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ABSTRACT 
 

 
 Biomedical ultrasound is a prominent imaging modality for diagnostics. 

Conventional ultrasonic imaging is qualitative in nature with spatial resolution up to 

hundreds of micrometers. Quantitative ultrasound techniques based on ultrasonic 

backscatter can provide estimates describing tissue microstructure. Improving 

quantitative ultrasound techniques will result in improved diagnostic capabilities of 

ultrasound. 

Quantitative techniques were developed and assessed based on the envelope of 

backscattered ultrasound. The envelope of backscattered ultrasound can be modeled as 

the superposition of the scattered signals from individual scatterers in the medium being 

interrogated. As such, the envelope signal is statistical in nature. By applying a model to 

the amplitude distribution of the envelope, information about the sub-resolution material 

properties such as the scatterer number density and organizational structure can be 

obtained. 

 The homodyned K distribution was used to model the envelope of backscattered 

ultrasound. An efficient parameter estimation algorithm was developed and tested 

through simulations and experiments. Techniques to reduce estimate bias and variance 

were assessed. The diagnostic potential of tissue characterization based on envelope 

statistics was evaluated. 
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CHAPTER 1 
INTRODUCTION 

 

 

1.1 Motivation 

Diagnostic medical ultrasound is a fast, safe, noninvasive, and low-cost imaging 

modality [1], [2]. This makes ultrasound an attractive approach for the detection and 

monitoring of disease. In fact, the use of ultrasound to observe morphological structures 

associated with disease dates back over 55 years [3]. 

An even more robust diagnostic capability for ultrasonic imaging is possible if 

tissue microstructure could be imaged. However, the histopathologic features used to 

make diagnoses may be as small as 5 µm [1]. Assuming a propagation speed of 1540 m/s, 

the frequency required to achieve a 5 µm wavelength is over 300 MHz. Besides the 

present technical difficulties associated with the production of high frequency ultrasound, 

properties of propagation in tissues, e.g., attenuation, limit the penetration depth used in 

practice. Typical clinical ultrasound systems employ frequencies in the range of 1 to 15 

MHz [4], [5]. A focused (f/2.4) 10 MHz linear array transducer typical of current clinical 

systems has a penetration depth of roughly 5 cm assuming a linear attenuation coefficient 

of 0.5 dB/(MHz·cm). Considering only diffraction effects, the axial resolution is 0.33 mm 

and the lateral resolution is 0.26 mm [6]. Therefore, the direct imaging of tissue 

microstructure on the scale of 10s of micrometers or less is not feasible, and alternative 

approaches have to be used instead. By applying a statistical model to the amplitude 

distribution of the envelope of backscattered ultrasound, some information about the sub-
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resolution tissue microstructure can be obtained. We hypothesize that this information is 

useful for the diagnosis and monitoring of disease. 

1.2 Envelope Statistics Models 

A number of models for the statistics of the envelope of acoustic and optical 

signals have been proposed over the past few decades with applications to sea echo [7], 

medical ultrasound [8], and laser [9]. Some of these distributions include the Rayleigh 

distribution, the K distribution, and the homodyned K distribution. Because the 

derivations of these distributions have been covered extensively in the literature (e.g., 

[10], [11]), only a brief review is given. 

1.2.1 Rayleigh distribution 

The Rayleigh distribution arises when a large number of nearly identical and 

randomly located scatterers contribute to the echo signal [12]. The probability density 

function (pdf) is given by 

 ( )
2

2 2
exp

2A

A A
p A

σ σ
 

= − 
 

 (1.1) 

where A (which is assumed to be positive) represents the envelope amplitude and 2σ  is 

the variance of the Gaussian distributed in-phase and quadrature components of the 

complex echo envelope [13]. 

1.2.2 K distribution 

Jakeman and Pusey [7] introduced the use of the K distribution, a generalization 

of the Rayleigh distribution, in the context of microwave sea echo to model situations 

where the number of scatterers is not assumed to be large. The pdf is given by [14] 

 ( ) ( ) ( )1

2

2A

b bA
p A K bA

µ

µµ −
 =  Γ  

 (1.2) 
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where ( )Γ •  is the Gamma function, ( )nK •  is the modified Bessel function of the second 

kind, n-th order, and µ is a measure of the effective number of scatterers per resolution 

cell. In ultrasound, the resolution cell volume can be defined as the volume of the point 

spread function of the imaging system [15], i.e., the volume of the insonifed medium that 

contributes to any given point in the echo signal. In Equation (1.2), the b parameter can 

be expressed as 

 
2

2b
E A

µ=
  

 (1.3) 

where [ ]E •  is the expectation operator. The K distribution is a more general model that 

approaches the Rayleigh distribution in the limit µ → ∞ [14]. 

1.2.3 Homodyned K distribution 

The homodyned K distribution was first introduced by Jakeman [16]. Besides 

incorporating the capability of the K distribution to model situations with low effective 

scatterer number densities, the homodyned K distribution can also model situations where 

a coherent signal component exists due to periodically located scatterers [11]. This makes 

the homodyned K distribution the most versatile of the three models discussed, but also 

the most complicated. The pdf of the homodyned K distribution does not have a closed-

form expression; however, it can be expressed in terms of an improper integral as [14] 

 ( ) ( ) ( )
2 2

0 0

0

1
2A

x
p A A xJ sx J Ax dx

µ
σ
µ

−∞  
= + 

 
∫  (1.4) 

where ( )0J •  is the zeroth order Bessel function of the first kind, 2s  is the coherent signal 

energy, 2σ  is the diffuse signal energy, and µ is the same as in the K distribution. The 

derived parameter /k s σ=  is the ratio of the coherent to diffuse signal and can be used to 

describe the level of structure or periodicity in scatterer locations. 
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The pdf can also be expressed in terms of the Rice and Gamma distributions [10], 

 ( ) ( ) ( )
0

|A Rp A p A z p z dzγ

∞

= ∫  (1.5) 

Here ( )|Rp A z  is the Rice distribution with scale parameter /zσ µ  and noncentrality 

parameter s whose pdf given by 

 ( ) ( )2 2

02 2 2
| exp

2R

A sA sA
p A z I

z z z

µµ µ
σ σ σ

 +   = −      

 (1.6) 

where ( )0I •  is the zeroth order modified Bessel function of the first kind and ( )p zγ  is the 

Gamma distribution with shape parameter µ and scale parameter unity. The pdf of the 

Gamma distribution with these parameters is given by [10] 

 ( ) ( )
1 zz e

p z
µ

γ µ

− −

=
Γ

 (1.7) 

 The pdf of the homodyned K distribution can further be expressed as an infinite 

summation (using the form given by [17], expressing the pdf in terms of the parameters 

used in Equation (1.4), and simplifying), 
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 +    = +       Γ
 

∑  (1.8) 

The series is convergent except for the case when both 1/ 2µ <  and A s= . The form 

given by Equation (1.8) is especially useful for numerically computing values of the pdf 

as it is usually possible to quickly obtain a good approximation of the pdf by considering 

only a small, finite number of terms in the infinite summation. The accuracy of the 

approximation depends on the particular parameter values for which the series is 

evaluated. In general, the rate of convergence is slower when the parameters are closer to 

the case where the series does not converge at all (i.e., 1/ 2µ <  and A s= ). Figure 1.1 
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shows four examples of the relative truncation error (the truncation error divided by 

actual pdf value) versus the number of terms considered in the truncated series. 

To validate the approximation for a particular set of parameter values, the pdf can 

be sampled for values of A on the interval [0, ]a  where a is chosen to be sufficiently large 

such that ( )Ap A  is negligible on the tail of the distribution ( , ]a ∞ . Then, numerical 

integration can be performed on the sampled pdf. As the pdf should integrate to unity, if 

the result of numerical integration differs substantially from unity, the accuracy of the 

approximation is questionable, suggesting that more terms are needed to obtain a good 

approximation. 
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Figure 1.1. Relative truncation error versus the number of terms used in the truncated series given by 

Equation (1.8). 

The homodyned K distribution model has been criticized (e.g., [18], [19], [20]) 

because of its analytical complexity. Hence, its use has been somewhat limited and other, 

more analytically tractable models such as the Nakagami distribution [18], [19], Weibull 

distribution [21], Rician inverse Gaussian distribution [20], and generalized gamma 

distribution [21] have been used instead. Because the homodyned K distribution is both 
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versatile and analytically complex, a goal of this work is to develop and apply methods to 

reduce the impact of this complexity while retaining the benefits of the versatility. By 

improving existing parameter estimation techniques, accurate parameter estimates can be 

obtained quickly. An improved parameter estimation algorithm will also provide more 

accurate information to better elucidate the relationships between the envelope statistics 

and the underlying structures responsible for the signals. Furthermore, as a by-product of 

the estimation algorithm, a geometrical interpretation into modeling of the envelope of 

backscattered ultrasound using the homodyned K distribution can be obtained. 

The goals of this thesis are to develop a fast and accurate parameter estimation 

algorithm based on the homodyned K distribution, test the limits of the estimation 

algorithm, establish the spatial resolution of parameter imaging based on the quantifying 

the estimate errors, and apply the estimation algorithm to experimental data and animal 

models to evaluate the diagnostic potential of envelope-based statistics. The remainder of 

this thesis is organized as follows. In Chapter 2, existing parameter estimation methods 

are reviewed and evaluated and a new estimation algorithm is presented to address the 

shortcomings of the existing methods. Chapter 3 presents validation of the proposed 

estimation algorithm through the use of simulated and experimental data. The bias and 

variance of estimates versus spatial resolution and other factors affecting estimates are 

examined in Chapter 4. Suggestions for future work and concluding remarks are included 

in Chapter 5. 
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CHAPTER 2 
PARAMETER ESTIMATION 

 

 

2.1 Introduction 

As a mathematical model, the homodyned K distribution is of practical use only 

when it can be used to model actual data. Parameter estimates, obtained by fitting the 

model to data, can in turn be used to describe underlying material properties. Ideally, a 

maximum likelihood estimator would be used; however, due to the analytical complexity 

of the homodyned K distribution, this approach is not feasible and alternative approaches 

must be explored instead. 

2.1.1 Existing methods 

Parameter estimation of the homodyned K distribution has received modest 

attention in the literature. The most frequently used methods involve the use of even 

moments (discussed in Section 2.1.1.1); however, a number of other approaches have 

also been proposed, some of which are discussed in Section 2.1.1.2. 

2.1.1.1 Even moments 

Dutt and Greenleaf [14] observed that the first few even moments of the 

homodyned K distribution have relatively simple closed-form expressions, 

 2 2 22E A s σ  = +   (2.1) 

 4 4 2 2 41
8 1 8E A s sσ σ

µ
 

  = + + +  
 

 (2.2) 

 6 6 4 2 2 4 6
2

3 2 1
48 1 72 1 18E A s s sσ σ σ

µ µ µ
   

  = + + + + + +    
   

 (2.3) 
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Given N samples of the echo envelope, ,  1,2, ,ia i N= … , moments of the envelope 

amplitude of order ν  can be estimated as 

 
1

1ˆ
N

n
n

E A a
N

ν ν

=

  =  ∑  (2.4) 

By equating empirical estimates of the moments with the theoretical moments given by 

Equations (2.1)-(2.3), estimates of the parameters of the homodyned K distribution can 

be obtained. This method of parameter estimation is inadequate for several reasons. First, 

it requires solving a system of three nonlinear equations in three variables. While it is 

possible to solve the system analytically in closed form (see Appendix A), parameters 

obtained by solving the system of equations are not always valid (i.e., real and positive). 

Alternatively, it is possible to search for a set of parameters that minimizes some error 

criterion (such as mean squared error) between the theoretical and estimated moments 

using a gradient descent approach. Unfortunately, this approach is susceptible to 

convergence to local minima. While other search algorithms may not have this limitation, 

computational complexity can be a problem. Finally, note that the convenience of having 

simple closed form expressions for the moments comes at the expense of having to use 

high order moments. It may not be desirable to use high order moments (e.g., fourth and 

sixth moments) because their estimates can be more easily corrupted by large outliers 

compared to lower order moments. 

2.1.1.2 Miscellaneous 

Dutt [10] investigated several other estimation approaches, including using lower 

order integer moments (first, second, and third moments) and using signal-to-noise ratio 

(SNR) and skewness derived from these lower order moments. Unfortunately, these 

approaches all relied on approximations of the first, second, and third moments of the 
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homodyned K distribution. While these approximations allowed for efficient estimators 

to be implemented, the estimators were found to perform poorly in terms of consistency. 

Eltoft [22] developed an iterative parameter estimation algorithm based on an 

approximation of the pdf of the homodyned K distribution. Again, the use of an 

approximation limited the usefulness of such an approach. 

Parameter estimation of the simpler K distribution has received significantly more 

attention in the literature. A number of parameter estimation approaches have been 

proposed, including the use of neural networks [23], [24]. The performance of estimators 

based on neural networks has been mixed and the computational complexity can be 

problematic. Nonetheless, such an approach could be adapted for use with the 

homodyned K distribution. 

2.2 SNR, Skewness, and Kurtosis Method 

2.2.1 Introduction, background, and motivation 

Most parameter estimation algorithms for the homodyned K distribution 

somehow involve the use of moments; however, the choice of moment order has been 

investigated with varied results. Apparently due to the analytical convenience, Dutt [10] 

used even integer moments to estimate parameters of the homodyned K distribution. 

However, it has been reported that the use of fractional moment orders yields more robust 

estimates [25], [26] for the simpler, but related, K distribution. Prager et al. [27] found 

moment order 1.8 to be optimal for speckle discrimination using the homodyned K 

distribution; however, it has been reported that this claim may not be justifiable and that a 

simple optimum moment order for parameter estimation does not exist [28]. 
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Based on the lack of consensus in the literature for what constitutes the optimal 

moment orders, it would be desirable to employ an estimation algorithm capable of using 

arbitrary moment orders. Then, the choice of moment order could be optimized for the 

particular estimation algorithm, or even the particular data set. The following sections 

describe the framework for an estimation algorithm that is both exact (i.e., does not resort 

to any algebraic approximations) and flexible (able to use arbitrary moment orders). 

2.2.2 Nonparametric classifiers: SNR, skewness, and kurtosis 

While the homodyned K distribution model is a function of three model 

parameters (µ, s, and σ ), only two parameters yield independent information. Because 

the s and σ  parameters scale together with the relative amplitude of the envelope, only 

their ratio, expressed as the amplitude independent parameter /k s σ= , is important. The 

estimation methods described in Section 2.1.1.1 require simultaneous estimation of all 

three model parameters. It may be desirable to estimate only the two independent model 

parameters k and µ. This is possible through the use of certain nonparametric classifier 

functions that describe data in a general way, free from any assumed models. That is, 

nonparametric classifiers are used as an intermediate step between the raw data and the 

parameter estimates (see Figure 2.1). 

 

Nonparametric classifiers
(SNR, skewness, kurtosis)

Parameter estimates
Raw data

(envelope samples)  
Figure 2.1. Procedure for parameter estimation using nonparametric classifiers. 

 

Various nonparametric classifiers have been used in echo envelope signal 

processing. Dutt and Greenleaf [25] used SNR to estimate the scatterer number density 



 11

using the K distribution, Prager et al. [27] used SNR and skewness as discriminant 

functions for speckle, and Wachowiak et al. [23] used functions based on skewness and 

kurtosis as inputs to artificial neural networks to estimate parameters of the K 

distribution. As discussed in Section 2.1.1.2, Dutt investigated the use of SNR and 

skewness for parameter estimation of the homodyned K distribution. Wear et al. [29] 

used the square of the SNR to estimate the number of scatterers per resolution cell. Note, 

however, that the square of the SNR was found to be sensitive only in the range of small 

scatterer number densities, i.e., one or two scatterers per resolution cell [29]. Finally, it 

has been noted that skewness and kurtosis can be used to test whether or not a measured 

envelope follows the Rayleigh distribution [30]. 

Motivated by the use of these nonparametric classifiers in the literature, all three 

classifiers (SNR, skewness, and kurtosis) were used in the proposed estimation algorithm. 

To allow greater flexibility, these statistical classifiers are based on arbitrary powers of 

the envelope, following previous work [25], [31]. Algebraically, the SNR, skewness, and 

kurtosis of samples of the echo envelope raised to an arbitrary positive power ν  can be 

expressed as [27], [32] 

 
( )1/22 2

[ ]

[ ] [ ]

E A
R

E A E A

ν

ν ν ν
=

−
 (2.5) 

 
( )

3 2 3

3/22 2

[ ] 3 [ ] [ ] 2 [ ]

[ ] [ ]

E A E A E A E A
S

E A E A

ν ν ν ν

ν ν ν

− +=
−

 (2.6) 

 
( )

4 3 2 2 4

22 2

[ ] 4 [ ] [ ] 6 [ ] [ ] 3 [ ]

[ ] [ ]

E A E A E A E A E A E A
K

E A E A

ν ν ν ν ν ν

ν ν ν

− + −=
−

 (2.7) 

Note that the signal-to-noise ratio Rν can also be recognized as the reciprocal of 

the coefficient of variation (CV). Also, the terms in the denominators of Equations (2.5)-
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(2.7) can be recognized as powers of the variance of the envelope samples raised to an 

arbitrary positive power. As such, they are guaranteed to be positive, ensuring that these 

functions are well defined because division by zero does not occur for any valid 

combination of model parameters. 

 These classifier functions provide a good basis for characterizing the shape of the 

distribution of many kinds of data. The SNR measures the mean divided by the standard 

deviation, the skewness quantifies the asymmetry of the distribution, and the kurtosis 

characterizes the peakedness of the distribution. In particular, these classifiers can be 

used to describe the distribution of envelope samples. Figure 2.2 shows plots of pdf’s of 

the homodyned K distribution illustrating the effects of shape of the distribution on the 

classifier function values, and Table 2.1 lists the parameters used to generate the pdf’s. 

Each pdf was approximated numerically using a finite number of terms in Equation (1.8). 
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Figure 2.2. Plots of pdf’s of the homodyned K distribution using various model parameters. 

The SNR, skewness, and kurtosis were calculated using the methods described in 

Section 2.2.3. The SNR increases monotonically for these four pdf’s as the peak (i.e., 

mode) moves to the right and hence the mean increases. Consistent with shapes of the 



 13

curves in Figure 2.2, pdf D has the lowest skewness while pdf’s A and C have somewhat 

larger skewness values. Finally, the kurtosis of pdf’s A, B, and D are all small compared 

to the kurtosis of pdf C which is clearly the most peaked. 

 

Table 2.1. Parameters for pdf’s plotted in Figure 2.2. The SNR, skewness, and kurtosis are based on 
moment order 1ν = . 

pdf 
Model parameters  

µ s σ  /k s σ=  SNR skewness kurtosis 

A 10 0.1 1 0.1 1.81 0.83 3.83 

B 10 1 1 1 1.95 0.64 3.40 

C 1.2 1.8 1 1.8 2.34 1.03 5.51 

D 10 2 1 2 2.49 0.31 3.08 

2.2.3 Moments of arbitrary order of the homodyned K distribution 

Because the estimation algorithm is to be based on arbitrary moment orders, some 

initial development is needed. Moments of arbitrary order ν  of the homodyned K 

distribution can be expressed as [27] 

 
( )

( )
2 22 1

2
1 1 2

0

1 / 22
;1;

2 2
x s

E A x e F dx
x

ν
ν µν νσ ν µ

µ µ σ

∞
+ − −Γ +   − −

  =      Γ   
∫  (2.8) 

where ( )1 1 ; ;F a b x  is the confluent hypergeometric function of the first kind. By 

substituting /k s σ=  in the argument of the hypergeometric function, defining the 

improper integral as a function of three variables, 

 ( ) ( )
( )

21
2

1 1

0

1 / 2
, , ;1;

2 2
x k

I k x e F dx
x

ν µν ν µµ ν
µ

∞
+ − −Γ +  − −=  Γ  

∫  (2.9) 

and pulling constants out of the integral, Equation (2.8) can be written as 

 ( )
2 22

, ,E A I k

ν

ν σ µ ν
µ

 
  =   

 
 (2.10) 

Performing the integration in Equation (2.9) and simplifying, 
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( ) ( )
( ) ( )

( )
( ) ( ) ( )

2

1 2

2 2

1 22

1 / 2
, , ;1,1 ;

2 2

                   ;1 ,1 ;
/ 2 1 sin 2 2

k
I k F

k k
F

η

ν ν µµ ν η η
µ

µ π µ µµ η η
ν η ηπ

Γ +  
= Γ − − −  Γ  

Γ    
+ +    Γ − Γ +    

 (2.11) 

where ( )1 2 ; , ;F a b c x  is a hypergeometric function and, for convenience, the definition 

 
2

νη µ= +  (2.12) 

is used. Thus, moments of the homodyned K distribution of arbitrary order can be 

evaluated numerically in a relatively simple way using Equations (2.10) and (2.11). 

Some discussion on the convergence of Equation (2.11) is warranted. When ν  is 

an even integer, Equation (2.11) can be expressed in a much simpler form [10], 

 ( ) ( )
( )

( )
( ) ( )

2 2/2

2
0

! / 2
, ,

2! / 2 !

m

m

n m k
I k

m m

ν ν µ µµ ν
µ ν=

Γ + −  
=  Γ −  

∑  (2.13) 

When applicable, use of Equation (2.13) instead of Equation (2.11) is preferable because 

the former also eliminates the difficulties in dealing with the term ( )/ 2νΓ −  in Equation 

(2.11), which is infinite when ν  is an even integer. Hypergeometric functions of the form 

( )1 2 1 2, ,..., ; , ,..., ;p q p qF a a a b b b x are convergent for all x when p q≤  provided that none of 

the ,  1,2,...,ib i q=  are negative integers or zero [33]. Therefore, when η is an integer, the 

hypergeometric function in the first term of Equation (2.11) diverges. The second term in 

Equation (2.11) also diverges when η is an integer because of the term ( )sin 0ηπ =  that 

appears in the denominator. Should it be desired to compute moment orders where η is an 

integer and ν  is not an even integer, linear interpolation can be used by considering small 

perturbations around the offending parameters, either in the form 

 ( ) ( ) ( ), , , ,
, ,

2

I k I k
I k

µ ε ν µ ε ν
µ ν

+ + −
≈  (2.14) 
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or 

 ( ) ( ) ( ), , , ,
, ,

2

I k I k
I k

µ ν ε µ ν ε
µ ν

+ + −
≈  (2.15) 

where ε  is a small real number. The error in these approximations can be made arbitrarily 

small by choosing a sufficiently small ε . 

2.2.4 Nonparametric classifiers using arbitrary moment orders 

The theoretical value for the SNR of envelope samples raised to arbitrary positive 

power ν  can be expressed in terms of parameters of the homodyned K distribution by 

substituting Equation (2.10) into Equation (2.5), 
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2 / , ,

2 / , , 2 2 / , ,

I k
R

I k I k

ν

ν
νν

σ µ µ ν

σ µ µ ν σ µ µ ν

=
  
 −  
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 (2.16) 

which simplifies to 
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R

I k I k
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µ ν
µ ν µ ν

=
−

 (2.17) 

Note that Equation (2.17) is a function of the two independent model parameters as 

claimed in Section 2.2.2. This property also holds for Sν and Kν by using Equations (2.6), 

(2.7), and (2.10), giving 
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In fact, the property holds for any finite functional combination of classifier functions F 

in the form 
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provided that the criterion 

 , , , ,
1 1

L L

l n l n p m p m
l p

w x y zα β
= =

=∑ ∑  (2.21) 

is satisfied for all pairs of , 1,2,...,m n N∈  where α , β , na , mb , ,l nw , ,l nx , ,p my , and ,p mz  are 

real constants and L and N are positive, real constants. Equations (2.5)-(2.7) are specific 

realizations of the general form given by Equation (2.20). 

2.2.5 Estimation using level sets 

Martin-Fernandez et al. [31] first introduced an estimation methodology for the 

homodyned K distribution using level sets; however, the algorithm was based on only the 

SNR. The present estimation algorithm contains several incremental improvements over 

this initial idea, most notably the extension to include skewness and kurtosis. 

Fundamentally, parameter estimates are obtained by following the procedure 

outlined in Figure 2.1 and equating theoretical values for the nonparametric classifiers 

(given by Equations (2.17)-(2.19)) with empirical values estimated from envelope 

samples. The complexity of these equations rules out any closed-form algebraic solution, 

but other approaches can be used instead.  

For a fixed moment order, ν , the nonparametric classifiers are functions of two 

variables. Therefore, given an estimate of a nonparametric classifier, it is possible to map 

out a curve of possible parameter values (a level curve) in two dimensions. Such an 

example is shown in subplot (a) in Figure 2.3. By considering a second classifier 
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function, a second level curve can be drawn (subplot (b) in Figure 2.3). Because there are 

two unknown model parameters, two classifier functions should uniquely identify a 

parameter estimate because their level curves should intersect at one point. However, for 

improved robustness, three classifier functions are used (subplot (c) in Figure 2.3) 

resulting in an overdetermined system. Furthermore, level curves using a number of 

different moment orders can be used, resulting in a further overdetermined system. 
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Figure 2.3. Examples of level curves using moment order 1ν =  for (a) SNR, (b) SNR and skewness, and (c) 

SNR, skewness, and kurtosis. Intended parameter values: 2k =  and log10(µ) = 0.7. 

2.2.6 Implementation issues 

2.2.6.1 Sampling nonparametric classifier functions 

To limit the amount of computation needed to perform parameter estimation, 

theoretical values of the nonparametric classifiers given by Equations (2.17)-(2.19) are 

first sampled on a rectangular grid. Provided that this sampling is sufficiently dense, good 

approximations of level curves can be constructed solely from the samples of the 

nonparametric classifiers without resorting to tedious and time-consuming calculations. 

Thus, the sampling only needs to be performed once, and thereafter the sampled 

theoretical classifier function values can be used repeatedly for parameter estimation. 
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To encompass the expected range of parameter values obtained from simulations, 

phantoms, and experimental data, a 501 × 501 point grid was used with k on the interval 

[0, 5] and µ on the interval [0.001, 100]. The k parameter was sampled on a linear scale 

while the µ parameter was sampled on a logarithmic scale. Therefore, the spacing 

between the values of k was 0.01 and the spacing between the values of ( )10log µ  was 

0.01. 

2.2.6.2 Determining level sets 

Each level curve is determined by finding a set of contiguous points on the 

sampling grid such that the theoretical classifier function value at each point closely 

approximates the estimated classifier function value. A sampled classifier function of a 

particular moment order can be denoted as a function of two variables as ( ),F k µ . Each 

complete level curve is determined using a two-stage process. First, for each value of µ 

used in the sampling process, the k values of all zero crossings of ( ) ˆ,F k Fµ −  are found 

where F̂ is the estimated classifier function value. Then, for each value of k used in the 

sampling process, the µ values of all zero crossings of ( ) ˆ,F k Fµ −  are found. The 

collection of all the points where the zero crossings occur defines the level curve. 

Performing both of these steps ensures that a complete, connected level curve is found, as 

shown in the example in Figure 2.4. Note that the zero crossings typically occur between 

two points; the point closer to the zero crossing is chosen to make up the level curve (this 

is also illustrated in Figure 2.4). 

2.2.6.3 Determining parameter estimates 

Parameter estimates are obtained by considering the distance from each level 

curve to a point in (k, µ) space. The point where the L2-norm (i.e., the square root of the 
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sum of the squares of the distances) is minimized identifies the pair of parameter 

estimates. Note that this distance is measured with the k parameter on a linear scale and 

the µ parameter on a logarithmic scale. Figure 2.5 shows an example of this distance 

metric where the L2-norm was exhaustively calculated for each point on the sampling 

grid. 
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Figure 2.4. Example of the process of finding level curves: (a) the difference between the sampled classifier 
function and its estimated value, (b) the points on the level curve determined by the sign changes in y for 
constant x, (c) the points on the level curve determined by the sign changes in x for constant y, and (d) the 

complete level curve (the shading indicates whether each point was obtained from (b) or (c) or both). 

Motivated by the example in subplot (b) of Figure 2.5, the point that minimizes 

the L2-norm could be determined by exhaustively calculating the L2-norm at each point 

on the grid where the classifier functions were evaluated, and simply selecting the 

minimum. While this is a reliable technique, it is time consuming. The example shown in 
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subplots (b) and (c) of Figure 2.5 suggests that the L2-norm using this estimation 

algorithm is a fairly well-behaved function, i.e., it does not have local minima scattered 

over the entire search space. Therefore, a more efficient search technique can be used to 

find the global minimum of the L2-norm. 
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Figure 2.5. Illustrations of level curve distance metric: (a) SNR, skewness, and kurtosis level curves using 
moment order 1ν = , (b) L2-norm of Euclidean distances from the three level curves, and (c) close-up view 
of L2-norm of Euclidean distances near the optimum. Intended parameter values: 2k =  and log10(µ) = 0.7. 

 A grid search was implemented to locate the global minimum of the L2-norm. As 

implemented, the L2-norm is first coarsely sampled on a grid of 11 × 11 discrete points 

spanning the entire search space. The point where the L2-norm is minimized is selected 

as the center of a new search space that is one fourth the size of the original search space. 

This smaller search space is resampled on an 11 × 11 point grid, and the procedure is 

repeated until convergence is reached. This process is illustrated in Figure 2.6. 

 The grid search algorithm was validated against the exhaustive search by 

generating sets of samples of the homodyned K distribution using the approach described 

in Section 3.1.1. The k parameter values were drawn from the set {0.5, 1.0, …, 4.5} and 

the values of ( )10log µ  from the set {-2.5, -2.0, …, 1.5}. For each combination of model 

parameters, 10 independent sets of samples were generated. Estimates were performed on 

each set of samples using an exhaustive search and using a grid search. In every case, the 
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grid search located the same global minimum as the exhaustive search, suggesting that 

the grid search is sufficiently robust. Furthermore, the grid search algorithm was found to 

be roughly 160 times faster than the exhaustive search. 

A gradient descent algorithm was also investigated. Although it was slightly faster 

than the grid search, it was found to be unacceptable for parameter estimation due to 

convergence to local minima. 

 
Figure 2.6. Illustration of four iterations of the grid search algorithm. 

Note that the L2-norm at the optimum may give some indication of goodness of 

fit: if the L2-norm is small, the level curves come close to intersecting at a single point, if 

the L2-norm is large, they do not. A large L2-norm may suggest that the signal is noisy or 

that the assumptions used in deriving the homodyned K distribution model are violated. 

2.2.7 Geometrical interpretation of level sets 

By examining the collection of level sets, a geometrical interpretation of the 

estimation process can be obtained. For simplicity, Figure 2.7 shows examples of the 

intersection of only two level curves. In subplot (a), where the level curves intersect 

almost perpendicularly, parameter estimation is expected to be robust. In subplot (b), the 

curves are somewhat less perpendicular, but in subplot (c), they are almost parallel. In 

this case, any small perturbations in the estimates of the classifier functions used to 
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determine the level curves will shift the level curves a small amount. This small shift may 

cause the intersection point, and hence the parameter estimates, to change substantially. 

That is, nearly parallel lines represent an ill-conditioned system while nearly 

perpendicular lines represent a well-conditioned system [34]. For these reasons, 

parameter estimation is expected to be weaker for cases similar to the example in Figure 

2.7(c). 
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Figure 2.7. Three examples, each of two intersecting level curves (derived from SNR and skewness using 
moment order 1ν = ). Intended parameter values: (a) 3k =  and log10(µ) = 0.48, (b) 1k =  and log10(µ) = 0.7, 

and (c) 0.5k =  and log10(µ) = 1. 

One could attempt to address this problem by using many different level curves 

by considering different moments. While this would increase the complexity, it would not 

address the fundamental ill-conditioning of the inverse problem of parameter estimation 

because, for certain combinations of model parameters, the generated curves will have 

little variation in the parallel orientation between lines at the point of intersection 

regardless of the choice of moment order. 

2.2.8 Interpretations of sampled classifier function data 

Examination of the samples of the classifier functions reveals further insights into 

parameter estimation from the homodyned K distribution. Figure 2.8 shows the SNR, 

skewness, and kurtosis as functions of k and µ using moment order 1ν = . 
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Figure 2.8. SNR, skewness, and kurtosis classifier functions for moment order 1ν = . The left panels show 
level sets superimposed on top of the actual function values. The arrows in the right panels represent the 
direction and relative magnitude of the gradient. Logarithmic scaling is used for parameters with large 

dynamic range. 



 24

 The gradient subplots, (b), (d), and (f) in Figure 2.8 help reveal where one would 

expect parameter estimation to work well and where one would expect parameter 

estimation to perform poorly when the SNR, skewness, and kurtosis classifier functions 

are used. In particular, observe that the gradient is very small for all three functions when 

µ is large and k is small. 

The level curves in subplots (a), (c), and (e) of Figure 2.8 are consistent with the 

results in Table 2.1. The level curves are generally horizontal in subplot (a) because the 

SNR parameter increases as the k parameter increases. The level curves in subplot (e) are 

generally vertical because the kurtosis decreases as the µ parameter increases. 

To verify that it is the homodyned K distribution model itself, and not some effect 

of the classifier functions, causing the gradient to be small for large µ and small k, pdf’s 

of the homodyned K distribution were plotted (see Figure 2.9).  
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Figure 2.9. Variation in the pdf of the homodyned K distribution for different values of µ. For all four pdf’s 

shown, parameters 0.5s =  and 1σ =  were used. 

Visually, the differences between the pdf’s for 2.5µ =  and 6µ =  are more substantial 

than the differences between the pdf’s for 6µ =  and 150µ = . This illustrates the well-
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known Rayleigh limit of about 10 scatterers per resolution cell, i.e., the point at which the 

envelope statistics are considered to be Rayleigh distributed [35], [36]. 

2.3 Choice of Moment Orders 

Examination of the classifier functions based on different moment orders reveals 

functions that are qualitatively very different. For example, Figure 2.10 shows the SNR 

for two different moment orders. There exist substantial differences in orientation of the 

level curves for small values of µ. Due to these differences, it would be expected that 

parameter estimates obtained using different moment orders would have varying quality 

(i.e., bias and variation). 
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Figure 2.10. SNR as a function of k and µ for (a) 0.1ν =  and (b) 2ν = . 

Based on the reasoning in Section 2.2.7, in order to obtain the best possible 

parameter estimates when using two level curves, it would be desirable to have level 

curves that intersect as close as possible to perpendicularly. When more than two level 

curves are used to estimate parameters, the sum of the angles between all pairs of level 

curves may be a more appropriate quantity to seek to maximize. Figure 2.11 shows three 

examples of this metric, each using four level curves. Note that while there are level 

curves in both subplots (b) and (c) that are perpendicular, the system in subplot (c) is 
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better conditioned. Also, the level curves in subplot (a) represent a relatively poorly 

conditioned system. These observations are reflected by the sum-of-all-angles metric. 
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Figure 2.11. Three examples illustrating the angles between level curves. The sum of the angles between all 

pairs of level curves is (a) 200º, (b) 310º, and (c) 360º. 

In order to optimize the sum of the angles between level curves, these angles must 

first be determined. To measure the angle between two level curves, it is useful to first 

define the angle of each curve with respect to a fixed reference. Given a classifier 

function ( ),F k µ  based on a particular moment order, the angle of the level curve at the 

point ( 1k , 1µ ) with respect to horizontal (i.e., the line given by constant k) is given by 
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 (2.22) 

Note that /F µ∂ ∂  and /F k∂ ∂  are components of the gradient of F; Equation (2.22) makes 

use of the property that the gradient and level curves are perpendicular to each other. The 

angle between two level curves can easily be found by applying Equation (2.22) to each 

level curve and taking the difference between the angles. 

 Using Equations (2.17)-(2.19), (2.11), and (2.22), the angles between level curves 

derived from SNR, skewness, and kurtosis could be derived as functions of k, µ, and ν  in 

closed form. Then, calculus could be used to determine the derivative with respect to ν  of 

the expression for the angles between level curves. By setting the derivative to zero and 
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solving for ν , the value of ν  that results in the largest angle between level curves could 

be found. Unfortunately, this approach quickly becomes untenable because of the 

analytical complexity. However, a close approximation of this calculation can be made 

by working with the discrete samples of the classifier functions of various moment 

orders. 

 To implement this approximation, the SNR, skewness, and kurtosis functions 

were sampled on a grid as in Section 2.2.6.1: µ ranging from 0.001 to 100 (on a 

logarithmic scale) and k ranging from 0.0 to 5.0. Moment orders ranging from 0.02 to 1.0 

in increments of 0.02 were used. Then, the SNR, skewness, and kurtosis functions for 

two moment orders at a time were considered. At each point on the sampling grid, the 

sum of the angles between all pairs of the six level curves (SNR, skewness, and kurtosis 

for each of the two moment orders considered) was found. Then the average value of this 

sum for all points on the sampling grid was determined. This calculation was repeated for 

all possible pairs of two moment orders, and the pair that maximized this sum was 

selected as the optimal moment orders. The optimal pair of moments was found to be 

{ }0.72,0.88ν = , as shown in Figure 2.12. These two moments are used for parameter 

estimation throughout the rest of this work. The sum of angles between all pairs of level 

curves for this pair of moments is shown in Figure 2.13. These two moments are 

relatively small compared to the second, fourth, and sixth moments used in the even 

moments estimation algorithm described in Section 2.1.1.1, suggesting that this estimator 

is less sensitive to outliers. Note, however, that the calculation of kurtosis involves the 

use of the moment order 4ν . Thus, in some sense, moment orders as large as 3.52 are 

employed. 
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The choice of moment orders could be improved somewhat if there were 

information available about the a priori distribution of parameter values. The 

optimization used here assumes all parameter values on the sampling grid occur with 

equal probability; that is, it minimizes the total cost over the entire space of parameters k 

and µ examined. For particular pairs of model parameters (k, µ), other pairs of moment 

orders ν  may yield better results. 
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Figure 2.12. Average over all sampling points of the sum of angles between all pairs of level curves for 
classifier functions derived from two different moment orders. Subplot (b) shows a close-up view of the 

optimal pair of moment orders. 
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Figure 2.13. The sum of all angles between pairs of level curves for SNR, skewness, and kurtosis versus the 

two model parameters for moment orders 0.72 and 0.88. 
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2.4 Limitations 

2.4.1 Model limitations 

It deserves to be repeated that when the number of scatterers per resolution cell is 

large (i.e., greater than about 10), the statistics of the echo envelope approach the 

Rayleigh distribution, and hence little information about the scatterer number density can 

be obtained [37]. Therefore, reliable estimation is restricted to cases where the scatterer 

number density is sufficiently low. 

Note that the estimation algorithm presented here is theoretically capable of 

measuring scatterer number densities up to 100. It would be reasonable to assume that 

any estimates above 10 are suspect. Therefore, when performing estimation on sets of 

data, postprocessing may need to be applied (e.g., rejection of samples with estimated 

densities above some threshold). 

2.4.2 Estimator limitations 

The most obvious limitation of the SNR, skewness, and kurtosis method as 

presented here is that the model parameters must fall within the range of the sampling 

grid used to compute the SNR, skewness, and kurtosis functions. It is impossible to make 

a parameter estimate when a level curve cannot be found in the sampled data. A more 

subtle limitation is that parameter estimation near the edges of the grid may be poor 

because the algorithm does not make use of what happens outside the sampling grid; the 

distance metric that the estimator seeks to minimize could be incorrect because it lacks 

the complete level curve. A contrived example illustrating this potential limitation with 

two level curves is shown in Figure 2.14. Lastly, note that signals acquired from closely 

separated scan lines are correlated [38], [39].  Under this condition of correlated samples, 
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the estimates of the moments of the samples (Equation (2.4)) are unbiased, but the 

estimates of SNR, skewness, and kurtosis may be biased [25], [30]. However, this has not 

been found to be a substantial problem in practice. 

p1

p2

Estimation region

 
Figure 2.14. Example illustrating the potential poor estimator performance near the edges of the sampling 

grid. The estimation region (shaded) represents the range of sampled classifier function values and the lines 
represent two level curves. The point that minimizes the L2-norm of the distance from the two level curves 

is p2, but the estimator will find p1 which minimizes the L2-norm using only the information available 
inside the estimation region. 
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CHAPTER 3 
TESTING AND VALIDATION 

 

 

The estimation algorithm presented in Chapter 2 was tested in a variety ways that 

were increasingly representative of the ultimate goal of the statistical modeling of the 

envelope: being able to discriminate different tissue types associated with disease. 

Specifically, the testing methods applied artificially generated samples of known 

distribution, computer simulations, physical phantoms, biological phantoms, and animal 

tumor models. 

3.1 Direct Method 

The simplest method of testing the estimation routine is by making parameter 

estimates from sets of samples of the homodyned K distribution generated with known 

parameters. This same type of approach has been used to evaluate different estimators for 

the Nakagami distribution [40]. This method provides a fast and efficient way to evaluate 

the estimation algorithm, make comparisons with other estimation techniques, and 

evaluate factors that may affect estimate bias and variation. 

3.1.1 Generating samples of the homodyned K distribution 

Independent, identically distributed (i.i.d.) samples of the homodyned K 

distribution can be generated by exploiting the form given by Equations (1.5)-(1.7) and 

using the approach in [31]. That is, i.i.d. samples of the homodyned K distribution with 

parameters µ, s, and σ  can be created by first generating samples of the gamma 

distribution with shape parameter µ and scale parameter unity. These samples of the 
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gamma distribution can be denoted as ,  1,2,...,iz i n= , where n is the number of samples 

to be generated. For each sample iz, the i.i.d. samples of the homodyned K distribution 

are computed by generating a sample of the Rice distribution with scale parameter 

/izσ µ  and noncentrality parameter s. Using properties of the Rice distribution [41], 

these samples of the Rice distribution are given by 

 2 2
i i iA x y= +  (3.1) 

where x and y are independent samples of the Gaussian distribution with mean values of 

s and zero, respectively, and each with variance /izσ µ , i.e., 

 /i i ix s X zσ µ= +  (3.2) 

 /i i iy Y zσ µ=  (3.3) 

where iX  and iY are i.i.d. samples of the unit Gaussian distribution. 

In summary, i.i.d. samples of the homodyned K distribution can be generated 

using samples of simpler distributions, viz., the gamma and Gaussian distributions. An 

illustration summarizing the procedure for transforming these samples of the gamma and 

Gaussian distributions into a sample of the homodyned K distribution is shown in Figure 

3.1. 
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Figure 3.1. Illustration of the procedure for generating a sample A of the homodyned K distribution. Inputs 
σ , µ, and s are the desired parameters of the homodyned K distribution, X  and Y are i.i.d. samples of the 

unit Gaussian distribution, and z is a sample of the gamma distribution. 
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Samples of the simpler gamma and Gaussian distributions can be generated using 

built-in functions in common software applications including MATLAB (The 

MathWorks, Inc., Natick, MA), Mathematica (Wolfram Research, Inc., Champaign, IL), 

and Microsoft Excel (Microsoft Corporation, Redmond, WA). 

3.1.2 Comparison of estimation methods 

The SNR, skewness, and kurtosis method (Section 2.2) was compared with the 

even moments method (Section 2.1.1.1) by applying each estimator to i.i.d. samples 

generated for a variety of parameter values and sample sizes. For each combination of 

parameter values and sample size examined, 100 independent estimation trials were 

performed to establish the variability of estimates between trials. To implement the even 

moments method, a gradient descent algorithm was used to find the set of model 

parameters that minimized the sum of the squares of the relative error in the even 

moments, 
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∑  (3.4) 

The relative error, rather than absolute error, was used because the absolute error is 

generally much larger for the sixth moment than for the second moment. To help mitigate 

the main limitation of the gradient descent approach, i.e., convergence to local minima, 

the gradient descent search was started from the intended model parameters which had 

been used to generate the i.i.d. data. Furthermore, because estimates obtained using the 

SNR, skewness, and kurtosis method are intrinsically limited to a certain range of 

parameters while estimates from the even moments method are not, any estimates from 

the even moments method that fell outside of the range used by the SNR, skewness, and 
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kurtosis method were discarded. Finally, for the cases when the SNR, skewness, and 

kurtosis method failed to produce an estimate (because the nonparametric classifiers were 

out of range), the corresponding even moments estimate was not considered. 

 The bias and standard deviation (SD) of the parameter estimates obtained from 

each estimation algorithm were calculated for each set of samples. The bias and SD were 

normalized by the true parameter values to allow comparison between estimates obtained 

for different parameter values and between the two estimation algorithms: 

 
[ ]ˆ

relative bias
E x x

x

−
=  (3.5) 

 
[ ]ˆVar

normalized SD
x

x
=  (3.6) 

where x represents the true parameter value (used to generate the i.i.d. samples), x̂ 

represents the estimates of the parameter value from the 100 independent trials, and 

[ ]Var •  is the sample variance. A representative sample of the results is shown in Figure 

3.2. For the majority of parameter values tested, the SNR, skewness, and kurtosis method 

yielded estimates with lower bias and SD than the even moments method despite the 

untenable advantages used with the even moments method in this comparison. 

Furthermore, the speeds of the two estimation algorithms are roughly equal. By pushing 

the complexity back into the nonparametric classifier function calculation, the SNR, 

skewness, and kurtosis method is fast and produces more accurate and precise estimates. 

3.2 Simulations 

Computer simulations were performed using the Field II ultrasound simulation 

program [42], [43] to examine the effects of varying scatterer number densities and 

organizational patterns on the statistics of the envelope. 
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Figure 3.2. Relative bias and normalized SD of estimates derived using the SNR, skewness, and kurtosis 

method (solid red lines) and the even moments method (dashed green lines) as functions of the µ parameter 
with k fixed (subplots (a)-(h)) and as functions of the k parameter with µ fixed (subplots (i)-(p)). One 

hundred trials, each of 1000 i.i.d. samples, were used for each data point. 
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Simulations were performed using a single-element focused (f/4) transducer with 

a center frequency of 10 MHz. The ideal transducer had a geometrical focal length of 

50.8 mm and was excited with a Gaussian windowed sinusoidal pulse with a 50% 

fractional bandwidth at -6 dB. The -12 dB pulse-echo beamwidth of the transducer, 

approximated as #1.4 fλ , where λ is the acoustic wavelength and #f  is the focal number 

of the transducer, was 0.86 mm. Simulations were performed using phantoms containing 

point scatterers. The echo signals received from the phantoms were sampled at 200 MHz. 

No noise was added in the simulations. A constant speed of sound of 1540 m/s was 

assumed. 

The resolution cell volume was estimated by scanning a single point scatterer 

located at the focus of the transducer. Following Dutt and Greenleaf [14], the resolution 

cell was defined by the -20 dB contour of the envelope. Due to the circular symmetry of 

the beam pattern, the three-dimensional resolution cell was determined by the volume of 

revolution of the two-dimensional resolution cell about the axis of the transducer. This 

characterization procedure is illustrated in Figure 3.3. The resolution cell volume was 

found to be 0.184 mm3. 
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Figure 3.3. Characterization plots for the simulated 10 MHz transducer: (a) B-mode image of the scan of 
the single scatterer, (b) a two-dimensional representation of the -20 dB resolution cell, and (c) a three-

dimensional depiction of the resolution cell. 
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3.2.1 Scatterer number density 

Computational phantoms were constructed with scatterer number densities 

ranging from 1.0 to 10 scatterers per resolution cell in increments of one. For each of the 

10 scatterer number densities examined, 10 independent phantoms were constructed by 

randomly placing point scatterers within a volume of height 17.2 mm, length 20.7 mm, 

and width 1.72 mm. The height was chosen to correspond to the approximate -6 dB depth 

of focus of the transducer, the length was chosen to be 24 beamwidths, and the width was 

chosen to be two beamwidths. The center of the volume was placed at the geometric 

focus of the transducer. A summary of the simulation setup is depicted in Figure 3.4.  
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Figure 3.4. Illustration of the transducer (located at the origin) and the volume containing point scatterers 

used for simulations. 
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Radio frequency (RF) echo data was simulated for scan lines spaced 0.43 mm (i.e., half a 

beamwidth) apart. The envelope of the RF data for each scan line was detected using the 

Hilbert transform. 

The envelopes for all the scan lines were aligned to form an image. The analysis 

of the image was divided into regions of interest (ROIs) sized approximately 2 mm × 2 

mm and overlapped by 75% both laterally and axially. Envelope statistics model 

parameters were estimated for each ROI using the SNR, skewness, and kurtosis method 

described in Section 2.2. For each simulated image, the estimates from all ROIs were 

averaged together to produce a single pair (k, µ) of parameter estimates. The mean and 

SD of these average values were calculated from the 10 independent phantoms for each 

of the 10 scatterer number densities examined. The results are plotted in Figure 3.5. 
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Figure 3.5. Estimated scatterer number density versus the actual scatterer number density for simulated 
phantoms. The error bars are two standard deviations long. Ideally the estimates would lie on the dashed 

green line. 

The mean estimated scatterer number density increases monotonically as the actual 

scatterer number density increases, although the estimates show a positive bias for 

scatterer number densities less than five and a negative bias for scatterer number densities 
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greater than five. Also, there is a general increase in estimate variation with increased 

scatterer number density, as expected. 

3.2.2 Scatterer clustering 

Previous work [14], [44] has suggested that the presence of collections of closely 

grouped (i.e., clustered) scatterers alters the effective number of scatterers per resolution 

cell. One would expect a decrease in the µ parameter estimate with increased scatterer 

clustering. Computational phantoms were used to verify this hypothesis. The procedure 

used was the same as in the previous section, except that the average scatterer number 

density was kept at a constant value of eight scatterers per resolution cell and the 

scatterers were placed in the phantoms both randomly and in clusters. Figure 3.6 

illustrates the random and clustered placement of scatterers. The number of clustered and 

the number of randomly placed scatterers were varied, with the total number of scatterers 

remaining constant to achieve the constant eight scatterers per resolution cell on average. 

In constructing each phantom, the clusters of scatterers were first placed randomly in the 

phantom and then the remaining scatterers were randomly placed. The number of 

scatterers in each cluster was random, being uniformly distributed on the interval from 

one through 20. 

The analysis was performed in the same way as in the previous section. The 

results are shown in Figure 3.7. Note that the fraction of clustered scatterers is only an 

approximation because the randomly placed scatterers could cluster together by chance as 

well. The estimated scatterer number density in Figure 3.7 follows a monotonic decrease 

with increased scatterer clustering, as expected. Furthermore, for the case where all the 

scatterers were grouped into clusters, the actual scatterer number density of eight is 
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roughly 10 times the estimated scatterer number density of approximately 0.8. Based on 

the uniform distribution of the number of scatterers per cluster, an average value of 10.5 

scatterers per cluster is expected. This indicates that each cluster was acting as a single 

scatterer in terms of envelope statistics in the simulations. 
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Figure 3.6. Depiction of the organizational structure of scatterers for the cases where (a) all scatterers were 
randomly located and (b) all scatterers were clustered. The remainder of the simulations lie between these 

two extremes with some fraction of the total number of scatterers clustered together and the rest of the 
scatterers randomly distributed throughout the phantom. 
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Figure 3.7. Estimated scatterer number density versus the approximate fraction of clustered scatterers for 

simulated phantoms. The error bars are two standard deviations long. 



 41

3.2.3 Scatterer periodicity 

To test the ability of the homodyned K distribution to model echo signals with a 

large coherent component, computational phantoms with periodically located scatterers 

were created. The procedure used was the same as in the previous section where two 

scatterer populations were used, except that periodically located scatterers were used 

instead of clustered scatterers. The periodically located scatterers were created by first 

dividing the extent of the phantom along the z-axis into 100 bands of height 73.5 µm that 

were spaced 99.0 µm apart. Then, the scatterers were randomly placed inside the bands. 

Figure 3.8 illustrates an example of how the scatterers were placed periodically in bands. 

The analysis was performed in the same way as in the previous two sections. The 

results are shown in Figure 3.9. Note that the fraction of periodically located scatterers is 

only an approximation because the randomly located scatterers may end up being 

periodically located by chance. The estimated k parameter in Figure 3.9 generally 

increases as the fraction of periodically located scatterers increases. 
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Figure 3.8. Depiction of the organizational structure of periodically located scatterers in a small portion of 

the simulated phantom. Here the scatterers occupy five horizontal bands. 
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Figure 3.9. Estimated k parameter versus the approximate fraction of periodically located scatterers for 

simulated phantoms. The error bars are two standard deviations long. 

3.3 Experimental Phantoms 

3.3.1 Physical phantom 

A phantom was prepared by suspending glass beads with diameters in the range 

of 150 µm to 180 µm in an agar background with a concentration of 3.96 beads per cubic 

millimeter. The glass beads were assumed to be uniformly distributed throughout the 

phantom and randomly separated. The phantom was scanned using five transducers with 

nominal center frequencies ranging from 2.25 MHz to 10 MHz. Five different images 

were acquired from different locations in the phantom using each transducer. The 

effective scatterer number density was estimated using small ROIs in each of the 25 

resulting images. The estimates from all the ROIs in each image were averaged together 

to produce a single estimated scatterer number density for each image. The statistics 

(mean and SD) of these estimates for each set of five images are reported in Table 3.1. 

Table 3.1 also lists an estimate of the predicted scatterer number density which was 

determined based on the estimated resolution cell size and the bead concentration. 
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Table 3.1. Predicted and estimated (mean±SD) scatterer number densities for the physical phantom. 

Transducer 
center frequency 

(MHz) 

Estimated 
resolution cell 
volume (mm3) 

Predicted µ 
parameter 

Estimated µ 
parameter 

Deduced scatterer 
concentration 

(scatterers per mm3) 
2.25 3.52 13.9 7.46±1.4 2.12±0.40 
3.5 1.26 4.99 5.67±0.45 4.50±0.36 
5 0.505 2.00 1.61±0.15 3.19±0.30 

7.5 0.227 0.900 1.00±0.22 4.40±0.97 
10 0.0907 0.359 0.385±0.040 4.24±0.44 

The resolution cell volume of each transducer was estimated in a way similar to 

that described in Section 3.2, except that a wire target technique [45] was used instead of 

a point scatterer to characterize each transducer. To carry out this technique, a thin wire 

was placed in the focal plane of each transducer and scanned. The resolution cell volume 

estimation was performed in the same way as described in Section 3.2. Plots illustrating 

the characterization procedure are shown in Figure 3.10. 
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Figure 3.10. Characterization plots for the 10 MHz transducer used in the experiment: (a) B-mode image of 

wire target scan, (b) a two-dimensional representation of the -20 dB resolution cell, and (c) a three-
dimensional depiction of the resolution cell. 

For the cases where the number of scatterers is within the Rayleigh limit of 10 

scatterers per resolution cell, the estimates agree relatively well with the theoretical 

predictions. For the case where the scatterer number density exceeds the Rayleigh limit, 

the estimates do not agree very well with the predictions. The trend in the estimates is 

correct nonetheless: the estimated scatterer number density increases with increased 

resolution cell volume. 
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3.3.2 Biological phantoms 

Four biological phantoms were prepared by suspending 4T1 mouse mammary 

tumor cells in a 2% agar base. Each phantom was prepared with a different concentration 

of 4T1 cells as shown in Table 3.2. The phantoms were assumed to contain cells 

uniformly spread throughout the phantom with random spatial locations. Each phantom 

was scanned using three different focused (f/3) single-element transducers with nominal 

center frequencies of 10 MHz, 20 MHz, and 40 MHz. The 12 resulting B-mode images 

are shown in Figure 3.11. 
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Figure 3.11. B-mode images of biological phantom scans. 
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Table 3.2. Cell concentrations used in biological phantoms. 

Phantom 
Cell concentration 

(cells/mm3) 
A 1000 
B 500 
C 100 
D 50 

Each image was divided into many small ROIs for analysis. Parameters from the 

envelope statistics model were estimated for each ROI. The mean and SD of the 

estimated scatterer number densities for all the ROIs in each phantom are reported in 

Table 3.3. The expected scatterer density was also deduced from the nominal cell 

concentrations in Table 3.2 and the resolution cell volume which was determined using 

the same wire target technique as described in the previous section. The theoretical 

predictions based on the estimated resolution cell size and the known number density of 

cells in the phantoms are listed in Table 3.4. 

The estimates follow the expected trends: lower cell concentrations resulted in 

lower estimates of scatterer number density, and higher frequencies also resulted in lower 

estimates. However, comparison of Tables 3.3 and 3.4 shows that the estimated scatterer 

number densities were observed to be substantially lower than the theoretical predictions. 

Closer examination of the B-mode images in Figure 3.11 reveals that in many cases 

individual scatterers can be resolved. For example, individual scatterers can be resolved 

in Figure 3.11(d); however, the theoretical scatterer number density is 2.63 scatterers per 

resolution cell. The estimate of 0.356 scatterers per resolution cell is more consistent with 

the B-mode images. These large discrepancies may be attributed to the clustering of cells, 

which would violate the assumption that the cells were uniformly distributed throughout 

the phantom. 
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Table 3.3. Estimated scatterer number densities (mean±SD) for biological phantoms. 

Phantom 10 MHz 20 MHz 40 MHz 
A 7.30±5.4 1.34±0.96 0.264±0.19 
B 1.26±0.72 0.596±0.47 0.145±0.071 
C 0.773±0.41 0.308±0.12 0.120±0.049 
D 0.356±0.44 0.264±0.11 0.0981±0.063 

 

Table 3.4. Theoretical scatterer number densities for biological phantoms. 
Phantom 10 MHz 20 MHz 40 MHz 

A 52.5 11.2 3.22 
B 26.3 5.61 1.61 
C 5.25 1.12 0.322 
D 2.63 0.561 0.161 

To examine the clustering of cells, the phantoms were formalin-fixed, paraffin-

embedded, and sliced into sections approximately 3 µm thick. Each section was mounted 

on a glass slide and stained with Hematoxylin and Eosin. The slides were examined 

under a light microscope and photomicrographs were captured with a camera. Figure 3.12 

shows photomicrographs of the four phantoms. In general, the biological phantoms with 

higher cell concentrations had more and larger clusters of cells, thus helping to explain 

the discrepancies between the theoretical and estimated scatterer number densities. 

3.4 Animal Data 

3.4.1 Sarcomas and carcinomas 

Rodent models of breast cancer were used to test the ability of envelope-based 

statistics in distinguishing two kinds of tumors. Ten mouse mammary carcinoma tumors 

and 10 mouse mammary sarcoma tumors were scanned at 20 MHz. Each tumor image 

was analyzed by estimating envelope statistics model parameters for ROIs sized 

approximately 1 mm × 1 mm in the tumor image. The model parameters from all the 

ROIs in each tumor were averaged together to produce a single pair of parameter 

estimates for each tumor. 
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Figure 3.12. Photomicrographs of biological phantoms: (a) phantom A, (b) phantom B, (c) phantom C, and 

(d) phantom D. 

These parameters are plotted in Figure 3.13. The line separating the two classes of tumors 

was derived using a support vector machine. This line was used to derive a third 

parameter to combine the two model parameters and further discriminate between the two 

kinds of tumors. Letting the equation of the line separating the two kinds of tumors be 

defined as k m bµ= + , the derived parameter D was defined as 

 ˆ ˆD k mµ= −  (3.7) 

where ̂k and µ̂ are the two average estimated model parameters for each tumor. 

Table 3.5 lists the statistics of the estimated model parameters for the 20 tumors. 

Of the two estimated parameters, only the k parameter is statistically significant in 
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distinguishing between the two kinds of tumors. However, the parameter derived from a 

linear combination of the two estimated model parameters is more statistically significant 

than either parameter alone. 
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Figure 3.13. Scatter plot of the average estimated model parameters for sarcoma and carcinoma tumors. 

 

Table 3.5. Estimated model parameters (mean±SD) for sarcoma and carcinoma tumors. 

Kind of tumor k µ D 

Sarcomas 0.604±0.051 4.69±0.69 0.454±0.033 

Carcinomas 0.533±0.081 5.34±2.4 0.362±0.041 

 p<0.05 p=0.421 p<0.0001 

3.4.2 Sarcomas, carcinomas, and fibroadenomas 

Fourteen mouse mammary carcinoma tumors, six mouse mammary sarcoma 

tumors, and 11 rat fibroadenoma tumors were scanned at 10 MHz. Parameter estimation 

and processing were performed in the same way as in the previous section, except that 

larger ROIs (roughly 2 mm × 2 mm) were used because of the lower transducer frequency 

used. The average estimated model parameters are plotted in Figure 3.14; the mean and 

SD of the parameter estimates for each kind of tumor are listed in Table 3.6. One-way 

analysis of variance (ANOVA) was performed pairwise between the different kinds of 
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tumors for each of the two estimated model parameters. The resulting p-values are listed 

in Table 3.7. Again, statistically significant differences were observed only in the k 

parameter estimates. 
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Figure 3.14. Scatter plot of the average estimated model parameters for sarcoma, carcinoma, and 

fibroadenoma tumors. 

 

Table 3.6. Estimated model parameters (mean±SD) for sarcoma, carcinoma, and fibroadenoma tumors. 

Kind of tumor k µ 
Sarcomas 0.446±0.033 2.28±1.7 

Carcinomas 0.603±0.070 3.95±3.6 

Fibroadenomas 0.543±0.037 3.31±1.5 

 

Table 3.7. P-values for model parameter estimates comparing different kinds of tumors. 
Kinds of tumors compared k µ 
Sarcomas & carcinomas p<0.0001 p=0.302 

Sarcomas & fibroadenomas p<0.0001 p=0.220 

Carcinomas & fibroadenomas p<0.05 p=0.593 
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CHAPTER 4 
FACTORS AFFECTING ESTIMATES 

 

 

4.1 Introduction 

Parameter estimates obtained from the homodyned K distribution model are 

useful for characterizing the medium being interrogated. However, the performance of 

parameter estimates is affected by a number of factors besides those of the medium. The 

usefulness of these parameter estimates can only be optimized when these other factors 

are well understood. 

4.2 Region of Interest Size 

Quantitative ultrasound (QUS) images are created by dividing the corresponding 

B-mode image into a number of ROIs to image differences in the underlying material 

properties. Furthermore, statistical analysis can be used to quantify the variability of 

estimates throughout the image. In general, estimate bias and variation will be smaller for 

large ROIs and larger for small ROIs. Therefore, there is a fundamental tradeoff to be 

made between the spatial resolution and the bias and variation of parameter estimates. 

This tradeoff was studied using ideal random samples, simulations, and phantom data. 

4.2.1 Independent random samples 

All else being equal, when a larger ROI is used, a greater number of envelope 

samples are available for estimation. As a first step towards examining the effects of 

sample size on estimate bias and variation, i.i.d. samples of the homodyned K distribution 
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were generated using the method outlined in Section 3.1.1. Because the samples are 

statistically independent and follow the desired distribution exactly, this analysis should 

establish a best-case theoretical limit. 

Sets of samples were generated for a variety of model parameters: µ ranging from 

1.0 to 10 and k ranging from 0.25 to 1.0. For each sample size and pair of parameter 

values, 50 independent estimation trials were performed. The absolute relative bias and 

the normalized SD of the parameter estimates were calculated. For each sample size, the 

average absolute relative bias was computed by averaging together the absolute relative 

bias obtained from the 50 trials for each set of parameter values. The average normalized 

SD was obtained similarly. The absolute relative bias (given by the absolute value of 

Equation (3.5)) was used instead of the relative bias to allow meaningful averaging of the 

biases from different trials. The results, plotted in Figure 4.1, follow expectations. 
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Figure 4.1. Average absolute relative bias and average normalized SD of estimated model parameters 

versus sample size. 
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4.2.2 Simulations 

Ten images with underlying scatterer number densities ranging from 1.0 to 10 

scatterers per resolution cell from the simulations performed for Section 3.2.1 were re-

analyzed using ROIs of varying lateral and axial size. For each image and for each ROI 

size, the absolute relative bias and the normalized SD of the k and µ parameters were 

calculated. To calculate these performance metrics, the true parameter values must be 

known. For the µ parameter, the intended scatterer number density was used as the true 

value of µ; for the k parameter, a very large ROI was used to obtain the best possible 

estimate of the true value of k. For each ROI size examined, the average absolute relative 

bias and average normalized SD were determined by averaging together the results from 

the 10 independent phantoms. Because both the pulse length and beamwidth are 

proportional to the acoustic wavelength, the results are reported with the dimensions in 

wavelengths. The results should therefore be generalizable to data acquired using 

different transducer frequencies. 

The average normalized SD for the two model parameters is shown in Figure 4.2 

and the average absolute relative bias for the two model parameters is shown in Figure 

4.3. The decrease in the normalized SD of the µ and k parameter estimates as the ROI 

size is increased is fairly smooth, agreeing with expectations. The absolute relative bias 

for the µ parameter is largest for the smallest ROI size used, but it does not show any 

particularly meaningful decrease for ROIs larger than about 10 wavelengths, suggesting 

that an ROI size of 10 wavelengths is optimal for reducing estimate bias while 

maintaining spatial resolution. 



 53

5
15

25
35

45
55

5
15

25
35

45
55

0

1

2

Lateral

(a)

µ parameter average normalized SD

Axial

5
15

25
35

45
55

5
15

25
35

45
55

0

2

4

Lateral

(b)

k parameter average normalized SD

Axial

 
Figure 4.2. Average normalized SD of estimated model parameters for simulated phantom scans versus the 

axial and lateral extent (in wavelengths) of the ROIs used. 
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Figure 4.3. Average absolute relative bias of estimated model parameters for simulated phantom scans 

versus the axial and lateral extent (in wavelengths) of the ROIs used.  

4.2.3 Phantoms 

Two phantoms containing different concentrations of glass bead scatterers were 

constructed. Each phantom was scanned using an f/4 transducer with center frequency of 

10 MHz. As in Section 4.2.2, model parameters based on envelope statistics were 
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estimated using a range of ROI sizes. The absolute relative bias and normalized SD were 

calculated using the parameter estimates from the largest ROI as the true parameter 

values. To produce a smoother, more representative plot, the absolute relative bias and 

the normalized SD for each ROI size from the two phantoms were averaged together; the 

results are shown in Figures 4.4 and 4.5. In general, the results obtained by analyzing the 

physical phantoms agree with the results from the simulations and with expectations. 

Finally, it should be noted that while very large ROIs generally worked well for 

these studies (where the material properties are fairly homogenous), the use of large ROIs 

in practice can be problematic if the underlying properties of the medium vary 

substantially throughout the ROI. Therefore, the goal is to minimize the size of the ROI 

for optimal spatial resolution versus bias and variation in estimates and to increase the 

likelihood of uniform scattering statistics in each ROI. 
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Figure 4.4. Average normalized SD of estimated model parameters for experimental phantom scans versus 

the axial and lateral extent (in wavelengths) of the ROIs used. 
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Figure 4.5. Average absolute relative bias of estimated model parameters for experimental phantom scans 

versus the axial and lateral extent (in wavelengths) of the ROIs used. 

4.3 Resolution Cell Size 

The µ parameter of the homodyned K distribution quantifies the effective number 

of scatterers per resolution cell. To correctly interpret this parameter, the resolution cell 

volume must be known. The dimensions of the resolution cell are determined not only by 

properties of the transducer but also by properties of the medium including frequency 

dependent attenuation. 

4.3.1 Transducer frequency 

The resolution cell can be modeled as a cylinder with radius r λ∝  and height 

/h Bλ∝ , where B is the fractional bandwidth of the imaging pulse. Therefore, the 

volume of the resolution cell is proportional to 3 / Bλ , or equivalently, inversely 

proportional to 3f B, where f  is the transducer center frequency. Therefore, the estimated 

scatterer number density (scatterers per resolution cell) is expected to decrease with the 

third power of the frequency. 
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Computer simulations were performed to verify these predictions. Ten 

independent computational phantoms were created. Each phantom was scanned using 

eight different transducers with center frequencies ranging from 6 MHz to 20 MHz. All 

the simulated transducers were focused (f/4) with a focal length of 50.8 mm. The 

transducers were excited with Gaussian modulated sinusoidal pulses with 50% fractional 

bandwidth at -6 dB. To accommodate the expected beamwidths and depths of focus of all 

eight transducers, all the phantoms were sized 8.62 mm × 10.3 mm × 2.87 mm. An 

average scatterer number density of 10 scatterers per resolution cell (based on the 

resolution cell volume of the 6 MHz transducer) was used for all phantoms. The 

simulated B-mode images obtained from one of the 10 phantoms are shown in Figure 4.6. 
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Figure 4.6. Simulated B-mode images using transducers with center frequencies ranging from 6 MHz to 20 

MHz. 

The scatterer number density for each image was estimated using techniques 

similar to those used in Section 3.2.1. For each transducer frequency used, the estimates 
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from the 10 independent phantoms were averaged together to produce the results shown 

in Figure 4.7. The scatterer number density predicted by the change in resolution cell 

volume is also plotted. The results of the simulations and the theory are generally in good 

agreement. 
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Figure 4.7. Estimated scatterer number density versus transducer frequency for simulated phantoms 

scanned at different frequencies. The error bars are two standard deviations long; note the use of log scaling 
on the vertical axis. Ideally, the estimates would lie on the dashed green curve. 

4.3.2 Attenuation 

4.3.2.1 Theory 

Attenuation can be modeled as multiplication (in the frequency domain) of the 

Fourier transform of the imaging pulse by 0x fe α− , where x is the pulse-echo distance from 

the transducer to the region being imaged, 0α  is the linear attenuation coefficient, and f  is 

the frequency [12]. The frequency-dependent attenuation results in higher frequencies 

being attenuated more rapidly with depth than lower frequencies, producing a shift in the 

center frequency of the imaging pulse. Assuming a Gaussian pulse, the shift in center 

frequency, f∆ , is given by [12] 
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where f ′ and 0f  are the center frequencies of the pulse with and without attenuation, 

respectively. 

Approximating the resolution cell as a cylinder as in Section 4.3.1 and assuming 

that the fractional bandwidth is unchanged by attenuation, the ratio of the volume of the 

resolution cell in the presence of attenuation (V ′) to the volume of the resolution cell 

without attenuation (V ) is given by 
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Combining Equations (4.1) and (4.2) yields 
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The estimated scatterer number density (scatterers per resolution cell) should increase 

according to the increase in the volume of the resolution cell predicted by Equation (4.3). 

4.3.2.2 Simulations 

Computational phantoms were used to verify the predictions in Section 4.3.2.1. 

Ten independent phantoms were generated for each attenuation coefficient value used. 

Each phantom was scanned using two imaging pulses with different fractional 

bandwidths. Each resulting image was analyzed using the approach described in Section 

3.2.1. The results shown in Figure 4.8 were obtained by averaging the estimated scatterer 

number density from the 10 independent phantoms used for each attenuation coefficient. 

Both the theoretical and estimated scatterer number densities vary substantially as the 

attenuation coefficient changes when the phantoms were imaged using a pulse with 50% 
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fractional bandwidth (Figure 4.8(a)). By reducing the fractional bandwidth to 25%, this 

variation was reduced substantially (Figure 4.8(b)). These results are consistent with 

previously reported measurements of physical phantoms [46]. Note that the reduction in 

fractional bandwidth results in the use of a longer imaging pulse, reducing the axial 

resolution of the resulting image. Also, this increases the volume of the resolution cell in 

the absence of attenuation. When the scatterer number density is large, it is desirable to 

reduce the volume of the resolution cell to avoid exceeding the Rayleigh limit of about 10 

scatterers per resolution cell beyond which scatterer number density estimation becomes 

unreliable. 

0 0.2 0.4 0.6 0.8 1
2

3

4

5

6

7

8

9

10

11

12

13

Attenuation coefficient [dB/(MHz⋅cm)]
(a)

E
st

im
at

ed
 s

ca
tte

re
r 

nu
m

be
r 

de
ns

ity

0 0.2 0.4 0.6 0.8 1
2

3

4

5

6

7

8

9

10

11

12

13

Attenuation coefficient [dB/(MHz⋅cm)]
(b)

E
st

im
at

ed
 s

ca
tte

re
r 

nu
m

be
r 

de
ns

ity

 
Figure 4.8. Estimated scatterer number density for simulated phantoms versus attenuation coefficient using 

a pulse with (a) 50% fractional bandwidth and (b) 25% fractional bandwidth. The error bars are two 
standard deviations long. Ideally, the estimates would lie on the dashed green curves which were 

determined using Equation (4.3). 

4.4 Compounding 

4.4.1 Spatial compounding 

When analyzing an image using a number of small ROIs, the ROIs can be 

partially overlapped, or spatially compounded, to increase the number of ROIs available 
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for analysis. Furthermore, by spatially averaging the parameter estimates from each ROI 

based on the ROI overlap, the variation of estimates can be reduced at the cost of 

decreased spatial resolution. 

4.4.1.1 Simulations 

Following Section 4.2.2, 10 images with underlying scatterer number densities 

ranging from 1.0 to 10 scatterers per resolution cell were re-analyzed using ROIs 

overlapping by differing amounts to determine the impact on estimate bias and variation. 

The estimates were spatially averaged together based on the ROI overlap. The 

normalized SD and absolute relative bias were calculated from the spatially averaged 

estimates in the same way as in Section 4.2.2. The results are shown in Figures 4.9 and 

4.10. 

Analysis of the plots in Figure 4.9 suggests that spatial compounding reduces the 

SD of the estimates of the k parameter but has little effect on the SD of the µ parameter. 

The absolute relative bias of parameter estimates does not exhibit any significant 

decrease as ROI overlap is increased. A likely explanation for these results is that 

estimate bias is dictated by ROI size. Therefore, the bias is approximately the same for 

each ROI, and no amount of averaging will reduce it. Averaging will, however, reduce 

the variation about the mean estimated value. 

Figure 4.9(b) suggests that the SD of the k parameter estimates can be made 

arbitrarily small by simply increasing the amount of ROI overlap. However, as the 

amount of ROI overlap is increased, the estimates become increasingly correlated 

because they share more of the same underlying samples of the envelope amplitude. At 

some point the improvement in estimate SD should level off. 



 61

0

0.3

0.6

0.9

0
0.3

0.6
0.9

0.2

0.4

0.6

0.8

Lateral

(a)

µ parameter average normalized SD

Axial

0

0.3

0.6

0.9

0
0.3

0.6
0.9

1

1.5

2

2.5

Lateral

(b)

k parameter average normalized SD

Axial

 
Figure 4.9. Average normalized SD of estimated model parameters for simulated phantom scans versus the 

fraction of axial and lateral overlap of the ROIs used. 
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Figure 4.10. Average absolute relative bias of estimated model parameters for simulated phantom scans 

versus the fraction of axial and lateral overlap of the ROIs used. 

The degree of correlation was quantified by calculating correlation coefficients 

for estimated model parameters for axially and laterally overlapping ROIs. Each 

correlation was run on two vectors corresponding to all pairs of ROIs overlapped (either 

axially or laterally) by a given amount. The correlation coefficients versus the fraction of 
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ROI overlap are plotted in Figure 4.11. It is reasonable to expect some degree of 

correlation between ROIs that do not overlap at all because the estimated model 

parameters should describe the same underlying material properties. These results agree 

with expectations: the amount of correlation in the parameter estimates increases as the 

fraction of ROI overlap is increased. 
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Figure 4.11. Correlation coefficients of estimated model parameters versus ROI overlap fraction for 

simulated phantom scans for (a) laterally overlapping ROIs and (b) axially overlapping ROIs. 

4.4.1.2 Phantoms 

The phantoms first described in Section 4.2.3 were also analyzed using varying 

amounts of spatial compounding using the same approach as in the previous section. The 

results (plotted in Figures 4.12 and 4.13) are generally consistent with the results 

obtained from the simulations. That is, only the SD in estimates of the k parameter shows 

any significant decrease with increased spatial compounding. The results from the 

physical phantoms are much noisier than the results from the simulations because of 

noise inherent in the experiment and because only two images were averaged together for 

the experimental phantom analysis, whereas 10 were used for the simulations. 
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Figure 4.12. Average normalized SD of estimated model parameters for experimental phantom scans versus 

the fraction of axial and lateral overlap of the ROIs used. 
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Figure 4.13. Absolute relative bias of estimated model parameters for experimental phantom scans versus 

the fraction of axial and lateral overlap of the ROIs used. 

The correlation coefficients between parameter estimates for overlapping ROIs 

were also determined in the same way as in the previous section. The results are plotted 

in Figure 4.14. Observe that the correlation coefficient is negative in some cases. 
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Figure 4.14. Correlation coefficients of estimated model parameters versus ROI overlap fraction for 

experimental phantom scans for (a) laterally overlapping ROIs and (b) axially overlapping ROIs. 

4.4.2 Angular compounding 

4.4.2.1 Introduction 

Angular compounding, the acquisition and averaging of a number of different 

(partially correlated to uncorrelated) images of the same target, has been used to reduce 

speckle in ultrasound images and to improve the SNR [12], [47]. Because the statistical 

nature of the backscattered echo signal arises from the relative locations of the scatterers 

with respect to the transducer that contribute to the echo signal, compounding can also be 

used to improve the statistical properties of QUS parameter estimates [48]. To obtain a 

reduction in estimate variation, a sample can be insonfied from different angles, yielding 

partially decorrelated realizations of echo signals. QUS estimates derived from different 

angles of view can then be averaged together to reduce estimate variation. 

4.4.2.2 Simulations 

Simulations were performed to examine the effects of angular compounding on 

estimate bias and variation. A cylindrical phantom with an average scatterer number 



 65

density of five scatterers per resolution cell was constructed and scanned from 128 

different angles. Parameters using the envelope statistics model were estimated using 

small overlapping ROIs in each image. The estimates from each image were first 

spatially compounded based on the ROI overlap. Then, estimates from ROIs 

corresponding to the same location in each phantom were averaged together to produce 

fully compounded images. Subsets of the 128 images were used to study the effects of 

increasing the number of compounded images. The log compressed scatterer number 

density estimates are shown in Figure 4.15; the estimated model parameters are listed in 

Table 4.1. 

Lateral distance [mm]
(a)

A
xi

al
 d

is
ta

nc
e 

[m
m

] 1 angle

2 6 10 14

45

49

53

57

Lateral distance [mm]
(b)

A
xi

al
 d

is
ta

nc
e 

[m
m

] 2 angles

2 6 10 14

45

49

53

57

Lateral distance [mm]
(c)

A
xi

al
 d

is
ta

nc
e 

[m
m

] 4 angles

2 6 10 14

45

49

53

57

Lateral distance [mm]
(d)

A
xi

al
 d

is
ta

nc
e 

[m
m

] 8 angles

2 6 10 14

45

49

53

57

Lateral distance [mm]
(e)

A
xi

al
 d

is
ta

nc
e 

[m
m

] 16 angles

2 6 10 14

45

49

53

57

Lateral distance [mm]
(f)

A
xi

al
 d

is
ta

nc
e 

[m
m

] 32 angles

2 6 10 14

45

49

53

57

Lateral distance [mm]
(g)

A
xi

al
 d

is
ta

nc
e 

[m
m

] 64 angles

2 6 10 14

45

49

53

57

Lateral distance [mm]
(h)

A
xi

al
 d

is
ta

nc
e 

[m
m

] 128 angles

 

 

2 6 10 14

45

49

53

57

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

 
Figure 4.15. QUS images of the base 10 logarithm of the estimated scatterer number density for simulated 

phantom scans. All subplots share the same color scale shown in the middle of the figure. The base 10 
logarithm of the actual scatterer number density is approximately 0.70. 

The bias and SD of the µ parameter generally decrease as the number of 

compounded images increases. Note, however, that this effect becomes smaller as the 
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number of compounded images becomes large because the echo signals become 

increasingly correlated with each other due to the angular separation becoming smaller. 

The performance of the k parameter estimates is similar, i.e., the SD decreases 

monotonically as the number of compounded images increases. 

Table 4.1. Model parameter estimates (mean±SD) using angular compounding for simulated phantom. 

Number of 
compounded 

images 
k µ 

1 0.537±0.17 6.17±4.4 

2 0.589±0.14 5.93±2.6 

4 0.568±0.098 5.94±2.1 

8 0.553±0.076 5.73±1.4 

16 0.560±0.061 5.57±1.1 

32 0.560±0.052 5.50±0.88 

64 0.561±0.048 5.43±0.79 

128 0.562±0.048 5.47±0.78 

For comparison, the scatterer number density was also exactly determined by 

directly counting the number of scatterers in each ROI in the phantom. Because the 

scatterers were randomly placed in the phantom with an average number density of five 

scatterers per resolution cell, some variability in the actual number of scatterers per 

resolution cell is expected. Using the number of scatterers in each ROI, the volume of the 

ROI, and the volume of the resolution cell, a theoretical scatterer number density was 

obtained for each ROI. To make the comparison valid, the ROIs used were the same as 

those used in the statistical analysis of the images. Furthermore, spatial compounding was 

performed in the same way as in the analysis of the QUS images obtained from the 

simulations. Using this analysis, a theoretical scatterer number density of 5.03±0.30 was 

deduced. For the case when 128 measurements were compounded, the correlation 

coefficient between the actual scatterer number density and the estimated scatterer 

number density in each ROI was found to be 0.465. This indicates that much of the 
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variation in the estimated scatterer number density can be explained by actual variation in 

the number of scatterers per resolution cell corresponding to each ROI from the phantom. 

Figure 4.16 shows QUS images for both the counted and estimated scatterer number 

densities as well as a scatter plot that compares the two measures on an ROI-by-ROI 

basis. 
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Figure 4.16. Comparison of deduced scatterer number density estimates: (a) QUS image of counted 

scatterer number density, (b) QUS image of estimated scatterer number density determined by averaging 
together estimates from 128 images, and (c) scatter plot of estimates from corresponding ROIs in (a) and 

(b). Subplots (a) and (b) share the same color scale. 

4.4.2.3 Experimental phantom measurements 

A physical phantom containing glass bead scatterers of mean radius 90 µm was 

constructed to experimentally verify the results of the simulations. The phantom was 

constructed with a 15% (by mass) concentration of gelatin in water. The scatterer 

concentration was 8.92 beads per cubic millimeter. The glass beads were assumed to be 

uniformly distributed throughout the phantom with random spatial locations. 

The phantom was scanned with a focused (f/3) transducer with a center frequency 

of 5 MHz. The same transducer had been used to collect the data in Section 3.3.1. 

Referring to Table 3.1, the resolution cell volume was estimated to be 0.505 mm3. Based 

on the resolution cell volume and the scatterer concentration, a scatterer number density 

of 4.50 scatterers per resolution cell was predicted. Data was acquired from 120 angles 
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uniformly distributed around the phantom. Because the axis of rotation of the phantom 

was not perfectly concentric with the center of the phantom, the images obtained from 

different angles of view were not registered. The equation of a circle describing the 

relative position of the center of the phantom as a function of the angle of rotation was 

derived. The images were registered by translating the images by the opposite of the 

amount of translation predicted by the equation for the circle. 

Parameter estimation and spatial and angular compounding were performed in the 

same way as was used in the processing of the simulated data in the previous section. 

QUS images obtained by compounding subsets of the data are shown in Figure 4.17; the 

corresponding mean and SD of the envelope statistics model parameters are listed in 

Table 4.2. 
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Figure 4.17. QUS images of the base 10 logarithm of the estimated scatterer number density for 

experimental phantom scans. All subplots share the same color scale shown in the middle of the figure. 
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Table 4.2. Model parameter estimates (mean±SD) using angular compounding for physical phantom. 

Number of 
compounded 

images 
k µ 

1 0.518±0.18 4.08±2.1 

2 0.413±0.12 3.68±1.2 

4 0.395±0.081 3.15±0.77 

8 0.409±0.045 3.27±0.53 

15 0.416±0.040 3.56±0.46 

30 0.423±0.031 3.50±0.28 

60 0.415±0.023 3.47±0.26 

120 0.415±0.019 3.43±0.22 

The results of the experiment and simulation are in excellent agreement. In both 

cases, the SD of the estimated model parameters decreases substantially as the number of 

angles of view increases. Based on the results of a previous study [48] that found an 

improvement in the SNR of QUS estimates that was proportional to the square root of the 

number of statistically independent images averaged together, it is reasonable to predict 

that the SD of the envelope statistics parameter estimates would also decrease 

accordingly. Figure 4.18 shows the SD of the two model parameter estimates versus the 

number of compounded images for both the simulated and experimental data. On a log-

log plot, exponential functions appear as lines; therefore, for comparison, triangles are 

also plotted in Figure 4.18 with slope as predicted by the reciprocal of the square root of 

the number of compounded images. 

The SD curves in Figure 4.18 do not follow the predicted slope exactly. When a 

small number (i.e., less than about 20) of images are compounded, the angular separation 

of the images is large enough that the QUS parameter estimates from each angle of view 

are statistically independent. As more angles of view are considered, the angular 

separation decreases. Once the point is reached where images are no longer statistically 
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independent, little improvement in estimate SD is expected. This effect was further 

quantified by calculating correlation coefficients of the QUS parameter estimates versus 

the angular separation of the images. To reduce the effects of noise, correlation 

coefficients were calculated for all pairs of images with a given angular separation and 

averaged together to produce an average correlation coefficient for that angular 

separation. These results are plotted in Figure 4.19 for both the simulated and 

experimental data. For both model parameters from the simulated data and for the µ 

parameter from the experimental data, the correlation coefficient increased dramatically 

for an angular separation of less than about 9º. 
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Figure 4.18. SD of envelope statistics parameter estimates versus the number of compounded images for (a) 
simulated data and (b) experimental data. Ideally, the SD of the estimates would lie on lines with the same 

slope as the hypotenuse of the triangle shown in each plot. 

The substantial reduction in the SD of the parameter estimates suggests that 

angular compounding may be a powerful tool for tissue characterization and detection of 

disease. However, in practice, full 360º angular compounding is not possible for most of 

the human body. Nonetheless, partial compounding could be used almost anywhere to 

obtain some reduction in the SD of parameter estimates. 
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Figure 4.19. Average correlation coefficients of estimated model parameters versus the amount of angular 

separation between the images for (a) simulated data and (b) experimental data. 
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CHAPTER 5 
CONCLUSIONS 

 

 

While this is not the first work to address the subject of statistical models of 

backscattered ultrasound signals, it is hoped that the improved estimation methods will be 

useful for fast and accurate processing of backscattered ultrasound signals. The results of 

Chapter 4 should provide guidelines for the application and interpretation of statistical 

analyses. The benefits of the improved estimation algorithm come at the cost of using 

extra storage space for the data used in the estimation process. However, the space 

requirements are very modest, making this a worthwhile tradeoff. 

The primary goal of this study was to assess the diagnostic potential of envelope-

based statistics. The results of the study confirm that the statistical modeling of the 

envelope of backscattered ultrasound may be useful for the detection of disease. While 

statistically significant differences were observed between different kinds of tissue, 

further study is needed to better describe the correlation between tissue microstructure 

associated with disease and parameters derived from the envelope statistics model. 

A new estimation algorithm has been developed to rapidly and accurately 

estimate parameters from the envelope statistics model. The algorithm has been tested 

using simulated and experimental data, and the bias and variance of the estimates versus 

region of interest size, spatial compounding, and angular compounding have been 

established. 
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5.1 Future Work 

The estimation algorithm presented in Section 2.2 could be further modified and 

improved by choosing different classifier functions (Equation (2.20)) other than SNR, 

skewness, and kurtosis and by choosing different moment orders. The algorithm could be 

improved generically for a wide range of parameter values. Alternatively, following the 

observation in Section 2.3 that the present estimator is a general purpose estimator 

designed to work relatively well for a large range of parameter values, the estimator 

could be fine-tuned to work better for more specific ranges of parameter values. A multi-

stage parameter estimator could be developed: preliminary parameter estimates could 

first be obtained using a general purpose estimator and then refined using a specific, fine-

tuned estimator selected according to the preliminary parameter estimates. 

As stated in Section 2.2.6.3, parameter estimates are selected using a grid search 

algorithm. To speed convergence and to provide further robustness against convergence 

to local minima, alternative optimization algorithms could be used. The basic procedure 

for determining level curves presented in Section 2.2.6.2 could be improved, i.e., better 

approximations of level curves could be found by interpolation. 
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APPENDIX A 
SOLUTION TO SYSTEM OF EVEN 

MOMENT EQUATIONS 
 

 

 Although it is nonlinear, the system of even moment equations, Equations (2.1)-

(2.3), does indeed have closed form solutions; however, they are very complicated. For 

simplicity, the system is solved in terms of the variables µ, 2s , and 2σ . Furthermore, the 

model parameters and solutions are allowed, in general, to be complex. For brevity, 

define 

 2a E A =    (A.1) 

 4b E A =    (A.2) 

 6c E A =    (A.3) 

Furthermore, to express the solutions in a simpler fashion, define several intermediate 

variables, 

 ( )1/36 4 2 2 3 3 280 216 201 64 8 6d a a b a b b a c abc c= − + − − + +  (A.4) 

 24 4e a b d= − + +  (A.5) 

 
34 3

2

a ab c
f

e

− −=  (A.6) 

 ( ) ( )2 23 1

2 2 4

d
g a b a b= − − + − + −  (A.7) 

 6 4 2 2 3 3 216 24 15 16 24 18h a a b a b b a c abc c= − − + + − +  (A.8) 

 ( ) ( )( )3 28 4 3 2m a ab c a b b ac= − − − +  (A.9) 

 ( )236 4 5p a ab c e= − +  (A.10) 
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    ( ) ( ) ( )( )5 2 316 20 12 15 5 4 5 3 4 3q e a a c ab b d e a b d e c b d e= + + − + − + − − + + − − +  (A.11) 

 ( )5 216 4 2r a a c bc= + −  (A.12) 

 t f g= +  (A.13) 

 v f g= − +  (A.14) 

 ( ) ( )33 4 32 3 4 4 48 15 20x cd a b d g cg ab b d g r= − + − − − + − + + −  (A.15) 

 ( )( ) ( )2 38 2 4 4 5y a b b ac e a ab c f= − − + − − +  (A.16) 

There are a total of four unique solutions. In terms of the intermediate variables, the first 

two solutions are given by 

 
( )

24

v x ym p q

hh e
µ

−+ += ±  (A.17) 

 2

2

e
s a v= + ∓  (A.18) 

 ( )2 1
2

4
e vσ = − ±  (A.19) 

and the other two solutions are 

 
( )

24

t x ym p q

hh e
µ

+− += − ±  (A.20) 

 2

2

e
s a t= − ∓  (A.21) 

 ( )2 1
2

4
e tσ = ±  (A.22) 

It is straightforward, albeit tedious, to verify that these solutions are correct by 

substituting them back into Equations (2.1)-(2.3) and also substituting for the 

intermediate variables given by Equations (A.4)-(A.16). 
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