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ABSTRACT

While technology scaling has presented many new and exciting opportunities,

new design challenges have arisen. Smaller feature sizes have led to increased

density and large variations in the delay and power characteristics of on-chip

devices. Additionally, with the increasing desirability of low-power chips, de-

creasing power consumption has become a significant priority. Major sources

of dynamic power consumption in modern chips include glitches (i.e., spurious

signal transitions), the reduction of which are challenges to circuit designers.

High-level synthesis has been touted as a solution to these problems, as it can

both significantly reduce the number of man hours required for a circuit design,

and offer greater opportunities for optimization of design goals, by raising the

level of abstraction. In this thesis, we present two resource binding and alloca-

tion algorithms that take advantage of the optimization opportunities available

at the higher level of abstraction.

The first is a new variation-aware high-level synthesis binding and module

selection algorithm, named FastYield, which takes into consideration multi-

plexers, functional units, registers, and interconnects. FastYield connects with

the lower levels of the design hierarchy through its inclusion of a timing-driven

floorplanner guided by a statistical static timing analysis engine which is used

to modify and enhance the synthesis solution. FastYield is able to incorporate

spatial correlations of process variations in its optimization, which are shown to

affect performance yield. FastYield is shown to achieve a significant reduction
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in clock period, and significant gain in performance yield, when compared to a

variation-unaware and layout-unaware algorithm.

The second is a glitch-aware, high-level binding algorithm for power, area,

and multiplexer reduction targeting field programmable gate arrays (FPGAs),

called HLPower. HLPower employs a glitch-aware dynamic power estimation

technique derived from an FPGA technology mapper. High-level binding re-

sults are converted to VHSIC hardware description language (VHDL), and

synthesized with Altera’s Quartus II software, targeting the Cyclone II FPGA

architecture. Power characteristics are evaluated with the Altera PowerPlay

Power Analyzer. The binding results of HLPower are compared to LOPASS, a

state-of-the-art low-power high-level synthesis algorithm for FPGAs. Experi-

mental results show that HLPower significantly reduces toggle rate and area,

resulting in a large decrease in dynamic power consumption.
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CHAPTER 1

INTRODUCTION

1.1 High-Level Synthesis

As designs have increased in complexity, the number of man-hours required to

implement a design has skyrocketed. To combat this difficulty, a significant and

renewed effort has gone into high-level (or behavioral) synthesis algorithms,

which raise the level of abstraction of the design and allow for a more efficient

exploration of the design space.

A key step in the design of virtually all modern electronics, high-level syn-

thesis transforms a behavioral description of a digital system to a register-

transfer level (RTL) hardware implementation consisting of a datapath and a

control unit. The datapath consists of three types of components or resources

including functional units (such as arithmetic and logic units (ALUs), and mul-

tipliers), storage units (such as registers), and multiplexers. High-level synthesis

usually consists of three subtasks: scheduling, resource allocation, and bind-

ing [1]. Scheduling involves the selection of when an operation will take place;

allocation involves determining how many and what types of each resource are

going to be needed (also called module selection); and binding involves selecting

where an allocated resource will be bound to a specific operation.

In high-level synthesis, the design of the digital circuit is written as a behav-

ioral description, commonly in a language such as C or SystemC. The design

specification is first compiled into an internal representation such as a control
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data flow graph (CDFG), which is then mapped to the three types of resources,

selected from the resource library, to optimize design goals (such as delay,

power, and area). Previous research has shown that, compared to synthesis

at RTL, code density can be reduced by 10 times, and simulation time can be

reduced by 100 times with high-level synthesis [2].

High-level synthesis is a well-studied topic [1], [3], [4], [5]. Much work has

been done in the areas of scheduling, resource allocation, and binding, and

because binding and resource allocation are so interrelated, these two tasks are

frequently undertaken simultaneously. In this thesis, we focus on the problem

of binding and resource allocation to optimize for the specific design goals of

performance optimization and power minimization. The binding algorithms

presented target both application specific integrated circuits (ASICs), and field

programmable gate arrays (FPGAs).

1.1.1 Challenges in circuit synthesis

High-level synthesis, and even the reduced complexity subtask of resource bind-

ing, is a difficult problem to solve due to a very large solution space. The work

in [6] proved that the problem of resource binding for multiplexer reduction,

itself, is NP-complete. Here, we briefly introduce two challenges to high-level

synthesis that are relevant to the binding work to be presented. The chal-

lenges—of mitigating the effects of process variations on performance yield and

reducing power consumption—are not unique to high-level synthesis. But pre-

vious work has shown that there are significantly greater opportunities for the

optimization at a high level, than at lower levels of abstraction. For example, [7]

showed that system and high-level power optimization techniques can achieve

40% more power reduction than is possible at a lower level of abstraction.
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1.1.1.1 Process variations

Aggressive technology scaling to the deep submicron realm has resulted in

significant variations in fabricated device parameters, complicating the efficient

synthesis of digital circuits. The causes of these variations can be categorized

roughly into two areas: process and environmental [8]. Process variations are, in

general, static, meaning they do not change over time, and result from intrinsic

nonuniformities in the manufacturing process and materials. Environmental

variations, on the other hand, are dynamic, meaning they change with the

passage of time and changing workload, and are caused by such factors as

fluctuations in voltage and temperature on chip. We focus on process variations

in this thesis.

Process variations can also be categorized into systematic and random. Sys-

tematic variations refer to those variations that are spatially correlated, while

random variations have no correlation to one another. Systematic and random

variations in structural device parameters (e.g., gate length and width, gate

oxide thickness, metal thickness, dopant atom distribution, etc.), create varia-

tions in critical device parameters (e.g., threshold voltage) which can affect the

performance (delay) and power (leakage) of the chip. The impact on the chip,

such as an increase in worst-case critical-path delay and the resulting decrease

in maximum operating frequency, can be significant. It has been reported that

process variations can cause up to 20 times variation in chip leakage and 50%

variation in chip frequency, depending on the process technology [9], [10]. Ad-

ditionally, the effects of these variations on transistor parameters become more

pronounced as technology scales to smaller feature sizes.

In order to overcome this obstacle, designers set a processor’s frequency

to allow for the worst-case delay, plus a margin of safety. Unfortunately, this
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option is becoming less and less viable with increasing variation, due to the

increasing size of the required safety margin (also known as a guardband). For

example, the delay variation for an adder can be up to 27% of its mean value,

necessitating an excessive margin of error. The result is that designing for

worst-case process margins is no longer a viable option. To ensure the meeting

of design constraints, such synthesis methodology may result in a design that

is slow, or a design with excess resource usage and/or unexpected discrepancies

in power and performance. This has led to the development of statistical design

techniques that attempt to consider probabilistic delays and power during

circuit synthesis and simulation. In this thesis we focus on the mitigation of

static correlated and random process variations through a novel, variation-

aware, high-level binding algorithm.

1.1.1.2 Power consumption

In fabricated circuits there are two sources of power consumption: static power

and dynamic power. Static power is power consumed when the circuit is either

active or idle. Unless power gating and other transistor-level techniques are

built into the chip, static power cannot be easily reduced. Dynamic power,

on the other hand, is power consumed when a signal transition occurs at gate

outputs, and, being a characteristic of the design implemented on the chip, is

more easily mitigated. Signal transitions make up the switching activity (SA)

of a circuit, and can be classified into two types: functional transitions, and

glitches. Functional transitions are the signal transitions necessary to perform

the required logic function, while glitches are spurious transitions: unnecessary

transitions that occur due to unbalanced path delays at the inputs of a gate.

Dynamic power consumption can be estimated as Pd = 0.5×SA×C×V 2

dd×f ,

where SA is the switching activity of the circuit, C is the effective capacitance,
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Vdd is the supply voltage, and f is the operating frequency. Reducing any of

these factors will reduce the dynamic power of a circuit.

Dynamic power has been shown to be a significant source of total power

consumption in ASICs, but this is true to an even greater extent in FPGAs [11].

The low power efficiency of FPGAs, as compared to ASICs, makes FPGA

power minimization especially critical for potential low power applications. In

Altera’s Stratix II FPGAs in the 90 nm process technology, dynamic power is

the dominant type of power consumed [12]. Further, it has been shown that

glitches can account for 60% of the dynamic power consumed, and in some

data-flow intensive designs glitches can account for 4–5 times more transitions

than functional transitions [13], [14].

In this thesis, we target power minimization with our FPGA-targeted low-

power binding algorithm, focusing on reducing switching activity (through a

glitch-aware switching activity estimator) and effective capacitance (by reducing

multiplexer area).

1.1.2 Related work

In this section we will briefly introduce some of the previous work in the areas

of binding that are relevant to the work presented in this thesis: binding for

performance yield optimization, and FPGA-targeted binding for low power.
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1.1.2.1 Binding for performance yield optimization1

The significant variations in device parameters in newer fabrication processes

have caused many traditional circuit design and analysis techniques to become

inadequate. To overcome this obstacle, a shift in the design paradigm from the

worst-case deterministic design to a statistical or probabilistic design is critical.

A new era of statistical design techniques has begun to emerge in which circuit

parameters such as delay and power are no longer modeled as deterministic

values, but are represented as probability density functions (PDFs). These

statistical design techniques are leading to the reclamation of performance and

yield that has been lost when using deterministic design techniques.

The shift to probabilistic design methodologies has produced a number of

gate-level variation-aware optimization techniques [15], [16]. While progress

at the gate level is encouraging, the large productivity gains available in high-

level synthesis make it attractive and necessary to address the issue of process

variations at a higher level of abstraction.

A number of works, such as [17], have addressed the topic of simultaneous

binding and floorplanning, but with no consideration of spatial correlation or

variability. Huang et al. [18] presented a binding algorithm based on bipartite

weighted matching. However, their algorithm does not address the critical issues

of module selection and delay variability. Likewise, most of the work in high-

1This section includes previously published work. c© 2009 IEEE. Reprinted, with permis-
sion, from G. Lucas, S. Cromar, and D. Chen, “FastYield: Variation-aware, layout-driven
simultaneous binding and module selection for performance yield optimization,” in Proceed-
ings of the 2009 IEEE/ACM Asia South Pacific Design Automation Conference, 2009.

This material is reprinted here with permission of the IEEE. Such permission of the IEEE
does not in any way imply IEEE endorsement of any of the University of Illinois’ products
or services. Internal or personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this material, you agree to all provisions of the copyright laws protect-
ing it.
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level synthesis has ignored the issue of process variation as it has not been an

important issue, but that has begun to change in the past few years as the need

for variation-aware synthesis tools at the high level has been realized.

Hung et al. [19] offer a simultaneous scheduling, binding, and allocation al-

gorithm based on simulated annealing. The simulated annealing algorithm seeks

to reduce the overall latency while meeting a performance yield requirement.

However, the algorithm does not consider multiplexer use or interconnect delay,

both of which can significantly contribute to the clock period of the unit.

Jung et al. [20] propose a timing variation-aware high-level synthesis al-

gorithm which improves resource sharing. While the algorithm is effective, it

ignores multiplexers and interconnects, and also relies on the assumption that

functional units are independent of each other in its yield calculation given by

yield =
n

∏

k=1

P (FUk < Tclk) (1.1)

where n is the number of functional units, the function P (· ) is the probabil-

ity, FUk is the delay distribution of functional unit k, and Tclk is the chosen

clock period. As has been shown in [21] and [22], and as our results show, cor-

relation among process parameters of the functional units has an effect on the

performance yield. Thus, we need an enhanced yield calculation method.

Lastly, Wang et al. [23] propose a simulated annealing based method to con-

sider both power yield and timing yield during high-level synthesis. They use

a number of different simulated annealing moves combined with a cost func-

tion that penalizes the design if it exceeds a power or timing yield constraint.

Spatial correlation and interconnect delay are not considered.

The algorithm we present in Chapter 2 of this thesis is a novel variation-

aware simultaneous binding and module selection algorithm, which connects to
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the layout closely, so layout information can be accurately back-annotated to

the synthesis and introduce useful synthesis transformations.

1.1.2.2 FPGA-targeted binding for low power

FPGAs hold significant promise as fast time-to-market replacements for ASICs

in many applications. As the price of single-purpose chip development sky-

rockets in each successive technology iteration, the relative price of the FPGA

architecture becomes more and more attractive. This, coupled with the many

other advantages of FPGAs, such as rapid prototyping and field reprogramma-

bility, makes them a more and more viable alternative in many current ASIC

applications. Unfortunately, the advantages of FPGAs are offset in many cases

by high power consumption and large area. In fact, it has been shown that

FPGAs can be up to 40 times larger and consume up to 12 times more dynamic

power than the equivalent ASIC implementation [11].

Research has shown that, in FPGA architecture, the area and power con-

sumed by multiplexers and interconnects are significantly higher than those of

logic cells and registers. In particular, it has been shown that the power con-

sumed by a 32-to-1 multiplexer is nearly equivalent to that of a 18-bit multiplier

in a 0.1 µm technology FPGA [24]. It has also been shown that interconnects

can contribute up to 80% of the total area, and up to 85% of the total power

in FPGAs [13], [25], [26]. Any approach to reducing the power consumption

of a design implemented on an FPGA must take into account the significant

contributions of multiplexers, interconnects, and glitches to power usage.

Much effort has gone into evaluating and reducing dynamic power in

FPGAs. Recent work has included improved SA estimation tools [27], an in-

vestigation into implementing logic on embedded memory arrays [28], and

architectural changes to reduce glitches [29].
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Work in the area of low-power binding has included bipartite graph for-

mulation for multiplexer reduction [18], low-power register binding through

a network-flow formulation [30], simultaneous register and resource binding

and scheduling algorithms [31], generalized low-power binding formulated as

an integer linear programming (ILP) problem with heuristic speedups [32],

early evaluation of data flow graphs for low-power binding [33], among many

others. [32] provides a good overview of the previous work in low-power binding.

Although the work on high-level synthesis for ASICs is extensive, low-power

high-level synthesis and binding for FPGAs is a relatively new area of research.

In [34], the switching activity characteristics of the functional units were pre-

characterized and used during low-power synthesis targeting FPGAs. However,

ignorance of multiplexers created an overly simplistic model. In [35] a low-

power, simultaneous resource allocation and binding algorithm for FPGAs was

presented, implemented in UCLA’s xPilot [36], and included a high-level power

estimator. The work in [37] targets FPGA resource reduction, and indirectly

multiplexer and power reduction, by identifying patterns in the CDFG that can

be synthesized to the same resources.

In [38] and [39], the authors presented a simulated annealing-based algo-

rithm which carried out high-level synthesis subtasks simultaneously, targeting

FPGAs for low-power called LOPASS. Their binding algorithm was initially

using minimum weight bipartite matching, and then was enhanced using a net-

work flow approach presented in [24] that binds all the resources simultaneously.

We compare our own algorithm, presented in Chapter 3, to LOPASS and show

that an iterative approach enables greater power savings.

Low-power high-level synthesis is complicated by the difficulty of estimating

power from a high level of abstraction. Glitch-power estimation is particularly

difficult because calculation of glitches requires a gate-level view of the design.
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In Chapter 3, we present an FPGA-targeted, low-power binding algorithm

that considers glitches in its power estimation, in addition to targeting area

and multiplexer reduction. We overcome the difficulty of estimating glitches

during high-level synthesis by employing a low-power FPGA technology map-

per, [40], which makes use of a switching activity estimation model considering

glitches that has been shown to be effective at capturing glitch power. We fo-

cus on reducing switching activity (through the glitch-aware switching activity

estimator) and effective capacitance (by reducing multiplexer area) for power

minimization.

1.2 Primary Contributions

In this chapter we have provided an overview of high-level synthesis, some

challenges to high-level synthesis, and previous work in the area of high-level

synthesis relevant to the topic of this thesis. We have shown that there are

significant challenges to circuit synthesis in general. Long simulation times

and significant man power are necessary to design circuits at the RT level,

making high-level synthesis an attractive opportunity. High-level synthesis

has the potential for large gains in terms of time and optimization. Still, the

large design space even at higher-levels of abstraction requires smart heuristic

algorithms that can optimize for design goals.

We have also presented some of the background on work that has been done

in the area of high-level synthesis, focusing on binding, for power minimization

and performance yield optimization. Work has been done in both of these areas,

but it has been lacking in significant ways. Algorithms for performance yield

optimization have not always accurately incorporated variation information,

or have used overly simplistic models. Algorithms that focus on power mini-
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mization have not considered glitches, and have not taken a low-level view for

accurate power estimation.

In this thesis we present two novel high-level resource binding and allocation

algorithms, FastYield and HLPower, that address many of the shortcomings of

previous algorithms in this area. The main goals and contributions of this thesis

are:

• A simultaneous binding and module selection algorithm that considers

registers, multiplexers, functional units, interconnects, and spatially corre-

lated process variations.

• A timing-driven, simulated annealing-based, statistical floorplanner that

considers interconnect delay and spatial correlation between all units in

the design.

• An iterative functional unit rebinding based on timing analysis informa-

tion and register criticality.

• An FPGA-targeted iterative binding algorithm, driven by an accurate

dynamic power estimation, that considers registers, multiplexers, and

functional units.

• The incorporation of a glitch-aware dynamic power estimator based on

low-level FPGA technology mapping, which makes use of an effective

switching activity model, into a low-power binding algorithm.

1.3 Thesis Organization

This thesis is organized into four chapters that illustrate the goals and contribu-

tions outlined above. In Chapter 1, we have presented some background on the
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topic of high-level synthesis, outlined the major contributions of this thesis, and

in the next section (1.4) we provide some definitions that will be helpful in the

following chapters. Chapter 2 outlines the first of the two algorithms presented

in this thesis: FastYield, a novel, variation-aware, high-level binding algorithm

for performance yield optimization. In Chapter 3, we present the second high-

level binding algorithm: HLPower, an FPGA-targeted binding algorithm for low

power, considering glitches. Finally, Chapter 4 concludes the thesis and presents

directions for future work.

1.4 Definitions

Definition 1. A control data flow graph (CDFG) is a directed acyclic

graph, G(V, E), where a vertex in V can be either an operation node or a con-

trol node, and an edge in E represents a data dependency between two nodes.

A directed edge, e(vi, vj), represents a transfer of value or control from one

node to another. Each of the nodes in a CDFG can be classified as one of the

following [41]:

• Operational nodes: responsible for arithmetic, logical or relational opera-

tions.

• Call nodes: denoting calls to subprogram modules.

• Control nodes: responsible for operations like conditionals and loop con-

structs.

• Storage nodes: representing assignment operations associated with vari-

ables and signals.

We use a two-level CDFG representation as an input to our binding algo-

rithms. In the first level is the control flow, each node being a control or call
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Figure 1.1: An example of a weighted bipartite graph.

node and representing a basic block. In the second level is the data flow of each

basic block, each node being an operation or storage node.

Definition 2. A weighted bipartite graph is a graph, G = (U, V, E), whose

vertices can be divided into two disjoint sets, U and V , and whose edges in E

can only connect a vertex in U with a vertex in V . A bipartite graph differs

from a general graph in that there are no self-loops (edges which start and end

at the same vertex), and no more than one edge between any two vertices. A

weight w(ei,j) is associated with every edge in the graph. See Figure 1.1.

Definition 3. The maximum weighted matching of a graph G is defined as

a matching M—a set of edges without common vertices—where the sum of the

weights of the edges in the matching has a maximal value.

Bipartite weighted matching has a runtime complexity of O(|V | ∗ (|E| +

|V |log|V |)), where |V | is the total number of nodes in the graph. In general,

weighted bipartite graphs can be solved more efficiently than other types of

weighted graphs. We formulate the register binding problem as a bipartite
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weighted matching problem in our algorithms. We also make use of bipartite

weighted matching in the functional unit binding of our algorithms.
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CHAPTER 2

FASTYIELD: VARIATION-AWARE,

LAYOUT-DRIVEN SIMULTANEOUS

BINDING AND MODULE SELECTION FOR

PERFORMANCE YIELD OPTIMIZATION

2.1 Overview

In this chapter, we present a variation-aware high-level synthesis binding/module

selection algorithm, named FastYield, which takes into consideration multi-

plexers, functional units, registers, and interconnects. Additionally, FastYield

connects with the lower levels of the design hierarchy through its inclusion of a

timing-driven floorplanner, guided by a statistical static timing analysis (SSTA)

engine, which is used to modify and enhance the synthesis solution. FastYield is

able to incorporate spatial correlations of process variations in its optimization,

which are shown to affect performance yield. On average, FastYield achieves a

clock period that is 14.5% smaller, and a performance yield gain of 78.9%, when

compared to a variation-unaware algorithm. By making use of accurate timing

This chapter includes previously published work. c© 2009 IEEE. Reprinted, with per-
mission, from G. Lucas, S. Cromar, and D. Chen, “FastYield: Variation-aware, layout-driven
simultaneous binding and module selection for performance yield optimization,” in Proceed-
ings of the 2009 IEEE/ACM Asia South Pacific Design Automation Conference, 2009.

This material is reprinted here with permission of the IEEE. Such permission of the IEEE
does not in any way imply IEEE endorsement of any of the University of Illinois’ products
or services. Internal or personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this material, you agree to all provisions of the copyright laws protect-
ing it.

Gregory Lucas made significant contributions to this chapter, including Section 2.3 and
Section 2.4.2.
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information, FastYield’s rebinding improves performance yield by an average of

9.8% over the initial binding, for the same clock period.

We connect our synthesis engine closely to the layout, so layout information

can be accurately back-annotated to the synthesis and introduce useful syn-

thesis transformations. Synthesis and layout are iterated until the performance

gain is maximized. The major contributions of our algorithm are summarized

below:

1. A simultaneous binding and module selection algorithm that considers

registers, multiplexers, functional units, interconnects, and spatially corre-

lated process variations.

2. A timing-driven, simulated annealing-based, statistical floorplanner that

considers interconnect delay and spatial correlation between all units in

the design.

3. An iterative functional unit rebinding based on timing analysis informa-

tion and register criticality.

The rest of this chapter is organized as follows: Section 2.2 presents the

problem formulation; Section 2.3 presents statistical functional unit modeling;

Section 2.4 presents the details of the FastYield algorithm; Section 2.5 presents

experimental results.

2.2 Problem Formulation

The input to our binding algorithm is a scheduled CDFG, an area constraint,

and a resource library. The input CDFG format holds the scheduling infor-

mation for all of the operational nodes. The problem to be solved involves

the allocation and assignment of registers to variables, and functional units
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to operations. Module selection and binding are optimized to achieve a high

performance yield. This is accomplished with the help of an accurate timing

analysis on a layout of the binding solution after each iterative improvement.

The binding problem can be formulated as follows:

Given: A scheduled CDFG, an area constraint, and a resource library.

Tasks: Allocate and bind registers to variables; select, allocate, and bind

functional units to operations.

Objectives: Produce a valid binding solution while meeting the area con-

straint and optimizing the solution for performance yield.

2.3 Resource and Correlation Modeling

Modeling resources at a higher level of abstraction is critical to attaining an

accurate high-level synthesis solution. We employ a Monte Carlo based method

to precharacterize the functional units. Two types of variation are considered,

random variation and correlated variation (or systematic variation). The char-

acterization flow for each unit begins with logic synthesis followed by placement

and routing using Synopsys Design Compiler and Cadence SOC Encounter.

The characterization was performed on a recently released 45 nm standard cell

library provided in the design kit from [42]. From the place and route informa-

tion, the delay of the unit and placement of the individual gates in the unit are

extracted.

Using Monte Carlo analysis, we then characterize the units by specifying a

correlated, θcor, and independent, θind, percentage of delay variation for each

gate in the resource with respect to its nominal delay value. For each Monte

Carlo run, the critical path of the circuit is then found by running a determinis-

tic timing analysis (we used Synopsys PrimeTime). By plotting the critical path
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for each Monte Carlo run, the mean, µFU , and standard deviation, σFU , of the

delay distribution are built.

To consider spatial correlation during the binding algorithm, we define two

types of delay variation, interunit delay variation and intraunit delay variation.

Interunit delay variation is defined to be correlated across units, while intraunit

delay variation is defined to be independent across units. The components of

inter- and intraunit delay variation are calculated as percentages of the stan-

dard deviation that was found from the Monte Carlo analysis of the resource.

Equations (2.1) and (2.2) show the calculation of the intra- and interunit delay

standard deviations.

σ2

intra = σ2

FU × θind/(θind + θcor) (2.1)

σ2

inter = σ2

FU × θcor/(θind + θcor) (2.2)

We support different structural implementations of the same arithmetic op-

eration. These implementations provide different delay and area tradeoff char-

acteristics and offer opportunities for better design space exploration targeting

higher performance yield given a specific resource or area constraint.

2.4 FastYield Binding Algorithm Description

In this section we will present the FastYield binding/module selection algo-

rithm. FastYield seeks to improve performance yield through a multiplexer- and

interconnect-aware delay reduction strategy. Performance yield evaluated at a

clock period t, PY (t), is defined as

PY (t) = P (r1 ≤ t, r2 ≤ t, . . . , rn ≤ t) (2.3)
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where PY (t) is the probability that r1, r2, . . . , rn meets the clock period require-

ment, and rn represents the probability distribution of register n. We assume all

delays are jointly Gaussian with an associated covariance matrix, i.e., they are

correlated.

The algorithm has three major components: (1) an initial resource allo-

cation and binding; (2) a timing driven floorplanner, which performs both a

timing driven placement as well as SSTA; and (3) a functional unit rebinding

which incorporates timing analysis information from component 2. FastYield

seeks to improve the synthesis solution through iteratively feeding back accu-

rate, floorplan- and interconnect-aware, statistical timing information to the

rebinding step.

One of the strengths of FastYield lies in its use of a process correlation

model during timing analysis. Enabled by the floorplan, interconnect delay and

multiplexer delays are considered during each SSTA step. Performance yield

is calculated at the end of each timing analysis to evaluate the success of the

algorithm, and the algorithm exits when no further improvement is seen in the

binding/module selection solution. Each of the main components of FastYield is

described next.

2.4.1 Initial binding

The inputs to the algorithm include: (1) a scheduled CDFG, (2) a resource li-

brary, and (3) an area constraint. The resource library contains all the resources

including functional units, multiplexers, and registers as well as the precharac-

terization data for each. FastYield performs an initial allocation and binding in

three steps: First, a minimal set of registers is allocated and bound to a set of

variables (variables are outputs of operations). Second, a combined functional
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Algorithm 2.1 Register Binding Algorithm.

1: traverse CDFG, find control step of max density
2: allocate a set of registers = max density
3: initialize clusters of mutually unsharable variables
4: for all clusters of mutually unsharable variables do
5: initialize bipartite graph Gr = (Ur, Vr, Er); Vr = variables, Ur = registers
6: calculate edge weights by equation in [18]
7: solve Gr for minimal weighted matching
8: end for

unit allocation and binding takes place. Third, a minimized set of multiplex-

ers is allocated. We name this section Initial Binding to differentiate from the

Rebinding procedure to be covered later.

2.4.1.1 Register allocation and binding

Register binding is accomplished in a manner similar to that described in [18],

where variables are bound by solving a weighted bipartite graph. Algorithm 2.1

provides a summary of the register binding algorithm. An allocated set of

registers is determined by counting the number of variables present in the

control step of maximum density. This set of registers is allocated, and a cluster

of mutually unsharable variables (meaning the lifetimes of these variables are

overlapping) is bound at a time, by way of a weighted bipartite graph, sorted in

ascending order according to their birth times.

The weighting of the edges of the bipartite graph is also very similar to [18].

The weighting is based on the idea that it is advantageous, for multiplexer

reduction, to maximize register sharing among variables that have a common

operation type, and minimize sharing among variables that cannot share the

same operation type.
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2.4.1.2 Initial functional unit allocation and binding

Once the registers are allocated and variables are bound to them, functional

units are allocated and operations assigned to them one control step at a time.

First, control steps are ranked according to the equation

Rankcstep = diversity × numOPs (2.4)

where diversity is the number of different types of operations in the control

step, and numOPs is the number of operations assigned to the control step.

The control steps are then processed from the highest ranked to the lowest

ranked. This strategy is similar to the “first fit decreasing” heuristic used in

bin packing problems. The items are put in descending order according to their

volumes (in this case rank), and then packed one at a time in an effort to make

the packing as close to optimal as possible.

The cluster of control step operations to be bound is placed into a set,

Ocstep, and the available functional units are put into a set FUav. On the first

control step to be bound, the set of available functional units consists of, for

each operation in the control step, one instance of each functional unit in the

resource library that is compatible with that operation (see Figure 2.1). This

initial allocation ensures that each operation can bind to any of the compatible

functional units in the resource library. In subsequent control steps, FUav

is trimmed of any functional units that, if allocated, would exceed the area

constraint, with the qualification that a sufficient number of functional units of

each type has been allocated to accommodate a successful binding solution. In

this way FastYield produces a binding solution that meets the area constraint,

while also enabling module selection.
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adderType3 

multType1 
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Figure 2.1: Illustration of the bipartite graph created for the functional unit
binding of the first control step.

A weighted bipartite graph is constructed where each vertex represents

either an operation (oi ∈ Ocstep) or a functional unit (fuj ∈ FUav), and there

is an edge, eij , between each operation, oi, and functional unit, fuj, which can

perform the operation, with a corresponding weight. Edge weights are based

on multiplexer creation due to the already bound registers. If two operations

share the same input register, it is advantageous to bind the two operations to

the same functional unit, because no multiplexer is needed (which will in effect

potentially reduce the path delay). Likewise, if two operations that share the

same output register are bound to the same functional unit, no multiplexer is

needed at the register’s input port (again having a positive effect on the delay

reduction). The initial binding weight, wij initial, corresponding to each edge, eij ,

is calculated as

wij initial =
1

estDelay(i, j)
(2.5)

estDelay(i, j) = µfuj
+ µmuxin

+ µmuxout
+ 3 ×

√

σ2

fuj
+ σ2

muxin
+ σ2

muxout
(2.6)

where µ is the mean, σ is the standard deviation, muxin is the multiplexer that

would be created at the input of the functional unit if the operation were bound
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to it, and muxout is the multiplexer that would be created at the input of the

output register if the operation were bound to the functional unit. This weight

calculation effectively incorporates the statistical behaviors of all the involved

components in the circuit paths, putting a higher weight on the shorter delay

paths. The maximum weight solution is then found to minimize the delay, and

the operations are bound to functional units for the control step. After all the

control steps are processed, functional units and registers are connected with

allocated multiplexers.

2.4.2 Statistical timing driven floorplanner

The timing-driven floorplanner is run after each binding iteration is completed

to evaluate the performance yield of the solution. As has been shown in previ-

ous work, [22], [43], and as we show in the experimental results section, spatial

correlation of variation in parameters such as gate length can have an impact on

the variance of the timing of a circuit. To achieve accurate timing results, it is

important that spatial correlation among units is considered during statistical

timing analysis.

2.4.2.1 Unit correlation model

To complement the high-level synthesis resource modeling, we propose a novel

unit-based correlation model. In this model, each functional unit, register, or

multiplexer is assigned a unit number and the correlation between each unit

is found based on the distance between the center points of the units using a

correlation function that meets the requirements of [22] so that the correla-

tion matrix for the circuit is positive-semidefinite, a requirement for the SSTA

approach that we use.
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Figure 2.2: Sample floorplan showing data connections.

This model is beneficial to high-level synthesis as it complements the pro-

posed resource modeling (Section 2.3), and also takes into account the different

sizes of functional units. On the other hand, a grid based model, as used in [43],

does not complement the unit characterization since it is possible for functional

units to be split across different grid regions, which complicates both the unit

characterization process and the correlation calculation.

Figure 2.2 shows an example of the unit correlation model. Two multipliers

(1 and 2), an adder (3), and a register (4) are labeled in the picture. It can be

seen that when an adder and a register (small area) are placed next to each

other, the correlation is higher than when two multipliers (large area) are placed

next to each other. This scenario can be accurately modeled using our unit-

based model. Our model can also be viewed as an extension of the grid based

model where each logic gate/functional unit is its own grid.
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Algorithm 2.2 Timing Driven Floorplanner Pseudo Code.
1: Parquet:
2: while time > time cool do
3: Perform moves(num moves);
4: Calc wire delay();
5: Calc Correlation();
6: Perform PCA(); //principle component analysis
7: Perform timing analysis();
8: Calculate Cost();
9: end while

The proposed correlation model, in conjunction with the interunit and

intraunit variation found during the resource characterization, allows correlated

variation to be represented at a higher level of abstraction with accuracy and

runtime efficiency.

2.4.2.2 SSTA algorithm

To obtain layout information during the timing analysis, we use a modified

version of the Parquet floorplanner [44]. The modified flooplanner employs a

simulated annealing approach where, after a number of unit moves, a statistical

timing analysis is performed to evaluate the solution. Algorithm 2.2 shows the

pseudo code for the timing-driven floorplanner.

The method for statistical timing analysis considering spatial correlation is

based on the work of Chang et al. [43]. This work relies on principal component

analysis (PCA) to transform a set of correlated random variables into a new set

of independent random variables.

To perform PCA, a correlation matrix for the binding solution is found us-

ing the unit correlation model described above. The interconnect delay between

the units is modeled based on distance. Since no detailed routing information

is available, we model the connection between two functional units as a two-pin

net with the length being the Manhattan distance between the two connecting
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terminals of the functional units. The mean Elmore delay with optimal buffer

placement is then found using Equation (2.7) which follows from the results

of [45]:

µwire = 2.5 ×
√

RbuffCbuffRlengthClengthl2 (2.7)

σwire = α × µwire (2.8)

where µwire is the mean wire delay, Rbuff is the output resistance of the buffer,

Cbuff is the input capacitance of the buffer, Rlength is the resistance per unit

length, Clength is the capacitance per unit length, and l is the net length. The

standard deviation of the wire length is calculated using Equation (2.8), where

α is a percentage of wire variation. The value of α is found in accordance with

the results from [46] as follows1:

α = 0.3836 × exp(−0.1537h) (2.9)

where h is the optimal buffer size as calculated by [45]. We consider the wire

variation to be independent across wires.

2.4.2.3 Floorplanner cost function

The cost function for simulated annealing moves in the floorplanner is given by

Equation (2.12):

Z ∼ N(µz, σz) = max(reg1(µ1, σ1), reg2(µ2, σ2), . . . , regn(µn, σn)) (2.10)

TR =
µz + σz

µbest + σbest

(2.11)

Cost = α × area + β × TR (2.12)

1We plotted the equation based on the buffer size vs. wire variation data reported in [46].
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where max(reg1(µ1, σ1), reg2(µ2, σ2), . . . , regn(µn, σn)) represents the statistical

max operation [43] on the timing distributions at the inputs to all output regis-

ters (pseudo primary outputs), µbest and σbest represent the mean and standard

deviation of the best solution found so far, and α and β are weighting param-

eters. The TR cost is then found by adding the mean and standard deviation

of the max distribution, normalized by the mean and standard deviation of the

best solution. In the calculation of TR, we chose to use the sum of the mean and

standard deviation since the result corresponds to the required clock frequency

for an ∼84% yield, for which we target in this study. After a specified number

of moves, a timing analysis is performed on all paths in the design as described

in Algorithm 2.2.

Upon completion of the timing analysis, the delay PDF for each register is

known. The distributions, as well as the required clock frequency for an 85%

performance yield, are then passed back to FastYield for the criticality analysis

of the rebinding step. Figure 2.2 shows the example floorplan obtained from

the timing driven floorplanner, with the arrows representing the flow of data

through the critical path.

2.4.3 Rebinding

Functional unit rebinding is performed after the initial solution has been an-

alyzed by the timing driven floorplanner, and then continues in an iterative

fashion until the floorplanner reports that no improvement has been made. The

rebinding algorithm works by determining which functional units along the crit-

ical paths are causing the majority of the delay. It then attempts to reduce the

delay in two ways: one, by swapping slower functional units on critical paths

for faster functional units; and two, by rebinding individual operations on the
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Algorithm 2.3 Rebinding Algorithm Pseudo Code.

1: Calc reg and FU ranks();
2: if Swap critial FUs() then
3: Break;
4: end if
5: Order rebind operations(Orebind);
6: for all op in Orebind do
7: Calc op to FU weights();
8: Bind largest weight pair();
9: Estimate timing();

10: Recalc reg and FU ranks();
11: end for

critical paths. Algorithm 2.3 shows the pseudo code for the rebinding algorithm,

which will be explained next.

2.4.3.1 Register and functional unit ranking

The algorithm begins by ranking the output registers in order of their critical-

ity. The slowest register is identified by finding the worst case delay based on

the mean and standard deviation from the floorplanning information. The rank

of register r is then calculated:

RegRankr =
µr + 3σr

µslowest + 3σslowest

(2.13)

where µr and σr are the mean and standard deviation for register r, and µslowest

and σslowest are the mean and standard deviation of the slowest register. The

registers are then ordered according to their criticality, or rank, starting from

the most critical.

With the registers ranked, the algorithm then proceeds to rank each func-

tional unit that is connected to each register. The rank of functional unit k
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connected to register r is found by

FURankk = RegRankr × (0.5 ×
µk

µr

+ 0.5 ×
σk

σr

) (2.14)

where µr and σr are the mean and standard deviation for output register r,

µk and σk are the mean and standard deviation of the functional unit, and

RegRankr is the rank for register r. The RegRankr weight provides an esti-

mate of the global impact the register has on the overall clock period, while

the ratio of the means and standard deviations considers how much the overall

mean or variance of the functional unit impacts the final timing at the regis-

ter. The end of Section 2.4.3.3 will present an example of how this ranking is

accomplished.

2.4.3.2 Swapping critical functional units

The rebinding algorithm examines the set of allocated functional units, and

based on their rank, finds any higher ranked functional units that are slower

than lower ranked, faster functional units of the same type, and swaps them.

The net effect is to place the fastest functional units on the most critical paths.

If no functional units meet the criteria for swapping, the rebinding proceeds to

the next step. If functional units are swapped, then the timing analysis is rerun

before rebinding proceeds.

2.4.3.3 Selection of operations to be rebound

The rankings of the registers and functional units are used in the selection of

particular operations that will be rebound. Operations are chosen that both

contribute to a critical path delay, and have the potential to reduce that delay.

Briefly, this is done as follows: First, a set of output registers are selected for
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their delay criticality based on their rank. For each chosen register, the func-

tional unit connected to it with the highest rank (denoting its greater contribu-

tion to the criticality of the register) is selected, and an operation, or multiple

operations, that are bound to that functional unit are selected to be rebound.

The criterion for selection of the particular operations associated with each

functional unit to be rebound is the operation’s potential, if rebound, to reduce

multiplexer size on that critical path. The example in the next paragraph serves

to clarify the process.

An example of the register and functional unit ranking, and operation se-

lection, is illustrated in Figure 2.3. The method is presented step-by-step: The

slowest register has a mean µ = 3.1, and a standard deviation σ = 0.3. (1)

Based on the slowest register information, by Equation (2.13) register 5 is found

to have a rank of 0.9. (Register 5 is determined to be critical based on its rank.)

(2) The functional units connected to register 5 are ranked according to Equa-

tion (2.14). fu2 is found to have a higher rank than fu1, so it is from fu2 that

an operation, or operations, will be selected for rebinding. (3) The inputs to

fu2 are examined, and port 1 is found to have a larger multiplexer than port

0. (4) The registers connected to the inputs of the 3-input multiplexer are eval-

uated. One of the three registers has two variables bound to it, and the other

two have one variable bound to them. Since fewer variables bound to a register

is preferred (more likely to reduce the multiplexer size if moved), register 3 is

randomly chosen from the two registers with only one variable bound to them.

The operation corresponding to that register/variable, operation 1 in this case,

is assigned the rank of the target functional unit, and is chosen for rebinding.

This same process is carried out for each critical register, and the selected op-

erations (along with their ranking) are placed in the set Orebind to be rebound.
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Figure 2.3: Example of functional unit ranking and the selection of operations
for rebinding.

2.4.3.4 Operation rebinding

The rebinding is performed for each operation oi ∈ Orebind, one operation at a

time, starting with the operation with the highest rank. Previous bindings that

have not been selected for rebinding are left untouched. For a given operation,

oi, a rebind weight is calculated for each functional unit, fuj, in the previously

allocated functional unit set. The weight, wij rebind, for each operation func-

tional unit pair is calculated as follows:

wij rebind =
wij rebindPrevious

max(wi rebind)
× (1 − FURankj) (2.15)

where wij rebindPrevious is the weight of the operation-to-functional unit pair

in the previous iteration of rebinding (or the initial binding if this is the first

iteration), max(wi rebind) is the maximum weight from all of the operation-to-

functional unit pairs, and FURankj is the functional unit rank as described

earlier. The first part of the weighting considers the likelihood operation oi

had of being assigned to fuj in the previous binding. If oi was close to being
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assigned to fuj during the previous binding, then rebinding oi to fuj will be

a good choice, if the rank of the functional unit is low (meaning it currently is

not a part of the critical path). The second part of the equation adds this rank

consideration to the weight.

The operation-to-functional unit pair with the largest weight is then chosen,

and that operation is bound to the functional unit. The process repeats for

each operation that belongs to the set Orebind. However, after each operation

is rebound it is possible that the multiplexer size has changed, which in turn

reduces the critical path of the circuit and changes the ranks of the registers.

Therefore, after each operation is rebound, a fast estimated timing analysis is

performed on the paths that are affected by the rebinding of the operation and

the register and functional unit ranks are recalculated. After every operation

in Orebind has been processed, one iteration of rebinding is complete and the

solution is sent to the floorplanner for analysis.

2.5 Experimental Results

In this section we present a number of results that demonstrate the importance

of considering process variation and correlation during high-level synthesis, and

the effectiveness of FastYield at accomplishing these tasks. FastYield reads in

a benchmark, which has been prescheduled with list scheduling, and a resource

library, and runs it through the initial binding, floorplanning and timing analy-

sis, and rebinding. The resource library contains the precharacterized resources,

which include functional units, multiplexers, and registers. The resources were

precharacterized with 10% random variation and 10% spatially correlated vari-

ation with a correlation distance of 1 mm (such assumptions are compatible

with the variation predictions laid out in [47]). The characterization was per-
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Table 2.1: Benchmark Profiles.
Bench- No. of No. of No. of No. of Total No.
marks PIs POs Adds Mults of Edges

chem 20 10 171 176 731
dir 8 8 84 64 314

honda 9 2 45 52 214
mcm 8 8 64 30 252
pr 8 8 26 16 134

steam 5 5 105 115 472
wang 8 8 26 22 134

formed on a 45 nm library provided in the design kit from [42], as described in

Section 2.3.

A number of data-intensive benchmarks are used in our experiments with

FastYield. The benchmark CDFGs include several different discrete cosine

transform (DCT) algorithms including pr, wang, and dir, and several digital

signal processing (DSP) programs including chem, steam, mcm and honda [48].

The benchmarks are profiled in Table 2.1. Each node in the benchmarks is

either an addition/subtraction or a multiplication.

2.5.1 Spatial correlation in timing analysis

In order to show the importance of considering spatially correlated process pa-

rameters during the timing analysis, we performed a floorplanning and timing

analysis on the same binding solution with spatial correlation and θind from

Equation (2.1) set to 0 (Corr), and without correlation (No Corr) with θind = 1.

Setting θind = 0 makes σ2

inter = σ2

FU = 1. This makes it possible for all the

functional unit variation to be correlated between units; however, the actual

correlation between the functional units is still found based on the distance

between them. The results are shown in Table 2.2. Columns 2 and 3 show the

clock period obtained for an 85% yield with Corr and No Corr, respectively.
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Table 2.2: Correlation vs. No-Correlation Experimental Results.
85% Yield Clk (ns)

Benchmarks Corr reduction in Clk Corr 85% PY Gain
Corr No Corr over No Corr (%) over No Corr (%)

chem 5.91 6.20 4.70 14.97
dir 4.91 5.14 4.49 14.98

honda 5.14 5.30 3.03 14.37
mcm 4.09 4.28 4.35 10.56
pr 4.45 4.66 4.51 14.99

steam 5.54 5.80 4.51 14.98
wang 4.91 5.11 3.98 14.99

Column 4 shows the reduction in clock period of the Corr result over the No

Corr result, which averages 4.22%. Column 5 reports the performance yield

(PY) gain of Corr over No Corr, which averages about 14.25%. That is, for

the No Corr clock period given, one would expect to achieve an 85% PY based

on the No Corr timing analysis, but would achieve a 85% + 14.25% = 99.25%

PY based on the Corr timing analysis. In other words, timing analysis without

consideration of correlated process parameters is conservative compared to cor-

related timing analysis. This shows the importance of using spatial correlation

information to guide the floorplanner, as well as performing accurate SSTA.

2.5.2 FastYield compared to BindBWM and rebinding
improvement

We compare the results of FastYield after rebinding (FY Rebind) to an en-

hanced version of the weighted bipartite graph based binding (here referred to

as BindBWM) of Huang et al. [18]. The enhancements to [18] include module

selection and the ability to specify an area constraint, making the comparison

demonstrative of the performance yield gains that can be achieved when con-

sidering process variation during binding. The same schedules, area constraints,

and library were used in both algorithms. We also compare FY Rebind perfor-
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Table 2.3: FastYield Experimental Results.
BindBWM FastYield Initial FastYield Rebind

85% PY at FY 85% PY at FY 85%
Bench- Yield Rebind Yield Rebind Yield Total FY
marks Clk 85% Clk Clk 85% Clk Clk Run Time

(ns) (%) (ns) (%) (ns) (min)

chem 6.9 12.5 6.1 67.7 6.0 75
dir 5.8 1.5 4.9 70.9 4.8 43

honda 5.7 8.1 4.9 82.6 4.9 28
mcm 4.9 11.4 4.3 78.0 4.2 40
pr 5.2 0.1 4.5 70.1 4.3 24

steam 6.2 7.6 5.5 76.3 5.5 64
wang 5.3 1.6 4.7 80.8 4.6 16

mance to the performance attained by FastYield before rebinding (FY Initial)

to show the effect of timing information on the rebinding solution. In all of the

benchmarks, the same number of adders and multipliers were allocated in the

binding solution for BindBWM, FY Initial, and FY Rebind.

Tables 2.3 and 2.4 summarize the experimental results. Columns 2, 4, and

6 of Table 2.3 give the clock periods for each BindBWM, FY Initial and FY

Rebind, respectively. Columns 3 and 5 of Table 2.3 give the PY attainable by

the respective binding solutions if clocked at the 85% PY clock of FY Rebind.

Figure 2.4 demonstrates this graphically by plotting the cumulative density

functions (CDFs) for the different binding results of chem (PDFs are inset). If

clocked at the 85% PY clock period of FY Rebind, FY Initial and BindBWM

have PYs of 67.7% and 12.5%, respectively.
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Table 2.4: FastYield Experimental Results, Continued.
Comparison

FY Rebind FY Rebind FY Rebind FY Rebind
Bench- reduction in Clk 85% PY Gain reduction in 85% PY
marks over BindBWM over BindBWM Clk over FY Gain over FY

(%) (%) Initial (%) Initial (%)

chem 14.17 72.5 2.35 17.3
dir 16.71 83.5 1.76 14.1

honda 14.39 76.9 0.32 2.4
mcm 14.57 73.6 3.34 7.0
pr 16.47 84.9 3.04 14.9

steam 11.88 77.4 1.14 8.7
wang 13.29 83.4 0.95 4.2

Average 14.50 78.9 1.84 9.8

Figure 2.4: Chem delay distributions of BindBWM, FY Initial, and FY Rebind.
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In Table 2.3 , Column 7 gives the total FY runtime in minutes. Columns

2 and 4 of Table 2.4 give the FY Rebind percentage reduction in clock period

when compared to BindBWM and FY Initial, respectively. Columns 3 and 5 of

Table 2.4 give the PY gain (in percent) of FY Rebind over BindBWM and FY

Initial, respectively. This means that if BindBWM or FY Initial were clocked

at the 85% PY clock period of FY Rebind, they would have a PY smaller than

85% by the given amount.

By considering process variation and layout, FY Rebind is able to reduce

the clock period of the benchmarks by an average of 14.5% and increase the

performance yield an average of 78.9%, when compared to BindBWM. It is

also able to improve clock period and PY by an average of 1.84% and 9.8%,

respectively, over FY Initial.

In some cases the amount of clock period improvement that rebinding can

achieve is limited by the number of the type of unit that is on the critical path.

For example, if there are 4 allocated multipliers, all of which are found to be

critical, then rebinding cannot offer much improvement. However, if only 3 of

4 allocated multipliers are found to be critical, then rebinding can offer more

improvement.

Often, though, even if the reassignment of operations has a small effect

on mean clock period, it can have a large impact on the variance of the clock

period, thus improving the PY significantly. This can be seen in Figure 2.4,

where there is a large improvement in the delay CDF between the BindBWM

and FY Rebind. This explains the results in Column 3 of Table 2.3 , where we

see that when BindBWM is clocked at the 85% PY clock value of FY Rebind,

the PY is very small. The difference between FY Rebind and FY Initial is

not as drastic, but there are two key improvements. First, the mean of the

PDF has been shifted to a lower clock value. Second, the variance has been
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reduced. Combining these two improvements results in a significant PY jump

for a relatively minor change in the mean clock period (17% PY difference in

the example).
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CHAPTER 3

HLPOWER: FPGA-TARGETED HIGH-LEVEL

BINDING ALGORITHM FOR POWER AND

AREA REDUCTION WITH

GLITCH-ESTIMATION

3.1 Overview

Glitches (i.e., spurious signal transitions) and multiplexers are major sources of

dynamic power consumption in modern FPGAs. In this chapter we present an

FPGA-targeted, glitch-aware, high-level binding algorithm for power, area, and

multiplexer reduction. Our binding algorithm employs a glitch-aware dynamic

power estimation technique derived from the FPGA technology mapper in [40],

which makes use of a switching activity estimation model considering glitches

that has been shown to be effective at capturing glitch power. High-level bind-

ing results are converted to VHSIC hardware description language (VHDL), and

synthesized with Altera’s Quartus II software, targeting the Cyclone II FPGA

architecture [49]. Power characteristics are evaluated with the Altera Power-

Play Power Analyzer [50]. The binding results of our algorithm are compared to

LOPASS, a state-of-the-art low-power high-level synthesis algorithm for FPGAs.

Experimental results show that our algorithm, on average, reduces toggle rate

by 22% and area by 9%, resulting in a decrease in dynamic power consumption

of 19%.

The major contributions of our algorithm are summarized below:

1. An FPGA-targeted iterative binding algorithm, driven by an accurate

dynamic power estimation, that considers registers, multiplexers, and

functional units.
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2. The incorporation of a glitch-aware dynamic power estimator based on

low-level FPGA technology mapping, which makes use of an effective

switching activity model, into a low-power binding algorithm.

The rest of this chapter is organized as follows: In Section 3.2 we present

the problem formulation. In Section 3.3 we describe the technique used for

switching activity estimation considering glitches. In Section 3.4 we describe the

binding algorithm, herein referred to as HLPower, in detail. In Section 3.5 we

present experimental results.

3.2 Problem Formulation

The input to our binding algorithm is a scheduled CDFG, a resource constraint,

and a resource library. The input CDFG format holds the scheduling infor-

mation for all of the operational nodes. The problem to be solved involves the

allocation and assignment of registers to variables, and functional units to op-

erations. Efficient sharing of functional units by operations, and registers by

variables, in order to reduce power and multiplexer usage, are the challenges of

binding. The binding algorithm is driven by the glitch-aware dynamic power es-

timation, in an effort to reduce the total power usage of the design. The binding

problem can be formulated as follows:

Given: A scheduled CDFG, a resource constraint, and a resource library.

Tasks: Allocate and bind registers to variables, and allocate and bind

functional units to operations.

Objectives: Produce a valid binding solution while meeting the resource

constraint and optimizing the solution for power and area on the targeted

FPGA.
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3.3 Switching Activity Estimation

As dynamic power estimation is a central driver of our binding algorithm,

the way this is accomplished is described in this section. Dynamic power is

estimated in the form of a switching activity model based on probabilistic

techniques developed originally in [51], extended in [52], and further developed

to target FPGA mapping and include glitches in [40].

In [51] the ideas of transition density (also referred to as toggle rate or

switching activity) and signal probability are initially developed. The transition

density of a logic signal is defined as the average number of transitions per

unit time, while the signal probability is defined as the fraction of the time that

the logic signal is in the 1 state (i.e., the average value of the logic signal over

all time). An efficient technique is presented that allows for the calculation

of the total circuit switching activity by means of propagation of transition

densities and signal probabilities from input nodes to output nodes. For a node

y with independent fanin nodes x1, x2, . . . , xn, and given the transition density

(switching activity) s(xi) of each fanin node xi, the transition density of node y,

s(y), can be computed using the Boolean difference (∂y/∂x) of y with respect to

xi:

s(y) =
n

∑

i=1

P (
∂y

∂xi

)s(xi) (3.1)

where P (∂y/∂xi) is the signal probability of the Boolean difference.

This technique was extended in [52] to take into account simultaneous

switching, something that the technique in [51] lacked. Let y be a Boolean

expression, y(t) be its value at time t, P (y) be the signal probability of y, and

s(y) now be the normalized switching activity of y. s(y) is the probability of y

having different values at time t and t + T , where T is a unit time period, and is

thus given by s(y) = P (y(t)y(t + T )) + P (y(t)y(t + T )). Additionally, note that
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P (y(t)y(t + T )) = P (y(t)y(t + T )). Thus, P (y(t)y(t + T )) = P (y(t)y(t + T )) =

1/2s(y). Since P (y(t)) = P (y(t)y(t + T )) + P (y(t)y(t + T )), we find

s(y) = 2(P (y(t))− P (y(t)y(t + T ))) (3.2)

And, as noted in [40], the term P (y(t)y(t + T )) can be calculated from the

probabilities and switching activities of fanin nodes of y using the procedure

in [52].

Finally, the technique for switching activity estimation was applied to FPGA

technology mapping in [40]. The algorithm in [40] reads in a netlist, and uses

a cut-enumeration technique [53] to select K-input cuts that will be mapped

to the FPGA (K-input lookup tables). Primary inputs are assumed to have

signal probabilities and switching activities of 0.5. For each node, the signal

probability of all of the K-input feasible cuts of that node are computed using

the weighted averaging algorithm from [54]. When calculating the switching

activities for each cut, the widely accepted unit delay model is assumed for

the FPGA lookup tables. This means that signal transitions are assumed to

happen only at discrete time units: 1, 2, . . . , D(C), where D(C) is the depth

of the cut. The transition that takes place at time D(C) is considered the

functional transition, while the transitions that occur at the other time steps

are considered glitches. Switching activities are then calculated and propagated

through the cut according to Equation (3.2). For a given cut, the effective

switching activity is a summation of the switching activities at each time step.

An example of how this is accomplished can be found in [40].

The best cuts, those with the lowest switching activities, are then chosen for

implementation of the node in the FPGA. Summing up the switching activities,

sai, for all of the selected cuts, 1, 2, . . . n, provides the total estimated switching
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activity, SA, for the netlist:

SA =

n
∑

i=1

sai (3.3)

The total estimated switching activity, SA, is used in the binding algorithm.

This technique for switching activity estimation has the advantages over previ-

ous techniques of being mapping-aware and considering glitches.

3.4 HLPower Binding Algorithm Description

The HLPower binding algorithm proceeds in two major parts. First, registers

are allocated and bound, and second, functional units are allocated and bound.

In this description we focus on the functional unit binding. The functional unit

binding proceeds in an iterative fashion until the resource constraint is met,

driven by the estimated dynamic power usage, and multiplexer sizes, of various

operation-to-functional unit bindings, as will be explained below. Algorithm 3.1

provides a summary of the HLPower binding algorithm.

3.4.1 Register binding

Register binding in HLPower is accomplished in the same way as described in

FastYield, Section 2.4.1.1.

3.4.2 Functional unit binding

3.4.2.1 Algorithm overview

Functional unit binding iteratively constructs weighted bipartite graphs, finds

a maximum matching, and combines nodes that are matched. Before the first

iteration of the functional unit binding, the scheduled CDFG is traversed, and
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Algorithm 3.1 HLPower Binding Algorithm.

1: Input: Scheduled CDFG, library, resource constraint
2: Output: Scheduled and bound CDFG
3:

4: precalc SA values for all functional unit & multiplexer combinations
5:

6: bind registers as described in Section 2.4.1.1
7:

8: /* Functional Unit Binding */
9: traverse CDFG, select nodes for set U

10: put remaining nodes in set V
11: while resource constraint is not met do
12: initialize bipartite graph G = (U, V, E)
13: for all edges in E do
14: calculate input multiplexer sizes (if nodes were combined)
15: look up SA value for particular functional unit & multiplexers
16: calculate edge weight
17: end for
18: solve G for maximum weight
19: combine matched nodes & allocate functional units
20: end while

for each operation type, the control step with the largest number of operations

of that type is found. This gives a lower bound on the possible resource con-

straint. These operations are selected to make up one set of vertices (or nodes),

U , in the bipartite graph. The second set of vertices, V , includes all of the other

nodes. See Figure 3.1.

During functional unit binding, the nodes of the graph are each considered

an allocated functional unit. Initially, as none of the operations have been

bound to functional units, every operation is considered to be bound to its own

functional unit, and each is represented by an individual node of the graph. On

subsequent iterations, each node (functional unit) of the graph may contain

more than one operation. Edges (making up the set E) are created between

compatible nodes in the graph. Two nodes are compatible if they meet the

following two criteria:
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Figure 3.1: An example of the binding algorithm formulated as a bipartite
graph. Solid edges indicate matches selected. The final functional unit alloca-
tion is 2 adders and 1 multiplier.

1. They perform the same type of operation; e.g., both are multiplications,

or one is an addition and the other is a subtraction (and can thus both be

performed by the same ALU).

2. They do not contain any operations that have overlapping lifetimes in the

schedule.

Each edge of the graph represents a possible binding of two sets of opera-

tions to the same functional unit. Edge weights are then assigned as described

in the next section. This formulation is similar to binding that works with a

compatibility graph, but not all nodes will be bound in a single iteration. As

the graph will be solved for the maximum weight, larger edge weights should be

assigned to those edges that would produce lower power consumption, if the two

sets of operations were bound to the same functional unit.

45



Figure 3.1 illustrates the bipartite graph formulation. In iteration 1, add

operations 1 and 2, and mult operation 3 are selected for set U , because they

come from the control steps of maximum density for their respective types in

the scheduled CDFG. (Note that, alternatively, any of the mult operations

could have been chosen, or add operations 6 and 8 could have been chosen.)

Solid edges represent those selected in the maximum weighted matching. Nodes

are combined, and in iteration 2 nodes are further combined. In iteration 3,

there is no longer any compatibility between the nodes, and the algorithm is

completed. The final allocation is 2 adders and 1 multiplier.

Theorem 1. A weighted bipartite graph G = (U, V, E), representing the oper-

ations of a scheduled CDFG (as previously described), if iteratively generated,

solved, and matching nodes are combined, guarantees that the minimum possible

resource constraints can be met.

Proof. Suppose on the contrary that the minimum resource constraint cannot

be met. This would mean that there exists a node in the set V that is incom-

patible with all nodes in the set U . Since this incompatibility could not be due

to compatibility criterion 1 given above—the nonexistence of a compatible op-

eration type (if, for example, there was only one operation of a particular type

in a CDFG, then it would already lie in set U)—it must be due to criterion

2—operations that have overlapping lifetimes. That would imply that there

were more operations in the incompatible operation’s control step than were in

the control step chosen initially for set U . This could not be the case due to the

selection criteria for set U .

Theorem 1 guarantees that, in the bipartite graph formulation, the mini-

mum resource constraint for the given scheduled CDFG can be met. The worst

case runtime complexity of the algorithm is O(|N |2 ∗ (|E| + |N |log|N |)), where
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|N | is the total number of nodes in the CDFG. This is because the number of

bipartite graphs solved is, in the worst case, linear with the number of nodes in

the CDFG.

3.4.2.2 Edge weight calculation

For each of the edges in the graph, edge weights are calculated as follows:

1. The sizes of the input multiplexers to the functional unit to which the op-

erations connected by the edge would be bound (if the matching included

the given edge) are found. This is possible because the registers have al-

ready been assigned, enabling the calculation of the exact multiplexer

sizes. This virtual binding creates a partial datapath.

2. A gate-level netlist of the partial datapath (including the functional unit

and multiplexers) is generated in .blif format [55]. This is accomplished by

creating a new .blif file with proper input and output ports, importing ex-

isting instantiations of the multiplexers and functional units, and making

the necessary connections. See Figure 3.2.

3. The switching activity is estimated for the gate-level netlist (.blif), based

on the technique described in Section 4. This produces an estimate of the

dynamic power, including glitch power, which will be used to estimate

part of the cost of this particular binding of operations to functional unit.

4. The weight on the edge is computed according to the formula

w(ei,j) = α ×
1

SA
+ (1 − α) ×

1

(muxDiff + 1) × β
(3.4)

where SA is the total estimated switching activity as defined in Equa-

tion (3.3), α is a weighting coefficient, β is a value used to adjust the size
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.search mux2.blif

.search mux3.blif
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.model mult_2_3 ...

.inputs A0 A1 A2 ...

.outputs S0 S1 ...

.subckt mux2 A=A0 ...
.
.
.

.

.

.

To .blif(2)

(1)

(3)

Figure 3.2: An example of gate-level partial data-path netlist generation. Based
on the register binding, and operations assigned to the edge nodes (1), it is de-
termined that a 2-input multiplexer is needed on the left, and a 3-input multi-
plexer on the right input of the multiplier (2). The .blif netlist is then generated
(3) for mapping and switching activity estimation.

of the muxDiff factor relative to SA, and muxDiff is defined as the

absolute difference in the sizes of the two multiplexers that input to the

functional unit.

Equation (3.4) uses the weighting coefficient α to balance the contribution

to the weight of two important factors: the total estimated switching activity, or

SA, and the difference in size between the two multiplexers, or muxDiff .

SA provides a low-level consideration of the circuit. It explicitly estimates

dynamic power usage (including glitches) at the gate-level, taking into ac-

count the multiplexers in the partial data-path. It also implicitly considers area

through the number of lookup tables required to implement the partial data-

path, because a larger area correlates with a higher SA. The term muxDiff ,

on the other hand, provides a high-level consideration of the circuit. It explicitly

considers multiplexer balancing, which would have a direct impact on glitch

reduction, even if the SA estimation is not 100% accurate. This combination
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of high-level multiplexer balancing and low-level SA estimation works to select

the best matches for power and area reduction in each iteration of the binding

algorithm. In our experiments we weight these two factors equally.

As dynamic calculation of the switching activities for each edge during the

binding iterations can be time-consuming, in our experiments we precalculate

the switching activities for all combinations of multiplexers and functional units.

This is done by generating the gate-level netlists for the partial data-path of

each combination of functional unit and multiplexers, and running the SA

estimation on each. The calculated SA values are then stored in a text file. A

hash table is then generated when HLPower is initially run by reading in the

precalculated values from the text file. This allows fast lookup of the estimated

SA value for a particular combination of input multiplexer sizes, and functional

unit. Experimental results show that this method provided us with the same

results as running the algorithm with dynamic SA estimation, but with a much

shorter run time.

The iterative approach to functional unit binding allows the multiplexer size

to be better controlled than is possible with single iteration approaches, such

as with a network flow algorithm. By iteratively building up the numbers of

operations assigned to allocated functional units, the multiplexer sizes, balance

among multiplexers, and the contributions of the multiplexers to dynamic power

(including glitch power) consumption can be carefully controlled and evaluated.
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Table 3.1: Resource Constraints, Scheduling Length, and Number of Registers
Used for Both LOPASS and HLPower Binding. Identical Schedules and Register
Bindings were Used by Both LOPASS and HLPower.

Benchmarks Add Mult Cycle Reg HLPower
Runtime (s)

chem 9 7 39 70 812
dir 3 2 41 25 56

honda 4 4 18 13 14
mcm 4 2 27 54 16
pr 2 2 16 32 2

steam 7 6 28 39 189
wang 2 2 18 39 2

3.5 Experimental Results

3.5.1 Experimental setup

Our experiments are carried out on a 2.8 GHz Intel Pentium 4 Linux machine,

with 2 GB of memory. A number of data-intensive benchmarks are used; the

same benchmarks are used in Section 2.5 and outlined in Table 2.1. Each node

in the benchmarks is either an addition/subtraction or a multiplication.

We compare our binding algorithm, HLPower, to a state-of-the-art low-

power high-level synthesis algorithm for FPGAs, LOPASS [38], which can

perform simultaneous scheduling, allocation, and binding. We use a resource

library containing single-cycle resources, including a multiplier, an adder, a

register, and multiplexers. The benchmarks are first run through LOPASS,

and a binding solution is obtained. Then they are run through HLPower with

the same schedule, register allocation, and resource constraints, to obtain the

HLPower binding solution. Table 3.1 summarizes the scheduled benchmark

characteristics used for both the LOPASS and the HLPower solutions.

The binding solutions, in CDFG format, are then converted to RTL design

in VHDL with a CDFG to VHDL tool. To verify our results using a commer-
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cial tool, the designs are put into Quartus II for RTL synthesis, placement and

routing, timing analysis, simulation, and power analysis. This is done by first

building a project on each benchmark’s VHDL, setting the device family to Cy-

clone II, and selecting the same device for each benchmark. We use the Quartus

II vector waveform file (.vwf) editor to generate 1000 random input vectors for

each benchmark. We also set the simulator settings glitch filtering to never,

max balancing dsp blocks to 0, wysiwyg remap to on, optimization technique to

speed, and synthesis effort to fast. These settings help to ensure that the bench-

marks for both LOPASS and HLPower are synthesized in the same way without

Quartus II optimizations that would invalidate the power results produced by

both algorithms. The same .vwf file is used for both LOPASS and HLPower.

Then we run the command quartus sh –flow compile (which runs the synthesis,

placement and routing, and timing analysis), quartus sim (which makes use

of the .vwf file, and generates a switching activity file, .saf), and quartus pow

(which makes use of the .saf file). The command quartus pow runs PowerPlay

Power Analyzer, and reports the dynamic power consumption.

3.5.2 FPGA area and power reduction results

Tables 3.2 and 3.3 summarize the synthesis and power analysis results for both

LOPASS and HLPower, for each of the benchmarks. There was an average

reduction in dynamic power of 19.3%, and area (in the form of look-up tables

(LUTs)) of 9.1%. These reductions came at the expense of 0.6% of the clock

period, on average.

Table 3.2 columns 5 and 6, and Table 3.3 columns 5 and 6 show the multi-

plexer reduction results. In the tables, Largest MUX is the largest multiplexer

needed to implement the binding solution, while MUX length is a measure of
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Table 3.2: Power, Clock Period, Number of LUTs, and Multiplexer Results for
LOPASS and HLPower Bindings.

LOPASS/HLPower
Dynamic Clk Per. Largest MUX

Benchmarks Power (mW) (ns) LUTs MUX Length

chem 1602.3/1468.6 26.0/27.5 9,806/9,613 26/23 672/637
dir 709.1/405.8 23.8/24.2 4,527/3,453 18/15 167/157

honda 658.7/534.1 23.5/23.2 3,352/3,057 15/13 165/162
mcm 351.3/208.7 24.1/24.2 3,274/2,548 17/14 159/153
pr 232.7/192.9 20.9/21.7 1,714/1,732 11/8 70/57

steam 729.6/690.6 24.4/23.6 5,121/4,469 19/22 429/321
wang 161.5/158.5 20.5/19.9 1,697/1,775 12/8 69/76

Table 3.3: Power, Clock Period, Number of LUTs, and Multiplexer Results for
LOPASS and HLPower Bindings, Continued.

Change
Dynamic Clk Per. LUTs Lrgst MUX

Benchmarks Pow.(%) (%) (%) MUX Len.(%)

chem -8.35 5.67 -1.97 -6 -5.2
dir -42.78 2.04 -23.72 -3 -6.0

honda -18.92 -1.40 -8.80 -2 -1.8
mcm -40.60 0.38 -22.17 -3 -3.8
pr -17.09 3.60 1.05 -3 -18.6

steam -5.35 -3.32 -12.73 3 -25.2
wang -1.85 -2.88 4.60 -4 10.1

Average -19.28 0.58 -9.11 -2.6 -7.2
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Figure 3.3: Number of multiplexers of each size allocated by LOPASS and
HLPower bindings, for benchmark pr.

the total number of multiplexers implemented, and is calculated by adding up

the total number of multiplexer inputs (sizes).

HLPower reduced the largest multiplexer size by an average of 2.6, and

the length by an average of 6.1%, over LOPASS. Figures 3.3 and 3.4 show

the number of each size of multiplexer for pr and wang. In these examples we

can see not only that HLPower creates fewer multiplexers, and multiplexers

of smaller sizes (reducing area and power), but also that the multiplexers are

more balanced, with fewer single multiplexers of a particular size. This balance

of multiplexers contributes to a power reduction by balancing paths, reducing

interconnect, and eliminating extra glitch transitions.

Evidence for the decrease in glitches is given in Figure 3.5. Average toggle

rate is a number reported by Quartus II that provides a measure of the total

switching activity of the circuit. HLPower reduces the toggle rate for each

benchmark, averaging 21.9% overall. The combination of area savings through

multiplexer reduction and reduced glitching (as evidenced by the significant

decrease in toggle rate) produces an aggregate reduction in dynamic power, for

a negligible change in clock period.
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Figure 3.5: Average toggle rate as reported by Quartus II for LOPASS and
HLPower bindings.
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CHAPTER 4

CONCLUSION

4.1 Summary and Conclusion

In this thesis we have presented two novel high-level binding algorithms. The

first, named FastYield, was a variation-aware algorithm for simultaneous bind-

ing and module selection. FastYield incorporated many competing factors into

its algorithm that are not found in previous variation-aware algorithms. It

considered register, multiplexer, and functional unit usage, as well as spatial

correlation among the resources during SSTA embedded in a floorplanner. The

importance of spatial correlation during SSTA was demonstrated. On aver-

age, FastYield achieved an 85% performance yield clock period that is 14.5%

smaller, and a performance yield gain of 78.9%, when compared to a variation-

unaware and layout-unaware algorithm based on [18]. Also, by making use of

accurate timing information, FastYield’s rebinding improved performance yield

by an average of 9.8% over the initial binding, for the same clock period. These

results showed that by performing statistical layout-driven synthesis, substantial

gains in performance yield can be made.

The second algorithm, dubbed HLPower, was a high-level binding algorithm

for power and area reduction, targeting FPGAs. The binding algorithm was

based on iterative weighted bipartite matching, and made use of glitch power-

aware, dynamic power estimation. The power estimations came from an FPGA

technology mapper that made use of an effective switching activity model.
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Experimental results were obtained that compared HLPower to LOPASS, a

state-of-the-art low-power high-level synthesis algorithm for FPGAs. High-level

binding results were converted to VHDL, and synthesized with Altera’s Quartus

II software, targeting the Cyclone II FPGA architecture. Power characteristics

were evaluated with the Altera PowerPlay Power Analyzer. The results showed

that our algorithm, on average, reduces toggle rate by 22% and area by 9%,

resulting in a decrease in dynamic power consumption of 19%.

4.2 Future Work

In the algorithms presented, we have focused mainly on binding and module

selection for performance yield optimization and low power. Although we have

successfully improved binding results over previous algorithms, the next step

will be to integrate these ideas into a whole high-level synthesis framework,

including the scheduling of resources. Additionally, simultaneous binding of

registers and functional units should be considered within that framework. This

is an important area of research, as it has the potential to significantly improve

the characteristics of circuits designed both as ASICs and as FPGAs, while also

reducing the time required to complete those designs. Tools that are variation-

aware will also enable the continued shrinking of device sizes in next-generation

processes, providing greater resources and potential on each chip.
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