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ABSTRACT

As operating frequencies and signal speeds continue to increase in modern

devices, the e�ects of packages and interconnects on the overall signal integrity

become increasingly important. The complex electromagnetic behaviors of these

often complicated structures must be characterized in order to take their e�ects

into account. Broadband macromodeling deals with the generation of network

models of these devices in order to accurately predict their behaviors in circuit

simulators. This often involves the generation of passive rational function

representations of the system from the measured port responses.

In this thesis, we will employ the vector �tting algorithm to generate a rational

function representation of the system along with its state space model. Various

issues on the subject will be discussed, including the recently developed fast �tting

method for multiport devices. Passivity of the model, which is one of the most

prominent issues on the subject, will be addressed. A robust algorithm, via residue

perturbation, to enforce passivity in nonpassive models will be presented. Finally,

numerical results will be presented to demonstrate the performance of the overall

process.
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CHAPTER 1

INTRODUCTION

1.1 Overview

With the advancement of recent technology, there is an ongoing e�ort to achieve

faster and smaller electronic systems. Developers continue to push the envelope in

terms of operating frequencies and design densities. However, with the increase in

signal speed, signal integrity issues such as crosstalk, dispersion, attenuation,

re�ection, delay and distortion become more signi�cant and must be duly

accounted for in a proper design. This involves taking into account the complex

electromagnetic behaviors of all parts of the systems and incorporating them into

the design process.

One of the most prominent researches on the subject is about the modeling of

packages and interconnects such that their frequency dependent e�ects can be

accurately simulated and integrated in the design considerations. This is important

because, with the increase in density of recent designs, interconnects can take up a

large portion of the �nal product and packages can signi�cantly in�uence the input

and output behavior of the components. Unfortunately, creating an accurate model

for these components can be rather challenging. Most packages and interconnect

structures have complicated three-dimensional con�gurations, which often have no

closed form solutions. Also, with the increase in operating speed, lumped circuit

elements can no longer provide a good approximation of the complex behavior of
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these components. Thus, more often than not, the only way to obtain an accurate

characterization of the system is through physical measurements or full-wave

electromagnetic simulations, which often results in a frequency domain

characterization in the form of a tabulated dataset. The challenge is then in

generating a precise circuit model or means to perform simulations on the network

from the obtained tabulated data.

While it is possible to utilize the obtained data directly in circuit simulations by

combining the frequency and time domain characterizations � often through the use

of the inverse fast Fourier transform � such a process can be prohibitively slow as it

requires a full numerical convolution between the impulse response of the system

and the input at each time step. As a result, most developers turn to the use of a

macromodeling technique whereby the network can be simulated faster and more

e�ciently.

Macromodeling involves partitioning the network into smaller subnetworks and

generating a rational function representation for each subnetwork in a pole-zero (or

pole-residue) model. Once these individual models are found, they can be

recombined to form the overall network representation, and due to the pole-zero

form of the model, the time domain simulations can be done in a recursive fashion.

This results in a much faster simulation than the conventional convolution process.

However, there are a few important aspects of the model that must be ensured

in order to avoid complications in the time domain simulations. The two most

prominent properties are that of stability and passivity, and each of these will be

addressed in the subsequent chapters.
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1.2 Organization

The materials in this thesis are organized as follows. First the vector �tting

method, which is used to generate a rational function representation of a system,

will be presented in Chapter 2. This includes the modi�cations needed to handle

complex poles and to �t multiple functions using the same set of poles. In addition,

the recently developed fast �tting method will be explored. Stability considerations

and starting poles selection methods will also be detailed.

Next, a passivity enforcement scheme will be formulated in Chapter 3. The

mathematical condition for passivity and a robust passivity assessment scheme will

be discussed. For nonpassive models, a passivity enforcement process involving the

perturbation of residues will be presented.

In Chapter 4, the time domain simulation method utilizing the recursive

convolution algorithm will be described.

Numerical results will be shown in Chapter 5. Starting from measured

S-parameters of packages and interconnects in a tabulated data form, a rational

function representation will be obtained by utilizing the vector �tting method. The

passivity of the generated models will be assessed and enforced in the case of

nonpassive models. Finally, the time domain responses will be obtained through

the use of recursive convolutions with the generated passive models.

Chapter 6 will contain the conclusion along with a discussion of possible future

work on the subject.
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CHAPTER 2

THE VECTOR FITTING

METHODOLOGY

2.1 Overview

In this section the purpose of using vector �tting will be introduced. First

consider a frequency dependent function f(s) where s = jω and ω is the angular

frequency, which de�nes the frequency dependent e�ects of a system. In order to

generate an accurate model of the system, it is often necessary � especially in

modern high speed devices � to take this frequency dependent e�ect into account.

For this purpose, the function f(s) in its tabulated form can be used, but this

requires a full numerical convolution which is computationally both slow and

ine�cient. A faster and more desirable method is possible if a rational function

which approximates the original function f(s) is used instead, in which case the

convolution can then be done recursively. Thus, �nding an accurate rational

function representation of any arbitrary function becomes a paramount step in the

system identi�cation process, a step in which vector �tting [1] has emerged as the

method of choice.
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2.2 Rational Function Approximation

Now consider the same function f(s), but written as a rational function of order

N in the form

f(s) =
N∑
n=1

cn
s− an

+ d+ sh (2.1)

where the unknowns cn, an, d and h are the residues, poles, constant and linear

terms, respectively. If we assume that the order N (often referred to as the order of

approximation) is �xed beforehand, the process of �nding a rational function that

approximates f(s) in the form of Equation (2.1) then amounts to solving for all the

unknown coe�cients cn, an, d and h. It is obvious, however, that Equation (2.1) is

nonlinear in terms of the unknowns as an appears in the denominator. Vector

�tting solves this nonlinear problem by decomposing it into a set of two linear

problems, as we will see next.

In the �rst stage, the poles an of the system are identi�ed from the frequency

sampled data using a set of initial guessed starting poles. This is presented in

Section 2.3. In the second stage, the residues cn are then determined based on the

frequency sampled data and the poles an determined in stage one. This is

presented in Section 2.4. Note that in both stages, vector �tting linearizes the

problem by �xing the denominator of a similar nonlinear problem.

In the following discussions, we will �rst introduce the vector �tting method for

cases with purely real poles. The modi�cations needed to handle complex poles will

be presented in Section 2.5.

2.3 Stage One: Pole Identi�cation

In this stage, the poles an of the system are solved for. The key in solving for

the poles lies in the introduction of an unknown function σ(s) which is de�ned in
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its rational form as

σ(s) =
N∑
n=1

c̃n
s− ãn

+ 1 (2.2)

Notice that the ambiguity in the solution for σ(s) is removed by forcing it to

approach unity at very high frequencies.

Next we assume that both σ(s) and the product of σ(s) and f(s) (i.e., σ(s)f(s))

can be approximated by rational functions using the same set of poles (in this case

ãn). Thus we have the augmented problem:

 σ(s)f(s)

σ(s)

 ≈


N∑
n=1

cn
s−ãn

+ d+ sh

N∑
n=1

c̃n
s−ãn

+ 1

 (2.3)

Now multiplying the second row in Equation (2.3) by f(s) (the tabulated data) and

equating it to the �rst row gives

(
N∑
n=1

cn
s− ãn

+ d+ sh

)
≈

(
N∑
n=1

c̃n
s− ãn

+ 1

)
f(s) (2.4)

Expanding the right side of Equation (2.4) and rearranging the terms gives

(
N∑
n=1

cn
s− ãn

+ d+ sh

)
≈

(
N∑
n=1

c̃n
s− ãn

)
f(s) + f(s) (2.5)

(
N∑
n=1

cn
s− ãn

+ d+ sh

)
−

(
N∑
n=1

c̃n
s− ãn

)
f(s) ≈ f(s) (2.6)

Examining Equation (2.6) reveals that if the poles are �xed beforehand, then

Equation (2.6) is linear in terms of the unknowns cn, d, h and c̃n. Since f(s) is

often obtained from a set of tabulated data, and the number of data points

collected normally well exceeds the order of approximation N , writing Equation

(2.6) for each frequency sample point results in an overdetermined set of equations
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in the form of

Ax = b (2.7)

To see this, we rewrite Equation (2.6) for each frequency sample point in matrix

form. This gives


1

s1−ã1
· · · 1

s1−ãN
1 s1

−f(s1)
s1−ã1

· · · −f(s1)
s1−ãN

...
. . .

...
...

...
...

. . .
...

1
sk−ã1

· · · 1
sk−ãN

1 sk
−f(sk)
sk−ã1

· · · −f(s1)
sk−ãN





c1
...

cN

d

h

c̃1
...

c̃N



=



f(s1)

...

...

f(sk)


(2.8)

where k is the number of frequency sample points. This overdetermined set of

equations can then be solved using any of the standard least squares methods for

the unknown solution vector x that contains the residues.

From Equation (2.8), we see that solving for the solution vector x gives three

sets of solutions:

1. The residues of σ(s)f(s): c1 − cN

2. The constant and linear terms of σ(s)f(s): d and h

3. The residues of σ(s): c̃1 − c̃N

Of the above, only solution set 3 (c̃1 − c̃N) is needed at this point. The other two

are discarded as a more accurate set can be calculated later in the residue

identi�cation stage (Section 2.4). At �rst glance, it might not be clear how solving
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for the residues of σ(s) can lead to the solution of the poles an of the system under

consideration (i.e., f(s)). However, a closer examination of Equation (2.4) reveals

how this is possible, as is presented next.

Consider Equation (2.4) which is repeated here for convenience:

(
N∑
n=1

cn
s− ãn

+ d+ sh

)
≈

(
N∑
n=1

c̃n
s− ãn

+ 1

)
f(s) (2.9)

Solving for f(s) gives

f(s) ≈

N∑
n=1

cn
s−ãn

+ d+ sh

N∑
n=1

c̃n
s−ãn

+ 1

(2.10)

Now each sum of partial fractions can be rewritten as a fraction to obtain

f(s) ≈

N+1∏
n=1

(s−zn)

N∏
n=1

(s−ãn)

N∏
n=1

(s−z̃n)

N∏
n=1

(s−ãn)

=

N+1∏
n=1

(s− zn)

N∏
n=1

(s− z̃n)

(2.11)

Equation (2.11) reveals that the poles of f(s) become equal to z̃n, which are the

zeros of σ(s)! The initial poles ãn, which we have assumed to be known and �xed

beforehand, are cancelled out in the process as both σ(s) and σ(s)f(s) have been

formulated to have the same set of poles. Thus, if we can solve for the zeros of

σ(s), the poles of f(s) may be inferred directly from it. We recall at this point that

the residues of σ(s), (c̃1 − c̃N), have been solved for in the previous step from

Equation (2.8) and hence all that remains is to convert from the residues to the

zeros. This can be done quite simply as is presented next.
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A linear system can in general be described as a state equation realization in

the form of

ẋ = Ax+Bu

y = Cx+Du
(2.12)

where x is the state vector with ẋ = dx/dt, u is the input vector and y is the

output vector.

For the function σ(s), A is a diagonal matrix holding the poles ãn, B is a

column vector of ones, C is a row vector holding its residues c̃n, and D is unity. In

order to solve for the zeros of σ(s), we return to Equation (2.2) and rewrite it in

the form of a fraction:

σ(s) =
N∑
n=1

c̃n
s− ãn

+ 1 =

N∏
n=1

(s− z̃n)

N∏
n=1

(s− ãn)

=
y(s)

u(s)
(2.13)

Notice that the zeros of σ(s) are equal to the poles of 1/σ(s). With Equation (2.12)

as the representation for σ(s), we can obtain the expression for 1/σ(s) by

interchanging the input and the output. Solving for u in the second equation in

(2.12) and plugging it into the �rst, we obtain

u = D−1(y − Cx) (2.14)

ẋ = Ax+BD−1(y − Cx) = Ax+BD−1y −BD−1Cx = (A−BD−1C)x+BD−1y

(2.15)

Equation (2.15) reveals that the poles of 1/σ(s) can be calculated as

eig(A−BD−1C) (2.16)

9



Since D is unity, Equation (2.16) simpli�es to

eig(A−BC) (2.17)

In summary, the poles of f(s), which we have shown to be equal to the zeros of

σ(s), can be calculated as the eigenvalues of the matrix (A−BC), where

A =


ã1 0

. . .

0 ãN

 , B =


1

...

1

 , C =

[
c̃1 · · · c̃N

]
(2.18)

This concludes the pole identi�cation stage of vector �tting. Recall that in the

process of solving for the poles, two pieces of information had to be known and

�xed in advance. They are:

1. The order of approximation, N

2. The set of initial starting poles, ã1 − ãN

Consequently, the �rst step before running the vector �tting algorithm on any set

of data is to specify these two pieces of information, which will act as inputs to the

vector �tting process. Further information on how to choose these parameters can

be found in Section 2.9.

2.4 Stage Two: Residue Identi�cation

In this stage, the residues cn of the system are solved for. While it is possible to

extract the residues in the previous stage, a more accurate result is generally

obtained if the newly solved poles are used in place of the starting poles that were

used in stage one. We return to Equation (2.1) which is repeated here for
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convenience:

f(s) =
N∑
n=1

cn
s− an

+ d+ sh (2.19)

Since the poles an have been fully determined in the previous stage, Equation

(2.19) is now linear in terms of the unknowns cn, d and h. We proceed as before by

writing Equation (2.19) for each frequency sample point to obtain:


1

s1−a1
· · · 1

s1−aN
1 s1

...
. . .

...
...

...

1
sk−a1

· · · 1
sk−aN

1 sk





c1
...

cN

d

h


=



f(s1)

...

...

f(sk)


(2.20)

Equation (2.20) again results in an overdetermined problem which can be solved as

before for the residues cn, the constant d and the linear term h.

This concludes the residue identi�cation stage of vector �tting. Along with the

previous stage, we see that we have now solved for all the unknown coe�cients in

Equation (2.1) and thus found a rational function which approximates our system,

f(s). We see, however, that the solution is not guaranteed to be exact but instead

depends on minimizing the error of a set of two least squares problem. Thus, at

this point, one would normally compare the approximation to the original data and

determine if they are within an acceptable range. If necessary, a more accurate

solution can be obtained if the vector �tting algorithm is repeated on the data by

using the newly calculated poles as starting poles. Therefore, vector �tting is often

seen as an iterative scheme whereby the poles are relocated until they converge

with the actual poles of the system. Normally this is achieved rather quickly and it

takes an average 2 � 4 iterations to obtain an accurate result.

11



2.5 Modi�cations for Complex Poles

An important modi�cation to the vector �tting algorithm which is often made

when solving for real systems with complex poles will now be presented. For real

systems, the poles must either be real or occur in complex-conjugate pairs. In

addition, the residues corresponding to the real poles must be real and, similarly,

the residues corresponding to the complex-conjugate pair poles must also be in

complex-conjugate pairs. In order to make the necessary adjustment to Equation

(2.8) in order to ensure this condition, we return to Equation (2.6) and rewrite it

for systems with both real and complex poles.

Assume a system with Q real poles and L complex-conjugate pole pairs where

an asterisk �*� is used as a notation to indicate complex-conjugacy. Thus for a

complex pair, we would have

an = arn + jain, a∗n = arn − jain (2.21)

cn = crn + jcin, c∗n = crn − jcin (2.22)

with the superscript r representing the real part and the superscript i representing

the imaginary part. Equation (2.6) now becomes

[
Q∑
q=1

cq
s−ãq

+
L∑
l=1

(
cl

s−ãl
+

c∗l
s−ã∗l

)
+ d+ sh

]

−
[
Q∑
q=1

c̃q
s−ãq

+
L∑
l=1

(
c̃l

s−ãl
+

c̃∗l
s−ã∗l

)]
· f(s) ≈ f(s)

(2.23)

Since each complex pair consists of two poles, we have that the order of

approximation N = Q+ 2L.
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The elements of the matrix A in Equation (2.7) then become

Ak,q =
1

sk − ãq
(2.24)

for each of the real poles and

Ak,l =
1

sk − ãl
+

1

sk − ã∗l
, Ak,l+1 =

j

sk − ãl
− j

sk − ã∗l
(2.25)

for each of the complex pole pairs.

Equation (2.8) can now be rewritten to handle complex-conjugate pole pairs.

Writing Equation (2.23) for each frequency sample point with the help of Equations

(2.24) and (2.25), gives


1 s1

[R] [C]
...

... [G] [H]

1 sk

 [x] =


f(s1)

...

f(sk)

 (2.26)

where the matrices [R], [C], [G] and [H] are as follows.

R =


1

s1−ã1
· · · 1

s1−ãQ

...
. . .

...

1
sk−ã1

· · · 1
sk−ãQ

 (2.27)

C =


1

s1−ã1
+ 1

s1−ã∗1
j

s1−ã1
− j

s1−ã∗1
· · · 1

s1−ãL
+ 1

s1−ã∗L
j

s1−ãL
− j

s1−ã∗L
...

...
. . .

...
...

1
sk−ã1

+ 1
sk−ã∗1

j
sk−ã1

− j
sk−ã∗1

· · · 1
sk−ãL

+ 1
sk−ã∗L

j
sk−ãL

− j
sk−ã∗L

 (2.28)
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G =


−f(s1)
s1−ã1

· · · −f(s1)
s1−ãQ

...
. . .

...

−f(sk)
sk−ã1

· · · −f(sk)
sk−ãQ

 (2.29)

H =


−f(s1)
s1−ã1

+ −f(s1)
s1−ã∗1

−jf(s1)
s1−ã1

− −jf(s1)
s1−ã∗1

· · · −f(s1)
s1−ãL

+ −f(s1)
s1−ã∗L

−jf(s1)
s1−ãL

− −jf(s1)
s1−ã∗L

...
...

. . .
...

...

−f(sk)
sk−ã1

+ −f(sk)
sk−ã∗1

−jf(sk)
sk−ã1

− −jf(sk)
sk−ã∗1

· · · −f(sk)
sk−ãL

+ −f(sk)
sk−ã∗L

−jf(sk)
sk−ãL

− −jf(sk)
sk−ã∗L


(2.30)

Notice that when there are no complex poles, (i.e., L = 0) the matrices C and H

become the empty matrix and Equation (2.26) reduces to Equation (2.8) with

N = Q.

We are now ready to solve for the unknown residues for the case with complex

poles. Because it is often desirable to solve the overdetermined set of equations in

terms of real numbers, and since two complex numbers are only equal if both their

real and imaginary quantities match, Equation (2.7) is rewritten in terms of real

quantities by separating the real and imaginary parts as follows:

 Re(A)

Im(A)

 [x] =

 Re(b)

Im(b)

 (2.31)

This has the e�ect that the number of equations in the overdetermined set is

changed from k complex equations to 2k real equations, where k is the number of

frequency sample points.

Equation (2.31) can then be solved for the solution vector x using any of the

standard least squares methods to yield

x =

[
c1 · · · cQ cr1 ci1 · · · crL ciL d h c̃1 · · · c̃Q c̃r1 c̃i1 · · · c̃rL c̃iL

]T
(2.32)

14



where all the elements are purely real. The complex residues are then formed from

Equation (2.22), where we would have

cl = crl + jcil, cl+1 = c∗l = crl − jcil (2.33)

c̃l = c̃rl + jc̃il, c̃l+1 = c̃∗l = c̃rl − jc̃il (2.34)

As in the case with purely real poles, we collect the residues of σ(s), (c̃1 − c̃N)

and discard the other values as a more accurate result can be obtained in the

residue identi�cation stage. The poles of the system f(s) can then be solved as

before by solving Equation (2.17). However, note that each of the matrix entries A

and C in Equation (2.18) can now be complex, resulting in the entire matrix

(A−BC) being complex. To account for this, we modify the matrices A, B, and C

for each complex entry via a similarity transformation to yield the submatrices

Â =

 Re(ã) Im(ã)

−Im(ã) Re(ã)

 , B̂ =

 2

0

 , Ĉ =

[
Re(c̃) Im(c̃)

]
(2.35)

As a result, the matrices are now real matrices and any complex eigenvalue will

come along with its complex-conjugate pair, thus preserving the properties of a real

system.

Once the poles of the system are solved for, the residues can then be calculated

as before. We again return to Equation (2.19) and rewrite it for cases with complex

poles to yield

f(s) =

Q∑
q=1

cq
s− aq

+
L∑
l=1

(
cl

s− al
+

c∗l
s− a∗l

)
+ d+ sh (2.36)
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The matrix in Equation (2.20) now becomes


1 s1

[R] [C]
...

...

1 sk

 [x] =


f(s1)

...

f(sk)

 (2.37)

where the matrices [R] and [C] are the same as in Equations (2.27) and (2.28),

respectively. Solving Equation (2.37) yields the unknown vector [x] in the form of

x =

[
c1 · · · cQ cr1 ci1 · · · crL ciL d h

]T
(2.38)

and the complex residues can be formed as

cl = crl + jcil, cl+1 = c∗l = crl − jcil (2.39)

This concludes the process as all the poles, residues, constant and proportional

terms have been identi�ed for cases with complex poles.

2.6 Modi�cation for Fitting Vector Functions

So far we have considered the case for �tting a scalar or a single function.

However, it is sometimes desirable to �t a vector or multiple functions using the

same set of poles since this would result in an increase in e�ciency in the time

domain convolutions. The modi�cation for �tting vectors is rather straightforward

and is presented below.
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Consider a vector of Nc functions:

f =



f1

f2

...

fNc


(2.40)

For this function, Equation (2.6) now becomes



N∑
n=1

c1n
s−ãn

+ d1 + sh1

N∑
n=1

c2n
s−ãn

+ d2 + sh2

...
N∑
n=1

cNc
n

s−ãn
+ dNc + shNc


−



f1

N∑
n=1

c̃n
s−ãn

f2

N∑
n=1

c̃n
s−ãn

...

fNc
N∑
n=1

c̃n
s−ãn


=



f1

f2

...

fNc


(2.41)

The residues can then be solved from Equation (2.7) where the matrix given in

Equation (2.8) now becomes



[Xσf ] 0 0 0 −f1 [Xσ]

0 [Xσf ] 0 0 −f2 [Xσ]

0 0
. . . 0

...

0 0 0 [Xσf ] −fNc [Xσ]





[Y1]

[Y2]

...

[YNc][
Ỹ
]


=



f1

f2

...

fNc


(2.42)

where

Xσf =


1

s1−ã1
· · · 1

s1−ãN
1 s1

...
. . .

...
...

...

1
sk−ã1

· · · 1
sk−ãN

1 sk

 (2.43)
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Xσ =


1

s1−ã1
· · · 1

s1−ãN

...
. . .

...

1
sk−ã1

· · · 1
sk−ãN

 (2.44)

Ync =

[
cnc1 · · · cncN dnc hnc

]T
, nc ∈ 1, 2 . . . Nc (2.45)

Ỹ =

[
c̃1 · · · c̃N

]T
(2.46)

After solving this, we again collect the residues of σ(s), (c̃1 − c̃N) and solve for

the poles using Equation (2.17) where the matrix elements are given in Equation

(2.18). This has the e�ect that a single set of poles that minimizes the least squares

error in all elements of Equation (2.40) is obtained. The residues of the individual

functions can then be solved for by carrying out the residue identi�cation stage

independently for each element in Equation (2.40). It should also be noted that if

complex poles are used, the modi�cations presented in Section 2.5 should also be

carried out for each element of the vector.

2.7 Modi�cation for Fast Fitting Vector Functions

A method to improve the speed of the vector �tting process when �tting

multiple functions using the same set of poles will now be presented. As presented

before, the �rst step of the vector �tting method is to solve for the residues of σ(s)

from an overdetermined set of equations. When �tting multiple functions using the

same set of poles, the size of this overdetermined set of equations may get

prohibitively large. However, note that only part of the solution vector was used

while the other part was simply discarded, which can be thought of as a waste in

computational resources. When �tting multiple functions using the same set of

poles, this waste get signi�cantly larger. For example, in Equation (2.42), only the
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solution vector Ỹ is needed while the others (Y1 − YNc) were discarded. A method

to minimize this waste have been recently proposed which results in a signi�cant

speedup of the overall process [2].

When �tting multiple functions simultaneously, instead of solving the large

Equation (2.42) for the residues, a QR decomposition is �rst applied to the least

squares equations of the single element

[
[Xσf ] −f [Xσ]

]
= [Q]

 R11 R12

R21 R22

 (2.47)

Once all the Q and R submatrices have been extracted, an overall overdetermined

set of equations is formed to solve for the residues of σ(s) as



R22
1

R22
2

...

R22
Nc


[
Ỹ
]

=



QT
1 f1

QT
2 f2

...

QT
NcfNc


(2.48)

This has the e�ect that the new overdetermined set of equations is now

signi�cantly smaller than before and the solution vector is only the residues of σ(s).

Although it requires solving the QR decomposition of each individual element to be

�tted, that process is often less time consuming since the matrices are much

smaller. When the number of elements to be �tted increases, for example in

multiport devices with a large number of ports, the savings could be enormous.
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2.8 Stability Consideration

For a causal system to be stable, the poles of the system must lie in the left

half-plane of the s-domain [3]. In the vector �tting process, however, it is possible

to obtain unstable poles when solving Equation (2.17). This can easily be corrected

by one of two di�erent methods:

1. Discard any unstable poles that were obtained from Equation (2.17).

2. Flip unstable poles into the left half-plane by re�ecting it on the imaginary

axis of the s-domain.

While these two methods are equally e�ective at eliminating unstable poles,

performing the former will result in a reduction in the original order of

approximation, which might not be desirable. For that reason, in this thesis we will

adopt the latter method.

2.9 Starting Pole Selection Method

In this section, a method to select the initial starting poles will be introduced.

In Section 2.3, we see that the vector �tting method requires that an initial set of

starting poles be speci�ed to be used as a preliminary guess of the actual poles.

Although these starting poles cancel out in the subsequent formulation, a poor

choice of these values can result in a large variation between the original function

and the �tted function as the vector �tting method relies on solving Equation (2.7)

in a least squares sense.

A generally good �t is obtained if the starting poles are selected to be in

complex conjugate pairs situated along a line close to the imaginary axis [1]:

ãn = −α + jβ, ãn+1 = −α− jβ (2.49)
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where α and β are real numbers.

Also, choosing poles too far left in the complex plane results in the real part

dominating the matrix entries [4]

1

sk − ãn
=

1

j (ωk − Im(ãn))−Re(ãn)
≈ −1

Re(ãn)
(2.50)

which results in a poor conditioning of the system of linear equations. Thus we

choose

α = β/100 (2.51)

such that the real parts of the starting poles are much smaller than the imaginary

parts. This often results in an extremely accurate �t within a few iterations.

2.10 Conclusion

An overall �owchart showing the whole vector �tting process is shown in Figure

2.1.
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Figure 2.1: Flowchart of the vector �tting process.
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CHAPTER 3

PASSIVITY ASSESSMENT AND

ENFORCEMENT

3.1 Overview

In this section, the methodology used for passivity assessment and enforcement

will be introduced. In Chapter 2 we have presented the vector �tting method which

is used to generate a macromodel of the system. While we have enforced stability

in the macromodel (by ensuring that all the poles of the system are located in the

left half-plane of the s-domain), we have not considered another important

characteristic of rational models, namely passivity. Passivity is de�ned as the

inability of the system to generate energy in any termination condition [5]. If the

system being modeled is passive, then the macromodel generated must be passive

as well, since stable but nonpassive models can result in unstable systems when

connected to other passive components [6, 7]. Thus, ensuring passivity of the model

is a crucial step in the macromodel generation process. The discussion in this

chapter will be organized as follows. First the mathematical condition for a passive

system will be presented in Section 3.2. Then the passivity assessment process will

be detailed in Section 3.3. Finally the steps involved in enforcing passivity will be

explained in Section 3.4.
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3.2 Passivity of a System Characterized by

Scattering Parameters

A precise mathematical de�nition of passivity depends on the adopted

representation [3]. For a system characterized by the scattering parameters S(s),

the condition for passivity is [8, 9]

1. S(s∗) = S∗(s) where �∗� denotes the complex conjugate operator.

2. S(s) is bounded real.

I.e., ‖S(jω)‖ ≤ 1 or eig
(
I − S(jω)HS(jω)

)
≥ 0, ω ∈ R

Condition 1 is always satis�ed in our macromodel since, in the vector �tting

process, the complex poles and residues are always considered along with their

conjugates, thus leading to only real coe�cients in S(s). Consequently, enforcing

passivity of the macromodel then amounts to enforcing condition 2.

3.3 Passivity Assessment

In this section, general methods used to check for passivity of a system

characterized by the scattering parameters will be discussed. From the above

conditions, we see that a fast and easy way to check for passivity is by evaluating

the norm of the scattering matrix S(jω) or the eigenvalues of the dissipation

matrix I − S(jω)HS(jω) and determine if condition 2 above is satis�ed. However, a

major drawback of this method of passivity assessment is that the above condition

must be evaluated at discrete frequency points and thus it is practically impossible

to check for passivity at all frequency values. In addition, whenever a passivity

violation is found, the exact location of the violation (which becomes important in

the passivity enforcement step) cannot be accurately determined for the same
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reason as above. Thus, recent literature has resorted to a more robust method of

passivity assessment, which will be presented next.

Consider an m-port system characterized by the S-parameters written in

rational form of order N as

S(s) = [Sij(s)] , Sij(s) ≈
N∑
n=1

cijn
s− an

+ dij, i, j ∈ m (3.1)

This rational function representation can be obtained by utilizing the vector �tting

method presented in Chapter 2. The state-space representation of the

corresponding system is then

ẋ = Ax+Bu

y = Cx+Du
(3.2)

where A ∈ RN×N is the state matrix containing the poles, B ∈ RN×m is the input

mapping matrix, C ∈ Rm×N is the output matrix containing the residues and

D ∈ Rm×m consists of the direct coupling terms. The system is passive if and only

if the Hamiltonian matrix M has no imaginary eigenvalues [8], where the

Hamiltonian is given by

M =

 A+BKDTC BKBT

−CTLC −AT − CTDKBT

 (3.3)

where

K =
(
I −DTD

)−1

L =
(
I −DDT

)−1
(3.4)

Since the Hamiltonian is independent of frequency, only a single evaluation is

necessary to determine whether or not the system is passive. In addition, if any

purely imaginary eigenvalue is found, it has been shown that it corresponds to the
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point where a singular value of the scattering matrix becomes equal to one (and

hence where the eigenvalues of the dissipation matrix I − S(jω)HS(jω) are equal to

zero) [8]. Thus, this information can be used to pinpoint the exact locations of

passivity violations, as will be seen next.

Consider a plot of the eigenvalues of the dissipation matrix I − S(jω)HS(jω) of

a general m-port scattering matrix shown in Figure 3.1 (note that only plots of two

eigenvalues are shown). From Figure 3.1, we see that there are four points (marked

#1 to #4) where the eigenvalues of the dissipation matrix are equal to zero, thus

de�ning potential points where the system crosses from being passive to

nonpassive. As mentioned before, these points can be obtained by solving for the

eigenvalues of the Hamiltonian matrix, speci�cally those that are purely imaginary.

In order to obtain the bands of passivity violations, we return to condition 2 above

and check whether or not the system is passive for a short distance right before and

after the potential crossover frequency. If the system is found to be passive right

before the point of consideration but not passive after, the point is de�ned as a

crossover frequency where the system crosses from being passive to nonpassive (i.e.,

point #1 in Figure 3.1). If the system is not passive right before the point of

consideration but is passive after, the point is de�ned as a crossover frequency

where the system crosses from being nonpassive to passive (i.e., point #4 in Figure

3.1). On the other hand, if the system is both nonpassive right before and after the

point of consideration, then it is concluded that the point is contained within a

larger passivity violation band due to the other eigenvalues (i.e., points #2 and #3

in Figure 3.1). Thus we are able to determine the exact band of passivity violation

by arranging the points in order and determining all the crossover frequencies. In

the example given in Figure 3.1, the band would be from ω1 to ω4.
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Figure 3.1: Determination of the band of passivity violation.

So far we have seen how the bands of passivity violations are determined with

the use of the Hamiltonian matrix. Before we proceed to the passivity enforcement

section, let us �rst see how two other important quantities which are needed for

passivity enforcement are determined. These two quantities are the frequency of

maximum violation and the magnitude of maximum violation in each violation

band. These locations can be found by solving [9]

λ = max
∣∣eig (I − S(jω)HS(jω)

)∣∣ , ω ∈ ωl, ωh (3.5)

where λ is the magnitude of maximum violation and ωl and ωh are the boundaries

of the passivity violation band. This is easily solved by doing a �ne sweep of each

frequency violation band that was found and recording the maximum value and the

corresponding frequency point as given in Equation (3.5). With this information,

we are now able to proceed to enforce passivity for nonpassive systems.
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3.4 Passivity Enforcement

Consider again the state-space representation of a system given in Equation

(3.2). The scattering matrix of this system can be obtained from

S(jω) = C (jωI − A)−1B +D (3.6)

For this system to be passive, it must obey condition 2 presented in Section 3.2

eig (Q(jω)) ≥ 0 (3.7)

at all frequency points, where Q(jω) denotes the dissipation matrix

Q(jω) = I − S(jω)HS(jω) (3.8)

If the system is nonpassive, we can attempt to restore passivity by perturbing the

representation of the system given in Equation (3.6) by a small amount such that

the new system satis�es Equation (3.7) at the frequency points of violation. This

can be done by perturbing any or all of the matrices associated with the right-hand

side of Equation (3.6). In the algorithm presented, we will perturb only the

residues (contained in matrix C) associated with the system.

For a small perturbation ∆C, matrix C becomes

Ĉ = C + ∆C (3.9)

This results in a change of the scattering matrix given in Equation (3.6), where we

now have

Ŝ(jω) = (C + ∆C) (jωI − A)−1B +D (3.10)
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which can be written as

Ŝ(jω) = S(jω) + ∆S(jω) (3.11)

where

∆S(jω) = ∆C (jωI − A)−1B = ∆CV (3.12)

with

V = (jωI − A)−1B (3.13)

In order to ensure passivity, the new scattering matrix Ŝ(jω) given in Equation

(3.11) must obey condition 2 given in Section 3.2:

eig
(
Q̂(jω)

)
≥ 0 (3.14)

where Q̂(jω) is the new dissipation matrix

Q̂(jω) = I − Ŝ(jω)H Ŝ(jω) (3.15)

Substituting Equation (3.11) into Equation (3.15) gives (dropping jω for simplicity)

Q̂ = I − ŜH Ŝ = I − SHS − SH∆S −∆SHS −∆SH∆S (3.16)

Neglecting the second-order term in Equation (3.16), we get

Q̂ ≈ I − SHS − SH∆S −∆SHS (3.17)

Comparing Equation (3.17) to Equation (3.8) reveals that the perturbation results

in a change of

∆Q = −SH∆S −∆SHS (3.18)
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from the unperturbed system. Thus, if the unperturbed nonpassive system violates

Equation (3.7) at a particular frequency by an amount λ, we can restore passivity

at that point by perturbing the system such that the change in the dissipation

matrix given by Equation (3.18) results in a change of its eigenvalue by an amount

equal and opposite to λ. To do this, we invoke the �rst-order eigenvalue

perturbation formula [10] which states that a matrix K perturbed by an amount

∆K will result in a change of ∆λ in its eigenvalue given by

∆λ =
yT∆Kx

yTx
(3.19)

where y and x are the left and right eigenvectors of K, respectively. Therefore, a

matrix Q given in Equation (3.8) perturbed by an amount ∆Q given by Equation

(3.18) would result in a change in its eigenvalue by an amount

∆λ =
vT
(
−SH∆S −∆SHS

)
u

vTu
(3.20)

where v and u are the left and right eigenvectors of Q, respectively. Since for a

matrix A, the eigenvalues and eigenvectors can be solved such that A = V DV −1

where V is a modal matrix (its columns are the eigenvectors of A) and D is the

canonical form of A (a diagonal matrix with the eigenvalues of A on the main

diagonal), the eigenvectors can be scaled such that vTu would result in unity for a

given eigenvalue. Thus, dropping the term vTu and substituting Equation (3.12) in

Equation (3.20) gives

∆λ = vT
(
−SH∆CV − (∆CV )H S

)
u (3.21)
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which can be written as

∆λ = vT
(
−SH∆CV − V H∆CHS

)
u (3.22)

Since ∆C is a real matrix, ∆CH = ∆CT

∆λ = vT
(
−SH∆CV − V H∆CTS

)
u = −vTSH∆CV u− vTV H∆CTSu (3.23)

Next we invoke an identity of the Kronecker product ⊗ which states that for a

given matrix Y , A, X, and B [11]

Y = AXB ⇔ vec (Y ) =
(
BT ⊗ A

)
vec (X) (3.24)

Y = AXB ⇔ wec (Y ) =
(
A⊗BT

)
wec (X) (3.25)

where vec (.) denotes the vectorization of the matrix (.) formed by column-ordering

the matrix (.) into a single column vector and wec (.) denotes the vectorization of

the matrix (.) formed by row-ordering the matrix (.) into a single column vector.

Applying Equations (3.24) and (3.25) along with the fact that ∆λ is a scalar on

Equation (3.23), results in

∆λ = −
(

(V u)T ⊗ vTSH
)
vec (∆C)−

(
vTV H ⊗ (Su)T

)
wec

(
∆CT

)
(3.26)

Since

wec
(
∆CT

)
= vec (∆C) (3.27)
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we have

∆λ = −
(

(V u)T ⊗ vTSH
)
vec (∆C)−

(
vTV H ⊗ (Su)T

)
vec (∆C)

= −
[(

(V u)T ⊗ vTSH
)

+
(
vTV H ⊗ (Su)T

)]
vec (∆C)

(3.28)

which has the form

∆λ = g · vec (∆C) (3.29)

with

g = −
[(

(V u)T ⊗ vTSH
)

+
(
vTV H ⊗ (Su)T

)]
(3.30)

which can be shown to be a row vector. Thus, for a passivity violation at a

particular frequency, Equation (3.29) provides the means for restoring passivity at

that point.

When a passivity violation band is detected, Equation (3.29) is applied to the

point of maximum violation which was obtained by solving Equation (3.5). For

cases where there are more than one violation band, passivity compensation can be

done simultaneously for all violation bands by setting up Equation (3.29) for each

band, resulting in a set of least-squares equations in the form of

∆λ = G · vec (∆C) (3.31)

where ∆λ is a vector formed by the magnitudes of maximum violations in each

band and G is a matrix consisting of several rows of g's.

In order to retain the accuracy of the model, we minimize the change in the

scattering matrix as passivity enforcement is carried out. To do this, we return to

Equation (3.11) which de�nes the change in the scattering matrix after passivity

compensation and relate that to the perturbation of the residues ∆C. It can be
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shown [12,13] that

‖∆S‖2 = trace
(
∆CP∆CT

)
= vec (∆C)T Hvec (4C) (3.32)

where P is the controllability Grammian obtained by solving the Lyapunov

equation [14]

AP + PAH +BBH = 0 (3.33)

and H is a matrix formed by stacking P on the diagonal

H =



P 0 · · · 0

0 P · · · 0

...
...

. . .
...

0 0 · · · P


(m×N)by(m×N)

(3.34)

Equations (3.31) and (3.32) together result in an optimization problem which can

be solved iteratively to satisfy passivity while minimizing the change in the

response. Since the objective function given in Equation (3.32) is quadratic in

nature, the problem is solved by utilizing a quadratic programming routine where

the overall problem is

min
(
vec (∆C)T Hvec (4C)

)
subject to ∆λ = G · vec (∆C) (3.35)

3.5 Conclusion

The overall process of passivity enforcement is summarized in the �owchart

given in Figure 3.2.
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Figure 3.2: Flowchart of the passivity enforcement process.
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CHAPTER 4

TIME DOMAIN SIMULATION

4.1 Overview

In this chapter, the recursive convolution algorithm which is used to obtain the

time domain response of the system will be introduced. For a system characterized

by rational functions, the transfer function H(s) can be approximated to take the

form

H(s) =
N∑
n=1

cn
s+ an

+ d (4.1)

where the coe�cients cn, an and d can be obtained by using the vector �tting

method presented in Chapter 2. Note that for the discussions in this chapter, the

negative sign in the denominator of Equation (2.1) has been absorbed into an in

Equation (4.1). For this transfer function, its input-output relationship is given by

Y (s) = H(s) ·X(s) (4.2)

where X(s) is the input function and Y (s) is the output function. For each term in

the summation of Equation (4.1), we have

Yn(s) = Hn(s) ·X(s) =

[
cn

s+ an

]
X(s) (4.3)
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In the time domain this corresponds to

yn(t) = cne
−ant ∗ x(t) (4.4)

where �*� denotes the convolution operator. Equation (4.4) can be evaluated most

e�ectively using the recursive convolution [15�17] method which will be presented

next.

4.2 The General Recursive Convolution Algorithm

The goal is to evaluate the function

y(t) = Ae−αt ∗ x(t) (4.5)

This is equivalent to

y(t) =

t∫
0

Ae−ατx(t− τ)dτ =

h∫
0

Ae−ατx(t− τ)dτ +

t∫
h

Ae−ατx(t− τ)dτ (4.6)

Assuming a step invariant (constant) behavior of the input function, the �rst

integral can be written as

h∫
0

Ae−ατx(t− τ)dτ = Ax(t− h)

h∫
0

e−ατdτ (4.7)

This can be evaluated to yield

h∫
0

Ae−ατx(t− τ)dτ =
Ax(t− h)

α

(
1− e−αh

)
(4.8)
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Setting τ = τ ′ + h in the second integral yields

t∫
h

Ae−ατx(t− τ)dτ =
t−h∫
0

Ae−α(τ ′+h)x(t− τ ′ − h)dτ ′

= e−αh
t−h∫
0

Ae−ατ
′
x(t− τ ′ − h)dτ ′

= e−αhy(t− h)

(4.9)

Thus the overall result is then

y(t) =
Ax(t− h)

α

(
1− e−αh

)
+ e−αhy(t− h) (4.10)

Equation (4.10) is the general recursive convolution formula for a step-invariant

approximation.

4.3 Time Domain Evaluation Using the Recursive

Convolution Algorithm

Returning to Equation (4.4) and applying the result obtained in Equation

(4.10) with a time step T = h gives

yn(t) = e−anTyn(t− T ) +
cn
an
x(t− T )

(
1− e−anT

)
(4.11)

Therefore the complete solution at each time step is given by

y(t) = d · x(t− T ) +
N∑
n=1

yn(t) (4.12)

where yn(t) is given in Equation (4.11). Equation (4.12) can be evaluated

recursively to yield the time domain solution for a particular period tstart − tend.
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Before concluding this chapter, let us examine a special case when the poles and

residues appear in complex conjugate pairs. In that instance, Equation (4.11)

would yield

yn(t) = e−anTyn(t− T ) +
cn
an
x(t− T )

(
1− e−anT

)
(4.13)

yn+1(t) = e−a
∗
nTyn+1(t− T ) +

c∗n
a∗n
x(t− T )

(
1− e−a∗nT

)
(4.14)

where the asterisk �*� indicates complex conjugacy. It can be shown that

yn+1(t) = y∗n(t). Therefore, this leads to

yn(t) = e−anTyn(t− T ) +
cn
an
x(t− T )

(
1− e−anT

)
(4.15)

yn+1(t) = e−a
∗
nTy∗n(t− T ) +

c∗n
a∗n
x(t− T )

(
1− e−a∗nT

)
(4.16)

Examining Equations (4.15) and (4.16) reveals that yn(t) + yn+1(t) results in a real

quantity. Thus the properties of a real system are preserved by ensuring that each

complex pole appears along with its complex conjugate and that the residues

corresponding to those poles also come in complex conjugate pairs as was done in

Chapter 2.
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CHAPTER 5

NUMERICAL RESULTS

5.1 Overview

In this chapter, various numerical results of using the vector �tting method

along with the presented passivity enforcement routine will be demonstrated. In all

examples, the data used will be S-parameter data obtained from measurement on a

network analyzer. The system in consideration will be treated as a black box,

illustrating a black-box macromodeling process, whereby no prior knowledge is

needed to generate a model for the system. The results after the vector �tting

method and passivity enforcement will be shown and the accuracy of the process

will be examined. In all cases, the timing information cited is obtained on a

Pentium 4 2.4 GHz processor.

5.2 Example I

The scattering parameters of a 2-port interconnect structure are obtained in the

frequency range of 50 MHz � 5 GHz. The vector �tting method is used to obtain a

model for the system, �tting all the elements of the 2-port system using the same

set of poles with an order of 36. Four vector �tting iterations were used, which took

a total of 4.485 s. The passivity of the system was analyzed and the Hamiltonian

matrix revealed two passivity violation regions. Passivity enforcement was carried
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out which converged after two iterations, lasting an additional 4.656 s. Plots of all

the S-parameters are shown in Figures 5.1 � 5.4. Table 5.1 shows the

(a) Magnitude (b) Phase

Figure 5.1: Comparison of S11 of the measured data and the model for Example I.

(a) Magnitude (b) Phase

Figure 5.2: Comparison of S12 of the measured data and the model for Example I.

root-mean-square (RMS) error of the model compared to the original signal before

and after passivity enforcement. We see that any additional error resulting from the

passivity compensation process is minimal and the overall accuracy of the model is

retained. A plot of the eigenvalues of the dissipation matrix is shown in Figure 5.5,

verifying the passivity compensation process. A time domain simulation is done by

utilizing the recursive convolution process with the model developed. A single pulse

40



(a) Magnitude (b) Phase

Figure 5.3: Comparison of S21 of the measured data and the model for Example I.

(a) Magnitude (b) Phase

Figure 5.4: Comparison of S22 of the measured data and the model for Example I.

Table 5.1: RMS error of the model compared to the original signal before and after
passivity enforcement for Example I.

S11 S12 S21 S22

From vector �tting 0.008523 0.011352 0.013270 0.008541
After passivity enforcement 0.009831 0.012353 0.014109 0.009795

with rise and fall time of 1 ns and with a pulse width of 12 ns is sent at port 1 and

the responses at both ports were evaluated. The result is shown in Figure 5.6.
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Figure 5.5: Eigenvalues of the dissipation matrix of Example I. Negative values
indicate passivity violation.

Figure 5.6: Time domain response of Example I.

5.3 Example II

This example illustrates the passivity compensation process when many

passivity violation bands are present. The scattering parameters of a 2-port

interconnect structure are obtained in the frequency range of 50 MHz � 7 GHz.

The vector �tting method is used to obtain a model for the system, �tting all the

elements of the 2-port system using the same set of poles with an order of 18. Four

vector �tting iterations were used, which took a total of 1.531 s. The passivity of

the system was analyzed and the Hamiltonian matrix revealed nine passivity
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violation regions. Passivity enforcement was carried out which converged after

seven iterations, lasting an additional 52.047 s. Plots of all the S-parameters are

shown in Figures 5.7 � 5.10. Table 5.2 shows the root-mean-square (RMS) error of

(a) Magnitude (b) Phase

Figure 5.7: Comparison of S11 of the measured data and the model for Example II.

(a) Magnitude (b) Phase

Figure 5.8: Comparison of S12 of the measured data and the model for Example II.

the model compared to the original signal before and after passivity enforcement.

We see again that the accuracy of the model is retained. A plot of the eigenvalues

of the dissipation matrix is shown in Figure 5.11, verifying the passivity

compensation process. A time domain simulation is done by utilizing the recursive

convolution process with the model developed. A single pulse with rise and fall
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(a) Magnitude (b) Phase

Figure 5.9: Comparison of S21 of the measured data and the model for Example II.

(a) Magnitude (b) Phase

Figure 5.10: Comparison of S22 of the measured data and the model for Example II.

Table 5.2: RMS error of the model compared to the original signal before and after
passivity enforcement for Example II.

S11 S12 S21 S22

From vector �tting 0.0000491 0.0001068 0.0001068 0.0000491
After passivity enforcement 0.0001236 0.0001662 0.0001662 0.0001240

time of 1 ns and with a pulse width of 12 ns is sent at port 1 and the responses at

both ports were evaluated. The result is shown in Figure 5.12.

44



Figure 5.11: Eigenvalues of the dissipation matrix of Example II. Negative values
indicate passivity violation.

Figure 5.12: Time domain response of Example II.

5.4 Example III

This example illustrates the performance of the macromodeling technique for a

high order system when the measurement data is also contaminated with noise.

The scattering parameters of a 2-port interconnect structure are obtained in the

frequency range of 2 GHz � 50 GHz. The vector �tting method is used to obtain a

model for the system, �tting all the elements of the 2-port system using the same

set of poles with an order of 90. Four vector �tting iterations were used, which took

a total of 24.875 s. The passivity of the system was analyzed and the Hamiltonian
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matrix revealed �ve passivity violation regions. Passivity enforcement was carried

out which converged after nine iterations, lasting an additional 22 min and 7.329 s.

Plots of all the S-parameters are shown in Figures 5.13 � 5.16. Table 5.3 shows

(a) Magnitude (b) Phase

Figure 5.13: Comparison of S11 of the measured data and the model for Example
III.

(a) Magnitude (b) Phase

Figure 5.14: Comparison of S12 of the measured data and the model for Example
III.

the root-mean-square (RMS) error of the model compared to the original signal

before and after passivity enforcement. We see again that the accuracy of the

model is retained. A plot of the eigenvalues of the dissipation matrix is shown in

Figure 5.17, verifying the passivity compensation process. Notice that the largest
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(a) Magnitude (b) Phase

Figure 5.15: Comparison of S21 of the measured data and the model for Example
III.

(a) Magnitude (b) Phase

Figure 5.16: Comparison of S22 of the measured data and the model for Example
III.

Table 5.3: RMS error of the model compared to the original signal before and after
passivity enforcement for Example III.

S11 S12 S21 S22

From vector �tting 0.01917 0.03068 0.02959 0.02277
After passivity enforcement 0.03079 0.03851 0.03957 0.02929
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Figure 5.17: Eigenvalues of the dissipation matrix of Example III. Negative values
indicate passivity violation.

violation region, which occurs from 5.278 GHz to 7.437 GHz, is due in part to a

poor �tting from the vector �tting process over that frequency range. However,

after the passivity compensation process, this violation (along with all the others)

is removed and the plots of the S-parameters again show a good agreement

between the original signal and the model. A time domain simulation is done by

utilizing the recursive convolution process with the model developed. A single pulse

with rise and fall time of 1 ns and with a pulse width of 12 ns is sent at port 1 and

the responses at both ports were evaluated. The result is shown in Figure 5.18.

Figure 5.18: Time domain response of Example III.
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5.5 Impact of Fast Fitting

In Section 2.7, a method for improving the speed of vector �tting was presented.

In order to examine the impact of the presented modi�cation, the three examples

presented above were �tted without the modi�cation for fast �tting and the

amount of time required in each case was recorded. Table 5.4 shows the comparison

between the conventional vector �tting and the fast vector �tting. We see a

signi�cant improvement in the latter method.

Table 5.4: Timing comparison between the conventional vector �tting and the fast
vector �tting.

Time required (s)
Conventional vector �tting Fast vector �tting

Example I 264.984 4.485
Example II 63.156 1.531
Example III 762.656 24.875
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CHAPTER 6

CONCLUSION AND FUTURE

WORK

6.1 Conclusion

In summary, a macromodeling technique utilizing the vector �tting method has

been presented. The rational form of the model generated permits the time domain

simulation to be done recursively, resulting in a large speedup in computational

time. Various issues surrounding generation of macromodels, such as stability and

passivity, have been addressed. Stability was easily enforced by re�ecting any

unstable poles into the left half-plane of the s-domain, while an iterative scheme of

passivity compensation relying on residue perturbation was employed. The

algorithm was tested on various S-parameter data �les obtained from packages and

interconnects and the robustness of the method was illustrated. The model was

able to closely capture the behavior of the system, and the accuracy was retained

through the passivity compensation process. Examples of time domain simulations

were also shown to demonstrate the use of the macromodel in typical situations.

6.2 Future Work

Some aspects of the macromodeling technique could be improved. The vector

�tting method, for example, could be improved through the use of orthogonal base

functions [18], which reduces the sensitivity of the process to the starting poles, thus

50



resulting in a faster convergence. It has also been shown that performing the vector

�tting process in the z-domain [19] results in a lower order and faster convergence

as the poles are bounded inside the unit circle in the z-domain as opposed to the

entire left half-plane in the s-domain. Given more time, these algorithms could

have been utilized to improve the rational function generation process.

The passivity enforcement routine could also be improved. Currently, passivity

enforcements are often done as a postprocess, whereby nonpassive models are

iteratively perturbed to account for the passivity violations. Even though a

signi�cant amount of work was done to preserve the accuracy of the model �

through the use of constrained minimization routines � the process could still result

in a signi�cant deviation in the model after passivity compensation. This is

especially true with models having regions of large passivity violations. A possibly

better approach would be to incorporate the passivity enforcement procedure in the

vector �tting process, thus removing the need to perform any postprocessing. The

passivity assessment and compensation process can also be time-consuming,

especially for multiport systems with a high order of approximation. In those cases,

the Hamiltonian matrix can be prohibitively large and �nding the eigenvalues can

be computationally very expensive. It might be possible to develop special

eigenvalue solvers that would exploit any properties of the Hamiltonian matrix to

speed up the calculations.

All in all, while there has been signi�cant progress in this area over the past few

years, there is still much room for improvement for future researchers on the

subject.
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