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ABSTRACT

Biomedical ultrasound is a prominent imaging magdbr diagnostics.
Conventional ultrasonic imaging is qualitative gture with spatial resolution up to
hundreds of micrometers. Quantitative ultrasouctn&ues based on ultrasonic
backscatter can provide estimates describing tisgsamstructure. Improving
guantitative ultrasound techniques will resultrmproved diagnostic capabilities of
ultrasound.

Quantitative techniques were developed and asséssed on the envelope of
backscattered ultrasound. The envelope of baclksedtultrasound can be modeled as
the superposition of the scattered signals fronviddal scatterers in the medium being
interrogated. As such, the envelope signal isstiedl in nature. By applying a model to
the amplitude distribution of the envelope, infotima about the sub-resolution material
properties such as the scatterer number densitp@ashizational structure can be
obtained.

The homodyned K distribution was used to modektimneelope of backscattered
ultrasound. An efficient parameter estimation athon was developed and tested
through simulations and experiments. Techniquesdace estimate bias and variance
were assessed. The diagnostic potential of tiSsaeacterization based on envelope

statistics was evaluated.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Diagnostic medical ultrasound is a fast, safe, measive, and low-cost imaging
modality [1], [2]. This makes ultrasound an attheetapproach for the detection and
monitoring of disease. In fact, the use of ultrambto observe morphological structures
associated with disease dates back over 55 years [3

An even more robust diagnostic capability for Wtnaic imaging is possible if
tissue microstructure could be imaged. Howeverhtbwpathologic features used to
make diagnoses may be as small as 5 um [1]. Asguangmopagation speed of 1540 m/s,
the frequency required to achieve a 5 pum waveleisgtier 300 MHz. Besides the
present technical difficulties associated with pheduction of high frequency ultrasound,
properties of propagation in tissues, e.g., atteoniglimit the penetration depth used in
practice. Typical clinical ultrasound systems emggtequencies in the range of 1 to 15
MHz [4], [5]. A focused (f/2.4) 10 MHz linear arrasansducer typical of current clinical
systems has a penetration depth of roughly 5 comaisg a linear attenuation coefficient
of 0.5 dB/(MHz-cm). Considering only diffractionfefts, the axial resolution is 0.33 mm
and the lateral resolution is 0.26 mm [6]. Therefdhe direct imaging of tissue
microstructure on the scale of 10s of micrometelgss is not feasible, and alternative
approaches have to be used instead. By applyitegiatieal model to the amplitude

distribution of the envelope of backscattered atitand, some information about the sub-



resolution tissue microstructure can be obtained.nypothesize that this information is

useful for the diagnosis and monitoring of disease.

1.2 Envelope Statistics Models

A number of models for the statistics of the enpelof acoustic and optical
signals have been proposed over the past few deeadtteapplications to sea echo [7],
medical ultrasound [8], and laser [9]. Some of ¢ghdistributions include the Rayleigh
distribution, the K distribution, and the homodyri€edistribution. Because the
derivations of these distributions have been cavesgensively in the literature (e.qg.,
[10], [11]), only a brief review is given.

1.2.1 Rayleigh distribution

The Rayleigh distribution arises when a large nunotb@early identical and

randomly located scatterers contribute to the eotpeal [12]. The probability density

function (pdf) is given by

P (A =;A2exp(— 2,22} (1.1)

whereA (which is assumed to be positive) representstlielepe amplitude and? is
the variance of the Gaussian distributed in-phaseqaiadrature components of the
complex echo envelope [13].
1.2.2 K distribution

Jakeman and Pusey [7] introduced the use of thistiikalition, a generalization
of the Rayleigh distribution, in the context of muaave sea echo to model situations

where the number of scatterers is not assumed lergpe The pdf is given by [14]

Pa(A) =%(%Ajﬂ K, (bA (1.2)



wherer () is the Gamma functiork,, () is the modified Bessel function of the second
kind, n-th order, angu is a measure of the effective number of scattgrersesolution
cell. In ultrasound, the resolution cell volume t&ndefined as the volume of the point
spread function of the imaging system [15], ilee, ¥olume of the insonifed medium that
contributes to any given point in the echo sigihraEquation (1.2), the parameter can

be expressed as

b=2 |—H _ (1.3)

e[~ ]

whereE[-] is the expectation operator. The K distributioa imore general model that
approaches the Rayleigh distribution in the lipnit. o [14].
1.2.3 Homodyned K distribution

The homodyned K distribution was first introducgdJakeman [16]. Besides
incorporating the capability of the K distributicm model situations with low effective
scatterer number densities, the homodyned K digtab can also model situations where
a coherent signal component exists due to peritigiceated scatterers [11]. This makes
the homodyned K distribution the most versatiléhef three models discussed, but also
the most complicated. The pdf of the homodyneddfrithution does not have a closed-

form expression; however, it can be expressed'ma@®f an improper integral as [14]

(A= A xa(s) 3 A2 L9

whereJ, (+) is the zeroth order Bessel function of the fiisidcs’ is the coherent signal
energy,o” is the diffuse signal energy, apds the same as in the K distribution. The
derived parameteél = s/ g is the ratio of the coherent to diffuse signal aad be used to

describe the level of structure or periodicity aatéerer locations.



The pdf can also be expressed in terms of the &deGamma distributions [10],
A= p(A 2 pl (1.5)
0

Here p, (Al 2) is the Rice distribution with scale paramesgfz/ # and noncentrality

parametee whose pdf given by

e (Al Z):ﬂex —'U(AZ-FSZ)J IO(SAUJ (1.6)

0°z 20°z2 o’z
wherel () is the zeroth order modified Bessel function @f finst kind andp, ( z) is the
Gamma distribution with shape parameteaind scale parameter unity. The pdf of the
Gamma distribution with these parameters is giweib]

Zu—l g’

r(u)

p,(2)= (1.7)

The pdf of the homodyned K distribution can furtbe expressed as an infinite
summation (using the form given by [17], expresshngpdf in terms of the parameters

used in Equation (1.4), and simplifying),

H-1-2n
o sk 2 2
Zr - (”SAJ ;,//J(S—;A) KM_HE 2,u(sz+A2)j(1.8)
n=0

The series is convergent except for the case wbhnib<1/2 andA= <. The form

given by Equation (1.8) is especially useful fonmarically computing values of the pdf
as it is usually possible to quickly obtain a gaggbroximation of the pdf by considering
only a small, finite number of terms in the infaagummation. The accuracy of the
approximation depends on the particular parametiereg for which the series is
evaluated. In general, the rate of convergenciewses when the parameters are closer to

the case where the series does not converge(aeallt<1/2andA=¢<). Figure 1.1



shows four examples of the relative truncation refttte truncation error divided by
actual pdf value) versus the number of terms censitlin the truncated series.

To validate the approximation for a particular aieparameter values, the pdf can
be sampled for values @fon the interval0, a] wherea is chosen to be sufficiently large
such thatp,(A) is negligible on the tail of the distributiga, co]. Then, numerical
integration can be performed on the sampled pdthasgdf should integrate to unity, if
the result of numerical integration differs substdly from unity, the accuracy of the
approximation is questionable, suggesting that nermas are needed to obtain a good

approximation.
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Figure 1.1. Relative truncation error versus thenber of terms used in the truncated series given by
Equation (1.8).

The homodyned K distribution model has been crédi(e.qg., [18], [19], [20])
because of its analytical complexity. Hence, its ngas been somewhat limited and other,
more analytically tractable models such as the §jaka distribution [18], [19], Weibull
distribution [21], Rician inverse Gaussian disttibn [20], and generalized gamma

distribution [21] have been used instead. Becdusédomodyned K distribution is both



versatile and analytically complex, a goal of thisrk is to develop and apply methods to
reduce the impact of this complexity while retagthe benefits of the versatility. By
improving existing parameter estimation techniqaesurate parameter estimates can be
obtained quickly. An improved parameter estimaatgorithm will also provide more
accurate information to better elucidate the reteghips between the envelope statistics
and the underlying structures responsible for ipeats. Furthermore, as a by-product of
the estimation algorithm, a geometrical interpietatnto modeling of the envelope of
backscattered ultrasound using the homodyned Kialision can be obtained.

The goals of this thesis are to develop a fasteaxcdrate parameter estimation
algorithm based on the homodyned K distributiost tke limits of the estimation
algorithm, establish the spatial resolution of pagter imaging based on the quantifying
the estimate errors, and apply the estimation dlgorto experimental data and animal
models to evaluate the diagnostic potential of Eypeebased statistics. The remainder of
this thesis is organized as follows. In Chaptesting parameter estimation methods
are reviewed and evaluated and a new estimatiamitdm is presented to address the
shortcomings of the existing methods. Chapter 3qnts validation of the proposed
estimation algorithm through the use of simulated experimental data. The bias and
variance of estimates versus spatial resolutionoginelr factors affecting estimates are
examined in Chapter 4. Suggestions for future vamtk concluding remarks are included

in Chapter 5.



CHAPTER 2
PARAMETER ESTIMATION

2.1 Introduction

As a mathematical model, the homodyned K distrdyuts of practical use only
when it can be used to model actual data. Pararestienates, obtained by fitting the
model to data, can in turn be used to describenyidg material properties. Ideally, a
maximum likelihood estimator would be used; howedere to the analytical complexity
of the homodyned K distribution, this approachas fieasible and alternative approaches
must be explored instead.
2.1.1 Existing methods

Parameter estimation of the homodyned K distrilsukias received modest
attention in the literature. The most frequentlgdisnethods involve the use of even
moments (discussed in Section 2.1.1.1); howeveunaber of other approaches have
also been proposed, some of which are discussgdation 2.1.1.2.
2.1.1.1 Even moments

Dutt and Greenleaf [14] observed that the first &ax@n moments of the

homodyned K distribution have relatively simplesdd-form expressions,

E[ A|=5+20° (2.1)
E[A4}=8(1+%)04+80252+ g (2.2)
6 3 2 6 1 4 2 24
E[A]=48(1+—+—2j0' + 7{ 1!-—]0’ S+ 1¢2s'+ & (2.3)
H U H



Given N samples of the echo envelopg,i=1,2,.. N, moments of the envelope
amplitude of ordev can be estimated as
~ 1 N
E[AV]:WZa; (2.4)
n=1

By equating empirical estimates of the moments tiththeoretical moments given by
Equations (2.1)-(2.3), estimates of the parametktise homodyned K distribution can
be obtained. This method of parameter estimatiamaidequate for several reasons. First,
it requires solving a system of three nonlinearagigns in three variables. While it is
possible to solve the system analytically in clofedh (see Appendix A), parameters
obtained by solving the system of equations arealvedys valid (i.e., real and positive).
Alternatively, it is possible to search for a separameters that minimizes some error
criterion (such as mean squared error) betweethdwretical and estimated moments
using a gradient descent approach. Unfortunateiy,approach is susceptible to
convergence to local minima. While other searclraigms may not have this limitation,
computational complexity can be a problem. Finailyte that the convenience of having
simple closed form expressions for the moments samhéhe expense of having to use
high order moments. It may not be desirable tohigle order moments (e.g., fourth and
sixth moments) because their estimates can be easiky corrupted by large outliers
compared to lower order moments.
2.1.1.2 Miscellaneous

Dutt [10] investigated several other estimationrapphes, including using lower
order integer moments (first, second, and third mats) and using signal-to-noise ratio
(SNR) and skewness derived from these lower oraenemts. Unfortunately, these

approaches all relied on approximations of the,fsscond, and third moments of the



homodyned K distribution. While these approximasiatiowed for efficient estimators
to be implemented, the estimators were found toparpoorly in terms of consistency.
Eltoft [22] developed an iterative parameter estiomaalgorithm based on an
approximation of the pdf of the homodyned K disitibn. Again, the use of an
approximation limited the usefulness of such arreqgh.

Parameter estimation of the simpler K distributh@s received significantly more
attention in the literature. A number of parametgimation approaches have been
proposed, including the use of neural networks,[E3]]. The performance of estimators
based on neural networks has been mixed and thputational complexity can be
problematic. Nonetheless, such an approach couédl@pted for use with the

homodyned K distribution.

2.2 SNR, Skewness, and Kurtosis M ethod
2.2.1 Introduction, background, and motivation

Most parameter estimation algorithms for the honmedlyK distribution
somehow involve the use of moments; however, tiogcelof moment order has been
investigated with varied results. Apparently du¢h® analytical convenience, Dutt [10]
used even integer moments to estimate parameténs bbmodyned K distribution.
However, it has been reported that the use ofifnaat moment orders yields more robust
estimates [25], [26] for the simpler, but relat&djistribution. Prager et al. [27] found
moment order 1.8 to be optimal for speckle disanation using the homodyned K
distribution; however, it has been reported that thaim may not be justifiable and that a

simple optimum moment order for parameter estimadioes not exist [28].



Based on the lack of consensus in the literaturevf@t constitutes the optimal
moment orders, it would be desirable to employstmetion algorithm capable of using
arbitrary moment orders. Then, the choice of monoedér could be optimized for the
particular estimation algorithm, or even the patic data set. The following sections
describe the framework for an estimation algorithat is both exact (i.e., does not resort
to any algebraic approximations) and flexible (ableise arbitrary moment orders).
2.2.2 Nonparametric classifiers: SNR, skewness, and kurtosis

While the homodyned K distribution model is a fuontof three model
parametersy, <, ando), only two parameters yield independent infornratiBecause
the s ando parameters scale together with the relative angs#itof the envelope, only
their ratio, expressed as the amplitude indepernulmaimetek = s/ g, is important. The
estimation methods described in Section 2.1.1.Giregimultaneous estimation of all
three model parameters. It may be desirable tmagti only the two independent model
parameter& andu. This is possible through the use of certain ncapatric classifier
functions that describe data in a general way, fi® any assumed models. That is,
nonparametric classifiers are used as an interrieesiiep between the raw data and the

parameter estimates (see Figure 2.1).

Raw data Nonparametric classifiers|

(envelope samples) (SNR, skewness, kurtosis) Parameter estimates

Figure 2.1. Procedure for parameter estimationgusonparametric classifiers.

Various nonparametric classifiers have been usedhi envelope signal

processing. Dutt and Greenleaf [25] used SNR tmest the scatterer number density

10



using the K distribution, Prager et al. [27] us@&tRSand skewness as discriminant
functions for speckle, and Wachowiak et al. [23difunctions based on skewness and
kurtosis as inputs to artificial neural networketiimate parameters of the K
distribution. As discussed in Section 2.1.1.2, Dutestigated the use of SNR and
skewness for parameter estimation of the homodihédtribution. Wear et al. [29]
used the square of the SNR to estimate the nunilsgatierers per resolution cell. Note,
however, that the square of the SNR was found teebsitive only in the range of small
scatterer number densities, i.e., one or two seaiger resolution cell [29]. Finally, it
has been noted that skewness and kurtosis caredgagest whether or not a measured
envelope follows the Rayleigh distribution [30].

Motivated by the use of these nonparametric cl@ssiin the literature, all three
classifiers (SNR, skewness, and kurtosis) were urstte proposed estimation algorithm.
To allow greater flexibility, these statistical stifiers are based on arbitrary powers of
the envelope, following previous work [25], [31]lg&braically, the SNR, skewness, and
kurtosis of samples of the echo envelope raiseahtarbitrary positive power can be

expressed as [27], [32]
E[A']

R = 172 (2.5)
(E[A*1-ET A1)
_E[A]-3HARIERI+2 H A (2.6)
(ELA1-ET A1)
« <ELAI-4EAEARI 6 EA E A3 B R 2.7)

v 2
(E[A*1-ET A1)
Note that the signal-to-noise rat®) can also be recognized as the reciprocal of

the coefficient of variation (CV). Also, the terimsthe denominators of Equations (2.5)-
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(2.7) can be recognized as powers of the variahtteeenvelope samples raised to an
arbitrary positive power. As such, they are guaradtto be positive, ensuring that these
functions are well defined because division by z#yes not occur for any valid
combination of model parameters.

These classifier functions provide a good bagisfaracterizing the shape of the
distribution of many kinds of data. The SNR meastihe mean divided by the standard
deviation, the skewness quantifies the asymmettletlistribution, and the kurtosis
characterizes the peakedness of the distributtopaiticular, these classifiers can be
used to describe the distribution of envelope samptigure 2.2 shows plots of pdf's of
the homodyned K distribution illustrating the eteof shape of the distribution on the
classifier function values, and Table 2.1 lists pheameters used to generate the pdf’s.

Each pdf was approximated numerically using adinimber of terms in Equation (1.8).
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Figure 2.2. Plots of pdf's of the homodyned K disition using various model parameters.

The SNR, skewness, and kurtosis were calculated)ulse methods described in
Section 2.2.3. The SNR increases monotonicallyifese four pdf's as the peak (i.e.,

mode) moves to the right and hence the mean inese@onsistent with shapes of the

12



curves in Figure 2.2, pdf D has the lowest skewméske pdf's A and C have somewhat
larger skewness values. Finally, the kurtosis d%sp#, B, and D are all small compared

to the kurtosis of pdf C which is clearly the mpstked.

Table 2.1. Parameters for pdf's plotted in Figu2 ZThe SNR, skewness, and kurtosis are based on
moment order =1.

odf Model parameters

7 S g k=slo SNR skewness  Kkurtosig
A 10 0.1 1 0.1 1.81 0.83 3.83
B 10 1 1 1 1.95 0.64 3.40
C 1.2 1.8 1 1.8 2.34 1.03 5.51
D 10 2 1 2 2.49 0.31 3.08

2.2.3 Moments of arbitrary order of the homodyned K distribution
Because the estimation algorithm is to be baseatloitrary moment orders, some
initial development is needed. Moments of arbitramgerv of the homodyned K

distribution can be expressed as [27]

v

(202 V2T (1+V/2) Yous _ -V —us’
E| A |= 2 Bl —L—— 2.
(G R Ak T I

WherelFl(a; b; x) is the confluent hypergeometric function of thstfkind. By
substitutingk = s/ o in the argument of the hypergeometric functiorinieg the

improper integral as a function of three variables,

T+ 12) Yo (v —uk?
I(k,u,v):jgxﬂue l|:1(7l/;1; ’;IX jdx (2.9)

> [(u)

and pulling constants out of the integral, Equat{@®®) can be written as

E[A”]{ZZZJ; (K, f.v)

Performing the integration in Equation (2.9) and@ifying,

(2.10)
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|(Kyy):EQiKEQPTULF{_KﬂiﬁﬁWﬂj_

r(u)
) , (2.11)
] (/J)” (kzyj 1F2(:U;1+,7,1+,7 k_élﬂ

r(-v12)r?(1+n)sin(nm)| 2
Wherele(a; b ¢ x) is a hypergeometric function and, for convenietioe definition
vV
n=u+— (2.12)
2
is used. Thus, moments of the homodyned K disiobutf arbitrary order can be
evaluated numerically in a relatively simple wayngsEquations (2.10) and (2.11).

Some discussion on the convergence of Equatiod)&Wwarranted. When is

an even integer, Equation (2.11) can be expressadriuch simpler form [10],

(N1’ ¥2 T (vi2+u-m) (kzﬂjm
M(u) & (m)P(viz-ml 2

| (k,p,v)= (2.13)

When applicable, use of Equation (2.13) insteaBdpfation (2.11) is preferable because
the former also eliminates the difficulties in deglwith the ternT (—v / 2) in Equation
(2.11), which is infinite whem is an even integer. Hypergeometric functions efftrm

o Fq (al, a,-a,;h,b,...,0 ;>) are convergent for ak when p < g provided that none of
theh, i=1,2,...q are negative integers or zero [33]. Therefore,iwhis an integer, the
hypergeometric function in the first term of Eqoati(2.11) diverges. The second term in
Equation (2.11) also diverges wheiis an integer because of the tesim(s777) = C that
appears in the denominator. Should it be desiredngpute moment orders wheres an
integer and/ is not an even integer, linear interpolation carubed by considering small

perturbations around the offending parameterseeiththe form

L (k,pu+ev)+1(k,u-ev)

| (k,pv)= 5

(2.14)
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or

)= | (k,pv+e)+1(k,uv-¢)
2

(K, v (2.15)

wheree¢ is a small real number. The error in these appnakbns can be made arbitrarily
small by choosing a sufficiently smail
2.2.4 Nonparametric classifiersusing arbitrary moment orders

The theoretical value for the SNR of envelope sasmphised to arbitrary positive

powerv can be expressed in terms of parameters of thedgmed K distribution by

substituting Equation (2.10) into Equation (2.5),
(202 /,u)E | (K, V)

[(20’2 /,u)v I (k,,u,Z/)—(( V.o //,1)% | (k u V)jz}

R = (2.16)

which simplifies to

_ | (k, i)
* _\/' (k, 1, 20) =12 (K 1 V) (2.17)

Note that Equation (2.17) is a function of the twdependent model parameters as
claimed in Section 2.2.2. This property also hétsS, andK, by using Equations (2.6),
(2.7), and (2.10), giving

(k,p, ) =3 (k V)1 (ko 2)+ 23(k py)
(1 (ko ot 2) =12 (k )

S = | (2.18)

and

(k) A (kpup)l (kp,3)+ 6(k p,2)1%(k pru)+ B(k 4u)
(1 (ko 2) =12 (ko))

K

v

(2.19)

In fact, the property holds for any finite functadrtombination of classifier functiorts

in the form
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[Zapere]]

F=20 (2.20)

( :1bm|j e | AYp-m]]ﬂ

T WX =B YomZom (2.21)

>

M=z

3

provided that the criterion

is satisfied for all pairs ah, n01,2,...,N wherea, 3, a,b, W, X, ¥, andz,  are
real constants and andN are positive, real constants. Equations (2.5)}(@.& specific
realizations of the general form given by Equa(:20).
2.2.5 Estimation using level sets

Martin-Fernandez et al. [31] first introduced atiraation methodology for the
homodyned K distribution using level sets; howettee, algorithm was based on only the
SNR. The present estimation algorithm containsre¢wecremental improvements over
this initial idea, most notably the extension tolurde skewness and kurtosis.

Fundamentally, parameter estimates are obtainddlloying the procedure
outlined in Figure 2.1 and equating theoreticatealfor the nonparametric classifiers
(given by Equations (2.17)-(2.19)) with empiricallwes estimated from envelope
samples. The complexity of these equations rulésioy closed-form algebraic solution,
but other approaches can be used instead.

For a fixed moment ordew, the nonparametric classifiers are functions af tw
variables. Therefore, given an estimate of a narpatric classifier, it is possible to map
out a curve of possible parameter values (a lawele) in two dimensions. Such an

example is shown in subplot (a) in Figure 2.3. Bpgidering a second classifier

16



function, a second level curve can be drawn (sulfphan Figure 2.3). Because there are
two unknown model parameters, two classifier funredishould uniquely identify a
parameter estimate because their level curves ghatgrsect at one point. However, for
improved robustness, three classifier functionsuaes (subplot (c) in Figure 2.3)
resulting in an overdetermined system. Furthermexe| curves using a number of

different moment orders can be used, resultingfurther overdetermined system.

5 5 5
4 4 4
3\—— 3 3
X~ Ry X~
2 2 2
1 1 1
0 0 0
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2 -3 -2 -1 0 1 2
0, (1) 09, (1) 09, (1)

@) (b) (©

Figure 2.3. Examples of level curves using momedé =1 for (a) SNR, (b) SNR and skewness, and (c)
SNR, skewness, and kurtosis. Intended parametees& = 2 and logo(u) = 0.7.

2.2.6 Implementation issues

2.2.6.1 Sampling nonparametric classifier functions

To limit the amount of computation needed to perfgarameter estimation,
theoretical values of the nonparametric classifggven by Equations (2.17)-(2.19) are
first sampled on a rectangular grid. Provided thest sampling is sufficiently dense, good
approximations of level curves can be constructdel\sfrom the samples of the
nonparametric classifiers without resorting to ¢edi and time-consuming calculations.
Thus, the sampling only needs to be performed aarwe thereafter the sampled

theoretical classifier function values can be usgeatedly for parameter estimation.
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To encompass the expected range of parameter @bt@sed from simulations,
phantoms, and experimental data, a 601 point grid was used withon the interval
[0, 5] andu on the interval0.001, 10C. Thek parameter was sampled on a linear scale
while theu parameter was sampled on a logarithmic scale.eftve, the spacing
between the values &fwas 0.01 and the spacing between the valumg(u) was
0.01.
2.2.6.2 Determining level sets

Each level curve is determined by finding a setmftiguous points on the
sampling grid such that the theoretical classiiiection value at each point closely
approximates the estimated classifier function @alisampled classifier function of a
particular moment order can be denoted as a fumcfitwo variables a6 (k, ). Each
complete level curve is determined using a twoestagcess. First, for each valuetof
used in the sampling process, thealues of all zero crossings Ef(k,/,l) ~ F are found
whereF is the estimated classifier function value. THengach value ok used in the
sampling process, the values of all zero crossings Ef(k,,u) — F are found. The
collection of all the points where the zero crogsinccur defines the level curve.
Performing both of these steps ensures that a eejmonnected level curve is found, as
shown in the example in Figure 2.4. Note that #® zrossings typically occur between
two points; the point closer to the zero crossgghosen to make up the level curve (this
is also illustrated in Figure 2.4).
2.2.6.3 Deter mining parameter estimates

Parameter estimates are obtained by considerindistence from each level

curve to a point ink, 1) space. The point where the L2-norm (i.e., theasguoot of the
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sum of the squares of the distances) is minimidedtifies the pair of parameter
estimates. Note that this distance is measuredtidtk parameter on a linear scale and
the i parameter on a logarithmic scale. Figure 2.5 shteawsxample of this distance
metric where the L2-norm was exhaustively calculdte each point on the sampling

grid.

+4|+4| +3| +4[+5| +5|+7 [ +9
-1 -1 -1 +3] 43| 43| +4| +7
-1]-2(-1]-2|+1| +1|+5|+6
5(-6|-5|-3|-2|+1|+5|+6
S5-6]|-6|-2|-2|+1|+3[+7
-8|-7|-5|-2|-2|+1|+3|+6
6|-6|-3|-2(-1|+3|+4|+5
S5 -5|-2|+1[+2|+4|+5| +7

X
(@) (b)

X

X
(© (d)

Figure 2.4. Example of the process of finding lemalves: (a) the difference between the samplesbitiar
function and its estimated value, (b) the pointstenlevel curve determined by the sign changesfor
constantx, (c) the points on the level curve determinedheydign changes ixfor constanty, and (d) the

complete level curve (the shading indicates whetlaeh point was obtained from (b) or (c) or both).

Motivated by the example in subplot (b) of Figurg,2he point that minimizes
the L2-norm could be determined by exhaustivelgwdalting the L2-norm at each point
on the grid where the classifier functions werel@ated, and simply selecting the

minimum. While this is a reliable technique, itime consuming. The example shown in
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subplots (b) and (c) of Figure 2.5 suggests that&rnorm using this estimation
algorithm is a fairly well-behaved function, i.&.does not have local minima scattered
over the entire search space. Therefore, a madesif search technique can be used to

find the global minimum of the L2-norm.

5 5
4 4 0.8
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1 1 0.2
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Ioglo(u) loglo(u) log, ()

(@) (b) ()

Figure 2.5. lllustrations of level curve distancetrit: (a) SNR, skewness, and kurtosis level cunsisg
moment ordev =1, (b) L2-norm of Euclidean distances from the tHeael curves, and (c) close-up view
of L2-norm of Euclidean distances near the optimumended parameter valuds= 2 and logy(u) = 0.7.

A grid search was implemented to locate the glaiaimum of the L2-norm. As
implemented, the L2-norm is first coarsely sammladh grid of 11x 11 discrete points
spanning the entire search space. The point whereZ-norm is minimized is selected
as the center of a new search space that is onih fine size of the original search space.
This smaller search space is resampled on arnl1point grid, and the procedure is
repeated until convergence is reached. This praselésstrated in Figure 2.6.

The grid search algorithm was validated againsetthaustive search by
generating sets of samples of the homodyned Kildigion using the approach described
in Section 3.1.1. Thk parameter values were drawn from the set {0.5,.1.04.5} and
the values ofog, () from the set {-2.5, -2.0, ..., 1.5}. For each condtion of model
parameters, 10 independent sets of samples weesaged. Estimates were performed on

each set of samples using an exhaustive searchsamgla grid search. In every case, the
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grid search located the same global minimum agxhaustive search, suggesting that
the grid search is sufficiently robust. Furthermahe grid search algorithm was found to
be roughly 160 times faster than the exhaustiveckea

A gradient descent algorithm was also investigafdithough it was slightly faster
than the grid search, it was found to be unaccépfab parameter estimation due to

convergence to local minima.

=

Figure 2.6. lllustration of four iterations of tgeid search algorithm.

Note that the L2-norm at the optimum may give samaécation of goodness of
fit: if the L2-norm is small, the level curves comlese to intersecting at a single point, if
the L2-norm is large, they do not. A large L2-namay suggest that the signal is noisy or
that the assumptions used in deriving the homodyhditribution model are violated.
2.2.7 Geometrical interpretation of level sets

By examining the collection of level sets, a geamal interpretation of the
estimation process can be obtained. For simpliEityire 2.7 shows examples of the
intersection of only two level curves. In subpla}, (where the level curves intersect
almost perpendicularly, parameter estimation isetgx to be robust. In subplot (b), the
curves are somewhat less perpendicular, but inlsufy, they are almost parallel. In

this case, any small perturbations in the estimaitéise classifier functions used to
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determine the level curves will shift the levelwes a small amount. This small shift may
cause the intersection point, and hence the paearestimates, to change substantially.
That is, nearly parallel lines represent an ill-diioned system while nearly
perpendicular lines represent a well-conditionesteay [34]. For these reasons,
parameter estimation is expected to be weakerdgesimilar to the example in Figure

2.7(c).

o B N W K O
w
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o B N w b~ O

-2 -1 0 1 2 3 -2-1 0 1 2 3 -2-1 0
l0g, (W) log, () log, (W)

@) (b) (©

1 2

Figure 2.7. Three examples, each of two intersgdéwel curves (derived from SNR and skewness using
moment ordev =1). Intended parameter values: kaF 2 and logy(1) = 0.48, (b)k =1 and logy(u) = 0.7,
and (c)k = 0.E and logo(u) = 1.

One could attempt to address this problem by usiagy different level curves
by considering different moments. While this woirdrease the complexity, it would not
address the fundamental ill-conditioning of theerse problem of parameter estimation
because, for certain combinations of model paramsietiee generated curves will have
little variation in the parallel orientation betweknes at the point of intersection
regardless of the choice of moment order.
2.2.8 Interpretations of sampled classifier function data

Examination of the samples of the classifier fumasi reveals further insights into
parameter estimation from the homodyned K distrdutFigure 2.8 shows the SNR,

skewness, and kurtosis as function& aind  using moment order =1.
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Figure 2.8. SNR, skewness, and kurtosis clasdifigctions for moment order =1. The left panels show
level sets superimposed on top of the actual fanotalues. The arrows in the right panels repretbent
direction and relative magnitude of the gradiemtgarithmic scaling is used for parameters withdarg
dynamic range.
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The gradient subplots, (b), (d), and (f) in Fig@rg help reveal where one would
expect parameter estimation to work well and wioere would expect parameter
estimation to perform poorly when the SNR, skewnasd kurtosis classifier functions
are used. In particular, observe that the gradsewtry small for all three functions when
M is large and is small.

The level curves in subplots (a), (c), and (e)iglFe 2.8 are consistent with the
results in Table 2.1. The level curves are genehalflizontal in subplot (a) because the
SNR parameter increases as klfgarameter increases. The level curves in subgjare
generally vertical because the kurtosis decreaséseg parameter increases.

To verify that it is the homodyned K distributiorodel itself, and not some effect
of the classifier functions, causing the gradienbé small for large: and smalk, pdf's

of the homodyned K distribution were plotted (seguFe 2.9).
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Figure 2.9. Variation in the pdf of the homodynediktribution for different values gf. For all four pdf's
shown, parameters= 0. ando =1 were used.

Visually, the differences between the pdf’s for 2.5 andy = 6 are more substantial

than the differences between the pdf'sfior 6 andy =15C This illustrates the well-
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known Rayleigh limit of about 10 scatterers peoheson cell, i.e., the point at which the

envelope statistics are considered to be Raylagghlwuted [35], [36].

2.3 Choice of Moment Orders

Examination of the classifier functions based dfedent moment orders reveals
functions that are qualitatively very different.rfexample, Figure 2.10 shows the SNR
for two different moment orders. There exist suliséh differences in orientation of the
level curves for small values @f Due to these differences, it would be expectad th
parameter estimates obtained using different momelgrs would have varying quality

(i.e., bias and variation).
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100, (1) 100, (1)

(a) (b)
Figure 2.10. SNR as a functionlofind i for (a)v = 0.1and (b = 2.

Based on the reasoning in Section 2.2.7, in omlebtain the best possible
parameter estimates when using two level curvesutid be desirable to have level
curves that intersect as close as possible to padipdarly. When more than two level
curves are used to estimate parameters, the stime ahgles between all pairs of level
curves may be a more appropriate quantity to seekaiximize. Figure 2.11 shows three
examples of this metric, each using four level esnNote that while there are level

curves in both subplots (b) and (c) that are pedjpetar, the system in subplot (c) is
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better conditioned. Also, the level curves in sobgh) represent a relatively poorly

conditioned system. These observations are refldntehe sum-of-all-angles metric.
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Figure 2.11. Three examples illustrating the anbktsveen level curves. The sum of the angles betate
pairs of level curves is (a) 200°, (b) 310°, and@n°.

In order to optimize the sum of the angles betweweal curves, these angles must
first be determined. To measure the angle betw&enédvel curves, it is useful to first
define the angle of each curve with respect txedfireference. Given a classifier
functionF (k,,u) based on a particular moment order, the angleeofavel curve at the

point (k, 4) with respect to horizontal (i.e., the line givi@nconstank) is given by

oF /o0
@ =arcta —A (2.22)
OF I3K|,,

Note thatoF / du anddF / dk are components of the gradientFafEquation (2.22) makes
use of the property that the gradient and levelesiare perpendicular to each other. The
angle between two level curves can easily be fdynapplying Equation (2.22) to each
level curve and taking the difference between tigdes.

Using Equations (2.17)-(2.19), (2.11), and (2.22¢,angles between level curves
derived from SNR, skewness, and kurtosis couldared as functions d, 1, andv in
closed form. Then, calculus could be used to detertie derivative with respect oof

the expression for the angles between level cuBrsetting the derivative to zero and
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solving forv, the value ol that results in the largest angle between levelesicould
be found. Unfortunately, this approach quickly bees untenable because of the
analytical complexity. However, a close approximatof this calculation can be made
by working with the discrete samples of the classiunctions of various moment
orders.

To implement this approximation, the SNR, skewnasd kurtosis functions
were sampled on a grid as in Section 2.2.6.6anging from 0.001 to 100 (on a
logarithmic scale) anld ranging from 0.0 to 5.0. Moment orders rangingrfr@.02 to 1.0
in increments of 0.02 were used. Then, the SNRys&ss, and kurtosis functions for
two moment orders at a time were considered. At @aint on the sampling grid, the
sum of the angles between all pairs of the sixllemeves (SNR, skewness, and kurtosis
for each of the two moment orders considered) wasd. Then the average value of this
sum for all points on the sampling grid was deteedi This calculation was repeated for
all possible pairs of two moment orders, and thethat maximized this sum was
selected as the optimal moment orders. The oppaialof moments was found to be
v ={0.72,0.88, as shown in Figure 2.12. These two moments ae fzs parameter
estimation throughout the rest of this work. Thensaf angles between all pairs of level
curves for this pair of moments is shown in FigrE3. These two moments are
relatively small compared to the second, fourtld simth moments used in the even
moments estimation algorithm described in Sectidnl?1, suggesting that this estimator
is less sensitive to outliers. Note, however, thatcalculation of kurtosis involves the
use of the moment orddv. Thus, in some sense, moment orders as largb2afe

employed.
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The choice of moment orders could be improved sdmagévl there were
information available about the a priori distritwutiof parameter values. The
optimization used here assumes all parameter valuése sampling grid occur with
equal probability; that is, it minimizes the totaist over the entire space of paramekers
andu examined. For particular pairs of model paramdierg), other pairs of moment

ordersv may yield better results.
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Figure 2.12. Average over all sampling points &f $him of angles between all pairs of level curees f
classifier functions derived from two different ment orders. Subplot (b) shows a close-up view ef th
optimal pair of moment orders.
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Figure 2.13. The sum of all angles between paitewafl curves for SNR, skewness, and kurtosis setisel
two model parameters for moment orders 0.72 arl 0.8
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2.4 Limitations
2.4.1 Model limitations

It deserves to be repeated that when the numbsratterers per resolution cell is
large (i.e., greater than about 10), the statistidthe echo envelope approach the
Rayleigh distribution, and hence little informatiabout the scatterer number density can
be obtained [37]. Therefore, reliable estimatioresricted to cases where the scatterer
number density is sufficiently low.

Note that the estimation algorithm presented retbeaoretically capable of
measuring scatterer number densities up to 1@@utd be reasonable to assume that
any estimates above 10 are suspect. Therefore, pdréarming estimation on sets of
data, postprocessing may need to be applied (ejgction of samples with estimated
densities above some threshold).

2.4.2 Estimator limitations

The most obvious limitation of the SNR, skewnessl leurtosis method as
presented here is that the model parameters musittain the range of the sampling
grid used to compute the SNR, skewness, and kartmsctions. It is impossible to make
a parameter estimate when a level curve cannaiwefin the sampled data. A more
subtle limitation is that parameter estimation rtbaredges of the grid may be poor
because the algorithm does not make use of whaengpoutside the sampling grid; the
distance metric that the estimator seeks to mirgra@uld be incorrect because it lacks
the complete level curve. A contrived example tiagng this potential limitation with
two level curves is shown in Figure 2.14. Lastlgtenthat signals acquired from closely

separated scan lines are correlated [38], [39]dduthis condition of correlated samples,
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the estimates of the moments of the samples (Equéli4)) are unbiased, but the
estimates of SNR, skewness, and kurtosis may Isedi@5], [30]. However, this has not

been found to be a substantial problem in practice.

Estimation region ==

—_———— -

Figure 2.14. Example illustrating the potential pestimator performance near the edges of the sagnpl
grid. The estimation region (shaded) representsahge of sampled classifier function values amdlities
represent two level curves. The point that minimitee L2-norm of the distance from the two levelves

is p, but the estimator will find pwhich minimizes the L2-norm using only the infoina available
inside the estimation region.
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CHAPTER 3
TESTING AND VALIDATION

The estimation algorithm presented in Chapter 2tesi®d in a variety ways that
were increasingly representative of the ultimatal @d the statistical modeling of the
envelope: being able to discriminate differentuessypes associated with disease.
Specifically, the testing methods applied artifigigenerated samples of known
distribution, computer simulations, physical phango biological phantoms, and animal

tumor models.

3.1 Direct Method

The simplest method of testing the estimation rauis by making parameter
estimates from sets of samples of the homodynestkilzltion generated with known
parameters. This same type of approach has bedrtausgaluate different estimators for
the Nakagami distribution [40]. This method prowdefast and efficient way to evaluate
the estimation algorithm, make comparisons witleptstimation techniques, and
evaluate factors that may affect estimate biasvanidtion.

3.1.1 Generating samples of the homodyned K distribution

Independent, identically distributed (i.i.d.) saegbf the homodyned K
distribution can be generated by exploiting thefgiven by Equations (1.5)-(1.7) and
using the approach in [31]. That is, i.i.d. sammethe homodyned K distribution with
parameterg, <, ando can be created by first generating samples ofdnema

distribution with shape parametgrand scale parameter unity. These samples of the
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gamma distribution can be denotedzasi =1, 2,...n, wheren is the number of samples
to be generated. For each sanpléhe i.i.d. samples of the homodyned K distributio
are computed by generating a sample of the Ri¢gldifon with scale parameter
o./z | 4 and noncentrality parameterUsing properties of the Rice distribution [41],
these samples of the Rice distribution are given by

A=K +y (3.1)
wherex andy are independent samples of the Gaussian diswibwith mean values of

s and zero, respectively, and each with variange / 4, i.e.,

X =s+ X0\ zl 4 (3.2)
Y =Yoyzlu (3.3)

where X, andY, are i.i.d. samples of the unit Gaussian distrdyuti

In summary, i.i.d. samples of the homodyned K thistion can be generated
using samples of simpler distributions, viz., tla@ngna and Gaussian distributions. An
illustration summarizing the procedure for transforg these samples of the gamma and
Gaussian distributions into a sample of the homedyK distribution is shown in Figure

3.1.

y
X
+

Figure 3.1. lllustration of the procedure for gezierg a samplé of the homodyned K distribution. Inputs
o, U, ands are the desired parameters of the homodyned Khiitibn, X andY are i.i.d. samples of the
unit Gaussian distribution, ardis a sample of the gamma distribution.
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Samples of the simpler gamma and Gaussian disoitsitan be generated using
built-in functions in common software applicatiansluding MATLAB (The
MathWorks, Inc., Natick, MA), Mathematica (WolfraResearch, Inc., Champaign, IL),
and Microsoft Excel (Microsoft Corporation, RedmokidA).
3.1.2 Comparison of estimation methods

The SNR, skewness, and kurtosis method (Sectign&a compared with the
even moments method (Section 2.1.1.1) by applyaul @stimator to i.i.d. samples
generated for a variety of parameter values angkasizes. For each combination of
parameter values and sample size examined, 10pendent estimation trials were
performed to establish the variability of estimateswveen trials. To implement the even
moments method, a gradient descent algorithm wed tasfind the set of model
parameters that minimized the sum of the squaréseatelative error in the even

moments,

52( E[ A ]- E] Azn}]z a4

E[Azn}

The relative error, rather than absolute error, wsesl because the absolute error is
generally much larger for the sixth moment thantiier second moment. To help mitigate
the main limitation of the gradient descent appmhae., convergence to local minima,
the gradient descent search was started from teedad model parameters which had
been used to generate the i.i.d. data. Furtherrhemause estimates obtained using the
SNR, skewness, and kurtosis method are intringitialited to a certain range of
parameters while estimates from the even momentisadere not, any estimates from

the even moments method that fell outside of thgeaised by the SNR, skewness, and
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kurtosis method were discarded. Finally, for theesawhen the SNR, skewness, and
kurtosis method failed to produce an estimate (b&e#he nonparametric classifiers were
out of range), the corresponding even moments agtimas not considered.

The bias and standard deviation (SD) of the patanestimates obtained from
each estimation algorithm were calculated for esstlhof samples. The bias and SD were
normalized by the true parameter values to allomparison between estimates obtained

for different parameter values and between thedstonation algorithms:
. . E|¥X-x
relative blas:L (3.5)
X

Var[]
X

normalized SB= (3.6)

wherex represents the true parameter value (used to @jertbe i.i.d. samplesy,
represents the estimates of the parameter valoetfre 100 independent trials, and
Var[-] Is the sample variance. A representative samplleeofesults is shown in Figure
3.2. For the majority of parameter values testeel SNR, skewness, and kurtosis method
yielded estimates with lower bias and SD than tlemenoments method despite the
untenable advantages used with the even momenk®digt this comparison.
Furthermore, the speeds of the two estimation dlgos are roughly equal. By pushing
the complexity back into the nonparametric classifiinction calculation, the SNR,

skewness, and kurtosis method is fast and produoes accurate and precise estimates.

3.2 Simulations
Computer simulations were performed using the Rieldtrasound simulation
program [42], [43] to examine the effects of vagystatterer number densities and

organizational patterns on the statistics of thestpe.
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Figure 3.2. Relative bias and normalized SD ofhestés derived using the SNR, skewness, and kurtosis
method (solid red lines) and the even moments ndefttashed green lines) as functions of ghgarameter
with k fixed (subplots (a)-(h)) and as functions of khparameter withu fixed (subplots (i)-(p)). One
hundred trials, each of 1000 i.i.d. samples, waezlifor each data point.
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Simulations were performed using a single-elemecided (f/4) transducer with
a center frequency of 10 MHz. The ideal transdheer a geometrical focal length of
50.8 mm and was excited with a Gaussian windoweassidal pulse with a 50%
fractional bandwidth at -6 dB. The -12 dB pulse@bleamwidth of the transducer,
approximated a.41 f *, whereA is the acoustic wavelength ahdis the focal number
of the transducer, was 0.86 mm. Simulations wertbpaed using phantoms containing
point scatterers. The echo signals received fraptiantoms were sampled at 200 MHz.
No noise was added in the simulations. A constagé¢d of sound of 1540 m/s was
assumed.

The resolution cell volume was estimated by scanaisingle point scatterer
located at the focus of the transducer. Followingt @nd Greenleaf [14], the resolution
cell was defined by the -20 dB contour of the eapel Due to the circular symmetry of
the beam pattern, the three-dimensional resolusdinvas determined by the volume of
revolution of the two-dimensional resolution cddbat the axis of the transducer. This
characterization procedure is illustrated in FigBu® The resolution cell volume was

found to be 0.184 min
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Figure 3.3. Characterization plots for the simudat® MHz transducer: (a) B-mode image of the sdan o

the single scatterer, (b) a two-dimensional repredon of the -20 dB resolution cell, and (c) eetht
dimensional depiction of the resolution cell.
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3.2.1 Scatterer number density

Computational phantoms were constructed with seatteimber densities
ranging from 1.0 to 10 scatterers per resolutidhicéncrements of one. For each of the
10 scatterer number densities examined, 10 indgm¢mpihantoms were constructed by
randomly placing point scatterers within a voluméeight 17.2 mm, length 20.7 mm,
and width 1.72 mm. The height was chosen to coor@s$po the approximate -6 dB depth
of focus of the transducer, the length was chosdret24 beamwidths, and the width was
chosen to be two beamwidths. The center of themrelwas placed at the geometric

focus of the transducer. A summary of the simutasietup is depicted in Figure 3.4.
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Figure 3.4. lllustration of the transducer (locas&tdhe origin) and the volume containing pointtssars
used for simulations.
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Radio frequency (RF) echo data was simulated fan $oes spaced 0.43 mm (i.e., half a
beamwidth) apart. The envelope of the RF datadohecan line was detected using the
Hilbert transform.

The envelopes for all the scan lines were aligogditm an image. The analysis
of the image was divided into regions of interé¥D(s) sized approximately 2 mx
mm and overlapped by 75% both laterally and axi@lyelope statistics model
parameters were estimated for each ROI using the, Skewness, and kurtosis method
described in Section 2.2. For each simulated imthgeestimates from all ROIs were
averaged together to produce a single gaipj of parameter estimates. The mean and
SD of these average values were calculated froh@hedependent phantoms for each

of the 10 scatterer number densities examinedra@$dts are plotted in Figure 3.5.
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Figure 3.5. Estimated scatterer number densityugettze actual scatterer number density for simdlate
phantoms. The error bars are two standard deviatanyg. Ideally the estimates would lie on the @ash
green line.

The mean estimated scatterer number density ireseaenotonically as the actual
scatterer number density increases, although timaass show a positive bias for

scatterer number densities less than five and ativegoias for scatterer number densities
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greater than five. Also, there is a general inae@asstimate variation with increased

scatterer number density, as expected.

3.2.2 Scatterer clustering

Previous work [14], [44] has suggested that thegmee of collections of closely
grouped (i.e., clustered) scatterers alters thectfie number of scatterers per resolution
cell. One would expect a decrease in ghgarameter estimate with increased scatterer
clustering. Computational phantoms were used tdyiris hypothesis. The procedure
used was the same as in the previous section, ethghe average scatterer number
density was kept at a constant value of eight et per resolution cell and the
scatterers were placed in the phantoms both randanal in clusters. Figure 3.6
illustrates the random and clustered placementatterers. The number of clustered and
the number of randomly placed scatterers were dawéh the total number of scatterers
remaining constant to achieve the constant eigiitesers per resolution cell on average.
In constructing each phantom, the clusters of seatt were first placed randomly in the
phantom and then the remaining scatterers werenalycplaced. The number of
scatterers in each cluster was random, being umijodistributed on the interval from
one through 20.

The analysis was performed in the same way asiptvious section. The
results are shown in Figure 3.7. Note that thetifvacof clustered scatterers is only an
approximation because the randomly placed scattererd cluster together by chance as
well. The estimated scatterer number density infe@.7 follows a monotonic decrease
with increased scatterer clustering, as expectedh&more, for the case where all the

scatterers were grouped into clusters, the actadleser number density of eight is
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roughly 10 times the estimated scatterer numbesityeof approximately 0.8. Based on
the uniform distribution of the number of scatterper cluster, an average value of 10.5
scatterers per cluster is expected. This indidhi@seach cluster was acting as a single

scatterer in terms of envelope statistics in theufations.

z [mm]
Z [mm]

x [mm] 0 y [mm]
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Figure 3.6. Depiction of the organizational struetaf scatterers for the cases where (a) all seatevere

randomly located and (b) all scatterers were ctagteThe remainder of the simulations lie betwédasée

two extremes with some fraction of the total numbfescatterers clustered together and the resteof t
scatterers randomly distributed throughout the pdran
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Figure 3.7. Estimated scatterer number densityugettse approximate fraction of clustered scattefaers
simulated phantoms. The error bars are two stardiaritions long.
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3.2.3 Scatterer periodicity

To test the ability of the homodyned K distributiimnmodel echo signals with a
large coherent component, computational phantortispariodically located scatterers
were created. The procedure used was the samdtaspnevious section where two
scatterer populations were used, except that pealbgllocated scatterers were used
instead of clustered scatterers. The periodicaltpted scatterers were created by first
dividing the extent of the phantom along the z-aixis 100 bands of height 73.5 um that
were spaced 99.0 um apart. Then, the scattereesraedomly placed inside the bands.
Figure 3.8 illustrates an example of how the soatsewere placed periodically in bands.

The analysis was performed in the same way asiptvious two sections. The
results are shown in Figure 3.9. Note that thetifvacof periodically located scatterers is
only an approximation because the randomly locatadterers may end up being
periodically located by chance. The estimdigghrameter in Figure 3.9 generally

increases as the fraction of periodically locateatterers increases.
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Figure 3.8. Depiction of the organizational struetaf periodically located scatterers in a smaitipa of
the simulated phantom. Here the scatterers ocaupyhbrizontal bands.
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Figure 3.9. Estimatek parameter versus the approximate fraction of pérally located scatterers for
simulated phantoms. The error bars are two stardiariitions long.

3.3 Experimental Phantoms
3.3.1 Physical phantom

A phantom was prepared by suspending glass bedllsliameters in the range
of 150 um to 180 um in an agar background withreceatration of 3.96 beads per cubic
millimeter. The glass beads were assumed to bemmly distributed throughout the
phantom and randomly separated. The phantom wasegaising five transducers with
nominal center frequencies ranging from 2.25 MH2@dViHz. Five different images
were acquired from different locations in the ploamiusing each transducer. The
effective scatterer number density was estimatedyusnall ROls in each of the 25
resulting images. The estimates from all the R@lksach image were averaged together
to produce a single estimated scatterer numbeitgdaseach image. The statistics
(mean and SD) of these estimates for each setefrfiages are reported in Table 3.1.
Table 3.1 also lists an estimate of the predictadtsrer number density which was

determined based on the estimated resolution izellasxd the bead concentration.
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Table 3.1. Predicted and estimated (mean+SD) seatt@mber densities for the physical phantom.

Transducer Estimated Predictedu Estimatedu Deduced scatterer
center frequency resolution cell parameter parameter concentration
(MHz) volume (mm) (scatterers per min
2.25 3.52 13.9 7.46+1.4 2.12+0.40
3.5 1.26 4.99 5.67+0.45 4.50+0.36
5 0.505 2.00 1.6140.15 3.19+0.30
7.5 0.227 0.900 1.00£0.22 4.40+0.97
10 0.0907 0.359 0.385+0.040 4.24+0.44

The resolution cell volume of each transducer veisnated in a way similar to
that described in Section 3.2, except that a vairget technique [45] was used instead of
a point scatterer to characterize each transdiioerarry out this technique, a thin wire
was placed in the focal plane of each transducgisaanned. The resolution cell volume
estimation was performed in the same way as destiibSection 3.2. Plots illustrating

the characterization procedure are shown in Figute.
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Figure 3.10. Characterization plots for the 10 MHmsducer used in the experiment: (a) B-mode inedge
wire target scan, (b) a two-dimensional represamaif the -20 dB resolution cell, and (c) a three-
dimensional depiction of the resolution cell.

For the cases where the number of scatterersligwviiie Rayleigh limit of 10
scatterers per resolution cell, the estimates agiagvely well with the theoretical
predictions. For the case where the scatterer nuddresity exceeds the Rayleigh limit,
the estimates do not agree very well with the mtexhs. The trend in the estimates is
correct nonetheless: the estimated scatterer nuddnsity increases with increased

resolution cell volume.
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3.3.2 Biological phantoms

Four biological phantoms were prepared by suspgmiiii mouse mammary
tumor cells in a 2% agar base. Each phantom wasmprd with a different concentration
of 4T1 cells as shown in Table 3.2. The phantom®wssumed to contain cells
uniformly spread throughout the phantom with randqgatial locations. Each phantom
was scanned using three different focused (f/3)lstelement transducers with nominal
center frequencies of 10 MHz, 20 MHz, and 40 MHze T2 resulting B-mode images

are shown in Figure 3.11.
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Figure 3.11. B-mode images of biological phantoansc
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Table 3.2. Cell concentrations used in biologidemoms.

Phantom Cell concentration
(cells/mmr)
A 1000
B 500
C 100
D 50

Each image was divided into many small ROIs folysis. Parameters from the
envelope statistics model were estimated for edgh Rhe mean and SD of the
estimated scatterer number densities for all thésROeach phantom are reported in
Table 3.3. The expected scatterer density wasdgdaced from the nominal cell
concentrations in Table 3.2 and the resolutionwaglime which was determined using
the same wire target technique as described ipriangous section. The theoretical
predictions based on the estimated resolutionstadl and the known number density of
cells in the phantoms are listed in Table 3.4.

The estimates follow the expected trends: lowdramgicentrations resulted in
lower estimates of scatterer number density, agddrifrequencies also resulted in lower
estimates. However, comparison of Tables 3.3 ahdl8ws that the estimated scatterer
number densities were observed to be substankialigr than the theoretical predictions.
Closer examination of the B-mode images in Figuid 3eveals that in many cases
individual scatterers can be resolved. For examiptiyidual scatterers can be resolved
in Figure 3.11(d); however, the theoretical scatt@eumber density is 2.63 scatterers per
resolution cell. The estimate of 0.356 scatterersr@solution cell is more consistent with
the B-mode images. These large discrepancies mattrideuted to the clustering of cells,
which would violate the assumption that the ceksewniformly distributed throughout

the phantom.
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Table 3.3. Estimated scatterer number densitiearirreD) for biological phantoms.

Phantom 10 MHz 20 MHz 40 MHz
A 7.30+5.4 1.34+0.96 0.264+0.19
B 1.26+0.72 0.596+0.47 0.145+0.071
C 0.773+0.41 0.308+0.12 0.120+0.049
D 0.356+0.44 0.264+0.11 0.0981+0.063

Table 3.4. Theoretical scatterer number densitebiblogical phantoms.

Phantom 10 MHz 20 MHz 40 MHz
A 52.5 11.2 3.22
B 26.3 5.61 1.61
C 5.25 1.12 0.322
D 2.63 0.561 0.161

To examine the clustering of cells, the phantomsevi@malin-fixed, paraffin-
embedded, and sliced into sections approximat@lgn3hick. Each section was mounted
on a glass slide and stained with Hematoxylin aosifc The slides were examined
under a light microscope and photomicrographs waptured with a camera. Figure 3.12
shows photomicrographs of the four phantoms. Ireggnthe biological phantoms with
higher cell concentrations had more and largerntetaf cells, thus helping to explain

the discrepancies between the theoretical and astthscatterer number densities.

3.4 Animal Data
3.4.1 Sarcomas and car cinomas

Rodent models of breast cancer were used to testtitity of envelope-based
statistics in distinguishing two kinds of tumorgrfmouse mammary carcinoma tumors
and 10 mouse mammary sarcoma tumors were scan@8dwtiz. Each tumor image
was analyzed by estimating envelope statistics hqmatameters for ROIls sized
approximately 1 mns 1 mm in the tumor image. The model parameters fbnhe
ROls in each tumor were averaged together to pedwgingle pair of parameter

estimates for each tumor.
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Figure 3.12. Photomicrographs of biological phargoa) phantom A, (b) phantom B, (c) phantom C, and
(d) phantom D.

These parameters are plotted in Figure 3.13. Teeséparating the two classes of tumors
was derived using a support vector machine. Theswas used to derive a third
parameter to combine the two model parametersuatitef discriminate between the two
kinds of tumors. Letting the equation of the lieparating the two kinds of tumors be

defined ak = mu + L, the derived paramet& was defined as

~

D=k-mi (3.7)
wherek and /1 are the two average estimated model parameteeafdr tumor.
Table 3.5 lists the statistics of the estimated ehpdrameters for the 20 tumors.

Of the two estimated parameters, only khgarameter is statistically significant in
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distinguishing between the two kinds of tumors. ldwer, the parameter derived from a
linear combination of the two estimated model pagtams is more statistically significant

than either parameter alone.

0.8 T T T T T T T T
+ Sarcomas |
*  Carcinomas +

0.75

0.7
0.65
0.6
0.55

k parameter

0.5

0.45
0.4

2 3 4 5 6 7 8 9 10
U parameter

0.35
1

Figure 3.13. Scatter plot of the average estimatedel parameters for sarcoma and carcinoma tumors.

Table 3.5. Estimated model parameters (mean+SDjdicroma and carcinoma tumors.

Kind of tumor k yzi D
Sarcomas 0.604+0.051 4.69%0.69 0.454+0.033
Carcinomas 0.533£0.081 5.3412.4 0.362+0.04(L
p<0.05 p=0.421 p<0.0001

3.4.2 Sarcomas, car cinomas, and fibroadenomas

Fourteen mouse mammary carcinoma tumors, six moasemary sarcoma
tumors, and 11 rat fiboroadenoma tumors were scaan&d MHz. Parameter estimation
and processing were performed in the same way the iprevious section, except that
larger ROIs (roughly 2 mm2 mm) were used because of the lower transdueguéncy
used. The average estimated model parametersatedoin Figure 3.14; the mean and
SD of the parameter estimates for each kind of tueme listed in Table 3.6. One-way

analysis of variance (ANOVA) was performed pairwistween the different kinds of
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tumors for each of the two estimated model pararseide resulting p-values are listed
in Table 3.7. Again, statistically significant difences were observed only in the

parameter estimates.
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Figure 3.14. Scatter plot of the average estimatedel parameters for sarcoma, carcinoma, and
fibroadenoma tumors.

Table 3.6. Estimated model parameters (meantSDydi@moma, carcinoma, and fibroadenoma tumors.

Kind of tumor k i
Sarcomas 0.446x0.033 2.28+1.7
Carcinomas 0.603+0.070 3.95+3.6
Fibroadenomas 0.543+0.037 3.31+1.5

Table 3.7. P-values for model parameter estimaiggparing different kinds of tumors.

Kinds of tumors compared k i
Sarcomas & carcinomas p<0.0001 p=0.302
Sarcomas & fibroadenomas| p<0.0001 p=0.220
Carcinomas & fibroadenomag p<0.05 p=0.593
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CHAPTER 4
FACTORSAFFECTING ESTIMATES

4.1 Introduction

Parameter estimates obtained from the homodyneidtKhaition model are
useful for characterizing the medium being inteateg. However, the performance of
parameter estimates is affected by a number obfattesides those of the medium. The
usefulness of these parameter estimates can omgtbeized when these other factors

are well understood.

4.2 Region of Interest Size

Quantitative ultrasound (QUS) images are createdivagling the corresponding
B-mode image into a number of ROIs to image difiees in the underlying material
properties. Furthermore, statistical analysis canged to quantify the variability of
estimates throughout the image. In general, estifiais and variation will be smaller for
large ROIs and larger for small ROIs. Thereforer¢hs a fundamental tradeoff to be
made between the spatial resolution and the bidvaration of parameter estimates.
This tradeoff was studied using ideal random sas@ienulations, and phantom data.
4.2.1 Independent random samples

All else being equal, when a larger ROI is usegkeater number of envelope
samples are available for estimation. As a firgp gbwards examining the effects of

sample size on estimate bias and variation, satples of the homodyned K distribution
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were generated using the method outlined in Se&ibri. Because the samples are
statistically independent and follow the desirestritbution exactly, this analysis should
establish a best-case theoretical limit.

Sets of samples were generated for a variety ofeinmatametersu ranging from
1.0 to 10 andk ranging from 0.25 to 1.0. For each sample sizepandof parameter
values, 50 independent estimation trials were peréal. The absolute relative bias and
the normalized SD of the parameter estimates waoellated. For each sample size, the
average absolute relative bias was computed bygiey together the absolute relative
bias obtained from the 50 trials for each set o&peeter values. The average normalized
SD was obtained similarly. The absolute relatiwesk{given by the absolute value of
Equation (3.5)) was used instead of the relatias b allow meaningful averaging of the

biases from different trials. The results, plotiedrigure 4.1, follow expectations.
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Figure 4.1. Average absolute relative bias andamenormalized SD of estimated model parameters
versus sample size.
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4.2.2 Simulations

Ten images with underlying scatterer number dessitainging from 1.0 to 10
scatterers per resolution cell from the simulatipegormed for Section 3.2.1 were re-
analyzed using ROls of varying lateral and axiaésFor each image and for each ROI
size, the absolute relative bias and the normal&eaf thek and parameters were
calculated. To calculate these performance methestrue parameter values must be
known. For theu parameter, the intended scatterer number densisyused as the true
value of u; for thek parameter, a very large ROI was used to obtaitéisé possible
estimate of the true value kf For each ROI size examined, the average absalative
bias and average normalized SD were determineddnaging together the results from
the 10 independent phantoms. Because both the lenigéh and beamwidth are
proportional to the acoustic wavelength, the raesatte reported with the dimensions in
wavelengths. The results should therefore be génalée to data acquired using
different transducer frequencies.

The average normalized SD for the two model pararaé$ shown in Figure 4.2
and the average absolute relative bias for thentwdel parameters is shown in Figure
4.3. The decrease in the normalized SD ofitemdk parameter estimates as the ROI
size is increased is fairly smooth, agreeing witheetations. The absolute relative bias
for the i parameter is largest for the smallest ROI sizel uset it does not show any
particularly meaningful decrease for ROIs largaemtiabout 10 wavelengths, suggesting
that an ROI size of 10 wavelengths is optimal &mtucing estimate bias while

maintaining spatial resolution.
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Figure 4.2. Average normalized SD of estimated rhpdeameters for simulated phantom scans versus the
axial and lateral extent (in wavelengths) of thelR@sed.
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Figure 4.3. Average absolute relative bias of esttitt model parameters for simulated phantom scans
versus the axial and lateral extent (in wavelengbhshe ROIs used.

4.2.3 Phantoms
Two phantoms containing different concentrationglaés bead scatterers were
constructed. Each phantom was scanned using arafidducer with center frequency of

10 MHz. As in Section 4.2.2, model parameters baseenvelope statistics were
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estimated using a range of ROI sizes. The absodlaéve bias and normalized SD were
calculated using the parameter estimates fromattgee$t ROI as the true parameter
values. To produce a smoother, more representalivethe absolute relative bias and
the normalized SD for each ROI size from the twamibms were averaged together; the
results are shown in Figures 4.4 and 4.5. In géntaresults obtained by analyzing the
physical phantoms agree with the results from tmeilations and with expectations.
Finally, it should be noted that while very larg®R generally worked well for
these studies (where the material properties alg fFomogenous), the use of large ROls
in practice can be problematic if the underlyingperties of the medium vary
substantially throughout the ROI. Therefore, thalg®to minimize the size of the ROI
for optimal spatial resolution versus bias andatésn in estimates and to increase the

likelihood of uniform scattering statistics in edeil.
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Figure 4.4. Average normalized SD of estimated rhpdeameters for experimental phantom scans versus
the axial and lateral extent (in wavelengths) ef ROIs used.
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Figure 4.5. Average absolute relative bias of ettt model parameters for experimental phantonmsscan
versus the axial and lateral extent (in wavelengbhshe ROIs used.

4.3 Resolution Cell Size

The u parameter of the homodyned K distribution quasitihe effective number
of scatterers per resolution cell. To correctleiptet this parameter, the resolution cell
volume must be known. The dimensions of the resmiutell are determined not only by
properties of the transducer but also by propedigbe medium including frequency
dependent attenuation.

4.3.1 Transducer frequency

The resolution cell can be modeled as a cylindén vediusr J A and height
h A/ B, whereB is the fractional bandwidth of the imaging pulSkerefore, the
volume of the resolution cell is proportionaltd/ B, or equivalently, inversely
proportional tof °B, wheref is the transducer center frequency. Thereforegstienated
scatterer number density (scatterers per resolagtihis expected to decrease with the

third power of the frequency.
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Computer simulations were performed to verify theissictions. Ten
independent computational phantoms were createzh plaantom was scanned using
eight different transducers with center frequencieging from 6 MHz to 20 MHz. All
the simulated transducers were focused (f/4) witbcal length of 50.8 mm. The
transducers were excited with Gaussian modulatedgssidal pulses with 50% fractional
bandwidth at -6 dB. To accommodate the expectethivdths and depths of focus of all
eight transducers, all the phantoms were sized @62 10.3 mmx 2.87 mm. An
average scatterer number density of 10 scatteegnepolution cell (based on the
resolution cell volume of the 6 MHz transducer) waed for all phantoms. The

simulated B-mode images obtained from one of thpHahtoms are shown in Figure 4.6.
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Figure 4.6. Simulated B-mode images using transdueih center frequencies ranging from 6 MHz to 20
MHz.

The scatterer number density for each image wasa&std using techniques

similar to those used in Section 3.2.1. For eaghslucer frequency used, the estimates
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from the 10 independent phantoms were averagedh@ge produce the results shown
in Figure 4.7. The scatterer number density preditly the change in resolution cell
volume is also plotted. The results of the simolaiand the theory are generally in good

agreement.
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Figure 4.7. Estimated scatterer number densityugeiransducer frequency for simulated phantoms
scanned at different frequencies. The error barsvem standard deviations long; note the use ost@ding
on the vertical axis. Ideally, the estimates wdiddn the dashed green curve.

4.3.2 Attenuation

4.3.2.1 Theory

Attenuation can be modeled as multiplication (i@ ttequency domain) of the
Fourier transform of the imaging pulse &', wherex is the pulse-echo distance from
the transducer to the region being imageds the linear attenuation coefficient, ahds
the frequency [12]. The frequency-dependent attiéomaesults in higher frequencies
being attenuated more rapidly with depth than lofseguencies, producing a shift in the
center frequency of the imaging pulse. AssumingasSian pulse, the shift in center

frequencyAf, is given by [12]
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-a,x(2.66f,B)°
47T

Af =f'—f, = 4.1)

where f" and f, are the center frequencies of the pulse with aititowt attenuation,
respectively.

Approximating the resolution cell as a cylindelirm$ection 4.3.1 and assuming
that the fractional bandwidth is unchanged by aistion, the ratio of the volume of the
resolution cell in the presence of attenuatif) {0 the volume of the resolution cell

without attenuation\) is given by

v (f,)

Combining Equations (4.1) and (4.2) yields

V' a7 ’
v (4772 - (2.66%a, foxB2j *3)

The estimated scatterer number density (scattpegrsesolution cell) should increase
according to the increase in the volume of theltg®mm cell predicted by Equation (4.3).
4.3.2.2 Simulations

Computational phantoms were used to verify theiptiees in Section 4.3.2.1.
Ten independent phantoms were generated for etfuation coefficient value used.
Each phantom was scanned using two imaging pulgbsiferent fractional
bandwidths. Each resulting image was analyzed ubm@pproach described in Section
3.2.1. The results shown in Figure 4.8 were obthlmeaveraging the estimated scatterer
number density from the 10 independent phantomd fasseeach attenuation coefficient.
Both the theoretical and estimated scatterer numiesities vary substantially as the

attenuation coefficient changes when the phantoers wnaged using a pulse with 50%
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fractional bandwidth (Figure 4.8(a)). By reducihg fractional bandwidth to 25%, this
variation was reduced substantially (Figure 4.8(bhese results are consistent with
previously reported measurements of physical pmastd6]. Note that the reduction in
fractional bandwidth results in the use of a longeaging pulse, reducing the axial
resolution of the resulting image. Also, this irases the volume of the resolution cell in
the absence of attenuation. When the scatterer eudansity is large, it is desirable to
reduce the volume of the resolution cell to avoidezding the Rayleigh limit of about 10

scatterers per resolution cell beyond which scattenmber density estimation becomes

unreliable.
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Figure 4.8. Estimated scatterer number densitgifoulated phantoms versus attenuation coefficisimgu
a pulse with (a) 50% fractional bandwidth and (6Y@fractional bandwidth. The error bars are two
standard deviations long. Ideally, the estimatesld/tie on the dashed green curves which were
determined using Equation (4.3).

4.4 Compounding
4.4.1 Spatial compounding
When analyzing an image using a number of smallsRtbe ROIs can be

partially overlapped, or spatially compounded noréase the number of ROIs available
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for analysis. Furthermore, by spatially averagimg parameter estimates from each ROI
based on the ROI overlap, the variation of estishata be reduced at the cost of
decreased spatial resolution.

4.4.1.1 Simulations

Following Section 4.2.2, 10 images with underlysagtterer number densities
ranging from 1.0 to 10 scatterers per resolutidhveere re-analyzed using ROIs
overlapping by differing amounts to determine tmgpact on estimate bias and variation.
The estimates were spatially averaged togethedb@s¢he ROI overlap. The
normalized SD and absolute relative bias were &atied from the spatially averaged
estimates in the same way as in Section 4.2.2rd8hdts are shown in Figures 4.9 and
4.10.

Analysis of the plots in Figure 4.9 suggests tipatial compounding reduces the
SD of the estimates of theparameter but has little effect on the SD of ghgarameter.
The absolute relative bias of parameter estimates dot exhibit any significant
decrease as ROI overlap is increased. A likelyangtion for these results is that
estimate bias is dictated by ROI size. Therefdre fias is approximately the same for
each ROI, and no amount of averaging will reducaveraging will, however, reduce
the variation about the mean estimated value.

Figure 4.9(b) suggests that the SD of khgarameter estimates can be made
arbitrarily small by simply increasing the amouhR®I overlap. However, as the
amount of ROI overlap is increased, the estimagesime increasingly correlated
because they share more of the same underlyingleamipthe envelope amplitude. At

some point the improvement in estimate SD showldl leff.
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Figure 4.9. Average normalized SD of estimated rhpdeameters for simulated phantom scans versus the
fraction of axial and lateral overlap of the ROszd.
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Figure 4.10. Average absolute relative bias ofestied model parameters for simulated phantom scans
versus the fraction of axial and lateral overlaphef ROIs used.

The degree of correlation was quantified by cakinggcorrelation coefficients
for estimated model parameters for axially andrédiy overlapping ROIs. Each
correlation was run on two vectors correspondinglitpairs of ROIs overlapped (either

axially or laterally) by a given amount. The coatén coefficients versus the fraction of
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ROI overlap are plotted in Figure 4.11. It is rezdde to expect some degree of
correlation between ROIs that do not overlap abedlause the estimated model
parameters should describe the same underlyingialgteoperties. These results agree
with expectations: the amount of correlation in plagameter estimates increases as the

fraction of ROl overlap is increased.
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Figure 4.11. Correlation coefficients of estimateddel parameters versus ROI overlap fraction for
simulated phantom scans for (a) laterally overlagg®Ols and (b) axially overlapping ROIs.

4.4.1.2 Phantoms

The phantoms first described in Section 4.2.3 vaése analyzed using varying
amounts of spatial compounding using the same aphras in the previous section. The
results (plotted in Figures 4.12 and 4.13) are g@lyeconsistent with the results
obtained from the simulations. That is, only theiS[@stimates of thk parameter shows
any significant decrease with increased spatialpmnmding. The results from the
physical phantoms are much noisier than the rebolts the simulations because of
noise inherent in the experiment and because amyrhages were averaged together for

the experimental phantom analysis, whereas 10 wsaé for the simulations.
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Figure 4.12. Average normalized SD of estimated ehpdrameters for experimental phantom scans versus
the fraction of axial and lateral overlap of the IRQsed.
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Figure 4.13. Absolute relative bias of estimatedieiparameters for experimental phantom scans sersu
the fraction of axial and lateral overlap of the IRQsed.

The correlation coefficients between parameteneggs for overlapping ROIs
were also determined in the same way as in thdquresection. The results are plotted

in Figure 4.14. Observe that the correlation cogdfit is negative in some cases.
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Figure 4.14. Correlation coefficients of estimateddel parameters versus ROI overlap fraction for
experimental phantom scans for (a) laterally oyarilag ROIs and (b) axially overlapping ROIs.

4.4.2 Angular compounding

4.4.2.1 Introduction

Angular compounding, the acquisition and averaging number of different
(partially correlated to uncorrelated) images & same target, has been used to reduce
speckle in ultrasound images and to improve the §I¥R [47]. Because the statistical
nature of the backscattered echo signal arises tinemelative locations of the scatterers
with respect to the transducer that contributdéoeticho signal, compounding can also be
used to improve the statistical properties of Qag&ameter estimates [48]. To obtain a
reduction in estimate variation, a sample can berified from different angles, yielding
partially decorrelated realizations of echo sign@ES estimates derived from different
angles of view can then be averaged together taceedstimate variation.
4.4.2.2 Simulations

Simulations were performed to examine the effetngular compounding on

estimate bias and variation. A cylindrical phanteith an average scatterer number
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density of five scatterers per resolution cell wasstructed and scanned from 128
different angles. Parameters using the envelopiststa model were estimated using
small overlapping ROIs in each image. The estimfatas each image were first
spatially compounded based on the ROI overlap. Téstimates from ROIs
corresponding to the same location in each phamters averaged together to produce
fully compounded images. Subsets of the 128 images used to study the effects of
increasing the number of compounded images. Thedagpressed scatterer number

density estimates are shown in Figure 4.15; thenagtd model parameters are listed in

Table 4.1.
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Figure 4.15. QUS images of the base 10 logarithth@fstimated scatterer number density for siradlat
phantom scans. All subplots share the same co#de stiown in the middle of the figure. The base 10
logarithm of the actual scatterer number densigpigroximately 0.70.

The bias and SD of the parameter generally decrease as the number of

compounded images increases. Note, however, tisa¢ffiect becomes smaller as the
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number of compounded images becomes large bedaeigeho signals become
increasingly correlated with each other due toathgular separation becoming smaller.
The performance of the parameter estimates is similar, i.e., the SD deae

monotonically as the number of compounded imaga®ases.

Table 4.1. Model parameter estimates (mean+SDyusigular compounding for simulated phantom.

Number of
compounded k H
images

1 0.537+0.17 6.17+4.4
2 0.589+0.14 5.93+2.6
4 0.568+0.098 5.94+2.1
8 0.553+0.076 5.73+1.4
16 0.560+0.061 5.57+1.1
32 0.560+0.052 5.50+0.88
64 0.561+0.048 5.43+0.79
128 0.562+0.048 5.47+0.78

For comparison, the scatterer number density wasexdactly determined by
directly counting the number of scatterers in e&€H in the phantom. Because the
scatterers were randomly placed in the phantom avithverage number density of five
scatterers per resolution cell, some variabilityhia actual number of scatterers per
resolution cell is expected. Using the number attecers in each ROI, the volume of the
ROI, and the volume of the resolution cell, a tledical scatterer number density was
obtained for each ROI. To make the comparison y#iiel ROls used were the same as
those used in the statistical analysis of the irmagarthermore, spatial compounding was
performed in the same way as in the analysis of@& images obtained from the
simulations. Using this analysis, a theoreticattecar number density of 5.03+0.30 was
deduced. For the case when 128 measurements wapmuaded, the correlation
coefficient between the actual scatterer numbesitieand the estimated scatterer

number density in each ROI was found to be 0.46%s ihdicates that much of the
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variation in the estimated scatterer number demsitybe explained by actual variation in
the number of scatterers per resolution cell cpoading to each ROI from the phantom.
Figure 4.16 shows QUS images for both the counteldeatimated scatterer number

densities as well as a scatter plot that compaesno measures on an ROI-by-ROI

basis.
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Figure 4.16. Comparison of deduced scatterer nuhbasity estimates: (a) QUS image of counted
scatterer number density, (b) QUS image of estithatatterer number density determined by averaging
together estimates from 128 images, and (c) sgaltteof estimates from corresponding ROIs in (@] a

(b). Subplots (a) and (b) share the same coloescal

4.4.2.3 Experimental phantom measurements

A physical phantom containing glass bead scatt@fersean radius 90 um was
constructed to experimentally verify the result$hef simulations. The phantom was
constructed with a 15% (by mass) concentrationetdtaq in water. The scatterer
concentration was 8.92 beads per cubic millimé&tke glass beads were assumed to be
uniformly distributed throughout the phantom wigmdom spatial locations.

The phantom was scanned with a focused (f/3) tiaresdwith a center frequency
of 5 MHz. The same transducer had been used tectdlie data in Section 3.3.1.
Referring to Table 3.1, the resolution cell volumas estimated to be 0.505 MrBased
on the resolution cell volume and the scatterecentration, a scatterer number density

of 4.50 scatterers per resolution cell was predidiata was acquired from 120 angles
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uniformly distributed around the phantom. Becatmgeaxis of rotation of the phantom
was not perfectly concentric with the center of ph@ntom, the images obtained from
different angles of view were not registered. Thaation of a circle describing the
relative position of the center of the phantom &snation of the angle of rotation was
derived. The images were registered by translaiagmages by the opposite of the
amount of translation predicted by the equatiortliercircle.

Parameter estimation and spatial and angular contpog were performed in the
same way as was used in the processing of the aliedutiata in the previous section.
QUS images obtained by compounding subsets ofdteeate shown in Figure 4.17; the

corresponding mean and SD of the envelope statistadel parameters are listed in

Table 4.2.
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Figure 4.17. QUS images of the base 10 logarithth@estimated scatterer number density for
experimental phantom scans. All subplots shareainee color scale shown in the middle of the figure.
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Table 4.2. Model parameter estimates (meantSDpusngular compounding for physical phantom.

Number of
compounded k H
images

1 0.51840.18 4.08+2.1
2 0.41340.12 3.68+1.2
4 0.395+0.081 3.15+0.77
8 0.409+0.045 3.27+0.53
15 0.416+0.040 3.56+0.46
30 0.423+0.031 3.50+0.28
60 0.415+0.023 3.47+0.26
120 0.41540.019 3.43+0.22

The results of the experiment and simulation amxitellent agreement. In both
cases, the SD of the estimated model parametersadss substantially as the number of
angles of view increases. Based on the resultpoéaous study [48] that found an
improvement in the SNR of QUS estimates that wapgtional to the square root of the
number of statistically independent images averagegether, it is reasonable to predict
that the SD of the envelope statistics parameténates would also decrease
accordingly. Figure 4.18 shows the SD of the twalelparameter estimates versus the
number of compounded images for both the simulatetiexperimental data. On a log-
log plot, exponential functions appear as linesréfore, for comparison, triangles are
also plotted in Figure 4.18 with slope as predidigdhe reciprocal of the square root of
the number of compounded images.

The SD curves in Figure 4.18 do not follow the el slope exactly. When a
small number (i.e., less than about 20) of imagesampounded, the angular separation
of the images is large enough that the QUS pararastenates from each angle of view
are statistically independent. As more angles efware considered, the angular

separation decreases. Once the point is reachee whages are no longer statistically

69



independent, little improvement in estimate SDxgeeted. This effect was further
guantified by calculating correlation coefficiemtisthe QUS parameter estimates versus
the angular separation of the images. To reduceftbets of noise, correlation
coefficients were calculated for all pairs of imagdth a given angular separation and
averaged together to produce an average correletiefficient for that angular
separation. These results are plotted in Figurg fadboth the simulated and
experimental data. For both model parameters flasimulated data and for the
parameter from the experimental data, the cormaiatoefficient increased dramatically

for an angular separation of less than about 9°.
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col?——m—m-r-n—— o.01———
1 10 100 1000 1 10 100 1000
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Figure 4.18. SD of envelope statistics parametémages versus the number of compounded imagesfor
simulated data and (b) experimental data. |de#ily,SD of the estimates would lie on lines with shene
slope as the hypotenuse of the triangle showndh phot.

The substantial reduction in the SD of the parametgmates suggests that
angular compounding may be a powerful tool forugssharacterization and detection of
disease. However, in practice, full 360° angulangounding is not possible for most of
the human body. Nonetheless, partial compoundingddoe used almost anywhere to

obtain some reduction in the SD of parameter estisna
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Figure 4.19. Average correlation coefficients dfraated model parameters versus the amount of angul
separation between the images for (a) simulatea altad (b) experimental data.
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CHAPTER 5
CONCLUSIONS

While this is not the first work to address thejsabof statistical models of
backscattered ultrasound signals, it is hopedth®improved estimation methods will be
useful for fast and accurate processing of bactexeat ultrasound signals. The results of
Chapter 4 should provide guidelines for the apgilicaand interpretation of statistical
analyses. The benefits of the improved estimatigarathm come at the cost of using
extra storage space for the data used in the d@siimarocess. However, the space
requirements are very modest, making this a wortlevtradeoff.

The primary goal of this study was to assess thgrdistic potential of envelope-
based statistics. The results of the study contiivan the statistical modeling of the
envelope of backscattered ultrasound may be uiaftihe detection of disease. While
statistically significant differences were obserbedween different kinds of tissue,
further study is needed to better describe theetaitron between tissue microstructure
associated with disease and parameters derivedtfrernvelope statistics model.

A new estimation algorithm has been developedpalhaand accurately
estimate parameters from the envelope statisticdeemdhe algorithm has been tested
using simulated and experimental data, and theaidssariance of the estimates versus
region of interest size, spatial compounding, amgliéar compounding have been

established.
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5.1 FutureWork

The estimation algorithm presented in Section Biddbe further modified and
improved by choosing different classifier functiqgguation (2.20)) other than SNR,
skewness, and kurtosis and by choosing differemhemt orders. The algorithm could be
improved generically for a wide range of paramgtdues. Alternatively, following the
observation in Section 2.3 that the present estimata general purpose estimator
designed to work relatively well for a large rargdgoarameter values, the estimator
could be fine-tuned to work better for more speaiéinges of parameter values. A multi-
stage parameter estimator could be developednurelry parameter estimates could
first be obtained using a general purpose estinatdrthen refined using a specific, fine-
tuned estimator selected according to the prelingiparameter estimates.

As stated in Section 2.2.6.3, parameter estimaesealected using a grid search
algorithm. To speed convergence and to providééuntobustness against convergence
to local minima, alternative optimization algoriteroould be used. The basic procedure
for determining level curves presented in Secti@&2 could be improved, i.e., better

approximations of level curves could be found kgrpolation.
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APPENDIX A
SOLUTION TO SYSTEM OF EVEN
MOMENT EQUATIONS

Although it is nonlinear, the system of even motrexjuations, Equations (2.1)-
(2.3), does indeed have closed form solutions; ewehey are very complicated. For
simplicity, the system is solved in terms of theiablesy, s°, ando®. Furthermore, the

model parameters and solutions are allowed, inrgérte be complex. For brevity,

define
a=E[~] (A.1)
b=E[ A'] (A.2)
c=E[ A] (A3)

Furthermore, to express the solutions in a sinfiplgnion, define several intermediate

variables,
d =(80a° - 216a'b+ 20K - 643- & e Gabe § (A.4)
e=-4& +4b+ d (A.5)
4a°® - 3ab- ¢
f=—— —— A.6
e (A.6)
3/, 1 d
g:—E(a —b)+—2(—a2+ @——4 (A7)
h=16a° - 24a'b- 15€¢ F + 1680+ 248 ¢ 18&be ¢ (A.8)
m:8(4a3—3ab— c)(( a- Zl) b a): (A.9)
p:6(4a3 - Sab+ c)zx/_e (A.10)
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q=e(164 + 204 o+ alf- 12 15¢- 5p+ 4H- 5b 3d )e (e 4b 34 )k(A.11)

r =16(4° + 22°c- bo) (A.12)

t=f+g (A.13)

v=y=T+g (A14)

x =—3cd + 48 (32b- 3d- 49 - 4cgr ab- 48k 15¢ 20p- (A.15)
y=—8((a2—2b) b+ a()«/_e— 4(4&— 5 ab ): (A.16)

There are a total of four unique solutions. In tewwhthe intermediate variables, the first

two solutions are given by

_m+ p+q, v(x-)

H= e~ 2n (A7)
§ = a+§rr v (A.18)

, 1
o —Z(—\/EiZV) (A.19)

and the other two solutions are

__m-p+q, t(x+y)

H= " nde — on (A.20)
§ = a—%i t (A.21)

, 1
o -Z(JEiZt) (A.22)

It is straightforward, albeit tedious, to verifyatithese solutions are correct by
substituting them back into Equations (2.1)-(213) also substituting for the

intermediate variables given by Equations (A.4)1@.
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