
c© 2009 Pablo Montesinos Ortego

PRACTICAL TIME TRAVEL OF MULTIPROCESSOR SYSTEMS

BY

PABLO MONTESINOS ORTEGO

B.S., Universidad de León, 2001

M.S., University of Illinois at Urbana-Champaign, 2005

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Doctoral Committee:

Professor Josep Torrellas, Chair

Assistant Professor Sam King, Co-Director of Research

Professor Marc Snir

Professor Wen-mei Hwu

Professor Yuanyuan Zhou

Professor Christoph von Praun, Georg-Simon-Ohm University

ABSTRACT

With the arrival of multicore chips as the commodity architecture for a wide range of

platforms, there is a growing pressure to make parallel programming the norm. Unfor-

tunately, most current programmers find parallel programming too complex. Therefore,

we need tools, models, and architectures that make multiprocessors more programmable.

One compelling way to improve programmability is to enable back-and-forth time

travel of multiprocessor execution. Such ability simplifies parallel code debugging, and is

possible using a technique called Deterministic Replay of Execution. This thesis presents

DeLorean, a novel hardware substrate for deterministic replay of multiprocessor systems.

DeLorean advances the state of the art in that it enables high-speed recording and replay

of parallel execution and in that its space requirements are orders of magnitude smaller

than those of current schemes.

To be practical, DeLorean and other hardware replay systems need to support an

environment with multiple parallel jobs running concurrently — some being recorded,

others being replayed and possibly many others running without recording or replay. To

address this issue, this thesis presents Capo, a novel software-hardware interface for prac-

tical high-speed multiprocessor replay. It also introduces the novel abstraction of Replay

Sphere to separate the responsibilities of the hardware and software components of a re-

play system. Finally, this thesis describes CapoOne, a prototype of a deterministic mul-

tiprocessor replay system that implements Capo using Linux running on simulated De-

Lorean hardware.

ii

To Shelley, for her love.

To my parents, for everything they have done —and still do — for me.

To my brother, for being there whenever I need him and for making me laugh so much.

To my grandfather, for making me the happiest kid on earth.

A Shelley, por su amor.

A mis padres, por todo lo que han hecho —y todavı́a hacen— por mı́.

A mi hermano, por estar a mi lado cuando le necesito y por hacerme reir tanto.

A mi abuelo, por hacerme el niño más feliz de la tierra.

iii

ACKNOWLEDGMENTS

It would not have been possible to write this thesis without the help and support of the

wonderful people around me, to only some of whom it is possible to give particular men-

tion here.

Fist and foremost, I would like to thank my advisor, Josep Torrellas, for his guidance

and support during my time at the University of Illinois. He taught me how to do quality

research and persuaded me to stay in the Ph.D. program after I had basically decided to

leave. In particular, I am very grateful to him for believing in me from the very beginning,

when he called me at my office in Spain to convince me to join his research group.

I would also like to thank my co-advisor, Samuel T. King, for helping me so much

with Capo and CapoOne. I cannot even begin describing how much I have learned from

him during such a project. I would have never been able to finish on time without his

help.

In addition, I would like to show my gratitude to the members of my Ph.D. commit-

tee, Prof. Marc Snir, Prof. Wen-mei Hwu, Prof. Yuanyuan Zhou and Prof. Christoph von

Praun, for their feedback and their recommendation letters.

As a member of the i-acoma group, I am indebted to many of my colleagues who

made our office a great workplace. We worked hard, but we had lots of fun as well. I

would like to thank Brian Greskamp for his friendship and for all the discussions we had

during the last five years. I would also like to thank Radu Teodorescu and Jun Nakano,

with whom I co-invented the office-badminton. I am also grateful to Luis Ceze, with

whom I co-authored several papers. He was my mentor and remains a very good friend. I

iv

must also mention Karin Strauss and James Tuck, as I learned a great deal from our office

discussions. I had the pleasure of working with Wonsun Ahn, who helped me building the

CapoOne infrastructure.

I would not have made it to this point without the support of many friends. I would

like to thank my dear friends from Spain Elena Cuevas, Iván Garcı́a, Octavio Silva and Is-

abel Villa for their long-distance friendship and moral support. I would also like to thank

my friend and fine mathematician Rafael Santamarı́a for believing in me, even more than

I did at times. Also, thanks to my friends Xavier Llorá, Ana Vivancos, Angel Yanguas-Gil

and Elsa Alvaro for making Urbana not only bearable, but in fact a great place to be.

I owe my deepest gratitude to my parents, Juan José and Mercedes, and my brother,

Nacho, for their support throughout my life. I have no words that can describe their un-

conditional love for me. This dissertation is simply unimaginable without them. They

supported me every step of the way, even though that meant that I would move thousands

of miles away from our home in León, Spain.

Finally, I would like to thank my wife Shelley because she is the reason I am still a

sane person (for the most part, at least). She gave up doing fun stuff for countless weeknights

and weekends so that I could work on my thesis. She stood by me when research did not

go as planned and cheered me up every single day. She is the love of my life and my best

friend. To her I dedicate this thesis.

v

TABLE OF CONTENTS

LIST OF FIGURES . viii

CHAPTER 1 Introduction and Motivation . 1

CHAPTER 2 Background: Deterministic Replay of Execution 4

2.1 Introduction . 4

2.2 Six Desirable Traits of Deterministic Replay Schemes 5

2.3 Software-based Deterministic Replay Schemes 5

2.3.1 Summary of Software-Based Replay Systems 9

2.4 Hardware-based Deterministic Replay Schemes 11

2.4.1 Hardware-Based Full-System Replay 17

2.4.2 Summary of Hardware-Based Replay Systems 17

CHAPTER 3 Background: BulkSC . 21

3.1 Overview of the BulkSC Operation . 22

3.2 Hardware Requirements . 23

CHAPTER 4 DeLorean: A New Approach to Hardware-based Deterministic Replay 25

4.1 Introduction . 25

4.2 Deterministic Replay of Chunk-Based Systems 26

4.2.1 Design Space of Chunk-Based Deterministic Replay Systems . . . 27

4.2.2 DeLorean: A Chunk-Based Execution-Replay Architecture 31

4.2.3 DeLorean in the Context of Other Replayers 35

4.3 DeLorean Implementation . 37

4.3.1 Implementation Choices and Operation 37

4.3.2 Exceptional Events . 39

4.4 Optimization: Reducing the PI Log Size by Stratifying It 43

4.5 Why DeLorean’s Replay is Deterministic 45

CHAPTER 5 Capo: A Software-Hardware Interface for Hardware-Assisted De-

terministic Replay . 47

5.1 Introduction . 47

5.2 Capo’s Key Abstraction: The Replay Sphere 48

5.2.1 Separation of Responsibilities . 50

5.2.2 Finding The Replay Sphere in Other Replay Systems 51

vi

5.3 Software Support: The Replay Sphere Manager 52

5.3.1 Copying Data into a Replay Sphere 54

5.3.2 Emulating and Re-Executing System Calls 55

5.3.3 Replaying with a Lower Processor Count 57

5.4 Hardware Support . 58

CHAPTER 6 CapoOne: A DeLorean-based Implementation of Capo 61

6.1 Introduction . 61

6.2 Software Implementation . 61

6.3 Hardware Implementation . 63

6.3.1 Hardware Implementation for FDR-like Schemes 66

6.4 Lessons Learned During the Development of CapoOne 66

6.4.1 Implementing the RSM . 67

6.4.2 From Full-System Replay to Sphere-Based Replay 69

6.4.3 User to Kernel Transitions . 70

6.4.4 System Issues . 74

CHAPTER 7 Evaluation Setup . 80

7.1 Introduction . 80

7.2 DeLorean’s Evaluation Environment . 80

7.3 CapoOne’s Evaluation Environment . 83

CHAPTER 8 DeLorean Evaluation . 85

8.1 Log Size . 85

8.1.1 Stratifying the PI Log . 87

8.2 DeLorean’s Performance . 88

8.2.1 Performance During Replay . 90

8.3 Characterizing Picolog . 92

CHAPTER 9 CapoOne Evaluation . 96

9.1 Log Size . 96

9.2 Hardware Characterization . 97

9.3 Performance Overhead During Recording 97

9.4 Performance Overhead During Replay . 101

CHAPTER 10 Future Work . 105

CHAPTER 11 Conclusions . 107

REFERENCES . 110

AUTHOR’S BIOGRAPHY . 117

vii

LIST OF FIGURES

2.1 Recording multiprocessor execution using Bacon and Goldstein’s scheme:

initial execution (a) and resulting Memory Ordering log (b). Instructions

in bold indicate cache coherence events in the bus. The segments labeled

0 to 5 show the replay schedule. 12

2.2 FDR’s transitive reduction optimization: dependences in initial execution

(a), recorded dependence (b). 13

2.3 RTR optimization: dependences in initial execution (a), dependences in

initial execution plus artificial dependence (b), final recorded dependence

(c). 14

2.4 Recording multiprocessor execution using Strata: dependences in initial

execution (a), Strata’s Memory Ordering Log(b). 15

2.5 Recording multiprocessor execution using Rerun: dependences in initial

execution (a), Rerun’s Episodes (b) and Rerun’s Memory Ordering Log (c). 16

2.6 Deterministic replay schemes classification. 20

3.1 Fine (a) and coarse-grain (b) access interleaving. 22

3.2 BulkSC architecture. 24

4.1 DeLorean architecture. 32

4.2 Comparing DeLorean to RTR and Strata. 36

4.3 DeLorean’s operation. 39

4.4 PI Log stratification: example (a) and design (b). 44

5.1 Architecture of Capo for an OS-level replay system. The replay system

includes user-level threads running within replay spheres and a kernel-level

Replay Sphere Manager (RSM) that manages the underlying replay hard-

ware and provides the illusion of infinite amounts of replay hardware. . . . 49

5.2 Logical representation of a system where the RSM manages three replay

spheres. Even though CPU 3 is free, no R-thread from Replay Sphere 2

can run on it because the system only has two RSCBs, which are being

used by the other two running spheres. 53

5.3 Race condition between the OS copy to user function and R-thread 2 (a).

The data race is avoided by including copy to user in the replay sphere

(b). 54

5.4 Example of potential non-determinism due to an implicit dependence. . . . 56

viii

6.1 CapoOne’s architecture. 62

6.2 Multiprocessor with the DeLorean hardware as presented in Chapter 4 (a),

and as implemented in CapoOne (b). 63

6.3 Fault handling in CapoOne. 72

6.4 Circular dependences between the Sphere Input Log and the Memory Or-

dering Log cause deadlocks during replay. 76

6.5 Permission transition diagram for a software-only, self-modifying code

detection mechanism using page protections. 79

8.1 Size of the PI Log and CS Logs in OrderOnly. The numbers under the bars

are the standard chunk sizes in instructions. 86

8.2 Size of the CS Log in PicoLog. Recall that PicoLog has no PI Log. The

numbers under the bars are the standard chunk sizes in instructions. 86

8.3 Size of the PI Log and CS Logs in Order&Size. The numbers under the

bars are the maximum chunk sizes in instructions. 87

8.4 Size of the PI Log in OrderOnly without and with stratification. The num-

bers under the bars are the maximum number of chunks per processor per

stratum. 88

8.5 Performance during initial execution normalized to RC. 89

8.6 Performance of several environments during initial execution and replay.

All bars are normalized to RC. 91

8.7 PicoLog performance relative to RC. 93

9.1 CapoOne’s log size in bits per kilo-instruction. 97

9.2 Execution time overhead of CapoOne during recording for a single replay

sphere in the machine. 99

9.3 Execution time overhead of CapoOne during recording when two replay

spheres share the machine. 100

9.4 Normalized number of cycles taken by the SPLASH-2 applications dur-

ing recording (Rc) and replay (Rp). 103

ix

CHAPTER 1

Introduction and Motivation

Recording and deterministically replaying execution gives computer users the ability to

travel backward in time, recreating past states and events in the computer. Time travel is

achieved by logging key events when the software runs, and then restoring to a previous

checkpoint and replaying the recorded log to force the software down the same execution

path. This alluring mechanism has enabled a wide range of applications in modern sys-

tems.

First, programmers can use time travel to help debug programs [2, 6, 8, 15, 23, 39, 43,

57, 67] — including non-deterministic ones [17, 32, 53],— because time travel can pro-

vide the illusion of reverse execution and reverse debugging. Second, system administra-

tors can use time travel to replay the past execution of applications looking for exploits of

newly discovered vulnerabilities [30] or to inspect the actions of an attacker [31]. Third,

system designers can use replay as an efficient mechanism for recreating the state of a

system after a crash [9, 20, 62].

Current software-only deterministic replay systems [9, 20–22, 39, 53, 57] are flexi-

ble and integrate well with the rest of the software stack. However, they perform slowly

on (or do not work with) multiprocessors. Thus, hardware-based schemes have been pro-

posed [5, 28, 41, 64, 65]. Even though they are much more efficient, they generate large

logs and their performance is limited because they constrain the reordering of memory

operations. Furthermore, they impose restrictions on how the users can record and replay

applications, rendering them largely impractical.

The work presented in this thesis makes several contributions to deterministic replay

1

of execution. The first one, presented in Chapter 4, explores a novel hardware approach to

higher-performance multiprocessor replay that provides substantial reductions in log size

and a much improved recording and replaying performance. This scheme is called De-

Lorean. It uses a new substrate for deterministic replay where processors execute chunks

of consecutive dynamic instructions atomically and in isolation, as in transactional mem-

ory or speculative execution. In this environment, recording an execution no longer in-

volves logging the dependences between individual memory accesses. Instead, in its sim-

plest form, the hardware just records the total order in which processors commit chunks.

Because these chunks can be thousands of instructions long, the resulting log size is very

small. Moreover, because each chunk is automatically executed in isolation, memory in-

structions can be reordered freely inside a chunk, which enables high performance execu-

tion and replay. Chapter 4 also proposes more advanced execution modes for DeLorean

that allow users to trade performance for log size. One of them predefines the processor

commit order: it requires almost no log and it is about as fast as previous hardware-based

replay schemes.

The second contribution of this thesis is a novel software-hardware interface for

practical hardware-assisted deterministic replay. A limiting issue of hardware-based schemes

is that they are largely impractical for use in real machines. The main reason is that they

are hardware centric designs: they do not distinguish between software that it is being

recorded or replayed and the rest. As a result, users cannot record or replay on an per-

application basis, nor they can record or replay different applications concurrently. More-

over, they must replay under the control of a complex virtual machine monitor or inside

a full-system simulator. To address these issues, Chapter 5 presents Capo, a software-

hardware interface that enables practical and efficient multiprocessor replay. Capo’s key

abstraction is the Replay Sphere: a set of threads that are replayed or recorded as a unit,

together with their address space. Replay spheres isolate processes that are being recorded

or replayed from the others, and provide a clean separation between the responsibilities

2

of the software and the hardware components. In Capo, the replay hardware captures the

memory access interleaving of a sphere’s threads in a per-sphere log. The software, in

turn, records any input to the replay sphere (i.e. input data from the network) in a differ-

ent per-sphere log. During the replay phase, the hardware uses its log to enforce the same

memory access interleaving while the software injects the logged inputs back to the re-

play sphere.

The final contribution of this thesis is the development and evaluation of CapoOne,

an implementation of Capo based on Ubuntu Linux [10] running on top of a simulated

x86 implementation of DeLorean. CapoOne can record and/or replay two or more un-

modified multithreaded applications, both independently and simultaneously. Moreover,

our evaluation of 4-processor executions running parallel applications shows that CapoOne

largely records with the efficiency of hardware-based techniques and the flexibility of

software-based schemes. As a result, a user could record an application while replaying

another one without impacting the performance of the rest of the executing applications.

This thesis is organized as follows. Chapters 2 and 3 present related work and give

some necessary background. Chapters 4 and 5 introduce DeLorean and Capo, respec-

tively. Chapter 6 describes CapoOne and discusses a series of lessons learned during its

development. Chapters 7, 8 and 9 describe our simulation environments and evaluate De-

Lorean and CapoOne. Finally, Chapter 10 discusses some possible avenues for extension

to the work presented in this thesis.

3

CHAPTER 2

Background: Deterministic Replay of Execution

2.1 Introduction

Deterministic replay is a well-known technique that enables time travel of computer sys-

tems. It consists of two phases. During the Recording phase —also known as the Initial

Execution phase— the software runs while the deterministic replay mechanism records

into a log certain non-deterministic events. Different replay schemes log different events.

For example, a compiler-based deterministic replay system might need to record the val-

ues returned by all load instructions; an OS-based scheme might just require logging the

values returned by system calls and the OS scheduler decisions.

During the second phase, known as the Replay phase, the replay system first restores

the software to a previous checkpoint. From there, the software restarts execution, but this

time the replay system uses the log generated during the initial execution phase to make

sure that the software follows the same execution path.

Researchers have devised many different deterministic replay schemes, and all of

them guarantee that the outcome of the execution is the same in both recording and re-

play under certain assumptions. Each of them, however, has a different understanding of

what replayed execution means. For example, consider a processor spinning on a lock.

Some schemes make sure that the processor spins the same number of times on the lock

during initial execution and during replay. Others, on the other hand, do not care whether

the processor spins a different number of times as long as the execution outcome is not

affected. The reader should notice that no deterministic replay scheme guarantees that the

4

timing of the replay is the same as the timing of the initial execution.

In this thesis we classify the deterministic replay schemes into software-based and

hardware-based. We say that a scheme is hardware-based if it requires hardware struc-

tures or devices that have been specifically designed for replay. Otherwise, we classify it

as software-only.

2.2 Six Desirable Traits of Deterministic Replay Schemes

In this thesis, we argue that schemes for deterministic replay have six desirable traits.

First, to be able to be used in production-run systems, they should record with little or no

overhead. Second, to support long recording periods, their logging requirements should

be minimal. Third, to maximize potential uses, their replay speed should be similar to

the initial execution speed. Fourth, they should require modest or none hardware support.

Fifth, they should operate on unmodified software and binaries. Finally, given the pop-

ularity of multicore processors, they should efficiently record and replay multithreaded

software running on multiprocessor systems.

Sections 2.3 and 2.4 give an overview of both software-based and hardware-based

schemes, and describe how different schemes measure along our six desirable traits.

2.3 Software-based Deterministic Replay Schemes

A number of software-based deterministic replay schemes have been proposed. In Re-

cap [45], Pan and Linton propose using the compiler to record how user-level threads

access shared-memory. In their scheme, the compiler inserts at least two additional in-

structions for every read that may access a shared location: one of them saves the loaded

value into a log and the other increments a log pointer. In their paper, Pan and Linton do

not provide any experimental data. However, because every value loaded from a poten-

5

tially shared location must be recorded, Recap generates a large log and thus it can only

replay the last few seconds of execution.

Instant Replay [36] uses a programming model where threads can only communi-

cate via controlled accesses to common data structures that live in shared memory. Instant

Replay uses a concurrent-read-exclusive-write (CREW) protocol [18] to ensure valid seri-

alization of accesses to shared data, and can be used in both message-passing and shared-

memory machines. In such environment, before a thread can write to a shared object S, it

executes a library procedure that i) waits until no other thread is reading S, ii) locks S, iii)

logs S’s version number and the total number of readers for this version and, iv) updates

S’s version number. Similarly, before a thread can read from S, it must execute a proce-

dure that i) waits until no other thread is modifying it, ii) locks S, iii) logs S’s version, and

iv) increases the concurrent and total readers counters. After a thread finishes writing or

reading the object version, it unlocks the object and performs some other housekeeping

operations. This approach works well when programs access shared memory in a coarse

grain fashion. However, the overhead is significant if the programs do fine-grain accesses.

Furthermore, code must be reshaped to use Instant Replay’s shared-object access proce-

dures. A similar scheme, Agora [24], also uses version numbers to implement record and

replay, except that it does not employ the CREW protocol to manage version numbers.

At the virtual machine level, Choi and Srninivasan [16] propose DejaVu. In their

paper, the authors focus on recording and replaying Java multithreaded applications run-

ning on uniprocessors, although their approach could also be used —under certain as-

sumptions and with a large overhead— in multiprocessor systems. DejaVu records the

schedule of the threads running on top of a Java VM. Instead of modifying the underly-

ing thread scheduler, DejaVu captures the thread scheduling by looking at two types of

events, namely synchronization operations and shared-variable accesses. Suppose that

thread T1 accesses shared memory location X and later T2 acquires lock L. With this

information, DejaVu can infer that T1 was scheduled before T2. Because each of these

6

events require acquiring a global lock and incrementing a shared variable, DejaVu can

incur in considerable overhead even in uniprocessor systems.

Researchers have also proposed modifying the operating system to record and re-

play certain applications running on it. For example, the Flashback [57] system records

and replays processes by modifying the implementation of an OS to log all sources of

non-determinism during recording. This includes logging all results of system calls, plus

any data the kernel copies into the process. For example, if a process makes a read sys-

tem call, Flashback records the return value of the system call and the data that the kernel

copies into the read buffer. When replaying, Flashback injects this same data back into

the process when it encounters this specific system call. The Flashback paper focuses on

single-threaded applications, and the authors propose adopting DejaVu’s approach to de-

terministically replay multithreaded applications in uniprocessors. For multiprocessor

systems, they acknowledge that some architectural support would be needed to replay

shared-memory accesses. Russinovich and Cogswell [53] propose Repeatable Scheduling

to record and replay multithreaded applications running on a uniprocessor system. Like

DejaVu, their approach consists in recording the thread scheduling. However, it does so

by modifying the Mach [50] operating system’s scheduler so that it informs the replay

system of each thread switch. Unfortunately, this technique would never work on a mul-

tiprocessor system because it cannot record accesses to shared memory locations. More-

over, their paper only focuses on replaying the scheduling decisions and it does not study

how to replay applications that read inputs from the network or from files that change

from execution to execution.

Other researchers propose using virtual machine monitors (VMMs) to replay entire

virtual machines. Bressoud and Schneider [9] modify a hypervisor to replay virtual ma-

chines on Alpha-based computer systems, and the ReVirt [21] and ReTrace [66] projects

modify the VMM to replay virtual machines on modern x86-based computer systems,

provided that the VMs run on single virtual processors. These projects record external in-

7

put from the network and other I/O by logging the calls that read these devices. To replay

interrupts, these schemes log the dynamic instructions at which interrupts are delivered

and ensure that they are redelivered at precisely the same point during replay. The authors

use performance counters in the processor to uniquely identify such points .

In a recent paper, Dunlap et al. present SMP-ReVirt [22], an extension of ReVirt that

works with multiprocessor virtual machines. SMP-ReVirt guarantees that reads and writes

to shared memory are ordered with respect to each other by using the CREW [18] pro-

tocol at page granularity. Thus, pages can be in either concurrent read or in exclusive-

write states. For example, if a virtual processor attempts to write into a page marked as

concurrent-read, then the CREW system sends messages to the other processors to de-

crease their permissions before it may increase the requester’s. This can be done rather

straightforwardly using the VMM’s shadow page tables [55]. SMP-ReVirt records into a

log the CREW events so that they can be replayed. Unfortunately, it is very common that

two or more processors write into the same page but without writing into shared variables,

resulting in many unnecessary CREW events, which are not cheap. Consequently, SMP-

ReVirt can impose considerable overhead.

iDNA [6] uses dynamic binary translation and interpretation to record and replay

multithreaded applications, even in multiprocessor systems. iDNA emulates the instruc-

tion stream by breaking the guest instructions into sequences of simpler operations that

are fed into a simulator. A tracer connected to the simulator records all the memory val-

ues read by the executing instructions, together with other relevant info (i.e. the register

state). As expected, recording each value read by an application produces a large log.

Thus, even though iDNA compresses its logs very efficiently, its space overhead is still

large. Moreover, because iDNA runs the applications within a simulator, its runtime over-

head is high (6X). Still, iDNA has been successfully used within Microsoft to detect and

classify data races in mature, large applications.

Musuvathi et al.’s CHESS [39] uses a form of deterministic replay to debug applica-

8

tions. CHESS does not implement a complete log and replay mechanism, being up up to

the user to provide most of the deterministic inputs — it does log, however, input values

that are not easily controlled by the user, such as accesses to the timer or the processor

ID. During the program execution, CHESS redirects calls to concurrency primitives to al-

ternative implementations in a wrapper library, and records the scheduler decisions. To

avoid having two threads concurrently accessing shared-memory locations, CHESS en-

forces single-threaded execution, which of course has an severe effect on performance.

During testing, CHESS first replays a sequence of scheduling choices from the log. If the

replay phase does not find any bug, CHESS continues exploring other schedules. CHESS

is a successful tool and it is now used at Microsoft to test production codes.

Finally, RecPlay [52] uses record and replay to detect data races. During recording,

RecPlay only records information (i.e. outcomes) about the synchronization events —

completely ignoring shared data accesses. As a result, RecPlay records execution very

efficiently and requires a small log. Unfortunately, recording such little information also

prevents RecPlay from replaying applications with data races.

2.3.1 Summary of Software-Based Replay Systems

Table 2.1 summarizes how the software-based deterministic replay schemes described in

Section 2.3 measure along the six axes that Section 2.2 argued are key for replay schemes:

initial execution speed, log size, replay speed, hardware needed, ability to use unmodified

binaries and support for multiprocessor execution.

It can be seen in the table that software-based techniques work well for uniprocessor

execution, but that their performance drops significantly when they deal with multipro-

cessors. This is the case of SMP-ReVirt and iDNA. RecPlay [52],on the other hand, has

outstanding multiprocessor performance but only because it does not record shared data

accesses and, therefore, cannot replay applications with data races. Moreover, their imple-

9

Replay Recording Estimated Replay Hardware Unmodified SMP

Scheme Overhead Log Size Overhead Support Binaries Support

(%) (b/kilo-inst) (%)

Recap N/R N/R N/R None N Y

Instant
<5 1.1 < 5 None N

Msg.

Replay Passing

Agora N/R N/R N/R None N
Msg.

Passing

DejaVu 47.2 0.01 32.6 None Y N

Flashback <10 N/R N/R None Y N

Repeatable
9.75 0.09 11.91 None N N

Scheduling

ReVirt 35.2 0.04 27.1 None Y N

ReTrace 5.9 4 N/R None Y N

SMP-ReVirt
425 0.62 N/R None Y Y

(4 procs)

iDNA 600 300 1000 None Y Y

CHESS N/R N/R N/R None N Y

RecPlay 2.1 N/C 91 None Y Y

Table 2.1: Comparing the main issues in software-based deterministic replay schemes. “N/R”

stands for “Not Reported”. “N/C” stands for “Could Not Convert”, meaning that we

did not have enough information to convert their reported log size into bits per kilo-

instruction.

mentation assumes that the data returned by system calls is always deterministic; adding

support for recording and replaying system calls would add more overhead. Instant replay

also has very little overhead, but it requires the application to be modified so that shared

data accesses are done using special functions. If the programmer forgets to use these

functions, Instant Replay might not be able to deterministically replay the application.

Column 3 of Table 2.1 shows our estimation of the size of the log generated by each

scheme in bits per kilo-instruction. Note that each software-based technique uses dif-

ferent units to measure their log size and runs different benchmarks on completely dif-

ferent processors. Thus, we have converted all the results to be in terms of bits per kilo-

10

instruction, which is a very common metric in the hardware-based replay community. The

table shows that most schemes have very small logging requirements, with the exceptions

of iDNA. As we discussed earlier, iDNA logs every single value loaded by the applica-

tion, so its large log is expected.

2.4 Hardware-based Deterministic Replay Schemes

The software-based techniques described in Section 2.3 are flexible, integrate well with

the rest of the software stack and have been proven effective. Unfortunately, Table 2.1

shows that some of them do not work with multiprocessor execution and, the ones that do,

perform very slowly. This is because current software-only techniques for interposing on

shared-memory accesses are inefficient.

Fortunately, hardware can record very efficiently how processors access shared mem-

ory. As a result, several hardware-based schemes have been proposed. These schemes

propose special hardware to detect the interleaving of memory accesses or instructions

from different processors during execution, and save the key information into a log, which

is later used to enforce the same interleaving. This log is often called the memory inter-

leaving, memory ordering or memory access interleaving log in the literature. In this the-

sis, we will refer to it as the Memory Ordering Log.

Bacon and Goldstein [5] were the first to propose using hardware to record the inter-

leaving of multiprocessor execution. Their key insight was that, in a sequentially consis-

tent multiprocessor, it is possible to capture the dependences between concurrent threads

by logging the coherence messages in the bus. They used a board attached to the bus to

record all such messages in a log stored in dedicated memory and/or disk. Although their

scheme did not degrade performance during normal execution, their log size was substan-

tial because every bus transaction was recorded. During replay, Bacon and Goldstein’s

approach allows the first processor in the log to run up to the instruction preceding the

11

P2 q

m:Rc
n:Wc
o:Rc
p:Rb
q:Ra

P2P1

g:Wa
h:Ra
i:Ra
j:Rb
k:Rc

Log
P1 g

P2 m

P1 j

P2 p

P1 k

0
1

2

4
3

5

(a) (b)

Figure 2.1: Recording multiprocessor execution using Bacon and Goldstein’s scheme: initial exe-

cution (a) and resulting Memory Ordering log (b). Instructions in bold indicate cache

coherence events in the bus. The segments labeled 0 to 5 show the replay schedule.

instruction that caused that processor’s next bus transaction, effectively serializing the ex-

ecution.

Figure 2.1 shows Bacon and Goldstein’s scheme. At instruction g, processor P1

writes into location a. This creates a coherence message in the bus that is recorded into

the log. The next two instructions from P1 read from a, and therefore they do not origi-

nate coherence messages. At instructions j and p, processors P1 and P2 read from b, thus

creating two coherence messages that must be logged as well.

Figure 2.1(a) also shows the replay schedule for the example code. During replay,

the system executes instructions g, h and i from processor P1 (segment 0). Then, it exe-

cutes m, n and o from P2. This process continues until the end of the log (Figure 2.1(b).

It can be seen in the figure that Bacon and Goldstein’s approach leads to unnecessary se-

rialization, as segments 0 and 1 could have been executed in parallel because they do not

access the same locations.

The Flight Data Recorder (FDR) [64] records and replays directory-based multipro-

cessors under SC. Like Bacon and Goldstein’s scheme [5], FDR observes coherence mes-

sages between processors. However, it only records a subset of them, which are chosen

using a hardware version of Netzer’s Transitive Reduction (TR) algorithm [44]. Netzer’s

optimization is based in two observations. First, that the order between instructions that

access separate memory locations does not need to be recorded. And second, that depen-

12

m:Wb
n:Ra

P2P1

i:Wa
j:Wb

(b)

m:Wb
n:Ra

P2P1

i:Wa
j:Wb

(a)

P2 Log
m P1 j

Figure 2.2: FDR’s transitive reduction optimization: dependences in initial execution (a),

recorded dependence (b).

dences that can be transitively implied by others do not need to be recorded either.

Figure 2.2 illustrates FDR’s transitive reduction optimization. In Figure 2.2(a), in-

structions i and j of processor P1 write locations a and b, respectively. Later, P2’s instruc-

tions m and n access b and a, creating the dependences i:Wa→n:Ra and j:Wb→m:Wb.

However, the dependence i:Wa→n:Ra does not need to be recorded because it is tran-

sitively implied by i:Wa→j:Wb, j:Wb→m:Wb, and m:Wb→n:Ra. Consequently, FDR

only records j:Wb→m:Wb — Figure 2.2(b). For this, FDR saves the processor ID and

instruction count of the two instructions in P2’s log. The sum of all per-processor logs

constitutes FDR’s Memory Races Log. During replay, the system makes sure that P1 has

executed j:Wb before P2 can execute instruction m:Wb.

FDR augments each cache block with the count of the last instruction that accessed

it. FDR increases the area of the caches by 6.25% and generates a compressed log size of

2MB per 1GHz processor per second [64].

BugNet [42] reuses FDR’s hardware to replay user code and shared libraries. Its key

insight is that it is possible to replay a parallel application by recording the register file

contents at any point in time and then record the values returned by all the load instruc-

tions executed afterwards. BugNet efficiently records the output of all load instructions by

compressing them with a hardware-based dictionary scheme.

Xu et al. [65] extend FDR in several ways, although this section focuses on the two

main extensions. The first one is the Regulated Transitive Reduction (RTR). The idea is

13

m:Ra
n:Wb

(b)

P1

i:Wa
j:Wb

P2

m:Ra
n:Wb

(a)

P1

i:Wa
j:Wb

P2

m:Ra
n:Wb

(c)

P1

i:Wa
j:Wb

P2

P2 Log
m P1 j

Figure 2.3: RTR optimization: dependences in initial execution (a), dependences in initial execu-

tion plus artificial dependence (b), final recorded dependence (c).

to judiciously introduce artificial dependences so that Netzer’s TR can eliminate other de-

pendences. Figure 2.3 illustrates this process. The original execution — Figure 2.3(a) —

has dependences i:Wa→m:Ra and j:Wb→n:Wb. FDR would record both because none of

them could be transitively implied by the other. In Figure 2.3(b), RTR introduces a new,

stricter artificial dependence: j:Wb→m:Ra. Applying RT to this set of dependences elim-

inates the need to record the two original dependences — Figure 2.3(c). Although not

shown in the figure, RTR also saves space by representing recurring dependences with a

vector notation.

The second contribution of Xu et al.’s work is a recording algorithm for a TSO ma-

chine [65]. It extends FDR’s algorithm as follows. There is hardware in the processor

that detects when a load has violated SC. In this case, the dependence that FDR would

log (assuming SC) is not logged. Instead, the hardware logs the value read by the load,

which is later fed to the replayer. Supporting TSO is significant because TSO is used in

real machines. However, the authors do not evaluate the impact of the new algorithm on

execution speed or on log size [65].

This thesis refers to Xu et al.’s work [65] as the RTR system, and distinguish be-

tween the Base (no TSO) and Advanced (TSO) support. The Base RTR support logs

about 1B per processor per kilo-instruction (compressed).

The Strata [41] replay scheme records dependences differently than FDR/RTR.

Rather than logging individual dependences with a pair of instruction counts, each entry

14

n:Rc

P3

m:Wdr:Wc

t:Wb

u:Rd

P2P1

i:Wa

j:Wb

(a)

S0

S1

s:Ra
Log

i r m

 0 t-r n-m

S0

S1

(b)

Figure 2.4: Recording multiprocessor execution using Strata: dependences in initial execution (a),

Strata’s Memory Ordering Log(b).

(a “Stratum”) in Strata’s Memory Races Log is a vector of as many counters as proces-

sors. Each counter is the number of memory operations issued by the corresponding pro-

cessor since the last stratum was logged. A stratum is logged before a processor issues the

second access of an inter-processor dependence. Therefore, a stratum separates at least

two dependent memory operations executed in different processors.

Figure 2.4(a) shows a reference trace with the points (S0 and S1) where strata are

logged. Right before the second reference of the dependence i:Wa→s:Ra is issued, Strata

logs the memory reference counts of all 3 processors. The same process is repeated right

before the second reference of the dependence t:Wb→j:Wb. The other two dependences

in the figure do not require the creation of a new stratum: each of them already has its two

references in different strata regions. Figure 2.4(b) shows the Strata’s Memory Ordering

Log corresponding to the memory interleaving found in Figure 2.4(a).

Strata works with directory- and snoop-based systems — both under SC. Strata can

choose to ignore WAR dependences when building the log. In this case, WAR depen-

dences are uncovered at replay at the cost of slowing down the replay with multiple re-

executions [41]. The compressed log for 4 processors is 2.2KB per 1M memory refer-

ences. Although Strata’s log size for 4 processors is comparable to RTR’s, it is propor-

tional to the number of processors in the system. As a result, Strata’s log is significantly

larger than RTR’s on systems with 8 or 16 processors [28].

Rerun [28] takes yet another approach to generating the Memory Ordering Log. In-

15

(a) (b)

x:Wd
y:Wa
z:Wc

P2P1

i:Ra
j:Wb
k:Ra
l:Wd

P2P1

R={a}
W={b,d}
REFS=4
TSTAMP=23

R={}
W={a,c,d}
REFS=3
TSTAMP=24

i:Ra
j:Wb
k:Ra
l:Wd

m:Wd
n:Wa
o:Wc

R={n, ...}
W={m, ...}
REFS=n
TSTAMP=11

P2 Log
n 11

3 24

P1 Log
4 23

(c)

s:Wn
u:Rm
v:Wm

...
s:Wn
u:Rm
v:Wm

...

Figure 2.5: Recording multiprocessor execution using Rerun: dependences in initial execution (a),

Rerun’s Episodes (b) and Rerun’s Memory Ordering Log (c).

stead of focusing on individual dependences between instructions of different threads, it

focuses on regions of independence. Rerun breaks the dynamic instruction stream into

consecutive series of independent execution regions, called Episodes. Thus, each episode

is a set of consecutive dynamic instructions from the same thread that execute without

conflicting with any other thread of the system. For each processor, Rerun uses two bloom

filters [7] to track each episode’s read and write sets. In addition, Rerun uses a per-processor

counter to record the number of memory references per episode and a per-processor regis-

ter to store the current episode’s Lamport clock.

Figure 2.5 shows Rerun in action. In the original execution —Figure 2.5(a)— there

are two dependences: i:Ra→y:Wa and l:Wd→x:Wd. The latter causes P2 to complete the

episode with Timestamp 11 and start a new one with Timestamp 24 —Figure 2.5(b). The

counters REFS in Figure 2.5(b) store the number of memory accesses in each episode.

Figure 2.5(c) shows the final recorded Memory Ordering Log. Notice that the first de-

pendence, i:Ra→y:Wa, does not create a new episode because instruction i:Ra belongs to

an episode that has already finished and has a timestamp that is smaller than the current

episode’s.

During replay, episodes are ordered and replayed using the recorded timestamps.

Unfortunately, this makes Rerun replay mostly sequential. On the other hand, Rerun has

very modest hardware requirements and its final Memory Ordering Log size is similar to

16

RTR’s.

ReEnact [47] leverages thread-level speculation (TLS) mechanisms to debug data

races in multithreaded programs. As soon as ReEnact detects a data race, it rolls back

execution and enters a data race characterization phase. During this phase, ReEnact deter-

ministically replays the instructions leading to the data race and collects information such

as the instructions and memory locations involved in it. CORD [46] is a data race detector

and replayer that is both simpler and faster than ReEnact. Its main idea is to record RAW

dependences in a bus-based system.

2.4.1 Hardware-Based Full-System Replay

FDR, RTR, Strata and Rerun are full-system hardware-based replay schemes. This means

that they record and replay both the operating system and applications running on them.

Because of this, recording the memory interleaving is not enough to guarantee a correct

replay execution: all of them must also record other sources of non-determinism, such as

interrupts, DMA operations and inputs to the system — i.e. incoming network packets.

Therefore, in addition to the Memory Ordering Log, all these schemes require an In-

terrupt Log, a DMA Log and an Input Log. In this thesis, when we refer to the log size of

full-system replay schemes, we only consider the Memory Ordering Log. This is because

the other logs, such as the Input and DMA logs, are less critical [65] and are handled sim-

ilarly by all hardware-based full-system schemes.

2.4.2 Summary of Hardware-Based Replay Systems

Columns 2-5 of Table 2.2 show our estimation of how Bacon and Goldstein, FDR, RTR,

Strata and Rerun measure along the six traits described in Section 2.2. Bacon and Gold-

stein, FDR, Strata, Base RTR and Rerun have been shown to affect execution speed neg-

ligibly. Consequently, we list as their execution speed that of the memory consistency

17

Replay Initial Estimated Replay Hardware Unmodified SMP

Scheme Execution Memory Speed Needed Binaries Support

Speed Ordering

Log Size

(b/kilo-inst)

Bacon and
SC N/C N/R

Board attached
Y Y

Goldstein to system bus

FDR SC 200 N/R Cache hierarchy Y Y

RTR BASE SC 8 N/R Cache hierarchy Y Y

Advanced
TSO? N/R N/R

Cache hierarchy
Y Y

RTR + Processor

Strata SC N/C N/R Cache hierarchy Y Y
(≈ RTR)

Rerun SC 8 N/R Cache hierarchy Y Y

Table 2.2: Comparing the main issues in hardware-based, full-system replay schemes. “N/R”

stands for “Not Reported”. “N/C” stands for “Could Not Convert”, meaning that we

did not have enough information to convert their reported log size into bits per kilo-

instruction. All schemes use a 4-processor configuration.

model supported, namely SC. Advanced RTR supports TSO but its execution speed has

not been measured.

It can be seen in the table that, in general, hardware-based systems require larger

logs than software-based schemes. Because it logs almost all coherence messages, Ba-

con and Goldstein requires the largest log. In their paper, Narayanasami et al estimate that

Strata’s log size is similar to RTR’s. However, Strata scales very poorly with the num-

ber of processors. In fact, when using Strata on an 8 processor configuration, its log size

more than doubles. The log size for Rerun is similar to the one for Base RTR, and there

is no information for Advanced RTR. There is also no information on the replay speed of

these schemes, but we estimate that, in their current shape, replay is significantly slower

than the initial execution. In the case of Strata, there are three reasons: (i) the log strata

likely act as synchronization barriers for replaying processors, (ii) the presence of WARs

(if not recorded) requires multiple replays of the same stratum region, and (iii) the replay

18

under directory schemes needs a prepass to combine the multiple logs. In the case of FDR

and RTR, every dependence requires a communication between two replaying proces-

sors. Moreover, the conservative dependences introduced by RTR may potentially cause

processor stalls. Finally, replay in Bacon and Goldstein and Rerun is significantly slower

because both schemes serialize re-execution.

Most schemes require changes in the cache hierarchy, with Advanced RTR requiring

changes in the processor as well. Strata and Rerun have very few hardware requirements.

Finally, all of them can operate on unmodified binaries and support SMP systems.

To conclude, Figure 2.6 shows a taxonomy of the replay schemes that have been dis-

cussed in this chapter.

19

D
et

er
m

in
is

tic
 R

ep
la

y
S

ch
em

es

H
W

-B
as

ed

S
W

-B
as

ed

C
om

pi
le

r-
ba

se
d

R
ec

ap

Li
br

ar
y-

ba
se

d

In
st

an
t

R
ep

la
y

A
go

ra

V
M

-b
as

ed

D
ej

aV
u

Ja
la

pe
ño

R

ep
la

ye
r

F
la

sh
ba

ck
R

ep
et

ab
le

S

ch
ed

ul
in

g

O
S

-b
as

ed
V

M
M

-b
as

ed
D

yn
am

ic

B
in

ar
y

T
ra

ns
la

tio
n

iD
N

A
R

eV
irt

S
M

P

R
eV

irt
R

eT
ra

ce
V

M
W

ar
e

F
T

F
ul

l-s
ys

te
m

R
ep

la
y

B
ac

on
 &

G

ol
ds

te
in

F
D

R
R

T
R

S
tr

at
a

R
eR

un

S
in

gl
e-

A
pp

re

pl
ay

D
at

a-
R

ac
e

R
ep

la
y

B
ug

N
et

R
eE

na
ct

C
O

R
D

Fi
gu

re
2.

6:
D

et
er

m
in

is
ti

c
re

p
la

y
sc

h
em

es
cl

as
si

fi
ca

ti
o
n
.

20

CHAPTER 3

Background: BulkSC

It is widely accepted that the most intuitive memory consistency model, and the one that

most programmers assume is Sequential Consistency (SC) [35]. Despite this advantage of

SC, manufacturers such as Intel, IBM, AMD, Sun and others have chosen to support more

relaxed memory consistency models [1]. Such models have been largely defined and used

to facilitate implementation optimizations that enable memory access buffering, overlap-

ping, and reordering. A straightforward implementation of the requirements imposed by

SC on the outstanding accesses of a processor impairs performance too much. Moreover,

the hardware extensions that are required for a processor to provide the illusion of SC at a

performance level that is competitive with relaxed models are too expensive.

Bulk Enforcement of SC or BulkSC [13] proposes a new implementation of SC that

delivers performance comparable to relaxed models while being simple to realize. The

key idea is to dynamically group sets of consecutive instructions into chunks that appear

to execute atomically and in isolation. Then, the hardware enforces SC at the coarse grain

of chunks rather than at the conventional, fine grain of individual memory accesses.

In BulkSC, processors execute sets of consecutive dynamic instructions (we will call

them Chunks in this thesis) as a unit, in a way that each chunk appears to execute atom-

ically and in isolation. To ensure this perfect encapsulation, BulkSC enforces two rules.

First, updates from a chunk are not visible to other chunks until the chunk completes and

commits. And second, loads from a chunk have to return the same value as if the chunk

was executed at its commit point —otherwise, the chunk would have “observed” a chang-

ing global memory state while executing. BulkSC supports SC because chunks from in-

21

b1
b2

a1
a2

(a) (b)

PA

Possible
fine-grain

interleavings

a1
a2
b1
b2

a1
b1
a2
b2

b1
b2
a1
a2

...

PB

a1
a2

b1
b2

Processors
Possible

coarse-grain
interleavings

a1
a2

b1
b2

a1
a2

PA PB

b1
b2

Chunks

Processors

Figure 3.1: Fine (a) and coarse-grain (b) access interleaving.

dividual processors maintain program order and chunks from all processors maintain a

single sequential order.

As Figure 3.1 shows, some global interleavings of memory accesses from different

processors are not possible in BulkSC. However, all the resulting possible executions are

sequentially consistent at the individual memory access level. In a sense, BulkSC reduces

the number of different possible interleavings in the machine. As we will see in Chap-

ter 4, this is a great asset for deterministic replay.

BulkSC is a key component of the hardware-based deterministic replay system pre-

sented in this thesis. Therefore, the rest of this chapter outlines the main components of

BulkSC.

3.1 Overview of the BulkSC Operation

In BulkSC, a processor takes a checkpoint every N committed instructions. The instruc-

tions between two checkpoints, or Chunk, are executed speculatively until either they get

squashed due to a data dependence with another chunk, or they all commit at once, after

the chunk has completed. All processors repeatedly (and only) execute chunks.

As a processor executes a chunk speculatively, it buffers the updates in the cache. In

addition, the addresses read and written by a chunk are hash-encoded [7] in hardware into

22

a Read (R) and Write (W) signature. When a processor wants to commit a chunk, it sends

its signatures to a simple hardware state machine called the arbiter. The arbiter intersects

the signatures with those of the chunks that are currently committing. If the intersection

is empty, the arbiter keeps the W signature, forwards it to the directory to make the com-

mit visible to all processors, and grants permission to commit to the processor. While a

processor is requesting permission to commit a chunk, it continues executing subsequent

chunks — each has its own signatures. If the intersection is not empty, the permission-to-

commit request from the processor is denied, and the processor will later retry. Since this

process is very fast, the arbiter is not a bottleneck in a modest-sized machine.

A processor can have more than one speculative chunk of a thread executing at a

time. Memory accesses by a processor are allowed to fully reorder and overlap both within

chunks and across chunks. In fact, wihin-chunk execution proceeds with all the memory

access reordering and overlapping possible in uniprocessor code.

Chunks from one or multiple processors must appear to commit in a total order. In

practice, for high performance, multiple chunks are allowed to commit concurrently as

long as the addresses they have accessed do not overlap. Overall, BulkSC execution sup-

ports SC, although its performance is practically the same as that of RC execution [13].

3.2 Hardware Requirements

BulkSC uses Bulk [12] to perform memory disambiguation. Bulk is a set of hardware

mechanisms that simplify the support of common operations in an environment with mul-

tiple speculative tasks such as Transactional Memory (TM) and Thread-Level Speculation

(TLS). A hardware module called the Bulk Disambiguation Module (BDM) generates the

per-chunk signatures described in 3.1. It also includes units that perform signature oper-

ations such as intersection, expansion, etc. Signature intersection is used to detect con-

flicts between chunks. Signature expansion finds the set of lines in a cache that belong to

23

ArbiterDir

Network

Processor N-1
L1BDM

Processor 0
L1 BDM

Figure 3.2: BulkSC architecture.

a signature withoug traversing the cache, and it is used to perform bulk invalidation of the

relevant lines from a cache during chunk squashes.

A second key component in the BulkSC architecture is the support for efficient pro-

cessor checkpointing, which is already feasible today [3, 11, 19, 33, 34, 38, 40, 58]. Chunk

squashes leverage the mechanisms of checkpointed processors: a register checkpoint is

restored and all the speculative state generated by the chunk is efficiently discarded from

the cache.

The L1 cache requires minimum changes because task speculation and address dis-

ambiguation are supported by a Bulk Disambiguation Module (BDM) connected to the

L1 controller. There is no need to watch for cache displacements to enforce consistency.

Clean lines can be displaced from the cache —the R signature records them— and the

BDM prevents the displacement of written lines until commit [12]. Thanks to the BDM,

the cache tag and data array are unmodified; they do not know if a given line is specula-

tive or what chunk it belongs to.

Figure 3.2 shows an overview of the architecture for a BulKSC system with a dis-

tributed directory protocol and a generic network.

24

CHAPTER 4

DeLorean: A New Approach to Hardware-based

Deterministic Replay

4.1 Introduction

Chapter 2 presented a wide array of deterministic replay schemes. While the software-

based ones make major strides toward achieving the six traits described in Section 2.2,

they fall short in one or more areas. In general, software-based schemes have poor record-

ing and replaying speeds on multiprocessor systems.

As Table 2.2 shows, the hardware-based schemes also make major strides in these

directions. However, they still fall short of our goals in some axes. First, they require Se-

quential Consistency (SC) — a strict consistency model whose typical implementations

have relatively low performance and, therefore, can distort the timing of bugs relative

to production-run execution. The exception is RTR [65], which introduces an algorithm

to record under Total Store Order (TSO) [59]. However, the impact of this algorithm on

execution speed or log size is not evaluated. Secondly, most existing hardware-based

schemes capture shared-memory dependences by logging them individually [64] or in

groups [41, 65]. For this, they need to log about one byte per kilo-instruction after com-

pression, which limits the duration of the recorded interval. Finally, it is unclear how fast

these schemes replay.

In this chapter we present DeLorean, a new approach to deterministic replay that

provides substantial advances in these six traits. DeLorean uses a new execution sub-

strate: one where processors execute large blocks of instructions atomically, separated

by processor checkpoints, like in transactional memory or thread-level speculation. To

25

capture a multithreaded execution, DeLorean only needs to record the total order in which

blocks from different processors commit — not individual shared-memory dependences.

This results in a substantial reduction in log size compared to previous hardware-based

schemes. Moreover, since the memory accesses of a processor can overlap and reorder

within and across the same-processor blocks, DeLorean can record execution at the speed

of the most aggressive consistency models used today — and replay at a comparable

speed. While the hardware used is not standard in today’s current systems, the required

changes are mostly concentrated in the memory system.

4.2 Deterministic Replay of Chunk-Based Systems

Chapter 3 described an environment where processors continuously execute blocks of

consecutive dynamic instructions (which in Chapter 3 we called Chunks) atomically and

in isolation. Other proposals on systems with all-the-time software-annotated transac-

tions such as TCC [26] or checkpointed multiprocessors with all-the-time hardware-based

transactions such as Implicit Transactions (IT) [61] have described similar environments.

Moreover, such an environment can also be supported in systems with thread-level specu-

lation or with coarse-grain memory ordering support such as ASO [63].

In this environment, the updates made by a chunk only become visible when the

chunk commits. When two concurrently-executing chunks conflict — there is a data de-

pendence across the two chunks — one of the chunks is typically squashed and retried.

The net effect is that the interleaving between the memory accesses of different proces-

sors appears to occur only at chunk boundaries. Furthermore, all the memory accesses of

a committing chunk appear to occur after those of the chunks committed earlier and be-

fore those of the chunks that will commit later. In this thesis, we call this execution envi-

ronment chunk-based execution, and the systems that implement it chunk-based systems.

In chunk-based systems, recording the execution for replay involves logging the se-

26

quence of chunk commits. This provides two fundamental advantages over conventional

recorders. The first one is that we can record and replay executions where the memory

accesses issued by a processor within a chunk (and in fact across chunks [13]) are fully

reordered and overlapped. Recording under such conditions has been a major stumbling

block for this area’s research, and is recognized by Xu et al. [65] as an open problem. The

significance of this is that both execution and replay can now proceed at a speed similar to

that of a highly-relaxed memory consistency model such as RC. This enables the record-

ing of memory interleavings in true production runs. It also enables high-speed determin-

istic replay. In our view, this has major implications on the applicability of deterministic

replay in debugging, fault tolerance and security.

The second fundamental advantage is that the Memory Ordering Log is now very

small. Indeed, rather than recording individual dependences, or even groups of them such

as in Strata [41] and RTR [65], the Memory Ordering Log in a chunk-based system only

needs to record the total order in which chunks from different processors commit. This

means that each log entry is short (naively, the ID of the committing processor and the

chunk size) and the log is updated infrequently (chunks can be thousands of instructions

long). Furthermore, in an aggressive design, we can predefine when to finish a chunk and

start a new one, and even the chunk commit order. In this case, the log size is similar to

that of software-based schemes.

In the rest of this section, we examine the design space of chunk-based deterministic

replay systems, present our proposed chunk-based replay architecture called DeLorean,

and then put it in the context of conventional replayers.

4.2.1 Design Space of Chunk-Based Deterministic Replay Systems

In a chunk-based system, the Memory Ordering Log does not store individual or groups

of dependences; it only needs to store the total order of chunk commits. In the simplest

27

design, each log entry contains the ID of the processor committing the chunk and the

chunk size — measured in number of retired instructions.

We can reduce the log size by either reducing the number of entries or reducing the

size of each entry. To reduce the number of entries, we can increase the chunk size — i.e.,

include more instructions in each chunk. However, increasing the chunk size beyond a

certain point is counter-productive. First, we may hurt performance because long chunks

increase the chances of inter-chunk conflicts and resulting squashes. Second, we may be

unable to increase the effective chunk size. Indeed, a long chunk may access more lines

mapping to a cache set than ways the cache has — risking the cache overflow of specu-

latively updated lines. Before this happens, the chunk has to be forcefully finished and

committed.

To reduce the size of each log entry, we can omit the chunk size or the ID of the

committing processor from the entry. To be able to omit the chunk size, we need to make

“chunking” — i.e., the decision of when to finish a chunk — deterministic. We can ac-

complish this in different ways. One could be to finish chunks at software annotation

points — perhaps similar to what is done in transactional memory systems. Another is

to finish chunks when a certain number of memory operations or instructions have been

committed — like it is done in BulkSC or IT.

In reality, there may be events that truncate a currently-running chunk and force it

to commit before it has reached its “expected” size. This is fine as long as the event reap-

pears deterministically in the replay. An example is an uncached load to an I/O port. The

chunk is truncated but its log entry does not need to record its actual size because the un-

cached load will reappear in the replay and truncate the chunk at the same place.

There are, however, a few events that truncate a currently-running chunk and are

not deterministic — e.g., cache overflow as discussed above. We will examine these rare

events in Section 4.3.2. When one such event occurs, the log is augmented with infor-

mation on: (i) what chunk gets truncated and (ii) its size. With this information, the ex-

28

act chunking can be reproduced during replay. This mode of execution makes little sense

with checkpointed processors that, for performance reasons, checkpoint (and start a new

chunk) at certain non-deterministic events such as cache misses [34] or low-confidence

branches [3]. Missing loads and low-confidence branches in the initial execution may

become hits and predictable branches in the replay. Consequently, checkpoints and the

resulting chunk boundaries may not appear in the same program positions in both execu-

tions.

To be able to omit the ID of the committing processor from the log entry, we need

to “predefine” the chunk commit interleaving. This can be accomplished by enforcing a

given commit policy — e.g., pick processors round-robin, allowing them to commit one

chunk at a time. The drawback is that, by delaying the commit of completed chunks until

their turn, we may slow down execution and replay.

Based on all these ways to reduce the log size, we have three Execution Modes in

chunk-based deterministic replay systems (Table 4.1). In the following discussion, we

assume that the machine has an Arbiter module that observes the order of chunk com-

mits. The arbiter can be associated with the bus controller in a bus-based machine or be

an independent module in a machine with a generic network as in BulkSC (Chapter 3) or

Scalable TCC [14].

In the Order&Size Mode (top left), chunking is not deterministic and the chunk com-

mit interleaving is not predefined. During execution, the arbiter logs the sequence of com-

mitting processor IDs in a Processor Interleaving (PI) Log. In addition, processors log the

size of the chunks they commit in the per-processor Chunk Size (CS) Log. During replay,

each processor generates chunks that are sized according to its CS Log, and the arbiter

enforces the commit order present in the PI Log. The combination of a single PI Log and

per-processor CS Logs constitutes the Memory Ordering Log. The table shows the es-

timated size of the Memory Ordering Log, where max chunksize and chunksize are the

maximum and average chunk size, respectively.

29

N
on

-D
et

er
m

in
is

tic
C

hu
nk

in
g

D
et

er
m

in
is

tic
C

hu
nk

in
g

N
am

e
–

O
rd

er
&

Si
ze

N
am

e
–

O
rd

er
O

nl
y

E
x
ec

u
ti

o
n

–
A

rb
it

er
lo

g
s

co
m

m
it

ti
n
g

p
ro

ce
ss

o
rs

E
x
ec

u
ti

o
n

–
A

rb
it

er
lo

g
s

co
m

m
it

ti
n
g

p
ro

ce
ss

o
rs

–
P

ro
ce

ss
o
rs

lo
g

ch
u
n
k

si
ze

s

N
on

-
R

ep
la

y
–

A
rb

it
er

co
n
su

m
es

P
ro

ce
ss

o
r

In
te

rl
ea

v
in

g
L

o
g

R
ep

la
y

–
A

rb
it

er
co

n
su

m
es

P
ro

ce
ss

o
r

In
te

rl
e-

Pr
ed

efi
ne

d
–

A
rb

it
er

en
fo

rc
es

o
rd

er
in

P
ro

ce
ss

o
r

In
te

rl
ea

v
in

g
L

o
g

av
in

g
L

o
g

C
hu

nk
–

P
ro

ce
ss

o
rs

co
n
su

m
e

p
ri

v
at

e
C

h
u
n
k

S
iz

e
L

o
g

–
A

rb
it

er
en

fo
rc

es
o
rd

er
in

P
ro

ce
ss

o
r

C
om

m
it

–
P

ro
ce

ss
o
rs

ch
u
n
k

ac
co

rd
in

g
to

p
ri

v
at

e
C

h
u
n
k

S
iz

e
L

o
g

In
te

rl
ea

v
in

g
L

o
g

In
te

rl
ea

vi
ng

–
P

ro
ce

ss
o
rs

ex
ec

u
te

ch
u
n
k
s

n
o
rm

al
ly

L
o
g

si
ze

≈
(l

og
(#

p
ro

cs
)+

lo
g

(m
ax

ch
u
n
k
si

ze
))

×
#

d
y
n
.
in

st
s

ch
u
n
k
si

ze
L

o
g

si
ze

≈
lo

g
(#

o
f

p
ro

cs
)
×

#
d
y
n
.
in

st
s

ch
u
n
k
si

ze
(b

it
s)

(b
it

s)

N
am

e
–

P
ic

oL
og

Pr
ed

efi
ne

d
E

x
ec

u
ti

o
n

–
A

rb
it

er
en

fo
rc

es
p
re

d
efi

n
ed

co
m

m
it

C
hu

nk
o
rd

er

C
om

m
it

—
R

ep
la

y
–

A
rb

it
er

en
fo

rc
es

p
re

d
efi

n
ed

co
m

m
it

In
te

rl
ea

vi
ng

o
rd

er

–
P

ro
ce

ss
o
rs

ex
ec

u
te

ch
u
n
k
s

n
o
rm

al
ly

L
o
g

si
ze

≈
0

(b
it

s)

Ta
bl

e
4.

1:
E

x
ec

u
ti

o
n

m
o
d
es

in
ch

u
n
k
-b

as
ed

d
et

er
m

in
is

ti
c

re
p
la

y
sy

st
em

s.

30

In the OrderOnly Mode (top right), the commit interleaving is not predefined, but

chunking is deterministic. Therefore, there is no need to log the chunk size. During exe-

cution, the arbiter logs the committing processor IDs in the PI Log; during replay, it uses

the PI Log to enforce the same commit interleaving. The log size is smaller because we

only have the PI Log. In reality, each processor also keeps a very small CS Log where,

for each of its few chunks that were truncated non- deterministically, it records both the

position in the sequence of chunks committed by the processor and the size.

In the PicoLog Mode (bottom right), chunking is deterministic and the commit in-

terleaving is predefined. During both execution and replay, the arbiter enforces a given

commit order. There is no PI Log. Each processor keeps the very small CS Log discussed

for OrderOnly. The Memory Ordering Log is largely eliminated.

Note that a mode where the chunking is not deterministic but the chunk commit in-

terleaving is predefined (bottom left) is unattractive. We save log space in the arbiter only

to use more in the processors.

4.2.2 DeLorean: A Chunk-Based Execution-Replay Architecture

DeLorean is our architecture for chunk-based execution-replay (Figure 4.1). It takes a

machine that supports a chunk-based execution environment with a generic network and

an arbiter for chunk commit as in BulkSC [13] or Scalable TCC [14], and augments it

with the three typical mechanisms for replay: the Memory Ordering Log, the input logs,

and system checkpointing.

The Memory Ordering Log consists of the PI and CS Logs. Together, they replace

the Memory Races Log Buffer in FDR [64] and RTR [65], and the Strata Log in Strata [41].

They are configured differently depending on which of the three execution modes of Ta-

ble 4.1 is desired — allowing for different trade-offs between speed and log size. For each

execution mode, Table 4.2 lists the log entry formats and the time when the logs are up-

31

Baseline
DeLorean-only structures
Structures also found in other multiprocessor replay proposals

DIR+MEM

 Network

Interrupt
Log

I/O
Log

Node 0

Proc + Caches

Chunk Size
(CS)
Log

Chunk Size
(CS)
Log

Node N-1

I/O
Log

Interrupt
Log

S
ys

te
m

C

kp
o

in
ti

ng

Proc + Caches

DMA
Log

DMA

Processor
Interleaving

(PI) Log

Arbiter

Figure 4.1: DeLorean architecture.

PI Log CS Log

Execution Log Entry When Log Entry When

Mode Format Updated Format Updated

Order&Size procID Chunk size Chunk Commit

OrderOnly procID Chunk Commit chunkID, size Chunk Truncation

PicoLog - - chunkID, size Chunk Truncation

Table 4.2: PI and CS log in each execution modes.

dated.

In the Order&Size and OrderOnly modes, when the arbiter gives commit permis-

sion to a processor during execution, it also saves the processor’s procID in the PI Log.

During replay, the arbiter uses the sequence of procIDs in the PI Log to give commit per-

missions to processors in the correct order.

We can reorganize the PI Log according to the Strata [41] design and reduce its size

by half (Section 4.4).

In the Order&Size mode, when a processor gets permission to commit a chunk dur-

ing execution, it records the number of dynamic instructions in the chunk (size) in its CS

Log. In the OrderOnly and PicoLog modes, the processor only updates its CS Log when

the chunk to be committed has been truncated non-deterministically. In this case, it stores

the processor-local sequence order of the chunk (chunkID) and its size. During replay,

32

each processor uses its CS Log to determine when it needs to terminate each chunk (in

Order&Size), or only those that were truncated non-deterministically in the initial execu-

tion (in OrderOnly and PicoLog).

It is possible to combine the PI Log and the per-processor CS Logs into a single,

larger PI Log. Such option has two drawbacks. First, during execution, the commit re-

quest message between processors and the arbiter will have to include the chunk size and

its ID — which consumes extra bandwidth. Second, during replay, the processor will have

to wait for the arbiter to supply back this information before it can proceed with the exe-

cution of a chunk.

The input logs are similar to those in previous replay schemes. As shown in Fig-

ure 4.1, they include one shared log (DMA Log) and two per-processor logs (Interrupt

and I/O logs). The DMA Log records the data that the DMA writes to memory. Dur-

ing the initial execution, the DMA acts like another processor in that, before it updates

memory, it needs to get commit permission from the arbiter. When the arbiter grants per-

mission, the DMA writes to memory and a copy of the data is saved in the DMA Log.

Moreover, the arbiter creates an entry in the PI Log with the DMA’s procID. Note that, in

the PicoLog mode, there is no PI Log. In this case, the arbiter records the “commit slot”

of the DMA operation, namely the current value of a counter that counts the total num-

ber of chunk commits since recording started. Later, during replay, when the arbiter finds

the DMA’s procID in its PI Log — or, in the PicoLog mode, when the arbiter’s count of

chunk commits matches a saved DMA commit slot — the data in the next entry of the

DMA Log is consumed.

The per-processor Interrupt Log stores, for each interrupt, the time it is received,

its type, and its data. Time is recorded as the processor-local chunkID of the chunk that

initiates execution of the interrupt handler. The per-processor I/O Log records the values

obtained by I/O loads. Section 4.3.2 provides more details.

Like previous replay schemes, DeLorean includes system checkpointing support,

33

Replay Initial Estimated Replay Hardware Unmodified SMP

Scheme Execution Memory Speed Needed Binaries Support

Speed Ordering

Log Size

(b/kilo-inst)

Bacon and
SC N/C N/R

Board attached
Y Y

Goldstein to system bus

FDR SC 200 N/R Cache hierarchy Y Y

RTR BASE SC 8 N/R Cache hierarchy Y Y

Advanced
TSO? N/R N/R

Cache hierarchy
Y Y

RTR + Processor

Strata SC N/C N/R Cache hierarchy Y Y
(≈ RTR)

Rerun SC 8 N/R Cache hierarchy Y Y

DeLorean’s
RC 1.3 0.82×RC

BulkSC, IT
Y Y

OrderOnly or TCC

DeLorean’s
RC 0.05 0.72×RC

BulkSC, IT
Y Y

PicoLog or TCC

Table 4.3: Comparing the main issues in hardware-based, full-system replay schemes. “N/R”

stands for “Not Reported”. “N/C” stands for “Could Not Convert”, meaning that

we did not have enough information to convert their reported log size into bits per

kilo-instruction. All schemes use a 4-processor configuration, except OrderOnly and

PicoLog, which use an 8-processor one.

possibly with schemes such as ReVive [48] or SafetyNet [56]. We do not focus on this

issue in this thesis.

As a summary, Table 4.3 augments Table 2.2 with DeLorean in OrderOnly and Pi-

coLog modes. In Chapter 8, we will see that DeLorean’s Memory Ordering Log is orders

of magnitude smaller than previous hardware-based proposals. We will also see that De-

Lorean executes at a speed similar to that of RC execution in OrderOnly mode and only

modestly slower in PicoLog mode. Replay speed will also be shown to be high. The hard-

ware needed is that of a chunk-based system like BulkSC, IT, or TCC, which modifies

the memory hierarchy more than the conventional schemes. Processor modifications are

largely confined to supporting checkpointing.

34

4.2.3 DeLorean in the Context of Other Replayers

4.2.3.1 Initial Execution

Recall that the advantages of DeLorean in the initial execution are that: (i) it records an

environment where memory accesses reorder and overlap substantially, delivering a per-

formance similar to that of a relaxed-consistency machine, and (ii) its log is minuscule.

The first advantage comes at the cost of potential squash and re-execution of code sec-

tions. In most cases, the squash frequency is very small and the execution time is largely

unaffected. In theory, however, squashing can noticeably slow down an application. This

issue is not present in conventional replay schemes.

The minuscule log is the combination of two facts: DeLorean needs few log entries

and each entry is small. For this discussion, consider the OrderOnly mode. DeLorean nat-

urally combines multiple dependences between two processors into a single dependence

— something that RTR does at a smaller scale by creating stricter dependences artifi-

cially. This is shown in Figure 4.2(a), where all the dependences between the instructions

in the chunks executed by P4 and P5 (shown with arrows in the figure) are combined into

a single PI Log entry. Moreover, as shown in the figure, such log entry is simply P4’s ID.

Similarly, like Strata, DeLorean naturally combines multiple dependences across

several processors into a single one. Indeed, as shown in Figure 4.2(b), when a chunk fin-

ishes, it is like a single-processor stratum: in the figure, the three dependences are sum-

marized into a single log entry, which is simply P5’s ID. Unlike Strata, though, DeLorean

is unable to combine executions from multiple processors into a single stratum. This is

shown in Figure 4.2(c), where the chunk-commit log entries for P4 and P6 are not com-

bined as they would in Strata. However, while a Strata log entry is very wide — it is a

vector of as many reference counters as processors the machine has — a DeLorean log

entry is only a processor ID. Interestingly, we can reorganize DeLorean’s log according to

Strata’s design and save space. This is shown in Section 4.4.

35

Time

P4 P5

(a) (b) (c)

P7P6P4 P5

ChunkDependence

P6P4 P5
PI Log

P4 ID

PI Log

P5 ID

PI Log

P6 ID

P4 ID

Figure 4.2: Comparing DeLorean to RTR and Strata.

Finally, we explained in Section 2.4 how Rerun breaks the dynamic instruction stream

into consecutive series of dynamic instructions, called episodes. Rerun’s episodes bear

some resemblance with DeLorean’s chunks. Indeed, DeLorean and Rerun are based in

the idea that it is possible to record multiprocessor execution by recording the regions

where threads execute without conflicting with any other thread in the system. However,

both schemes approach the problem differently: in Rerun, the hardware i) detects when

these regions of independence begin and end and ii) logs each region’s size and sequence

number. DeLorean’s hardware, on the other hand, i) manufactures these regions of inde-

pendence by committing chunks atomically and in isolation and ii) logs their interleaving.

4.2.3.2 Replay

An advantage of DeLorean’s replay over previously-proposed schemes is its high speed:

all processors execute concurrently, with each processor fully reordering and overlapping

its memory accesses. Chunk commit involves a fast check with the arbiter, which is over-

lapped with the computation of the next chunk, as in BulkSC. Intuitively, therefore, replay

speed is likely to be high.

In comparison, the processors in the other schemes replay at most at SC speed (or

36

TSO in Advanced RTR). They require more communication between the replaying pro-

cessors: FDR and RTR require a cross-processor communication for each dependence in

the log, while Strata requires the replaying processors to synchronize in a barrier at every

log stratum. Moreover, As discussed in Section 2.4.2, Strata has other potential sources of

replay overhead. Both Bacon and Goldstein and Rerun replay sequentially, making their

overhead during replay very significant, especially in systems with many processors.

In practice, recording and replay are likely to proceed on top of a hypervisor layer or

maybe inside a simulator. This and other issues will be discussed in Chapter 5.

4.3 DeLorean Implementation

We now consider three implementation aspects of DeLorean: implementation choices,

exceptional events, and an optimization to further reduce the log size.

4.3.1 Implementation Choices and Operation

Fundamentally, a chunk-based execution-replay system needs support for speculative

tasking and cross-task address disambiguation — the support needed for transactional

memory and thread-level speculation. Such support can be implemented in software,

hardware, or in a hybrid way. Moreover, there are multiple degrees of freedom, including

whether conflict detection and version management are done lazily or eagerly. In addi-

tion, the network can be a bus or generic. If generic, we need an arbiter module — which

can be designed in a distributed manner to avoid bottlenecks [13].

DeLorean can be implemented in any of these ways. In this thesis, we choose to im-

plement DeLorean using the signature-based BulkSC [13] architecture that we described

in Chapter 3. Our DeLorean system uses a generic network with a directory and a single

arbiter module.

37

We choose BulkSC because its signatures enable fast and efficient memory disam-

biguation, and an additional log optimization that we will discuss in Section 4.4. Also,

BulkSC chunks are automatically created by the hardware, eliminating any need to add

software annotations to indicate when the current chunk should finish. Specifically, a

chunk in OrderOnly and PicoLog modes finishes when the processor has committed a

certain fixed number of instructions since the chunk started. We call such chunk size the

standard chunk size.

With this support, Figure 4.3 summarizes DeLorean’s operation. During the initial

execution in Order&Size mode, when a processor such as P0 or P1 finishes a chunk,

it sends its ID and signature to the arbiter (messages 1 and 2). Suppose that the arbiter

grants permission to P0 first (message 3). In this case, the arbiter logs P0’s ID (4) and

propagates the commit operation to the rest of the machine (5). While this is in progress,

if the arbiter determines that both chunks can commit in parallel, it sends a commit grant

to P1 (6), logs P1’s ID (7), and propagates the commit (8). As each processor receives

commit permission, it logs the chunk size (9 and 10). In OrderOnly, steps 9 and 10 are

skipped. In PicoLog, steps 4, 7, 9 and 10 are skipped, and the arbiter grants commit per-

mission to processors according to a predefined order policy, irrespective of the order in

which it receives their commit requests. In all cases, a processor does not stall when re-

questing commit permission; it continues executing its next chunk(s).

During replay, suppose that P1 finishes its chunk first, and the arbiter receives mes-

sage 2 before 1. The arbiter checks its PI Log (or its predefined order policy in PicoLog)

and does not grant permission to commit to P1. Instead, it waits until it receives the re-

quest from P0 (message 1). At that point, it grants permission to commit to P0 (3) and

propagates its commit (5). The rest of the operation is as in the initial execution but with-

out logging. In addition, in Order&Size, processors use the information in their CS Log to

decide when to finish each chunk.

38

Proc P0

CS Log

Chunk
size

9

Arbiter
1sig, P0's ID

ok3

P0's ID
P1's ID

Proc P1

CS Log

Chunk
size

10
6ok

sig, P1's ID2

PI Log

4

7

5 8

commit Directory + all caches

Figure 4.3: DeLorean’s operation.

4.3.2 Exceptional Events

In DeLorean, the same instruction in the initial and the replayed execution must see ex-

actly the same full-system architectural state. Only then can the stream of committed in-

structions be guaranteed to be the same in both runs. This means, for example, that the

two runs perform the same number of spins on a spin-lock, and the same number of sys-

tem calls and I/O operations.

On the other hand, it is likely that structures that are not visible to the software such

as the cache and branch predictor will contain different state in the two runs. This is be-

cause, in the two runs, the relative timing of some events may be different, the number of

chunk squashes may be different, and structures like the cache and branch predictor may

diverge.

Unfortunately, chunk construction is affected by the cache state — through cache

overflow that requires finishing the chunk — and by the branch predictor — through

wrong-path speculative loads that may cause spurious dependences and induce chunk

squashes. Consequently, we need to be careful that chunks are still replayed determin-

istically.

This section addresses this problem. Table 4.4 lists the exceptional events that might

affect chunk construction during the initial execution. In the following, we consider each

39

Do not

Truncate

Truncate

Deterministically Non-deterministically

1) Interrupts 1) Reach limit number 1) Attempt to overflow the

2) Traps of instructions cache

2) Uncached accesses 2) Repeated chunk collision

(e.g., I/O initiation) (Not for PicoLog and

3) Special system not during replay)

instructions

Table 4.4: Exceptional events that may affect chunk construction.

one in turn.

4.3.2.1 Interrupts and Traps

An interrupt during the initial execution does not truncate the current chunk (Table 4.4).

If the interrupt has low priority, the processor waits until the current chunk completes;

if the interrupt has high priority or the current chunk has recently started, the processor

squashes the current chunk. In either case, after this, the processor starts a new chunk

while initiating execution of the interrupt handler. Moreover, an entry in the Interrupt Log

is created with: (i) the ID of the new chunk — namely, the number of chunks committed

by this processor up to now plus one — and (ii) the interrupt’s type and data1.

During replay, interrupts are replayed in the same way in all execution modes. Specif-

ically, each processor keeps a count of the chunks it has committed so far. When such

count is one lower than the chunk ID in the next entry of its Interrupt Log, the processor

starts a new chunk by consuming the Interrupt Log entry.

A trap does not truncate the current chunk (Table 4.4). Instead, the current chunk

simply continues to grow, now executing instructions from the trap handler. In addition,

1In PicoLog mode, if the interrupt has high priority, the processor can request that the arbiter commit

the chunk that handles the interrupt immediately — rather than for the processor to wait until it is its turn

to commit. If so, the arbiter records the “commit slot” of the interrupt chunk like it does for DMA requests

(Section 4.2.2), to know when to consume it during replay.

40

the trap is not logged, since it will deterministically reappear during replay. Consider, for

example, a page fault trap. The instruction that caused it will cause it again in the replay

because the memory state is the same — since wrong-path speculative loads cannot trig-

ger the fault, and squashed chunks cannot modify memory state. The TLB state may be

different during replay, but we assume hardware-managed TLBs.

4.3.2.2 Deterministic Truncation of a Chunk

There are certain events that truncate the chunk that is currently-executing in the pro-

cessor and that will reappear deterministically during replay (Table 4.4). They include

the trivial case when the number of instructions committed by the chunk reaches the

size limit. More importantly, they include instructions that are hard to undo in a spec-

ulative environment, like uncached accesses (such as those that initiate I/O operations)

and special system instructions (such as those that change the processor frequency or

mask/unmask interrupts).

Following BulkSC [13], when one these hard-to-undo instructions is encountered,

the currently-running chunk is truncated, the instruction is executed, and a new chunk

starts. Typically, the execution of the instruction is not initiated until the previous chunk

commits, and the subsequent chunk does not start until the instruction commits. There

is no need to log the size of the truncated chunk in the OrderOnly and PicoLog modes

because the event will recur in the replay and truncate the chunk at exactly the same in-

struction. The event itself is not logged either. The only exception is that we must log in

the I/O Log the value loaded by I/O loads. Such values will be provided to the I/O loads

when they are encountered again in the replay.

41

4.3.2.3 Non-Deterministic Truncation of a Chunk

Finally, there are two events that truncate the currently-executing chunk and are not de-

terministic (Table 4.4). They are the attempt to overflow the cache and repeated chunk

collision.

When a chunk accesses more memory lines mapping to a cache set than ways the

cache has, there is the danger that speculatively written data may overflow. Before this

happens, execution has to stop. Squashing the chunk and re-executing it does not help

because the problem will typically recur. Instead, we need to truncate the chunk, initi-

ate its commit process, and start a new chunk. Note that the actual point in the chunk

where overflow is detected is not deterministic. It depends on the actual reordering of

loads and stores; e.g., a wrong-path speculative load may trigger the attempt to displace

dirty speculative data. Moreover, multiple speculative chunks of a thread concurrently

running may interfere and cause the overflow. Consequently, when a chunk is truncated

due to attempted overflow during initial execution, the processor records in its CS Log the

truncated size of the chunk and, in OrderOnly and PicoLog, the chunkID as well.

During replay, processors use their CS Log to identify which chunks need to be trun-

cated and at which instruction. It is possible that, due to timing differences between initial

execution and replay, one such chunk would not have caused overflow during replay —

still, it will be truncated to preserve determinism. It is also possible that, during replay, a

chunk unexpectedly attempts to cause overflow and has to be committed sooner than in

the initial execution. In this case, the processor, as it commits the shorter chunk, requests

the arbiter to let it commit a second chunk immediately after. This second chunk contains

the rest of the instructions in the original chunk and no other processor can commit until it

commits.

The second non-deterministic event, repeated chunk collision, occurs when, during

the initial execution, a chunk is repeatedly squashed by other chunks. The simplest solu-

42

tion proposed in [13] is to progressively reduce the size of the chunk until it can commit.

This final size is not deterministic. Consequently, the processor records in its CS Log the

truncated size of the chunk and, in OrderOnly, the chunkID as well. Note that repeated

chunk collision cannot occur in PicoLog. This is because a chunk can only be squashed

by a committing chunk and, in PicoLog, there is a predefined chunk commit order.

During replay, processors use their CS Log to truncate chunks that were truncated

due to collisions in the initial execution. Note that, during replay, chunks may suffer a dif-

ferent set of collisions. However, the problem of repeated chunk collisions cannot occur

because chunks have now a predefined commit order.

Overall, even in the presence of all these types of exceptional events, DeLorean’s

replay is deterministic. Section 4.5 outlines a proof for why DeLorean’s replay is deter-

ministic.

4.4 Optimization: Reducing the PI Log Size by Stratifying It

We can reduce the size of the PI Log in Order&Size and OrderOnly by applying Strata’s [41]

approach to log construction. Specifically, we design the PI Log to record chunk strata.

Thus, an entry in this newly designed PI Log is a stratum. Each stratum is a vector of

counters that tell the number of chunks committed per processor since the previous stra-

tum. These chunks have no cross-processor conflicts — although they may have within-

processor cross-chunk conflicts. Consequently, we need not record their exact commit

sequence because, during replay, those chunks among them that belong to different pro-

cessors can be executed and committed in any order; those chunks that belong to the same

processor will serialize their commit by construction.

DeLorean creates a new stratum when the chunk to log next has these properties:

(i) it conflicts with chunks committed by other processors since the last stratum or (ii) it

would overflow the counter of chunks committed by this processor since the last stratum.

43

(a)

procID 1
procID 2
procID 3
procID 0
procID 3
procID 1
procID 1
procID 1

Conflict

PI Log Stratified PI Log

Stratifier Module
Chunk Counters

Stratified PI Log

Signature Registers
(SR)

Committed Chunk Info:
(procID, Signature)

Arbiter

(b)

p0 p1 p2 p3
0 1 1 1
1 2 0 1

1

S1

S2

Ti
m

e

Ti
m

e

Figure 4.4: PI Log stratification: example (a) and design (b).

We call this log optimization stratifying the PI Log.

Figure 4.4(a) shows an example of this technique. Assume that there is a conflict be-

tween the chunks from processors 3 and 0 whose PI Log entries are connected with an

arrow. The other chunks do not have cross-processor conflicts. Also, assume that each

counter in the vector can at most reach 2. The figure shows that stratum S1 is created

when the chunk from processor 0 is next to be logged, while S2 is created when the last

chunk from processor 1 is next to be logged.

We implement this optimization without affecting DeLorean’s recording speed as

follows. Chunks commit as usual. However, after a chunk commits, rather than dumping

its procID into the PI Log, we pass its signature S to a Stratifier Module (Figure 4.4(b)).

The Stratifier contains: (i) the vector of chunk counters and (ii) one Signature Register

(SR) per processor. The latter contain the logical-OR of the signatures of all the chunks

from a given processor committed since the last stratum. When a new chunk arrives at the

Stratifier, if the corresponding counter is at its maximum value, the system creates a new

stratum by dumping the counters into the PI Log. Then, it sets the corresponding SR and

counter to S and 1, respectively, and clears the other SRs and counters. Otherwise, S is

44

logically ANDed with the other processors’ SRs — without updating the latter. If there is

a conflict, the system creates a new stratum as above. Otherwise, S is logically ORed into

the corresponding SR and the corresponding counter is incremented.

4.5 Why DeLorean’s Replay is Deterministic

We outline a proof for why DeLorean’s replay is deterministic assuming that we use a

BulkSC implementation. For brevity, we focus only on the OrderOnly mode, but a similar

reasoning can be followed for the other two.

In DeLorean, a chunk executes atomically and in isolation. It cannot see any state

change while it executes — otherwise it is squashed. The only state it observes is the state

of the system when it is about to commit. Thus, we make the following observations.

Observation 1 The execution path taken inside a chunk only depends on the state of the

system when the chunk is about to commit.

Observation 2 Non-deterministic events that can modify a processor’s instruction stream

happen at chunk boundaries, and they are logged. They include both external events (e.g.,

I/O and interrupts) and internal ones (stores executed by other processors’ chunks, which

are made visible when those chunks commit).

Observation 3 Chunk sizes in the initial execution and in the replay are the same because

the decision of when to truncate a chunk is either deterministic (it depends on the instruc-

tion stream itself) or reproducible (it is based on information found in the CS Log).

We now define deterministic replay and show that DeLorean’s replay is determinis-

tic.

Definition The Global Commit Count (GCC) is the number of chunks committed by all

processors since execution began.

Definition An Interval I(n,m) of execution is the period between GCC=n and GCC=n+m,

45

where m≥1.

Definition The deterministic replay of interval I(n,m) is a new interval I’(n,m) such that

the initial and final system states, the number of chunks executed by each processor, the

instructions in each chunk and the chunk interleaving are the same in I and I’.

Theorem Assuming that a system checkpoint was taken at GCC=n, DeLorean can deter-

ministically replay an execution for the interval I(n,m).

Proof We use induction on m. Start with m=1. The PI Log has a single entry (say, pro-

cessor Pi) and the system state has been restored to that at GCC=n. As replay starts, all

processors execute, but the arbiter only allows Pi to commit. Because no other processor

can commit, the system state that Pi observes is the one at the checkpoint. As Pi replays

its chunk, Observation 1 tells us that the path taken by the execution inside the chunk will

be the same as in the initial execution. Moreover, as per Observation 3, the number of

instructions in the chunk will also be the same as in the initial execution. Finally, if the

chunk was affected by an external event in the initial execution, Observation 2 tells us that

the event was logged. In the replay of the chunk, we simply reproduce the logged event.

Overall, the system has replayed deterministically.

We now assume that the system replayed deterministically for the first k committed

chunks (k<m) and show that it will also do so for the k+1 commit. At GCC=k, we know

that: (i) the next processor in the PI Log (say, Pi) is the one that executed next in the ini-

tial execution; (ii) Pi is at the same instruction as it was in the initial execution; and (iii)

the system state that Pi’s chunk observes now in the replay is the same as it observed in

the initial execution. We can use observations 1, 2 and 3 like in m=1 to show that chunk

k+1 is replayed deterministically. Therefore, the system replays deterministically.

46

CHAPTER 5

Capo: A Software-Hardware Interface for

Hardware-Assisted Deterministic Replay

5.1 Introduction

Chapter 4 presented DeLorean, a high-performance hardware-based deterministic replay

system. Unlike software-based replay systems, DeLorean and the other hardware-based

schemes can cope with multiprocessor execution efficiently: they achieve low run-time

overhead and can have small logging requirements.

Unfortunately, these hardware-based systems cannot replace software-based replay

systems yet because they are largely impractical for use in realistic systems. Their main

problem is that they only focus on the hardware implementation of the basic primitives

for recording and replay. They do not address key issues such as how to separate software

that is being recorded or replayed from software that should execute in a standard manner

(i.e., without being recorded or replayed), or from other software that should be recorded

or replayed separately.

This limitation is problematic because practical replay systems require much more

than just efficient hardware for the basic operations. They likely need a software layer

to manage the hardware components and to handle large logs (on the order of a few gi-

gabytes per day, in the case of DeLorean). The question is where such layer should go.

It cannot be part of the operating system because its execution would be recorded in the

Memory Ordering Log and that would be an issue during replay. This is why in Sec-

tion 4.2.3 we said that record and replay in hardware-based systems is likely to proceed

on top of a hypervisor layer — or inside a simulator [64, 65].

47

Moreover, hardware-based replay systems will likely also need a way to mix stan-

dard execution, recorded execution, and replayed execution of different applications in the

same machine concurrently —which all software-based schemes already do. Consider, for

example, a developer trying to find a bug on a small application using a hardware-based

scheme. Even though she only cares about that piece of code, she would have to record

and replay the entire system.

Unfortunately, providing such functionality requires a redesign of the hardware-level

mechanisms currently proposed, and a detailed design and implementation of the software

components that manage this hardware.

This chapter addresses this problem. It presents Capo, the first set of abstractions

and a software-hardware interface for practical hardware-assisted deterministic replay.

We refer to Capo as hardware-assisted because in Capo, the software is the driving force

of the replay mechanism while some specialized replay hardware is in charge of recording

the memory ordering of different threads. A key abstraction in Capo is the Replay Sphere,

which allows system designers to separate cleanly the responsibilities of the hardware and

software components and isolates the software that is being recorded or replayed from the

software executing in a standard manner.

Note that both the hardware and software components of Capo can be implemented

in a variety of ways. In our discussion, for clarity, we refer to a replay system where an

OS provides the ability to record and replay processes or groups of processes. The same

ideas also apply to any privileged software layer that records and replays unprivileged

software running above — e.g., a VMM that records and replays VMs or groups of VMs.

5.2 Capo’s Key Abstraction: The Replay Sphere

To enable practical replay, Capo provides an abstraction for separating independent work-

loads that may be recording, replaying, or executing in a standard manner concurrently.

48

HW

Replay Sphere 1 Replay Sphere 2

Replay HW

OSRSM

R-thread
1

R-thread
2

R-thread
1

R-thread
2

R-thread
3

thread
502

Process A
Process B

Process C
Process D

Figure 5.1: Architecture of Capo for an OS-level replay system. The replay system includes user-

level threads running within replay spheres and a kernel-level Replay Sphere Manager

(RSM) that manages the underlying replay hardware and provides the illusion of

infinite amounts of replay hardware.

For this abstraction to be useful, it must provide a clean separation between the responsi-

bilities of software and hardware mechanisms. Moreover, it must also be meaningful to

software components and yet still low-level enough to map efficiently to hardware.

We call this abstraction the Replay Sphere or Sphere for short (Figure 5.1). A replay

sphere is a group of threads — together with their address spaces — that are recorded

and replayed as a cohesive unit. All the threads that belong to the same process must

run within the same replay sphere. It is possible, however, to include different processes

within the same replay sphere. In this thesis, we call a thread that runs within a replay

sphere an R-thread. Each R-thread is identified by an R-threadID and each sphere has its

own set of R-threadIDs. Figure 5.1 shows a system with two replay spheres and four pro-

cesses. In Replay Sphere 1, all R-threads belong to Process A, whereas Processes B and C

run within Replay Sphere 2.

Execution enters a replay sphere when code from one of its R-threads begins exe-

cution; execution leaves the replay sphere when the R-thread stops execution and the OS

takes over. These transitions can be explicit or implicit, depending on the type of event

that occurs. Explicit transitions are triggered by privileged calls (e.g., system calls) or by

a special instruction designed to enter or exit the replay sphere explicitly. Implicit transi-

tions result from hardware-level interrupts or exceptions that invoke the OS automatically.

49

Assign the same R-threadIDs during recording and replay

Assign the same virtual addresses during recording and replay

Software Duties Log the inputs to the sphere during recording in the Sphere Input Log

(Per Sphere) Inject the logged inputs back to the replay sphere during replay

Squash the outputs of the replay sphere during replay

Manage the buffers for the Memory Ordering and Sphere Input Logs

Hardware Duties Generate the Memory Ordering Log during recording

(Per Sphere) Enforce the interleaving in the Memory Ordering Log during replay

Table 5.1: Separation of the duties of the software and the hardware components in Capo.

In Capo, the replay hardware records in a log the memory ordering of the R-threads

running within the same sphere. It does not record the ordering of R-threads from differ-

ent spheres, nor the ordering of regular threads with respect to R-threads. The software,

in turn, records the other sources of non-determinism that may affect the execution path

of the R-threads, such as system call return values and signals. In a sense, the hardware

is in charge of recording the way the sphere’s address space is modified from within the

sphere, and the software is in charge of recording how the replay sphere’s address space is

modified from the outside.

Our decision to use software-level threads (R-threads) as the main principal in our

abstractions, instead of hardware-level processors, represents a departure from most cur-

rent proposals for hardware-based replay. The extra level of indirection of using software-

level threads instead of hardware-level processors allows us to track the same thread across

different processors during recording and during replay, providing the flexibility needed

to integrate cleanly with current OS scheduling mechanisms.

5.2.1 Separation of Responsibilities

With the replay sphere abstraction, Capo separates the duties of the software and the hard-

ware components as shown in Table 5.1.

Before recording an execution, the software allocates the buffers that will store the

logs. The software also identifies the threads that should be recorded together, which are

50

referred to as R-threads. In addition, the software assigns R-threadIDs to R-threads using

an algorithm that ensures that the same assignment will be performed at replay. Finally,

the software must guarantee that the same virtual addresses are assigned during recording

and during replay. This is necessary to ensure deterministic re-execution when applica-

tions use the addresses of variables — for example, to index into hash tables.

During the recording phase, the software logs all replay sphere inputs into a Sphere

Input Log, while the hardware records the memory interleaving of the replay sphere R-

threads into a Memory Ordering Log. Both of them are per-sphere logs.

During the replay phase, the hardware enforces the interleaving encoded in the Mem-

ory Ordering Log, while the software injects the entries in the Sphere Input Log back into

the replay sphere and squashes all outputs from the replay sphere. During both recording

and replay, the software also manages the memory buffers of the Memory Ordering Log

and the Sphere Input Log by moving data to or from the file system.

The next two sections describe in detail Capo’s software (Section 5.3) and hardware

(Section 5.4) components, respectively.

5.2.2 Finding The Replay Sphere in Other Replay Systems

This section has introduced the concept of replay sphere, a logical boundary between the

software that is being recorded or replayed and the rest of the software in the system. To

the best of our knowledge, CapoOne (a Capo-based deterministic replay system that we

will describe in Chapter 6) is the first one to explicitly employ the replay sphere concept.

It is possible, however, to find the replay sphere in all other deterministic replay schemes.

Consider ReVirt [21], for example. It can be seen that the VM being recorded con-

stitutes the replay sphere. And because the VMM logs any input into the guest VM, it

effectively plays the RSM’s role. Notice that ReVirt does not need a Memory Ordering

Log because the VM only uses one virtual processor and thus, any non-determinism must

51

come from outside the sphere. Of course, in software-based schemes that support mul-

tiprocessor execution, the per-sphere hardware duties that we specified in Table 5.1 are

also the software’s responsibility. This is the case of SMP-ReVirt [22], where the hypervi-

sor uses the CREW protocol to record the guest’s Memory Ordering Log. Note that both

ReVirt and SMP-ReVirt could record and/or replay several VMs —replay spheres— si-

multaneously.

Consider now DeLorean —or any of the other full-system replay schemes. It is easy

to see that they only record or replay a single sphere at a time, and that such sphere in-

cludes both the operating system and the applications running on top of it. This is why, in

all of them, the hardware records the interleaving of all the OS and user threads in a single

Memory Ordering Log. Together, their I/O and Interrupt Logs constitute the Sphere Input

Log. In Section 4.2.3 we mentioned that all hardware-based systems will likely run on top

of a hypervisor. This is because they need a piece of software not running in the OS —

that is, outside the sphere— to manage the replay hardware and handle the Sphere Input

Log and the Memory Ordering Log: they need an RSM.

Finally, consider Recap [45]. In Recap, the compiler inserts instructions to log the

value of every load that may access shared data. In that case, the replay sphere simply in-

cludes the threads and their private memory. Consequently, shared memory is outside the

sphere and thus, any read from shared data must be logged because it crosses the sphere’s

logical boundary.

5.3 Software Support: The Replay Sphere Manager

Capo’s main software component is the Replay Sphere Manager (RSM). For each sphere,

the RSM supports the duties shown in the top half of Table 5.1. In addition, the RSM

multiplexes the replay hardware resources between spheres, giving users the illusion of

supporting unlimited spheres.

52

RSM

Replay
Sphere 3
replaying

(running)

RSCB RSCB

Replay
Sphere 2
recording

(ready)

Replay
Sphere 1
recording

(running)

log 1 log 3

log 2

SW

HW

CPU
1

CPU
2

CPU
3

CPU
4

Figure 5.2: Logical representation of a system where the RSM manages three replay spheres.

Even though CPU 3 is free, no R-thread from Replay Sphere 2 can run on it because

the system only has two RSCBs, which are being used by the other two running

spheres.

Figure 5.2 shows a logical representation of a four-processor machine where the

RSM manages three replay spheres. Each sphere has its own log, which includes the

Memory Ordering and the Sphere Input Logs. There are two replay spheres currently

scheduled on the hardware — Sphere 1 recording and Sphere 3 replaying. Sphere 1 has

two R-threads running on CPUs 1 and 2, while Sphere 3 has one R-thread running on

CPU 4. There is a third sphere (Sphere 2) whose R-threads are waiting to run due to lack

of hardware — there is no free Replay Sphere Control Block (RSCB), a hardware struc-

ture that will be described in Section 5.4. As a result, CPU 3 is idle or executing an appli-

cation that is not being recorded nor replayed.

For correct and efficient recording and replay, we claim that the RSM must address

three key challenges. First, it must maintain deterministic re-execution when copying

data into a replay sphere. Second, it must determine when a system call needs to be re-

executed and when it can be emulated. Third, it must be able to replay a sphere on fewer

processors than were used during recording.

53

OSOS

R-thread
1

Replay Sphere 1

RSM

copy_to_user

buffer

R-thread
2

log 1 1

2

3

4

5

R-thread
1

Replay Sphere 1

RSM

copy_to_user

buffer

R-thread
2

log 1 1

2

3

5

6

4

(a) (b)

Figure 5.3: Race condition between the OS copy to user function and R-thread 2 (a). The data

race is avoided by including copy to user in the replay sphere (b).

5.3.1 Copying Data into a Replay Sphere

When the OS copies data into a location within a replay sphere, extra care is needed to

ensure correct deterministic replay1. This is because the memory region being written to

by the OS may be accessed by R-threads at the same time. In this situation, the interleav-

ing between the OS code that performs the writes and the R-threads that access the region

may be non-deterministic. The reason is that the kernel code performing the copy is out-

side the sphere and, as we mentioned in Section 5.2, the replay hardware only records the

ordering of R-threads running within the same replay sphere.

Figure 5.3(a) illustrates this case. In the figure, R-thread 1 makes a system call that

will cause the kernel to copy data into the user-mode buffer via the copy to user func-

tion (1). Before the actual copy, the RSM logs the input to the copy to user function ((2)

and (3)). The kernel then copies the data into buffer (4). Finally, while the copy is taking

place, R-thread 2 accesses buffer, thus causing a race condition between copy to user and

R-thread 2 (5).

To ensure deterministic inputs into a replay sphere, we consider two possibilities.

1A similar argument can be made for when the OS copies data from a location within a replay sphere

into the kernel.

54

First, we could inject inputs into the sphere atomically. However, ensuring atomicity re-

quires blocking all R-threads that may access the region. As a result, this approach penal-

izes R-threads even if they do not access the region. A second, better, approach that we

use is to include the copy to user function within the replay sphere directly. This inclu-

sion allows the hardware to log the interleaving between the copy to user code and the

R-threads’ code. This approach is symbolically depicted in Figure 5.3(b). Although this

approach is efficient, it creates a less clear boundary between the code running within a

replay sphere and the code running outside of it — since the copy to user function runs

within both the replay sphere and the OS. Still, we use this approach because most sys-

tem calls cause inputs into replay spheres, and blocking all R-threads during these system

calls would be inefficient.

5.3.2 Emulating and Re-Executing System Calls

In Capo, the RSM emulates most of the system calls during replay. To do this, the RSM

first logs the system call during recording. Then, during replay, the RSM squashes the

system call and injects its effects back into the replay sphere, thus ensuring determinism.

This approach is very reminiscent of the way Flashback [57] records and replays single-

threaded applications.

However, the RSM needs to re-execute some system calls during replay. These are

system calls that modify select state outside of the replay sphere, which affects R-threads

running within the sphere. They include system calls that modify the address space of

a process, process management system calls (e.g., fork), and signal handling system calls.

By re-executing these system calls, we modify external states directly during replay, which

would require substantial additional functionality in the RSM to emulate correctly.

As a result of re-executing system calls, we must ensure that external state changes

affect R-threads deterministically. One subtle issue that the RSM must handle arises from

55

R-thread
1

Replay Sphere 1

R-thread
2

2

3

Page Table

CPU
1

CPU
2

1

TLB miss

while (...){
 *x = *x +1;
}

Fault on x

Figure 5.4: Example of potential non-determinism due to an implicit dependence.

modifications to shared address spaces. R-threads form implicit dependences when one

R-thread changes the mapping or the protection of a shared address space, and another

R-thread accesses this changed address space. Figure 5.4 shows an example where one R-

thread changes the protection of a page that a second R-thread is using. In the figure, R-

thread 1 and R-thread 2 run on CPU 1 and CPU 2, respectively, and share the same page

table. In the example, R-thread 1 first issues an mprotect system call to change the protec-

tion of a page, and the system call modifies the page table (1). Eventually, both CPUs will

cache the new protection (2). After CPU 2 caches the new protection, the effects of the

page table modification will become visible to R-thread 2, and R-thread 2 suffers a page

fault (3). To ensure deterministic replay, the interleaving between the page table modifi-

cation and the use of the affected addresses must be recorded and reproduced faithfully

during replay.

Such issue largely disappears in DeLorean and other replay schemes that use full-

system recording and replay [5, 28, 41, 64, 65]. This is because they naturally record most

OS actions related to implicit dependencies (e.g., page fault handling). However, in Capo,

code that carries out address space changes resides outside of the replay sphere and, there-

fore, is not invoked deterministically. As a result, the address space modifications may

not be injected into the replay at the precise same point of execution (e.g., the exact same

56

loop iteration in Figure 5.4), thus violating the correctness of our replay system.

To solve this problem, Capo gives the RSM the ability to explicitly express implicit

dependencies to the hardware. Interactions like the one in the example are recorded in the

log and can be replayed deterministically.

5.3.3 Replaying with a Lower Processor Count

Resource availability in a system is unpredictable and can change from the time recording

takes place to the time when the user replays the execution. As a result, the system may

have fewer processors available during replay, and the R-thread that the hardware needs to

replay next according to the Memory Ordering Log may be unable to run because it is not

scheduled on any processor.

To cope with this potential source of inefficiency, we consider three possible solu-

tions. First, we could rely on hardware support to detect when an R-thread that is cur-

rently unassigned to a processor needs to run, and trigger an interrupt. This approach

provides software with immediate notification on replay stalls, but requires additional

hardware support. Second, the RSM could periodically inspect the Memory Ordering Log

to predict which R-threads need to be run in the near future, and schedule them accord-

ingly. However, this approach requires the hardware-level log to include architecturally-

visible states, making its format less flexible. Also, even with this careful planning, the

OS scheduling algorithms may override the RSM. The third approach is for the RSM to

simply ensure that all the R-threads get frequent and fair access to the CPUs. In this case,

there will be some wasted time during which all of the running R-threads may be waiting

for a preempted R-thread. Our design uses this approach because it is simple and has low

overhead.

57

Replay Sphere Control Block (RSCB): <per-sphere structure>
Stores state and information about a running sphere.

Registers Mode: Current execution mode of the replay sphere

Base, Limit & Current: Pointers to Memory Ordering Log

R-Thread Control Block (RTCB): <per-processor structure>
Identifies the R-thread and sphere running on the processor

Registers R-ThreadID: ID of the R-thread running on the processor

RSID:ID of the replay sphere using the processor

Interrupt-driven buffer interface
Raises interrupt when the Memory Ordering Log gets full during initial exe-

cution or empty during replay

Table 5.2: Capo’s hardware components.

5.4 Hardware Support

Capo augments the replay hardware with the hardware components shown in Table 5.2.

They are a structure called Replay Sphere Control Block (RSCB) per active replay sphere

(i.e., per sphere that is currently using at least one processor), a structure called R-Thread

Control Block (RTCB) per processor that is currently being used by a replay sphere, and

an interrupt-driven buffer interface. These components are very simple and can be imple-

mented in different ways to support DeLorean or any other of the proposals for hardware-

based deterministic replay: FDR [64], BugNet [42], RTR [65], Strata [41], or Rerun [28].

The RSCB is a hardware structure that contains information about an active replay

sphere. When a sphere is not using any processor, like Sphere 2 in Figure 5.2, its state

in the RSCB is saved to memory. To prevent the situation depicted in the figure, where

an sphere cannot execute even though there are free processors in the system, an ideal

machine configuration would have as many RSCBs as processors. If the machine depicted

in Figure 5.2 had four RSCBs, Sphere 2 could be running as well. Note that having more

RSCBs than processors does not make sense.

The RSCB consists of a Mode register and log pointer registers. The Mode regis-

ter specifies the sphere’s execution mode: Recording, Replaying, or Standard. The log

58

pointer registers are used to access the sphere’s Memory Ordering Log. At a high level,

they need to enable access to the Base of the log, its Limit, and its Current location —

where the hardware writes to (during recording) or reads from (during replay). The Cur-

rent pointer is incremented or decremented automatically in hardware. Depending on the

log implementation, there may be multiple sets of such pointers.

The per-processor RTCB consists of two registers. The first one contains the R-

threadID of the R-thread that is currently running on the processor. The R-threadID is

per replay sphere. It is short and generated deterministically in software for each R-thread

in the replay sphere. It starts from zero and can reach the maximum number of R-threads

per replay sphere. The R-threadID is saved in the Memory Ordering Log, tagging the log

entries that record events for that R-thread. The second RTCB register contains the ID of

the replay sphere that currently uses the processor (RSID). The hardware needs to know,

at all times, which processors are being used by which replay spheres because each replay

sphere interacts with a different log.

The size of the R-threadID is given by the maximum number of R-threads that can

exist in a replay sphere. Such number can be high because multiple R-threads can time-

share the same processor. However, given that log entries store R-threadIDs, their size

is best kept small. In general, the size of the RSID register is determined by the number

of concurrent replay spheres that the RSM can manage. Such number can potentially be

higher than the number of RSCBs, since multiple replay spheres can time-share the same

hardware resources.

Depending on the implementation, the RTCB and RSCB structures may or may not

be physically located in the processors — they may be located in other places in the ma-

chine. At each context switch, privileged software updates them if necessary.

Finally, Capo also includes an interrupt-driven interface for the Memory Ordering

Log. Such a log may or may not be built using special-purpose hardware. However, in all

of the hardware-based deterministic replay schemes proposed, it is at least filled in hard-

59

ware, transparently to the software. In Capo, we propose that, to use modest memory re-

sources, it be assigned a fixed-size memory region and, when such a region is completely

full (during recording) or completely empty (during replay), an interrupt be delivered. At

that point, a module copies the data to disk and clears the region (during recording) or fills

the region with data from disk (during replay) and restarts execution.

60

CHAPTER 6

CapoOne: A DeLorean-based Implementation of

Capo

6.1 Introduction

To evaluate Capo, we design and build a prototype of a deterministic replay system for

multiprocessors that we call CapoOne. CapoOne is the first implementation of Capo’s ab-

stractions and interfaces described in Chapter 5. The current prototype uses a DeLorean-

based replay hardware substrate and, on top of it, it runs a standard Ubuntu Linux [10]

operating system with a slightly modified kernel.

CapoOne combines the best of the hardware- and software-based deterministic re-

play schemes: it has good multiprocessor performance and it is able to record and/or re-

play unmodified standard Linux applications such as the Apache [4] web server. More-

over, it can record and/or replay two or more user applications that run both indepen-

dently and simultaneously. In this chapter, we first describe CapoOne’s software and

hardware components and then we present some practical lessons that we learned during

its development.

6.2 Software Implementation

Figure 6.1 depicts CapoOne’s architecture. It can be seen in the figure that CapoOne’s

RSM is split into two different components, one in user space and another inside the ker-

nel. The user-level RSM tracks processes as they run using the Linux ptrace process trac-

ing mechanism. Ptrace gives processes the ability to create child processes, receive no-

61

x86-based system

Replay Sphere A

Modified DeLorean

Ubuntu Linux 7.10 with
modified 2.6.24 kernel

Kernel-Level RSM

R-thread
1

R-thread
2

Capo HW Interface

R-thread
3 A's

Logs

User-Level RSM

Figure 6.1: CapoOne’s architecture.

tification on key events, and access arbitrary process states as the child process runs. In

addition, the user-level RSM is in charge of storing the logs into the disk during record-

ing and retrieving them during replay. The kernel-level RSM, in turn, manages the replay

hardware, schedules replay spheres and records the data copied between the kernel and

the replay sphere. The kernel-level RSM is developed as a kernel module to minimize the

changes to the kernel as much as possible. In Section 6.4.1 we will talk more about such

RSM design and explain its consequences

Figure 6.1 also shows that CapoOne runs on Ubuntu Linux 7.10 with a custom 2.6.24

kernel. We modify the kernel by adding a data structure per replay sphere called rscb t

that stores the hardware-level replay sphere context. We also add a per R-thread data

structure called rtcb t that stores the R-threadID and replay sphere information for the

R-thread. The kernel-level RSM manages these structures by saving and restoring them

into hardware RSCBs and RTCBs during context switches.

We also modify the kernel to make sure that copy to user is the only kernel func-

tion used to copy data into replay spheres. Then, we modify copy to user so that it

records all inputs before injecting them into the replay spheres. To help make copy to u-

ser deterministic, we inject data one page at a time, and make sure that no interrupt or

page fault can occur during the copy. We also change the kernel to track implicit depen-

62

R-thread
Interleaving

Log M-1
Interleaving

Log 0
Interleaving

Log 0

Baseline
DeLorean structures

DIR+MEM

 Network

Interrupt
Log

I/O
Log

Node 0

Proc + Caches

Chunk
Size
Log

Node N-1

I/O
Log

Interrupt
Log

S
ys

te
m

C

he
ck

po
in

t

Proc + Caches

DMA
Log

DMA

Processor
Interleaving

Log

Arbiter
Chunk
Size
Log

Baseline
CapoOne structures

DIR+MEM

Node 0 Node N-1

Proc + CachesDMA

R-thread
Interleaving

Log 0

 Network

Arbiter 0 ... N-1RTCBs

0 ... N-1RSCBs

Proc + Caches

Chunk Size
Log Registers

Chunk Size
Log Registers

(a)

(b)

 Mode Register Mode Register

M N

Figure 6.2: Multiprocessor with the DeLorean hardware as presented in Chapter 4 (a), and as

implemented in CapoOne (b).

dences. We make page table modifications and the resulting TLB flushes atomic, to avoid

race conditions with R-threads running on other CPUs.

6.3 Hardware Implementation

In CapoOne, we use DeLorean’s OrderOnly as the underlying replay hardware and we

augment it with the Capo interface of Table 5.2. This section describes the implemen-

tation in detail and, to give more insight, it also outlines a possible implementation for

FDR [64] and similar schemes.

63

Figure 6.2(a) shows a DeLorean multiprocessor. The figure is similar to Figure 4.1,

but we reproduce it here so it is easier to compare to Figure 6.2(b). In general, CapoOne’s

extends DeLorean so that it can handle multiple Memory Ordering Logs simultaneously,

one per sphere. Thus, in CapoOne, each sphere has a Memory Ordering Log. And each

sphere’s Memory Ordering Log includes a R-thread Interleaving Log (RI Log) and a per-

R-thread Chunk Size Log (CS Log). The figure also shows that CapoOne implements

the interface of Table 5.2 mostly in the arbiter module. In addition, there are a few other

changes to make to the DeLorean architecture because DeLorean is a full-system replayer,

while CapoOne is not. We consider the two issues separately.

In CapoOne, the RTCB and RSCB structures are placed in the arbiter module. Specif-

ically, as shown in Figure 6.2(b), the arbiter contains an array of N RTCBs and an array of

N RSCBs, where N is the number of processors in the machine. Each RTCB corresponds

to one processor. If the processor is currently used by a replay sphere, its RTCB is not

null. The RTCB contains the R-threadID of the R-thread currently running on the proces-

sor and, in the RSID field, a pointer to the entry in the RSCB array corresponding to the

replay sphere currently using the processor. In this implementation, therefore, the size of

the RSID field is given by the maximum number of concurrent active replay spheres. Fi-

nally, each active replay sphere has a non-null RSCB. Each RSCB contains the sphere’s

mode, and the current, base, and limit pointers to the sphere’s RI Log. In Figure 6.2(b),

we show the case when there are M active replay spheres and, therefore, M Memory Or-

dering Logs. Note that M ≤ N.

For performance reasons, each node also has some special hardware registers, namely

the Mode register and the CS Log registers. The former contains the mode of the sphere

that is currently using the processor; the latter contains the top of DeLorean’s CS Log for

the R-thread currently running on the processor.

With this hardware, every time that the OS schedules an R-thread on a processor,

the OS potentially updates the node’s Mode and CS Log registers, the processor’s RTCB,

64

and the RSCBs of the spheres for this R-thread and for the preempted R-thread — recall

that spheres that currently use no processor have a null RSCB. As the R-thread executes,

it writes or reads the CS Log registers depending on whether the Mode register indicates

Recording or Replaying mode, respectively. If the CS Log registers are used up before the

OS scheduler is invoked again, an interrupt is delivered, and the OS saves their contents

and clears them (during recording) or loads then with new data (during replay). The CS

Log is used very infrequently, so a few registers are enough.

During execution, when the arbiter receives a message from a processor request-

ing a chunk commit, the arbiter checks the RTCB for the processor. From that RTCB, it

reads its current R-threadID and, through the RSID pointer, the mode of the sphere that

currently uses the processor. If the mode is Standard, no action is taken. Otherwise, the

RI Log is accessed. If the mode is Recording and the chunk can commit, the hardware

adds an entry in the RI Log and tags it with the R-threadID. If, instead, the mode is Re-

playing, the hardware reads the next RI Log entry and compares the entry’s tag to the R-

threadID. If they are the same, the chunk is allowed to commit and the RI Log entry is

popped. There are no changes to the encoding of messages to or from the arbiter.

Since the DeLorean architecture is a full-system replayer and CapoOne is not, we

need to make additional changes to the original architecture. First, there is no need for

the hardware-generated logs for DMA, I/O, and interrupts shown in Figure 6.2(a). In

CapoOne, during recording, privileged software records all the inputs to the replay sphere

in the Sphere Input Log; during replay, privileged software plays back these log entries at

the appropriate times. This Sphere Input Log is invisible to the hardware; it is managed

by the software. For this reason, we do not show it in Figure 6.2(b). Moreover, since the

checkpointing is now per replay sphere, it is likely performed and managed by privileged

software and, therefore, it is not shown in the figure either. Finally, since we only record

chunks from replay spheres, the algorithm for creating chunks changes slightly. Specifi-

cally, at every system call, page fault, or other OS invocation, the processor terminates the

65

current chunk and commits it. Interrupts are handled slightly differently: for ease of im-

plementation, they squash the current chunk and execute right away. In all cases, as soon

as the OS completes execution, a new application chunk starts.

6.3.1 Hardware Implementation for FDR-like Schemes

We now outline how the hardware interface of Table 5.2 can be implemented for FDR [64]

and similar replay schemes. The idea is to tag cache lines with R-thread and, potentially,

sphere information. In this case, each processor has R-threadID, RSID, and Mode reg-

isters. These registers are updated every time that the OS schedules a new thread on the

processor. During recording, when a processor accesses a line in its cache, in addition

to tagging it with its current dynamic instruction count, it also tags it with its current

R-threadID and, potentially, RSID. This marks the line as being accessed by a given R-

thread of a given replay sphere. The line can remain cached across context switches. At

any time, when a data dependence between two processors is detected, the message sent

from the processor at the dependence source to the processor at the dependence destina-

tion includes the R-threadID and, potentially, the RSID of the line. The receiver proces-

sor then selects a local log based on its own current R-threadID and RSID. In that log, it

stores a record composed of the R-threadID of the incoming message plus the dynamic

instruction counts of the source and destination processors.

6.4 Lessons Learned During the Development of CapoOne

The development of the CapoOne prototype required a 18 man-month effort. In this time,

we: i) implemented a new hardware simulator for the DeLorean underlying architecture,

ii) modified the Linux Kernel and iii) developed the RSM. During that period we gained

some insights into key issues in experimental replay systems that we describe now.

This section first discusses the problems we faced because of our split-RSM im-

66

plementation. In hindsight, our biggest mistake was to underestimate the time and com-

plexity of the software components. The section then describes the issues that we faced

when we converted a full-system, hardware-based replay system such as DeLorean into a

hardware-assisted replay system for user applications. A key issue was to make sure that

CapoOne only recorded and replayed instructions that belonged to the target applications.

The section also explains how CapoOne deals with interrupts and exceptions. Some

of these events are non-deterministic and require saving some state information into a

log so that they can be replayed. Others, even though they are non-deterministic, can be

treated in a way that does not require CapoOne to record them in a log —perhaps at the

cost of some minor performance degradation. Finally, this section details how CapoOne

ensures that copying data from the kernel into the application is deterministic. This was

arguably the hardest piece of code that we had to write. We give insights on why our first

approach did not work and what was required to get it working correctly.

6.4.1 Implementing the RSM

As we mentioned in Section 6.2, we implemented a large portion of the RSM in user

mode using the ptrace process tracing mechanism of Linux to interpose on recording

and replaying processes. Implementing the RSM in user mode makes it easier to develop,

since writing user mode code gives us access to more libraries and debugging tools, and

greater flexibility compared to writing kernel mode code. Indeed, splitting the RSM made

our initial prototype easier to implement. Unfortunately, it had two unintended conse-

quences.

First, it added substantial overhead during recording to our very first prototype. For

example, when a user mode RSM interposes on a system call invocation of a recording

or replaying process, it requires four context switches and a significant number of kernel-

level subsystems to carry out the interposition. In contrast, a kernel mode RSM would

67

interpose on system calls by simply adding an extra function call on the system call path

within the OS to divert control to the RSM. To reduce this overhead, we included two

optimizations that buffer data for system calls within the kernel, thus minimizing costly

traps to the RSM. These optimizations improved performance significantly, but increased

the complexity of the kernel-mode portion of the RSM. Looking back, the optimizations

were complicated enough that a kernel-mode RSM implementation may have been both

cleaner and higher performing.

Fortunately, most of our user-level RSM overhead occurs only during system call

invocations. Therefore, if the system call frequency is low, the overhead of our implemen-

tation is small. Even if the system call frequency is high, if the application is such that

CPUs are often idle, RSM execution does not cause much overhead. However, if the ap-

plication is both CPU bound and system call intensive, our implementation does add some

overhead.

The second consequence of using ptrace for our RSM implementation is that it made

debugging much harder. Ptrace’s interface and kernel paths are sometimes obscure and,

towards the end of our development effort, most of the hard-to-debug bugs would have

been avoided if we had implemented our RSM exclusively inside the kernel.

One surprising aspect of our RSM implementation is that we did not need to use

a versioning file system [27, 54] to include the hard disk state within our checkpoints.

To reduce log sizes, software-only replay systems commonly include disk state within

checkpoints and allow replaying software to recreate disk state without logging it explic-

itly in the same way replaying software recreates memory state [21]. However, experi-

ments showed that the RI Log generated by the hardware accounts for the majority of data

within our replay logs, thus obviating the need to introduce the complexities of including

disk state within our checkpoints. Note that, had we used DeLorean’s PicoLog — whose

Memory Ordering Log is an order of magnitude smaller than OrderOnly’s — a versioning

file system might have been required.

68

Lessons learned: Splitting the RSM into user-level and kernel-level components

increases its complexity and makes it harder to debug in the long run, even though it can

greatly help bringing up the first version of the prototype. A versioning file system might

not be required if the Memory Ordering Log is much larger than the Sphere Input Log.

6.4.2 From Full-System Replay to Sphere-Based Replay

As we discussed in Section 2.4.1, previous hardware-based deterministic proposals record

and replay the entire system. CapoOne, on the other hand, just records and replays pro-

cesses running inside replay spheres. Consequently, CapoOne does not log non-deterministic

events such as interrupts or DMA operations. Instead, it logs i) all inputs to the sphere and

ii) the interleaving of the chunks executed by the R-threads of the same sphere. Informa-

tion about other non-deterministic events is discarded. Because of ii), CapoOne requires

some changes to the DeLorean hardware —in addition to augmenting it to meet Capo’s

hardware interface specification.

In DeLorean, it is possible for a chunk to include instructions from both a user-level

thread and the OS. For example, if a thread issues a system call, the last instructions the

thread executed before the system call and the first few from the system call handler can

end in the same chunk. CapoOne must prevent this from happening because its Memory

Ordering Log can only consist of user-level instructions from the same sphere. As a re-

sult, CapoOne’s hardware chunks the dynamic instruction stream differently than does

DeLorean. Thus, in CapoOne, chunks can only contain instructions from one R-thread.

Moreover, when a processor detects that a chunk to be committed is the last one that

belongs to an R-thread before the OS takes over the processor, the commit request in-

cludes a bit indicating that i) this is the last chunk of the R-thread for now, and that ii) the

following OS chunks should not be included in the log. This is necessary because the OS

can execute one or more chunks before it executes the instructions that manage the replay

69

hardware. CapoOne must ensure that these OS chunks are not part of the Memory Order-

ing Log.

Lesson learned: Making sure that the Memory Ordering Log only contains chunks

where all the instructions belong to the R-threads in the sphere can be challenging. How-

ever, the alternative solution, making sure that the instructions that do not belong to the

sphere are also deterministic, is much more complicated.

6.4.3 User to Kernel Transitions

Section 6.4.2 described a very important design principle in CapoOne: all chunks must

only include instructions from the same R-thread. This section describes how CapoOne

transitions from user to kernel land so that it upholds that design principle while main-

taining current semantics. We focus on user-to-kernel transitions and not on kernel-to-

user ones because, in the former, CapoOne must ensure that the status of the replay sphere

when R-threads leave is replayable. Returning to the sphere is always deterministic if the

replay sphere exits were deterministic as well.

6.4.3.1 Interrupts

Interrupts are asynchronous events generated by hardware devices that alter the instruc-

tion stream of the processor. They are inherently non-deterministic. Full-system hardware-

based replay systems record, for each interrupt, when it arrived and its kind. This is not

the case in CapoOne because interrupts do not directly affect the execution path of the R-

threads inside a sphere. However, CapoOne must ensure that kernel code in the interrupt

handler is not recorded as part of the sphere’s Memory Ordering Log.

Due to CapoOne’s chunk-based execution, the interrupt delivery policy balances

three conflicting demands: size of the Memory Ordering Log, interrupt latency and amount

of wasted work due to squashes. Thus, there are three different approaches to interrupt

70

handling, that we call: Finish First, Commit Now and Squash Now.

In Finish First, a processor does not service an interrupt until the in-flight chunk

reaches its predefined size and commits. Completing and committing the chunk might

take some time —chunks are thousands of instructions long— so this increased interrupt

latency can hurt performance if the system is executing under a heavy interrupt load. On

the other hand, because the committed chunk reached the predefined size, CapoOne does

not need to record anything in the CS Log.

In Commit Now the processor does not wait for the chunk to reach the desired chunk

size. Instead, it tries to commit the not-yet-completed chunk first and it then starts ser-

vicing the interrupt. As a result, the chunk’s final size is non-deterministic and it must

be recorded in the CS Log. However, the interrupt response time is better than in Finish

First.

Finally, in Squash Now, when an interrupt arrives, the processor squashes any in-

flight chunk that has not sent its commit request to the arbiter yet. This approach is simple

and allows for a fast and relatively constant interrupt response time. As a drawback, it can

cause some performance degradation due to frequent squashes.

Lesson learned: It is sometimes possible to treat highly non-deterministic events

such as interrupts as deterministic events. For example, Squash Now and Finish First do

not require any information to be recorded in the Sphere Input Log — Finish First does

write into the RI Log as any other normal chunk commit, though. This is why we use

Squash Now in CapoOne. Moreover, it is simple to implement and did not cause any sig-

nificant overhead in our experiments.

6.4.3.2 Exceptions

Exceptions are synchronous events that alter the dynamic instruction stream of the pro-

cessor. Some of them are raised when the processor detects an anomalous condition while

executing an instruction —faults and traps— and others are generated at the request of

71

inst w

inst z

inst m
inst n

inst m
inst n

inst n

inst v
inst w

OS
Fault

Handler

(a)

inst m
inst n

inst n

inst v
inst w

OS
Fault

Handler

Original
Execution

Replay

inst m
inst n

inst v
inst w

(b)

inst v
inst w

OS
Fault

Handler

inst z inst z

inst z

Replay Replay

(c) (d)

Time

Figure 6.3: Fault handling in CapoOne.

the programmer —programmed exceptions. Obviously, exceptions must be treated differ-

ently than interrupts, because exceptions must be delivered at precisely the right moment.

CapoOne’s design goal is to maintain correct exception semantics; we now describe them

in turn.

A fault is a type of exception where the instruction that caused it re-executes after

the anomalous condition has been solved. In order to maintain correct exception seman-

tics, CapoOne must finish and commit the chunk containing all the dynamic instructions

preceding the one causing the fault. Executing the fault handling code means that the pro-

cessor leaves the replay sphere until the kernel completes the fault handling and the user-

level execution is resumed. Therefore, the faulting instruction becomes the first instruc-

tion of the new chunk when it re-executes.

Although faults are synchronous events, they are not necessarily deterministic. Con-

sequently, CapoOne logs the size of the last chunk committed before the faulting instruc-

tion and uses that size information to recreate the same chunk during replay.

Consider Figure 6.3(a). Instruction n causes a page fault, so CapoOne must prema-

72

turely commit a chunk that finishes at instruction m. It must also log the chunk’s size in

the CS Log. The OS takes over and services the page fault. Once the R-thread resumes,

instruction n becomes the first instruction of the new chunk and it re-executes. This new

chunk commits normally when it reaches the predefined chunk size —which happens

right after instruction z. Figures 6.3(b), 6.3(c) and 6.3(d) show that there are three pos-

sible behaviors when CapoOne replays a fault.

In Figure 6.3(b), the processor uses the log to produce a chunk whose last instruction

is instruction m. Afterwards, the processor starts a new chunk, and the same instruction n

causes a page fault, making the system proceed in the same way as in the original execu-

tion.

Consider now Figure 6.3(c). As in Figure 6.3(b), the processor decides —based on

the information in the log— to chunk the dynamic instruction stream at instruction m.

However, instruction n does not fault this time. Then, the processor continues executing

the chunk normally until it reaches the predefined chunk size.

Finally, Figure 6.3(d) shows the case where a fault occurs during replay but not dur-

ing the initial execution. In the figure, instruction w causes an unexpected fault so the pro-

cessor commits a second chunk whose last instruction is v. Note that CapoOne does not

log anything now because it is replaying. Also, notice that in order for the replay to be

deterministic, no other processor can commit any chunk belonging to another R-thread

in the sphere until the rest of the instructions in the original chunk are committed. Thus,

the processor creates a new chunk starting at instruction w and ending at instruction z.

Once this new chunk commits, the replay sphere state is identical to the one at the end of

Figure 6.3(a).

CapoOne handles traps and programmed exceptions differently. Unlike faults, pro-

cessors raise them after the execution of a trapping instruction. Therefore, the next in-

struction to execute after the OS handles the event is the instruction following the one that

caused the exception. Because processors must exit the replay sphere to let the OS man-

73

age these events, they also cause an early commit of a processor’s in-flight chunk.

As with faults, CapoOne tries to maintain the correct trap and programmed exception

semantics. They differ from faults in two main aspects. First, the instruction that raises

them is always the last one of the chunk. And second, they are deterministic and, there-

fore, CapoOne does not need to record the “irregular-sized” chunks they produce.

Lesson learned: Faults are non-deterministic events that must be handled properly.

The most difficult case is depicted in Figure 6.3(d), where a fault occurs in replay and

not in the initial execution. However, traps and programmed exceptions are deterministic

events and require no extra logging.

6.4.4 System Issues

We learned lessons about several other system-wide issues. We describe them in this sec-

tion.

6.4.4.1 Moving Data Between the Kernel and the Replay Sphere

As we described in Section 5.3, copying data from the kernel into the replay sphere is a

delicate matter in Capo-based systems such as CapoOne. First, the RSM must record in

the Sphere Input Log the data about to be copied. And second, it must ensure that the in-

terleaving between the kernel thread injecting the data and the R-threads in the sphere is

deterministic. This is because some R-thread might concurrently access the same mem-

ory region where the kernel is copying data into, and the hardware does not record the

interleaving of code outside the replay sphere. CapoOne addresses this problem by tem-

porarily inserting the kernel’s function in charge of the copy (copy to user) into the

sphere. Once the kernel thread executing the function is inside the sphere, the hardware

records the interleaving of the kernel thread chunks with the chunks of the R-threads of

the sphere. After the copy is over, copy to user exits the replay sphere.

74

Making sure that the interleaving between copy to user and the R-threads in the

sphere was deterministic gave us many headaches. In our first implementation, the RSM

associated the data copied by copy to user with the system call exit event correspond-

ing to the system call that executed copy to user. At that time, it made sense that the

Sphere Input Log entry corresponding to the system call exit event would also contain the

data that the system call copied into the replay sphere. During replay, right before a sys-

tem call returned, the RSM would inject the data into the sphere. We believed that from

the point of view of an R-thread it did not matter at which point of the system call execu-

tion the OS copied data into the sphere.

This simple and intuitive approach worked for many of our applications. Unfortu-

nately, it would cause deadlock in certain situations due to circular dependences between

the Sphere Input Log and the Memory Ordering Log. To understand why, the reader must

note that the RSM records in the Sphere Input Log the order in which R-threads enter and

exit system calls. During replay, the RSM enforces the same ordering.

Consider Figure 6.4(a). During initial execution, R-thread A executes a system call

that copies some data into the replay sphere. After copy to user is over, but before the

OS exits the system call and resumes A execution, B executes a system call as well. In

the Sphere Input Log, B’s system call enter comes before A’s system call exit event. In

the Memory Ordering Log, the copy to user chunks come before B’s chunk finishing

in the system call enter instruction. The arrows in the figure show these dependences.

Consider now Figure 6.4(b). In the figure, the system deadlocks while trying to re-

play the execution from Figure 6.4(a). The reason is that the RSM associated the co-

py to user event with the system call exit event in the Sphere Input Log and it is wait-

ing for thread B to execute a system call. At the same time, the hardware follows the

Memory Ordering Log and cannot let B commit the chunk that executes the system call

until the copy to user have been executed.

To solve this problem in a new RSM implementation, copy to user events are their

75

Initial Execution

A

B

Syscall
Enter

Syscall
Exit

Syscall
Enter

Syscall
Exit

copy_to_user

Replay - Faulty RSM

A

B

Syscall
Enter

Syscall
Exit

Syscall
Enter

Syscall
Exit

copy_to_user

SW Dependence
HW Dependence

(a) (b)

Figure 6.4: Circular dependences between the Sphere Input Log and the Memory Ordering Log

cause deadlocks during replay.

own entity and they are no longer associated with system call exit events. In hindsight, it

is an obvious solution, but this was not the case during the development because our first

solution works well as long as there is only one R-thread executing a system call and all

the other R-threads are in user mode (i.e. no system calls, exceptions, etc).

Lesson learned: It is possible to have circular dependences between the Sphere In-

put Log and the Memory Ordering Log. These dependences can cause deadlocks under

certain interleavings. We recommend making copy to user events a first-order event in

the Sphere Input Log.

6.4.4.2 Cache Overflows

BulkSC-based [13] systems such as CapoOne keep the current chunk’s speculative data

in the cache until commit time. However, a chunk may access more lines mapping to a

cache set than ways the set has. While certain transactional memory schemes allow stor-

ing speculative state in main memory, this is not the case for BulkSC-based systems.

When a cache would overflow, CapoOne commits the in-flight chunk independently of

its size.

Caches are not part of the replayable state, and therefore cache overflows are non-

76

deterministic. Thus, in the event of a cache overflow, CapoOne must record the size of

the prematurely-committed chunk. During replay, the processors use the information in

the log to create chunks of the same size of those prematurely committed due to cache

overflows.

Lesson learned: The instruction that caused the overflow does not necessarily be-

come the first instruction of the next chunk. In CapoOne, processors can freely reorder

memory operations within a chunk and even across consecutive chunks of the same pro-

cessor. As a result, a memory operation not at the top of the reorder buffer can cause a

cache overflow.

6.4.4.3 Handling Self-Modifying Code

Just as strict isolation of data accesses within a chunk must be enforced by hardware,

isolation of instruction memory must also be enforced. Self-modifying code is usually

defined as code that alter its own instructions as it executes. Intel microprocessor manu-

als [29] distinguish between self- and cross-modifying code. They define the former as:

The act of a processor writing data into a currently executing code segment

with the intent of executing that data as code

And the latter as:

The act of one processor writing data into the currently executing code seg-

ment of a second processor with the intent of having the second processor

execute that data as code.

In this thesis, we will adopt this classification. CapoOne uses signatures to detect

cross-modifying code by adding all instruction fetches to the chunk’s read signature.

Thus, at commit time, a code-modifying chunk is able to detect other chunks that have

77

read and executed a stale version of the code and squash them, maintaining correct or-

dering. In addition, instruction cache coherence is maintained by having a committing

chunk flash-invalidate its write set in all instruction caches, as well as the data caches. No

recording of the code modification event has to take place in the Memory Ordering Log

since maintaining the same ordering of chunks at replay time is sufficient for ensuring

that the cross-modifying event is deterministically replayed. During replay, signatures are

also used to invalidate the instruction caches.

Detecting and handling self-modifying code is harder because modern processors

can have many in-flight instructions. Thus, it is possible that the code being modified by

a retiring instruction is already inside the pipeline; in fact, it might have executed already.

Because of this, modern processors require a serializing instruction before the proces-

sor can start executing the new code [29]. Similarly, in a BulkSC based system such as

CapoOne, such instruction also causes a deterministic, early chunk commit. The problem,

however, is how to replay execution if the serializing instruction is missing. We consider

three different approaches to this issue.

The first one is to do nothing and, therefore, do not support recording and replaying

of non-deterministic self-modifying code. The reasoning behind this approach is that it

is not the role of the replay subsystem to deal with undefined behavior within the proces-

sors.

The second approach is to modify the processor so that it can detect when an instruc-

tion is writing into instruction memory. In CapoOne, this can be done by using a new In-

flight Instruction Signature (IIS) that stores the addresses of the in-flight instructions. The

IIS is a counter-based Bloom filter so that instructions can be removed from it once they

retire. It is similar to the In-flight Conflict Detector (ICD) structure proposed by Tuck et

al. [60], except that the ICD only stores the addresses of the in-flight loads. Whenever

a store retires, it intersects its target address with both the IIS and the read signature. If

the intersection is not null, the processor early commits the current chunk —whose last

78

- - -

R - X R W -

X W/R

X

W

Initial
State

Executing
State

Writing
State

Figure 6.5: Permission transition diagram for a software-only, self-modifying code detection

mechanism using page protections.

instruction is the retiring store— and logs its size in the CS Log. Unfortunately, this ap-

proach requires non-trivial changes to the processor.

The final approach is to rely on software to detect self-modifying code. In this case,

the RSM ensures that no page can be written and executed at the same time. Thus, when

an instruction tries to write into an executable page, the processor raises a fault, which

causes an early chunk commit. The RSM then changes the permissions of the page from

(r,−, x) to (r, w,−) and execution continues. If the processor tries to execute code from

the same page, a new page fault is raised, the chunk is truncated early and the page’s per-

missions are set back to (r,−, x). Figure 6.5 illustrates this mechanism. The main draw-

back of this approach is that it can hurt performance significantly.

Lesson learned: Cross-modifying code events they can be handled seamlessly with

the same hardware support (signatures and squashes). Self-modifying code, on the other

hand, can be hard to record and replay deterministically due to existing non-determinism

in current processors.

79

CHAPTER 7

Evaluation Setup

7.1 Introduction

In this chapter we describe the simulation environments that we use to evaluate DeLorean

and CapoOne. For DeLorean, we use the SESC [51] cycle-accurate execution-driven sim-

ulator. SESC models the processor and memory subsystem in detail. Unfortunately, it

does not support OS execution, which is required to evaluate CapoOne. Consequently, we

evaluate CapoOne using the SIMICS [37] full-system architecture simulator enhanced

with a detailed model of the DeLorean hardware.

7.2 DeLorean’s Evaluation Environment

We use the SESC to evaluate an 8-processor DeLorean Chip Multiprocessor (CMP). We

compare the speed of DeLorean’s execution and replay to three other systems. The first

one is the CMP of Table 7.1 under RC with speculative execution across fences and hard-

ware exclusive prefetching for stores. We call it RC. The second is the CMP of Table 7.1

under an aggressive SC implementation that includes speculative execution of loads and

hardware exclusive prefetching for stores. We call it SC. Note that neither the RC nor the

SC systems support bulk execution, speculative tasking, or logs. Finally, our third base-

line architecture is a BulkSC system without support for deterministic replay. We call it

BulkSC and it uses the architectural parameters shown in Table 7.2. These parameters are

largely like those used in [13].

80

Processor Memory

Processors: 8 in a CMP

Frequency: 5.0 GHz

Fetch/issue/comm width: 6/4/5

I-window/ROB size: 80/176

LdSt/Int/FP units: 3/3/2

Ld/St queue entries: 56/56

Int/FP registers: 176/90

Branch penalty: 17 cyc (min)

Private wback D-L1:

32KB/4-way/32B-lines

Round trip: 2 cycles

MSHRs: 8 entries

Shared L2:

8MB/8-way/32B-lines

Round trip: 13 cyc min

MSHRs: 32 entries

Mem round trip: 300 cyc

Table 7.1: Configuration for the two non-chunked baseline architectures, RC and SC.

Processor Memory BulkSC

Processors: 8 in a CMP

Frequency: 5.0 GHz

Fetch/issue/comm width: 6/4/5

I-window/ROB size: 80/176

LdSt/Int/FP units: 3/3/2

Ld/St queue entries: 56/56

Int/FP registers: 176/90

Branch penalty: 17 cyc (min)

Private wback D-L1:

32KB/4-way/32B-lines

Round trip: 2 cycles

MSHRs: 8 entries

Shared L2:

8MB/8-way/32B-lines

Round trip: 13 cyc min

MSHRs: 32 entries

Mem round trip: 300 cyc

Signature: 2 Kbits

Commit arbitration

latency: 30 cyc

Max. concurrent

commits: 4

Simultaneous chunks

per processor: 2

of arbiters: 1

of directories: 1

Table 7.2: Configuration for the BulkSC baseline architecture.

We use the BulkSC configuration shown in Table 7.2 as the foundation of our De-

Lorean system. We evaluate the three execution modes discussed in Section 4.2.1 — Or-

der&Size, OrderOnly and PicoLog — using the parameters shown in Table 7.3. Note that

all three execution modes also use the BulkSC configuration . Specifically, Order&Size

uses chunks of at most 2,000 instructions, variable-sized CS Log entries (1 bit if the chunk

has maximum size or 12 bits otherwise), and 4-bit PI Log entries. The latter encode the

IDs of the 8 processors and the DMA. To model an environment with variable-sized chunks,

we artificially truncate the chunk probabilistically: we truncate 25% of the chunks in Or-

der&Size, giving them a size between 1 and the maximum size using a uniform probabil-

ity distribution.

81

Order&Size OrderOnly PicoLog

Chunk Size 2000 inst. max. 2000 inst. 1000 inst.

25%chunks < 2000inst

CS Log Entry Variable-sized: 21 bit distance 22 bit distance

1 bit if chunk size==2000inst 11 bit distance 10 bit distance

12 bit otherwise

PI Log Entry 4 bit procID 4 bit procID –

Table 7.3: DeLorean’s preferred configurations.

OrderOnly uses 2,000-instruction chunks, 32-bit CS Log entries (which include 11

bits for the truncated chunk size and, in lieu of chunkID, 21 “distance” bits for the num-

ber of chunks committed by the processor since its most-recent truncated chunk), and

4-bit PI Log entries. PicoLog uses 1,000-instruction chunks, 32-bit CS log entries, and

round-robin processor commit order. In our experiments with different chunk sizes in Or-

derOnly and PicoLog, we keep the CS Log entry size constant, thus changing the distance

bits. Our simulator models both initial execution and replay.

All log buffers are enhanced with compression hardware that uses the LZ77 algo-

rithm [68].

We assume that the performance of the initial execution in FDR [64], Strata [41], and

Basic RTR [65] is similar to that of SC — therefore assuming that recording induces no

overhead on these schemes. This is consistent with the results reported in their papers.

Finally, we estimate the performance of Advanced RTR using data on Processor Consis-

tency (PC) performance.

As applications, we use SPLASH-2, SPECjbb2000 and SPECweb2005. The SPLASH-

2 codes are evaluated without system references. They run to completion, and include

all applications but Volrend (which fails in our infrastructure). Both SPECjbb2000 and

SPECweb2005 are evaluated by interfacing the SIMICS full-system simulator as a front-

end to our SESC simulator. Therefore, we capture system references as well. SPECjbb2000

82

is configured to use 8 warehouses, while SPECweb2005 runs the e-commerce workload.

Each runs for over 1 billion instructions after warm-up.

7.3 CapoOne’s Evaluation Environment

To evaluate CapoOne, we use two different environments, which we call Simulated-De-

Lorean and Real-Commodity-HW. Both environments run the same Ubuntu 7.10 Linux

distribution with a 2.6.24 kernel that includes CapoOne’s software components. In the

Simulated-DeLorean environment, we use SIMICS to model a system with four x86 pro-

cessors running at 2 GHz, 1,000 instructions per chunk, DeLorean’s OrderOnly logging

method, and the latency and bandwidth parameters from Table 7.2. We use this environ-

ment to evaluate a complete CapoOne system.

In the Real-Commodity-HW environment, we use a 4-core HP workstation with an

Intel Core 2 Quad processor running at 2.5GHz with 3.5GB of main memory. We use this

environment to evaluate the software components of CapoOne on larger problem sizes

than are feasible with Simulated-DeLorean, allowing us to take more meaningful timing

measurements.

We evaluate CapoOne using ten SPLASH-2 applications configured to execute with

four threads, a web server, and a compilation session. We call the SPLASH-2 applica-

tions engineering applications and the rest system applications. We run all the appli-

cations from beginning to end. The SPLASH-2 applications use the standard input data

sizes for the Simulated-DeLorean environment and larger sizes for the Real-Commodity-

HW environment. The web server application is an Apache web server exercised with a

client application. In the Real-Commodity-HW environment, it downloads 150MB of data

via 1KB, 10KB, and 100KB file transfers, and uses five or ten concurrent client connec-

tions depending on the experiment. In the Simulated-DeLorean environment, we run the

same experiments except that we only download 50MB of data. We call the applications

83

apache-1K, apache-10K, and apache-100K depending on the file transfer size. The com-

pilation application for the Real-Commodity-HW environment is a compilation of a 2.6.24

Linux kernel using the default configuration values. For the Simulated-DeLorean, it is

a compilation of the SPLASH-2 applications. We run the compilation with a single job

(make) or with four concurrent jobs (make-j4).

Our experimental procedure consists of a warm-up run followed by six test runs. We

report the average of the six test runs. In all experiments, the standard deviation of our

results is less than three percent. All log sizes we report are for logs compressed using

bzip.

84

CHAPTER 8

DeLorean Evaluation

8.1 Log Size

Figure 8.1 shows the size of the PI Log and CS Logs in OrderOnly, measured in bits per

kilo-instruction. We evaluate configurations with standard chunk sizes of 1,000, 2,000

and 3,000 instructions. For each of them, we report the size of both logs with and without

compression. In the figure, the CS Log contribution is stacked atop the PI Log’s, but it is

too small to be seen. The SP2-G.M. bars correspond to the geometric mean of SPLASH-

2. For comparison, the figure shows a line with the average size of the compressed Mem-

ory Ordering Log in Basic RTR from [65]. We will use this line as a reference, although

we note that the set of applications measured here and in RTR [65] are different.

The figure shows that our preferred 2,000-inst. OrderOnly configuration uses on av-

erage only 2.1 bits (or 1.3 bits if compressed) per kilo-instruction to store both the PI Log

and CS Logs (that is, the Memory Ordering Log). This means that these compressed logs

use only 16% of the space that we estimate is needed by the compressed Memory Order-

ing Log in Basic RTR.

Figure 8.1 also shows that the size of the CS Log is negligible. Moreover, as we in-

crease the standard chunk size, the size of the PI Log decreases. This is because there are

fewer chunks to commit. However, chunks are also more likely to conflict, and the poten-

tially higher number of squashes may affect performance.

Figure 8.2 shows the space required by the CS Log in PicoLog. Recall that PicoLog

has no PI Log. We see that the CS Log needs 0.37 bits or fewer per kilo-instruction in

85

SP2-G.M. sjbb2k sweb2005
0

2

4

6

8

10

Lo
g

si
ze

 (
bi

ts
/p

ro
c/

ki
lo

-in
st

)

1000 2000 3000 1000 2000 3000 1000 2000 3000

Average
compressed
log size in
Basic RTR
(estimated)

CS Log (Uncompressed)
PI Log (Uncompressed)

CS Log (Compressed)
PI Log (Compressed)

Lo
g

si
ze

 (
bi

ts
/k

ilo
-in

st
)

Figure 8.1: Size of the PI Log and CS Logs in OrderOnly. The numbers under the bars are the

standard chunk sizes in instructions.

SP2-G.M. sjbb2k sweb2005
0

2

4

6

8

10

Lo
g

si
ze

 (
bi

ts
/p

ro
c/

ki
lo

-in
st

)

0.06
0.04

0.08
0.05

0.03
0.060.12

0.11
0.15

0.09
0.08

0.120.37
0.21

0.27
0.28

0.16 0.2

1000 2000 3000 1000 2000 3000 1000 2000 3000

Average
compressed
log size in
Basic RTR
(estimated)

CS Log (Uncompressed) CS Log (Compressed)

Lo
g

si
ze

 (
bi

ts
/k

ilo
-in

st
)

Figure 8.2: Size of the CS Log in PicoLog. Recall that PicoLog has no PI Log. The numbers

under the bars are the standard chunk sizes in instructions.

all cases — even without compression. Our preferred 1,000-inst. PicoLog configuration

needs a compressed log with an average of only 0.05 bits per kilo-instruction. To put this

in perspective, it implies that, if we assume an IPC of 1, the combined effect of all eight

5-GHz processors is to produce a log of only about 20GB per day. This is a very small

log. It is 0.6% of the estimated size needed by the compressed Memory Ordering Log in

Basic RTR. Since the CS Log entries are due to chunk truncation caused by attempted

cache overflow, we see that such an event is rare.

Figure 8.3 shows Order&Size’s PI Log and CS Logs sizes. We can see that this ex-

ecution mode requires larger PI Log and CS Logs, sometimes comparable to Basic RTR

log sizes. Our preferred 2,000-inst. compressed configuration uses, on average, 3.7 bits

per kilo-instruction. This is 46% of the estimated space needed by the compressed Mem-

ory Ordering Log in Basic RTR.

So far, we have roughly compared the per-processor log size of two schemes: De-

86

SP2-G.M. sjbb2k sweb2005
0

2

4

6

8

10

Lo
g

si
ze

 (
bi

ts
/p

ro
c/

ki
lo

-in
st

)

1000 2000 3000 1000 2000 3000 1000 2000 3000

Average
compressed
log size in
Basic RTR
(estimated)

CS Log (Uncompressed)
PI Log (Uncompressed)

CS Log (Compressed)
PI Log (Compressed)

Lo
g

si
ze

 (
bi

ts
/k

ilo
-in

st
)

Figure 8.3: Size of the PI Log and CS Logs in Order&Size. The numbers under the bars are the

maximum chunk sizes in instructions.

Lorean’s 8-processor runs and Basic RTR’s 4-processor runs. To compare to Strata, we

can use the fact that both the Strata [41] and RTR [65] papers quantitatively compare their

schemes’ log sizes to FDR’s. Alternatively, we can use the numbers in the Strata paper —

which measure different applications than we do and are again for only 4-processor runs.

In this case, the Strata paper claims a compressed log size of 2.2KB per million memory

operations for the 4 processors combined. DeLorean needs 364B and 13.7B per million

memory operations in OrderOnly and PicoLog, respectively. This is 16% and 0.6%, re-

spectively, of the space Strata claims to need. However, if, to speed-up Strata’s replay,

we also add WAR dependences in Strata’s log, Strata’s log size increases by 25% [41]. In

addition, since the size of a Strata log entry is proportional to the number of processors,

Strata’s log size may increase substantially for 8-processor runs.

8.1.1 Stratifying the PI Log

Figure 8.4 compares the size of the PI Log in 2000-inst. OrderOnly without and with

stratification. We consider three Stratified PI Log designs, which differ in the maximum

number of committed chunks allowed per processor per stratum, namely 1, 3, or 7. The

bars are normalized to the non-stratified design. We can see that stratifying the PI Log

while allowing 1 or 3 committed chunks per processor per stratum saves log space. In

the case of 1 chunk per processor per stratum, the PI Log size decreases by an average

87

Figure 8.4: Size of the PI Log in OrderOnly without and with stratification. The numbers under

the bars are the maximum number of chunks per processor per stratum.

of 54%. This results in an average total OrderOnly log size of about 0.6 bits per kilo-

instruction, or 7.5% of the estimated Basic RTR log size. Allowing 7 chunks per proces-

sor per stratum results in wasted space and larger logs in SPECweb2005.

8.2 DeLorean’s Performance

Figure 8.5 compares the performance of RC and SC to that of the initial execution un-

der each of the three DeLorean modes plus the Stratified OrderOnly with one chunk. For

comparison purposes, we also show the performance of a BulkSC environment. All bars

are normalized to the performance of RC.

The figure shows that the average performance of Order&Size and OrderOnly is only

2-3% lower than that of RC. Moreover, some of this reduction is the result of running un-

der BulkSC (which causes some chunk squashes), as can be seen by comparing to the

BulkSC bar. Consequently, we conclude that DeLorean’s logging support causes negli-

gible slowdown. The figure also shows that Stratified OrderOnly delivers a performance

similar to OrderOnly. Stratification, therefore, has negligible performance impact.

The figure also shows that PicoLog has a lower performance — on average, execu-

tion proceeds at 86% of RC’s speed. This is still faster than SC, which averages 79% of

RC. As we will see in Section 8.3, PicoLog’s lower performance is less caused by load

88

ba
rn
es

ch
ol
es
ky

fft
fm
m

lu
oc
ea
n

ra
di
os
ity

ra
di
x

ra
yt
ra
ce

w
at
er
-n
s

w
at
er
-s
p

S
P
2-
G
.M
.

sj
bb
2k

sw
eb
20
05

00.
2

0.
4

0.
6

0.
8

1.
0

Speedup

R
C

B
ul
kS
C

O
rd
er
&
S
iz
e

O
rd
er
O
nl
y

S
tr
at
ifi
ed
O
rd
er
O
nl
y

P
ic
oL
og

S
C

Fi
gu

re
8.

5:
P

er
fo

rm
an

ce
d
u
ri

n
g

in
it

ia
l

ex
ec

u
ti

o
n

n
o
rm

al
iz

ed
to

R
C

.

89

imbalance due to round-robin commit ordering than to chunk squashes. This problem

especially affects raytrace. Overall, it can be argued that a performance 14% lower

than RC is a modest price to pay for a deterministic replay system that only logs 0.05 bits

per kilo-instruction — or 20GB per day for the combined eight 5-GHz processors (Sec-

tion 8.1).

Given that FDR, Strata, and Base RTR have also been shown to have negligible

recording overhead, we estimate their performance with the SC bar — which is a fairly

aggressive implementation of sequential consistency. It is seen in the figure that all De-

Lorean execution modes on average outperform SC, typically substantially. This is be-

cause, through chunk-based execution, DeLorean allows for very aggressive reordering

and overlapping of accesses.

If we estimate the performance of Advanced RTR to be that of the machine support-

ing TSO, we can compare Advanced RTR to DeLorean. TSO’s performance is similar to

that of Processor Consistency (PC). Since our infrastructure does not model TSO or PC,

we simply note that previous work showed that PC’s performance is significantly lower

than RC’s [25, 49] — hence significantly lower than at least that of OrderOnly and Or-

der&Size. Quantitative comparisons are not possible due to the use of different applica-

tions.

8.2.1 Performance During Replay

We use our replay simulator to estimate the performance of DeLorean’s replay. Since

replay will likely occur under a virtualized environment, we penalize the replay speed

by disabling parallel commit and increasing the commit arbitration latency in the arbiter

from 30 to 50 cycles. Moreover, in our simulator, we add random delays to the replay ex-

ecution to ensure that the timings are different from the initial execution. Specifically, we

take the PI Log from the initial execution and use it in 5 different replay runs. In each run,

90

ba
rn

es
ch

ol
es

ky
fft

fm
m

lu
oc

ea
n

ra
di

os
ity

ra
di

x
ra

yt
ra

ce
w

at
er

-n
s

w
at

er
-s

p
S

P
2-

G
.M

.
sj

bb
2k

sw
eb

20
05

00.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Speedup

O
rd

er
O

nl
y

ex
ec

ut
io

n
O

rd
er

O
nl

y
re

pl
ay

S
tr

at
ifi

ed
 O

rd
er

O
nl

y
ex

ec
ut

io
n

S
tr

at
ifi

ed
 O

rd
er

O
nl

y
re

pl
ay

P
ic

oL
og

 e
xe

cu
tio

n
P

ic
oL

og
 r

ep
la

y

Fi
gu

re
8.

6:
P

er
fo

rm
an

ce
o
f

se
v
er

al
en

v
ir

o
n
m

en
ts

d
u
ri

n
g

in
it

ia
l

ex
ec

u
ti

o
n

an
d

re
p
la

y.
A

ll
b
ar

s
ar

e
n
o
rm

al
iz

ed
to

R
C

.

91

we add from 10 to 300-cycle stalls before a randomly-selected 30% of the commit oper-

ations. We also change the delay of 1.5% randomly-selected cache hits to that of cache

misses and the same number of cache misses to cache hits. Finally, we report the average

performance of the 5 runs.

Figure 8.6 compares the performance of OrderOnly, Stratified OrderOnly with one

chunk, and PicoLog during initial execution and replay. All bars are normalized to RC.

From the figure, we see that, on average, both OrderOnly and Stratified OrderOnly re-

play at 82% of RC’s speed, while PicoLog replays at 72% of RC. Several factors con-

tribute to the lower performance of replay, namely the penalties added, the stall of proces-

sors waiting to commit, and two effects due to keeping several completed but uncommit-

ted chunks: additional squashes and cache overflows. However, we believe that, at these

speeds, deterministic replay opens up new possibilities in concurrency debugging.

Stratifying OrderOnly with one chunk does not appear to hurt replay performance.

Overall, Stratifying OrderOnly has reduced the log size by half, at some hardware cost,

without noticeably impacting the speed of execution recording or replay.

8.3 Characterizing Picolog

We perform a sensitivity analysis to determine how PicoLog’s performance changes with

(i) the number of processors in the CMP, (ii) the standard chunk size in committed in-

structions, and (iii) the maximum number of chunks that a processor may be executing

and are not yet committed. We called the latter the number of simultaneous chunks per

processor in Table 7.2. Figure 8.7 shows the resulting performance of PicoLog relative to

RC for the same number of processors. Because our infrastructure does not support the

commercial applications on 16 processors, the data in the figure corresponds to SPLASH-

2 only.

Increasing the number of processors reduces PicoLog’s relative performance. For

92

1 2 3 4 8 16
Simultaneous chunks per processor

(c) 16 Processors

0.7

0.8

0.9

1.0

S
pe

ed
up

500
1000
2000
3000

1 2 3 4 8 16
Simultaneous chunks per processor

(b) 8 Processors

0.7

0.8

0.9

1.0

S
pe

ed
up

500
1000
2000
3000

1 2 3 4 8 16
Simultaneous chunks per processor

(a) 4 Processors

0.7

0.8

0.9

1.0

S
pe

ed
up

500
1000
2000
3000

Chunk size:

Chunk size:

Chunk size:

Figure 8.7: PicoLog performance relative to RC.

example, with one chunk per processor and 1000-inst. chunks, the performance drops

from 87% for 4 processors to 77% for 16. This is because there are more squashes and

because it takes longer for a given processor to get its turn to commit.

The latter can be partly mitigated by increasing the number of simultaneous chunks

per processor. These additional chunks keep the processor busy while the chunk waits for

its turn to commit. However, the figure shows that we quickly get diminishing returns.

The more chunks we add, the higher the chance for chunk collisions and attempted cache

overflows. In our baseline design (Table 7.2), we used two simultaneous chunks per pro-

cessor.

Finally, larger chunk sizes have little effect for 4- or 8-processor systems, but hurt

performance for 16-processor systems. Large chunks with many processors tend to induce

more conflicts.

Table 8.1 characterizes PicoLog for 8 processors. The Parallel Commit columns

show data on the commit process. The Ready Procs column shows the average number

of processors with fully-executed, ready-to-commit chunks at a given time. On average,

93

Parallel Commit Commit Token Passing

Appl. Ready Actual Proc Wait Wait Token Stall

Procs Commit Ready Token Cplete Rndtrip Cycles

(Avg) (Avg) (%) (Cyc) (Cyc) (Cyc) (%)

barnes 4.0 2.4 80.4 499 230 661 4.9

cholesky 5.3 3.0 84.7 750 431 793 29.4

fft 3.5 2.3 77.4 411 478 889 2.5

fmm 5.1 3.0 84.0 739 386 788 20.4

lu 3.9 2.3 79.5 487 207 757 5.4

ocean 3.9 2.5 78.4 1067 760 1601 4.2

radiosity 4.9 2.9 82.7 670 403 758 9.3

radix 2.5 2.3 65.6 524 1119 3262 0.3

raytrace 4.6 2.5 78.4 1290 691 1462 34.0

water-ns 4.4 2.6 80.9 541 249 659 9.4

water-sp 4.6 2.6 82.1 489 203 575 2.3

SP2-G.M. 4.2 2.6 79.3 638 403 956 6.0

sjbb2k 5.1 3.0 77.5 1634 694 1841 7.2

sweb2005 5.2 2.9 83.7 1002 612 1346 8.7

Table 8.1: Characterizing PicoLog.

there are 4.2-5.2 such processors. However, not all of them can commit. Indeed, while

chunk commits may overlap if there are no conflicts, they are initiated in a round-robin

manner. Consequently, if processor i is not ready to commit, i+1 cannot commit. The Ac-

tual Commit column shows the average number of chunks that end up committing at the

same time. The average number is 2.6-3.0.

The Commit Token Passing columns characterize how the “commit token” is passed

around processors. Proc Ready is the percentage of time that a processor is ready to com-

mit when it acquires the commit token. On average, it is 77-84%. For those processors

that are ready, the Wait for Token column is the number of cycles elapsed from when they

completed the chunk until they acquire the token; for those processors that are not ready,

the Wait for Complete column is the number of cycles elapsed from when they receive the

token until they complete the chunk. Both of these two numbers must be smaller than the

Token Roundtrip, which is the number of cycles it takes for the token to circulate through

all processors once. Such number is about 600-3,300 cycles. Finally, Stall Cycles shows

94

the fraction of cycles that processors stall because they have completed two simultaneous

chunks and not received the token. On average, this number is 6-9%.

Table 8.1 explains the low performance of some codes in Figure 8.5. For example,

consider raytrace and radix. In raytrace, it can be shown that the squashes are

concentrated on a few processors, which slow down the passing of the token for everyone.

As a result, processors complete the chunk before receiving the token (the Wait for Token

cycles are 1,290) and stall often (the fraction of stall cycles is 34.0%). In radix, it can

be shown that squashes are spread over many processors. As a result, processors receive

the token before chunk completion (the Wait for Complete cycles are 1,119) and stall little

(the fraction of stall cycles is 0.3%).

Finally, DeLorean induces more network traffic than RC because of signature traffic

chunk squashes. It can be shown that the traffic in Order&Size and OrderOnly is prac-

tically the same as in a plain BulkSC system which, in turn, is on average 9% higher in

bytes than in RC [13]. In PicoLog, due to the higher squash frequency, the total network

traffic is on average 17% higher than in OrderOnly.

95

CHAPTER 9

CapoOne Evaluation

9.1 Log Size

Figure 9.1 shows the size of CapoOne’s logs, namely the Memory Ordering Log (includ-

ing the RI Log and the CS Logs) and the Sphere Input Log, measured in bits per com-

mitted kilo-instruction. Although not seen in the figure, the contribution of the CS Log is

practically negligible. In the figure, SP2-G.M. is the geometric mean of SPLASH-2, while

SYS-G.M. is the geometric mean of the system applications. This experiment uses the

Simulated-DeLorean environment.

The figure shows that CapoOne generates a combined log of, on average, 2.5 bits per

kilo-instruction in the engineering applications and 3.8 bits in the system applications. In

most applications, the Memory Ordering Log contributes with most of the space. This is

especially true for the engineering applications because most of them interact with the OS

infrequently. The one exception is raytrace, which issues more file system reads than the

other engineering applications, thus requiring a larger Sphere Input log. As expected, the

system applications require a larger Sphere Input Log because they execute more system

calls.

Overall, we find that the size of the Memory Ordering Log is comparable to the size

of the PI Log and CS Logs reported in Section 8.1. When comparing the size of these

logs to the total logging overhead of CapoOne, we see that the Sphere Input Log increases

the average logging requirements of the hardware only modestly: by 15% and 38% for the

engineering and system applications, respectively.

96

barnes

fft fm
m

lu ocean
radiosity
radix
raytrace
w

ater-ns
w

ater-sp
S

P
2-G

.M
.

apache-1K
apache-10K
apache-100K
m

ake
m

ake-j4
S

Y
S

-G
.M

.

0

2

4

6

8

Lo
g

si
ze

 (
bi

ts
/k

ilo
-in

st
ru

ct
io

n) Memory Ordering Log (RI + CS Logs) Sphere Input Log

Figure 9.1: CapoOne’s log size in bits per kilo-instruction.

9.2 Hardware Characterization

Table 9.1 characterizes the CapoOne hardware during recording under the Simulated-De-

Lorean environment. The first two columns show the average number of dynamic instruc-

tions per chunk and the percentage of all chunks that attain the maximum chunk size (full

size chunks). The Truncated Chunks columns show the three main reasons why the hard-

ware had to truncate the chunk: cache overflows, system calls, and page faults. Other ex-

ceptions occur rarely and, as indicated in Section 6.4.3.1, interrupts squash chunks.

The data shows that, on average, 98% and 97% of the chunks in the engineering and

compilation applications, respectively, are full-sized. For the web server applications,

only 66% of the chunks reach full size because of the high system call frequency in the

Apache application. In theory, applications with short chunks in Table 9.1 should match

those with long Memory Ordering Logs in Figure 9.1. However, the correlation is not that

clear due to the effect of log compression.

9.3 Performance Overhead During Recording

We are interested in CapoOne’s execution time overhead during recording in two situa-

tions, namely when there is a single replay sphere in the machine and when there are mul-

tiple. For these experiments, we use the Real-Commodity-HW environment. This is be-

97

Avg. Full Truncated Chunks

Application Chunk Size Cache System Page

Size Chunks Overflows Calls Faults

(# of insts) (%) (%) (%) (%)

barnes 999 99.8 40.7 29.7 29.4

fft 981 97.8 0.0 14.4 85.4

fmm 998 99.6 30.4 6.4 63.0

lu 996 99.6 0.3 53.8 45.7

ocean 977 97.8 0.9 63.7 35.3

radiosity 994 99.1 5.2 44.8 49.9

radix 982 95.1 78.7 1.9 19.3

raytrace 993 99.0 9.3 38.5 52.1

water-ns 953 91.6 85.9 0.8 13.1

water-sp 989 97.2 93.7 1.9 4.3

SP2-AVG 986 97.6 34.5 25.5 39.7

apache-1K 785 65.9 1.3 93.2 5.3

apache-10K 781 66.2 1.1 92.3 6.6

apache-100K 773 65.0 0.9 93.4 5.5

make 993 96.5 16.6 54.9 28.3

make-j4 993 96.6 14.3 58.2 27.6

SYS-AVG 865 78.5 6.7 78.4 14.6

Table 9.1: CapoOne’s hardware characterization.

cause its larger application problem sizes help us get more meaningful results. Moreover,

all of the recent works on hardware-based deterministic replay schemes indicate that the

execution time overhead caused by the recording hardware is negligible [5, 28, 41, 64, 65].

We first consider a single sphere in the machine. Figure 9.2 shows the execution time

of the applications running on four processors when they are being recorded. The bars

are normalized to the execution time of the same applications under standard execution

— therefore, execution time equal to 1.0 means that there is no CapoOne overhead. The

figure shows that, on average, recording under CapoOne increases the execution time of

our engineering and system applications by 21% and 41%, respectively. This is a modest

overhead that should affect the timing of concurrency bugs little.

Figure 9.2 breaks down this overhead into three basic parts. One is the interposition

overhead, namely the overhead caused by the ptrace mechanism to control the execution

98

barnes

fft fm
m

lu ocean
radiosity
radix
raytrace
w

ater-n2
w

ater-sp
S

P
2-A

V
G

.
apache-1k
apache-10k
apache-100k
m

ake
m

ake-j4
S

Y
S

-A
V

G
.

0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e Standard execution Interposition RestNoFS FS

Figure 9.2: Execution time overhead of CapoOne during recording for a single replay sphere in

the machine.

of the application. The next one is the rest of the RSM and kernel overhead without ex-

ercising the file system (RestNoFS). Finally, there is the overhead of storing the logs into

the file system (FS). From the figure, we see that practically all of the overhead in the en-

gineering applications, and most of the one in the system ones comes from interposition

overhead. Thus, improving the performance of interposition will likely improve the re-

sults for these applications significantly. The system applications also have noticeable

overhead due to RestNoFS and FS. In these applications, the OS is invoked more fre-

quently, and there is more file system activity.

We now measure CapoOne’s execution time overhead when two spheres record si-

multaneously. In this experiment, we measure pairs of applications. A pair consists of

two instances of the same application running concurrently on the four-processor machine

with two threads each. Consequently, we change the compilation to run with two concur-

rent jobs (make-j2). For the Apache applications, we cannot always control the number of

threads and, therefore, there may be more threads than processors.

We test three scenarios. In the first one, both applications run under standard execu-

tion — therefore, there is no CapoOne overhead. In the second one, one application runs

under standard execution and the other is being recorded. In the third scenario, both ap-

plications are being recorded. Figure 9.3 shows the resulting normalized execution times.

For each application, we show three pairs of bars, where each pair corresponds to one of

99

ba
rn

es
fft

fm
m

lu
oc

ea
n

ra
di

os
ity

ra
di

x
ra

yt
ra

ce
w

at
er

-n
s

w
at

er
-s

p
S

P
2-

G
.M

.ap
ac

he
-1

Kap
ac

he
-1

0Kap
ac

he
-1

00
K

m
ak

e-
j2

S
Y

S
-G

.M
.

00.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Normalized execution time

S
ta

nd
ar

d
ex

ec
ut

io
n

R
ec

or
di

ng

Fi
gu

re
9.

3:
E

x
ec

u
ti

o
n

ti
m

e
o
v
er

h
ea

d
o
f

C
ap

o
O

n
e

d
u
ri

n
g

re
co

rd
in

g
w

h
en

tw
o

re
p
la

y
sp

h
er

es
sh

ar
e

th
e

m
ac

h
in

e.

100

the three scenarios described, in order, and the two bars in a pair correspond to the two

applications. We will call these bars Bar 1 to Bar 6, starting from the left. For a given ap-

plication, all the bars are normalized to the execution time of a single, 2-threaded instance

of the application running alone in the machine.

We make two observations. First, consider the second scenario, where one sphere

is not being recorded and one is (Bars 3-4 of each application). We see that, generally,

the two spheres do not induce overhead on each other. To see this, note that, on average,

Bar 3 is no higher than Bar 2. Moreover, the ratio of Bar 4 to Bar 3 is even lower than the

height of the bars in Figure 9.2, where there was a single sphere in the whole machine.

For the second observation, we focus on Bars 5-6, where both spheres are being

recorded. Comparing these two bars to Bars 1-2, we see that recording two parallel appli-

cations concurrently increases their execution time over standard execution by an average

of 6% and 40% for engineering and system applications, respectively. This is also a very

modest overhead. The overhead is high in only two system applications, namely apache-

1K and make-j2. This result mirrors the overheads of apache-1K and make-j4 (which is

roughly equivalent to two concurrent make-j2 instances) from the single-sphere experi-

ments.

9.4 Performance Overhead During Replay

Finally, we measure CapoOne’s performance overhead during replay. We perform two

sets of experiments. In the first one, we record and replay the SPLASH-2 applications

using the Simulated-DeLorean environment. Then, since the processes in our Apache ap-

plications do not share data with each other, we note that our RSM can replay the Apache

applications without assistance from the DeLorean hardware. Consequently, in our sec-

ond experiment, we record and replay the apache-1K, apache-10K, and apache-100K ap-

plications using the Real-Commodity-HW environment. Finally, we are unable to provide

101

replay performance results for the compilation applications at this point.

Figure 9.4 compares the execution of the SPLASH-2 applications during recording

and during replay. For simplicity, our simulator models each instruction to take one cycle

to execute, and reports execution time in number of cycles taken to execute the applica-

tion. Consequently, for each application, the figure shows two bars, corresponding to the

number of cycles taken by recording (Rc) and by replaying (Rp) the application. In each

application, the bars are normalized to Rc. The bars show the Execution cycles and, in

the replay bars, the cycles that a processor is stalled, having completed a chunk and wait-

ing for its turn to commit it, according to the order encoded in the R-thread Interleaving

Log. Such stall is broken down based on whether the completed chunk contains user code

(User Stall) or code from the kernel or RSM (Kernel+RSM Stall). The latter occurs when,

in the execution of the copy to user function, code from the RSM or the kernel needs to

be ordered relative to user code.

The figure shows that, in all applications, replay takes longer than recording. On av-

erage, the replay run takes 80% more cycles than the recording run. The Execution cycles

generally vary little between the two runs — although the RSM and kernel activity can be

different in two runs, for example when system calls are emulated rather than re-executed.

However, the main difference between the Rc and Rp bars is the presence of stall cycles

during replay. Such stall cycles are dominated by User Stall.

The stall cycles are substantial because, often, the R-thread that needs to commit the

next chunk is not even running on any processor. This occurs even though the application

has no more R-threads than processors in the machine. A better thread scheduling algo-

rithm that tries to schedule all the threads of the application concurrently should reduce

these cycles substantially. Overall, we consider that our initial version of CapoOne replay

has a reasonably low performance overhead, and that future work on thread scheduling

will reduce the overhead more.

We now consider the web server applications. Recall that we run them using the

102

R
c

R
p

R
c

R
p

R
c

R
p

R
c

R
p

R
c

R
p

R
c

R
p

R
c

R
p

R
c

R
p

R
c

R
p

R
c

R
p

R
c

R
p

ba
rn

es
fft

fm
m

lu
oc

ea
n

ra
di

os
ity

ra
di

x
ra

yt
ra

ce
w

at
er

-n
s

w
at

er
-s

p
S

P
2-

A
V

G

00.
5

1.
0

1.
5

2.
0

2.
5

Normalized Cycles

E
xe

cu
tio

n
U

se
r

S
ta

ll
K

er
ne

l +
 R

S
M

 S
ta

ll

Fi
gu

re
9.

4:
N

o
rm

al
iz

ed
n
u
m

b
er

o
f

cy
cl

es
ta

k
en

b
y

th
e

S
P

L
A

S
H

-2
ap

p
li

ca
ti

o
n
s

d
u
ri

n
g

re
co

rd
in

g
(R

c)
an

d
re

p
la

y
(R

p)
.

103

Application Normalized Replay Execution Time

apache-1K 0.92

apache-10K 0.57

apache-100K 0.14

AP-AVG. 0.54

Table 9.2: Replay performance of the web server applications.

Real-Commodity-HW environment and, therefore, measure their performance in elapsed

time. Table 9.2 shows the execution time of the replay relative to the execution time of

a standard run. On average for the Apache applications, replay only takes 54% of the

time taken by the standard execution run. In apache-1K, replay takes nearly as much

time as the standard execution run. This is expected because apache-1K is both CPU in-

tensive and issues system calls frequently. However, in apache-10K and apache-100K,

CapoOne replays execution significantly faster than the standard execution run. The rea-

son is that these applications are both network bound and have a low CPU utilization.

When CapoOne replays these applications, the RSM injects the results of network system

calls into the replay sphere without accessing the network, resulting in a faster execution.

This phenomenon is related to idle time compression [21], where any CPU idle time is

skipped during replay, causing replay to outperform initial executions that have significant

amounts of idle time. Overall, CapoOne replays system applications at high speed.

104

CHAPTER 10

Future Work

There are many possible avenues for extensions to the work presented in this thesis. First,

on the hardware side, DeLorean and other hardware-based replay systems require impor-

tant modifications on the processor and/or the memory hierarchies. This scares hardware

manufactures because they perceive such changes as too intrusive. Another key issue is

that current hardware-based deterministic replay systems offer little support for consis-

tency models other than sequential consistency. However, manufacturers such as AMD,

IBM, Intel and Sun use more relaxed memory consistency models because of perfor-

mance reasons. Thus, an important future line of research will be to explore lightweight

hardware mechanisms for more relaxed consistency models, such as processor consis-

tency —found in most desktop and server processors sold today. We believe that such a

scheme will have an important impact on industry.

Second, there are important questions that remain to be answered on the software

side. For example, the operating system scheduler needs to be aware of the fact that a

thread being replayed and currently scheduled in the processor might not be making any

progress because it is waiting for another thread to commit. Exposing such knowledge to

the OS is still an open problem. We also believe that software can play a very important

role on reducing the complexity of deterministic replay hardware. Much of the complex-

ity found in current hardware-only proposals is due to the fact that hardware is oblivious

to the properties of the software being recorded and replayed. Hence, I think it is possible

to leverage the richness of managed execution to build a hardware-assisted replay system

for managed code. In this model, the runtime system will give the replay hardware hints

105

about the software running on it, hopefully helping reduce complexity.

Finally, we need to expand the horizon of usability for deterministic replay. A very

promising line of research is looking for new applications for deterministic replay in the

reliability and security domains. For example, CapoOne can help increase the reliabil-

ity of multiprocessor servers. Instead of having the software just write to disk the logs of

a replay sphere, the logs could be sent to a different machine which, in turn, would use

them to replay the first one’s execution, but this time running extra security checks to en-

sure that the system has not been compromised.

106

CHAPTER 11

Conclusions

With the shift to multicore hardware, parallel programming must become the norm. Un-

fortunately, most current programmers find parallelism very challenging. Thus, program-

mers would benefit greatly from tools and techniques that could help them debugging par-

allel applications. One such technique is deterministic replay of execution. Recording and

deterministically replaying execution gives computer users the ability to travel backward

in time, recreating past states and events in the computer.

Current software-based deterministic replay systems are flexible but they perform

slowly on (or do not work with) multiprocessors. Hardware-based schemes can record

multiprocessor execution much more efficiently than software schemes, but they still fall

short in some areas, namely performance and size of their Memory Ordering Log.

This thesis has proposed DeLorean, a novel scheme for hardware-based determin-

istic replay where processors execute groups of instructions atomically. DeLorean has

two fundamental advantages over current hardware-based schemes. First, it records at the

speed of the most aggressive memory consistency models used today — and also replays

at high speed. This makes it useful for production-run debugging. Second, it summarizes

the execution interleaving into a truly small log.

DeLorean’s execution modes offer a trade-off between performance and log size.

In OrderOnly, DeLorean records at the speed of RC execution and replays at 82% of RC

speed. In contrast, most other schemes record only at the speed of SC execution and pro-

vide no details on replay speed. RTR presents an algorithm for recording TSO executions

but does not evaluate its impact on execution speed or log size. Moreover, OrderOnly

107

only needs 1.3 bits of compressed memory-ordering log per kilo-instruction and, with

stratification, only 0.6 bits. We estimate the latter to be 7.5% of the log size needed by

Basic RTR.

In PicoLog mode, DeLorean reduces the memory-ordering log to 0.05 bits kilo-

instruction, which we estimate is 0.6% of the log size in Basic RTR. In this mode, we es-

timate that the total memory-ordering log of an 8-processor 5-GHz machine is only about

20GB per day. Recording speed decreases to 86% of RC execution speed — still higher

than typical SC speed.

Another area where hardware-based replay systems —including DeLorean— fall

short is practicality. Current proposals for hardware-based deterministic replay of mul-

tiprocessors focus only on the implementation of the basic primitives for recording and,

sometimes, replay. A practical system additionally requires a software component that

interfaces with these primitives, manages large logs, and enables the concurrent execu-

tion of multiple parallel applications that mix standard, recorded, and replayed execution.

Because of this, hardware-based schemes cannon replace yet software-based systems.

To solve this problem, this thesis introduced Capo, the first set of abstractions and

software-hardware interface for deterministic replay of multiprocessors. A key abstraction

in Capo is the Replay Sphere, which separates the responsibilities of the hardware and

the software. To evaluate Capo, we built a prototype called CapoOne based on Linux and

DeLorean.

Our evaluation of 4-processor executions showed that CapoOne largely records with

the efficiency of hardware-only schemes while still maintaining the flexibility of software-

only schemes. Compared to the DeLorean hardware-only scheme, CapoOne increased

the average log size by only 15% and 38% for engineering and system applications, re-

spectively. Moreover, recording under CapoOne increased the execution time of the engi-

neering and system applications by, on average, only 21% and 41%, respectively. If two

parallel applications record concurrently, their execution time increase was, on average,

108

6% and 40% for the two classes of applications. Finally, replaying the engineering appli-

cations took on average a modest 80% more cycles than recording them.

Although CapoOne overheads are modest, we believe that there is lots of room for

improvement. This thesis identified the two largest sources of overhead. First, a user-

level, ptrace-based RSM implementation and second, excessive stalling when the R-

thread that must commit next is not scheduled on any processor. Both of them can be

fixed rather easily. In fact, the second implementation of the Capo interface is already

being developed in our group; we call it CapoTwo. Even though it still is in an early stage,

CapoTwo has shown incredible potential.

Overall, the first half of this thesis showed that hardware can record and replay mul-

tiprocessor execution efficiently and for long periods of time. The second half, in turn,

described how to make hardware-based replay systems practical for the user. Therefore,

we believe that deterministic replay of multiprocessor systems is a powerful tool for de-

bugging, security and fault tolerance.

109

REFERENCES

[1] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial.

Western Reseach Laboratory-Compaq. Research Report 95/7, September 1995.

[2] H. Agrawal, R. A. DeMillo, and E. H. Spafford. An Execution-Backtracking Ap-

proach to Debugging. IEEE Software, 8(3):21–26, May 1991.

[3] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint Processing and Recovery:

Towards Scalable Large Instruction Window Processors. In Proceedings of the 36th
International Symposium on Microarchitecture, pages 423–434, San Diego, Califor-

nia, United States, November 2003.

[4] Apache Software Foundation. Apache HTTP Server. http://www.apache.org.

[5] D. F. Bacon and S. C. Goldstein. Hardware-Assisted Replay of Multiprocessor Pro-

grams. In Proceedings of the ACM/ONR Workshop on Parallel and Distributed De-
bugging, pages 194–206, Santa Cruz, California, United States, August 1991.

[6] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray, M. Drinić,

D. Mihočka, and J. Chau. Framework for Instruction-level Tracing and Analysis of

Program Executions. In Proceedings of the 2nd International Conference on Virtual
Execution Environments, pages 154–163, Ottawa, Ontario, Canada, June 2006.

[7] B. Bloom. Space/time trade-offs in hash coding with allowable errors. Communica-
tions of the ACM, 11(7):422–426, July 1970.

[8] B. Boothe. Efficient Algorithms for Bidirectional Debugging. In Proceedings of
the ACM SIGPLAN 2000 Conference on Programming Language Design and Imple-
mentation, pages 299–310, Vancouver, British Columbia, Canada, June 2000.

[9] T. C. Bressoud and F. B. Schneider. Hypervisor-Based Fault-Tolerance. In Proceed-
ings of the 15th Symposium on Operating Systems Principles, pages 1–11, Copper

Mountain, Colorado, United States, December 1995.

[10] Canonical. Ltd. Ubuntu Linux. http://www.ubuntu.com.

[11] L. Ceze, K. Strauss, J. Tuck, J. Renau, and J. Torrellas. CAVA: Using Checkpoint-

Assisted VAlue Prediction to Hide L2 Misses. ACM Transactions on Architecture
and Code Optimization, pages 182–208, June 2006.

110

[12] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. Bulk Disambiguation of Speculative

Threads in Multiprocessors. In Proceedings of the 33rd International Symposium on
Computer Architecture, pages 227–238, Washington DC, United States, June 2006.

[13] L. Ceze, J. M. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk Enforcement

of Sequential Consistency. In Proceedings of the 34th International Symposium on
Computer Architecture, pages 278–289, San Diego, California, United States, June

2007.

[14] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W. Baek,

C. Kozyrakis, and K. Olukotun. A Scalable, Non-Blocking Approach to Transac-

tional Memory. In Proceedings of the 13th International Symposium on High Perfor-
mance Computer Architecture, pages 97–108, February 2007.

[15] S.-K. Chen, W. K. Fuchs, and J.-Y. Chung. Reversible Debugging Using Program

Instrumentation. IEEE Transactions on Software Engineering, 27(8):715–727, Au-

gust 2001.

[16] J. D. Choi and H. Srinivasan. Deterministic Replay of Java Multithreaded Applica-

tions. In Proceedings of the SIGMETRICS Symposium on Parallel and Distributed
Tools, pages 48–59, Welches, Oregon, United States, August 1998.

[17] M. Christiaens, J.-D. Choi, M. Ronsse, and K. D. Bosschere. Record/Replay in the

Presence of Benign Data Races. In Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications, pages 1200–1206,

Las Vegas, Nevada, United States, June 2002.

[18] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent Control with “Readers”

and “Writers”. Communications of the ACM, 14(10):667–668, October 1971.

[19] A. Cristal, D. Ortega, J. Llosa, and M. Valero. Out-of-Order Commit Processors. In

Proceedings of the 10th International Symposium on High Performance Computer
Architecture, pages 48–60, Madrid, Spain, February 2004.

[20] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield. Re-

mus: High Availability Via Asynchronous Virtual Machine Replication. In Proceed-
ings of the 5th USENIX Symposium on Networked Systems Design and Implementa-
tion, pages 161–174, San Francisco, California, United States, February 2008.

[21] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen. ReVirt: Enabling

Intrusion Analysis through Virtual-Machine Logging and Replay. In Proceedings of
the 5th Symposium on Operating Systems Design and Implementation, pages 211–

224, Boston, Massachusetts, United States, December 2002.

[22] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen. Execution Re-

play of Multiprocessor Virtual Machines. In Proceedings of the 4th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments, pages

121–130, Seattle, Washington, United States, March 2008.

111

[23] S. I. Feldman and C. B. Brown. IGOR: A System for Program Debugging Via Re-

versible Execution. In Proceedings of the ACM SIGPLAN and SIGOPS Workshop on
Parallel and Distributed Debugging, pages 112–123, Madison, Wisconsin, United

States, November 1988.

[24] A. Forin. Debugging of Heterogeneous Parallel Systems. In Proceedings of the
ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging,

pages 130–140, Madison, Wisconsin, United States, November 1988.

[25] K. Gharachorloo, A. Gupta, and J. Hennessy. Hiding Memory Latency Using Dy-

namic Scheduling in Shared-Memory Multiprocessors. In Proceedings of the 19th
International Symposium on Computer Architecture, pages 22–33, Gold Coast,

Queensland, Australia, May 1992.

[26] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K.

Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional Memory Co-

herence and Consistency. In Proceedings of the 31st International Symposium on
Computer Architecture, pages 102–113, Munchen, Germany, June 2004.

[27] D. Hitz, J. Lau, and M. Malcolm. File System Design for an NFS File Server Ap-

pliance. In Proceedings of the USENIX Winter 1994 Technical Conference, pages

19–31, San Francisco, California, United States, January 1994.

[28] D. R. Hower and M. D. Hill. Rerun: Exploiting Episodes for Lightweight Memory

Race Recording. In Proceedings of the 35th International Symposium on Computer
Architecture, pages 265–276, Beijing, China, June 2008.

[29] Intel Corporation. Intel 64 and IA-32 Architectures Software Developers Manual,

Volume 3B, February 2009. http://www.intel.com/products/processor/manuals/.

[30] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting Past and Present In-

trusions Through Vulnerability-Specific Predicates. In Proceedings of the 20th Sym-
posium on Operating Systems Principles, pages 91–104, Brighton, United Kingdom,

October 2005.

[31] S. T. King and P. M. Chen. Backtracking Intrusions. In Proceedings of the 18th
Symposium on Operating Systems Principles, pages 223–236, Bolton Landing, New

York, United States, October 2003.

[32] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging Operating Systems with

Time-Traveling Virtual Machines. In USENIX Technical Conference, pages 1–15,

Anaheim, California, United States, April 2005.

[33] M. Kirman, N. Kirman, and J. F. Martinez. Cherry-MP: Correctly Integrating

Checkpointed Early Resource Recycling in Chip Multiprocessors. In Proceed-
ings of the 38th International Symposium on Microarchitecture, pages 245 – 256,

Barcelona, Spain, November 2005.

112

[34] N. Kirman, M. Kirman, M. Chaudhuri, and J. F. Martinez. Checkpointed Early Load

Retirement. In Proceedings of the 11th International Symposium on High Perfor-
mance Computer Architecture, pages 16 – 27, San Francisco, California, United

States, February 2005.

[35] L. Lamport. How to Make a Multiprocessor Computer that Correctly Executes Mul-

tiprocess Programs. IEEE Transactions on Computers, C-28(9):690–691, 1979.

[36] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging Parallel Programs with Instant

Replay. IEEE Transactions on Computers, 36(4):471–482, April 1987.

[37] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-

berg, F. Larsson, A. Moestedt, and B. Werner. SIMICS: A Full System Simulation

Platform. IEEE Computer, 35(2):50–58, 2002.

[38] J. Martı́nez, J. Renau, M. Huang, M. Prvulovic, and J. Torrellas. Cherry: Check-

pointed Early Resource Recycling in Out-of-order Microprocessors. In Proceedings
of the 35th Annual International Symposium on Microarchitecture, pages 3 – 14,

Istambul, Turkey, November 2002.

[39] M. Musuvathi, S. Qadeer, T. Ball, and G. Basler. Finding and Reproducing Heisen-

bugs in Concurrent Programs. In Proceedings of the USENIX Symposium on Oper-
ating System Design and Implementation, pages 122–133, San Francisco, California,

United States, December 2008.

[40] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead Execution: An Alterna-

tive to Very Large Instruction Windows for Out-of-order Processors. In Proceedings
of the 9th International Symposium on High Performance Computer Architecture,

pages 129 – 140, Anaheim, California, United States, February 2003.

[41] S. Narayanasamy, C. Pereira, and B. Calder. Recording Shared Memory Dependen-

cies Using Strata. In Proceedings of the 12th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages 229–240,

San Jose, California, United States, October 2006.

[42] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously Recording Pro-

gram Execution for Deterministic Replay Debugging. In Proceedings of the 32nd
International Symposium on Computer Architecture, pages 284–295, Los Alamitos,

California, United States, June 2005.

[43] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder. Automatically

Classifying Benign and Harmful Data Races Using Replay Analysis. In Proceed-
ings of the 2007 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 22–31, San Diego, California, United States, June 2007.

[44] R. H. B. Netzer. Optimal Tracing and Replay for Debugging Shared-Memory Paral-

lel Programs. In Proceedings of the 1993 ACM/ONR Workshop on Parallel and Dis-
tributed Debugging, pages 1–11, San Diego, California, United States, May 1993.

113

[45] D. Z. Pan and M. A. Linton. Supporting Reverse Execution for Parallel Programs.

In Proceedings of the 1988 ACM SIGPLAN and SIGOPS Workshop on Parallel and
Distributed Debugging, pages 124–129, Madison, Wisconsin, United States, January

1988.

[46] M. Prvulovic. Cost-effective (and nearly overhead-free) Order-Recording and Data

Race detection. In Proceedings of the 12th International Symposium on High-
Performance Computer Architecture, pages 232–243, Austin, Texas,United States,

February 2006.

[47] M. Prvulovic and J. Torrellas. ReEnact: Using Thread-Level Speculation Mech-

anisms to Debug Data Races in Multithreaded Codes. In Proceedings of the 30th
International Symposium on Computer Architecture, pages 110–121, San Diego,

California, United States, June 2003.

[48] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-effective Architectural Sup-

port for Rollback Recovery in Shared-Memory Multiprocessors. In Proceedings
of the 29th International Symposium on Computer Architecture, pages 97–108, An-

chorage, Alaska, United States, May 2002.

[49] P. Ranganathan, V. S. Pai, and S. V. Adve. Using Speculative Retirement and Larger

Instruction Windows to Narrow the Performance Gap Between Memory Consistency

Models. In Proceedings of the 9th Symposium on Parallel Algorithms and Architec-
tures, pages 199–210, June 1997.

[50] R. Rashid, R. Baron, A. Forin, D. Golub, M. Jones, D. Orr, and R. Sanzi. Mach: a

Foundation for Open Systems. In Proceedings of the Second Workshop on Work-
station Operating Systems, pages 109–113, Pacific Grove, California, United States,

September 1989.

[51] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, K. Strauss,

S. Sarangi, P. Sack, and P. Montesinos. SESC Simulator, January 2005.

http://sesc.sourceforge.net.

[52] M. Ronsse and K. De Bosschere. RecPlay: A Fully Integrated Practical

Record/Replay System. ACM Transactions on Computer Systems, 17(2):133–152,

1999.

[53] M. Russinovich and B. Cogswell. Replay for Concurrent Non-Deterministic Shared-

Memory Applications. In Proceedings of the ACM SIGPLAN 1996 Conference on
Programming Language Design and Implementation, pages 258–266, Philadelphia,

Pennsylvania, United States, 1996.

[54] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W. Carton, and J. Ofir.

Deciding When to Forget in the Elephant File System. In Proceedings of the 17th
Symposium on Operating Systems Principles, pages 110–123, Charleston, South

Carolina, United States, December 1999.

114

[55] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for Systems and Pro-
cesses (The Morgan Kaufmann Series in Computer Architecture and Design). Mor-

gan Kaufmann Publishers Inc., San Francisco, California, United States, 2005.

[56] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. SafetyNet: Improving the

Availability of Shared-Memory Multiprocessors with Global Checkpoint/Recovery.

In Proceedings of the 29th International Symposium on Computer Architecture,

pages 123–134, Anchorage, Alaska, United States, May 2002.

[57] S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou. Flashback: A Lightweight Ex-

tension for Rollback and Deterministic Replay for Software Debugging. In USENIX
Technical Conference, pages 29–44, 2004.

[58] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton. Continual Flow

Pipelines. In Proceedings of the 11th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 117 – 119, Boston,

Massachusetts, United States, October 2004.

[59] Sun Microsystems. UltraSPARC Architecture, June 2008.

[60] J. Tuck, W. Ahn, L. Ceze, and J. Torrellas. SoftSig: Software-exposed Hardware

Signatures for Code Analysis and Optimization. In Proceedings of the 13th Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems, pages 145–156, Seattle, Washington, United States, February 2008.

[61] E. Vallejo, M. Galluzzi, A. Cristal, F. Vallejo, R. Beivide, P. Stenstrom, J. E. Smith,

and M. Valero. Implementing Kilo-Instruction Multiprocessors. In Proceedings
of the International Conference on Pervasive Systems, pages 325–336, Santorini,

Greece, July 2005.

[62] VMWare, Inc. Protecting Mission-Critical Work-

loads with VMware Fault Tolerance, February 2009.

http://www.vmware.com/files/pdf/resources/ft virtualization wp.pdf.

[63] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Mechanisms for Store-

Wait-Free Multiprocessors. In Proceedings of the 34th International Symposium on
Computer Architecture, San Diego, California, United States, June 2007.

[64] M. Xu, R. Bodik, and M. D. Hill. A ”Flight Data Recorder” for Enabling Full-

System Multiprocessor Deterministic Replay. In Proceedings of the 30th Interna-
tional Symposium on Computer Architecture, pages 122–135, San Diego, California,

United States, June 2003.

[65] M. Xu, R. Bodik, and M. D. Hill. A Regulated Transitive Reduction (RTR) for

Longer Memory Race Recording. In ”International Conference on Architectural
Support for Programming Language and Operating Systems”, pages 49–60, San

Jose, California, United States, October 2006.

115

[66] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B. Weissman. ReTrace:

Collecting Execution Trace with Virtual Machine Deterministic Replay. In Third
Annual Workshop on Modeling, Benchmarking and Simulation, San Diego, Califor-

nia, United States, June 2007.

[67] M. V. Zelkowitz. Reversible Execution. Communications of the ACM, 16(9):566,

September 1973.

[68] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression.

IEEE Transactions on Information Theory, 23(3):337– 343, May 1977.

116

AUTHOR’S BIOGRAPHY

Pablo Montesinos Ortego was born in León, Spain. He was attracted to computers since

he was seven years old, when his father bought the family’s first computer and taught him

how to program in Logo and Pascal. Pablo received his BS degree in Computer Engineer-

ing from the Universidad de León, where he did operating system work. He worked as a

R&D programmer for Ydilo Advanced Voice Solutions in Madrid, Spain. He then moved

back to León, where he worked as a Lecturer in the Universidad de León. He decided to

continue his studies in Urbana-Champaign where he received his M.S. and Ph.D. degrees

in Computer Science from the University of Illinois. His graduate research has been fo-

cused on computer architecture. He developed solutions for enhancing the programmabil-

ity of multiprocessor systems and designed multiprocessor systems that can travel back

in time. Pablo has co-authored over 15 research papers and has received awards or his

research in computer architecture. He has also held a La Caixa Foundation Fellowship

during part of his graduate studies. After receiving his PhD he became a Staff Engineer at

the Multicore Research Group at Samsung Information Systems America.

117

