while using a higher value of threshold does reduce bandwidth, the savings
are marginal beyond a threshold of 2 and can incur higher update costs at large

group sizes.

2.8.2 Emulab Experiments

In this section, we study both the latency and communication overhead of Moara
under a real deployment scenario in Emulab, that emulates a medium-scale
data center. Specifically, we evaluate three different workloads. First, we study

performance of Moara when querying groups of static attributes (e.g., OS =
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Figure 2.13: Latency and bandwidth usage with static groups

Linux). We vary the size of groups and show the benefits of using Moara.
Second, we study Moara with groups defined over dynamic attributes (e.g.,
CPU-util < 60%). We stress Moara by varying the frequency of changes. Third,
we study composite queries with varying numbers of groups per query.

Methodology: We create a network of 50 machines on a 100 Mbps LAN
and instantiate 10 instances of Moara on each machine, thus emulating a 500
node Moara system. Each experimental run is started with one bootstrap node,
followed by a batch of 100 new instances joining after intervals of 10 seconds
each. After the last join, we wait an additional 5 minutes to warm up before
initiating queries and group churn from a Moara node. Since we are mainly in-
terested in per-query latency and bandwidth consumption, we fix the query rate
and repeat the same query multiple times. As previously, each node maintains
one binary attribute A. Our default query is a count, providing the number of
nodes with A=1. All data points are the average of 3 runs.

Static Groups: Figure 2.13 compares the performance of Moara (with
separate query plane) w.r.t. both latency and bandwidth. We vary the group
sizes and query 100 times for each experiment. In addition, we compare this
performance against an approach where a single global tree is used system-wide
- this is labelled as the SDIMS approach in the plot. As we can see from the
figure, Moara’s latency and bandwidth scale with the size of the group. The
savings are the most significant for small groups (e.g., set32 which has 32 nodes),
where the savings compared to the SDIMS approach are up to 4X in latency
and 10X in bandwidth. The latency is reduced due to the use of separate query
plane because of short-circuiting long chains of intermediate nodes.

Dynamic Groups: We study the effect of group churn due to attribute-
value changes at individual nodes. We considered a group of 100 nodes, with
group churn controlled by two parameters churn and interval. Every interval
seconds, we randomly select churn nodes in the group to leave, and churn nodes

outside the group to join.
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Figure 2.14: Average latency of dynamically changing groups. The horizontal
line shows the average latency with a static group of the same size.

Figure 2.14 shows the effect on query latency, of different churn values (x-
axis) for two different interval values. Queries are inserted at the rate of one
query per second, and the data points are averages of 100 queries per run. The
plot shows that Moara’s query latency is not affected significantly by group
churn - (1) even when we increase the group churn rate by a 9-fold factor from
Interval=45 to interval=>5, Moara experiences only a small increase in latency,
and (2) the latency stays low, and around 150 ms even when the entire group
membership changes every 5 seconds (interval=>5, churn=200).

Figure 2.15 provides an insight into the workings of Moara under the above
workload, for interval=>5, churn=160. Notice that the spikes in query latency
occur once every 5 seconds, around the time that the group churn batch occurs.
However, notice that (1) the peak latency stays within 300 ms, and (2) Moara
query latency stabilizes very quickly after each group churn batch, typically
within 1-2 seconds. These plots thus show that Moara is highly resilient to
dynamism due to rapidly occurring attribute-value changes.

Composite Queries: The experiments so far have focused on single groups
in Moara. Here, we microbenchmark the performance of Moara on composite
queries. Assuming S7,59,...,.5, are simple single predicate groups, we study
three types of composite queries: (1) Intersection queries of the form S; NS N
...N S, for different values of n; (2) Union queries of the form S;USaU...US,,
for different values of n; and (3) Complex queries, which are structured as
TiNTN...NT,,, where each T; is a union of multiple groups. These experiments
suffice to characterize Moara’s performance since the query optimization reduces
all query expressions to one of the three. Each basic group S; consists of 50
nodes selected at random. The complex expression we use! is T3 N Ty N T3,

and each T; is a union of n basic groups for different values of n. Figure 2.16

1We found that the number of T}’s has little effect on latency because Moara queries only
one of all T;’s.
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Figure 2.16: Latency with composite queries

plots the latency for above three types of queries with different values of n. For
composite queries, recall that Moara first sends size probes to root nodes of
group trees, in order to make a query optimization decision. Thus, we plot not
only the total latency of a Moara query, but also the latency excluding the time
to finish the size probes. Each data point is averaged over 300 queries.

First, notice that the average completion times of all queries, including
queries with up to 10 groups, is less than 500 ms. For intersection queries,
the completion times excluding time for size probes (plot line “Inter. no SP”)
do not depend on the size of the expression. This is because Moara selects only
one of these groups to propagate the query. Although size probes are sent in
parallel, the latency for size probes increases slightly since Moara waits until the
slowest probe response arrives. For union queries, the total completion time of
a query rises gradually with the size of the expression, as Moara needs to con-
tact all groups (two “Union” plots). Finally, the completion time for complex

queries is only slightly more than that of union queries, since Moara’s query
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Figure 2.17: PlanetLab Latency

optimization selects only one of T;’s. The additional latency is caused by two
factors: (a) the time taken for size probes is higher as we have to query the sizes
for larger number of groups, and (b) a complex set expression adds more over-
head at each node, because each node evaluates the entire complex expression

to determine if it satisfies it or not (this step could be further optimized).

2.8.3 PlanetLab Experiments

Methodology: We deploy Moara atop 200 PlanetLab nodes, which span sev-
eral continents. Each PlanetLab node runs one instance of Moara. The instances
are started sequentially, the system is given 5 minutes to warm up, and then a
series of queries is injected from a Moara front-end running on a local machine.
In order to study the behavior of Moara’s query latency in-depth, we perform
experiments on only one group at a time, but for different sizes of this group.
Each experiment involves a total of 500 queries injected 5 seconds apart. All
plotted data points are the average of 3 runs. We do not timeout on queries, in
order to obtain complete answers.

Query Response Latency: Figure 2.17 plots the cumulative fraction of
replies received as a function of time since query injection, on four different-sized
groups. The plot shows the responsiveness of Moara in a wide-area setting -
even with as many as 100 nodes in the group, the median answer is received
back within 1-2 seconds, while 90% of the answers are received within 5 seconds.

Moara versus Centralized Aggregation: Figure 2.18 compares Moara
against a centralized approach which maintains no trees but has the Moara front-
end directly query all nodes in parallel regardless of whether they satisfy the
given predicate or not (labelled “Central”). The response for a query from this
centralized aggregator is considered complete when the centralized aggregator
has received a response from every node regarding the query. The figure plots
the cumulative fraction of replies received as a function of time since query
injection. This plot illustrates that the comparison between the centralized

aggregator and Moara is intuitively akin to the comparison of “the tortoise and
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Figure 2.19: PlanetLab Bottleneck Latency

the hare”. In other words, for both groups of size 100 and 150, we notice that
the centralized aggregator obtains initial replies faster than Moara, but then it
slows down waiting for the remainder of the query answers from nodes.

Figure 2.19 further explains why Moara’s overall completion time is shorter
than the centralized aggregator with smaller groups. We plot the total comple-
tion latency for a Moara query in a 200-node group, along with the latency on
a single bottleneck link in the Moara tree. This bottleneck link is obtained via
offline analysis, and by picking the largest round-trip-time among all parent-
child pairs in the tree. This plot shows that it is a single bottleneck link that
contributes to the latency of Moara. Moara is faster overall in obtaining a large
fraction of replies, because it avoids bottlenecks that are not part of the queried
group. In comparison, the centralized aggregator is subject to being slowed

down by all nodes that suffer from bottlenecks, mainly the slowest bottleneck.

2.9 Related Work

Management solutions have existed for a long time in the areas of operating
systems [63], the Internet [97, 99], and distributed systems, e.g., in AFS [41],
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Amoeba [101], Condor [64], Globus [32], and others [69]. However, in today’s
context, dealing with complex, dynamic, and large-scale systems presents a
new set of challenges. This has been earmarked by the CRA [20] and several
leading industry researchers [98] as a grand challenge for the next few years.
This is especially relevant in systems such as PlanetLab [81], data centers and
Grids [28, 27, 87], as well as emerging systems, such as NSF GENI [76].

The management operations of interest to us include distributed monitoring,
aggregation, and querying. Most commercial tools for these operations such as
HP OpenView, IBM Tivoli, and CA’s Unicenter are centralized in nature. On
PlanetLab there are several management tools in use, such as vxargs, PSSH,
Stork, CoTop, and others [84]. CoMon [80] collects 5 minute CPU, memory, and
network data, with aggregation per-slice. None of the mentioned tools addresses
scalability and expressive queries for distributed systems.

Several academic efforts such as Ganglia [70], PIER [43], Astrolabe [88], and
MON [62] propose distributed systems for aggregating data in large systems,
but they either do not support complex queries as a first-class problem, or are
too expensive for complex queries.

Vanilla DHTs by themselves, e.g., Pastry [93], Chord [100], Tapestry [111],
Kademlia [71], Kelips [36], etc., do not support complex queries. PIER [43]
is a distributed database system supporting recursive SQL-style queries on the
several tables distributed across nodes in a large system. PIER does not lever-
age in-network aggregation, the querying node gets all records and performs
aggregation locally.

TinyDB [66] is a querying and aggregation system for sensor networks whose
goals bear similarities to ours, and it supports complex queries. TinyDB’s ap-
plicability is limited to wireless sensor networks with multi-hop connectivity;
utilizing its techniques in our setting would contact a large number of nodes
for any complex query. Also in sensor networks, Synopsis diffusion techniques
aggregate data across a DAG without double-counting [75]. Yao et al. have
also proposed query processing in sensor networks via sketches and other tech-
niques [102, 110].

Existing hierarchical solutions for data aggregation include, for example,
Astrolabe [88] and Ganglia [70]. Our goals are most similar to that of Astro-
labe, which is a querying system that supports SQL-style aggregation queries
on geographically distributed clusters. Astrolabe provides a generic aggregation
abstraction that also forms the basis for SDIMS [109]; whereas SDIMS leverages
DHTs to construct multiple trees and scale with both nodes and the number of
metrics, Astrolabe uses a single static tree and hence has limited scalability with
the number of metrics. Astrolabe implements this by building a MIB that is
distributed and is structured as a zone-based hierarchy, continuously updating
itself via gossiping. Unlike Astrolabe, Moara support on-demand actions [62]
based on individual queries, and low latency combined with good accuracy for

these queries. MON [62] uses on-demand overlays as well, but does not support
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expressive queries. Ganglia [70] uses a single hierarchical tree and local multi-
casts to collect the data; they focus mainly on collecting the entire data to a
single central site without performing any in-network computation on the data.

NetProfiler [79] forms groups and aggregates metrics over those groups.
Groups are defined by a particular characteristic: machines running Windows,
machines in a subnet 128.83.X.X, etc. The scenarios considered by NetProfiler
are covered by Moara.

Huebsch et al. [44] present a way to optimize global aggregation queries by
sharing computations. They propose a method drawn from linear algebra and
other heuristics to discover k queries which can be used to answer n queries
where k << n. Moara shares a similar goal of optimizing aggregation queries,
but Moara’s optimization is for multiple subset aggregation trees rather than a
global aggregation tree.

The bulk of work done under optimizing continuous queries over stream-
ing data, e.g., [30, 58, 103] addresses centralized solutions that support more
dynamism than a database. Our focus is on on-demand, one-time queries.

Algorithmic work on collecting aggregate properties in large distributed sys-
tems includes estimating the system size [57, 40] and gossip-based aggrega-
tion [38, 49, 51]. However, unlike Moara, none of this work addresses expressive
queries.

Finally, providing strong consistency guarantees on aggregated results in
large distributed systems is a hard problem. Similarly to previous aggregation
systems such as Astrolabe [88] and SDIMS [109], Moara focuses on providing
high availability and guarantees only weak eventual consistency guarantees. As
stated by Narayanan et al. [74] and Bawa et al. [6], it is impossible to guarantee
that a read-only query sees a snapshot at a single time across the entire system
(called snapshot validity). Thus, PIER, [43] guarantees “dilated reachable snap-
shot”, which is a snapshot that consists of reachable nodes at the dilated time.
Seaweed [74] guarantees that the aggregated result includes all the nodes that

were available for sufficient time to execute the query.

2.10 Summary

We have presented the motivation, use cases, design, and evaluation of Moara,
an on-demand group-based monitoring system. Moara addresses the challenges
of scale and dynamism by implementing three techniques — dynamic group tree
maintenance, separate query plane construction, and a query optimization for
complex queries. Our evaluation using simulations and deployments has shown
that Moara is effective in accurately answering single-group queries as well as
multi-group complex queries within hundreds of milliseconds across hundreds of

nodes, and with low per-node bandwidth consumption.
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Chapter 3

ISS: Intermediate Storage
System

This chapter presents the motivation, requirements, design, and evaluation of
ISS (Intermediate Storage System). ISS solves the problem of providing on-
demand non-interfering replication of intermediate data as it is generated. It
addresses the challenge of scale in terms of the number of machines and the
amount of intermediate data. It addresses the challenge of dynamism in band-
width availability. We detail these challenges and how ISS addresses them in
this chapter.

3.1 Motivation

Dataflow programming frameworks such as MapReduce [23], Dryad [46], Pig [77],
and Hive [29] are gaining popularity for large-scale parallel data processing,.
For example, organizations such as A9.com, AOL, Facebook, The New York
Times, Yahoo!, and many others use Hadoop, an open-source implementation
of MapReduce, for various data processing needs [85]. Dryad is currently de-
ployed as part of Microsoft’s AdCenter log processing [25]. These frameworks
run in a single-site data center/cloud, which may be internally hierarchical, e.g.,
organized as racks.

In general, a dataflow program consists of multiple stages of computation
and a set of communication patterns that connect these stages. For example,
Figure 3.1 shows an example dataflow graph of a Pig program. A Pig program
is compiled into a sequence of MapReduce jobs, thus it consists of multiple Map
and Reduce stages. The communication pattern is either all-to-all (between a
Map stage and the next Reduce stage) or one-to-one (between a Reduce stage
and the next Map stage). Dryad allows more flexible dataflow graphs, though
we do not show an example in this dissertation.

Thus, one common characteristic of all the dataflow programming frame-
works is the existence of intermediate data produced as an output from one
stage and used as an input for the next stage. On one hand, this intermediate
data shares some similarities with the intermediate data from traditional file
systems (e.g., temporary .o files) — it is short-lived, used immediately, written
once and read once [4, 107]. On the other hand, there are new characteristics —

the blocks are distributed, large in number, large in aggregate size, and a compu-
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Figure 3.1: An example of Pig executing a linear sequence of MapReduce stages.
The Shuffle phase involves all-to-all data transfers, while local data is used
between each Reduce and the next Map.

tation stage cannot start until all its input intermediate data has been generated
by the previous stage. This large-scale, distributed, short-lived, computational-
barrier nature of intermediate data firstly creates network bottlenecks because
it has to be transferred in-between stages [23]. Worse still, it prolongs job
completion times under failures (as we show in Section 3.4.2).

Despite these issues, we observe that the intermediate data management
problem is largely unexplored in current dataflow programming frameworks.
The most popular approach to intermediate data management is to rely on the
local filesystem as in Hadoop and Pig. Data is written locally on the node
generating it, and read remotely by the next node that needs it. Failures are
handled by the frameworks themselves without much assistance from the storage
systems they use. Thus, when there is a failure, affected tasks are typically re-
executed to generate intermediate data again. In a sense, this design decision is
based on the assumption that intermediate data is temporary, and regeneration
of it is cheap and easy.

Although this assumption and the design decision may be somewhat rea-
sonable for MapReduce with only two stages, it becomes unreasonable for more
general multi-stage dataflow frameworks, as we detail in Section 3.4.2. In a nut-
shell, the problem is that a failure can lead to expensive cascaded re-execution,;
some tasks in every stage from the beginning have to be re-executed sequentially
up to the stage where the failure happened. This problem shows that efficient
and reliable handling of intermediate data can play a key role in optimizing the
execution of dataflow programs.

Reported experiences with dataflow frameworks in large-scale environments
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indicate that transient and permanent failures are prevalent, and will only ex-
acerbate as more organizations process larger data with multiple stages. For
example, Google reports 5 average worker deaths per MapReduce job in March
2006 [22], and at least one disk failure in every run of a 6-hour MapReduce job
with 4,000 machines [68]. Yahoo! reports their Web graph generation (called
WebMap) has grown to a chain of 100 MapReduce jobs [78]. In addition, many
organizations such as Facebook and Last.fm report their usage of MapReduce,
Pig, and Hive processing hundreds of TBs of data already with a few TBs of
daily increase [108].

Thus, it is our position that we must design a new storage system that treats
intermediate data as a first-class citizen. We believe that a storage system (as
opposed to the dataflow frameworks) is the natural and right abstraction to
efficiently and reliably handle intermediate data, regardless of the failure types.
In the following sections, we discuss the taxonomy of the intermediate data
management solution space, characteristics of this type of data, the requirements
for a solution, the applicability of candidate solutions, and finally our design of

ISS, the intermediate storage system.

3.2 Taxonomy

Figure 3.2 shows the taxonomy of the intermediate data management solution
space. ISS provides a solution for a large-scale dynamic environment, where
there are failures and bandwidth dynamism (the upper right region). Small-
scale applications such as compilers typically run on a single machine, i.e., a
static environment where failures are rare in the lifetime of an application run.
Thus, the local filesystem is usually enough to handle intermediate data (the
bottom left region). Some applications need to handle a large volume of in-
termediate data, but run in a static environment. For example, many 2-stage
MapReduce programs might generate PBs of intermediate data, but rarely en-
counter failures since their execution times only last a few minutes. In this case,
one can use the current MapReduce framework without any replication of inter-
mediate data (the upper left region). Finally, some MapReduce programs run in
a dynamic environment with failures and unpredictable bandwidth availability
such as virtualized clouds (e.g., Amazon EC2). However, if they only gener-
ate a low volume of intermediate data, a simple replication mechanism with no
interference minimization techniques (discussed in Section 3.6 and 3.7) suffices
to provide availability of intermediate data, since a low volume does not cause

much interference (the bottom right region).
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Figure 3.2: Taxonomy of the Intermediate Data Management Problem

3.3 Background: MapReduce

Since much of our discussion in this chapter involves MapReduce, we briefly
summarize how MapReduce works. The goal of our discussion here is not to have

a comprehensive introduction to MapReduce, but rather to provide a primer.

Overview of MapReduce The MapReduce framework is a runtime system
that utilizes a cluster of machines, often dedicated to the framework. The frame-
work takes two input functions, Map() and Reduce(), written by a programmer,
and executes each function in parallel over a set of distributed data files. A
distributed file system such as GFS [31] and HDFS [39] is used to store input
and output data. There are currently two implementations of MapReduce —
the original MapReduce from Google that is not released to the public, and an

open-source implementation called Hadoop from Yahoo!.

Three Phases of MapReduce There are three phases that every MapRe-
duce program execution can be divided into. They are Map, Shuffle, and Re-
duce. Each phase utilizes every machine dedicated to the MapReduce frame-

work. We summarize each phase below.

1. Map: The Map phase executes the user-provided Map function in parallel
over the MapReduce cluster. The input data is divided into chunks and
stored in a distributed file system, e.g., GFS or HDFS. Each Map task
reads some number of chunks from the distributed file system and gen-
erates intermediate data. This intermediate data is used as the input to
the Reduce phase. In order to execute the Reduce function in parallel,
the intermediate data is again partitioned and organized into a number of

chunks. These chunks are stored locally on the nodes that generate them.

2. Shuffle: The Shuffle phase moves the intermediate data generated by the

Map phase among the machines in the MapReduce cluster. The communi-
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cation pattern is all-to-all as shown in Figure 3.1. Because of this all-to-all
nature of communication, this phase heavily utilizes the network, and is
often considered as the bottleneck [23].

3. Reduce: The Reduce phase executes the user-provided Reduce function
in parallel over the MapReduce cluster. It stores its output in the dis-
tributed file system. This output can be the final output if there is only
one MapReduce job. However, it can also be the intermediate output for
the next MapReduce job, if the user wants to run a chain of MapReduce
jobs as in Yahoo!’s WebMap [78].

The most important aspect of these three phases in regards to intermediate
data is that the intermediate data is stored locally in the Map phase, transferred
remotely in the Shuffle phase, and read in the Reduce phase.

3.4 Why Study Intermediate Data?

In this section, we discuss some salient characteristics of intermediate data, and

outline the requirements for an intermediate data management system.

3.4.1 Characteristics of Intermediate Data

Persistent data stored in distributed file systems ranges in size from small to
large, is likely read multiple times, and is typically long-lived. In comparison,
intermediate data generated in cloud programming paradigms has uniquely con-
trasting characteristics. Through our study of MapReduce, Dryad, Pig, etc., we
have gleaned three main characteristics that are common to intermediate data
in all these systems. We discuss them below.

Size and Distribution of Data: Unlike traditional file system data, the
intermediate data generated by cloud computing paradigms potentially has: (1)
a large number of blocks, (2) variable block sizes (across tasks, even within
the same job), (3) a large aggregate size between consecutive stages, and (4)
distribution across a large number of nodes.

Write Once-Read Once: Intermediate data typically follows a write once-
read once pattern. Each block of intermediate data is generated by one task
only, and read by one task only. For instance, in MapReduce, each block of
intermediate data is produced by one Map task, belongs to a region, and is
transmitted to the unique Reduce task assigned to the region.

Short-Lived and Used-Immediately: Intermediate data is short-lived be-
cause once a block is written by a task, it is transferred to (and used immediately
by) the next task. For instance, in Hadoop, a data block generated by a Map
task is transferred during the Shuffle phase to the block’s corresponding Reduce
task.
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Topology | 1 core switch connecting
4 LANSs (5 nodes each)
Bandwidth 100 Mbps
# of Nodes 20
Input Data 2GB/Node
Workload Sort

Table 3.1: Emulab Experimental Setup Referred to as ENV1

Topology 1 core switch connecting

4 LANs (20 nodes each)
Bandwidth | 100 Mbps Top-of-the-Rack Switch
1 Gbps Core Switch

# of Nodes 80
Input Data 2GB/node
Workload Sort

Table 3.2: Emulab Experimental Setup Referred to as ENV2

The above three characteristics morph into major challenges at runtime when
one considers the effect of failures. For instance, when tasks are re-executed
due to a failure, intermediate data may be read multiple times or generated
multiple times, prolonging the lifetime of the intermediate data. In summary,
failures lead to additional overhead for generating, writing, reading, and storing

intermediate data, eventually increasing job completion time.

3.4.2 Effect of Failures

We discuss the effect of failures on dataflow computations. Suppose we run
the dataflow computation in Figure 3.1 using Pig. Also, suppose that a failure
occurs on a node running task ¢ at stage n (e.g., due to a disk failure, a machine
failure, etc.). Note that, since Pig (as well as other dataflow programming
frameworks) relies on the local filesystem to store intermediate data, this failure
results in the loss of all the intermediate data from stage 1 to (n — 1) stored
locally on the failed node. When a failure occurs, Pig will reschedule the failed
task t to a different node available for re-execution. However, the re-execution
of t cannot proceed right away, because some portion of its input is lost by the
failed node. More precisely, the input of task ¢ is generated by all the tasks in
stage (n — 1) including the tasks run on the failed node. Thus, those tasks run
on the failed node have to be re-executed to regenerate the lost portion of the
input for task ¢. In turn, this requires re-execution of tasks run on the failed
node in stage (n —2), and this cascades all the way back to stage 1. Thus, some
tasks in every stage from the beginning will have to be re-executed sequentially
up to the current stage. We call this cascaded re-execution. Although we present
this problem using Pig as a case study, any dataflow framework with multiple
stages will suffer from this problem as well.

Figure 3.3 shows the effect of a single failure on the runtime of a Hadoop
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Topology | 1 core switch connecting
4 LANSs (20 nodes each)
Bandwidth 1 Gbps
# of Nodes 80
Input Data 2GB/node
Workload Sort

Table 3.3: Emulab Experimental Setup Referred to as ENV3
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Figure 3.3: Effect of a Failure on a Hadoop Job (ENV1)
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Figure 3.4: Behavior of a Hadoop Job (ENV1)

job (i.e., a two-stage job). The failure is injected at a random node immediately
after the last Map task completes. The leftmost bar is the runtime without
failures. The middle bar shows the runtime with 1 failure, when Hadoop’s node
failure detection timeout is 10 minutes (the default) — a single failure causes a
50% increase in completion time. Further reducing the timeout to 30 seconds
does not help much — the runtime degradation is still high (33%).

To understand this further, Figures 3.4 and 3.5 show the number of tasks
over time for two bars of Figure 3.3 (0f-10min and 1f-30sec). Figure 3.4 shows
clearly the barrier — Reduce tasks do not start until the Shuffles are (almost)
done around t=925 sec. We made several observations from the experiment of

Figure 3.5: (1) a single node failure caused several Map tasks to be re-executed
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Figure 3.5: Behavior of a Hadoop Job under 1 Failure (ENV1)

(starting t=925 sec), (2) a renewed Shuffle phase starts after these re-executed
Maps finish (starting t=1100 sec), and (3) Reduces that were running on the
failed node and that were not able to Shuffle data from the failed node, get
re-executed as well towards the end (t=1500 sec). While this experiment shows
cascaded re-execution within a single stage, we believe it shows that in multi-
stage dataflow computations, a few node failures will cause far worse degradation

in job completion times.

3.4.3 Requirements

Based on the discussion so far, we believe that the problem of managing inter-
mediate data generated during dataflow computations, deserves deeper study
as a first-class problem. Motivated by the observation that the main challenge
is dealing with failure, we arrive at the following two major requirements that
any effective intermediate storage system needs to satisfy: availability of inter-
mediate data, and minimal interference on foreground network traffic generated
by the dataflow computation. We elaborate below.

Data Availability: A task in a dataflow stage cannot be executed if the inter-
mediate input data is unavailable. A system that provides higher availability for
intermediate data will suffer from fewer delays for re-executing tasks in case of
failure. In multi-stage computations, high availability is critical as it minimizes
the effect of cascaded re-execution (Section 3.4.2).

Minimal Interference: At the same time, data availability cannot be pursued
over-aggressively. In particular, since intermediate data is used immediately,
there is high network contention for foreground traffic of the intermediate data
transferred to the next stage (e.g., by Shuffle in MapReduce) [23]. An intermedi-
ate data management system needs to minimize interference on such foreground
traffic, in order to keep the job completion time low, especially in the common

case of no failures.

46



4000

— Map &xxx<

o 3500 r  shuffle s i
2 3000 | Reduce mmmmm |
[}

E 2500 t . |
= 2000 | * |
R

g 1500 f ]
g 1000 r . |
S 500} ]

0

0-1 1-1 0-2 2-2
Replication Degree (Map-Reduce)

Figure 3.6: Using HDFS (ENV1): Varying Replication Degree (i-j) for Output
of Map (i) and Reduce (j)

3.5 Exploring the Design Space

Current dataflow frameworks store intermediate data locally at the outputting
node and have it read remotely. They use purely reactive strategies to cope
with node failures or other causes of data loss. Thus, in MapReduce, there is
no mechanism to ensure intermediate data availability. The loss of Map output
data results in the re-execution of those Map tasks, with the further risk of
cascaded re-execution (Section 3.4.2).

In contrast, we recognize that can be satisfied with any distributed file system
that replicates data. The unanswered question is: how much interference the
replication process will cause to the foreground job completion time. Thus, a
natural approach to satisfying both requirements is to start with an existing
distributed file system, determine how much interference it causes, and reason

about how one can reduce the interference.

3.5.1 Replication Overhead of HDFS

As the first step, we experimentally explore the possibility of using a distributed
file system especially designed for data-intensive environments. We choose
HDFS, which is used by Hadoop to store the input to the Map phase and
the output from the Reduce phase. We modify Hadoop so that HDFS can store
the intermediate output from the Map phase.

Figure 3.6 shows four bars, each annotated i-j, where i is the replication
degree within HDFS for Map output (i=0 being the default local write-remote
read) and j the replication degree for Reduce output. When one incorporates
HDFS to store Map data into HDF'S, there is only a small increase in completion
time (see 1-1 vs. 0-1). This is because the only additional overheads are HDF'S
metadata that point to the local copy of the output already stored at the Map
node.
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Increasing the Reduce replication degree to 2, on the other hand (see 0-2
vs. 0-1) doubles the job completion time!. Further, replicating Map output
increases the completion time by a factor of about 3 compared to the default
(see 2-2 vs. 0-1). To delve into this further, we compare the timeline of tasks run
by Hadoop without replication in Figure 3.7 and with replication in Figure 3.8.
We observe that the Map runtime increases by a factor of over 3, Shuffle runtime
by a factor of 2, and Reduce runtime by a factor of around 2.

Hence, we conclude that using HDFS as-is will not work due to interference.

3.5.2 Background Replication with TCP-Nice

One way to reduce the interference is to use a background transport protocol
beneath HDFS (such as TCP-Nice [105] and TCP-LP [59]), so that we could
replicate intermediate data without affecting foreground traffic. Thus, we dis-

cuss this possibility qualitatively here. We focus our discussion around TCP-

1This plot seems to indicate why the Pig system (built atop Hadoop) uses a default repli-
cation degree of 1 for Reduce.
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Nice, a well-known background transport protocol. However, we believe our
discussion below is generally applicable to any background transport protocol.

TCP-Nice allows a flow to run in the “background” with little or no interfer-
ence to normal flows. These background flows only utilize “spare” bandwidth
unused by normal flows. This spare bandwidth exists because there is local
computation and disk I/O performed in both Map and Reduce phases. Thus,
we could put replication flows in the background using TCP-Nice, so that they
would not interfere with the foreground traffic such as Shuffle.

The biggest drawback with this approach is that TCP-Nice (as well as any
background transport protocol) is designed as a general transport protocol. This
means that it does not assume (and is thus unable to utilize) the knowledge of
applications using it and the environments in which it is operating. For example,
TCP-Nice does not know which flows are foreground and which are not. Thus,
TCP-Nice gives background flows lower priority than any other flow in the
network. This means that a background replication flow will get a priority lower
than Shuffle flows, as well as other flows unrelated to the dataflow application,
e.g., any ftp or http traffic going through the same shared core switch of a data
center.

Moreover, TCP-Nice minimizes interference at the expense of network uti-
lization. 2 This is because a background flow reacts to congestion by aggres-
sively reducing its transfer rate. Thus, applications cannot predict the behavior
of TCP-Nice in terms of bandwidth utilization and transfer duration. This
is not desirable for intermediate data replication, where timely replication is
important.

Finally, TCP-Nice relies on a rate-control mechanism to avoid interference.
However, replication is a process that is more than just data transfer. There are
other opportunities (e.g., replica placement, data selection, etc.) that one can

explore in addition to rate-control, as we demonstrate from the next section.

3.6 Three Hypotheses for Eliminating

Interference

Our next step is to determine what factors contribute to the replication over-
head and reason about how to reduce the overhead. To this end, we have com-
prehensively examined how HDF'S replicates data, which environment dataflow
programming frameworks target, and how to exploit application-specific knowl-
edge in replication. After this examination, we have arrived at three hypotheses.
The first hypothesis is HDFS-specific. However, the other two hypotheses are
generally applicable to any system design. The hypotheses and the reasoning
behind them follow below.

2In fact, the original paper on TCP-Nice [105] makes clear that network utilization is not
a design goal.

49



Figure 3.9: A 2-Level Topology Example

1. Asynchronous replication can help: We have observed that HDFS
replication works synchronously and reports data as stored only when
replication is complete. This leads to Map tasks blocking for the HDFS
replication to complete. Thus, if we replicate intermediate data asyn-
chronously, Map tasks will proceed without waiting for the replication to

complete.

2. The replication process can exploit the inherent bandwidth het-
erogeneity of data centers: Typically, the dataflow programming frame-
works target data centers, where the network topology is hierarchical, e.g.,
2-level with top-of-the rack switches and a core switch [19]. Figure 3.9
shows an example. We mainly consider this 2-level architecture because
it supports the scale of up to 8K nodes, which is sufficient for the cur-
rent scale of dataflow programming frameworks [78, 108]. However, our
discussion below holds for any number of levels and arbitrary network

topologies.

In a hierarchical topology, the bottleneck is the core switch because it is
shared by many racks and machines. Thus, there is inherent heterogene-
ity in bandwidth — inter-rack bandwidth is scarce compared to intra-rack
bandwidth. This is especially true in the Shuffle phase of MapReduce.
Since the communication pattern among the nodes is all-to-all in the Shuf-
fle phase, the core switch is heavily utilized during this phase while top-of-
the-rack switches are under-utilized. The replication process can exploit
this behavior by replicating only within each rack and avoiding the data

transfer through the core switch.

3. Data selection can help: As we discuss in Section 3.4.2, the problem of
cascaded re-execution is caused by the loss of intermediate data. However,
if we examine this phenomenon more closely, the exact cause is the loss of

intermediate data that is consumed locally.
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Figure 3.10: A Failure Example

Figure 3.10 illustrates this point. If there is a machine failure at the Reduce
phase (e.g., stage 4), affected Reduce tasks can be restarted if they can
still fetch the intermediate data generated by the Map tasks that ran on
the same machine (indicated by straight-down arrows). Other necessary

pieces of intermediate data can be fetched from all the other machines.

Thus, replication can benefit from this observation by only replicating
locally-consumed data. Especially in Map stage, the amount of inter-
mediate data that needs to be replicated can potentially be reduced sig-
nificantly this way. However, since Reduce outputs are always locally
consumed, this technique will be of little help in reducing the replication

interference of Reduce data.

Qualitatively, these three hypotheses appear to help reducing the interfer-

ence. However, the question is not if these techniques will help, but how much.

Thus, we experimentally explore how much each technique can help in reducing

the interference next.

3.7 Hypotheses Validation

In this section, we validate the hypotheses in Section 3.6 experimentally and

show how much reduction of interference we can achieve with them.

3.7.1 Asynchronous Replication

We have noticed that HDFS replication works synchronously and reports data

as stored only when replication is complete. This leads to Map tasks blocking
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Figure 3.11: Asynchronous Replication with HDFS (ENV1)

for the HDF'S replication to complete. Hence, we modify HDF'S and experiment
further with asynchronous replication.

Figure 3.11 shows average completion times of MapReduce in four experi-
mental settings. The purpose of the experiment is (1) to examine the perfor-
mance of MapReduce when the intermediate output is asynchronously-replicated
using HDFS, and (2) to understand where the sources of interference are. Thus,
the four bars are presented in the order of increasing degree of interference.

In the left-most experiment (labeled as Hadoop), we use the original Hadoop
that does not replicate the intermediate data, hence there is no interference due
to replication. In the right-most experiment (labeled as Rep.), we use HDFS
to asynchronously replicate the intermediate data to a remote node. Although
the degree of interference is less than synchronous replication, performance still
degrades to the point where job completion time takes considerably longer.

The middle two experiments help to show the source of the performance
hit by breaking down HDFS replication into its individual operations. In the
second experiment (labeled as Read), we take only the first step of replication,
which is to read the Map output. This incurs a local disk read. In the next
experiment (labeled as Read-Send), we use HDFS to asynchronously replicate
the intermediate data without physically writing to the disks. This involves a
local disk read and a network transfer, but no disk writes.

When we only read the intermediate data, there is hardly any difference in
the overall completion time (Hadoop vs. Read). However, when the replication
process starts using the network (Read vs. Read-Send), there is a significant
overhead that results in doubling the completion time. This is primarily due
to the increase in the Shuffle phase. * The increase in the Map finish time in
Read-Send is also due to the network interference, since some Maps need to
fetch their inputs from remote nodes. Finally, we notice that the interference of

disk writes is very low (Read-Send vs. Rep.).

3The plot shows the finish time of each phase, but does not show the initial start time for
Shuffle and Reduce; the phases in fact overlap as seen in Figure 3.4 and 3.5.
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Figure 3.13: Rack-Level Replication (ENV3)

3.7.2 Rack-Level Replication

By default, HDFS places the first copy on the local machine, and the next
copy on a machine located in a remote rack. However, as we have reasoned
in Section 3.6 there is potential bandwidth availability within a rack. Thus,
we need to quantify how much reduction of interference one can achieve by
replicating within a rack.

Figures 3.12 and 3.13 show the results for two different settings. We have
actually performed our experiments in a few more settings in order to quantify
the benefit of rack-level replication in various scenarios, but the results were
similar.? In all experiments, we use 80 nodes (4 LANs and 20 nodes/LAN), but
the bandwidth settings are different as specified. The left-most bar (labeled as
Hadoop) shows the result with the original Hadoop. It does not perform any
replication of the intermediate data (the Map outputs). The middle bar (labeled
as HDFS) uses HDFS to replicate the intermediate data. The right-most bar
(labeled as Rack-Rep. replicates the intermediate data within the same rack.

All three plots show that we can achieve significant reduction in interference

4More specifically, we have used 20 machines spread over 4 LANs, 60 machines in one
LAN, and 80 machines in one LAN, with various bandwidth combinations using 100Mbps
and 1Gbps switches.
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Figure 3.15: Locally-Consumed Data Replication (ENV3)

just by replicating within the same rack. The actual completion time varies
depending on the configuration, but the increase only ranges from 70 seconds
to 100 seconds. In contrast, when using HDF'S for replication, completion times
were increased nearly twice as long.

As we discuss in Section 3.6 and 3.7.1, this reduction is possible because 1)
the network is the main source of interference, and 2) often times there is idle
bandwidth within each rack.

3.7.3 Locally-Consumed Data

The third possibility for reducing the interference was to only replicate locally-
consumed data. As we discuss in Section 3.6, this is possible because the Shuffle
phase transfers intermediate data in an all-to-all manner, which leads to natural
replication.

Figures 3.14 and 3.15 show the results. Both plots show that there is very
little overhead when we replicate the locally-consumed data. This is due to
the amount of data that needs to be replicated. If we replicate only the locally-
consumed data, the amount of replicated data is reduced by % assuming uniform

partitioning, where N is the number of total machines.
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Name Description

int iss_create(String pathName) Creates a new
intermediate file
int iss_open(String pathName, int off, int len) Opens an existing
intermediate file
int iss_write(int fd, char[] buf, int off, int len) Writes the content

of a buffer to

an intermediate file

at the given offset,
and replicates it
in the same rack

int iss_read(int fd, char[] buf, int off, int len) Reads the content

of an intermediate file
to a buffer from the

given offset
int iss_close(int fd) Closes an intermediate file

Table 3.4: API Extension for ISS (Written in POSIX-Style)

However, this technique is only effective for reducing the Map outputs. This
is because Reduce outputs are always consumed locally, and every piece of data

has to be replicated.

3.8 ISS: Intermediate Storage System

The results in Section 3.7 showed that a rack-level replication mechanism that
asynchronously replicates locally-consumed data allows a storage system to sat-
isfy the requirements of intermediate data availability and minimal interference.
However, the question of how to implement this mechanism still remains. Thus,
we address this question by discussing the design of our system, ISS (Interme-

diate Storage System).

3.8.1 Interface and Design Choices

ISS is implemented as an extension to HDFS. Concretely, we add an imple-
mentation of a rack-level replication mechanism that asynchronously replicates
locally-consumed data (i.e., a mechanism with all three hypotheses from Sec-
tion 3.6). ISS takes care of all aspects of managing intermediate data, includ-
ing writing, reading, replicating, and shuffling. Thus, a dataflow programming
framework that uses ISS does not need to perform the Shuffle phase manually,
since ISS seamlessly transfers the intermediate data from writers (e.g., Map
tasks) to readers (e.g., Reduce tasks). ISS extends the API of HDFS as we
summarize in Table 3.4.

There are some important design choices in ISS as we discuss shortly. They
are tailored toward programming convenience for dataflow programming frame-

works. We elaborate our design choices below.

95



1. All files are immutable. Once a file is created and closed, it can only be
opened for read operations. Thus, the protocol for a writer is create-write-

close, and the protocol for a reader is open-read-close.
2. The file becomes visible immediately after it is created.

3. There can be only one writer at a time, but multiple readers are allowed

over a duration.

4. When a reader opens a file, it blocks until the file is closed by the writer of
that file (if it is opened and being written by the writer at the same time)
and the file chunk indicated by the offset and length fields is completely
copied to the local disk.

3.8.2 MapReduce Example

To illustrate how a dataflow programming framework can utilize ISS, consider
MapReduce as an example. In MapReduce, each Map task can create interme-
diate files using iss_create(). The Hadoop’s master machine, which is in charge
of scheduling and coordinating MapReduce tasks, can keep track of all the file
names that Map tasks create. Since a similar process is necessary for the Shuf-
fle phase in the current MapReduce, this is not a significant departure from
the current implementation. However, since the Shuffle phase is automatically
performed by ISS, we can reduce the overhead and complexity of the Shuffle
process from the master. Each Map task then proceeds with iss_write() to write
the intermediate files. In the meantime, each Reduce Task can learn all the
file names through the master, then uses iss_open() to wait until the files are
completely copied to the local disk. Note that this step replaces the Shuffle
phase. After fetching the files, each Reduce task can proceed with iss_read() as

it would with a local file.

3.9 Evaluation

We evaluate performance characteristics such as behavior under failures and
replication completion time. In Section 3.7, we have already presented how our

asynchronous rack-level selective replication mechanism performs.

3.9.1 Performance Under Failure

As we have discussed in Section 3.4.2, the original Hadoop re-executes Map tasks
again when it encounters failures in the Reduce phase. This is illustrated in
Figure 3.16 (although we have shown the result of a failure injection experiment
in Section 3.4.2, we show a similar result in a different setting in this section for

the sake of discussion).
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Figure 3.16: Hadoop with One Machine Failure Injection (ENV3)
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Figure 3.17: Expected Behavior of Hadoop Augmented with ISS (ENV3)

In Figure 3.16, a machine failure is injected at around time ¢ = 500 second in
the beginning of the Reduce phase. This failure goes undetected until the failed
machine’s heartbeat timeout expires (the default timeout value is 10 minutes).
Thus, at around time ¢ = 1100 second, we can see that Map tasks are re-assigned
to a different machine and re-executed, shown by the re-surge of the bold line.

This behavior would have been different if the intermediate data generated
by the failed node had been available at some other node. In fact, the effect of
failure would have been almost non-existent because of “speculative execution”
implemented in Hadoop. In a nutshell, speculative execution detects any task
that is making slow progress compared to other tasks, and redundantly executes
the detected slow task on a faster machine. Thus, if the intermediate data is
available, speculative execution can identify tasks that were running on the failed
machine as slow tasks and redundantly execute them on different machines.
However, the speculative execution does not help if the intermediate data is not
available as in Figure 3.16, since even the speculated tasks need the intermediate
data.

Figure 3.17 demonstrates this behavior. We emulate what would happen

with ISS, speculative execution, and a machine failure in the following ways.
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Figure 3.18: Replication Completion Time (ENV2)

First, we kill tasks that are running on one machine in order to emulate a
machine failure at time ¢ = 800 second. This is different from the failure injec-
tion experiment performed for Figure 3.16, since unlike actual machine failures,
Hadoop detects task failures immediately and reacts to the failures. Second,
we still let the intermediate data accessible from other machines. Third, since
Hadoop immediately re-executes tasks upon their failures, we kill tasks at the
time (¢ = 800 second) when speculative execution might detect and redundantly
execute those tasks.

We observe that the completion time increases from 914 seconds in Fig-
ure 3.17 to 1450 seconds in Figure 3.16, showing approximately 59% of slow-
down (or 37% speedup). Compared to the average completion time of Hadoop
without any failure shown in both Figure 3.13 and Figure 3.15, the completion
time of Hadoop with ISS under one failure increases only approximately 10% in
Figure 3.17. However, the completion time of Hadoop without ISS under one

failure in Figure 3.16 increases approximately 75%, which is quite significant.

3.9.2 Replication Completion Time

Replication completion time is an important metric since it shows the “win-
dow of vulnerability”, i.e., the period of time during which ISS cannot provide
data availability for an intermediate data block. This is shown in Figures 3.18
and 3.19. In both plots, we plot the time taken by each block (size: 128MB)
to be completely replicated (shown by crosses) along with the timeline of a
foreground MapReduce job (shown by lines). We have chosen to show the per-
formance of asynchronous rack-level replication mechanism that replicates all
the intermediate data generated by the Map tasks, in order to picture the com-
plete process of replication. We show one specific run for each of two settings,
ENV2 and ENV3. We omit the discussion about completion time comparison,
since we have discussed it already in Section 3.7.

We observe a general trend that the replication time takes longer for each
block towards the end of the Shuffle phase. This is due to lower bandwidth
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Figure 3.19: Replication Completion Time (ENV3)

availability, since the network is heavily utilized during the Shuffle phase. In
Figure 3.18, the last replicated block finishes at around time ¢ = 950 second,
shortly before the Reduce phase ends. In contrast, in Figure 3.19, the last
replicated block finishes at around time ¢ = 850 second, shortly after the Shuffle
phase ends. This difference is due to the bandwidth available within a rack.
ENV2 uses 100 Mbps switches, while ENV3 uses 1Gbps switches. However,
we can see that even in a bandwidth-scarce environment such as ENV2, the

replication finishes before the Reduce phase.

3.10 Summary

We have shown the need, presented requirements, and a design of an inter-
mediate storage system (ISS) that treats intermediate storage as a first-class
citizen for dataflow programs. We have shown experimentally that the exist-
ing approaches are insufficient satisfying the requirements of data availability
and minimal interference. We have also shown that our asynchronous rack-
level selective replication mechanism is effective, and almost eliminates all the
interference. Our failure injection experiments show that Hadoop without ISS
can slowdown the performance by approximately 59% compared to Hadoop with
ISS. Replication completion time shows that asynchronous rack-level replication

can be done quickly even in a bandwidth-scarce environment.

59



Chapter 4

On-Demand
Worker-Centric Scheduling

This chapter presents the motivation, background, design and evaluation of
worker-centric scheduling strategies for data-intensive applications in Grids.
Worker-centric scheduling strategies are necessary due to the scale of data rang-
ing from terabytes to petabytes that current data-intensive applications need to
handle, as well as the dynamic nature of resource availability in Grids. We de-
tail these challenges and how worker-centric scheduling strategies address them

in this chapter.

4.1 Motivation

Data-intensive Grid applications are the applications that run on distributed
Grid sites and are characterized by their access of large amounts of data sets.
In attempting to minimize the execution time for such applications, schedulers
of the Grid application are hampered by the sheer size of the data sets involved.
While these data sets are mostly read-only and predefined, their size ranges
from several terabytes to petabytes [1]. Examples of such data-intensive Grid
applications can be found in many scientific domains such as Physics, Earth
science, and Astronomy, e.g., [72, 96].

At run time, this large scale of the data sets makes it impractical to replicate
all the data at every execution site, where the term “site” refers to a cluster of
client machines (“workers”). Instead, the typical approach to structuring such
a data-intensive Grid application (i.e., the “job”) is to partition the execution
code into several small “tasks”, and to divide up the data into several disjoint
pieces, each of which we call a “file”. Thus, each task requires a specific subset
of the files that constitute the job data, and a site begins the execution of a
given task by retrieving all those required files.

When running a data-intensive Grid application across a collection of several
sites, one of the most challenging problems is the design of a (global) Grid
scheduling algorithm. Specifically, since the cost of data transfer is a major
bottleneck for the execution time [72, 94, 86, 12], the main goal of the (global)
scheduling algorithm becomes assigning tasks to sites in such a way as to reduce
the frequency and amount of data transfer [94, 86, 12]. Fortunately, many data-

intensive Grid applications exhibit locality of interest, i.e., a file is often accessed
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by multiple tasks and also, a set of files that are accessed by one task are also
likely to be accessed together by other tasks [45] (note: we will also use data-
sharing whenever appropriate).

Our analysis of Coadd (Sloan Digital Sky Survey southern-hemisphere coad-
dition [72, 96]) (explained in detail in Section 4.3.1) also shows the locality of
interest in data-intensive Grid applications. There is a significant number of
files accessed by multiple tasks (Figure 4.2) and there is a large number of tasks
that access the same set of files during their execution (Figure 4.3). This local-
ity of interest gives an opportunity to reduce the numbers of both redundant
file transfers and file replicas, and is present in wide variety of applications in-
cluding data mining, image processing, genomics [94], and spatial processing
applications which consist of tasks that process overlapping regions [72].

Previously, locality of interest has been exploited for scheduling and workflow
planning in Grid data-intensive applications. Casanova et al. [12], Ranganathan
et al. [86] and Santos-Neto et al. [94] successfully demonstrated the benefits of
their locality-aware schedulers over traditional schedulers. However, the sched-
uler design in all the mentioned papers is task-centric, i.e., the global scheduler
assigns a task to a worker, without considering whether or not the worker can
start executing the task immediately after the task assignment.

We observe that such task-centric scheduling suffers from two major issues
when dealing with data-intensive applications. First, there is a possibility of un-
balanced task assignments, resulting in some sites being overloaded with tasks.
Second, conditions at a site during scheduling time of a task may be different
from the conditions at the site during execution of the task, because each task
usually waits in the site’s (or worker’s) task queue for a while.

We argue that an alternative worker-centric scheduling [106, 92], where a
scheduling decision to a worker is made only when the worker can start executing
the task immediately, is amenable to approaches that exploit locality in file
accesses, and addresses both of these issues. In worker-centric scheduling, the
times of task assignment to a worker are determined solely by the worker’s
preference based on its local criteria, e.g., by using policies based on local CPU
load, site queue length, time of the day, etc. The task execution begins as soon
as the task arrives at the worker. The scheduling problem then becomes the one
of designing a global scheduler that assigns the best possible as-yet-unscheduled
task to the “best” worker, based on such characteristics as the files already
present at the worker’s site, and the data required by the unscheduled tasks.

Worker-centric scheduling is on-demand — its scheduling decisions are based
on the most up-to-date state of the infrastructure at the time immediately
preceding actual task executions. On the other hand, tack-centric scheduling
suffers because often times it makes decisions based on the information that will
be stale by the time of actual task executions.

There are two options for implementing worker-centric scheduling strategies

- either (1) workers could pull tasks from a task repository associated with the
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global scheduler, when the worker’s local policies allow it to do so; or (2) the
global scheduler could push tasks out to workers, depending on the worker’s
preference. We consider only the pull variant ((1) above) since it is simpler
and more practical. Henceforth in this chapter, whenever we use the term
“worker-centric”, we will be referring to only the pull variant of the worker-
centric algorithm.

We present the first (to the best of our knowledge) worker-centric scheduling
strategies that implicitly exploit the locality of interest in data-intensive Grid
applications. We then demonstrate the advantages of worker-centric scheduling
over task-centric scheduling for data-intensive Grid applications through exper-
iments. In our worker-centric strategies, each worker requests a task from the
global scheduler when convenient to the worker. Upon receiving this request, the
global scheduler iterates over the list of as-yet-unscheduled tasks and finds the
best task to assign to the worker. The “best” task could be selected according
to a variety of metrics, which we discuss later in detail.

We propose three different metrics that consider the different aspects of
locality of interest in data-intensive Grid applications, and aim to: (1) maximize
the chance of reusing the data, and (2) to minimize the number of file transfers.
Our simulation results with C'oadd confirm that worker-centric scheduling gives
better performance than task-centric scheduling in many scenarios. We select
Coadd for all our experiments in this dissertation because (1) it is difficult to
obtain Grid application traces, and (2) Coadd is a real Grid application used by
several research organizations [72, 96] and it shows many typical characteristics
of data-intensive Grid applications. Thus, we believe that our results will hold
for many other data-centric Grid applications.

It is important to note that our Grid model is general, and not intended to
specifically target production Grids such as Grid2003 [28]. Rather, we use the
term “Grid” as a generic model, where a set of cooperating sites (a cluster of
workers) can be used to execute a job (which consists of tasks sharing read-only
data). Also, our scheduling strategies focus only on scheduling data-sharing
tasks within a single large job (application), instead of multiple disconnected
jobs injected into the system by different users. However, for realistic evaluation,
we do simulate the presence of background jobs running concurrently with our

main Grid job in our experiments in Section 4.5.

4.2 Taxonomy

Figure 4.1 shows the taxonomy of the scheduling solution space. In this figure,
dynamism comes from resource availability, e.g., CPU, memory, disk, and net-
work bandwidth. Scale comes from the amount of data and the number of tasks.
Worker-centric scheduling strategies provide a solution for a large-scale dynamic
environment (the upper right region). Task-centric scheduling strategies are not

suitable for this environment due to the reasons discussed in Section 4.3.5. How-
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Figure 4.1: Taxonomy of the Scheduling Solution Space

ever, task-centric scheduling strategies provide solutions for a large-scale static
environment and a small-scale dynamic environment. This is due to the fact
that premature scheduling decisions cannot be made in a static environment
(the upper left region), and that unbalanced task assignment is not a significant
issue in a small-scale environment (the bottom right region). Finally, if the
environment is small-scale and static, one can always pre-compute the perfect

schedule beforehand without much overhead (the bottom left region).

4.3 Background and Basics

In this section, we motivate the scheduling problem by presenting the char-
acteristics of data-intensive applications. We then elaborate on the two types
of schedulers mentioned: task-centric and worker-centric. Lastly, we discuss

scheduling issues for data-intensive applications.

4.3.1 Characteristics of Data-Intensive Applications

We discuss characteristics of data-intensive applications here to motivate the
problem. As a real example, we use one particular application, Coadd (Sloan
Digital Sky Survey southern-hemisphere coaddition [72, 96]) in our discussion.

In general, tasks in a data-intensive application access a large set of files,
thus data transfer time significantly affects the entire execution time (i.e. data-
intensive applications are network-bound [21, 94]). In addition, the tasks have
a high degree of data-sharing among them, which gives an opportunity to reuse
data in local storage [12, 21, 72, 86, 94].

For example, Coadd is a spatial processing application that has 44,000 tasks
accessing 588,900 files in total. It is reported by Meyer et al. [72] that when it
was run on Grid3 [28] with over 30 sites and 4,500 CPUs, it took roughly 70 days

to complete. One of the reasons for the observed long completion time was the

63



100 - - . . ;

™ 80 r -
=
ks
>
= 60 r .
>
o
3 40} ]
©
o\o 20 L 4
coadd ——
0 1 1 1 1

12 10 8 6 4 2 0
# of references

Figure 4.2: Coadd file access distribution. Note that the x-axis is in decreas-
ing order, so each point in the CDF represents the minimum number of files
accessed.

large number of files necessary for each task. Meyer et al. [72] state that these
characteristics would also be expected in other spatial processing applications.

Our analysis of Coadd indeed confirms the characteristics of data-intensive
applications. In Coadd, each task accesses a different number of files ranging
from 36 to 181, and approximately 124 files on average. Moreover, roughly
90% of files are accessed by 6 or more tasks, as shown in Figure 4.2. If we
assume that each file is fixed at 5MB as in [72], then the total size of all the
files is roughly 2.8TB, and each of 44,000 tasks potentially requires 620MB of
data transfer on average and up to 905MB in the worse case for each execution.
Considering the number of tasks and size of data transfers, it is desirable to
reduce the redundant file transfers.

To show locality in Coadd, we first pick 1,000 sample pairs of files (say, A
and B) accessed by Coadd tasks. We then plot the ratio between the actual
number of tasks accessing both files, and the expected number of tasks accessing
the same files. Figure 4.3 shows the result. The former (the actual number, say,
() is directly counted from our Coadd workload, and the later (the expected
number) is derived from % x % x T, where T is the total number of tasks, and
a, b are the numbers of tasks accessing A and B, accordingly. The Y-axis shows
C/(% x £ xT). As we can see, the values are much larger than 1, which means
that the number of tasks that access the same pair of files is much larger than

statistically expected.
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Figure 4.3: Locality of interest in Coadd.

4.3.2 System Model

Before comparing task-centric to worker-centric solutions, we present our sys-

tem model. We assume that:

1. A job is defined as an application composed of multiple parallel tasks. Each
task does not need to communicate with other tasks in order to proceed
(i.e., a job is a Bag-of-Tasks [94]). However, tasks do share read-only files

(data). These files are provided a priori along with the job specification.

2. There are multiple sites. Each site has at least one computation server or
worker (and possibly multiple workers), and one data server to store data
locally. We further assume that there is only one data server (or local
storage) per site. If there are multiple data servers at a site, we consider

all these data servers as combined storage. Storage size at a site is limited.

3. The data server of a site receives all file requests from the workers in the
same site, and sends batch file requests for the missing files to the external
file server. The data server processes requests one by one. This is more

efficient than simultaneous requests, given the bandwidth limits.
4. Each task issues exactly one batch file request.

5. A worker starts executing a task by transferring all the files necessary for
the task to the local data storage. After the transfer is over, the worker

begins the actual computation of the task.

6. There is one external (global) scheduler that contains information about

all tasks and gives tasks out on-demand to workers. Also, there is an
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external file server that has all the files necessary for all tasks, and hands

them out to data servers on-demand.

7. Intra-site communication costs are negligible compared to inter-site com-

munication costs.

8. In order to simplify our exposition, we will henceforth assume that all files
are equally-sized. However, all our algorithms can be easily extended to
variable sized files, by modifying the considered metrics to reflect the data

size rather than the number of files.
We use the following two terms throughout this chapter:

o Makespan [82] is the total execution time of the job in consideration. This

is the main metric for performance measurement.

o Utilization of worker A is defined as, (total computation time of A) / (total

execution time of A).

e A task and a local storage (i.e. the data server at a site) are said to
overlap with each other, when at least one file necessary for the task is
already present in the local storage. We use the term, overlap cardinality,

to indicate the number of overlapping files.

The main goals for a scheduling algorithm are then to: (1) reduce the
makespan, (2) reduce the number of files transferred to sites, and (3) increase

the utilization at workers.

4.3.3 Task-Centric and Worker-Centric Schedulers

We elaborate two types of schedulers, namely, task-centric schedulers and worker-
centric schedulers. Figures 4.4 and 4.5 show illustrations of worker-centric and
task-centric scheduling. In essence, this categorization is based on whether or
not a scheduling strategy considers immediate task execution of a worker after
a task assignment.

Concretely, a scheduler is worker-centric, if the task assignment to a worker
is done when the worker can start executing the task immediately. As men-
tioned before, we consider only the pull-based variant of worker-centric schedul-

3

ing and the term “worker-centric” refers to this pull-based variant of worker-
centric scheduler throughout this chapter. This variant has each worker pull a
task from a task repository associated with the global scheduler, when its local
policies allow it. These local policies may be a function of CPU load, free RAM
space, time of day, etc. For instance, a site could have a policy that Grid jobs
are executed only over night or at a specific time of the day. Another policy
might state that a site could execute Grid jobs only when the average CPU load
has been below a specified threshold for a while. This architecture is similar to

a server-client architecture - a worker requests a task to the scheduler, and the
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scheduler finds the “best” task for the worker according to a set of metrics and
local policies of the worker. One example of this type of worker-centric strate-
gies is the traditional workqueue algorithm, which dispatches a task in FIFO
order to an idle worker [18].

On the contrary, a scheduler is task-centric, if a task assignment is done
without considering whether or not the worker can execute the task immediately.
For a given set of tasks and a set of workers, the global scheduler chooses the
best match (based on its certain metrics other than immediate task execution)
between workers and tasks, and assigns each task to the best worker. Each
worker has a task queue and executes the tasks in the queue one by one; an
empty queue means the corresponding worker is not executing tasks for that
job. Typical metrics used by schedulers are CPU load, network bandwidth, data
overlap, etc. For example, scheduling strategies in [86] and storage affinity-based
schemes [21] are task-centric.

Since our focus in this dissertation is to show the effectiveness of worker-
centric scheduling in exploiting locality compared to task-centric scheduling,

we do not discuss various policies of worker-centric scheduling further. In Sec-
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tion 4.5, we first evaluate our task-centric and worker-centric strategies using a
simple policy called always available - a worker requests a task from job X imme-
diately after it finishes the previous task from the same job X. Later, to consider
the effect of slowdown due to background CPU load, we experimentally study
the effect of local jobs at individual workers (which might be submitted by local
users or through other schedulers) - these background jobs run concurrently

with tasks of the Grid job under consideration.

4.3.4 Scheduling Issues for Data-Intensive Applications

Several previous studies have identified that reusing data in local storage gives
a dramatic performance improvement for data-intensive applications [12, 72,
86, 94]. Among others, studies by Ranganathan et al. [86] and Santos-Neto
et al. [94] propose various task-centric scheduling strategies for data-intensive
applications. Their studies suggest that making scheduling decisions based on
data reuse indeed improve performance over other scheduling strategies that
consider various different metrics altogether. Broadly, both types of strategies
calculate and use the overlap cardinality (either the number of files or bytes)
between all possible task-site pairs, in order to make the scheduling decisions.

The reason why schedulers considering overlap cardinality work better is in-
tuitive. As we state in Section 4.3.1 and show in Figure 4.2, (a) data transfer
time significantly affects the entire execution time of a data-intensive applica-
tion, and (b) tasks have a high degree of data-sharing among themselves. This
strategy also works well in the real world because data location is relatively
static and easy to obtain compared to dynamic metrics such as network band-
width and CPU loads [94].

4.3.5 Problems of Task-Centric Scheduling and Possible

Solutions

We observe two problems from task-centric scheduling strategies. These prob-
lems are significant because data replication and task replication [86, 94] never
address the second problem, although the first problem can be avoided by both
mechanisms.
1) Unbalanced Task Assignments: As mentioned by Ranganathan et al. [86],
task-centric scheduling with data reuse has the problem of overloading certain
sites with popular files. Since the overlap cardinality is the primary metric when
assigning a task, workers with popular files may be assigned more tasks than
the workers with less popular files. Since this problem is inherent in task-centric
scheduling, other mechanisms need to be used to avoid the problem, e.g., data
replication [86] and task replication [94].

With data replication, the system keeps track of the popularity of each file.
If a file’s popularity exceeds the pre-determined threshold, it is replicated to
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other sites. Thus, data replication helps to distribute the load of sites with
popular files [86].

Task replication can also help to distribute the unbalanced load caused by

popular files. With task replication, the scheduler first distributes its tasks
according to the overlap cardinality. Once the initial assignment is done, the
scheduler waits until at least one worker becomes idle. Then it picks a task
already assigned to a worker and replicates it to the idle worker. If one of the
workers finishes the task, the other worker cancels the task. The process is
repeated whenever there is an idle worker. This strategy, called storage affinity,
is proposed and evaluated by Santos-Neto et al. [94]. They show that a task-
centric scheduler with data reuse and task replication performs better than other
scheduling strategies with dynamic information such as CPU loads and available
bandwidth.
2) Long Latency between scheduling and execution: Task-centric schedul-
ing typically has long latency between scheduling and execution. The following
two reasons cause this problem - (1) Since each worker accepts tasks passively
from the scheduler and stores received tasks in its queue, there is latency be-
tween task assignment time and the actual execution time. (2) Since storage at
a site is limited in size, some files required by a task may have been replaced by
other required files between the scheduling and execution times of the task.

Therefore, it is possible that a worker was assigned a task because it had
some files needed by the task, but at the time of execution, the worker might
no longer have some of those files. This “premature scheduling decision” can
cause performance degradation with small storage sizes as we show in Section
4.5.

4.3.6 Advantages of Worker-Centric Scheduling

In comparison to the above approach, worker-centric scheduling does not suffer
from the unbalanced task assignment problem because a worker requests a new
task to the scheduler only when its local policies allow it to execute a task.
This means that it is not necessary to have other mechanisms to resolve the
issue. Therefore, a worker-centric scheduler only needs to consider its scheduling
metric, which leads to a simpler scheduler design.

In fact, both data replication and task replication are orthogonal mecha-
nisms to improve performance in worker-centric schedulers. Thus, they might
help the performance of worker-centric schedulers, but are not necessary. How-
ever, task-centric schedulers require other mechanisms because unbalanced task
assignment caused by popular files actually hurts the performance of task-centric
schedulers [86].

In addition, worker-centric scheduling has short latency between scheduling
and execution compared to task-centric scheduling. This arises because w.r.t.

a worker, this is a just-in-time scheduling policy. Each worker executes a task
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while(forever):
req = GetNextRequest()
if taskQueue is empty:
wait for a task
for each task t in taskQueue:

Calculate Weight(t)
t = ChooseTask(n)
ReturnRequest(t)

Figure 4.6: Pseudo-code of the basic algorithm. The global scheduler performs
this algorithm whenever a worker requests a task.

as soon as the task has arrived at the worker. Thus, it does not suffer from the
premature scheduling decisions.

In Section 4.4, we focus on worker-centric scheduling strategies and pro-
pose various metrics that consider data-reuse. We also show in Section 4.5
that worker-centric scheduling without additional mechanisms can achieve bet-
ter performance in many scenarios than task-centric scheduling with additional

mechanisms.

4.4 New Worker-Centric Scheduling
Algorithms

In this section, we present our new worker-centric scheduling algorithms that

attempt to exploit locality by considering data-reuse during scheduling.

4.4.1 Basic Algorithm

Our basic algorithm is shown in Figure 4.6. It is a worker-centric algorithm, with
one global scheduler and multiple sites, each containing multiple workers. Upon
receiving a request from a worker, the global scheduler calculates the weight of
each as-yet-unscheduled task (Calculate Weight()) and chooses the best task to
assign to the requesting worker (ChooseTask()). Notice that worker requests are
processed sequentially. Calculate Weight() and ChooseTask() take into account
the set of files already at the worker’s site, and the set of files required by the
worker, thus attempting to exploit locality. These are detailed next.

As mentioned in Section 4.3.2, for simplicity of exposition, we restrict our
discussion to tasks that share equally-sized files. However, our algorithms can
easily be extended to varied file sizes by merely considering a “file block” (instead

of a file) as a unit of sharing among tasks.

4.4.2 Calculate Weight()

Calculate Weight() calculates a weight for each each task in order to exploit the

locality of file access. This weight can be calculated via one of three possible
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metrics - QOverlap, Rest, and Combined. Before further discussion, we need to

define the following terms and conditions:

e T': the set of all unscheduled tasks that the scheduler currently has in its

queue.

e F}: the set of overlapping files between task ¢ and the data storage at the

site of the requesting worker.
e |t|: the total number of files required by task ¢.

e 7;: the number of past references of the file ¢ at the local storage (i.e. data
server) of the requesting worker, i.e., the number of previously completed

tasks at the site that accessed file 1.

e Task t is said to be better than task ¢/, when
Calculate Weight(t) > Calculate Weight (¥ )

Now we consider three metrics that could be used by the scheduler.

1. Owerlap: This metric is the overlap cardinality (discussed in Section 4.3.2).
It counts the number of files that are needed by the given task and are
already present in the local storage of the requesting worker. Thus, |Fy| is
the overlap cardinality. Intuitively, the goal of this metric is to maximize
the chance of reusing the data already stored in the local storage of the
requesting worker. As mentioned before, this metric is the primary metric

of task-centric scheduling strategies in the previous studies.

2. Rest: This metric is the inverse of the number of files that need to be
transferred in order to execute the given task, i.e., rest; = m Intu-
itively, the goal of this metric is to minimize the number of files that need

to be transferred. This is a complement of overlap metric conceptually.

3. Combined: For this metric, each data server keeps for each file the number
of past references, i.e., the number of previously completed tasks at the
site that have accessed the file. It combines these past references and
rest using an equation defined as follows. We define ref, to be the total
references of all the overlapping files of task t at the worker’s site, i.e.,
refy = D icp, Ti- Now, let totalRef be the sum of all ref, over all ¢ in T
(w.r.t. the requesting worker’s site), i.e., totalRef = ), ref,. Also, let

totalRest be the sum of all rest; over all ¢ in T', i.e., totalRest = ), rest;.

refy + totalRest
totalRef resty

exploit locality of file access, and thus minimize both the number of files

Then, combined; =

. Intuitively, this metric attempts to

that need to be transferred as well as to prefer workers that accessed the

same files in the past.
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4.4.3 ChooseTask()

Since the scheduler greedily assigns a task to a worker based on the value of
Calculate Weight(), there is some possibility of sub-optimal assignments. One
reason for this is the sequential nature of such worker-centric scheduling. For
example, suppose worker h is a better candidate to execute task ¢t than worker
h', but worker h' requests a task right before worker h requests a task. In
this case, the scheduler will assign task t to worker A’ rather than h. This can
happen quite often especially for data-intensive applications - since file transfer
time is usually long after a task assignment, the global scheduler can receive a
number of requests from different workers during the transfer. So it is possible
that a better worker comes by while the previously-assigned worker has not even
started processing, i.e., it is still awaiting the file transfer to complete.

To take these types of scenarios into account, we use randomization when
choosing a task through ChooseTask(n). ChooseTask(n) then executes two
steps. First, it chooses a set, T),, of the best n tasks among all tasks (i.e.,
tasks with n largest values calculated by Calculate Weight()), where n is a pa-
rameter. Second, it chooses one task among the best n tasks with a probability
proportional to the Calculate Weight() values. Thus the probability of choosing
task t is,

P = Calculate Weight(t)
t = > ke, CalculateWeight (k)"

If n > 2, this is a randomized approach. If n = 1, this is a deterministic

approach that greedily chooses the best task. Notice that this procedure, in
combination with Calculate Weight()), attempts to implicitly exploit the locality

of file access.

4.4.4 Reducing Communication Cost

In order to make the scheduling decision for a requesting worker, we assumed
above that global scheduler has all the necessary information about files cur-
rently stored at the requesting worker’s site, namely, (1) names of files that the
data server is currently storing, and (2) the reference count for each of these
files. In other words, we assumed that the global scheduler implicitly maintains
a reference table, as shown in Figure 4.7. In this table, there is one column per
file in the job, and one row per site in the Grid. Each entry (i, j) specifies “ref-
erence count” for file j at site . The reference count denotes the past references
of file j at site ¢ and also shows the presence of file j at site i.

There are two efficiency sub-problems that need to be addressed: how to
maintain this table efficiently, and how to keep it updated with minimal net-
work bandwidth overhead. The first sub-problem is addressed by having the
global scheduler maintain a local hash table per site (row in the reference ta-
ble), containing the names of files currently stored at that site along with their
reference counts. File names are the keys for this data structure. Notice that

lookup, insertion and deletion into this hash table are each O(1) on expectation.
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FileID . . .
Sto] fileO filel file2

sited | N/A 12 6

sitel | N/A N/A N/A

site2 10 1 5

site3 8 N/A 1

sited | N/A N/A 1

Figure 4.7: A reference table example. Each entry contains a reference counter.
We use N/A to indicate that the entry is not present for the sake of demonstra-
tion.

The bandwidth problem is addressed by piggybacking each task-requesting
message, from a worker to the global scheduler, with the set of file names that
have been replaced at the data server of the worker’s site since the last request
from the same site, i.e., the list of names of files that were eliminated from the
site’s data server since its last request. The global scheduler deletes these file
names from the hash table for that site. Then, once it makes the requested
scheduling decision for the worker, the new files required by the assigned task
are inserted into this hash table and the corresponding reference counts are
initialized to 1. For all other files that are already present at the site and
required by the assigned task, the global scheduler increments corresponding
reference counts by 1. In this way, the communication between the worker to
the global scheduler is reduced to only once per request no matter how many
files are added and/or deleted from the site’s data server.

This approach is very efficient for our considered cases. In spite of file-sharing
across tasks, each task in our observed data-intensive applications typically
accesses a relatively small number of files compared to the total number of files
for a given application. For example, in the Coadd traces, no task accesses more
than 181 files out of a total of 588,900, in spite of data-sharing. This also means
that at most 181 files are replaced between two consecutive requests. Thus,
assuming file names are 4 bytes each, the additional information piggybacked
along with a worker request is at most 724 bytes in size, which is reasonably

small.

4.4.5 Complexity

If |T'| is the number of currently waiting tasks, and |I| is the maximal number
of files required by any task, then the total communication complexity of our
algorithm arises out of the per-request piggybacked information as described in
the previous section - this is O(]I]) per task assigned to a worker. Similarly, the

computation complexity is O(|I| + |T'| x |I|) per task assigned to a worker, with
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Unit computation cost 1,000 MFLOPS
capacity of each data server 6,000 files
number of workers per site 1

number of sites 10
file size 25 MB

Table 4.1: Default parameters for experiments

the first term accounting for the hash table operations, and the second one for
the scheduler’s operation itself. This is O(|T|x |I|), and more efficient than task-
centric strategies used by Ranganathan et al. [86] and Santos-Neto et al. [94],
which compare all pairs of tasks and sites. Their complexity is O(|T| x |[I| x |S|)
(where |S] is the total number of sites), even assuming the use of a hash table
similar to that described in the previous section. Our approach is more efficient
because we do not assume any knowledge (a priori or otherwise) about sites

other than the requesting worker’s.

4.5 FEvaluation

In this section, we present our evaluation of worker-centric scheduling strategies

and discuss the results.

4.5.1 Simulation Overview

To demonstrate the advantages of worker-centric scheduling over task-centric
scheduling, we implement our basic algorithm with three metrics on the SimGrid
simulator [60]. For comparison, we also implement storage affinity [94], a task-
centric scheduling with data reuse and task replication.

We vary five main parameters in our experiments - (1) capacity of each data
server, (2) number of workers per site, (3) computation time, (4) number of
sites, and (5) file size. The default values for these parameters are summarized
in Table 4.1, and used in our experiments unless otherwise noted. However, we
vary each of these 5 parameters in our experiments to see the effects of different
values. Throughout the experiments, the computation time of each task is linear
to the number of files (i.e., (number of files) * (unit computation cost)).

Our main workload is Coadd (Sloan Digital Sky Survey southern-hemisphere
coaddition [72, 96]). As mentioned before, Coadd is a spatial processing appli-
cation that has 44,000 tasks accessing 588,900 files in total. We use only the
first 6,000 tasks of Coadd to finish our experiments in a reasonable amount of
time. A total of 53,390 files are accessed by these 6,000 tasks. More workload
characteristics are shown in Table 4.2. Although we only use the first 6,000

tasks, our workload characteristics remain similar to Figure 4.2.
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Total number of files 53,390
Max number of files needed by a task 101
Min number of files needed by a task 36
Average number of files needed by a task | 78.4327

Table 4.2: Characteristics of Coadd with 6,000 tasks

Avg (MB/s) | Std dev
Topology 0 4.418 5.416
Topology 1 4.631 6.734
Topology 2 3.858 2.599
Topology 3 3.432 1.432
Topology 4 3.932 2.778

Table 4.3: Average bandwidth and standard deviation between a site and the
file server

4.5.2 Simulation Environment

Network Configuration: We use 5 different topologies, each with 90 sites,
generated with Tiers topology generator [24]. Tiers is a structural topology
generator that generates hierarchical cluster topologies. We use Tiers because
it is well-supported by SimGrid, the simulator we use in our experiments. Only
a subset of 90 sites are used in each experiment. For each topology, there are
one global scheduler and one global file server which stores all the files. At
each site, there are 30 workers and 1 data server. All 30 workers and the data
server in a site share outgoing links to the global scheduler and the file server.
Intra-site communication cost (cause by bandwidth and latency) is negligible.
Inter-site communication cost is determined by underlying network links gener-
ated by Tiers. Each path between two sites consists of multiple network links,
and the bandwidth and latency of each of these links determine the inter-site
communication cost. Table 4.3 summarizes the average and standard deviation
of bandwidth values between a site to the file server for each topology. Each
worker’s computation capacity (in MFLOPS) is chosen randomly from top500
list [104] and is uniformly divided by 100, since most of the 500 machines are
too powerful. Each experiment is performed with 5 different topologies and the

results are averaged over the 5 runs.

Background Jobs: We perform our experiments with background jobs as
well as without background jobs. We use background jobs to evaluate the
performance of different strategies in the presence of competing applications
running on each site. Since a site is typically shared by different schedulers and
local users, this gives us a more realistic setting.

We simulate background jobs through varying each worker’s CPU load. A
worker is always executing a task for the Grid job in question, but in addition
it is also running background jobs. The background jobs thus slow down the

execution of the task at the worker. The load due to these background jobs
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is simulated as follows: at each worker, once every 5 minutes, the background
CPU load is picked as a floating-point number uniformly at random between 0
to 100. This becomes the worker’s background load over the next 5 minutes.
Considering that the total job execution time in our simulations is O(tens to
hundreds of days), we consider the granularity of 5 minutes to be fine-grained

enough to capture dynamics of background jobs.

4.5.3 Algorithms

We compare the following 6 different algorithms. The first algorithm is task-

centric; the rest are worker-centric.

1. task-centric storage affinity : The task-centric scheduling with data reuse

and task replication [94]. This is a deterministic algorithm.

2. overlap : Our basic algorithm with the overlap metric. This is a deter-

ministic algorithm.

3. rest : Our basic algorithm with the rest metric. n = 1 for ChooseTask(n,).

This is a deterministic algorithm.

4. combined : Our basic algorithm with the combined metric. n = 1 for

ChooseTask(n). This is a deterministic algorithm.

5. rest.2 : Our basic algorithm with the overlap metric. n = 2 for Choose-

Task(n). This is a randomized algorithm.

6. combined.2 : Our basic algorithm with the overlap metric. n = 2 for

ChooseTask(n). This is a randomized algorithm.

We have tried different values of n for ChooseTask(), but only 1 and 2 give

good results. Thus, we only show the results of n =1 and 2.

4.5.4 Capacity Per Data Server

Figure 4.8 shows the makespan (i.e. total execution time) of each algorithm with
different capacities of 3,000, 6,000, 15,000, and 30,000 files in the presence of
background jobs. We do not present the results without background jobs since
the performance characteristics are similar. Randomized algorithms, rest.2 and
combined.2, perform the best in all cases, which confirms that it avoids sub-
optimal scheduling decisions described in Section 4.4.3. Storage affinity has
a negative performance impact with smaller capacities because of premature
scheduling decisions as discussed in Section 4.3.5. However, the performance
becomes comparable to worker-centric scheduling as the storage size increases.

Figure 4.8 also shows the importance of considering the number of files that

actually need to be transferred. Among the worker-centric strategies, overlap
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Figure 4.8: Makespan of each algorithm with different capacities of 3,000, 6,000,
15,000, and 30,000 files (with background jobs).
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Figure 4.9: File transfers of each algorithm with different capacities of 3,000,
6,000, 15,000, and 30,000 files (with background jobs).

performs worse than other metrics because it does not explicitly consider the
number of file transfers, while other metrics do. As we can see in Figure 4.9,
overlap usually has higher number of file transfers than other metrics. Overall,
the randomized algorithms appear to perform the best (i.e., rest.2 and com-
bined.2).

The makespan of each metric in worker-centric scheduling shows steady be-
havior because the working set of a Coadd task is not big. As is shown in
Table 4.2, a task needs 101 files at most, and roughly 78 files on average. Thus,

a storage with 3,000 files can actually give similar performance as a storage
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Figure 4.10: Average utilization at worker, with different capacities of 3,000,
6,000, 15,000, and 30,000 files (with background jobs)

15000 ‘ ‘ — — ‘
" task-centric storage affinity —+—
i overlap - i
14000 \ rest k-
@ combined =
2 13000 | rest.2 —m—
2 combined.2 ---©
E 12000 |
C
S 11000 t
(%]
<
< 10000 r
S
9000
8000 1 1 1 1 1 1 1

2 3 4 5 6 7 8 9 10
# of workers

Figure 4.11: Makespan with different numbers of workers at a site (without
background jobs)

with, say, 10,000 files.

Figure 4.10 shows the average utilization of each worker (accounting for
both the main Grid job and the background jobs). For task-centric storage
affinity, the low utilization with the capacity of 3,000 files means that the greedy
approach requests files more often than other strategies. This behavior shows (1)
that randomized decisions can be better than taking what looks as the “best”
decision at some particular time and, again, that (2) the task-centric storage
affinity suffers from premature scheduling decisions.

Due to the lack of space, we do not present the utilization results without
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Figure 4.12: Average number of file transfers per worker with different numbers
of workers at a site. We only show the results without background jobs, since
the presence of background jobs does not show any different behavior.

background jobs here. However, the utilization of each worker with background
jobs is slightly higher than that of each worker without background jobs. There
are two factors contributing to this result. The first factor is obviously back-
ground jobs running on each worker. The second factor is that it takes more
time for a worker to finish a task with background jobs. Thus, the utilization

goes higher with background jobs.

4.5.5 Number of Workers Per Site

Figure 4.11 shows the makespan of each algorithm with different numbers of
workers at a site. combined.2 performs the best mostly, which shows that min-
imizing file transfers as well as considering past references helps to reduce the
makespan. Overall, worker-centric scheduling metrics perform well with smaller
numbers of workers, but storage affinity performs well with larger numbers of
workers. Also, randomized algorithms that consider the number of file transfers
perform better than others.

The makespan of each algorithm flattens as the number of workers increases.
In some cases, the performance is worse with more workers (in Figure 4.11)!
We can understand the reason behind this behavior with two factors that con-
tribute to the makespan. First, as the number of workers increases at a site,
the contention at the data server of the site increases. Since the data server
processes each request one by one so as to minimize the redundant file trans-
fers (as mentioned in Section 4.3.2), this contention is unavoidable. This factor
has a negative impact on the makespan (i.e. increases it). On the contrary,

as the number of workers increases, the number of files that can be shared by
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background jobs does not show any different behavior.

waiting transfer # of file

time (hrs) | time (hrs) | transfers

2 workers 3.59 30.35 3998.5
4 workers 40.32 45.45 2086.5
6 workers 98.35 33.85 1335.17
8 workers 75.93 18.81 906.38

Table 4.4: Result of the rest metric at a site with 2 workers, 4 workers, 6 workers,
and 8 workers. All numbers are averages per worker. Note that rest shows the
worst makespan with 6 workers at a site.

the workers also increases. This factor has a positive impact on the makespan.
The interaction of these two factors results in different behaviors of different
algorithms.

To validate the reason, Figure 4.12 shows the number of file transfers per
worker and Figure 4.13 shows the corresponding utilization. It shows that the
average number of file transfers per worker decreases as the number of workers
increases. Thus, it shows that good file-sharing is achieved intra-site as the
number of workers increases. In addition, Table 4.4 shows the result of the rest
metric at one particular site with 2, 4, 6, and 8 workers. It shows (1) average
waiting time that a file request spends at the data server’s waiting queue, (2)
transfer time that it takes to transfer all the files from the external file server
to the data server, and (3) associated number of file transfers.

In the case of 2 workers in Table 4.4, the contention at each data server and
the file server is very low compared to other settings, simply because there are
fewer workers. Thus, the waiting time and the transfer time are rather small

even though the number of file transfers is high.
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Figure 4.14: Average utilization per worker for different unit computation costs
of 50, 200, 400, 600, 800, and 1,000 MFLOPS

We can reason why the performance is sometimes worse with more workers
with the data of 4 workers, 6 workers, and 8 workers. If we look at the data in
this range, both the average number of file transfers and the average transfer
time decrease as the number of workers increases, but the average waiting time
peaks at 6 workers. This means that the reduced transfer time is not enough to
compensate the increased competition at the data server for rest with 6 workers
at a site. For the same reason, other algorithms sometimes exhibit a worse

makespan with more workers.

4.5.6 Effect of Computation Time

With our default parameter values in Table 4.1, the average utilization per
worker is usually more than 90%, which means that each worker spends most of
its time on computation. Thus, we perform an experiment with smaller values
of unit computation time in order to understand how different computation-to-
communication ratios affect the behavior of each strategy. As mentioned before,
the computation time of each task is linear to the number of files that it needs to
process, i.e., (computation time) = (number of files) * (unit computation cost).
We vary the unit computation cost in this experiment.

Figure 4.14 and Figure 4.15 show that our experiment covers a wide range of
communication-to-computation ratio. As shown in Figure 4.14, the utilization
of each worker (i.e., (total computation time of the worker) / (total execution
time of the worker)) varies from roughly 0.2 to 0.9. Also, Figure 4.15 shows
that the file transfer time (i.e., communication time) takes from roughly 50% to
almost 100% of the entire makespan. Thus, our experiment covers a wide range

of communication-to-computation ratio, and still captures the characteristic of
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Figure 4.15: Total file transfer time compared to makespan, for different unit
computation costs of 50, 200, 400, 600, 800, and 1,000 MFLOPS

long communication time in data-intensive applications. Although Figures 4.14
and 4.15 show the results without the presence of background jobs, the overall
behavior remains similar even with background jobs. Note that file transfer time
does not directly contribute to worker utilization as in Figures 4.14 and 4.15.
The reason is because computation is parallelized, and hence, most workers are
busy with doing computation even when the file server transfers files. This
explains a seemingly inconsistent behavior of Figures 4.14 and 4.15, in which
the file transfer time takes roughly 50% with the unit computation cost of 1,000
MFLOPS in Figure 4.15, even when the average utilization of each worker is
roughly 90% in Figure 4.14.

Figure 4.16 shows the makespan (with background jobs) of each algorithm
in percentile scale using task-centric storage affinity as a baseline comparison.
We do not present the results without background jobs since they exhibit sim-
ilar behaviors. Overall, we observe that the performance trend remains simi-
lar across different strategies even with various computation-to-communication
ratios. Worker-centric strategies perform better than the task-centric storage
affinity in terms of makespan. In the best case, worker-centric rest takes roughly
28% less makespan time than task-centric storage affinity. Also, the gap between
task-centric storage affinity and other strategies generally becomes wider as the
unit computation cost decreases. This is an expected behavior since file transfer
time becomes more dominating in total execution time as the unit computation

cost decreases.
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Figure 4.17: Makespan with different numbers of sites (with background jobs)

4.5.7 Number of Sites

Figure 4.17 shows the makespan of each algorithm with different numbers of
sites and Figure 4.18 shows the number of file transfers accordingly. Gener-
ally, the makespan of each algorithm reduces as the number of sites increases,
as expected. combined.2 performs the best, which again confirms that mini-
mizing file transfers as well as considering past references helps to reduce the
makespan. In the best case, combined.2 takes roughly 17% less makespan time

than task-centric storage affinity. Randomized algorithms perform better than
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Figure 4.19: Makespan with different file sizes (with background jobs)

deterministic algorithms, which again shows that it avoids sub-optimal schedul-

ing decisions described in Section 4.4.3.

4.5.8 File Size

Figure 4.19 shows the makespan of each algorithm with different file sizes. We
choose small (5MB), middle (25MB), and large (50MB) file sizes. The makespan
grows almost linearly as the file size grows. Since all algorithms consider files
as the primary metric, various file sizes do not result in dramatically different

behaviors. combined.2 shows the best performance just like many other scenar-
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ios shown before. The general behavior remains the same even in the presence

of background jobs.

4.6 Related Work

Spatial Clustering [72] creates a task workflow based on the spatial relationship
of files in the input data set. It improves data reuse and diminishes file transfers
by clustering together tasks with high input-set overlap. Two drawbacks to this
approach are that (1) it cannot handle new jobs arriving asynchronously, and
(2) it is application specific.

Storage Affinity [94] also addresses file reuse for data-intensive applications.
The algorithm computes a data affinity value for each task, for each site, ac-
cording to the input set of each task and the data currently stored at a site’s
networked storage. To address inefficient CPU assignments, they propose repli-
cating tasks, also based on the storage affinity. The algorithm shows improved
makespan and good data reuse, specially when compared to the XSufferage [13]
scheduling heuristic.

Decoupling data scheduling from task scheduling was proposed by Ran-
ganathan et al. [86]. The work evaluates four simple task scheduling mecha-
nisms and three simple data scheduling mechanisms. Best results are obtained
when a task is scheduled to a site that has a good part of its input data already
in place, combined with proactive replication of a popular input data-set to a
random/least-loaded site.

A pull-based scheduler is proposed by Viswanathan et al. [106]. It employs
an Incremental Based Strategy, where a scheduler determines how to fraction a
job among available workers, based on worker’s computing speed and estimated
buffer. This work completely ignores data transfer time, and requires knowledge
of CPU speed and memory size in all workers.

Rosenberg et al. [92] study global scheduling strategies in the Grid-like en-
vironments theoretically. Their scheduling strategies focus mainly on DAGs of
tasks, where tasks are inter-dependent and pre-ordered, and the dependency
structure follows DAG (Directed Acyclic Graph). Although they discuss pull
and push strategies, their studies do not assume (1) data-intensive applications
(transfer time, storage capacity, data correlation, etc), (2) data-sharing, and (3)

task-independence. Thus, the issues are not related to our work.

4.7 Summary

‘We have presented the motivation, background, design and evaluation of worker-
centric scheduling strategies for data-intensive applications in Grids. We have
argued that worker-centric scheduling strategies are a natural choice for data-

intensive Grid applications due to the scale of data as well as the dynamic
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nature of resource availability in Grids. Our proposed strategies have been
evaluated in large-scale simulations with a real workload trace from Coadd. We
have found that metrics considering the number of file transfers generally give
better performance over metrics considering the overlap between a task and a
storage. We also found that worker-centric scheduling algorithms achieve better
or comparable performance to task-centric scheduling. Our results have shown
that we can achieve roughly up to 28% reduction in makespan with worker-

centric scheduling compared to task-centric scheduling.
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Chapter 5

MPIL: An On-Demand
Key/Value Store

This chapter presents the motivation, design, analysis, and evaluation of MPIL
(Multi-Path Insertion and Lookup). MPIL is an on-demand key/value store
that addresses the challenges of machine scale and membership dynamism in a
large-scale peer-to-peer setting. We detail how MPIL addresses them mainly in

comparison to a well-known existing system, Pastry [93], in this chapter.

5.1 Motivation

Resource location and discovery in distributed systems such as the Grid, coop-
erative web caching, peer to peer email, etc., all require object insertion and
querying mechanisms that are scalable and tolerant to node failures. Our work
is motivated by two additional practical concerns that require far more from
such object insertion and querying strategies (henceforth, together labeled as
“lookup” strategies). These practical concerns are overlay-independence and
perturbation-resistance.

Lookup strategies are usually coupled with the maintenance of an appro-
priately matched application-layer network (“overlay”) among the participating
hosts (“nodes” or “peers”) on top of the Internet. Each node knows a few other
nodes in the overlay according to specific overlay rules, and routes overlay mes-
sages such as insertion and querying of files. However, this makes it impossible
to deploy a practical peer to peer application (e.g., cooperative web caching) on
an already-ezisting legacy overlay (e.g., a Grid network) without first deploying
the overlay maintenance protocols associated with the p2p application. These
maintenance protocols might increase the overhead, or worse inhibit the per-
formance of, other already-existing protocols in the legacy overlay that already
maintain some kind of structure. This motivates the need to develop lookup
strategies that are on-demand, i.e., lookup strategies that perform well over
the current structure of the underlying overlay, independent of what the actual
topology is.

A second and more important practical concern is the resistance to a type of
dynamism that we call perturbation. If p2p overlays are to be deployed success-
fully for a variety of legal applications, the robustness of their behavior under

the ordinary kinds of stress experienced by nodes will be a minimum require-

87



ment. Perturbation is one such kind of stress. A node is said to be perturbed
if it is unresponsive for brief periods of time. Perturbation can be caused by
many reasons and can occur at several granularities. Concurrent competing
applications running on the host, packet buffer overflows, and congestion, can
cause short-term perturbation, where the node is unresponsive for up to a few
seconds. Longer-term perturbation with unresponsiveness granularities of sev-
eral minutes or hours can be caused by user churn, i.e. rapid node departures
and arrivals of users, a phenomenon present in Grid applications and file sharing
overlays. We model perturbation by nodes whose availability flaps periodically,
and study the effect of such periodic flapping on the lookup success rate. Success
rate is the fraction of successful replies to lookups injected into the overlay.

Currently, overlays are either unstructured or structured. Unstructured over-
lays such as Gnutella [33] use flooding to query object replicas. While this strat-
egy is perturbation-resistant and overlay-independent, it is neither efficient nor
scalable. Structured overlays include Chord [100], Pastry [93], Tapestry [111],
Kelips [36], Viceroy [67]. Also called DHTs (Distributed Hash Tables), these
overlays map both objects and nodes to keys by using hash functions. Lookups
are then routed within this overlay by using a routing algorithm that selects
one next hop node at each step, based on key values of the destination and the
current node. While structured overlay lookups are efficient and scalable, they
are not overlay-independent because the routing algorithm is usually coupled
with an appropriate overlay structure with maintenance strategies. For exam-
ple, Pastry uses prefix routing based on key values, and nodes in the underlying
overlay select neighbors based on the same metric. Recent studies reveal that
many structured overlays may be churn-resistant, but we show that they may
not be resistant to more general perturbations.

We present a new resource location and discovery algorithm called MPIL
(Multi-Path Insertion/Lookup) that provides both overlay-independence and
perturbation-resistance. MPIL achieves these goals by using a deterministic
routing metric (like DHTS), but by exploiting limited redundancy (like unstruc-
tured p2p systems). The deterministic routing metric used is based on the hash
value of keys (objects and nodes), just like Pastry or Chord, but unlike those sys-
tems, does not assume any characteristics about the underlying topology. This
routing requires the use of limited redundant routing of lookups to insert and
query multiple replicas of an object pointer. This limited redundant routing also
provides perturbation-resistance. Put together, MPIL provides a cost-effective
and convenient way of developing and deploying robust p2p applications that
target any type of overlay. In a sense, the techniques of limited redundancy and
overlay-independence achieves the best of both worlds from both structured and

unstructured overlays.
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Figure 5.1: Taxonomy of the Peer-to-Peer Lookup Solution Space

5.2 Taxonomy

Figure 5.1 shows the taxonomy of the peer-to-peer lookup solution space. In
this plot, dynamism comes from perturbation, and scale comes from the num-
ber of peers. MPIL provides a solution for a large-scale dynamic environment
(the upper right region). This is due to the fact that MPIL does not spend
maintenance traffic. In comparison, DHTs typically need to manage a certain
overlay structure, which requires considerable maintenance traffic (discussed in
Section 4.5). Thus, DHTs are more suitable for a large-scale static environment,
where less maintenance is required (the upper left region). In a small scale en-
vironment, a central directory can be used to provide the lookup functionality

(the bottom two regions).

5.3 Effect of Perturbation on Pastry

To study the effect of perturbation on Pastry, we conduct a set of simulations
with MSPastry. Our result indicates that although MSPastry already has vari-
ous overlay maintenance techniques that deal with failures in overlays, they are
not sufficiently perturbation-resistant.

Figure 5.2 summarizes our results. Each simulation consists of two stages.
In the first stage, 1000 insertion requests are generated to the static overlay
of MSPastry. These 1000 insertion requests have randomly-generated unique
message IDs. In the second stage, 1000 lookup requests are generated by the
same node which generates the insertion requests in the first stage. The lookup
requests are generated every (online period + offline period) seconds one by
one. These 1000 lookup requests are the lookup requests for 1000 IDs inserted
in the first stage. The overlay in the second stage is not static; Each node gets
perturbed with some probability. As mentioned earlier, our model of perturba-
tion can be described as flapping. A perturbed node periodically flaps between
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Figure 5.2: The effect of perturbation on MSPastry. x-axis (flapping prob-
ability) indicates the probability for a node to get perturbed. 1:1 indicates
that the online period is 1 second and the offline period is 1 second. The
same goes for 45:15 (idle:offline=45:15), 30:30 (idle:offline=30:30), and 300:300
(idle:offline=300:300).

being offline and being idle (online). At the beginning of each idle period, every
node comes back online and stays online during the period. At the beginning
of the offline period, however, each node decides whether to go offline or to stay
online based on the flapping probability. Each node randomly picks its very first
beginning of the flapping period (i.e. idle period + offline period). Lookups are
performed after every node enters its flapping period.

As in Figure 5.2, when idle:offline period is 45:15 (seconds), MSPastry can
route more than 90% of the messages successfully. This result shows that
MSPastry is already robust to a certain level, which is due to the overlay main-
tenance techniques of MSPastry. However, the number of successful lookups
decreases in other cases and with higher flap rates in general. When idle:offline
period is 30:30 (seconds), the success rate is roughly about 85% even with the
flapping probability of 0.1. When idle:offline period is 1:1 (seconds), the suc-
cess rate drops almost linearly. With idle:offline period of 300:300 (seconds),
the success rate is almost 0 with the flapping probability from 0.8 to 1. This
result clearly shows that the overlay maintenance techniques of MSPastry are
perturbation-resistant only to a limited degree. Further, both short-term pertur-
bations (e.g., 1:1) and long-term perturbations (e..g, 300:300) drastically affect
the lookup behavior.
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Figure 5.3: The architecture of MPIL. Insertion and lookup operations use the
routing algorithm, and the routing algorithm uses a routing metric and a traffic
control algorithm.

5.4 Multi-Path Insertion/Lookup Algorithm

Figure 5.3 shows the overall architecture of MPIL (Multi-Path Insertion/Lookup).
The insertion and lookup operations use the routing algorithm, and the routing
algorithm rely on two important bases, a routing metric and a traffic control
algorithm. In fact, the insertion and lookup operations become straight-forward
once we understand the routing algorithm.

The MPIL routing algorithm works as follows: when a node receives a lookup
request for an object, it calculates the routing metric for each of its neighboring
peers, and forwards the lookup to the “best” few peers. Below, we first describe
how the routing metric is calculated for a given object, and then detail the

routing algorithm itself.

5.4.1 Routing Metric

For a given object ID and a neighboring peer’s ID, the routing metric is simply
the number of matching digits appearing in same positions. Another way to
view this metric is the number of 0’s in XOR product of the two ID’s; this is
related to the concept of Hamming distance. Unlike the Kademlia overlay [71],
which also uses an XOR, MPIL uses the XOR metric to select multiple next
hops for the query — we detail this in Section 5.4.2.

Figure 5.4 shows an illustration of this routing metric. Consider the nodes
with id’s 1001 and 1011 from the 4-bit ID space (example on the left). The
value of the MPIL routing metric is 3, since only the second-least significant
bits do not match. Suppose a node currently holds a lookup request for an
object with ID 1001, and the node has two neighbors 1011 and 0010. Since the
values returned by MPIL are 3 and 1 respectively, the lookup is forwarded to
node 1011.
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Figure 5.4: An example for the routing metric. On the Left, ID 1001 and 1011,
on the right, ID 1001 and 0010. The routing metric gives the value of 3 and 1,

respectively.
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Figure 5.5: An example topology for continuous forwarding

5.4.2 Properties of MPIL’s Routing Metric

The routing metric of MPIL has the following advantages over other routing

metrics that exist for structured overlays.

Continuous Forwarding over Arbitrary Overlays MPIL is better than
prefix or suffix routing at distinguishing neighbors of a node when trying to
select the best next hop for a lookup message. For example, in the overlay
of Figure 5.5, if node 1001 has a lookup message for object 0110, both prefix
routing and suffix routing treat all neighbors as being equivalent - this may
cause the lookup message to be dropped or evaluated again to break the tie.
However, the MPIL routing metric returns 1111 as the best neighbor.

The reason can be explained probabilistically. In prefix routing, the proba-
bility that any given two IDs share no common prefix at all is 0.75 for base-4
representation, and 0.5 for binary representation. Considering that having a
common prefix is a basic requirement, the probability needs to be far lower
than 0.75 or 0.5 in order for the prefix routing to be used over arbitrary over-
lays. This problem becomes worse especially when the large fraction of the total
nodes has only a small number of neighbors, e.g. power-law graphs.

On the other hand, for the MPIL routing metric, the probability of the above
event is only (2)8 = (1.0113490...) 7% if we assume 160-bit ID space and base-4
representation. The MPIL routing metric thus distinguishes neighbors better;
at the least, this ensures a lookup request undergoes continuous forwarding even

over arbitrary overlays.
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Redundancy For Robustness The MPIL routing metric provides an easy
way to exploit redundancy for robustness since it provides an inherent way to
create multiple paths to multiple peers. Since the MPIL routing metric counts
the number of common digits in same positions, there can be multiple nodes
that have the same number of common digits. In Figure 5.5, suppose the node
1001 forwards a message of ID 0001. 1111 and 0001 share 1 common digit, 1101
and 0001 share 2 common digits, and 1011 and 0001 share 2 common digits.
Thus, 1101 and 1011 are both the candidates for the next hop. Unlike other
routing algorithms that break this tie using other mechanisms, MPIL forwards
messages to every candidate, thus creating multiple paths to multiple peers.
We use the term flows or paths. If a node forwards a query to exactly one
neighboring node, there is only one flow. For each additional neighbor that is
chosen to forward the lookup, an additional flow is said to be created.

Such replication might cause some nodes to receive the same message. In
this case, there are two options. A node can either silently discard the message
and not forward it any more (thus stopping the flow), or forward the message
again. We explore both options in our simulations.

The effectiveness of such redundancy is limited for prefix and suffix routing

due to the lower distinguishability of their routing metrics.

5.4.3 MPIL Routing

MPIL routing works as follows; When a node receives a lookup message contain-
ing an object ID, the node calculates the value of each neighbor’s routing metric
w.r.t. this object, as described in Section 5.4.1. The node then forwards the
message to the neighbor having the highest value. In the case that the node has
several neighbors with the same highest value, the node has to choose multiple
nodes from among all such highest-value neighbors.

To prevent message explosion, a message field called maz_flows is used to
limit the number of extra flows created. max_flows is an integer field in every
message, and it is decreased each time a node creates an additional flow (recall
that forwarding to exactly one node is not considered as an additional flow).
When maz_flows is decreased to 0, no additional flows can be created. This
maz_flows is conceptually similar to “quota” that is consumed by each node
on a route whenever a node replicates a message. The original max_flows value
of a message is specified by the originator of the message.

To summarize, when a node receives a message, it does the following:

1. Creates a list of possible candidates for forwarding the message.

2. Compares the size of the list and (maz_flows + given_flows), where
given_flows is 0 if the node is the original sender, and 1 otherwise.

max_flows is specified in the message.

3. Picks the minimum value of the two (say m).
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M = Message ID
N = Node ID

if M has been forwarded already, discard it (optional).
for node in (neighbor_ list of N - M.route):
C = common digits between M and node
if C is the largest until now:
next_hop_list = [node]
elif C is equal to the largest until now:
next_hop_list.add(node)
Count common digits between M and N
if N has the largest value among all nodes in neighbor _list:
N is the destination
Perform message-specific actions (for insertion messages)
else:
Apply the paths-limiting algorithm to next_hop_list
Forward to nodes in next_hop_list

Figure 5.6: A Pseudo-code of the MPIL Routing Algorithm

4. Forwards the message to m nodes from the candidate list.

5. Replace the value of maz_flows of each message that the node forwards

to (max_flows — m + given_flows)/m.

In the last step, the decrease of max_flows by m — given_flows is because
that is the number of additional peers that the node forwards the message to.
The node divides the value by m for distribution of the original maz_flows. If
the final value is not an integer, a node can distribute the residue one by one in
round-robin fashion to the m nodes.

The complete MPIL algorithm uses the routing metric in Section 5.4.1 and
the algorithm for limiting multiple flows. Figure 5.6 shows the pseudo-code of
the algorithm. Note that when choosing next_hop_list from neighbor_list, the
number of common digits between N and M does not have any effect. In addi-
tion, there is a message field called route, which contains the list of nodes that
the message has visited. The route field prevents the message from being for-
warded to a node the message has visited already. Thus, Choosing next_hop_list
is dependent only on peers in neighbor_list, excluding the nodes in M.route and
N. Depending on the configuration, each node might discard a message that has
been forwarded already. In this case, a sequence number or a random number
should be attached to distinguish the message from old messages with the same

message ID.

5.4.4 Insertion, Lookup, and Deletion

Both insertion and lookup use the routing algorithm, but there are differences
in the details.
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Insertion An object (or a pointer to its location) can be inserted using MPIL
routing. An insertion message is propagated and replicated as usual in the
MPIL routing algorithm, and an object is inserted at a node when none of its
neighbor nodes have a higher MPIL routing metric value than the node. We
call such nodes as local maxima. This results in multiple replicas of the object
being created.

Replica placement is done by specifying the number of per-flow replicas (we
call this number num_replicas for the discussion. In Figure 5.6, it says that
if N is the destination, then it performs message-specific actions. In the case
of an insertion message, N stores the object location specified in the message.
However, this process continues num_replicas-times to store more replicas. This
is possible because each node picks the next hop from (its neighbor_list - M.route)
as in Figure 5.6, a list that does not include the node itself.

Since maz_flows is the maximum number of possible paths, and each path
creates num_replicas replicas, the maximum total number of replicas created
by an MPIL object insertion request is bounded from above by maz_flows X

num_replicas.

Querying A lookup message that is a query for an object is propagated in
essentially the same manner as insertion requests above. However, each recipient
node checks to see it has the object; if it does, it stops forwarding the query and
replies back directly to the querying node. The forwarding process stops when
either the location is found or the message has passed through num_replicas
local maxima. For arbitrary overlays, although MPIL can never guarantee a
100% lookup success rate, our simulations reveal that the success rate of MPIL
are close to 100%.

Deletion Deletion can be done in many ways, but here we discuss just one
of them. Whenever a replica is placed in a node, the node sends a periodic
heartbeat to the owner of the original object. When the originator wants to

delete a replica, it sends an explicit delete message to the node.

5.4.5 Comprehensive Example

Figure 5.7 shows an example of how MPIL inserts and queries an object. Sup-
pose the node 0001 wants to insert an object with ID 1011. Originally, maz_flows
is 2 and num_replicas is 2. After node 0001, max_flows becomes 1. The node
0001 first selects 1001 among its neighbors because 1011 and 1001 share three
common digits, while 1011 and 0000 share only one digit. Since 1001 shares the
largest common digits among all of its neighbors, 1001 stores this object and
decrements num_replicas by 1. But it still forwards the message to 1110 since
num_replicas is 1. Since 1110 has two neighbors that share three common digits

and max_flows is still 1, 1110 forwards this message to both neighbors. 0011 and

95



max_flows 1
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Figure 5.7: An example of MPIL. Gray nodes store the location of the object.

1111 receive this message and store the location because they share the largest
common digits among all of their neighbors. They stop forwarding because
num_replicas has reached 0. Lookup messages follow the exact same steps, but
every node along the routes checks if it has the location. The notion of flow can
be explained using Figure 5.7 again. There are two flows. One is from 0001 to
0011, and the other is from 0001 to 1111. We say that one additional flow is
created by 1110.

5.5 Analysis

In this section, we present the analysis results of MPIL over various types of
overlay topologies. First, we study the expected number of local maxima (See
Section 5.4.4 for the definition of local maxima), which is an upper bound on the
expected number of replicas, and expected number of hops to a local maximum
from a node in general topologies. Recall that a local maxima node may store
a replica (if the insert message reaches the node). We study two examples,
random regular topologies and complete topologies.

There are several assumptions for the analysis. We assume that 1) there is an
m-bit ID space with base-2° representation, where m = Mb for some constant
M. Thus, each ID is a M-character-wide string with 2° possible characters. 2)

the total number of nodes is N, and the degrees is d. 3) There is a message with
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ID a, and node IDs are ag,...,any. We say that a node ID, a;, is k-common

when a; shares k common digits with the message ID, a.

5.5.1 General Overlay Topologies

For the expected number of local maxima, assume that the degree distribution

function of a given type of overlays is known. Then, we can calculate the

expected number of local maxima in an overlay topology by N x C, where
c=x", {P(# of neighbors = d) S0, (A x Bd)}

a=@@rE"
B=5'0 () (&) (%)

C is the probability for a node to become a local maximum. A is the proba-

bility for a node to be k-common, and B is the probability for every other node
to be j-common, for some j < k.

If we assume that the local maxima are distributed uniformly over the topol-
ogy and we perform a random walk over the topology, then the expected number

of hops to reach one of the local maxima from any node in the overlay is simply
1

Eo
Thus, if the degree distribution function is known, we can calculate the
expected number of local maxima and the expected number of hops to one of

the local maxima.

5.5.2 Random Regular and Complete Topologies

The degree distribution function of random regular overlay topologies, where

each node has fixed d neighbors is given by,

1 ifi=d

P(# of neighbors = i) =
(# & ) { 0 otherwise

Then, we can calculate the average number of local maxima in a random regular
topology, which is N x C, where C' = Z}ng:l (A X Bd) . C is a constant for a
given d. Figure 5.8 shows the average number of local maxima with different
number of nodes and neighbors.

The expected number of hops to one of the local maxima by a random walk
is also a constant, %

Similarly, we can calculate the expected number of replicas in a complete
topology by using a similar equation, which is, N x 22/[:1 (A X DN_l), where

D=, (@) ()"

Compared to the equation for random topologies, this equation uses N — 1
instead of d, since it assumes a complete topology. Also, D is exactly the same
as B except that the summation includes k, since it considers the number of

replicas. Figure 5.9 shows the results for various number of nodes.
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Figure 5.8: The expected number of local maxima for random regular topologies
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Figure 5.9: The expected number of replicas for complete topologies

5.6 Simulation Results

Two different classes of simulations are performed to examine MPIL and its
robustness. The first class of simulations is mainly to evaluate the MPIL in-
sertion/lookup performance over various static overlays. We wrote an applica-
tion message simulator in Python for overlay-level routing. The second class
of simulations evaluates the robustness of MPIL over structured overlays using
MSPastry [14]. For ID-generation, we use random numbers picked from 160-bit
ID space. All simulations are done on Pentium4 2.7GHz and 512M RAM.
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Figure 5.11: The behaviors of MPIL insertion - insertion traffic

5.6.1 MPIL Insertion/Lookup Performance Over Static

Overlays

Overlay Topologies There are very few reliable benchmarks or workload
generators for legacy distributed applications like Grid applications. However,
we believe that power-law or random graph structures may be natural for legacy
application overlays; we use these below.

10 different power-law graphs are generated by Inet [50], each with 4000
nodes, 8000 nodes, and 16000 nodes. We use 0% of degree 1 nodes. Similarly,
10 different random graphs are generated, each with 4000 nodes, 8000 nodes,
and 16000 nodes. In these random graphs, each node has 100 neighbors, equally.
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Methodology For each overlay, random nodes are chosen to insert objects
with different IDs 100 times. After that, those 100 objects are queried one by one
again by randomly chosen nodes. Since there are 10 different overlays for each
4000 nodes, 8000 nodes, and 16000 nodes, the total number of insertion/lookup
pairs is 1000 for every number of nodes. For all insertions and lookups, a node
silently discards a message if the node receives the same message more than
once.

Insertions Figures 5.10, 5.11 and 5.12 show the insertion performance of
MPIL over the power-law and random overlays. The maximum number of flows
is fixed at 30 and the per-flow replicas is fixed at 5 (See Section 5.4.2, 5.4.3,
and 5.4.4 for the notion of flows, maximum flows specified by originators, and
per-flow replicas). We measure two different categories - number of replicas and
traffic per insertion - over 4000 nodes, 8000 nodes, and 16000 nodes.

Figure 5.10 shows the average number of replicas per insertion and Fig-
ure 5.11 shows the average number of total messages per insertion. Figure 5.12
shows the total number of duplicate insertion requests. Whenever a node re-
ceives the same insertion request from a different neighbor, it is considered as a
duplicate request.

The number of replicas is bounded by (the maximum number of flows) X
(the number of per-flow replicas). Thus, in Figure 5.10, the maximum number
of replicas is bounded from above by 150, regardless of the number of nodes. As
discussed earlier, additional flows are not created at every node, but at a node
that has multiple neighbors with the same number of common digits. Thus,
the actual number of flows is usually less than the maximum specified by the
originator. Figure 5.10 shows this behavior as well. Even with 30 maximum

flows and 5 per-flow replicas, the actual number of replicas is much less than
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Per-flow Replicas
# nodes Max_flows 1 2 3 4 5
4000 5 52.9 944 97.7 98.7 99.1
10 55.4 98.7 99.7 99.9 100
15 56.0 99.0 99.7 99.9 100
8000 5 57.1 96.5 98.8 99.6 99.2
10 60.5 99.2 100 100 100
15 60.0 99.6 100 100 100
16000 5 58.3 981 99.7 99.9 99.9
10 60.4 995 100 100 100
15 60.9 99.8 100 100 100

Table 5.1: MPIL lookup success rate over power-law topologies

Per-flow Replicas
# nodes Max_flows 1 2 3 4 5
4000 5 98.6 100 100 100 100
10 98.8 100 100 100 100
15 98.4 100 100 100 100
8000 5 97.0 99.9 100 100 100
10 98.5 100 100 100 100
15 98.7 100 100 100 100
16000 5 95.0 999 100 100 100
10 98.4 100 100 100 100
15 98.6 100 100 100 100

Table 5.2: MPIL lookup success rate over random topologies

150.

A couple of further observations can be made from Figures 5.10, 5.11, and 5.12.
First, the number of replicas and traffic of insertions in the power-law overlays
stay almost the same across different settings. The reason can be found in Fig-
ure 5.12. As the number of nodes increases, the number of duplicate messages
increases in the power-law overlays. This means that more duplicate messages
arrive at the same set of nodes and are silently discarded, which prohibits an
insertion from storing more replicas. Second, the number of replicas and traffic
increases in the random overlays in contrast to power-law overlays. The reason
can be found again from the duplicate messages. In Figure 5.12, the number of
duplicate messages decreases as the number of nodes increases in the random
overlays. Thus, more messages follow different paths as the number of nodes
increases, which leads to storing more replicas.

The difference in number of duplicate messages between random overlays
and power-law overlays is because each node has 100 neighbors in the former,

while many nodes have only a few neighbors in the latter.
Lookups Table 5.1 and 5.2 show the success rates of MPIL lookups in various

settings. Note that the per-flow replicas (7) for lookups means that the lookup

stops when a flow encounters a node with the largest common digits r~times.
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# of Node Actual # of Flows
Power-Law 4000 8.782
Power-Law 8000 9.151
Power-Law 16000 9.542

Random 4000 9.323
Random 8000 9.505
Random 16000 9.63

Table 5.3: Actual number of flows of lookups

3
— N
5 257 }
Q
o
T oL X
%) e
] pannanass
[ x.lllll“"'
£ 157 Power-Law Topologies =—f=— -
- Random Topologies ===
()
g 17 ]
o
>
< 05¢ |
0

2000 4000 6000 8000 10000 12000 14000 16000
Number of Nodes

Figure 5.13: MPIL Lookup Latency (Hops)

Insertions are performed before lookups, and the number of maximum flows is
fixed at 30 and the number of per-flow replicas is fixed at 5. Since we consider
insertions to be rare events compared to the lookups, the traffic of insertions
caused by the large number of maximum flows and per-flow replicas can be
amortized over time.

From Table 5.1 and 5.2, three observations can be made. First, having more
per-flow replicas gives higher success rates. This is obvious because the number
of per-flow replicas for a lookup limits the path-length of the lookup. Second,
having more flows gives higher success rates. This is also obvious because the
number of maximum flows limits the number of search paths. Third, having
larger numbers of nodes gives higher success rates with the same number of
max_flows and per-flow replicas, although the difference is very small and may
be negligible. The reason of the difference can be found in Table 5.3. Table 5.3
shows an example of the average number of flows that are actually created
by lookups with 10 max_flows and 3 per-flow replicas over various numbers of
nodes. As the number of nodes grows, the actual number of flows grows also,
even though the maximum flows and per-flow replicas are the same. Since there
are more flows for bigger overlays, the success rates increase, accordingly.

Figures 5.13 and 5.14 show the latency and required traffic of lookups. In
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Figure 5.14: MPIL Lookup Traffic
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Figure 5.15: Success rate of MSPastry simulations - idle:offline=1:1

this simulation, max_flows is fixed at 10 and per-flow replicas is fixed at 5,
since that setting gives 100% success rates for all 4000, 8000, and 16000 nodes
in both the power-law overlays and random overlays. Also, Figure 5.13 only
shows the number of hops of the first successful reply of a lookup among all
successful replies. Multiple successful replies are possible because there are
multiple replicas stored in the system. However, Figure 5.14 shows the total
traffic per a lookup request, as well as the traffic for the first successful reply.
As in Figure 5.13, the latency stays almost same even though the number
of nodes increases. Table 5.1 shows a similar result because more than 50% of
lookups are satisfied even with 1 per-flow replicas and almost all lookups are

satisfied with 2 per-flow replicas. Although limiting per-flow replicas does not
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Figure 5.16: Success rate of MSPastry simulations - idle:offline=30:30
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Figure 5.17: Success rate of MSPastry simulations - idle:offline=300:300

accurately limit the number of maximum hops a lookup request is propagated,
it definitely has a correlation. Therefore, both Figure 5.13 and Table 5.1 tell
us that MPIL lookups cause small and steady number of hops across different
numbers of nodes in the power-law overlays.

Lookup traffic also stays almost same in Figure 5.14. The same reason from
the case of insertions can be applied to here. Since the number of duplicate
messages increases as the number of nodes increases, more flows and traffic are

suppressed.
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5.6.2 MPIL Over MSPastry

In this section, we study the robustness of MPIL under perturbation. We run
MPIL over the overlay of MSPastry by implementing the MPIL algorithm in
MSPastry. We compare the robustness of MPIL to that of MSPastry with its

overlay maintenance techniques.

Methodology To evaluate the robustness of MPIL, we conduct a set of simu-
lations using MSPastry. These simulations are done in the same condition as in

Section 5.3. 1000 insertions are generated first, and 1000 lookups for the same
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IDs of insertions are generated next. For MSPastry simulations, we use MSPas-
try with all the overlay maintenance techniques described in [14]. For MPIL
simulations, we modify MSPastry; we replace the original routing algorithm of
MSPastry with MPIL. However, we do not use any of the overlay maintenance
techniques. In other words, we use the structured overlay of MSPastry, but
none of the overlay maintenance techniques. A total of 1000 nodes are used in
all simulations using a topology generated by GT-ITM [10] as an underlying
(Internet) topology.

MSPastry Configuration The default parameters of MSPastry simulations
across all simulations are; b = 4, | = 8, leafset probing period = 30 seconds,
routing table maintenance period = 12000 seconds, routing table probing period

= 90 seconds, probe timeout = 3, and probe retries = 2.

MPIL Configuration All MPIL simulations are done with 10 maximum
flows and 3 per-flow replicas for both insertions and lookups. However, the

number of replicas actually inserted by the insertions in the network is typically
6-7.

Success Rate Figures 5.15, 5.16, and 5.17 show the success rates of the orig-
inal MSPastry and MPIL under various perturbation probabilities. In all three
figures, “MSPastry” shows the simulation results with the original MSPastry
with no modification. “MSPastry with RR” shows the results with MSPas-
try with Replication on Route (RR). Using RR, every node on the route of
an insertion message stores a replica whether it’s the target node or not. In
these simulations, the typical number of hops of an insertion message is 2-3 for
MSPastry. Thus, 2-3 is the typical degree of replication for MSPastry with RR.
“MPIL with DS” shows the simulation results of MPIL with Duplicate Suppres-
sion (DS), while “MPIL without DS” shows the results of MPIL without DS. If
MPIL uses DS, each node silently discards any message that the node forwarded
before. Otherwise, each node forwards a message repeatedly, even if it received
the same message before.

Intuitively, DS is good for static overlays because it reduces traffic. However,
each node is likely to have a different set of neighbors in dynamic overlays. Thus,
if a node keeps forwarding a message in dynamic overlays, the message is likely
to take a different route each time, and the chance of arriving at one of the
replicas can be increased. Figures 5.15, 5.16, and 5.17 actually confirms this
intuition. MPIL without DS always gives higher success rates than MPIL with
the duplicate suppression. However, MPIL typically gives higher success rates
over the original MSPastry, regardless of DS.

Traffic MPIL gives better success rates under perturbation as in Figures 5.15,

5.16, and 5.17. However, since MPIL uses multicasts, the traffic generated by
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MPIL can be far more than that of MSPastry. Figure 5.18 compares the lookup
traffic of the original MSPastry and MPIL, when idle:offline is 30:30. As shown,
MPIL creates a lot more lookup traffic than the original MSPastry, especially
under low perturbation probabilities.

However, the original MSPastry uses various overlay maintenance techniques
that create consistent background traffic, while MPIL does not use any of the
techniques. Figure 5.19 shows the total number of messages sent including
all the maintenance and control messages. As shown, MPIL creates far less
messages than the original MSPastry if all the messages are counted. However,

if the lookup frequency were higher, MSPastry’s overhead might be justified.

5.7 Related Work

Perturbation has been studied in other contexts besides overlay networks. Bir-
man et al. [8] study the effect of perturbation in the context of multicast pro-
tocol. In their simulation, virtually synchronized multicast groups are used to
study the effect of perturbation. They measure throughput of a live node in
the presence of perturbation - some fraction of the multicast group members
sleep for some fraction of each second. Their result shows that even with a
single perturbed group member, the throughput drops significantly, decreasing
rapidly as the number of perturbed nodes increases.

Many studies have shown that the arrival rate and the departure rate of
nodes in peer-to-peer systems are very high, which proves the instability of
peer-to-peer systems. For example, Bhagwan et al. [7] show churn data for the
Overnet p2p system. Saroui et al. [95] study node availability of Napster and
Gnutella. Their result can be summarized as the best 20% of Napster peers has
an uptime of 83% and more, and the best 20% of Gnutella peers has an uptime
of 45% or more.

Robustness issues of DHTs have been studied recently [89, 14, 61]. Li
et al. [61] study the effect of churn to some popular DHTs including Chord,
Tapestry, Kelips, and Kademlia. Castro et al. [14] study the performance and
dependability of Pastry with MSPastry implementation. Rhea et al. [89] identify
three factors that affect the behavior of overlays under churn - reactive vs. pe-
riodic recovery, message timeout calculation, and proximity neighbor selection
- and discuss various techniques that can be used for the three factors.

Efficient search algorithms for unstructured overlays have been studied re-
cently [73, 65]. Lv et al. [65] explore the use of random walks and replication to
improve the inefficiency of unstructured p2p systems caused by flooding. More
recently, it has come to our attention that Morselli et al. [73] propose a search
algorithm that combines random walks and a DHT routing algorithm based on
Chord routing algorithm to improve the search efficiency of unstructured p2p
systems. This study shares some similarities with our study in that 1) it uses

name-space virtualization for unstructured overlays, 2) it proposes a replica-
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tion strategy, and 3) it separately considers overlays and routing algorithms.
However, their focus is producing unstructured p2p systems, while our focus is
producing robust p2p systems.

Castro et al. [15] use flooding and random walks over Pastry’s structured
overlay to support complex queries. Our approach is different, because we

develop a robust resource discovery algorithm that runs over any type of overlay.

5.8 Summary

We have presented the motivation, design, analysis, and evaluation of MPIL
(Multi-Path Insertion and Lookup). The central challenges that MPIL addresses
are the scale of peers and a type of dynamism called perturbation. Our evalua-
tion has shown that MPIL performs well over various types of overlay structures
and perturbations, while providing better lookup success rates than MSPastry
under both short-term and long-term perturbation. MPIL provides a lookup
success rate roughly 6 times better than that of MSPastry even in the worst

case of idle:offline = 1:1.
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Chapter 6

Conclusions and Future
Directions

This dissertation has discussed why and how on-demand operations are effective
in overcoming the challenges of scale and dynamism in a variety of distributed
systems. We have presented four on-demand operations that address the chal-
lenges of scale and dynamism.

First, we have presented the design and evaluation of Moara, a group-based
aggregation system. Moara achieves scalability with increasing numbers of ma-
chines, injected queries, and groups, by: (1) intelligently resolving composite
query expressions, (2) constructing single-attribute aggregation trees that per-
form in-network aggregation, and (3) dynamically maintaining group trees based
on query rates and group churn rates, thus reducing bandwidth consumption.
Our experimental evaluations using simulations and deployments atop Emulab
and PlanetLab demonstrate the effectiveness of Moara in answering queries ac-
curately within hundreds of milliseconds across hundreds of nodes, and with low
per-node bandwidth consumption.

Second, we have argued for the need, requirements, design, and evalua-
tion of ISS (Intermediate Storage System) that treats intermediate storage as
a first-class citizen for dataflow programs. Our experimental study of existing
and candidate solutions shows the absence of a satisfactory solution. Our ex-
perimental results show that we can almost eliminate the interference with a
combination of three techniques, i.e., an asynchronous rack-level selective repli-
cation mechanism. Our failure injection experiments show approximately 59%
improvement in completion time using ISS.

Third, we have argued that worker-centric scheduling is more desirable than
task-centric scheduling to exploit locality of interest present in data-intensive
applications. We base our argument on two problems of task-centric scheduling,
namely, unbalanced task assignments and premature scheduling decisions. We
proposed various metrics, both deterministic and randomized, that can be used
with worker-centric scheduling and found that metrics considering the num-
ber of file transfers generally give better performance over metrics considering
the overlap between a task and a storage. We also found that worker-centric
scheduling algorithms achieve better or comparable performance to task-centric
scheduling, with the randomized approaches performing best.

Fourth, we have presented a new approach to resource location and discovery
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that is both perturbation-resistant and overlay-independent. Our algorithm,
called MPIL, is independent of the underlying overlay structure. MPIL works
well over both unstructured overlays that are random or power-law, and over
structured overlays — like MSPastry. Under both short-term and long-term
perturbation (which may arise from multiple concurrent client applications or
churn respectively), MPIL has a better success rate than MSPastry routing,
and at the cost of only slightly increased communication for each object lookup
request. MPIL successfully provides any distributed application the ability to
insert and query objects reliably and robustly over any arbitrary overlay, without

the need to change the existing overlay maintenance mechanisms.

Future Directions There are many interesting directions that arise from this
dissertation. First, the workload characteristics study of large-scale monitoring
is a largely unexplored area. Workload characteristics, e.g., types of queries
that users and administrators are interested in, the frequency of queries, etc.,
can be used to optimize the performance of a monitoring system. In fact,
the optimization techniques of Moara were inspired by the observation that
group-based monitoring is a common case for many users and administrators.
However, this might be just the tip of the iceberg. There are likely many more
characteristics and common cases where one can optimize the performance.
To this end, it is necessary to know the workload characteristics of large-scale
monitoring.

Second, optimization techniques for a general distributed querying system
is another area that is largely unexplored. The techniques of Moara are specific
to aggregation queries. Other types of queries, e.g., join, are known to have
very different characteristics. Although a general distributed querying system
that supports a wide range of queries has been proposed in the literature [43],
optimization techniques for different types of queries beyond aggregation have
not been studied well.

Third, there is a possibility that asynchronous rack-level replication can
benefit more cloud applications than just dataflow programming frameworks.
The experimental results of ISS show that asynchronous rack-level replication
is indeed non-interfering and has low-overhead. Based on this observation, one
can imagine a more universal use of asynchronous rack-level replication as a
means to achieve better data availability in general. More broadly, it might be
possible to design a family of locality-aware replication techniques.

Fourth, a fine-grained monitoring capability integrated with ISS can further
improve ISS in terms of replication interference minimization. For example, if
network and disk activities are monitored closely, ISS can make a fine-grained
decision on when, how fast, and where to replicate intermediate data without in-
terfering with foreground network and disk activities. This fine-grained decision
can be based on control theory, where the master node of ISS receives feedback

from monitoring components regarding the current job progress, network and
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disk activities, and failed components. The master can then decide the rate of
replication periodically based on feedback control techniques.

Fifth, ISS can utilize a background transport protocol such as TCP-Nice and
TCP-LP to further reduce network interference in addition to its asynchronous
rack-level selective replication mechanism. However, it is not clear whether this
will indeed benefit ISS or not, since a background transport protocol might only
be able to achieve a low replication rate. This is due to the fact that a back-
ground transport protocol aggressively reduces its window size in anticipation of
future congestion in the network. Thus, one might find that intermediate data is
often not completely replicated, which leads to a longer window of vulnerability.
Experimental validation is necessary to verify this hypothesis.

Finally, it is necessary to study computational limitations of MapReduce and
how to improve it. Although it is well-known that MapReduce is not Turing
complete, the exact scope of computational expressibility of MapReduce is not
well-studied. This is an important concern as more and more researchers and
scientists from various fields are interested in using MapReduce for their jobs.
MapReduce has demonstrated its efficiency and usefulness in certain domains
such as ad-hoc data analysis. There will be tremendous value if one can extend

this benefit to more domains.
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