(© 2009 Mayank Agarwal

IDENTIFYING, QUANTIFYING, EXTRACTING AND ENHANCING IMPLICIT
PARALLELISM

BY

MAYANK AGARWAL

B.Tech., Indian Institute of Technology Delhi, 2004

M.S., University of Illinois at Urbana-Champaign, 2006

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Department of Cotap&cience
in the Graduate College of the

University of Illinois at Urbana-Champaign, 2009

Urbana, lllinois

Doctoral Committee:

Assistant Professor Matthew Frank, Chair
Professor Sarita Adve

Dr. Pradeep Dubey

Professor Josep Torrellas

Assistant Professor Craig Zilles

ABSTRACT

The shift of the microprocessor industry towards multicarehitectures has placed a huge burden
on the programmers by requiring explicit parallelization performance. Implicit Parallelization

is an alternative that could ease the burden on programmgegrarhllelizing applications “under

the covers” while maintaining sequential semantics exifrnThis thesis develops a novel
approach for thinking about parallelism, by casting thébfgm of parallelization in terms of
instruction criticality. Using this approach, parallefisn a program region is readily identified
when certain conditions about fetch-criticality are daby the region. The thesis formalizes
this approach by developing a criticality-driven modelagk-based parallelization. The model can
accurately predict the parallelism that would be exposepddtgntial task choices by capturing a
wide set of sources of parallelism as well as costs to péizaten.

The criticality-driven model enables the development af key components for Implicit
Parallelization: a task selection policy, and a bottlenaaélysis tool. The task selection policy can
partition a single-threaded program into tasks that wilfii@bly execute concurrently on a
multicore architecture in spite of the costs associatetl @itforcing data-dependences and with
task-related actions. The bottleneck analysis tool gigedlback to the programmers about
data-dependences that limit parallelism. In particutagré are several “accidental dependences”
that can be easily removed with large improvements in gaistth. These tools combine into a
systematic methodology for performance tuning in Implatrallelization. Finally, armed with the
criticality-driven model, the thesis revisits severalraiectural design decisions, and finds several

encouraging ways forward to increase the scope of Impligfelization.

To my parents.

ACKNOWLEDGMENTS

Graduate school has been an interesting journey. Therebe@refrequent storms and encounters
with rough seas with only brief periods of smooth sailingeBnytime the ship seems to be under
control, the sea throws up a new challenge. Often the shipdrag close to sinking. But
somehow | managed to make it through, enriched by the experigot financially though). A big
reason for my survival was the people with whom | shared gartghole of the journey. | would
like to express my gratitude to them here.

Firstly and foremost | would like to thank my advisor Matt Rka He is at the same time one of the
smartest people | have worked with yet one of the most huniidealways had the time and the
patience to listen to me drone on even when it would be clehinichat | was off in la-la land.
This was because his objective was to make my stay in gragduht®l a good learning experience
rather than to maximize the utility he could get out of mejkenkeveral other professors. He
would always come up with great insights and constructieglifack in each discussion.
Discussions with him always leave me energized and withrakwew ideas to try out. He has
inspired me to explore new areas and made doing research amat@mexperience. At the same
time he has been very understanding, never pushing me wreume Ideen down in the dumps. |
have learned a lot about doing good research from him.

Next | would like to thank my fellow members of the IPA groupeovhe years. The IPA group at
its peak boasted of an amazing team and | still marvel at teatteve had in our group. Kshitiz
Malik has been my partner in crime during the time | learnedrttost. Collaborating with him has
been a most fun experience. He played the role of devil’s @ateoto perfection whenever |
pitched any new idea to him, ensuring that | had to think deepleard before proposing any new
theory and preventing me from doing “shotgun-style red€aM/hen he picks up a problem, he

keeps working and obsessing over it until it is solved andotirase “give up” doesn’t exist in his

dictionary. His energy and enthusiasm have been a souraeaif igspiration to me.

Kevin Woley was the initial “architect” of the Polyflow ard¢htture and wrote a large chunk of the
simulator code. He designed and wrote high-quality codewkkealways pushing technology to
the edge by exploring new features, writing fun scripts ttmanate things, trying out and learning
to use new tools. He made me appreciate the importance ofriganew tricks and tools. My only
regret being that | could not convince him to switch to vinnfremacs (I almost did it though).
Sam Stone was one of the most hard-working and sincere pebale met. He planned things
very well and made steady progress towards his goals, uotiler IPA members like me who
slacked off until deadlines approached. | hope one day | cquige some of those qualities.
Vikram Dhar was exploring and reading up new things and advggve interesting insights. Nitin
Navale and Gene Wu made sure that my training would not bearipteie by making me watch the
Star Wars series. They have made me a devout follower of M#stia. Indebted to them | am.
Nick Weaver always had strong opinions about issues andsitvery interesting to debate with
him, especially about American politics.

I would also like to thank other members of the architecturaug at UIUC. Pradeep
Ramachandran, Naveen Neelakantam, Pierre Salverda, #hm Kgeel Mahesri and several
others were kind enough to review my papers and attend peatetiks. They gave valuable
feedback on my research and helped improve its quality. Tdtetacture reading group was
another forum where | learned a lot, although | was lazy anshitas regular in attending it as |
would have liked.

Steve Lumetta has been a very useful source of feedback orsagnch. He is someone who
doesn't tolerate any nonsense and is quick to point it outiskéso willing to debate for as long as
it takes until the topic under discussion is convincinglgaleed one way or the other. Discussing
my research with him has forced me to frame my argumentsgaigcand several times has helped
me iron out kinks in my theories or point out aspects that eHfailed to consider. In addition, he
cracks deep jokes and you have to push your mind to the liiitguunderstand them.

I would like to thank my committee members Sarita Adve, Peadeubey, Josep Torrellas and
Craig Zilles for their valuable guidance and feedback. Tieye been very kind with their time
and have provided lot of encouragement.

I would like to thank all my friends who have provided suppamt helped make this journey

\Y

enjoyable.
Last, but not the least, | would like to thank my parents andanyily. They have always

supported me and have encouraged me in my pursuit of higheiest | owe everything to them.

vi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION e e e e e 1
1.1 Motivation: The Need for Parallelization 1
1.2 Implicit Parallelization as a Potential Solution 2
1.3 Challenges to Implicit Parallelization 3
1.4 Contributions ofthisThesis 4

15 Roadmap e e
1.5.1 Partl: Identifying and Quantifying Parallelism 6
1.5.2 Partll: Extracting Parallelism 6
1.5.3 Part lll: Bottleneck Identification and Removal 7
PART | IDENTIFYING AND QUANTIFYING PARALLELISM o 8
CHAPTER 2 AN UNDERSTANDING OF PARALLELISM. 9
2.1 Heuristics for Parallelism 9
2.2 Dependence Height and Program Completion Time 11
2.3 Parallelism to Reduce Achieved Dependence Height 12
2.3.1 Techniques to Exploit Parallelism 13
2.3.2 Trade-Offs in Exploiting Parallelism 14
2.4 A Quantitative Approach to Parallelization 15
CHAPTER 3 CRITICAL PATH ANALYSIS OF PROGRAM EXECUTION 17
3.1 Lam’s Abstract Model of Parallelism 17
3.2 Fields’ Model of Superscalar Execution 19
3.2.1 Program Dependence Graph 19
3.2.2 Edgelatencies 1
3.2.3 Timestamp Assignment and Last-Arriving Edges 22
3.24 ProgramC CriticalPath 22
3.25 Slackand Tautness Analysis 23
3.3 Applications of Critical Path Analysis 24
3.3.1 Ciritical Path Analysis for Superscalar Processors. 25
3.3.2 Critical Path Analysis for Parallel Systems 25
3.3.3 Ciritical Path Analysis for Speculative Multithresagli. 26
CHAPTER 4 PARALLELISM AND FETCH CRITICALITY 27
4.1 Fetch Criticality in Superscalar Execution 28
4.1.1 Methodology for Characterizing Critical Path 28
4.1.2 Prevalence of Fetch Criticality 31
4.1.3 Fetch Criticality Generating Events (FCGEs) 32

Vii

4.2 Fetch Criticality= Unexploited Parallelism 34

4.3 Task-Based Parallelization to Alleviate Fetch-Caiity 35
4.3.1 Control-Independent Task Spawning . vieeen ... 35
4.3.2 Dependence Graph Model for Control- Independent $@siwn 36

4.4 Necessary Conditions for Existence of Parallelism 39
4.4.1 Rules for Successful Task Spawn 39
442 SpawnRulesinAction 39
4.4.3 Proofof SpawnRules oo 2 4

CHAPTERS5 QUANTIFYING PARALLELISM FROM POTENTIAL TASKS 45

5.1 Task Benefit and Critical PathLength 45

5.2 Assumptions About Impactof Tasks 45

5.3 Estimating TaskBenefit e 46
5.3.1 Definition: Adjusted Slack 0., 46
5.3.2 Performance Benefit from Spawning a Task . " 4
5.3.3 Adjusted Slack Calculation for SynchromzeehEE Edge 48
5.3.4 Adjusted Slack for Spawn+ FEdge 49

5.4 Overall Approach 49

55 Validation 50
5.5.1 Infrastructure and Methodology 50
5.5.2 ValidationResults 50

PART Il EXTRACTING PARALLELISM ON POLYFLOW 64
CHAPTER 6 POLYFLOW: TARGET SPECULATIVE PARALLELIZATION SY S-

TEM e 65

6.1 Terminology and High-Level Overview 65

6.2 Management of Data-Dependences, 67
6.2.1 Register Dependences e 67
6.2.2 Value-Prediction for Callee-Saved Register Depecele 68
6.2.3 Memory Dependences 8 6

6.3 Disambiguation of Memory Accesses and Forwarding odDat. 68

6.4 Non-Blocking Scheduling through Divert Queues 69

6.5 Release Policy for Synchronized Instructions 69

6.6 Task SpawnManagement 70

CHAPTER 7 RELATED WORK IN SPECULATIVE PARALLELIZATION71

7.1 Compiler-driven Automatic Parallelization 71

7.2 Speculative Parallelization 72
7.2.1 Challenges to Speculative Parallelization 73

7.3 Task Selection for Speculative Parallelization 73
7.3.1 Potential Task Choices Considered 74
7.3.2 Heuristics to Estimate Task Benefit 75

7.4 Program Transformations for Speculative Parallelicgb 77
7.4.1 Speculative Program Transformations 717
7.4.2 Reuvisiting Application Implementation 78

viii

CHAPTER8 TASKSELECTIONFORPOLYFLOW

8.1 Comparison Policies e e
8.1.1 ClosestSpawnPolicy
8.1.2 Data-Dependence CountPolicy

8.2 Task SelectioninPolyflow
8.2.1 ImpactofThreshold
8.2.2 Nesting Analysis for In-order Task Spawning

8.3 Understanding Performance

PART Il ENHANCING PARALLELISM THROUGH BOTTLENECK REMOVAL

CHAPTERY9 APPLICATION BOTTLENECKS TO PARALLELIZATION
9.1 Background e e
9.1.1 Abstract Dependence Height Analysis
9.1.2 Critical Path Analysis
9.2 Design of SPARTAN e
9.21 Functionality
9.2.2 Bottleneck Identification oL
9.2.3 Bottleneck Quantification
9.3 Bottleneck Analysis for Benchmarks
9.3.1 BottlenecksinVPRPlace
9.3.2 BottlenecksinTwolf L,
9.3.3 BottlenecksinParser Lo
9.3.4 BottlenecksinGzip.
9.3.5 DISCUSSION o e
9.4 Quantifying Bottlenecks and Validation
9.4.1 Quantifying Bottlenecks inVPR
9.4.2 Potential for Parallel Performance on Polyflow
9.4.3 Speculative Parallelizationof VPR

CHAPTER 10 ARCHITECTURAL BOTTLENECKS TO PARALLELIZATION .
10.1 AnUpside Potential Study e
10.1.1 Methodology e
10.1.2 Architectural Constraints Modeled
10.1.3 Idealizations inthe Study
10.1.4 Results
10.2 Task Granularity and Parallelism
10.2.1 Resultsand Analysis e
10.2.2 Task Granularity inSwim
10.3 Cost of Enforcing Inter-Task Data Dependences andHasklties
10.4 Nested Parallelism and Out-of-Order Task Spawning
10.5 Impact of Constraining Available Cores

CHAPTER 11 CONCLUSIONS e
11.1 ThesisSummary i e e e e e e e

REFERENCES.

AUTHOR’S BIOGRAPHY

.97

CHAPTER 1

INTRODUCTION

1.1 Motivation: The Need for Parallelization

The microprocessor industry is entering a new era. For teedecade or so, computer architects
have been able to successfully convert the additionalistams made available by Moore’s law
into useful performance. This has been achieved througbknpigelines, out-of-order execution,
and aggressive speculation accross branches. Howevas, tdehniques face severe roadblocks to
providing further improvements in performance. The roadklto scaling these techniques arise in
the form of higher power requirements, diminishing impmests in performance, and circuit
complexities. Some have referred to these barriers as therpmall, the ILP (Instruction Level
Parallelism) wall, and the complexity wall [1].

In response, the industry has made an about turn over thievagears and is now moving towards
multicore architectures comprising simpler rather thamentmmplex cores [2]. The hope is that
applications can profitably take advantage of parallelismtilize extra cores for improvements in
performance. However, expliticly parallelizing applicais is a hard problem and places a huge
burden on the programmers. It requires programmers to mplggament as to where parallelism
lies in their applications such that it can be profitably bkzeid to deliver performance. Next,
programmers need to correctly parallelize their applicetito obtain an equivalent parallel
application. This can be complicated by unanticipated-daf@endences that might exist between
seemingly unrelated regions of the program, not enforcihgghvmight introduce subtle errors.
Finally, performance debugging a parallel code is alsolehging since new issues like false
sharing, lock contention, load imbalance, overhead ofingsletc. might swamp any benefits of
parallelism. All of these can be hard challenges espediatliarge applications where a single

programmer might not have an understanding of the entire bade.

The responsibility of manually parallelizing applicat®is at odds with the current approach that
has served programmers well for a long time. The traditiapgiroach for application
development most commonly used has been to write sequapfiéitations and rely on the
architecture to find instruction-level parallelism “undee-covers”, while externally presenting
sequential semantics. Moore’s law meant that with each reemtion, microprocessors got
faster and could exploit more ILP. Thus, the same progrard tessautomatically perform better
with each new generation of processors.

Programmers would like the trend of automatic scaling ofggerance with new generations of
microprocessors to continue. Such a separation of con&egys programming simple and allows
it to be accessible to a wide audience. At the same time, ileagrogrammers to achieve high
performance on their applications without having to wottgat architecture-related most of the
times. The multicore era threatens to disrupt this traditind cause a huge hit to programmer
productivity. In other words, there is a disconnect betwiberequirements on the programmer

side and trends in the architecture side.

1.2 Implicit Parallelization as a Potential Solution

This thesis explores a solution to the above-mentioneddisect that would allow programmers
to continue writing applications following the sequenpabgramming model, but reap the benefits
of additional cores through under-the-covers parallebpa This thesis refers to such an approach
as “Implicit Parallelization”. Figure 1.1 illustrates thjective of Implicit Parallelization.

This approach offers the promise of maintaining programpneductivity by allowing

programmers to keep writing single-threaded applicatidiishe same time, it would deliver high
performance by automatically and implicitly paralleligithe application into tasks that can
execute concurrently on the available cores. Thus it woaldioue the hugely successful tradition
of hiding parallelization details from programmers. Thisallelization is to be carried out while
preserving the sequential semantics, so that correctmelssase of debugging would not be
compromised. Finally, the parallelization system can aatiically tailor the parallelization for
characteristics of the underlying architecture (which earry quite a bit). This frees up the

programmer from worrying about architecture-specific ésslike granularity of parallelism.

—mm [
A

B CPU1 CPU2
B = L2 1=
C Cc
| mm B

CPU4 CPU3

Sequential Partition into Concurrent Sequential
Program Tasks Execution Semantics

Figure 1.1: The high-level objective of Implicit Parallzdtion.

1.3 Challenges to Implicit Parallelization

Implicit Parallelization is not without its challenges.h&approach has previously been explored
by several researchers and for several years under variigessguch as automatic parallelization
and speculative parallelization. Limit studies suggestehpotential for such approaches.
However, most previous research prototypes have demtetsinegodest potential on sequential
benchmarks while adding significant complexity to hardw(ared potentially middleware such as
compilers, etc). This is because implicit parallelizatmnmulticore architectures is a much harder
problem than under-the-cover parallelization for Indiiarclevel Parallelism (ILP) on superscalar
architectures. There are challenges at multiple layerieaairchitecture-level as well as the
application-level.

At the application level, the parallelization needs to beied out while preserving application
semantics. This requires respecting application congnodt data-dependences while parallelizing
it. Enforcing these dependences accross tasks runningferedit cores typically introduces a
large amount of cost to the parallelization process. The can have a huge bearing on the
performance of Implicit Parallelization approaches. Efigne, applications should be partitioned
into tasks that yield high performance in spite of thesescostis is hard because static
dependence analysis is hard. Offline tools might not evewlafdhe existence of all
dependences. Even if dependences are known, the costs@atsgadth dependences can vary and

depend upon many dynamic effects such as cache misses g dicted branches. Optimal

partitioning into tasks is a hard problem, and good heggsdre needed.

In addition, there are significant challenges at the levéhefarchitecture. Modifications have to
be made to the base multicore architecture. These are neededorm task spawns and merges
internally, enforce inter-task data-dependences, maimégretask data communication, and ensure
correct execution semantics. Trade-offs need to be madeebathardware complexity and

performance.

1.4 Contributions of this Thesis

This thesis approaches challenges in Implicit Parallebmafrom a new direction, by casting the
problem of parallelization in terms of instruction critiitg This new approach enables
guantification of trade-offs previously understood qadilely, and naturally unifies several
previously used heuristics for finding parallelism intogée framework. This allows the thesis to

to improve upon the performance of previous attempts inrataspects of the problem.

Criticality Analysis
Task Selection

l Criticality Analysis

Bottleneck
Hdentification

/\

Accidental
Bottleneck
Rem oval

Essential
Bottleneck
Rem oval

Figure 1.2: An application-centric Implicit Paralleliiat flow.

Building upon this new approach, this thesis develops a ftsvirfiplicit Parallelization of

programs. This flow develop a systematic methodology foaiabtg high performance through

Implicit Parallelization of programs. The thesis develogpas for parallelizing applications as well
as for performance debugging that form key components sfflinv. A programmer for whom the
initial best-effort parallelization carried out by the s doesn’t perform sufficiently can use
these tools and iterate over the flow to tune the applicatidi performance goals are met. The
flow is illustrated in figure 1.2.

As mentioned above, the key insight in this thesis is theieajpbn of concepts of instruction
criticality and critical path analysis to the parallelioat problem. This is used to develop a
criticality-driven model of implicit parallelization. Tdimodel has several applications. It can be
used to make quantitative predictions about the paratiedéigsposed from different task choices. It
is a key ingredient of the task-selection phase. A task Setepolicy developed based upon this
model significantly outperforms previous work in this area.

The criticality-based model is also used in the applicabiotileneck identification phase of the
flow. This thesis finds that the application bottlenecks t@leism in form of data-dependences
fall into two categories: accidental dependences and #akdapendences. Accidental
dependences can be easily removed through standard traasfins such as reassociation, or
through calls to better (more parallelizable) library ftioos. Removing essential dependences, on
the other hand, requires rethinking the algorithm and piaiyntrading-off output quality with
performance.

In addition to the above flow, this thesis also revisits thuhiectural decisions made by most
Implicit Parallelization systems. This includes decisi@out the granularity at which parallelism
will be extracted, techniques to manage data-dependeaicdshe impact of limiting cores.

Results shows encouraging directions to move forward.

1.5 Roadmap

This thesis deals with the challenge of Implicit Parallaian of applications. As described above,
a one-step approach is unlikely to always lead to succesheRa systematic flow is developed
that allows iterative refinement of the application untitfpemance goals are met. The thesis is

broadly organized along the lines of the parallelizatiomftiescribed.

1.5.1 Partl: Identifying and Quantifying Parallelism

The first part of the thesis deals with the problem of idemjyparallelism in applications.
Chapter 2 defines parallelism in terms of a dependence gnaplvay that naturally unifies several
different heuristics for parallelism proposed in liter&tgsuch as Memory-Level Parallelism or
MLP, Branch-Level Parallelism or BLP, Data-Level Paradlei or DLP, etc.). Chapter 3 describes
two types of dependence graphs described in literatureselt@n be used to represent program
execution and for finding the program critical path. The ¢baplso describes some applications
of critical path analysis from literature.

Chapter 4 develops the treatment of parallelism furthetdsk-based parallelization by
approaching it from an instruction-criticality perspeeti It describes the relationship between
potential for parallelism and fetch-criticality of insttions. In particular, whenever instructions
are fetch-critical in a region, there might be potentialifoproving performance by spawning a
task in that region provided a set of conditions are met. &lvesditions are developed into formal
rules for the existence of exploitable parallelism. Theptbaalso describes how Fields’
dependence graph model [3] for finding instruction criftgah superscalar execution can be
extended for an Implicit Parallelization architecture.

The first part concludes with chapter 5 that develops thglinsiof chapter 4 into a quantitative
model to predict the expected parallelism from spawningtargi@l task. The chapter validates the
model by comparing the predictions from the model with thesueements from a prototype of a

4-core Implicit Parallelization system.

1.5.2 Partll: Extracting Parallelism

The second part of the thesis deals with the challenge ofawimpy parallel performance by
spawning tasks in an Implicit Parallelization system. Tinglicit Parallelization system used in
this thesis belongs to the class of “Speculative Paradititin (SP)” architectures because it can
speculate on ambiguous data-dependences (typically nyeoaged) and recover if a speculation
failed. The particular system used in this thesis is namedi/flew”. Polyflow has several features
that differentiate it from other research SP systems. @hd&ptlescribes the Polyflow architecture

in some detail. Chapter 7 describes related work in ImpHeitallelization of applications,

including task-selection strategies used previously.

Chapter 8 describes the task selection strategy develogedithesis. The strategy build upon the
task benefit estimation model developed in chapter 5. Thisdalection strategy is compared to
task selection policies used in previous work and is fourgldoificantly outperform them because
it is built on top of a better parallelism estimation modeigddoecause it considers containment

relationships between tasks in addition to individual taskaviors.

1.5.3 Part lll: Bottleneck ldentification and Removal

Finally, the third part of this thesis steps back and takemk &t the broader picture of Implicit
Parallelization, both from the architecture side as wefbaspplications. Chapter 9 presents
another application of the criticality model on the apgiica side. It analyzes several benchmark
applications and realizes that frequently, applicationtheir current form are not very amenable to
parallelization. But a few tweaks can sometimes greathyanoé the scope of parallelization. In
particular, there exist several “accidental dependenasth can be easily removed without
causing much change to application behavior, but with greptovements in parallel performance.
The chapter develops a tool, called SPARTAN, which can aatmailly find the important
data-dependences that limit parallelism and also quaiitéymportance of each bottleneck.
Chapter 10 does the analysis in the architecture side. & fimat while Implicit Parallelization has
high performance potential, some of the constraints imghbgecurrent research prototypes
severely limit the performance potential. Examples ineltlte restrictions on task sizes that
prevent exploitation of parallelism at large granulasiti®©n the other hand, some of the other
decisions like restricting task spawning to be in-ordergf@sosed to the more relaxed out-of-order
spawning) don't matter as much in terms of performance whiténg down on complexity. This
suggests encouraging ways forward to expand the scope titinRarallelization.

Finally, chapter 11 draws conclusions and gives some fimadrkes on this work.

PART |

IDENTIFYING AND QUANTIFYING
PARALLELISM

CHAPTER 2

AN UNDERSTANDING OF
PARALLELISM

The microprocessor industry has recently moved away fratrénd of higher performance
through ever increasing clock speeds and wider pipelindgsamards multiple (usually simpler
and slower) cores. This has made it increasingly imporiantdmputer architects and software
developers to deliver high performance by exploiting galiain in applications. In response,
researchers have explored various parallelism-enharmettgtectural techniques and software
transformations.

Several opportunities for parallelism have been identified given different names. Section 2.1
summarizes some of these “heuristics” for finding paradteli While these heuristics are useful to
focus on specific opportunities, they can also end up limitire scope of parallelization
techniques since designers might target only a subset s¢ theuristics and miss out on other
opportunities for parallelism. The ultimate goal is to iroye performance, therefore
parallelization techniques should target parallelisméneagal.

With this as motivation, sections 2.2 and 2.3 formalize a elegpproaching parallelism that
naturally unifies the different heuristics, in terms of thiepjendence graph” representation of
program execution. Parallelization techniques also affyicreate a performance trade-off since
there are costs involved to exploiting parallelism. Seca! describes how the above treatment of
parallelism can be used to evaluate this trade-off quadintits to design parallelization techniques

and policies.

2.1 Heuristics for Parallelism

Parallelism might be exploited at a fine granularity, as lawhee level of a few individual

instructions. This is commonly referred to as instructiewel parallelism (ILP). Examples of ILP

Task/Thread Level Parallelism

(TLP)
Memory-Level Parallelism Irregular Task Parallelism
(MLP)
Branch-Level Parallelism Loop-Level Parallelism
(BLP) (LLP)

Data-Level Parallelism
(DLP)

Figure 2.1: Some heuristics proposed for finding task leaehltelism.

techniques are multiple (potentially duplicate) functibanits and out-of-order execution.
Multiple functional units allow several independent instions to execute simultaneously rather
than wait on just one execution unit. Out-of-order exeguilows simultaneous execution of
multiple non-consecutive independent instructions withfixed-sized window even when some of
the intermediate instructions might be waiting for theimgucers to complete.

Parallelism can also be exploited at coarser granularitgitagding up the sequential execution of
the program into chunks of instructions, and by (partly anptetely) overlapping the execution of
these chunks, commonly referred to as “tasks” or “threat@ibése tasks can run in parallel on
multiple processors of a multiprocessor or a multicore igecture, or different hardware threads
of a multithreaded processor. These tasks can help achiglvertthroughput than possible with a
single stream of execution. This form of parallelism is thienary focus of this thesis, and will be
referred to as Task-Level Parallelism (TLP) in this thesis.

Several opportunities for TLP have been identified in liteéra Terms such as data-level
parallelism (DLP) have been coined. Data-level parahelacurs mostly in loops where the same
piece of code executes on a large amount of data. Other larcigsk-level parallelism is said to
exist where a sequential execution can be separated intphauaasks that can execute
concurrently. Note that these tasks might not be complételgpendent, in which case the
inter-task dependences must be enforced for correctness.

Other opportunities for TLP are created by dynamic eventh s18 instruction and data cache
misses and mispredicted branches, which cause singletexestreams to achieve only a small
fraction of the peak throughput allowed by the processourldgics to spawn tasks to take

advantage of memory-level parallelism (MLP) [4] and braterel parallelism (BLP) [5] have

10

been proposed to improve performance when these eventseadgnt. Further, parallelism might

occur in regular structures like loops, as well as in irragibrms.

2.2 Dependence Height and Program Completion Time

Another way of approaching parallelism is by thinking of gr@am execution in terms of a
“dependence graph”. Given an application program thatigeeon a given input data and a
processor architecture, there are a set of applicationndigmees that must be enforced. These are
the control-dependences (from a branch to instructiongraledependent on the branch) and
data-dependences (from an instruction that produces daiattuctions that consume the data)
enforced by the architecture. Note that for a particuladloharchitecture, these enforced
dependences may be a subset or a superset of the “true” e@ridbdata-dependences. For
example, with control speculation and value predictiommggues, some of the true control- and
data-dependences can be removed. On the other hand, sdse8 tfependences such as anti and
output data dependences, and extra control dependenchshaignforced by the architecture.
These enforced control- and data-dependences constea@atliest time by which the program
can possibly hope to complete. This earliest time is detegthby the longest chain of
dependences (both control and data) in the program tradeking the sum of the minimum
latency (again a function of the type of architecture) regplifor each operation in the dependence
chain. Itis referred to adependence heiglff the program.

However, an actual processor implementation enforcesaesher constraints (dependences)
besides the application control- and data-dependencdramts. These constraints come from
limited resources, bandwidth constraints, and other chiral restrictions on program execution.
Examples are limited buffer sizes, in-order fetch and eatient of instructions (due to
Von-Neumann design), possibly in-order execution, et@ddition, instructions might take much
longer to execute than their minimum required latenciess Triight be due to limited bandwidth,
limited cache sizes, etc.

Constraints such as those described above cause the &pplicampletion time to typically be
much longer than the dependence height. Thahesachieved dependence heightan actual

processor can be much longer than ithieimum dependence heigiie to architectural, resource

11

and bandwidth constraints [6]. Such additional constsajdependences) delay instructions that
could have otherwise completed much earlier (when comstdabnly by control- and
data-dependences). Also the achieved dependence hefhitlveilonger than the minimum
dependence height because instructions might take loagexetute than their minimum required
latency (cache misses, etc).

The execution of the program then can be visualized as a grhphe nodes can represent
individual operations and directed edges represent depeedelationship between two
operations. For example, Lam et. al [7] represented theutixecof each instruction for a given
program trace as an individual node, and edges between nagtse the true control- and
data-dependence constraints. Edges are labelled withithimom latency for that operation. The
dependence height can be computed by finding the longest chdependent nodes where the
length of a chain is given by the sum of edge latencies on tigihc Fields et. al [3] describe a
graph representation that can model, in addition to thedomérol and data dependence
constraints, several other architecture-imposed cdntgtras well. They refer to the longest
dependence chain as the “critical path” of program exenutiarther details of these dependence
graphs will be presented in chapter 3. The next section givdefinition of parallelism in terms of

such a “dependence graph” structure.

2.3 Parallelism to Reduce Achieved Dependence Height

Speeding up program execution from its current performamca given processor architecture
requires reducing the achieved dependence height. Thefgecavo ways to achieve this

reduction:

e Reduce the latency for some of the operations on the longgstrdience chain.

¢ Break some of the edges on the longest dependence chairt oethasulting longest

dependence chain is shorter in length.

The first category captures techniques like higher clockdper the processor and/or memory,
larger caches (to convert previous misses into hits therediycing latency), etc. It can also

include techniques like software/hardware prefetchegs&hechniques keep the structure of the

12

dependence graph intact (or almost intact), but still mariageduce the dependence height (and
thereby the program completion time) by cutting down on #tericy of some of the operations, in
particular, some of the operations on the longest depeedeman.

The second category of the techniques speed up programtiexeby removing some of the
constraints (edges) were previously sequentializingaijmrs on the longest dependence chain.
These techniques therefore allow these operations toestactiting concurrently where previously
they had to execute sequentially, thus reducing the lerigteqoreviously longest dependence
chain. These techniques, therefore, exploit the potefatidparallelism” in the application.
Broadly, parallelism refers to the ability to reduce theiagbd dependence height by removing
some of the previously imposed sequentializing conssdudpendences) on execution. This
removal of constraints allows the architecture to perforavipusly dependent (or transitively
dependent) operations in “parallel”, that is concurreriince a given set of operations have to be
completed to complete the overall program, parallelismvasithese operations to be finished
earlier than before by allowing concurrent execution. Bitjplg parallelism therefore can lead to a

increase in performance by reducing the achieved depeadweight.

2.3.1 Techniques to Exploit Parallelism

Opportunities for parallelism can be created in the follmywvays (among others):

e Program transformations to remove previously enforcedrobrand data-dependences

while preserving semantic behavior.

¢ Architectural designs that remove/modify some previoasiforced constraints that caused

sequentialization.

e As a special case, additional bandwidth and resources Ithat iastructions waiting on
resources to start execution earlier than before. Or atsarter resource allocation policies

that make better use of the available resources.

Several program transformations can achieve the effe@mbving control and data dependences
for parallelism. Loop unrolling removes the control-deghemce upon loop-branch for several

instructions. Techniques like renaming, privatizaticic, ean remove previously imposed

13

data-dependences. Explicit parallelization into thréadks can remove control-dependences (and
possibly data-dependences) that previously sequemstibtifferent regions of the program, to
exploit “Task-Level Parallelism (TLP)". If the threadsste are iterations of a loop operating on
the same code but on different data values, this has beemagte as “Data-Level Parallelism
(DLP)".

Architectural design techniques can relax some of the dbgreses that limit the achieved
dependence height. Out-of-order execution removes the&reomt of sequential issuing of
instructions (i.e. a dependence from each instructiosigdago that of the next one), and takes
advantage of “Instruction-Level Parallelism (ILP)” in theogram. Control-speculation for
correctly predicted branches can remove previously inghosatrol-dependences due to those
branches. Similarly, correct value prediction can remae®ipusly imposed data-dependences, as
can techniques like renaming of registers and memory. Qifelitectural techniques have been
proposed to overlap the penalty of cache misses by breakipgmiiences that sequentialize them,
and have been placed under the category of “Memory-Levelllehsm (MLP)” technigues.

Larger number of resources can also reduce the achieveddsmpee height because limited
resources can create dependences between otherwisaechigarations. For example, a larger
scheduler means that otherwise ready instructions tha dedayed because they could not find a

slot in the scheduler can now start execution earlier.

2.3.2 Trade-Offs in Exploiting Parallelism

Several architectural and software techniques have begoged to exploit parallelism in
applications for high performance. However, these tealesgan also introduce extra costs in

other aspects of a program’s execution that did not exi$ieearhe costs might be due to:

e The extra hardware resources required by the architedtehhique, which might be
associated with extra power consumption, area requireaneéesign complexity, etc. In
addition, these might lead to increased clock cycle timectviobuld increase dependence

height by slowing down some (or maybe all) operations ondhgést dependence chain.

e Architectural parallelization techniques might relari@/e some dependence constraints

but introduce new ones. In addition these might also inerdaes latency of some operations.

14

For example, control speculation can remove control-dégeces when successful, but can

add a misspeculation penalty to the fetch time of the cobyeantich target when it fails.

e Software parallelization techniques might create new icostrms of additional operations

or introduce new control and data-dependences.

The costs associated with a parallelization techniqueefber introduce a performance trade-off
that governs the profitability of the technique in improvpgyformance. The trade-off might be
hard to reason about qualitatively, since the benefits asts @an vary depending upon application
behavior. Qualitative approaches are usually requireddgg the value of a proposed
parallelization technique. Further, some parallelizatechniques can be selectively applied only
to a few chosen regions of the program. In such cases, a pslieded to decide where the
technique should be applied. Success depends upon thg abilne policy to incorporate the

parallelization cost-benefit trade-offs in its decisiongass.

2.4 A Quantitative Approach to Parallelization

In terms of a dependence graph, a parallelization techrigneeduce the dependence height by
breaking some dependence constraints that previousliedxis the longest dependence chain. In
other words, parallelization can potentially reduce thecexion time by removing some of the
edges on the program critical path (since critical pathrigpdy the length of the longest
dependence chain). On the other hand, a parallelizatidmigee can also add new nodes and
edges elsewhere in the graph as well as increase some eglggidat and the resulting critical path
might turn out to be worse off than the original one. Therefparallelization techniques should be
applied when the performance trade-off is in its favor.

The treatment of parallelism developed in this chapter eanded as a quantitative approach to
evaluate the performance trade-off for a proposed pawetedn technique to decide if it could be
worthwhile, as well as to design decision policies to degithere it is most profitable to
parallelize. The approach would be to estimate the impaitteoparallelization on the height of the
dependence graph (i.e. length of the program critical patij use this to decide if the

performance trade-off favors parallelization.

15

The advantages of this approach can be manifold. Firstpitepture all “forms” of parallelism
since it doesn't differentiate between them. Second, witle-chosen dependence graph
representation, this analysis can be much quicker butsiilée accurate compared to actually
prototyping the parallelization technique. Finally, if alipy is required to decide how to
parallelize, there can be a large space of choices availaittevaluating each choice by actually
parallelizing can be computationally expensive.

The following chapters will show, for the case of impliciskaparallelization, how this approach
allows a quick and accurate exploration of this space. Thekaxploration is made possible
because parallelization perturbs the dependence graptliradew places (few edges
added/removed/modified) and the rest of the graph remaif$agted. This enables a very quick
estimation of the reduction in dependence height (or afifi@th length) because of the proposed
parallelization. The accurate exploration is possibleabee this approach finds parallelism “in

general” rather than being limited to specific heuristics.

16

CHAPTER 3

CRITICAL PATH ANALYSIS OF
PROGRAM EXECUTION

Chapter 2 described a quantitative approach to parallel@ne of the requirements to approach
parallelism quantitatively is a model of program executioat can capture different constraints
under which the execution proceeds: both applicationtland architecture-level. This chapter
describes some of the models that have been developedratuite and their use in understanding
and designing parallelization techniques.

Section 3.1 describes the abstract model used by Lam ef] tal §kplore the impact of different
techniques to handle control flow on parallelism. Lam’s nh@aglquite optimistic because it
incorporates the effect of only application control- anthddependences. However, parallelism is
affected by architectural factors as well and Lam’s abstraadel fails to capture those constraints.
Section 3.2 describes Fields’ model [3] of program executithe model is more detailed than
Lam’s model. In addition to control- and data-dependenitesn capture several other type of
architectural dependences that constrain program execalti superscalar architectures. A critical
path analysis of program execution using this model canigeeovaluable insights about the
bottlenecks to performance. Critical path analysis in @ammfor another has been used for
analyzing and designing parallelization techniques irsgE\systems. Section 3.3 describes some

applications of critical path analysis from literature.

3.1 Lam’s Abstract Model of Parallelism

Lam et. al [7] did a limit study on traces of several benchregglications to understand how
different ways of handling control flow in applications ingh&the achievable parallelism. The
study was motivated by the huge disparity reported betwieghdtudies for aggressive

out-of-order superscalar processors that speculatedsabranches such as the one conducted by

17

Wall [6], and the upside potentials for dataflow height stscdassuming no constraints from control
flow on performance (i.e. perfect branch prediction).
Lam’s study started with a naive base model that imposed taatafependence from a branch to

all future instructions, and explored the impact of thedwiing three improvements:

1. Speculation (SP): This removes true control-dependefmoen branches whose outcome can

be predicted to future dependent instructions.

2. Control-dependence (CD): This removes the dependeanedrranch to future
control-independent instructions, thus freeing up irttams control-independent of a

branch from having to wait for that branch’s execution.

3. Multiple Flow (MF): This allows the ability to pursue miglke flows of control, and
therefore multiple branches can be executed simultanggaslallowed by CD and SP

constraints).

The study evaluated several models of execution that cardlilme above techniques in different
ways. Examples were base, SP, SP+CD, SP+CD+MF, CD+MF,retrder to estimate the impact
of these techniques on parallelism, the study constructigpandence graph representation of
program execution for each model of execution considerexdiel in the graph represented

execution of individual instructions. Edges between nadpsesented two kinds of dependences:

e True data-dependences in the program: Only true produaersucner data dependences
were represented. Anti- and output- dependences werenelied (both register and
memory) to capture the impact of renaming techniques. litiadgdsome true dependences
were also removed to account for compiler optimizationsesehincluded dependences such

as those from stack pointer updates, loop index and indugaoiable updates.

¢ Control dependences: Call and return dependences wereedrmall models to account
for inlining transformations. The machine models diffenedhe control dependences

enforced as described above.

Each edge in the dependence graph was labelled with a wriclatThe study built a dependence

graph for each combination of the three techniques for liagdlontrol-flow. For each such graph

18

built, the dependence height gave the length of the londesh©f dependences in the graph, and
therefore the minimum completion time for the abstract nhoelgresented by the graph. While the
study didn't use the term, the longest dependence chairsisdily the “critical path” of program
execution on the machine model. The study found that the BRE point enabled orders of
magnitudes higher amounts of parallelism than possible iaggressive superscalar processor (the
SP configuration). The SP-CD-MF represents an optimistsidggpotential of parallelizing the

application in its given form on a multicore architecture.

3.2 Fields’ Model of Superscalar Execution

Lam’s study is a good quantitative approach to evaluatiegrtipact of different techniques for
handling control flow on parallelism. However the model is &bstract and focusses only on
control and data dependences. It doesn't incorporate teeteif architectural constraints which
have a large role in determining performance. Fields eBJal¢veloped a dependence graph
representation for program execution on superscalar psocg that captures several architectural

constraints in addition to control and data dependences.niddel is described here.

3.2.1 Program Dependence Graph

Fields, Rubin, Bodik (FRB) developed a dependence grapthdBcan represent the constraints
imposed by a superscalar architecture on the execution application trace. The dependence
graph is a directed graph induced on the trace of committegram instructions. Note that the
trace contains only instructions that are eventually coteahj so the incorrectly fetched (or
squashed) instructions are not included in the trace.

Each instruction is represented by three nodes, to cagtariow of the instruction through
various stages of the superscalar pipeline. The first natel@¢d “F") represents, in addition to
fetchof the instruction, its decode, address generation, remgand dispatch. The “E” node
represents (out-of-order) issue amdecutionof the instruction. The “C” node represents
instructioncommit

Graph edges represent dependences/constraints on eredistble 3.1 summarizes the different

dependences enforced in the model. Figure 3.1 illustratedifferent types of dependence edges.

19

True Dataflow Dependence Dynamic Dependence

Data Dep @—»@ Branch Misspec
In-order fetch @—»@ Buffer Stall

In-order commit pArchitecture Dependence

:

i

Figure 3.1: Explanation of dependence edges in FRB repiasamof program execution.

| Name | Constraintmodeled | Edge | Comment \
FF In-order fetch F;_1 — F; | Instruction: cannot fetch beforé— 1.
EF Failed Speculation | F;_1 — F; | Instr¢ — 1 is a misspeculating instruction

(mispredicting branch/load, etc).

CF | Finite reorder buffer size C;_, — F; | Instri cannot fetch before instrr com-
mits, r is the size of the reorder buffer
FE Execution follows fetch| F; — E; | An instr cannot execute before it has

fetched
EE Data dependences E; — E; | Instrj produces an operand of
EC Retire follows execution E; — C; | Aninstr cannot retire before execution.
CcC In-order retirement | C;_1 — C; | Instr: cannot retire beforé — 1.

Table 3.1: Edges in the superscalar Program Dependencé&.Grap

Data-dependences are captured throbghedges, from thé” node of producer to those of
consumer instructions. These can include true data-depeed as well as other
architecture-imposed data-dependences (such as antitmpurtalependences if the architecture
doesn’'t rename instructions).

Several edges model microarchitectural constraints. Ramsdruction, fetch precedes execution,
which in turn happens before commit. Thus, within each irton, there is &'F edge, and an
EC edge. Additionally, in a superscalar processor, all irtdions are fetched in-order, saF&F”

edge flows between successive instructions. Likewiserderaetirement of instructions leads to a
CC edge from an instruction to the subsequent instruction. prbeessor’s reorder buffer contains
only N instructions so the processor must stall the fetch unit whenthere are more thaw
uncommitted instructions. Thus there i€’&' edge from each instruction to tiéth succeeding
instruction in the trace.

Enforced control-dependences are representedm¥ @dge from the node of the branch to the

F' node of the succeeding instruction, and therefore tram$jtito all future instructions, since

20

first instruction

)
O
C

O
O
O
O

last instruction

Figure 3.2: An example of a Program Dependence Graph forscglar execution.

there is anf'F' dependences between all successive instructions. Faegsois that speculate past
branches, thi€/ F' dependence exists only from tienode of the mispredicted branch to the

node of the succeeding instruction, representing the ciot@eget. This is because the execution of
a mispredicted branch causes the machine to roll back staderestart fetching from the correct
target. A similarE'F' edge can represent other misspeculation events as weilasunemory

dependence violation due to out-of-order execution ofdoaih respect to producer stores.

3.2.2 Edge Latencies

Each graph edge is labeled with the latency induced by therdlgmce. This captures the
minimum latency that a dependent operation has to wait #figioperation has started. In
addition, the edge latency captures the impact of resouncteition as well. So, for examplg,F
edges are labeled with the instruction’s latency throughftinctional unit (FU) as well as the time
that the instruction had to wait to issue because the redjitewas not available and was
allocated to other instructions.

Branch misprediction F) edges from the Execute nodes of the branch to the Fetch rigde o
succeeding instruction are labeled with the number of sylbtween the branch waking up and
the fetch unit being restarted at the correct target. Thisbeaquite large for deep pipelines [8]

since a large number of instructions in the intermediatelfip stages might need to be squashed

21

and there can be a long delay to warm up the pipeline.

Edges may also be labeled with a 0 latency. For example, samhines can fetch multiple
instructions in a single cycle. The Fetch to Fetch edgesdmvinstructions fetched in the same
cycle are labeled with 0O latency, while Fetch to Fetch edgms the last instruction fetched in a
cycle to the first instruction fetched in the next cycle almlad with a 1-cycle latency. Figure 3.2

shows an example dependence graph with labeled edges.

3.2.3 Timestamp Assignment and Last-Arriving Edges

Given the dependence graph with edges labelled by lateasidsscribed above, each node in the
graph can be assigned a timestamp. The timestamp reprédsemarliest time when the incoming
dependences on the node allow the node’s execution to gto¢ées can be done using Wall's
efficient algorithm for trace-based microarchitecturahgation [6]. For each incoming edge at a
node, an “arrival” timestamp can be associated with thaedxygtaking the time associated with
the producer node and adding the assigned edge weight. efitssents the earliest time that the
particular incoming dependence upon the node could havedstisfied given the modeled
constraints. The timestamp associated with a node is tleem#ximum of the times calculated for
all of its incoming dependence edges. This represents dzetitht each node of each instruction
may not start its action until all of its dependences aresfati.

In particular, the incoming edge with the largest assodiéiteestamp is called thast-arriving
edge If two edges arrive at a particular node at the same time bigrarily choose one of them as
the last-arriving edge. Note that the graph of last-argw@dges is fully connected, contains every
node, and forms a tree. This is because the graph is acyclieash node has as a parent the
predecessor node that produced the last-arriving edgepdthehrough the tree from the start

node to any particular descendent represents the longistopat node.

3.2.4 Program Critical Path

The dependences enforced by an architecture decide theapragnning time. In particular, the
longest chain of dependence edges in the graph (when weigiitedge latencies) represents the

earliest possible completion time of the program on thatigecture, and is also referred to as the

22

first instruction

O—0O—"0O0—~0

o/@\q

last instruction

Figure 3.3: A Superscalar Program Dependence Graph witbatppath highlighted.

critical path of program execution. Because of the stractirthis graph, the critical path is
guaranteed to flow from the' node of the first instruction in the trace to thenode of the last
instruction. Thereforethe longest path from the Fetch node of the first instructmthe Commit
node of the last instruction represents tréical path of the program [3] One the timestamp
assignment has been done, the critical path can be easiid topfollowing the last-arriving edge
from theC' node of the last instruction until thE node of the first instruction is reached.

Figure 3.3 illustrates the critical path for the dependegregh of figure 3.2.

An instruction is said to beritical if any of its three nodes is on the critical path through the
program. An instruction is termddtch-critical if its fetch node is on the critical path. An
instruction isexecute-criticalf its execute node is on the critical path (but not fetch node

instruction iscommit-criticalif only its commit node is on the critical path.

3.2.5 Slack and Tautness Analysis

Only a subset of the nodes and edges in the dependence gragrhthie critical path. For the
remaining nodes and edges, a useful characterization antloeint of slack on thenT he slack on
a dependence edge is the number of cycles by which the edde ciatayed without affecting the
program completion timeThe slack on a node in the graph can be defined similarly. Nhaitetty

definition, the nodes and edges on the critical have no slack.

23

Tune et al. [9] proposed a metric call<ness The tautness of an instruction is the maximum
number of cycles that the execution time might be reducedkbygiging that instruction earlier.
Tautness can be similar defined for a dependence edge. Ehiseful measurement because it
guantifies the maximum payoff (in cycles removed from thecaiien time of the program) of
applying an optimization to an instruction. It is a good meaghe dominance of the critical path,
if there is a large amount of tautness on a critical edge, &maéhat the next longest path (that
doesn't include the edge) is at a large distance from theentaritical path, and any parallelizing
transformations that break/speed up this dependenceead!fo a large improvement in

performance.

3.3 Applications of Critical Path Analysis

Critical path analysis is a useful technique for bottlenacklysis. This thesis has been directly
influenced to a large degree by the work of Fields et al. [311D,However, the area of critical
path analysis is quite old and has been built on a large bodypd{. This section tries to
summarize the development of critical path analysis, ané giore depth on some of the relevant
work in this direction.

The notion of critical path is useful for computing the minim time required to complete a set of
tasks in the presence of inter-task dependencies, and wheheindividual task requires a certain
amount of time to complete. The set of tasks can be visuattaedigh a graph with each node
representing a task, a directed edge going from each tahk task that depends upon it and
labelled with the latency equal to the time to complete tluelpcer task. The critical path is the
longest path in this graph. The length of the critical patregithe minimum amount of time
required to complete the set of tasks, and each task on timtpgath cannot be delayed without
impacting the overall execution time. This concept was &imed in the 1950s [12] in the US
Navy. A closely related concept is the notionstdick which measures the amount of delay that

can be tolerated by a task without affecting the overall detigm time.

24

3.3.1 Critical Path Analysis for Superscalar Processors

The concept of critical path has been used in the area of ciemarchitecture to understand
program behavior on an underlying out-of-order supersgalaessor and identify instructions
that are critical to performance. Initial work focussed ond-latency load instructions, and
heuristics to identify the loads that were critical to pemfiance [13—15]. Calder et al. [16] used the
longest data-dependence chain in the instruction windappsoximate the critical path. Tune et
al. [17] used heuristics such as monitoring unexecuteducisdns at the head of reorder buffer to
identify critical instructions. Fields et al. [3] showedviato find the critical path for superscalar
execution as described before. In later work, Fields etsg#duheir dependence graph to measure
instruction slack information [10], and interaction cab8] that helps quantify the importance of
different bottlenecks.

Critical path information has also found useful applicasion superscalar processors to drive
resource allocation decisions. It can be used to reduceatiivenzonsumption of instructions that
are not on the critical path [19, 20], to direct non-critigadtructions to slower functional

units [10], and to drive steering decisions in clustered hirees [21].

3.3.2 Critical Path Analysis for Parallel Systems

The notion of critical path has also been used to understamdxecution of parallel programs on
multiprocessor systems, both for shared-memory as wellessage-passing systems. An early
work on analyzing the critical path based on execution hysbd parallel programs was done by
Yang et al. [22]. That study constructed a Program Activitggh (PAG) to capture the program’s
execution. The graph represented computation within dlpbpaocess, and communication
between processes for send and receive operations. Ticalgoéth is computed to be the longest
path in the PAG, and the study explored both centralizedgtribiuited approaches to this
computation.

However, efficient computation of critical path informatits a challenging problem, since the size
of PAG is proportional to program length. Hollingsworth [2i2scribes how to efficiently track the
contribution of a set of specified procedures to the overdital path length. The approach is to

instrument communication events, as well as the eventegigonding to entering and leaving of

25

specified procedures, and thus keep track of the longesapdtprocedure-specific statistics at
each thread. This approach requires a low space overhead, tte performance slowdowns in the
range of 3-10 percent, and can be applied to message-pasgirghared-memory programs. In
addition, the study describes a technique called critia#th geroing, which bounds the
improvement in performance from optimizing a given progedu

Li et al. [24] adapt Fields’ dependence graph for instrucexecution on shared-memory
multiprocessor systems built from in-order processord,sfmow how to compute the critical path

and slack information from this graph.

3.3.3 Critical Path Analysis for Speculative Multithreading

Critical-path information has been used to drive policirespeculatively multi-threaded
processors. Nagpal and Bhowmik [25] add latency to norcatitoad instructions that might
otherwise cause inter-thread data misspeculation. Tuak 6] used a task level, rather than
instruction level, dynamic criticality analysis to drivesk scheduling for speculative
multi-threading. Fields [11] pointed out that the deperdegraph model could be used to identify

good “cut-points” to partition a sequential applicatiotoimultiple threads for parallel execution.

26

CHAPTER 4

PARALLELISM AND FETCH
CRITICALITY

This chapter describes how to identify and quantify paliattein applications. In particular, the
focus is on parallelism that is not exploited by supersgatacessors but can be extracted by
spawning off a future region of the program as a task on a agpaore of a multicore architecture.
While that is the primary focus, the technique could potdiytibe extended to other ways of
extracting parallelism. The approach developed here $uitwbn Fields’ work on modeling
superscalar execution described in chapter 3.

The chapter starts out in section 4.1 by analyzing the atipath of several benchmark programs
for execution on a typical superscalar processor. A largebmar of instructions on the critical path
are “fetch-critical”, meaning that their fetch node was ba tritical path. This phenomenon
occurs because while superscalar processors can expialigiam in a limited window, they

leave large amounts of parallelism in distant regions uloitgal. In particular, there are three class
of events that cause fetch-criticality in superscalar etien, and these are termed as
Fetch-Criticality Generating Events (FCGES).

The unexploited distant parallelism in superscalar premesmanifests itself as fetch-critical
instructions on the critical path. This is an important gigithat can make it possible to identify
and quantify the potential for exploiting distant paradiel through task spawning. This
connection between fetch-criticality and parallelismriawdhn in section 4.2. One way to overcome
the restrictions on in-order fetch placed by superscalacgssors is to spawn tasks on a separate
core which allows a distant region to be fetched out-of-or8ection 4.3 extends Fields’
dependence graph model for the scenario where tasks areaspaevdifferent cores in a multicore
architecture. Finally, section 4.4 describes the necgssarditions for existence of exploitable
parallelism through task spawns. These conditions areulaed in terms of the dependence

graph model of task spawning developed in section 4.3.

27

Parameter \ Value \

Pipeline Width 4 instrs/cycle

Multiple taken branches per cycle
8K-entry Combined, 8K-entry gshare, 8K-entry bimodal, 8K-
entry selector, 13 bits of history
Misprediction Penalty 8 cycles

Branch Predictor

Reorder Buffer 128 entries

Scheduler 128 entries

Functional Units 4 identical general purpose units

L1 I-Cache 32Kbytes, 4-way set assoc., 128 byte lines, 10 cycle miss
L1 D-Cache 32Kbytes, 4-way set assoc., 64 byte lines, 10 cycle miss
L2 Cache 512Kbytes, 8-way set assoc., 128 byte lines,

200 cycle miss
Memory Dependenceg Ideal
Predictor

Table 4.1: Superscalar parameters used for criticalityacharization experiments.
4.1 Fetch Criticality in Superscalar Execution

4.1.1 Methodology for Characterizing Critical Path

Analysis of the program critical path can be a useful tooldmgnsights about the application
characteristics, as well as how the underlying architectmnstrains the achieved performance.
Table 4.1 describes the superscalar processor used fduthiessin this section. The superscalar
processor was simulated using a trace-driven timing madei|ar to the one described by Wall et.
al [6]. The timing model processes the program trace, lapkinone instruction at a time. For each
instruction, it assigns a timestamp for its progress thinoegch stage of the pipeline. It keeps side
structures to track occupancy of resources, etc. The timiodel has been validated against a
more detailed full-blown cycle accurate pipeline simulatmd the timing model is a very
reasonable but much faster approximation. Figure 4.1 fhetseported performance in terms of
instructions-per cycle (IPC) for a subset of SPEC benchmark

The timing model can be used to extract the information regluio construct the program
dependence graph. As described by Fields [11], criticdl pat slack analysis require a backward
traversal of this graph. Rather than buffering up the graphife full program run, the approach in
this study is to periodically buffer a fragment of the depemzk graph and perform the analysis on
each fragment in isolation. This bounds both space and tairements of the computation. The
results of this approach were compared to those when theletargraph was analyzed in one go,
and it was found that for buffer sizes of a few tens of thousasfdnstructions, the error induced

by this approach is minimal. Also note that for critical pattimputation, a more exact analysis
with low buffering requirements exists, which relies on éxéstence of “convergence” edges
through which the critical path is guaranteed to flow [11]wdwer, the approach doesn't extend to

28

2.5

sttt EFEHFEERFEFEFEET L EHEHE LA

S Gy G O Q5 On P D B O Sy by by b b

2000, Ve <5 % 00, %0 %0 o 0, 008, 0 o, o 20 2 i
0%, > 5) % S0, B, 2 R, 0, L2
% & /&"F@ O'C‘%/QF +{90®%?9®

Figure 4.1: IPC achieved on SPEC benchmarks for simulateerscalar processor.

100

80

60

40

20

Fetch mmmmm Execute === Commit m—

Figure 4.2: A breakdown of the nodes that comprise criticahp

29

100
80 B
60 —
40 - —
20 B
0 L
Qe Oy O & Q G N D Oy O Sy b b O %,
L R e 9 TRy G o .. O T, 4, 2 3, 2,
el G, © C 4 73 (A 2
< @ Q‘F@ % \S\&,. 6@% 2% 7 Q) % (]
Fetch Commit — Exec-Non-Crit =23
Execute mmmmm Fetch-Non-Crit Commit-Non-Crit C—3

Figure 4.3: A breakdown of the instructions by their crilitggbehavior.

100 |
80

60

40

20

S Q. On D D By L
%, o T o G, % T,
%, v S 4
== Fetch-BW | D-Miss —— Window-Stall
mmmmm |Cache-Miss mmm Br-Miss 3 Execute m Commit-BW

Figure 4.4: A breakdown of the critical path latency by diffiet type of edges.

30

other analyses such as slack computation. Therefore thebagh was not adopted.

Once the program critical path is found using the above (grodimer methodology), there are
multiple ways of summarizing the result to get useful inssglrigures 4.2, 4.3, and 4.4 show three
ways of visualizing the critical path. Figure 4.2 shows thegikdown of nodes on the critical into
the three possible categories: Fetfch(Executefy) and Commit(). The figure shows that the
critical path is consists mainly of critical fetch nodesv&al instructions can contribute multiple
nodes to the critical path, and also several edges can jueymauitiple instructions, that are
non-critical. Figure 4.3 shows the breakdown of instrugdin terms of their criticality behavior.
This graph shows, for example, that most of the instructmmgheswimbenchmark are commit
non-critical, implying that it suffers from a large numbédreorder buffer stalls. In general, most
of the critical instructions are fetch-critical.

Finally, figure 4.4 illustrates another way of characteggzihe critical path, in terms of edges that
comprise the critical path rather than the nodes. The edgedis on the critical path are divided
up into buckets depending upon the type of dynamic event wiich the edge latency could be
blamed. For example, the latency on criti¢gal’ edges is listed under theetch-BWcategory,
because it represents delay incurred due to limited fetodwalth. However, there is a class of
FF latency that is listed separately corresponding toEh®des that incurred an instruction cache
miss, and that latency goes in tligache-Misscategory. ExecuteH E and EC) latencies are
reported in théexecutecategory, except for the load instructions that missedérctiche. Thé&v E
latency due to critical missing loads goes in tHa-Misscategory. For branches that mispredict,
execution latency on thE'F' edge going to the target (which might potentially includeiapredict
penalty) is reported under tlgr-Miss category. Long-latency load misses, long dependence
chains, etc. can cause a buffer stall, and once space frérshebuffer, there is a penalty to warm
up the pipeline. This penalty is incurred by the critiCal’ edge and is classified &gindow-Stall
penalty. Finally, the latency on critic&lC' edges is placed under t@mmmit-BWclass.

4.1.2 Prevalence of Fetch Criticality

Figure 4.3 shows that on an average across the SPEC 200htetksh about 57% of all
instructions are fetch critical. About 19% of instructicer® either execute-critical or have a
critical EE edge jumping over them. Most of the remainingrimstions in that configuration are
commit non-critical, because of a window stall CF dependgamping over them, and only a
small percentage is commit-critical. Previous work [3, Ba$ explored techniques to reduce the
performance impact of execute-critical instructions. Thderlying theme is to speed up execution
of execute-critical instructions by giving priority in i@grce allocation decisions to likely critical
instructions over likely non-critical instructions. Thssbased on the per-PC locality behavior of
execute-criticality which can be exploited in dynamic mesgkms.

The above techniques which target execute-critical iotns tend to make a limited impact on
performance. This is because much of the contribution (imgeof instructions) to the program
critical path comes from instructions whose fetch node ithercritical path. This means that

31

attacking fetch-critical instructions could lead to lamygrovements in performance.
Fetch-criticality, however, is not as well understood asoee-criticality. This work tries to
understand the reasons for large amounts of fetch crifycalisuperscalar execution, and makes
the connection between fetch-criticality and existencpaséllelism.

At its core, fetch-criticality arises because of the limdas imposed by superscalar architecture on
program execution. In the absence of architectural canstrédependences), a program could
execute as soon as permitted by the longest chain of thecewfolata- and control-dependences.
In such a scenario, the critical path would consisE@ data-dependences, aAd”
control-dependences from mispredicted branches to thetra-dependent (mispredicted) targets.
Thus, the critical path would comprise mainlynodes and somg nodes depending upon the
branch prediction rate and the prevalence of control flow.

However, superscalar architectures don't allow indepenihstructions to be fetched and executed
in any arbitrary order. In particular, the major constraiate the limitations of in-order fetching of
instructions, limited buffer sizes within which instrumtis can execute out-of-order, and limited
fetch bandwidth. These constraints lead to large amourfetai-criticality.

4.1.3 Fetch Criticality Generating Events (FCGES)

There are three kinds of events that cause fetch-critjcalisuperscalar execution. These events
will henceforth be referred to detch criticality generating events (FCGE$)etch criticality
generating events fall, roughly, into three categorissed below and illustrated in figure 4.8:

e Fetch FCGE: The source of fetch criticality comes from reaselated to fetch of
instructions. This includes instruction cache missesctvlielay the fetch of an instruction.
In addition, limited fetch bandwidth is also an FCGE, beeaitiadds delay to the fetch time
of future instructions.

e Execute FCGE: The source of fetch criticality comes fronceten of previous
instructions. This includes branch mispredicts, whictagehe fetch of the correct target of
the branch instruction. Similar behavior comes from othipnedictions such as for
misspeculated loads.

e Commit FCGE: The source is reorder buffer stall, typicalledo long-latency instructions
or long dependence chains that cause the buffer to filljragathe fetch unit.

Note that all of the above FCGEs can cause large amountscbf-éeiticality because of the
restriction of in-order fetch imposed by superscalar aechiires. Therefore, once the fetch stream
is delayed/stalled by an FCGE, the fetch of all future indttams is delayed, making it quite likely
that the critical path flows through later fetch nodes as.v@sl, for example, mispredicted
branches delay fetch of all future instructions, even fifastructions that are control-independent
of the branch. Thus even instructions control-independétiie branch can become fetch-critical
even though they could have been fetched much earlier iLictibns were not required to be

32

@ Instruction Cache Miss

Figure 4.5: Fetch FCGE: Instruction cache misses
extend the length of the path through the fetch
node of one instruction, making subsequent in-
structions fetch-critical.

O—0O0—0—0—0

0))) O

@ Mispredicted Branch

Figure 4.6: Execute FCGE: The correct target
instruction of a mispredicted branch cannot be
fetched until the branch instruction is executed to
detect the incorrect prediction.

o

@ ROB-Stalling Commit

Figure 4.7: Commit FCGE: When the reorder
buffer or scheduler is filled to capacity the fetch
unit must be stalled. This can make the first
stalled instruction fetch-critical.

Figure 4.8: Examples of the three type of FCGEs.

33

fetched in-order. Similarly, instruction cache missesagdétch of all future instructions, even if
the future instructions are present in the instruction each

4.2 Fetch Criticality = Unexploited Parallelism

As explained in chapter 2, parallelism can be created by vergsome of the previously
sequentializing constraints. Parallelization technggcen relax/remove dependences on the
critical path and therefore improve performance in suckesads far as an architect is concerned,
the objective is to have the critical path comprise mainlyhefapplication dependences and
minimize the impact of architecture-imposed dependereagllelization techniques can remove
architectural dependences (besides sometimes remowvitigatjipn dependences as well) to move
the critical path closer to that goal.

The existence of fetch-criticality implies the potentiat parallelism by removing in-order fetch
dependences. Large amounts of fetch-criticality inditlaé the achieved dependence height is
being dictated by architecture-imposed in-order fetchedepnces rather than just application
control- and data-dependences. Several parallelizagicimiques are possible to address the
impact of the three FCGESs. In superscalar design, architente used techniques like higher
fetch-bandwidth, larger instruction caches, better bigmedictors and larger reorder buffers to
reduce fetch-criticality by extracting larger amounts listruction Level Parallelism” (ILP). In
addition, in-order fetch dependences can be alleviatedubpiorder fetch architectures, such as
control-independence architectures [27-30], specalgtarallelization architectures [31-40], or
through explicit parallelization of applications for ex¢ion on multicore or multithreaded
architectures.

Note that parallelism can also exploited by some technithetsaddress execute- and
commit-criticality. Some parallelization techniques caduce execute-criticality to create
parallelism, such as by reducing the number of control- atd-dependences enforced by the
architecture. For example value prediction techniquesbcaak true data-dependences in some
cases. Better branch prediction can reduce the enforcatbtdependences. Register and
memory renaming technigues can also remove execute dapmrsdedll of these techniques create
parallelism by attacking execute-criticality. These td@ghes have been quite successful in
parallelizing execution in the past. However, new advameesoming at a slow pace in these
directions, partly because extending current technigegsires devoting larger amounts of area to
branch/value prediction, etc. and more complex circuitsrfemory renaming. Designers typically
deem the additional returns not worth the investment in ehga and the power/complexity costs
incurred.

In addition, commit-criticality could also potentially t@me a problem, even though it is not a
major limiter for superscalar processors. Parallelisningsé cases can be created through higher
commit-bandwidth, or by removing some of the in-order cotrediges. But in practice, processors
make the peak commit bandwidth match the peak fetch-barnlwidhe machine, and

34

commit-bandwidth is rarely a problem. In-order commit camstimes restrict parallelism, but is
useful to provide sequential semantics to the externaldvorl

4.3 Task-Based Parallelization to Alleviate Fetch-Critiality

Section 4.2 identifies several approaches to exploit @disath by alleviating fetch-criticality.
These fall in two classes: a) extract more ILP in supersgatacessors and b) explore out-of-order
fetch techniques. The first approach involves technigkesiticreasing the fetch width, larger
scheduler and reorder buffer sizes, larger branch predjattc. Typically, these changes go
together to keep the architecture balanced otherwise o@&HE¢an dominate and hide the benefit
of a technique that addresses another FCGE. However, thas@iques are not very attractive
because current superscalar processors are at a point iwhestng chip area into these
techniques leads to very low returns on investment, if amllai hese techniques can also lead to
increases in power consumption and design complexity.

The second approach involves out-of-order fetch and is qanmmising. It can lead to scalable
architectures that yield good return on chip area investsnéne of the ways to achieve high
performance in this domain is to divide up the program intdtiple “tasks” or “threads” that can
fetch and execute concurrently on different cores/thred@dsmulticore or multithreaded
architecture. Such an approach can reduce fetch-critidaji exploit parallelism through
concurrent tasks. The primary focus of this thesis is oniiitpghsking systems that externally
maintain sequential semantics, but internally (and dynaltyi) partition the application into tasks
for simultaneous fetch and execution on a speculative lpliraltion architecture. However,
several of the insights developed here could potentiallgd@ied to other flavors of task-based
parallelization.

4.3.1 Control-Independent Task Spawning

This thesis focusses on tasks that are control-indeperdémtructions that spawn them. This
section explains the concept of control independence amdrielogy associated with spawning a
control-independent task.

In a program flow graph, an instructioxi is said topostdominatenother instructior iff all paths
through the flow graph from to the exit pass througl [41]. In other words X postdominatest
if X is guaranteed to execute aftérexecutes, regardless of intervening control decisionsarAs
example, in the flow graph of Figure 4.9, block E postdomisndeck A. The block E is therefore
control-independentf the branch in block A. A binary rewriter can efficiently calate all the
postdominators of all branches in an executable of Sige) in time O(nlogn) [42].
Architectures can exploit control-independence propeftyranches to spawn future
control-independent regions of the program as tasks tma¢xacute concurrently with the main
stream of execution. Thread-level Speculative and Speeeilslulti-threaded processors find
parallelism in a single thread of execution by breakingtid imultiple tasks that are executed

35

Spawn point

Spawnee | Spawner |

Figure 4.9: Terminology to describe a control-independask spawn.

concurrently [31-35, 37-39, 43]. The control-independgmmperty can also drive the choices of
spawns in these machines and has been shown to be subsunsédselikke loops, procedure calls,
and their continuations [36].

For example, in Figure 4.9 a new task could be created at lidogkenever block B is reached,
since the processor is guaranteed to reach block E at soradtitne future. In this case, the new
task generated starting at block E would be calledsthenvnedask with E being the spawnee
block, and B thespawnelblock. The spawner and spawnee tasks can concurrently fetch
instructions. When the spawner task reaches block E, isg&iphing instructions (the work it is
about to begin has already been done by the spawnee taskjisAsiint, the spawner task
reconnectsvith the spawnee.

Instructions in the spawnee task that depend on data prddaspawner task can be handled in a
variety of ways. They can be speculatively executed asgythit the data is available[34, 35],
and signal a misspeculation if a violation is later detecteda data-dependence predictor [44] can
be used to identify such instructions, which can then beygelésynchronized), until data value is
(conservatively) released by the spawner task. The netibegmresents a dependence graph
model that captures the constraints that arise in spawnaugptzol-independent task.

4.3.2 Dependence Graph Model for Control-Independent TaslSpawn

This section describes how Fields’ dependence graph modsuperscalar execution can be
extended for a speculative parallelization architectheg does control-independent task spawns.
This section refers to such architectures as Control-ladégnce architectures.
Control-independence architectures remove the resticif in-order fetch at task boundaries that
were previously imposed by superscalar architecturesh®other hand, delay might be added to
inter-task dataflow. Exactly how much delay is added depepds the particular data-dependence
handling technique used. Further, techniques such aspiatalation can lead to task squashes
when speculation fails.

Table 4.2 lists the edges that need to be added to the sulperdependence graph model of Fields
et al, in order to model the effects of spawning a task. Therficdification is a new FF edge going
from the fetch node of thepawnetrto the fetch node of thepawneeNote that there is no longer a

36

Spaw ner Spaw nee

O
O

Figure 4.10:Before Spawning Edges marked with an “X” will be removed. These include the
FF edge from last instruction in spawner task to first ingtoucin spawned task, EF edge if the
last instruction in the spawner is a mispredicted branch,rah_size CF edges crossing the task
boundary.

Spaw ner Spaw nee

GTE Y

0))))
/

Figure 4.11:After Spawning. A spawn FF edge is added. Additional latency might be added t
EE edges that cross task boundary.

Figure 4.12: Impact of control-independent task spawnimg¢he program dependence graph.

fetch edge from the last instruction in a spawner task to teifistruction in the next task, which
is another modification from the superscalar model. Thisnedaat the spawnee can start fetching
as soon as the spawner fetches (after some penalty, eqbelleténcy on the particular FF edge,
which can be used to modekpawn penally Intra-task fetch proceeds as before.

The second modification is that if an EF edge crosses the taskdary, it is removed. The EF
edge would exist if the last instruction in the spawner taak & mispredicted branch and the first

37

| Name | Constraint modeled | Edge | Comment \
FF In-order fetch F,_1 — F, Non-spawnee instructiof cannot
(non-spawn) fetch beforei — 1.
FF In-order fetch F,_, — F; Spawnee instri cannot fetch be-
(spawn) fore spawnei — s (s = spawn dis-
tance).
CF Finite reorder Ci_, — F; Instr « — r and instr ¢ are in the
buffer size same taskandr is the size of the
reorder buffer
CF Finite task re- Clast(i—n) ~ — | Instriast(i — n) is the last instr in
sources Frirst(i) task i-n, and instrfirst(i) is the

first in task i andn is the number

_ _ of task contexts _
EF Failed Speculation E; 1 — F; Instr ¢ — 1 is a misspeculati

ing instruction (mispredicting
branch/load, etcand i is in same

task

DE Execution follows fetch F, — E; An instr cannot execute before |it
has fetched.

EE Data dependences E; - E; Instr j produces an operand of

7. Inter-task data flow can have
longer latency than intra-task

_ data flow. i
EC Retire follows ex- E; — C; An instr cannot retire before exe-
ecution _ cution. _
CcC In-order retire- Ci_1— C; Instr4 cannot retire before— 1.

ment

Table 4.2: FRB dependence rules [3] adjusted for contradrendent task spawningdld).

spawnee instruction was the correct target. Since the smatask was control-independent of the
spawner instruction and was fetched out-of-order, the radipted branch no longer delays fetch
of the spawnee. Therefore, the EF edge is removed.

Third, CF edges impact fetch only within a task, and not actasks. This means that back end
stalls in one task need not stall fetch in the successor,taffkstively allowing for a distributed
window of instructions. In addition there is another CF ettgmodel finite task resources.

Fourth, the Fields’ model already contains an EF edge to wdach mispredicts. We generalize
the notion of mispredicts to capture intra-task store-taiathtions, as well as inter-task violations
due to failed data speculation. Frequent data misspeonlatin also be a FCGE, and can be
treated in a similar manner as branch mispredicts. Noteliedatency for detecting and
communicating the failed speculation is implicitly cagdrthrough the weight given to this edge.
Finally, depending on the specific policy for handling irtask data dependences for a given
control-independence architecture, delay might be adtted)&E edges that cross task
boundaries. This can model, for instance, the latency eficbre communication, as well as the
delay for architectures that synchronize on data deperdenc

38

4.4 Necessary Conditions for Existence of Parallelism

4.4.1 Rules for Successful Task Spawn

A task spawn is said to be successful if it improves perforceasver superscalar execution. The
conditions for a successful task spawn can be summarizeddgimple rules:

1. The first (in program order) critical instruction in theagmed task is fetch-critical.

2. The slack on all edges that cross the task boundary aftdra@a result of) the task spawn
must be non-zero. Further, the slack on the EE edges tha ttresask boundary must be
greater than the data latency added by the spawn mechanism.

As described in Section 4.3, control-independent spawcamgbe profitable by alleviating
fetch-criticality in applications. Rule 1 states that iEthpawnee point is not fetch-critical in the
first place, then the spawn is largely useless since it miesitiress a problem that does not exist (it
could, however, create new problems by delaying EE edgeésitimet have enough slack).

Rule 2 states that it is not enough to break fetch-critigalitains, the objective of spawning should
be to speed up program execution. This means that the newapnagitical path should not be
worse than the original path (that passed through fetch nbttee spawnee). In particular, the only
reason why it could be worse off than the original path, cduddf it flows through one of the EE
edges that are delayed due to the act of spawning.

4.4.2 Spawn Rules in Action

This section illustrates the above rules through a detaieanple from the SPECInt2000
benchmarkwolf. Figure 4.13 shows the control-flow graph of a fragment adriest in the

function new.dboxa, which accounts for a large fraction of the overall exeaqutime. The node
markedA is a branch that is likely to mispredict and generate fetwttizality. We find that its
postdominators: C, D, E, F, and G, are all likely to be fetdltieal (note that blocks D and F also
contain FCGESs). In general we find that postdominators afdd@ontaining low-confidence
branches have a high likelihood of being fetch-criticaluFa dynamic instance of any of of these
postdominators, when spawned from A, is likely to satisfyeRufor spawn success.

On the other hand, not all of these postdominators are likebatisfy Rule 2. Figure 4.13 also
shows dataflow edges that are likely to be on the progranca&kipiath. In particular, the statement
that producesowsptrin block C is on the backward slice of likely-to-misprediecabches in
blocks D and F. Thus, thedéE edges from C to D and C to F are likely to have very little slack,
since almost all mispredicted branches are on the prograicatpath in a superscalar processor.
Tasks which add delay to these edges are likely to violate Rul

In this case, we find that when we spawn D, E, or F from A, one ¢tin}of the EE edges flowing
the value ofrowsptrout of C gets delayed. Therefore, we can rule out these taslismofitable
options. On the other hand, if we spawn C or G, we find thatitfitedges that cross the task

39

[Basic block (BB)
[1 BB withlow

confidence branch

Bf .. @ Spawner

} Good Spawnee

O] A | if(netptr->flag == 1) |

} C | rowsptr = tmp_rows[net] |
\

3 Bad Spawnee
>
v RN —— Control Flow
D | for(row = 0} yowsptr[row] == 0 ; row++) ; | - — -~ Critical Data flow
: \\\ » Non-Critical Data
N flow

DlElmn—rdw] c .

A4 \
F [for(ﬁow = numRows+1; rowsr;tr[row] == 0;row--); |

v Pl

P G | it(min < max) |

Spawn Goodness

D E F

Spawnee Distance

Figure 4.13: An interesting example from thew_dbox _a subroutine in twolf (somewhat sim-

plified), showing spawnee choices for low confidence branclspgawnees D, E and F introduce
inter-task data-dependence edges (through rowsptrngdatio already execute-critical nodes, and
are bad. C and G are profitable tasks, since the subsequenttexeitical instructions are data-

independent.

boundaries have a lot of slack. In particular, when we spawth&edge corresponding to the
valueminthat flows from E to G has a lot of slack since the branch in G islhg predicted
correctly. So even though theé — G EE edge is delayed, the delayed execute node of G is
unlikely to be on the program critical path.

This is further explained through a set of criticality diagrs. Figure 4.14 shows the critical path in
a normal superscalar execution of the program. Branch edsps of A, D, and F are on the
program critical path. Control-independent spawning igiactive proposition to reduce the
impact of misprediction of A on fetch-criticality of its ctmol-independent instructions. In order to
achieve this, we can spawn one of the CI points of A, whichi&edy to be fetch-critical (thus
satisfying Rule 1). The available spawnee choices are: E, B,and G. Note that for simplify, the
diagrams don’t show several dataflow edges that containd Bdack because they don't affect the
profitability of these tasks.

Figure 4.17 shows the outcome of spawning C from A. This iséitable spawn that succeeds in
reducing criticality. The instruction C was originally ébtcritical because of the mispredicted
branch A. Spawning removed the execution of mispredictaddir A as well as fetch of
instructions between A and C from the critical path.

On the other hand, spawning D from A, shown in figure 4.15, iagrofitable task that violates

40

D00

anstr node . Misprediction — Dependence =—=p Critical Path

Figure 4.14:Superscalar execution:Branch mispredicts cause lot of fetch-criticality.

D, row++

W\/\/‘Delayed inter-task EE dependence

Figure 4.15:Failed Task (Rule 1) Instruction D was not fetch-critical in superscalar. {Cet path
is worse due to delayed inter-task dataflowfmwsptr.

M\/‘Delayed inter-task EE dependence

Figure 4.16:Failed Task (Rule 2) More delay is added to a near-critical EE edge than slack on i

D, row++

E =

Olnstr node ‘ Misprediction — Dependence =——p Critical Path

Figure 4.17:Successful Task Spawning C from A shortens the critical path by fetches Gefas
than earlier. It also removes execution of A (mispredict) geich of B from critical path.

Figure 4.18: Critical path for superscalar execution affig¢idint spawn scenario€F edges don't
contribute to critical path and are not shown for ease of tstdeding.

41

Rule 1 for spawn success. D was not fetch-critical in supdss@xecution, so fetching it faster
didn’t help. But spawning off D adds a large latency to theadty critical EE edge from C to D,
delaying dataflow into execution of the branch mispredicTBus we delayed an already critical
EE edge due to a spawn, making performance worse. SpawninognF is another unprofitable
task and is illustrated in figure 4.16. Even though it sassfide 1, it fails to satisfy rule 2. This is
because a large amount of delay is added to the inter-taskif#=feom C to F, which is more than
the slack on that near-critical edge.

4.4.3 Proof of Spawn Rules

This section gives a formal proof of the rules for successtsk spawning.
Claim: A task spawn can lead to improvement in performance (by dearg the lengthof the
program critical path [3]pnly if the following conditions hold:

1. The first (in program order) critical instruction in theagmed task is a fetch-critical
instruction.

2. The slack on all edges that cross the task boundary aftdra@a result of) the task spawn
must be non-zero. Further, the slack on the EE edges that tresask boundary must be
greater than the data latency added by the spawn mechanism.

Assumptions: This proof assumes that a task spawn can only introduce tlog/fog changes to
the program dependence graph:

1. Spawning breaks the in-order fetch edge at the task boyifidlam F node of last
instruction in spawner task to F node of first instructionpawned task). If the last
instruction in spawner task was a mispredict, spawning laleaks the edge going from E
node of that instruction to the F node of first instruction pawned task.

2. Spawning breaksob_size CF edges going from C node of an instruction in the spawnér tas
to F node of an instructionob_size later in the spawned task. The original edges
represented resource dependences due to finite ROB whenitis&sictions were fetched in
the same task.

3. Spawning can add extra latency to EE edges that cross dpawmdary. These represent
delayed inter-task data dependences, with the amount &y @alying depending upon the
specific dependence handling techniques used.

4. A spawn FF edge is added from the fetch (F) node of the spansteuction to the F node
of the first instruction in the spawned task. The latency enettige represents a startup cost.

1The length of a path in the program dependence graph is defifezlsum of latencies on all of its edges.

42

Figure 4.12 illustrates these modifications. It is assurhatdll of the other edges in the program
dependence graph as well as their latencies stay unchahbedialidity and impact of these
assumptions are examined later.

Proof: This proof proceeds by showing that if either of the two ctinds is not met, then
spawning the task can not lead to a reduction in the critiatl fength.

Case 1:Suppose the first (in program order) critical instructionhia spawned task is not
fetch-critical. This means that it is either execute-catior commit-critical, with the last-arriving
dependence edge incoming from an instruction node beferst#nt of spawned task.

This dependence edge cannot be one of the edges removedthgklspawn, since all such edges
end in the F node of some instruction in the spawned task,fas@dge ends in a non-F node.
Thus, the latency of this edge stays unchanged or increaseseault of the spawn. Further, the
latencies on all of the other edges in the original prograitical path stay unchanged. Hence, the
sum of the latencies on the original program critical pathais the same or increases. This
implies that there is at least one path in the new dependaaph gfter spawning whose length is
greater than or equal to that of the original program ciiitigdh. Thus, the length of the program
critical path is not decreased due to this spawn.

Case 2:Suppose the latency added on at least one of the EE edgesdbsitite boundary as a
result of the task spawn is greater than or equal to the sla¢kai edge. We will now show that
the program critical path definitely got longer due to thiawp.

Let us pick one of those edges, saysuch that it originally had a slack Suppose a delaywas
added tee such thati > s. From the definition of slack, we know that in the original gram
dependence graph, there was at least one Bdttat includede, such that increasing the latency of
e by s madeP longer than the original critical path.

Now, when we do that spawn, the latencies on all the edgé&sstay unchanged, except for the
latency ofe. Note thatP couldn’t have included any of the CF or FF edges that were vechby

the spawn, or any of the other EE edges that crossed task aquorgated by this spawn. This is
because there can be only one edge on a path that crossesitttabocreated by the task spawn.
For P, this edge i%. And since the latency added enl > s, P is now longer than the original
program critical path. Thus, the length of the programaailtpath is not decreased due to this
spawn.

Conclusion: Combining the two cases, we have shown that if either of tll@elbonditions don’t
hold true, the spawn cannot lead to a reduction in the ckitiath length. Hence a spawn can be
profitable only if the above two conditions hold true. Notattthe converse of this result doesn’t
necessarily hold. That is, even if the above two conditioestiaie, a spawn may still not be
profitable. This might happen because a near critical pathbeaf the same length as the program
critical path, or the delay added to one of the inter-task &gee might be exactly equal to its slack
(minus 1 cycle to be precise). In that case, doing the spaWikedp the critical path unchanged.
Impact of Assumptions: Note that in a real system, the assumptions made above digoumpact
of spawning on the program dependence graph don't alwayktha@. Spawning a task on a

43

different core can suffer warm-up effect which can changectiche and branch predictor
behavior. The spawned task can suffer additional cachees&sd branch mispredicts since the
local caches and branch predictor on the core might needwabeed up. Spawning the task can
also create additional pressure on the memory subsystermdiygphigher bandwidth requirements
which can lead to higher latency on dependence edges tluwénmemory operations. On the
other hand, the new task has a separate L1 cache availablsdacapacity misses might be
decreased. In addition, spawned task might suffer datgoegstations. The net result is that the
spawned task is squashed, and a misspeculation (EF) eddgeid tb the dependence graph.
Latencies on some of the other edges might also changelglighpecially those that are impacted
by contention for resources such as issue slots since thert@mn behavior will be changed.

While the above factors are not incorporated into the martelpter 5 demonstrates that their
effects are amortized over the long-run. Therefore, theybeaignored without having too much of
an impact on predictions about task behavior and paratieligurther, ignoring these second-order
factors simplifies the treatment of parallelism and pofidi@sed on these rules perform well in our
system. So, to a first order approximation, the assumptiaaderhere are reasonable to
understanding the system.

44

CHAPTER 5

QUANTIFYING PARALLELISM
FROM POTENTIAL TASKS

Chapter 4 presented a dependence graph model for contiepémdent task spawn, as well as the
relationship between fetch-criticality and parallelisiis chapter develops those insights into a
guantitative model of task parallelism. The objective igt@antify the expected benefit from a
potential task choice. The benefit might come from one of éver®l “sources” of parallelism.
Further, there are costs to spawning a task that might restlueeen completely swamp the benefit
from parallelism. The model developed in this chapter antofor the important factors to make
its predictions.

5.1 Task Benefit and Critical Path Length

The act of spawning a new task causes the program dependemptetg change as described in
section 4.3.2. As a result of these changes, the length gfrdhggam critical path after spawning
changes from what it would have been in absence of spawnipgKscalar execution). The
performance improvement due to a particular task spawreis shmply the decrease in the critical
path length because of that spawn.

One approach to quantifying this decrease is to measuretigéh of the critical path for two
cases: one for superscalar execution, and another one thlegiask of interest is spawned.
Subtracting the superscalar critical path length from émgth for task spawn case would provide
the benefit of spawning the task. However, this is a very cdatjmmnally expensive approach since
there are an extremely large number of tasks options alailalnost applications, and for each
option, there can be several dynamic instances within angivegram region.

An alternative approach is to have an estimation model thatg itself on the original superscalar
execution and can make prediction about the expected behsfiawning a task. This chapter
develops such a model based on the insights of the previ@arh The model can accurately
estimate the task benefit “in-place” without actually spigrthe task.

5.2 Assumptions About Impact of Tasks

The model makes some assumptions about how spawning a tpaktsrthe dependence graph of
superscalar execution. In particular, it assumes that sipgwa task causes only the following
changes to the original superscalar graph (illustratedyurd 5.1):

45

"""" Removed in-order fetch
dependence

= = = Delayed inter-task data
dependence

— * = Added spawn FF fetch
dependence

Thread|Boundary

Figure 5.1: Modifications to the Dependence Graph causeg@dyring a task.

¢ In-order fetch dependence edges{H-, E— F and C— F) are removed at the task
boundary,

e An F — F spawn edge capturing out-of-order fetch is added frompheer to the
spawned instruction, and

e Delay is added to EE edges at the boundary due to synchriomizaid communication
required for inter-task data dependences.

The rest of the dependence graph edges and latencies aneegisttustay exactly the same.
Section 4.4.3 described some reasons why these assummpigynsot always hold in a real system.
This chapter will show that the assumptions still lead to adgapproximation of the system’s
behavior, especially for tasks that are spawned often.

5.3 Estimating Task Benefit

5.3.1 Definition: Adjusted Slack

In order to estimate the benefit from a task, the tadjusted slaclon an edge will need to be
defined. Recall that on a dependence graph of program esrduotia given architecture, thaack
on an edge is the difference between the length of the prograical path, and the longest path
including that edge.

As described in section 5.2, spawning a task removes sonemdepce edges at the task boundary
but for the remaining edges crossing the task boundary, sietag might be added due to
communication and/or synchronization penalties. dtjgisted slaclon any such edge is the slack
on the edge in the original superscalar graph minus the @deldgd to that edge in the resulting
graph from spawning the task. This gives the difference betwthe length of the original critical
path of superscalar execution, and the longest path in thegreph that includes this edge after
the task spawn (this follows from the assumptions of sedi@j

46

Task iboundary

Spawnee

spawn

Figure 5.2: The benefit from a task is bounded by the slack gesdrossing task boundary. The
spawn F— F edge suffers a spawn penalty, the-€C edge suffers a reconnection penalty. EE
edges suffer a communication penalty, and potentially &lwymization penalty. G- F edges
don't cross task boundary and are not shown.

5.3.2 Performance Benefit from Spawning a Task

As described before, the benefit from spawning a task is thect®n in program critical path
length from doing the spawn. Spawning a task removes sonesddgn the original graph at the
task boundary. After spawning a task, the new critical patihaoss task boundary in only three
ways, corresponding to the three ways in which the depemdgraph changes:

1. The new critical path can flow through an&EE data-dependence edge crossing the task
boundary. The task benefit is the difference between thénatigritical path length, and the
length of the longest path in the new graph timetudesthe E— E edge. This is simply the
adjusted slaclon the edge, adjusted for communication/synchronizatelays.

Section 5.3.3 gives an example of calculating adjustek $tac= — E edges.

2. It can pass through the commit-€ C edge at the task boundary. This is similar to the first
case, and the benefit is thdjusted slaclon the C— C edge, adjusted for the delay of
passing the commit token between tasks, which is typicaliyesl quantity.

3. It can flow through the spawn-~ F edge from the spawner to the spawnee instruction. This
is a trickier case, since the spawn+F edge didn't exist in the superscalar graph. However,
it is still possible to calculate thedjusted slaclon the edge if it had been present in the
original graph. Section 5.3.4 describes how to computecphistity.

Figure 5.2 summarizes the situation. The improvement irptbgram critical path is constrained
by the edges that cross the task boundary after the spawrawnspl task cannot decrease the
length of the program critical path beyond the slack on argysarch edge (adjusted for
delays/penalties). The benefit of a task, then, is boundelebgninimum of the adjusted slack on
all edges that cross the task boundary.

a7

As a corollary, a spawned task cannot help performance ibtiggnal critical path crossed the task
boundary through an E> E or the C— C edge, since the latency on these edges cannot decrease
after spawning. That is, it can help only if the first critidastruction in the spawned task was
fetch-critical.

5.3.3 Adjusted Slack Calculation for Synchronized E— E Edge

This section gives an example of how to adjust slack er E edges for synchronization delays.
This is illustrated through a conservative synchronizapiolicy: for data-dependences that cross
task boundary, the value is released from a spawner task gutttessor spawnee task when the
following three conditions are met:

1. All branches in the spawner task have completed exec(itiois data produced by bad-path
instructions fetched beyond misspeculated branches &r meleased).

2. The spawner task has fetched and renamed (down the cpatbgtall instructions (in
program order) prior to the first instruction in the spawrask(ensures that the last writer
has been seen).

3. The producer of the value has completed execution.

When the first two conditions are satisfied, the tasks aretgdidve reconnected. Suppose the

time at which all branches in the spawner task have finishedwton isty,.q.x, the time when all
instructions in spawner task have been fetchéeg;isand the reconnection penaltyzisnalty,ccon-

Then the reconnection time is given by:

trecon = max(tbrancha 75all) + penaltyrecon (51)

Suppose the original time at which the value was ready anghedge arrived at the consumer
wast,., the reconnection time was..., and inter-task communication latency wags. Then the
delay added to the EE edge due to the synchronization palicy i

dezaysynch = maaj(tee + tiat, trecon) — tee (52)

For producer-consumer pairs that jump over multiple taslesyalue is released only after all tasks
in between have reconnected. Therefore the delay calonlbtis to consider all intermediate
reconnections. The adjusted slack on the EE edge then is:

Slee = See — delaysyncn (5.3)

The above equations make it possible to compute the adjaktekl from the superscalar graph
without requiring to build a new dependence graph or to cedale any edge slacks. The adjusted
slack computation requires tracking the execution timdsrafches and the fetch time of last

48

instruction in the spawner task. It should be possible talarty incorporate other
synchronization/data-dependence policies in this model.

5.3.4 Adjusted Slack for Spawn F— F Edge

This section shows how to estimate the adjusted slack orpdnersF— F edge from the original
graph and without building a new graph. Let the timestamefdpawned” nodein the
superscalar graptbetr_spquwnee @and that of the spawner be _squner- Let the delay for a task
spawn bepenaltyspqwn. SPawning the task causes the spawnee instruction to etesooner by
tgain, Which is:

tgain = tF_spaumee - (tF_spaumer + penaltyspawn) (54)

This is because originally the spawnee was fetchég af,.n... After being spawned, it could be
fetchedpenaltys,q.n after the spawner was fetched. Let the original slack onplagveee F node
beslackr_spawnee- Then, the slack on the spawn-F F edgein the superscalar graplvould have
been:

SlaCkFF_spawn = SlaCkF_spawnee + 75Fetch_gain (55)

The spawnee F node already had a slackzof,,..n... Because of the spawn, it was fetched
sooner, the two are combined to find the slack on the spawnf-edge if it had existed in the
original graph.

5.4 Overall Approach

This section summarizes the overall approach to estimatefibef potential tasks as well as
computational requirements for the model. Rather tharyaimag the whole application trace, the
model processes it in small segments to reduce memory fobtfpihe model constructs a
dependence graph for the segment of the executed prograenataeyzed. The dependence graph
is built for superscalar execution. Slack information isrtitomputed for dependence edges and
nodes in one backward traversal of the dependence graphs®igtture track the execution time
of branches and EE edges that can cross potential task biesida

The next step involves a forward traversal of the graph tonesé the performance benefit of all
potential task spawn choices. For any task pair to be evadu#te model computes the adjusted
slack of edges crossing task boundary. The performancdibefithat spawn choice is estimated
to be the minimum of the slack on all edges crossing task bemyné structure tracks the
aggregate information for each spawn (spawner, spawn@edvaduated. After all the segments
have been analyzed, average statistics can be reporteddiotask. Later chapters show how to
use this information to make a task selection, and how td linei computational requirements of
this approach by infrequently sampling program segments.

49

As far as computational requirements go, the model incuessa bost and a cost per task. The base
cost is incurred to build the dependence graph, and comfadie sn each dependence edge.
Computing the slack requires a backward traversal of thertl#gnce graph, and takes time that is
O(V+E), where V denotes the nodes in the graph, and E dertodasuimber of edges in the graph.
Additional cost is incurred for each spawn pair whose benefids to be estimated. Computing
the adjusted slack on spawn FF edge and commit CC edge req(t¢ work. Adjusted slack
calculation for EE edges requires some more work. The relpakcy described in section 5.3.3
requires calculation of the reconnection time which in tneeds the execution times of all
branches between the spawner and the spawnee. This re@(ifeime in the worst case. In
practice, a separate sorted list of branches can be maédtéin lower cost. And finally, slack
information is needed for all the EE edges crossing the tagkdary. This can be O(V) work in
the worst case. To further reduce cost, we only need to lotkedEE edges that have a small
amount of slack, since the edge with the minimum slack is treetbat matters. Sampling small
segments in the program can further help keep the value ofallsm

5.5 Validation

5.5.1 Infrastructure and Methodology

To validate the task performance model, this section showslation results for the Polyflow
speculative parallelization system with 4 cores. The tetdithe system are described in
chapter 6. The baseline is a superscalar processor withremmerces as available to one core of
the Polyflow system, except that it has the whole L2 cachdablaito itself. The specific
parameters are given in table 5.1.

Validation is done by comparing the predictions from the gldd measurements on an
execution-driven simulator for the Polyflow architectufée simulator uses a variant of 64-bit
MIPS ISA that doesiot have any special instructions to support multi-threadifagk spawn
points are obtained from a postdominance analysis perfbondhe program binary. Spawns
points whose average length exceeds twice the modelederdaufer size are discarded because
they would likely cause load imbalance. This section pregsults from SPEC2000 benchmarks
that can be compiled on our toolchain. The simulations wereedor representative intervals in the
Igred [45] or train inputs whose function profile closely otas the overall profile for the ref input.

5.5.2 Validation Results

To assess accuracy of the task benefit model, this sectiopares predictions made by the model
for individual task options to the observed performancerowpments when that task is actually
(and in isolation) spawned on the underlying system. Fardkperiment, the model analyzes
program segments of 100K instructions at a time.

Figures 5.3 to 5.36 compare, for each task, predicted vensasured performance improvement.

50

Parameter Value \

Pipeline Width 4 instrs/cycle

(retire 16 instrs/cycle)
8K-entry Combined, 8K entry gshare, 8K entry bimodal, 8K
entry selector, 13 bits of history
Misprediction Penalty 10 cycles

Branch Predictor

Reorder Buffer 512 entries

Scheduler 64 entries

Functional Units 4 identical general purpose units

L1 I-Cache 32Kbytes, 4-way set assoc., 128 byte lines, 10 cycle miss

L1 D-Cache 32Kbytes, 4-way set assoc., 64 byte lines, 10 cycle miss

L2 Cache 512KDbytes, 8-way set assoc., 128 byte lines, 200 cycle niss
penalty

Diverter Queue 128 entries

Spawn Latency 5 cycles

Inter-core Store-Load 5 cycles
Forwarding Latency
Inter-core Register | 3 cycles per-hop
Comm. Latency

Table 5.1: Pipeline parameters.

Each point in the scatter plot represents the measured gicf@e improvement in performance (in
cycles) for one task spawn option, averaged over many dynastiances of that option for a
10Million instruction run. For the measured improvemehg system was allowed to spawn
(multiple instances of) only one task choice in one run ttaisoits impact from other choices. The
total improvement over superscalar from that individual isidivided by the number of times the
task was spawned to report the average improvement per spganstance of that task. The
model, on the other hand, can analyze all task choices in as® p

These results show that the model predicts task performarmeately with relatively minor
deviations from the expected value. Further, we find thaptiiets with large deviations typically
represent tasks that are spawned rarely, so warm-up eftecuctures like caches, branch
predictors, and data-dependence predictors introduce mait captured by the model. In some
cases (such as vortex), warm-up effects cause the modetiaw-predict. This is due to cache
behavior, spawned tasks have four times the L1 cache aleatlathem than superscalar execution
and this can decrease capacity misses in some cases.

The results for each benchmark are accompanied by anothefrgmphs that show behavior of
prediction error as a function of the number of instancesieftask. These results show a clear
trend of sharply dropping prediction errors as the numbénsiinces of any task increase. Thus,
warm up effects are amortized for more frequently spawnskktar hus, the model strikes a good
balance between simplicity and accuracy.

51

bzip2

400 —
N bzip2
y=X
300
200 +
€
(]
£
2 100
? —
8 S o
E 0 ++++ + +
g Jr__/ + +++#+ T =+ o+
= HH L +
g Bl ‘0
-100 fotipr ol
LN + it
s
+ *
N
-200 T
* +
-300
-40 -20 0 20 40 60 80

Prediction by Model

Figure 5.3: Bzip2: Prediction from the model compared tortteasurements from a speculative
parallelization system. The y=x line is shown for reference

bzip2
300

bzip2 s

200

100

Tﬁi T T

i

i
g

o
%ﬁmw}; P T A . .
i

++f
e

-100

Prediction Error

-200

-300

-400

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of times spawned

Figure 5.4: Bzip2: Prediction error as a function of numbidiroes the task was spawned.

Figure 5.5: Validation for Bzip2

52

crafty

400 T
+ crafty +
350 y=X
300
.
250 .
2 T
£
g 200
=
3
S 150
=
g 100
(8]
<
50
0 -
-50
-100
-20 0 20 40 60 80 100 120 140 160

Prediction by Model

Figure 5.6: Crafty: Prediction from the model compared ® treasurements from a speculative
parallelization system. The y=x line is shown for reference

crafty
100

crafty Lo

50

+ -

+ + *
%ﬁtﬁ H B Y g
+THT
+

H
o
U

+1 o

-100

-150

Prediction Error

-200

-250

-300

-350

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of times spawned

Figure 5.7: Crafty: Prediction error as a function of numbietimes the task was spawned.

Figure 5.8: Validation for Crafty.

53

gap

500 T
gap -+
y=X

400 *

300

€
g v
Q * T,
; 200 e f’ ‘Tj;,4+
8 Lo by ﬁwftlf/””””’
2 100 - AT L
[s - P
g ¥ :
<
0 * *
-100
N
-200
-20 0 20 40 60 80 100 120 140 160 180

Prediction by Model

Figure 5.9: Gap: Prediction from the model compared to thasmements from a speculative
parallelization system. The y=x line is shown for reference

gap
200

gap
150

100 |&-¥

-100

Prediction Error

-150

-200

.
-250

-300

-350 &
0 5000 10000 15000 20000 25000

Number of times spawned

Figure 5.10: Gap: Prediction error as a function of numbdinoés the task was spawned.

Figure 5.11: Validation for Gap.

54

gcc

400 T
CcC +
+ +# 3=X
i
] g
300
+ o Ty > P,
" S hiﬁ . -+ f';r
+ +*+ + L % e+
2 200 + !
() Ht
"
5 A
§ 100 :
8 100
+
E Nk
< of
-100 i
-200
-50 0 50 100 150 200 250 300 350

Prediction by Model

Figure 5.12: GCC: Prediction from the model compared to teasurements from a speculative
parallelization system. The y=x line is shown for reference

gcc

250 T
- gcc +

200

150 fF

100

50

Prediction Error

-
-100 5 i

-150 3

-200

-250

-300

0 5000 10000 15000 20000 25000 30000
Number of times spawned

Figure 5.13: GCC: Prediction error as a function of numbdimés the task was spawned.

Figure 5.14: Validation for GCC.

55

9zip

60 —
9zip - i+
40 - Y3
/+,
.
20 + - +/
—
0 iy 1 = ﬁ+ 7
- e T B
c + T+ +
GE) 20 S
- t + £
%, +t ++++i++ +
a +
) -40 T
=
S 60
51
<
-80 N
+
+
-100
.
-120
-
-140
-10 -5 0 5 10 15 20 25 30 35 40 45

Prediction by Model

Figure 5.15: Gzip: Prediction from the model compared tortteasurements from a speculative
parallelization system. The y=x line is shown for reference

gzip
140

gzip
120

100

L

80

60

40

Prediction Error

20

T
Rl Eii

b
4

0 20000 40000 60000 80000 100000 120000
Number of times spawned

Figure 5.16: Gzip: Prediction error as a function of numtdmoes the task was spawned.

Figure 5.17: Validation for Gzip.

56

parser

200 T
parser +
Y=X+
150 /+ T+
+ A4 +
100 e
+H /‘}’/

g -
N R 1 st L B
o - E +
7 .
§ 50 ot
= e T
T 100 +
B
<

-150 -

N
-200 S
.
-250 -
-300
-20 0 20 40 60 80 100 120 140 160

Prediction by Model

Figure 5.18: Parser: Prediction from the model comparetidarteasurements from a speculative
parallelization system. The y=x line is shown for reference

parser
300 T
parser +
L
250
L
200 |
L
i
° -
o 150
c
o
o
g 100
o I
I
50 ¥
:
+ .
Fi ++; %‘i‘ﬂ;r* fi o+ " + + N .
O L i
+ 4+ T
+ -+ & Hw
-50 L
0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Number of times spawned

Figure 5.19: Parser: Prediction error as a function of nurobémes the task was spawned.

Figure 5.20: Validation for Parser.

57

perlbmk
700

p'erlbmk i
+ y=X
600
500
5
g 400
g
7 +
& 300 *
=
IS v +
2 200 +
< + o
N E:
100 i g - t
I
+
0
++
-100
-20 -10 0 10 20 30 40 50 60 70 80

Prediction by Model

Figure 5.21: Perlbmk: Prediction from the model comparetiéaneasurements from a speculative
parallelization system. The y=x line is shown for reference

perlbmk

100 T
perlomk +

0 % i T F

-100

T T

-200

-

-300 |
I

Prediction Error

-400

-500

-600

-700
0 5000 10000 15000 20000 25000 30000

Number of times spawned

Figure 5.22: Perlbmk: Prediction error as a function of nandf times the task was spawned.

Figure 5.23: Validation for Perlbmk.

58

twolf

1200
twolf +
N
y=X
1000 ¥
+ iy
+ i
800 i
& et + +
€ T +
L 600 e
8 +
©
s
= 400 +
2
[8)
<
200
o -
-200
-50 0 50 100 150 200 250 300 350 400 450

Prediction by Model

Figure 5.24: Twolf: Prediction from the model compared te theasurements from a speculative
parallelization system. The y=x line is shown for reference

twolf
200

twolf Lo

i+ i H4k + + + +

SR +

mM+M&L¢$L o - + P 4
T R 4 4

il

-200

-400

-600

Prediction Error

TR

-800

=

-1000

-1200

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Number of times spawned

Figure 5.25: Twolf: Prediction error as a function of numbgétimes the task was spawned.

Figure 5.26: Validation for Twolf.

59

vortex
500

VOI‘t(IeX +
y=x
400 o
300 i
g m
IS
2 200 L
=
(2]
[0}
2
S 100
2
(8]
<
0
-100
-200 L
-50 0 50 100 150 200 250 300

Prediction by Model

Figure 5.27: Vortex: Prediction from the model comparedch® measurements from a speculative
parallelization system. The y=x line is shown for reference

vortex

300 .
vortex +
200 |-+
S
LI‘] ﬁ*._ oF + + +,
c
S
8
s
0
[a
I
-300
-400 L
0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Number of times spawned

Figure 5.28: Vortex: Prediction error as a function of numtiiimes the task was spawned.

Figure 5.29: Validation for Vortex.

60

vpr.place

250 + '|
vpr.place
£ y=x
++H:
200 %ﬁu
s i
f i +
+
- . .
E 150 o
+ +
OE) + +j"+ }
S + + 4 * ’it#*
@ + 4 N
o 100 ¥ At
(] 4 Es
= + + + Jjﬁ’ +i+
= + +
E # o i .
& 50 Fhlg
+ ot e
+*
4 ﬁf;f :ﬂﬁ #ﬁ "
ﬁ +tr+++ R 4
o + n +
+
4+
+
-50
-50 0 50 100 150 200 250

Prediction by Model

Figure 5.30: Vpr.place: Prediction from the model compdoethe measurements from a specula-
tive parallelization system. The y=x line is shown for refece.

vpr.place
60 T T
vpr.place
+
40 |-
[+
20 fpu ot
-+ }: e ++j§ % ++£
0 ,%%’ﬁ%é%&i*& toHE 4T ﬁ+++ B 5 ++% dy i T Tk g
i¢+¢++&#+++++ + + + T AR
o [%i F O
2 20 |#+ :
= Ei
R
S -40 [*
Q +
e}
Q +
kS -60 ;
g
-80
.
+ :
-100 i
N
-120
N
-140
0 5000 10000 15000 20000 25000

Number of times spawned

Figure 5.31: Vpr.place: Prediction error as a function ahber of times the task was spawned.

Figure 5.32: Validation for VPR Place.

61

vpr.route

150 ;
vpr.route +
y=X |
++w‘*¢:r: +
100 !
+
E /
£
50
= # "
© 0 +
3 &
< * ot
+
50
.
-100
-20 0 20 40 60 80 100

Prediction by Model

Figure 5.33: Vpr.route: Prediction from the model comparethe measurements from a specula-
tive parallelization system. The y=x line is shown for refece.

vpr.route
100

T T
vprroute +

80

60

40

20

Prediction Error

"

+
H
H

et
+
&
*
+

x
L

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Number of times spawned

Figure 5.34: Vpr.route: Prediction error as a function ofitner of times the task was spawned.

Figure 5.35: Validation for VPR Route.

62

ammp

300 .
ammp +
FE y=X -
;
200 !
+ -
AR
.
2 100 S .
(4]
£
[0)
5
(2] +
3 0 = -
s
B
2
< -100
-200
-300
250 200 -150 -100 -50 0 50 100 150 200

Prediction by Model

Figure 5.36: Ammp: Prediction from the model compared tontleasurements from a speculative
parallelization system. The y=x line is shown for reference

ammp

200 T

ammp +
150 =
100
+

50 T
5 c D
Llj [#Hi‘ el \ f
e Oporewey i
o
2 1 " +
5 -50
g
o [+ ¢+ i B

-100 -+

.
-150 i
+
2200 oy
-250 +
0 5000 10000 15000 20000 25000 30000 35000 40000

Number of times spawned

Figure 5.37: Ammp: Prediction error as a function of numieimoes the task was spawned.

Figure 5.38: Validation for Ammp.

63

PART I

EXTRACTING PARALLELISM ON
POLYFLOW

64

CHAPTER 6

POLYFLOW: TARGET
SPECULATIVE PARALLELIZATION
SYSTEM

This chapter describes details of Polyflow, the target dpéea parallelization system.

6.1 Terminology and High-Level Overview

Static Compiler Analysis

Unmodified
Single-threaded | + Task Offline Profile Analysis
Binary Partitioning

\/ Dynamic Sampling

CPU1 || CPU2 || CPUS || CPU4

l L2 Cache |

D Extra support for (speculative) parallelization
potentially dynamic task selection/refinement

Figure 6.1: High-level setup for speculative parallelizat

Figure 6.1 illustrates the target setup for speculativalfgization. This thesis refers to this setup
as the Polyflow architecture. It consists of a multicore @eckure with additional architectural
support for speculative tasking. The input is an unmodifiagls-threaded binary, with no special
instructions for speculative parallelization. An optibimgout is task selection information that
describes to the architecture how to partition the singtegded execution into multiple
(speculative) tasks. This task selection can be made inietyarf ways based on just
compiler-based approach, or more input-dependent apgpeeaich as profiling-based. In
addition, the system might have dynamic support for idgimif profitable tasks (or might rely
solely on the task information provided as input).

Figure 6.2 gives an example of how Polyflow would speculbtiparallelize a loop. The example
shows the control-flow graph (CFG) of a loop, highlighting thop body beginning at A, and the
loop index update and branch at block B. The task informatimvided to the system is to spawn
to block B whenever it encounters the beginning of loop badstfuction A). This thesis refers to
A as the spawner’ instruction and B as thespawneé instruction.

65

1 Task Spawn

A AT iy | Tiime
Loo - |Loog =T Task Spawn: :
Body Body | AT g |

: ¢ ¢ |Loog -~ T[— o Task Spawn
fooBody || AT
s N P T

B - Recomnect_| | |gogy | | A
i+ ? N ' |Loop
check i | - . Reconnec /1 |BOdy |

‘ ‘ Rééonnéc
Task Information L - - ?
CPUQ | CPU1: | cCPUZ :|CPU3|
Spawnef Spawnee Do Do Do :
A B Do Lo Do ‘

Figure 6.2: An example timeline for speculative parallgtian.

The timeline shows how the execution unfolds on the systetmemihstruction A is encountered
on core 0, it does atask spawr’ action, spawning instructions starting at block B as a s&tga
task on core 1. The newly spawned task loops around (the lmaghtton evaluates to true in this
case), and again spawns B when it reaches A. This process tegggmating until all cores are used
up, and resumes once cores become available for new taskeoté is not available when a
spawner instruction is encountered, the task correspgridithat instruction is simply ignored (as
opposed to some other systems where such tasks are buffeesd spawned when cores become
free later on). The net result is that the execution of loegtions is overlapped or parallelized (to
the extent allowed by the architecture and program stregfor potentially higher performance.
Once tasks have completed, they are merged througgisk feconnect action. This preserves
program semantics by presenting sequential behaviorretgr Note that while figure 6.2
illustrates loop-based tasks, the system allows for ileegasks as well. These tasks can spawn
over procedure calls, hammocks, etc. Also note that thigsysdoes task spawn and reconnect
actions in-order”. This means that once a task has spawned another futurgttaak’t spawn
another task while the later task is live and has not beerssgala Task reconnections are carried
out (and cores freed up) in the temporal order of tasks, s oldest task can reconnect to the
task it had spawned, and only then can this merged task recbtothe next oldest task. Later
chapters will address the performance potential of oudrder spawning [46].

The in-order spawning restriction lends itself well to egAike network between cores for task
actions, since spawns and reconnections can only happerdretdjacent cores. At any point, the
oldest task is referred to as thead task or thenon-speculative tasksince its actions are not
data-speculative in nature. Other tasks are speculatitle te youngest (and logically the most
distant) task being the most speculative task.

66

6.2 Management of Data-Dependences

Instruction Cache Decode Rename ™ Reorder Buffer Retire
f—
v
Fetch S T
g g Scheduler Execute Register
Branch Fil
PC Predictor Divert Queue mR > o e
L) L)
Task Spawn Unit Depg:éae = v
Spawn Hint Gache || | | Predictors > Load-Store Queue | Data Cache

Figure 6.3: Pipeline of an individual Polyflow core.

There can be data dependences going from the spawner taskéo@ative task spawned onto
another core. These data-dependences need to be enforoaghtain correct execution. Polyflow
enforces these data-dependences using the followingitea® speculation, synchronization and
(in a very limited sense) value prediction. There can be fpe bf data-dependences:
register-based and memory-based. The techniques usdekftwad cases are somewhat different.

6.2.1 Register Dependences

Register-based data dependences are somewhat easientify idled enforce than memory
dependences, as has also been observed by previous workteRégsed dependences can be
unambiguously identified through a static analysis and tsmeasily be learned dynamically.
Further, the limited number of registers in architecturekes tracking register-based dependences
an easier task.

Polyflow’s solution to enforcing inter-task register degences is to identify instructions in the
spawned task that might depend upon register values thateviroduced in the spawner task, and
make these (potentially) dependent instructions in thewpd task wait until their value becomes
available from the spawner task (or it is verified that thedavalue was already available). In
other words, Polyflow predicts inter-task register depends, and synchronizes (potentially)
dependent instructions on producers in earlier tasks.

Polyflow uses a dynamic structure in the architecture to toaithe register-dependences between
potential tasks. This structure, referred to as RSync [did]tcain very quickly and can be used as
a very accurate dependence predictor for future spawnsbfdbk. Register dependence
information is stored as a 32-bit (one bit for each registector for each task pair, with the bit for
corresponding register set high if it was ever observed twiiitéen by the spawner task, signifying
that the spawned task may not have the latest value of theteegind should “wait” on the value
from the spawner task. Since the spawner task might itsekfdittng on some register values from
the task that spawned it, these registers are also markedaés-for registers” at task spawn time.
If a register is written during task execution, its “waite*fbit is cleared. In case a dependence

67

was not identified, a reconnection-time check signals tipedgence violation which causes the
violating task (and all later tasks) to be squashed. Howélvisris a rare action because the
dependence predictor is very accurate.

6.2.2 Value-Prediction for Callee-Saved Register Dependees

Polyflow employs a very limited form of value prediction taebk some register dependences. The
specific case in which this is used is for callee-saved regisThese are the registers that must be
saved by any procedure before they can be used, and restdtegirtprevious value before
returning from the procedure. The value stored in any sugister is the same just after returning
from a call as it was just before making the call, even thoingineg might have been several
inermediate writes to the register inside the called fumctPolyflow leverages this insight to
remove such “false” register dependences from the writescilee-saved register in a procedure
to reads of that register after returning from that procedithe spawned task jumps over the
function call altogether [5].

6.2.3 Memory Dependences

Memory dependences are tricker to deal with than registeemitences because they are harder to
identify statically, involve more ambiguity than registipendences, and because there are many
more memory locations than are registers. Polyflow uses aometiependence predictor that is
similar in nature to RSync, except that it uses store setdifaars [48] rather than registers. The
memory dependence predictor trains similar to RSync on mgatzesses, and can generate a
memory waits-for bit vector for a task pair. This can be useslyhchronize loads/stores in the
spawned task that access a particular store set.

However, a large number of memory accesses rarely/neer talthe same location even though
they might access the same store set (which is a many-to-apeing). In such cases, it might be
better to speculate that no dependence exists and suffearthenisspeculation penalty. Polyflow
takes this approach for memory accesses, and if the obseéegeshdence frequency is quite high
for particular accesses, then tries to synchronize it basgtie memory dependence prediction
mechanism. This has been developed into an adaptive mewyrekrenizer, which adapts the
behavior for each memory access. Further details can bel fioudalik’s thesis [49].

6.3 Disambiguation of Memory Accesses and Forwarding of Dat

Speculation on memory accesses can fail when a consumidgn@elater task executes before it
gets the correct data from the producing store in an eadsds. tSuch cases of failed speculation
must be detected and the incorrect execution rolled backdore correctness. Speculative
parallelization systems have a disambiguation mecharastetect such violations. Polyflow’s
disambiguation mechanisms have evolved over time. Iptigposals used load-store queue based

68

disambiguation, where each store broadcasts its addresisdiocores, and tasks on later cores can
compare their loads to the store address to detect viokatidialik [49] has explored other
complexity-effective solutions that enable disambiguatat load-retire time with a separate cache
structure for disambiguation, inspired by Roth’s approfactsuperscalar disambiguation [50].

A related issue is forwarding of memory data to later task$dads that are not synchronized but
might still depend upon data from earlier tasks. Malik [4&fers to such loads as “lucky loads”
because the timing of their execution works out so that theycgrrect data from producer threads
even though they were not synchronized with their produdeodyflow forwards memory data
through a single, chip-level speculative cache. All stavate their value to this speculative cache
upon execution, as proposed by Garg et al[51]. About 4% o&nhya loads receive their data from
this cache, which takes an extra delay (e.g. 5 cycles).

6.4 Non-Blocking Scheduling through Divert Queues

Instructions that need to be synchronized to enforce tas-data dependences must wait until
data becomes available from producing task. This can inmusiderable delay. Such synchronized
instructions and their transitive dependents can meapviahdick the scheduler, preventing
independent instructions in the task from executing. Palythddresses this concern by slicing out
such “waits-for” and “transitively waits-for” instructits at the rename stage into a separate FIFO
structure called divert queue. Only instructions whoseeddpnces can be satisfied locally are
allowed to proceed (with the exception of speculated loadgperations whose inter-task data was
already available at spawn time). Instructions in the digaeue can be selectively “undiverted” as
and when their producers release values.

6.5 Release Policy for Synchronized Instructions

As mentioned above, Polyflow tries to synchronize registered dependences and frequent
memory-based dependences that cross task boundary. Sherdéet instructions are diverted and
delayed until the producer value is released to the consumsguction and is marked as ready to
be scheduled. The policy that decides when this action hmpigaeferred to as “release policy”.
Polyflow releases a value from a spawner task to the succggaamnee task when the following
three conditions are met:

1. All branches in the spawner task have completed exec(itiois Polyflow never releases
data produced by bad-path instructions fetched due to eiséqted branches).

2. The spawner task has fetched and renamed (down the cpatbgtall instructions (in
program order) prior to the first instruction in the spawreeskt(ensures that the last writer
has been seen).

3. The producer of the value has completed execution.

69

When the first two conditions are satisfied, the tasks aretedidve reconnected. Therefore, the
value is released when the spawner task has reconnectes dartient task, and the producer of
the value in the spawner task has also executed. If the depeads from a task earlier than the
spawner task, then all the tasks from the producer taskigad to the current task must have
reconnected, and the producer instruction must also cdenpi@cution for the value to be
released. Malik [52] has also explored more aggressiveipslihat try to release values earlier
based on path confidence.

6.6 Task Spawn Management

The Task Spawn Unit (TSU) is responsible for managing taskatated operations. The TSU
stores task information in form of spawner-spawnee PC jraifse spawn cache. Each cycle, the
fetched PC is looked up in the spawn cache to see if it matcitbsone of the spawner PCs stored.
If so, the TSU attempts to spawn the corresponding spawnemnBChe next core if a task is not
already running on it. Since Polyflow spawns tasks in-ordlece a task has spawned another task
on the next core, it cannot spawn another task in its lifetimiess the spawned task is squashed
for some reason. If the next core is available, the TSU seweisabspawn command to the core.
The spawn command contains the following:

e The start PC of the spawned task.

e Register dependence information that informs the spawamddwhich register values need
to be synchronized. This is sent over as a 32-bit value asidedabove.

¢ Memory dependence information similar to the register ddpace information.

Other actions also take place when a task is spawned. Brastomfregister for the spawned task
must be initialized. Polyflow does this by clearing the gldiiatory register for the newly
spawned task. Further, the spawned task needs values favahiable registers. These are also
sent over at the time the task is spawned.

70

CHAPTER 7

RELATED WORK IN SPECULATIVE
PARALLELIZATION

This thesis builds on top of contributions and insights frafarge amount of previous work in the
area of speculative and automatic parallelization. Thigptér summarizes representative work in
some of the important directions in this domain.

7.1 Compiler-driven Automatic Parallelization

A lot of work was done in the 1980s and 1990s in compiler-baagdmatic parallelization of
primarily scientific applications written in High-Perfoamce Fortran. The focus was on
parallelizing the main loops in the applications. The hig¥el approach was to do a static
dependence analysis to construct the program dependesyaie. gthen, based on the result of this
dependence analysis for a candidate loop, transformatiouisl be applied to parallelize the loop.
Hall et al. [53] describe a taxonomy of some of the transfadiona to parallelize loops. The
transformations are divided into three categories: 1) &ximg: loop distribution, loop
interchange, loop fusion, statement interchange, loowisig loop reversal; 2) Dependence
breaking: privatization, array renaming, loop peelin@lacexpansion, loop splitting, loop
alignment; 3) Memory optimizing: strip mining, scalar rapément, loop unrolling, unroll and

jam; and 4) Miscellaneous: sequential parallel, loop bounds adjusting, statement addition,
statement deletion. Several of these transformationsemeritbed in detail by Kennedy et al. [54].
A major limitation to compiler-based automatic parallatinn approach was the accuracy of static
dependence analysis for memory-based dependences. Stnoarynaccesses to different variables
can alias to the same location, the compiler has to assureatfdtmemory-based dependence
between two memory accesses unless independence can bd.pFtis makes static memory
dependence analysis very conservative and can preveiiepaasion of several loops and other
program regions where a dependence may not exist in prastaethough independence cannot
be proved.

Some projects sought to overcome this limitation througiggammer feedback about potential
dependences. ParaScope [53] is an interesting approaatiriteeactive but tool-aided program
parallelization. The tool does a conservative data-degerel analysis on the candidate loop to be
parallelized, and points out possible loop-carried da&jpetidences to the user. The user can reject
these dependences if he/she knows for sure that a deperdisgsaot exist. In addition, the tool
allows the user to choose from a large set of transformatimparallelize the loop, which

71

significantly eases the task of loop parallelization.

SUIF Explorer [55] is a related approach to interactive paog parallelization that combines the
benefit of static interprocedural analysis with dynamidipgonformation. The tool consists of a
“Loop Profile Analyzer” that points out the dominant loopghie application, and a “Dynamic
Dependence Analyzer” that points out the data dependehaeprevent parallelization. The focus
is on breaking loop-carried dependences potentially wsttr elp so that the loop becomes a
DOALL loop. A slicing analysis can point out the statemeiiat affect a particular conservatively
identified data-dependence in question, so that the usgudga if the dependence actually exists
and if it can be broken through techniques such as prividizat

7.2 Speculative Parallelization

Except for simple cases, compiler-based automatic péralflien is unable to make much headway
due to the conservative nature of the dependence analggsurticular, references to memory
locations can alias for pointer variables etc. In thoses;dses very hard for the compiler to prove
independence of memory accesses between proposed teesk@d#hThis means that often the
compiler can't parallelize many program regions becauseubable to prove data-independence,
even though there may not have been an actual dependencxhdtve regions.

This serves as the motivation for speculative parallébmatThe key enabler is data speculation on
ambiguous dependences. Data-speculation makes it possiphrallelize such regions where
static approaches can’t prove independence. If the depeads unlikely, or infrequent,
parallelization can be carried out speculating that no degece exists. This is backed up with
special hardware/software support that can detect if asieisulation” occurred, that is, there
actually was a dependence that was not enforced. In sucleatbasge is a recovery mechanism,
which might involve discarding all speculatively execuiestructions and restarting execution
from a correct program state.

Several research projects have explored speculativelglaration using data-speculation, also
referred to as speculative multithreading or thread-lepelkulation (TLS). The Multiscalar project
was a pioneer in hardware-based data speculation for gigation [31]. Several other projects
have explored this domain, including the CMU Stampede pt¢g2], Stanford Hydra [33],

lllinois TLS [34], Dynamic Multi-Threaded Processors @dj [35] and several others, for
example [36-40].

Besides the above systems, there have been other flavorsanfiative parallelization (SP) as well.
Two of the important ones are control-independence processd helper threading systems. The
former class typically consists of a single fetch-unit ttah leverage control-independence to
make better use of the available fetch bandwidth and redweceastage from mispredicted
branches. Skipper [27] and Transparent Control Indepearedg28] are two such systems. Both
these systems need extra support for managing data-demmesdeorrectly much like speculative
parallelization systems. However, they are limited in scopmpared to full-blown SP systems due

72

to the restriction of a single fetch-unit.

Another class of SP systems are those that pre-executeparioe degrading events (PDES) [56]
in separate speculative threads, thereby improving pedoce by prefetching data or
precomputing branch results [57]. These systems can spgaeads that consist of just the
backward slice leading up to the PDE. Such “helper” threaasprefetch data for the main threads
or precompute branch results, but don’t actually commitstage and therefore improve
performance through side-effects.

7.2.1 Challenges to Speculative Parallelization

There are numerous challenges to successful speculatiaialiaation. First, it requires extra
architectural support for speculation which includes tintetection of misspeculation and
support for roll-back to maintain correct execution. Thtusgquires extra silicon area (and
associated costs in circuit complexity and extra power @ontion). Much research has been done
to develop architectural mechanisms for speculative |gdization that minimize the impact on
power consumption, circuit complexity, and impact on dircutical path.

Another challenge is maintaining correctness of executippreserving sequential semantics
externally even though the application is speculativelsalhalized internally. The key impediment
to this requirement is the presence of data-dependencesdrethe speculative tasks that must be
enforced. If dependences are frequent and predictablectrebe synchronized with hardware
(and/or compiler support) support [47]. Otherwise, systean speculate that there was no
dependence, and roll-back upon detecting a dependencedhkatot enforced. Based upon the
nature of the dependence, one mechanism might suffer lovsetitan the other. Future (in
program order) speculative tasks might need values comiytearlier threads, and this might
need extra communication channels such as a separateanéeoperand bus.

Finally, the above architectural techniques introducdsctusspawning a future region as a
speculative task, in the form of penalties for communigatialues to the task, the extra delay
incurred by synchronized dependences compared to singlagled execution, penalty incurred by
misspeculated dependences, and other overheads asdedgihitspeculative tasking. Therefore,
another major challenge is deciding how best to partiti@enahplication into speculative tasks to
maximize the achieved parallel performance. Tasks thaisexp lot of parallelism while incurring
low cost can lead to large increases in performance. Caoelyetasks that incur large
costs/penalties without yielding much parallelism canvgb@rformance down.

7.3 Task Selection for Speculative Parallelization

The policy that decides which tasks are spawned for sp@geilparallelization is referred to as the
“task selection” policy, and constitutes a major chunk dg thesis. Designing a good task
selection policy is a challenging problem because ther¢ypieally a large set of task choices
available for any given application, but only a few of thenghtibe profitable to performance. The

73

source of profitability can vary because parallelism canefmmm cache misses, mispredicted
branches, independent instructions, etc. Parallelisntoare from many sources and can come
from regular tasks such as loop iterations, or might be udgagn nature. Finally, the profitability

of a task also depends upon the cost imposed by data depesdamt other tasking actions.

Task selection for speculative parallelization has begmagrhed in multiple ways, varying from
compiler identification of tasks, to dynamic heuristicd@dsask creation. This section summarizes
some of the representative related work in this area. Therens axes along which the related
work can be classified. First is the set of potential taskag®wthat systems consider for speculative
parallelization. The second is the way in which systems dos&lgenefit analysis on the available
task choices, and select those that provide large benefidssudfer from minimal costs.

7.3.1 Potential Task Choices Considered

There are mainly two schools of thought in this directione@et of systems rely on regular tasks
based on program constructs like loops and procedure G&lesbenefit of this approach is that
these tasks are easy to identify, lead to a reasonable nwhtzeks that can be analyzed well, and
hopefully lead to good coverage of program execution. Theraapproach is to allow a larger set
of tasks that might be irregular in nature. The benefit of éiisroach is greater flexibility that
enables successful parallelization even if parallelisnmoabe found through regular tasks. This
section describes the approach that several systems hkave ta

Many compilers for thread-level speculation (TLS) rely oops as candidates for parallel
execution, and loop iterations are the only possible tasttep unrolling, and loop interchange are
applied in conjunction with task selection to create tadksudable sizes. This includes the
STAMPEDE system [58, 59] which focusses on loops that petigh program coverage, and
considers different unrolled versions of such loops asiplestasks. Several other systems also
focus solely on loop iterations as speculative tasks, sa¢heaTEST system [60], Du et. al [61],
Wang et. al [62], and many others [40, 59, 63]. The clustepettdative multithreaded processor
used a dynamic loop detector to identify and spawn looptitara as tasks [64]. Such
loop-iteration based spawns were found to be preferablao flall through or procedure fall
through spawns in the context of the clustered speculatiiéithreaded processors [65].

Some systems consider, in addition to loop iterations stéskt include loop continuations,
procedure calls and procedure fall-throughs [43, 66]. Tiedinic Multi-Threading (DMT)
processor [35] uses dynamic heuristics to spawn at proeeghda loop fall-throughs. It
approximates loop fall-throughs by spawning the staticgeskldirectly following each backward
branch. A history buffer is used to predict after-loop tlirealdresses that differ from this default
value. A subsequent work [67] implements a run-ahead pthiayyalso spawns the instruction
following an L3 cache miss.

However, for several applications, regular tasks derivethfloops and procedure calls may not be
enough, because parallelism might be more irregular irreand there might be complex
control-flow involved. A broader set of tasks might need t@besidered. One of the contributions

74

of this thesis is a demonstration that tasks derived fronideosinator analysis subsume heuristics
like loop and procedure spawns, but also provide a varietthadr task options that are important
for performance. But there have been previous systems &lvat¢onsidered a broad set of tasks.
The Multiscalar compiler [68, 69] allowed a region of the @oiFlow Graph (CFG) to be
arbitrarily partitioned into two tasks through a cut. Théyarstriction being that each task had a
single entry point, and all basic blocks within a task wenerarted. While this allowed for general
tasks, it also introduced the potential for inter-task oamisspeculation since a task could have
several successors and spawning a task required spegutainit would be reached in future.
There are ways of reducing the control misspeculation peraPSM [70] was an early
speculative multithreading system that considered tdsitsare control equivalent to their spawner
for starting new tasks. Control equivalence means thastask control non-speculative with
respect to their spawner. Other systems try to use profilddipiormation to create speculative
tasks along the frequently executed paths. Control Quesigendence (CQIP) uses profile
information to reconstruct the dynamic program control fipaph with edges weighted by
execution frequency [71]. Basic block pairs that are likeljie on the same path are identified as
possible spawning point and control quasi-independemtgoBhowmik et al. [72] also describe a
compiler system that uses path profiles to identify taskstalts out by trying to create tasks out of
loop iterations. Next, it tries to create tasks along comipaths, as well as infrequent paths, for
each immediate postdominator pair.

The Skipper [27] processor exploits control independeaakip instructions control dependent on
hard to predict branches. When it encounters a low-confeleraench, it skips the region
control-dependent upon the branch, and instead fetchesxamdites instruction control
independent of those branches. In a sense, it “spawns” tisestl postdominator of the branch,
although this is done for a single-fetch unit processor.

7.3.2 Heuristics to Estimate Task Benefit

The other important aspect of a task selection policy is tfzegy to make a selection from the
available choices. A large number of task choices might béatle to a speculative
parallelization system. However tasks can compete with etizer. That is, spawning one task
might preclude spawning a set of tasks because it mightagverith these tasks (partially or
completely). Further, even non-overlapping tasks can eenfor limited thread resources. Itis
the job of the task selection policy to make a selection thetimizes the achieved performance
given the available resources.

This is a hard problem because it is not straightforward tionege the impact of a given task
choice on performance when it is spawned. A variety of saiofgarallelism and costs can affect
individual task profitability. The other consideration ® taken into account is how do a set of
tasks affect each other with regards to resource conteatiavell as other factors like penalties,
etc. This section summarizes how different projects approask selection.

The STAMPEDE TLS system [58] shortlists a set of loops, amtbiters different unrolled

75

versions of these loops as potential tasks. In order to statet which tasks are profitable, it runs
each potential task in isolation on the detailed TLS modehéasure improvement from each
possible version. The best unrolled version is selecteddoh loop spawn point. However, this
approach is unlikely to be profitable where a large numbeask thoices are available, and so
other systems have explored heuristics to estimate tas$itgimibty.

Another somewhat more sophisticated trace-analysis igehiis used by the Mitosis

compiler [73]. It builds upon the idea of Control-Quasi Ipdadence [71] to select tasks, while
ensuring a minimum task length. One of the novel aspectsedfitosis system is that it tries to
avoid costly inter-task data communication by generatirg@mputation slices (or p-slices) for
each task to compute live-in values. It uses extensive CkE@ata-edge profiling to identify
live-ins for p-slices. Next, it has a selection phase thasmn synthetic traces. The phase operates
on a given subroutine (and loop level) at a time, and makekeatigm for that level, and this step
is repeated from the innermost to the outermost subroutlfithin each step, a greedy selection
heuristic expands the set of selected tasks by iteratiieking the task that maximally improves
performance over current selection until no further imgroent is achieved. To evaluate the
performance for a given selection, it “simulates” spedwtaparallelization on the synthetic trace.
However, the simulation is done on an abstract model of teeesy modeling few architectural
details, for example assuming that each instruction takégime, and therefore can be made
faster than a more detailed model.

Other systems use profiling information about task size apeddences and use heuristics to
make their selection. The Multiscalar compiler [68, 69]rtiées the following as main costs to
speculative parallelization: control flow speculationtadeommunication, data-dependence
speculation, load imbalance, and task overhead. These am@sincorporated in a selection
heuristic that performs task selection by walking the statogram control-flow graph (CFG) and
partitioning it into tasks. There are three heuristicsk &ige, inter-task control flow, and inter-task
data dependences. The task size heuristic uses loop agrafid function inlining to make tasks
of appropriate size, and thus minimize load-imbalancekdase not allowed to cross loop or
function entries or exits. The control-flow heuristic limthe number of successors of a task to
reduce cost of inter-task control misspeculation. The-dafgendence heuristic tries to place
producer and consumers of frequent dependences withirathe g&sk. A later related work [74]
annotates the static CFG with edge weights that combinerpadt of load imbalance,
data-dependence cost as well as control prediction peimadtyne single metric, thereby giving
equal consideration to all three. The min-cut algorithnhentused to best partition the CFG into
tasks.

The factors identified above are indeed the most importamgiderations in task selection. The
inter-task control-misspeculation aspect is somewhatipéo Multiscalar due to the extra
flexibility it allows in terms of task structure. Several etlsystems focus on just load imbalance
and data-dependences. For example, Du et. al [61] focus mimiming misspeculation cost due to
data-dependences in spawned tasks. They construct aledataclow graph where

76

data-dependence edges are annotated with profiled demengebabilities. This helps estimate
the data misspeculation cost for a given loop spawn optlweir(system doesn’t synchronize
memory dependences). The selection component uses timakstimisspeculation cost and task
size for admittance.

Similarly, Wang et. al [62] profile to estimate the probdbithat the spawned task will suffer a
data misspeculation and the cost of this misspeculaticofiliRg is also used to estimate
communication and synchronization delays. These are use¢ddk selection, along with task size
information. An interesting aspect is that they construlciop graph that captures loop nesting
relationships. The loop nest that maximizes parallel parémce is selected for spawning.
Bhowmik et al. [72] also follow a similar approach that caless task size and cost of
data-dependences for task selection. They have two hesaristestimate the cost of
data-dependence: Data-Dependence Count (DDC), and Ryggaeridence Distance (DDD). The
DDD heuristic is similar to the synchronization delay heticiin that it estimates the minimum
stall time of the consumer instruction due to producer inpgfevious task. The DDC heuristic, on
the other hand, counts the number of data-dependencegdkatthe task boundary, with lower
weight given to distant dependences.

The TEST system [60] also relies on task size and data-depeaccost to make its selection. An
interesting aspect is that it provides dynamic task seledupport in the Java Virtual Machine, by
profiling prospective loops (referred to as Speculativee@tdrLoops or STLs in the study) to select
the most profitable loops for speculative parallelizatibhe profiler does two analyses to quantify
the potential of a prospective loop: load dependency aisaltfsat tries to capture the impact of
inter-task store-to-load dependencies on performancespeculative state overflow analysis,
which checks that the task is of appropriate granularityaod't overflow speculative buffers.
Loops that provide good coverage and meet thresholds oreabetrics are selected.

Other systems realize that there are other factors besidksize that determine task profitability.
The POSH compiler [43] profiles to measure/estimate theviotlg information for each task
choice: the number of instructions in the spawned task thati@p the spawner task, wastage due
to squashes resulting from dependence violations, andtphifig benefits due to original cache
misses that were fetched earlier due to the spawn. Thesemtdmed into a single “benefit”
metric that is used for admittance. The compiler also todsatist loop, loop fall-through, and
procedure fall-through spawn points as high as possibiegu®ntrol equivalence along with
other constraints on data dependence and task spawn grderin

7.4 Program Transformations for Speculative Parallelizaldity

7.4.1 Speculative Program Transformations

Static or run-time approaches that take a given applicdtioary and try to best partition it into
tasks are constrained because they have to preserve éippliseamantics. However, there can be
some flexibility in terms of recompiling the application tfiéads to significant improvements in

e

parallelizability. Non-speculative loop transformaisdike unrolling, distribution, interchange,
etc. are applicable in general and also to speculativelpbzation. However, support for
speculation enables another set of “speculative transftooms” that get high performance in the
common case, but can catch violations in the rare case taaraitorrectness. Two main projects
have explored this domain.

Vachharajani et al. [75] propose Speculative Decoupleth&oé Pipelining (SpecDSWP) as a
technique to parallelize loops that contain dependencgsemurrences, with the help of control-
and data-speculation. The work is motivated by the conadgsftware pipelining. The program
dependence graph (PDG) of the candidate loop is dividedtopmmiltiple strongly connected
components (SCCs), such that there are no cyclic depersibet@een any SCCs. These
components are then run as separate tasks. Dependenca®tbpéculated upon can be removed
from the PDG to parallelize many loops. Queues are mairdaiméuffer inter-task data
communication.

Zhong et al. [76] present speculative transformationsthatenable speculative parallelization of
a large number of loops. These transformations are adapsadf counterparts from the domain of
automatic (non-speculative) parallelization of Fortrangrams. The transformations evaluated
include speculative loop fission, prematerializationragfient dependence isolation, variable
privatization, reduction variable expansion, and igngpiiimg-distance memory dependences.

7.4.2 Revisiting Application Implementation

Often there are major roadblocks to parallelization imgdsethe way the application is written,
and parallelization is prevented by the need to preserviicatipn semantics. Researchers have
explored the scope for parallelization by minor refactgrid applications (and potentially relaxing
application semantics) targeted towards speculativdlpkzation.

Prabhu et al.[77] explored the potential of thread levetsfsion for several SPEC2000
applications by manually applying transformations suchasllel reductions, loop slicing, etc
where applicable. They also explored advanced value gieditechniques to reduce the cost of
data dependences. They observe high costs from managéngask data dependences and
communication, and the overheads of speculative parzliin.

Bridges et al.[78] show that the upside potential of spaiudaarallelization can be enhanced by
compromising on sequential semantics. They identify [daeehe code where they can place
annotations that specify legal transformations, such@sleging multiple invocations of a
function with respect to each other (commutative) and Beicrg the quality of result (e.qg.
compression ratio) for parallel performance. Howeverirtideled architecture is not restrictive
in terms of task sizes, cost of inter-task data-dependertesOur study explores the costs
imposed by several such constraints to understand therpenfce potentials and bottlenecks for
different architectural choices. Our parallelization ntains sequential semantics.

78

CHAPTER 8

TASK SELECTION FOR POLYFLOW

Chapter 5 developed a criticality-driven model of task lwédra This chapter shows one
application of that model to make task selection for spdima@garallelization on Polyflow
architecture. The chapter also compares the performartbataask selection policy against other
selection heuristics from literature, and shows that theehenables the design of a superior

policy.

8.1 Comparison Policies

Section 7.3 described a variety of task selection stragagged in several speculative
parallelization systems. Doing a fair and quantitative parison against each one of those policies
is tough because each system has its own nuances and difgai®minate the behavior. For
example, systems that suffer large amounts of memory ndafgi®ns need to minimize that to be
profitable and therefore most of the focus is on selectingstdsat minimize the chance of
misspeculations. Systems that don't slice out instrustid@pendent on inter-task dataflow block
later independent instructions and therefore suffer alaygchronization cost whenever any
data-dependence crosses task boundary. Polyflow trieqiinime inter-task data misspeculations
by synchronizing on frequent dependences (section 6.2napleéments a non-blocking scheduler
as described in section 6.4. Therefore policies that wovkellon some other systems may not be
as useful on Polyflow because of the underlying architektachniques in play.

With these points in mind, this section tries to adapt sorak $alection policies in previous work
for Polyflow. Section 8.1.1 develops a policy based on thiglimis of Skipper and DMT systems.
Then section 8.1.2 develops a policy based on Multiscasdr galection policy, but this also
captures the insights from other systems such as Johnsofvd},aDu et. al [61], and the
Data-Dependence Count (DDC) heuristic of Bhowmik et al].[72

8.1.1 Closest Spawn Policy

The first comparison policy used tries to approximate thie $gawn policy used in Skipper [27]
and DMT [35] architectures. The Skipper architecture, upocountering a low-confidence
branch, spawns the closest control-independent pointadialv-confidence branch as a task that
runs on a separate hardware context. The DMT architectangrspthe fall-throughs of loop

79

120

B closest
& 100
]
(&)
Y
o 80
>
7}
g 60
o
S
3 40
(0]
o }
n
2 20-| : I—

_20 1
%, %0, 0. % C2, %5 8, 9,90, 00, 025,98, 50, b, %0, 2, %,
' 5930 0P Q0 S 0 %0, U 0 A
22 AN 27 5N 2 20 80 8, 7 O 0, 0, i
» © <L LS "'{90@0%?%

Figure 8.1: Performance of a speculative parallelizatigstesn that spawns the closest available
control-independent point.

branches and procedure calls as a separate task.

The policy implemented here subsumes the two policies meed above. It tries to spawns the
closest (immediate) postdominator as a separate task.ifftatures the closest postdominators
of low-confidence branches (Skipper policy). In additialil-throughs of procedures and loops are
the immediate postdominators of the loop branch and praeethll respectively. Therefore these
are also captured, thereby subsuming the DMT policy. This &ldition to the architectural
improvements in Polyflow over DMT architecture.

Figure 8.1 shows the performance of this policy on a 4-costesy when compared to that of a
single core of the system. The configuration is describeédtian 5.5.1. Note that the closest
postdominator policy performs much better than the repgoerformance for either the Skipper or
DMT architecture. Compared to Skipper, it captures a muatenget of task opportunities than
just the immediate postdominators of low-confidence brasckurther, the evaluation system is a
4-core speculative parallelization system, whereas #iestspawned in Skipper shared the fetch
and execution bandwidth of a single superscalar core. Cadga DMT policy, this policy
captures a much wider set of tasks that includes tasks timt awver hammocks and that spawn
within inner loops.

80

B deps 05 W deps 15 3 deps_25 mmm deps_35
== deps 10 B deps 20 1 deps 30

140

120 !
100 !
80 !
60 !
40 »

20 -

Percent Speedup over Superscalar

-20

Figure 8.2: Performance of a speculative parallelizatigstesn where task selection is an approx-
imation of the Multiscalar policy. The selection policy pés a maximum threshold on number
of data-dependences allowed to cross task boundary tonglienpotential tasks. The graph shows
performance for different thresholds.

8.1.2 Data-Dependence Count Policy

The next comparison policy used in this study tries to captiae insight behind Multiscalar

policy [68]. The policy starts with postdominator analygigyet potential spawner-spawnee pairs.
The spawnee pairs are control-independent of the spawi@spthereby eliminating task
squashes from control misspeculation (Control Flow HéigjisNext, tasks that are too large
(larger than 1K instructions on average) or too small (leas t10 instructions) are pruned out
(Task Size Heuristic). Finally, a limit is placed on the nienbf data-dependences that can cross
the task boundary. Tasks choices that cause too many da¢smdaknces to cross task boundary as
determined by a threshold are eliminated (Data Depenenadsdtie).

Figure 8.2 plots the performance of this selection polioyvarying thresholds on the crossing
data-dependences. Note that the dependence count usésipfofimation as opposed to just
counting using a static dependence graph. Therefore it ie exxurate in that it accounts only for
the data-dependences that are exercised at run-time.

There are several points to note here. There are some berchwigere imposing a strict

81

threshold (i.e. fewer dependences) is sometimes betterthaore relaxed threshold. For example,
for equake, allowing 30 or more inter-task dependencesadegrthe task selection. Similarly, in
twolf, moving beyond 15 dependences makes the performaacsewBut overall, it is profitable to
not restrict the count of inter-task data-dependences.

%0
80
70
60
50
40

30

Crossing Data Dependences

20

-50 0 50 100 150 200 250 300 350 400 450
Predicted benefit

Figure 8.3: Relationship between the number of crossirgrdapendences and the predicted benefit
of a task using the model of chapter 5 and for the benchmark gcc

There are several reasons why this heuristic doesn't wattkariPolyflow system. As mentioned
above, Polyflow tries to synchronize on frequent data-dageces, and also implements a
non-blocking scheduler. Therefore, the number of intek-#ata-dependences is not a good metric
of the benefit of a task. Rather, it is the minimum of the adidstiack on all such inter-task
data-dependences for a given task, as explained in secBol%en a single dependence can make
a task perform poorly if it has low slack. On the other handsk with a large number of
data-dependences crossing the task boundary might splidfigable if all the dependences have
ample slack.

Figure 8.3 plots the relationship between the number ofdaependences crossing the boundary
for each potential task in gcc and the average benefit of Spawvtinat task alone as predicted by
the model of chapter 5. The model was validated to be acc(figtee 5.12). The figure shows

that there is little correlation between the number of dtpendences and task benefit. In
particular, several tasks with few data-dependences pedaoite poorly. On the other hand, tasks

82

with a relatively large number of inter-task data-deperden(e.g. between 50 and 60) sometimes
perform reasonably well.

8.2 Task Selection in Polyflow

Task selection in Polyflow involves two stages. First the elad chapter 8 is used to place a
threshold on individual task behavior. The next stage ipotes containment relationship
between tasks to improve on the task selection.

8.2.1 Impact of Threshold

mmm Closest mmm thresh 00 =3 thresh_40
I DataDep Cnt mmm thresh 20 2 thresh 60

120

100

60
40

20

Percent Speedup over Superscalar

-20

Figure 8.4: Impact of placing a threshold on task benefit edipted by the model of section 5. Per-
formance is shown as speedup of a 4-core Polyflow system asiagke superscalar core. Closest
and Data-dependence Count (with count of 35) spawn pol&ieshown for comparison.

The first step in making a task selection involves placingdmitiance criterion on individual task
performance. This uses the predictions from the task bemefiiel to estimate individual task
behavior. Figure 8.4 shows the effect of placing a per-thsdshold on performance. The Closest
spawn policy of section 8.1.1 and the Data-dependence Qulioy of section 8.1.2 are shown for
comparison.

83

There are several points to note. Firstly, just placing aghold of 0 can lead to dramatically
improved performance, by pruning out task choices thatatkgperformance. Mcf and gzip
illustrate this case, where most of the tasks degrade peafoce and these are eliminated.
However, the impact of placing stricter thresholds can Epending on the utilization and
contention for thread resources. Benchmarks like twolf\artex have a large number of task
choices that contend for limited cores and therefore stritireshold work better in these
benchmarks. On the other hand, for cases like perlbmk, tamb 8iresholds leave few task choices
and leads to lower performance. A simple solution is to $elenedium threshold (e.g. 20 or 40)
which would work reasonably well for most benchmarks.

An interesting case is observed for art, where the closestigpolicy outperforms both
Data-dependence Count and threshold-based spawn politissis because of the minimum size
of 10 used in both these policies. This improves performdoiceverall except for art. Art spends
a lot of its time in a very small but long-running loop whicleates a difficult choice for the
system. It can either spawn very small tasks for each irowg-iteration, or not spawn at all since
the loop fall-through is quite distant. The minimum taslesif 10 causes this loop to become
Almdahl’'s sequentializing bottleneck in threshold-bapeticy. Such loops could perhaps be
tackled with transformations like unrolling or strip-migj.

8.2.2 Nesting Analysis for In-order Task Spawning

S

Outer Loop
—_ Parallelism

Inner Loop
Parallelism

Figure 8.5: An example of nested loop. Polyflow has to deciglsvéen exploiting inner loop
parallelism and parallelism in the outer loop.

The above policies as well as the task selection policiesdstispeculative parallelization systems

84

mm thresh_20 mm thresh_20.nest

== thresh 00.nest mm thresh 40.nest
140
§ ,,
B D20 |l -
72 OO | | BSOS
S
S Q00 [l .
[0 N Y | | ||
¢ 8OpF . A .
o
e S ——, I-"ma
3 BO | g J | (R | . .
[¢D]
q) ,,
o
O 40l | | e | R A -
=R | | O | | | | | | | |
8
= 20 MUl B | (| |EEEEE | (R SRS UM
[VAR SO | BN | (B B BN (NS BE N | S
0

Figure 8.6: Performance impact of incorporating nestigtienships between tasks along with a
threshold on individual tasks.

consider task behavior in isolation. However, most spdivelgparallelization systems spawn tasks
in-order which means that once a task has spawned a lateatbfie spawn opportunities that lie
between these two tasks will be ignored (unless the latkrisasquashed for some reason). This
restriction is particularly important for selected tadhkattare nested within other selected tasks, or
overlap partially with other tasks. Such tasks are unlikelipe spawned even though they were
selected. But often nested tasks might perform better thatesk that encloses them. For
example, for nested loops, spawning within the inner looghtbe better than spawning in the
outer loop. This might be influenced by a number of factortuiiog data-dependences. In other
cases, however, the enclosing task might be better. Thisspiportant to spawn at the correct
nesting level. Figure 8.5 illustrates the choice facingyPalv for the case of a nested loop.

In Polyflow this problem is approached by constructing ainggiraph of all potential tasks that
pass an individual benefit threshold. This is a generatinadf the loop graph construct [62]. It is a
directed graph. Each node in the graph represents a pdtxska Edges are directed and represent
containment relationship. Thus, if a task B is contained task A such that there is no other task
that completely contains B and is contained in A, then theeniedge from A to B. The task B
might itself contain other smaller tasks, so there mightrbedge from B to other tasks.

At each node, information is stored about the task beingesgmted. The information stored is the

85

B Closest mEm Thresh-20
== Data-Dep-Cnt mm Thresh-20.nest

140

Percent Speedup over Superscalar

Figure 8.7: A summary of performance achieved by differask tselection policies.

count of the task for the containment represented as wedtleaaverage benefit of the task. Note
that a task B might not be contained within another task A laofats occurrences, therefore only
the contained instances of B are tracked for the pathBA This graph can be used to find cases
where an overall better task is nested inside an inferioicehthe metric is contained count times
average improvement per instance). All successors arédsosad, not just the immediate
successor. Therefore, the graph is traversed all the wan tlmeaf nodes. If a superior nested
task is found, the inferior outer spawn choice(s) can beietited.

The policy implemented here also tries to incorporate tfecebf limited cores. Sometimes a
nested choice can be more profitable but might need to spawy mare instances. In such a case,
the outer task might be better because it uses cores mooiusly. The solution used here is to
disable the outer task if an inner task delivers higher parémce without requiring more than
twice the number of cores.

Figure 8.6 shows the result of incorporating nesting amaipso task selection. This can lead to
significant improvement in performance for several benakmarhe notable gainers are crafty,
gcc, twolf, and vpr.route. The default behavior, withoustirey analysis, is to spawn the first
spawn choice that becomes available. This gives preferienmater tasks over the tasks that they
enclose. Nesting analysis can disable such enclosing wa#ds better choices exist inside. For the

86

Left Bar:Superscalar Right Bar:Spec Pararallelization

100

e}
o

[e)]
o

N
o

N
o

Percent of Critical Path Edge Latency

i

D . o U O O G Oy O . U D Oy O S, G by O %
0)% B, 0 T s g %, 0 0 TH %, %‘@, %, %, O %, %o %
mmmm Fetch-BW mmmm [D-Miss © C— Window-Stall ¥
mmmm |Cache-Miss mmmmm Br-Mispred —= Execute mmmm Commit-BW

Figure 8.8: Critical path edge latency breakdown for sugaes and speculatively parallel execu-
tions.

above-mentioned benchmarks, there are several nestielg amprising procedure calls, loop
and hammock branches. Spawning at the right nesting lettetisfore important to performance.
Figure 8.7 deconstructs the gains achieved by the Polyflskvdelection policy. Overall it
represents an average of 12% improvement in performanceatmy®dultiscalar heuristic, which
comes from having a better model and from nesting analysie.riesting analysis itself is enabled
by the accurate model of chapter 5, since it needs to compareshavior of different potential
tasks.

8.3 Understanding Performance

Section 8.2 shows impressive performance for Polyflow tatdction policy. This section tries to
analyze the source of those performance gains. Figure Bvssime breakdown of critical path
latency for a set of benchmarks, for superscalar execuomedl as for Polyflow execution. The
Polyflow selection policy attacks a variety of applicatia@rformance bottlenecks, and thus its
gains come from a wide range of sources:

e Fetch Benefit Limited fetch (and execution) bandwidth in a single threadt restricts the
peak fetch rate, even though additional parallelism existise region. This corresponds to
the traditional notion of “parallelism”, that is, indepemd instructions that could not be
fetched/executed earlier due to insufficient bandwidtrav8png allows additional fetch
units to be used, allowing for a higher peak fetch rate. Bpgi and vortex. Corresponds to
“Fetch-BW” bar.

87

¢ Instruction Cache Benefit: Instruction cache misses stall the frontend and delay tich fe
of future independent instructions even if they are alrgaegent in the cache. Spawning
allows multiple units to fetch instructions independentiysses in one thread need not stall
fetch in another unit. E.g. gcc and vortex. Correspondsdacte-Miss” bar in the graph.

e Branch Misprediction Benefit: Mispredicted branches delays fetch of all future
instructions, even those that are control-independertieobtanch. Spawning in
control-independent regions of the program allows othexatis to keep making progress,
even when one thread gets stuck on a mispredicted branchcri&fty, twolf, vpr.place and
vpr.route. Corresponds to “Branch-Mispred” bar.

¢ Window Benefit: Long latency load misses and limited parallelism in curregion stall
the frontend due to a full reorder buffer or scheduler upice frees up. Spawning creates a
larger (distributed) window of instructions for exploijirparallelism further out, or for
getting to data misses sooner. Resource stalls in one wedtmat stall fetch in another unit
that has space in its buffers. E.g. equake and swim. This € a combination of the
"Window-Stall”, "LD-Miss” and "Execute” bars.

Note that some of the bars might actually increase ratherlieaome smaller. For example, in
swim, the “Fetch-BW” contribution to critical path beconlagyer in Polyflow execution. The
original critical path was dominated by load-misses andiimelow stalls induced by these misses.
Polyflow was successfully able to remove a large number sktineisses and stalls from the
critical path. The next longest path became the new cripagh and comprised of many fetch
edges in this case. This indicates that there is even moafigdeasm in Swim which the current
architecture was unable to exploit due to limited cores aowhfthe restriction of spawning tasks
in-order. On the other hand, increases in contribution o&titite” component (e.g. Vortex)
implies that the execution is starting to approach datafleighit and that limited unexploited
parallelism might exist on this architecture.

88

PART I

ENHANCING PARALLELISM
THROUGH BOTTLENECK
REMOVAL

89

CHAPTER 9

APPLICATION BOTTLENECKS TO
PARALLELIZATION

This chapter addresses the challenge of performance delguyg parallelization process. For
some applications, implicit parallelization approacheskmwvell “out of the box” and sufficient
performance is attained. But for many applications, thé-6us effort leads to low improvements
and a feedback mechanism is needed to help iteratively wepte application until sufficient
performance is attained.

A major challenge in parallelization of applications corfresn inter-thread or inter-task
data-dependences that pose bottlenecks to parallel perfme often in unforeseen (and usually
unintended) ways. Parallelization, whether implicit opkeit, needs performance debugging to
weed out such bottlenecks. However, such performance detmugequires time and effort. A lack
of tools to aid in this step makes parallelizing single-#itled applications a very time-consuming
and ad-hoc process.

This chapter develops a tool to analyze single-threadeticagipns for parallelism. The tool is
called “SoftwareParallelization BdtleneckAnalyzer” or SPARTAN. SPARTAN identifies
data-dependences in applications that are likely to caimsprarallelization, and therefore pose
bottlenecks to parallel performance. The tool also quastitie estimated performance benefit of
alleviating a particular bottleneck (or of specified conations).

9.1 Background

SPARTAN is built around two key concepts: first, it does a aejgmce height study to estimate the
potential of parallelizing an application(section 9.1dnd second it does a critical path
analysis [3] to identify the bottlenecks posed by data-ddpaces in parallelizing the application.

9.1.1 Abstract Dependence Height Analysis

An abstract dependence height study is a useful tool to gepper bound on the performance
potential of parallelizing the application. One such stugs carried out by Lam and Wilson [7],
and described in section 3.1. The SP-CD-MF configuratioheir istudy can be used to find the
dependence height of the program, which is the best anylgiazation of the program could
achieve. This is because control-independent flows in thidysepresent a superset of the tasks
that could be simultaneously executing instructions. @natiner hand, the above study is hugely

90

optimistic in many ways, including allowing for an infinitetth bandwidth to each flow, and the
ability to buffer an infinite number of instructions in eactvil This is something that cannot be
achieved by a real task unit.

SPARTAN's dependence height study, on the other hand, iegposnstraints on individual flows
corresponding to the constraints imposed on a real tasKlimited fetch bandwidth, buffer
constraints, etc). But it still allows for infinitely many fls to be executing simultaneously. This is
because limiting the number of flows would require making pimneal resource allocation
decision to calculate the upside potential, which is a hantlpm. In addition, the study doesn't
impose any cost to flow creation or inter-flow data commuiacatThus, it obtains the benefits of
spawning each flow without incurring the costs seen in a ggem. Again, finding the upside
potential that includes these costs would require makingptimal flow selection to balance the
benefits and costs of flow creation, which is a hard probleme ldiso that Lam and Wilson’s
study did not enforce reassociatable data-dependenckssulose due to loop index variables.
SPARTAN does enforce these dependences and identifies thbottkenecks if they have an
impact on performance.

In spite of the idealizations that remain, this version ef dependence height study is a more
useful tool to understand the amount and nature of parsttein the application, and the
bottlenecks to further parallel performance. The nextisestdescribe how to identify these
bottlenecks. Note that the rest of this chapter will notediitiate between a task and a flow for
easier reading.

9.1.2 Critical Path Analysis

In order to identify the bottlenecks to parallelism, SPARTAoes a critical path analysis for the
dependence height study described above. A dependendrigrmstructed for the dependence
height study. This graph is based upon Fields’ dependeragghgif superscalar execution [3]
described in section 3.2.1. Section 4.3.2 described hotnbdel can be extended to capture
control-independent task spawns required for the abowly.sNo extra costs are associated with
task-related edges. The longest path from the first fetcle nothe dependence graph to the last
commit node provides the critical path that determinesgoarnce after parallelization.
Dependence edges on the critical path can provide usefrhiattion about the bottlenecks to
parallel performance.

9.2 Design of SPARTAN

SPARTAN is a software tool built on top of a trace generatoanklyzes a run of a single-threaded
application and lists data-dependences that will pos@paence bottlenecks when the application
is parallelized. Internally the tool performs a dependdmgight analysis on the application trace.
This allows it to identify limiting data-dependences indegently for any particular task
partitioning of the application. Next, SPARTAN breaks datlie program critical path to isolate

91

Single—threaded| .| Trace | »| Dependence |,| Criticality
Application Generation Height Study Analysis

Figure 9.1: Bottleneck identification steps.

top bottleneck data-dependences in the program. SPARTANIsa estimate the improvement in
parallel performance potential from removing a particllaitieneck dependence (or a
combination of dependences).

9.2.1 Functionality

SPARTAN works in two modes: bottleneck identification moalegl bottleneck quantification
mode. In the identification mode, the tool takes in a singltedaded application, and outputs a list
of data-dependences that it believes will pose importatitdmecks to parallel performance,
ranked by their relative importance. In the bottleneck djfiaation mode, it takes in, along with
the single-threaded application, a data-dependence (ikelgtidentified in the identification
phase) or a list of such dependences, and outputs the esdpegisovement in parallel
performance potential when the bottleneck posed by thardignce is removed. Thus repeated
gueries to SPARTAN can help identify the order in which lestdcks should be removed.

9.2.2 Bottleneck Identification

SPARTAN is a software tool built on top of a trace generatigufe 9.1 illustrates the steps
involved in bottleneck identification process. The traceagation step outputs the trace for the
single-threaded application running on a given input. Bké® can use a trace generator similar to
Intel's PIN [79]. This trace is passed on to the dependenighhanalysis step, which assigns a
timestamp to each instruction for its fetch (F), executiBhgnd commit (C), following the
techniques of trace-based simulation of Wall [6] and madgethe constraints of the dependence
height study described in section 9.1.1. As describedezattie dependence height study assigns
timestamps to each instruction to estimate the potentiddebest-case parallelization of the
application in its current form. The next steps analyze kbwf trace at a time for good
performance.

These timestamps can then be used in the construction ofdlgean dependence graph for the
dependence height study. This construction is done usigahcepts of section 3.2. Once the
dependence graph has been constructed, SPARTAN compatemtest path from thstart node

of the graph to itend node This path represents tipgogram critical path Of particular interest
are the data-dependences on the critical path that crosbflondaries. These represent a superset
of dependences that could pose a bottleneck to parallednpesihce, since the flows represent a
superset of tasks that could be created. The tool recordsctil dependences. In the end,

92

Bottlenecks to

Remove
Single-threaded| .| Trace .| Dependence
Application Generation Height Study

Figure 9.2: Bottleneck quantification steps.

SPARTAN outputs the list of such observed critical dataeshelences, sorted by the number of
times a particular dependence appears on the critical paihdh the trace.

Note that SPARTAN's data-dependence list is not tied to amjiqular selection of tasks to
parallelize the application. This makes it particularljted for refactoring a single-threaded
application for which an appropriate task partitioning @ ypet known. SPARTAN could be
modified to identify the bottleneck dependences for a spediifoice of tasks. The timestamp
assignment for a given task selection could be done usindgpendence graph concepts of
section 4.3.2. Note also that instruction criticality s is typically used to identify architectural
bottlenecks, such as cache ports, branch prediction, BSREAN is a novel use of the critical
path analysis to learn about the application structure ataldependences.

9.2.3 Bottleneck Quantification

The bottleneck quantification mode allows SPARTAN to esteniaprovement in parallel
performance potential from removing a particular botttdndependence (or a combination of
dependences). The steps involved are illustrated in fig@eTe trace generation step proceeds
as before. In this mode, however, the programmer providiss$ aflthe data-dependences that are

to be ignored. This information is incorporated in the defgerte height analysis, where the
specified dependence constraints are not enforced. Thlagispnsumers of these dependences are
allowed to execute even before the specified producers lwaapleted execution (other
dependences still need to be satisfied for the consumers)teBhlt of this study gives the upside
potential of parallelization when the specified bottlenisciemoved.

9.3 Bottleneck Analysis for Benchmarks

This section describes the results of running SPARTAN ort afs&ingle-threaded benchmark
applications from the SPEC2000 suite, and gives some itssajiout the type of bottlenecks
observed. For the purpose of this study, the following SPiE€ger applications were analyzed:
vpr.place, twolf, parser and gzip. They are all singledlded C applications. Table 9.1 gives brief
descriptions. These benchmarks are run on the Minnesataeddnput sets [45] for a
representative interval of 100M instructions. The nextisagresents the output from running

93

| Benchmark | Description \

175.vpr FPGA Circuit Placement and Routirg
300.twolf Place and Route Simulator
197.parser Word Processing

164.gzip Compression

Table 9.1: SPEC Benchmarks chosen

int my_irand(int imax) {
[+ Create randominteger between 0 and i max */
int ival;
current_random = current_random=* |A + |IC,
ival current_random & (IM-1); [+ Modul us */
ival (int)((float)ival * (float)(imax+0.999) /
(float)IM);

return (ival);

}

Figure 9.3: VPR Place Random number generator with bottledependence highlighted.

SPARTAN on these applications, along with descriptions @k snippets to illustrate the nature
of bottlenecks.

9.3.1 Bottlenecks in VPR Place

| PC—PC From | To | Count |

2688—263c | my.irand | my_irand | 32611
9604—9604 | try_swap | try_swap | 26129
2710—-263c | my_frand | my_irand | 25048
9604—967c | try_swap | try_swap | 13360
26bc—92cc | my.irand | try_swap | 12729
d39c—95fc | netcost | try_swap | 11679
92cc—9330 | try_swap | try_swap | 11272
2688—26d4 | my_irand | my_frand | 10775

Table 9.2: Bottleneck dependences in VPR Place sorted bgadhet of the number of times a
particular dependence appeared on the critical path.

Table 9.2 lists the output of running SPARTAN on VPR Placee Tdol identifies the address of
the producer and consumer instructions of the critical ddpeces. The tool annotates this
information with the function names of these instructionkis information can also be used to
trace back the lines in the code causing this dependence.

For VPR Place, quite surprisingly, a major hindrance tolpgization comes from the dependence
between successive calls to random number generatordascty.irand andmy.frand , the
integer and floating point versions. These account for 3etap 8 bottlenecks. Figure 9.3
illustrates the code that causes this problem. The var@ablent _random is first read, and

94

new_dbox(antrmptr, costptr)

int

{

* costptr;

for (termptr=atnrmptr;
termptr;
termptr=termptr->nextterm) {

for (netptr=dimptr->netptr;

netptr;

netptr=netptr->nterm) {
oldx = netptr->xpos;

if (netptr->flag ==
} else {
}

1)

xcostptr += ABS(newx- new_rean) -
ABS(ol dx-ol d_rrean) ;

}
}

return;

}

Figure 9.4:new_dbox function in Twolf highlighting the bottleneck integer rexdion.

then written in each call tmy.irand (and also irmy_frand). This forces a sequentialization of
successive executions of the function, which becomes kehetk to parallel performance.

9.3.2 Bottlenecks in Twolf

| PC—PC | From | To | Count |
1cfad—1cf54 | Yacmrandom| Yacmrandom| 70238
aaf8— abOc | new.dbox new.dbox 28795
9dc8— 9ddc | new.dboxa new.dbox.a 23161
1cfad—1cfc4 | Yacmrandom| Yacmrandom| 8031
abl0— aaf8 | new.dbox new.dbox 7687
9de0— 9dc8 | new.dboxa new.dbox.a 5908

Table 9.3: Bottleneck dependences in Twolf sorted by thatcolithe number of times a particular
dependence appeared on the critical path.

The story in Twolf is quite similar to that of VPR Place. TaBl8 lists the top bottlenecks
identified by SPARTAN. As with VPR Place, random number gatien is a major bottleneck to
parallelization. In addition, this study investigated bwtleneck in the functionsew_dbox and
new_dbox _a. These functions are nearly identical, as is the bottlenetich comes from an

integer reduction illustrated in figure 9.4. The variatdestptr

is an integer location that is read

and written in each iteration of a doubly nested loop. Th&vents parallelization of both the inner
and the outer loop. This variable can easily be reassocigitbdarge improvements in the

95

potential.

9.3.3 Bottlenecks in Parser

| From | To | Count |
xfree xfree 462577
xfree xfree 21548
build_clause build_clause 7776
free_disjuncts free_disjuncts 5652
right_table search| right.tablesearch| 4322
powerprune powerprune 4223

Table 9.4: Bottleneck dependences in Parser sorted by thré obthe number of times a particular
dependence appeared on the critical path.

Parser highlights another type of bottleneck dependemisingfrom the allocation and freeing up

of memory in programs. This benchmark has its own memory gemant functionsxalloc

andxfree , and the top two dependences (where the third bottleneakrysdistant) come from

the dependence within the functi@iree . Again, there is a dependence between successive calls
to xfree which prevents any meaningful parallelization of the aggilon. But the dependence
could be easily removed by calling parallelizable allocaiexplored in literature.

9.3.4 Bottlenecks in Gzip

| PC—PC | From | To | Count |
b3f8—b400 | updcrc updcrc 766811
b3ec—b3f4 | updcrc updcrc 766811
b5d8—b5e0 | flushwindow | flush.window | 425562
b5cc—b5d4 | flush.window | flushwindow | 425553
10ec—~110c | deflate deflate 216305
10fc—1110 | deflate deflate 215441
11101118 | deflate deflate 215305
110c—-10c8 | deflate deflate 209197

Table 9.5: Bottleneck dependences in Gzip sorted by thetaguhe number of times a particular
dependence appeared on the critical path.

Finally, a different class of dependences that limit pafiaiation was found in Gzip, listed in

table 9.5. These dependences have more to do with the cHdive algorithm which is inherently
sequential in nature, and less with the choice of libranctiams or implementation details. This is
illustrated through thepdcrc function in figure 9.5. Therc variable introduces
sequentialization between successive caliggdcrc and parallelizing this requires domain
expertise and knowledge of the algorithm used.

96

/+* Run a set of bytes through the crc
shift register. =*/
ulg updcrc(s, n) |
[+ tenporary variable */
register ulg c;
/* shift reg contents */
static ulg crc = (ulg)OxffffffffL;
if (s == NULL) {
c = OxffffffffL;
} else {
c = crc;
if (n) do {
¢ = crc_32_tab[((int)c " (*S++)) & Oxff] ~
(c >> 8);
} while (--n);

crc = c;
return ¢ = OXxffffffffL;
}

Figure 9.5:updcrc function in Gzip highlighting the sequential nature of aitfom.

9.3.5 Discussion

The observed bottleneck dependences can broadly be @ddsiid two categories:

Essential dependenceshese arise from the choice of high-level algorithm usedhat it is
inherently sequential in nature, such as the case of Gzipll®&ation would require domain
expertise. SPARTAN can be used as an aid to figure out theithiger to redesign.

Accidental dependence$hese are related to the specific way in which an otherwisallphzable
task was coded up, therefore constraining parallelizatodtamples are random number generation
in VPR and Twolf, memory allocation in parser, etc.

The latter case is the more interesting one, and is surghjsfrequent in the above case studies.
The fact that this is observed in SPEC Integer benchmar&satie traditionally believed to not be
amenable to parallelization, makes it even more impres&meouragingly, the trend of accidental
dependences from within library functions shows a clean gatwvard, in the form of parallel
library versions that can be widely used to ease the taskegbainallel programmer.

9.4 Quantifying Bottlenecks and Validation

This section does a case study of the VPR Place applicatiohyalidates that the predictions of
SPARTAN are relevant for an actual parallelization of thplegation.

9.4.1 Quantifying Bottlenecks in VPR

This study runs SPARTAN in the bottleneck quantification eéar VPR and gets the results
shown in table 9.6. The potential is shown as times speedupvgt the performance (measured

97

in instructions per cycle or IPC) on a single aggressive devaut-of-order superscalar processor.
There is almost a 20-fold improvement in the performancemq@l, from 8.3X to 154.2X over
superscalar performance. This indicates that removirsgdipendence perhaps through
parallelizable or parallelized random-number generatimnd lead to huge rewards.

Upside potential Upside potential
in original form | with bottleneck removed
\ 8.3X \ 154.2X \

Table 9.6: Impact of removing the bottleneck from randormhbar generation on upside potential
of parallelization in VPR Place.

9.4.2 Potential for Parallel Performance on Polyflow

The next step is to test the applicability of results from BPAN on an actual parallelized version
of VPR Place. This step is carried out by implicitly paraielg VPR Place on a Polyflow system.
Since Polyflow needs to buffer processor state until it cacdmemitted to the system, this limits
the scope of parallelization. In particular, the systermcaicreate arbitrarily large tasks, since
these would exceed the allowed buffer. The system thereftes tasks that have been profiled to
have an average length of at the most 1K instructions.

Upside potential Upside potential
in original form | with bottleneck removed
\ 7.0X \ 14.9X \

Table 9.7: On the evaluation system, impact of removing titddneck from random-number gen-
eration on potential of parallelization .

This reduces the upside potential of application parabéibn. Another dependence height study
is carried out to estimate the new upside potential of paliadition under this constraint

(table 9.7). The upside potential is found to drop from 8.8X X when task size is restricted to
capture the above described constraint. In addition, tipaainof removing the bottleneck from
random number generation is also considerably lower, frionost 20-folds down to 2-folds
improvement. This points to the fact that removing the batck especially benefits large tasks
where earlier they were of little use (due to this dependenidas result also indicates a
bottleneck from the architecture (buffer size) as was aleatified previously. Nevertheless a 2x
improvement in performance potential is still worth purguand the next section converts this
potential into useful performance.

98

9.4.3 Speculative Parallelization of VPR

Having obtained an idea of the upside potential of impliaitgilelization from SPARTAN from
removing the bottleneck, this section carries out an agtakdllelization on the evaluation
multi-core system. First the application is partitionetbitasks as described in section 8.2. The
output of the task selection phase specifies how to breakpihlecation up into tasks. The
Polyflow system then internally parallelizes the applmathccording to that task selection, while
giving the appearance of sequential execution externghis study doesn’t constrain the number
of cores available in the system to allow a maximal explmitabf parallelism. Note that other
costs and constraints are still imposed as described intehép

The following improvements in performance are achievecheretvaluation Polyflow system:

Performance Performance
Improvement Improvement
in original form | with bottleneck removed
\ 2.3X \ 4.5X \

Table 9.8: Measured performance on an implicit parallébrasystem, before and after removing
the bottleneck in VPR Place.

Note that when the bottleneck is removed, a new task seteopitimized for the new version of
the application is generated. The achieved performandagrigisantly lower than the predicted
upside potential. This is because the experimental systeard significant cost from inter-task
data synchronization and other task-related actions. fesless, the achieved gains are quite
encouraging, and almost a two-folds increase in parallébpaance is observed from removing
the bottleneck. This improvement is quite similar to thengairedicted by SPARTAN.

This improvement was further explored by identifying thp lmttleneck dependences for implicit
parallelization of VPR in its original form. The top bottleck dependence for this parallelization
was found to be same as identified by SPARTAN through its atisttependence height analysis,
and listed in table 9.2. In fact, the top dependence listeimap quite well. This is indicative of
two things. Firstly, the Polyflow task selection phase gatesra selection that is optimized for the
underlying architecture, and thus gets quite close to tpéagtion bottlenecks. Second,
SPARTAN through an abstract dependence height analysided@amake quite meaningful and
useful predictions about the behavior of the applicatiormvparallelized on a real system.

99

CHAPTER 10

ARCHITECTURAL BOTTLENECKS
TO PARALLELIZATION

Limit studies such as the dependence height study of Lan] iadicate high upside
performance potential for speculative parallelizationptactice, however, most speculative
parallelization systems achieve much lower performanae the upside potential predicted by
such limit studies. A major reason for this is that upsideeptiil studies capture all possible
benefits of speculative parallelization without imposingny of the costs and constraints to
parallelization that arise in real systems. This chaptésite major architectural constraints and
costs, and tries to quantify the impact of each of those facin the performance achieved.

10.1 An Upside Potential Study

This section tries to quantify the upside potential of sgegtore parallelization. The study is
carried out for the application in its original form withcamy compiler transformations for
parallelization. There can be several transformationk asdhose described in section 7.4 that
improve the parallelizability of an application. Howeviacorporating the impact of parallelizing
transformations in the upside potential study is a comjartally intractable problem because it
will require exploring, for each region of the applicati@, possible combinations of
transformations applicable. This study therefore lim#elf to the application in its current form.
Chapter 9 tries to relax this restriction to enhance aptilingoarallelizability.

10.1.1 Methodology

This study builds upon the dependence height study of Laml §f] that was previously described
in section 3.1. Lam’s study was interested in the upsidentiaieof parallelization based on just
the application behavior and without considering the inhp&any architectural constraints. The
objective of the current study is to incorporate consteaihat are likely to be encountered in a
speculative parallelization architecture. But at the stime, the study idealizes some of the costs
and resource constraints imposed by current architectodesve room for better mechanisms and
resource allocation policies in future architectures.

The high-level methodology is similar to Wall's trace-aysaé technique [6]. The study analyzes
an application trace, and tries to compute the earliest éinvéhich the trace could have completed,
based on the application and architectural constraintsetedd Table 10.1 summarizes the details

100

| Constraint | Details \
True data-dependences, control-dependences that caré-be
dicted correctly

Application Dependences

Architectural DependencesAll constraints enforced within superscalar executiorprider
Within a Task fetch and commit, buffer constraints

No extra penalty for inter-task data-dependences, taskrspa
Inter-Task Constraints or task reconnect actions. No limitations on number of simul

taneous tasks
EE, EC, EF edges have same latency as in superscalar eéxecu-

tion. FF edge latency within task models limited fetch band-
width. CC edges have zero latency. Inter-task spawn FF edges
have zero latency.

Latency on Edges

Table 10.1: Summary of Upside Potential Study

of the upside potential study.

The study starts with the SP-CD-MF configuration in Lam’sigturhis is a very aggressive
configuration that enforces only the control-dependentatscannot be speculated upon
successfully. In addition, it allows for multiple flows, so mstruction can be executed as soon as
its control-dependences (that were not correctly spestilapon) and its incoming
data-dependences are resolved.

This study will use the term task instead of flow to avoid angfasion. For the current study, task
spawn points are obtained through a compiler postdomirzatalysis. Spawner points are the
ending points of basic blocks, which are usually branchesogimer control-transfer instructions. In
addition, for loops consisting of a single basic block, &ddal spawn points are included. These
points are chosen so as to avoid making the dependence aiomuariables cross task boundary.
The spawnee point for any spawner is the nearest postdaniofthe spawner point. Since the
other postdominators of the spawner task are also postéoninof the spawned task, these would
be spawned at some point in the future by a later task. Notdabklks can be spawned in a nested
manner, because new tasks might become available as cdeprmhdences are resolved.

10.1.2 Architectural Constraints Modeled

In addition to application control and data dependencés sthdy models other dependences to
capture architectural constraints. This is best visudlinderms of a dependence graph. Lam’s
study had a single node for each instruction, represerntsngxecution. This study models the
Fetch, Execute, and Commit of each instruction as sepaoakesnsimilar to Fields’ dependence
graph model [3]. This is done by keeping separate timestdangsach instructions’s Fetch,
Execute and Commit. Thus application data-dependencesadeled as EE edges and
control-dependences as EF edges.

Other constraints in a speculative parallelization (SEhisecture are also modeled. Since SP
architectures preserve sequential semantics, instnscéice committed in-order, which is captured
through CC edges between successive instructions. Larhastsaciated a unit latency with each

101

edge. This study associates the execution latency impgstahbtion units in a typical superscalar
processor on EE, EF and EC edges. This study also models @ ki@ehrchy, and therefore,
instructions and loads that miss in the cache can suffega @elay.

The study simulates each task as executing on its own coegefidre, within a task, execution
respects superscalar dependences such as fetching m-binéee can be instruction cache misses,
which can lead to large latency on an FF edge, otherwise émtigpupon the fetch width of the
processor. Buffer stalls are also modeled within a taskutjindCF edges.

10.1.3 Idealizations in the Study

Some of the constraints in a real SP system are not modelaistudy. The study idealizes
commit bandwidth available to the system, therefore tremeio latency on in-order CC edges.
This is done to allow for increases in commit bandwidth, erdther ways in which instructions
might be committed such as bulk commit, etc.

Data-dependences that cross tasks don't suffer any pesthky than the execution unit latency.
Similarly, the task spawn edge doesn't incur any delay. Ehitone to allow for advances in
architectural mechanism that reduce cost to task spawonactind inter-task dependence
handling. In addition, if there is a cost associated witk-tadated actions, this creates a trade-off
in task spawning, and therefore an optimal task selectidioypis needed to accurately estimate
the upside potential of speculative parallelization. Dew&ig an optimal task selection policy is an
NP-hard problem, because tasks interact with each othgthanefore an exponential number of
task selections have to be tried out to find the optimal onerdfore, this study removes the costs
associated with spawning a task, and all possible taskrmgptoe spawned as separate “tasks”. The
resulting potential therefore is quite optimistic, butsitein upper bound for the stated assumptions
about the architecture.

In addition, the study allows for infinite number of tasks. gfarsystem will have only a finite
number of task resources, such as cores. However, modblmgdnstraint will again require
optimal task selection to make the best use of limited ressiwhich is again NP-hard. Therefore
this constraint is removed. Finally, this study allows takbe spawned in a nested manner,
whereas in most SP research prototypes, tasks are spawoggkinand nesting is not allowed.

10.1.4 Results

Table 10.2 lists the parameters for an individual core usethis study. As identified above, the
objective of this study is to impose the architectural caists that are likely to exist in a SP
architecture, without overly restricting the system. Hfiere, in-order fetch with limited peak

fetch bandwidth is enforced within a core. Cache and branetligtor sizes, as well as execution
latencies are chosen to be representative of contempoiargpgrocessors. However, a large buffer
space is modeled to allow for advancements such as earbnmatibn of resources which
effectively increase the available buffer space for spdud instructions.

102

Parameter

Value

Fetch Width

4 instrs/cycle (per task)

Branch Predictor

8K-entry Combined, 8K entry gshare, 8K entry bimodal,
entry selector, 13 bits of history

Misprediction Penalty

10 cycles

Functional Units

4 identical general purpose units per task

miss

L1 I-Cache 32Kbytes, 4-way set assoc., 128 byte lines, 10 cycle miss
L1 D-Cache 32Kbytes, 4-way set assoc., 64 byte lines, 10 cycle miss
L2 Cache 512Kbytes, 8-way set assoc., 128 byte lines, 200 cycle
penalty
Reorder Buffer 64K entries
Scheduler 64K entries
Table 10.2: Parameters Used for the Study
Benchmark | Superscalar| Speculative SP without
Par. (SP) | single BB loop

bzip2 1.45 15.86 13.89

crafty 2.39 24.39 24.39

gap 1.17 4.20 4.00

gcc 1.80 112.01 112.01

gzip 2.25 77.78 9.15

mcf 1.85 160.44 60.34

parser 1.17 6.32 6.29

perlbmk 1.66 2.04 2.04

twolf 1.47 44.26 44.26

vortex 2.78 477.55 477.55

vpr.place 1.90 16.05 16.05

vpr.route 1.78 103.60 103.60

ammp 1.91 24.15 23.54

applu 3.67 2405.17 2140.04

apsi 3.63 1671.59 275.30

art 1.64 584.48 9.88

equake 3.81 566.13 566.13

mgrid 3.77 3755.58 3755.30

swim 3.99 11572.73 4851.54

Table 10.3: IPC numbers for Upside Potential Study. Integet Floating Point benchmarks are

shown separately.

Figure 10.3 shows the performance potential of speculativallelization, as predicted by this
study. The results are depicted for a set of SPEC benchnanlighese are classified into two
categories: low parallelism benchmarks (figure 10.1) agt-parallelism benchmarks

(figure 10.2). The actual IPC numbers for an individual segalar core (with the same parameters
as table 10.2) and the speculative parallelization limétesented in table 10.3. Note that most of

the floating point benchmarks have large amounts of pasatiewhile most integer benchmarks

103

180

[mmm ss == SP.limit |

160

140

120

100

80

60

Instructions Per Cycle (IPC)

40

20

Gl Dy O D D Oy Oy b

o 2 o L e R B

/&/,00,0/*{9&%04%./
% (o)

@, O
0)% %

Figure 10.1: Benchmarks with low amounts of parallelism.

12000 —
[ss == SP.limit
10000
%)
o
2 8000
o
>
O
g 6000
%))
c
)
S 4000
B
£
2000 I
0 I BN |
%, %, % % % % A
ve) & <. (Y 7 7
(2 % o 7Y

Figure 10.2: Benchmarks with low amounts of parallelism.

Figure 10.3: Upside potential of speculative parallei@at
offer low upside potential.
Also note that spawn points corresponding to loops thatisbasjust a single basic block are

important. These are not captured by the basic-block lex&idominator analysis. For single

104

basic-block loops the spawn points obtained from that @bl jump out of the loop, and no
postdominator corresponds to loop iteration spawn, sorapapawn points are added (note that
these are also postdominators, just not postdominatorgntfat transfer instructions). Table 10.3
shows that these spawn points are important for severahbeags, especially for floating point
benchmarks.

One could take this process to the limit, and do a postdomiraatalysis at the instruction level
and spawn all tasks thus obtained. Each task in this caselwouiprise a single instruction. This
is what Lam et. al did in their study. However, this strategymlikely to succeed in a real SP
system because there are overheads associated with sgataisk, and so tasks comprising
single instructions will likely degrade performance. et real systems have limited cores, so
reasonably sized tasks that deliver large improvementsiifopmance will be preferred over tiny
tasks. Therefore this study restricts itself to basic blsizkd tasks at minimum.

The exception is made for loop cases, because in several @sgrecially in Floating Point case),
these loops can run for a long time, and not parallelizingdbg can create an Almdahl’s
bottleneck. Further, for several Floating Point benchmgatthe single basic block that makes up
the loop body can be quite large (sometimes thousands ofiatistns) due to limited control flow.
This could be generalized by breaking very large basic sdacto tasks, but at least for these
benchmarks, no cases (outside loops) were found for thatisoe

10.2 Task Granularity and Parallelism

The study described in section 10.1 allowed a task to spavast@minator as a new task,
irrespective of how far (in terms of dynamic instructionis¢ spawned point was from the spawner
point. The SP system modeled allowed for a very large buffexr large number of speculative
instructions could be buffered until they were ready to bammitted. Thus very large speculative
tasks could be supported by individual cores in that study.

However, real SP systems have limited speculative buffé@isiwalso constrains the maximum
allowed size of a task. Therefore such systems can't affogppawn tasks into arbitrarily distant
regions of the program. Another challenge to supportingdaasks is that the current techniques
to detect data misspeculations and for inter-task data agmuation don't scale to large task sizes
and large number of tasks.

Therefore, most SP systems are quite restrictive in theafitassks allowed. This restriction also
impacts the upside potential of speculative parallelizatiThis study investigates the impact of
allowed task size on the upside potential of speculativalf@ization. The setup is the same as
before, with extremely large buffers (64K scheduler anddeobuffer), no inter-task data
synchronization (true dataflow limits), and nested OOO spagv The maximum allowed task
size is varied and performance is tracked as a function dibsiesize.

Task size is determined through offline profiling. Since ftilze sf individual instances of a task
might vary due to effects like control flow, the offline prafilj step measures the average size for a

105

Instructions Per Cycle (IPC)

Instructions Per Cycle (IPC)

180
160 |
140 |
120 |
100 |
80 |
60 |
40 |
20 |

4000
3500 |
3000 |
2500 |
2000 |
1500 |
1000 |
500 |

) S, L
Y, @)
%, %, % %,

Figure 10.5: Benchmarks with large parallelism. Note thdhshas a potential of
6492 at task size of 64K.

Figure 10.6: Impact of allowed task size on performancergiaieof speculative parallelization.

106

30

B Superscalar 3 task.1K

25

20

15

10

Instructions Per Cycle (IPC)

Figure 10.7: Potential of speculative parallelizationaaktsize of 1K instructions, which represents
a potential improvement of about 4x over a single superscaila.

task as well as the maximum size. The size is defined as ttendés{in terms of dynamic
committed instructions) between the spawner and the spams&uctions.

10.2.1 Results and Analysis

Figure 10.6 shows the performance potential as task siziesdy all the way from 1K instructions
to 64K instructions. Note that these numbers represent thémum allowed average task size
allowed. In addition, a limit is placed on the maximum sizeany dynamic instance of that task,
which is 4 times the maximum average. Thus, if any dynamiaimee of a task was profiled to be
more than 4 times the allowed size limit, the task would bexpduout even though its average
length was within the allowed size.

There are several interesting points to note. First, whideotential of speculative parallelization
is huge, it is a function of the allowed task size. For mostthemarks, constraining tasks to be
small severely limits the performance potential. Seveealdhmarks have a great amount of
parallelism at large granularities, and limiting the tagleto be small prevents that parallelism
from being exploited for performance. For most SP researctotypes, the maximum allowed
task size is around 1K instructions. Figure 10.7 shows thenpial of SP at that task granularity,
which is orders of magnitudes lower than the potential withtbat constraint. Therefore, SP
systems should revisit this constraint to increase theegabie performance. Complexity-efficient
mechanisms to support large speculative tasks and to penfder-task data-dependence

107

management at larger granularity should be researched.

For some of the other applications (crafty, gap, parserplgare, etc), primarily integer
applications, on the other hand, most of the potential issmall granularity. Current SP systems,
therefore, are well-suited for these kind of applicatiddswever, these applications have meager
amounts of parallelism and cannot scale to large numberrescdo be truly effective, therefore,
SP systems must find a way of parallelizing applications Veithe amounts of parallelism.
Another interesting aspect of these results is that péissfiedoesn’t increase uniformly with
granularity. For several applications, there is a suddeyelacrease in parallelism once a certain
granularity is allowed. For example, applu, swim, mcf, andex all see a large increase in the
performance potential at task sizes of 64K. For swim, thisdase is in several orders of
magnitudes. For mgrid, there is a jump at granularity of 4ikeravhich there is a gradual increase
in parallelism. This burstiness of parallelism has to ddwlite application structure. The next
section gives an example for this effect.

10.2.2 Task Granularity in Swim

As figure 10.5 shows, the impact of allowed task granulastyrietty dramatic oswim At sizes
lower than 64K instructions, the benchmark has a very lovidgpgotential (around IPC 17).
However, at a size of 64K, there is a sudden jump in the IPOniateo around 6500, which
represents an increase of around 400X. This section debeysed into swim to understand the
reason for this behavior.

Swim spends most of its time in doubly nested loops in venylaity structured (and behaving)
functionscalcl, calc2andcalc3 Each of these functions contains a doubly nested loop where
inner loop goes around for 512 iterations for the input gebkcThe size of each inner loop
iteration is around 120 instructions. Therefore, eachrdat® iteration runs for around 62K
instructions. The outer loop also goes around for 512 itarat

In order to extract parallelism at the outer-loop grantyatherefore, the system needs to be able
to spawn the next outer loop iteration as a separate taskhvidharound 62K instructions away.
Therefore at task sizes below around 64K, only the inner lsggarallelized and leads to an IPC
potential of around 17.

However, as soon as a task size of 64K instructions is allpiwedables parallelization at multiple
loop nests (512 outer loop iterations, each with 512 innap iterations). This leads to an
explosion in the performance potential, which could keepuahriarger number of cores busy.
Note that the IPC potential is not as high as one would expectuse there are other serial
regions which pose an Almdahl’s bottleneck to parallel @enfance. In addition, inter-task loop
index variable dependences also limit parallel perforreaiicansformations like strip-mining and
unrolling could help reduce their overhead.

These results illustrate that applications can have pdisath at different granularities depending
upon their structure such as size of loop nests, and demeng@ion which loop nest can be
parallelized. Based upon the results of figure 10.5, it se¢batdenchmarks frequently have much

108

larger amounts of parallelism at outer loop nests compardaketinnermost loop. It is important to
be able to extract that parallelism for success of spegelgtarallelization.

10.3 Cost of Enforcing Inter-Task Data Dependences and Task
Penalties

\ Parameter \ Value \

Inter-task data dependenc¢eSynchronization policy
5 cycle communication penalty
Spawn Penalty 5 cycles
Reconnection Penalty 5 cycles

Table 10.4: Parameters Used for Task Spawning and Inteideta dependences.

The studies of sections 10.1 and 10.2 optimistically asstimatethere will be no cost to spawning a
task on a separate core. However, real speculative p&atleh systems incur a cost whenever a
task is spawned. Large costs come from enforcing data-depeps across tasks and from the
extra penalty associated with spawning and merging tadkis.sEction tries to estimate the impact
of these costs on the upside potential of speculative péization.

The setup used for this study is similar to the one in sect®@.1This study limits itself to tasks of
average sizes of 1K dynamic instructions or less. This isiraimt is enforced because that is the
domain in which most current speculative parallelizatipstams operate. Individual cores are
similar to the ones described in section 10.1, but the sdbednd reorder buffer modeled is of
size 512 entries, which is an aggressive but reasonablé fpoicurrent and near-future systems.
Figure 10.8 illustrates the impact of these costs on pedoa compared to a limit study that
idealizes on these costs. The “000.orcl” bar shows the padoce when there are no costs to
spawning a task. The “o0oo.thre@®.penalty” configuration synchronizes data-dependeases
described in section 5.3.3. Thus, inter-task data-depemdewith producers after the spawner
point have to wait for the spawner task’s arrival at recotinagoint before their produced value
can become available to the spawned task. In addition, therpenalty for task spawning and
reconnection. Table 10.4 summarizes these costs.

Note that a task selection is needed when there are penalt@ged for task spawning and
inter-task data-dependences. This is because these aostawse some tasks to actually degrade
performance, and such tasks need to be pruned out. Forulig sttask selection was made by
placing a minimum threshold of 20 cycles gain per instance takk as described in section 8.2.
Therefore, the performance difference between the twoibdigure 10.8 can be attributed to two
factors: 1) the cost from synchronization and task-relaigtbns, and 2) untapped performance
due to suboptimal task selection. Even though it cannot beegt, it is quite likely that the former
factor is a major contributor to the difference observedvabbecause the above selection was
found to be the best among a variety of thresholds on task/i@ha

109

1600
_ I
= 1400
O L
2
o 1200
o
Q I
D 1000
()
2 I
o 800
=] I
D
o 600
o
g b g
2 400 [e
()
g I R N (N |
g 2007 D

0 R NN
Sy Gy G
N % 0 9, U),
/&/ Qf‘@ /O'®G, 6/))
[= 000.thresh 20.penalty == 000.orcl |

Figure 10.8: Impact of synchronizing data-dependencesrapdsing penalty for task spawn and
reconnection.

There are several noteworthy points in these results. Rarttvearks “vpr.place” and “vpr.route”,
there is a large performance difference between the caseewiter-task data-dependences are
not synchronized and where they are. This arises becaufimthstudy optimistically sends over
values as soon as they are produced in the earlier task. Hoveereal system might not know
when the last write has occurred down the correct path urgiljuite late. These benchmarks have
a large number of low-confidence branches, so managingtaskrdata-dependences will
introduce large costs, irrespective of the policy used.

Another major effect is the addition of penalty for task spag and reconnection and for
synchronized inter-task data-dependences. This hasfdw ef making several tiny tasks
unprofitable because the overhead of spawning and recampéasks swamps out any benefit that
might have been delivered by the task. In addition, taskisit#nee lot of incoming
data-dependences also suffer costs when these dependemsyachronized. Sometimes, the
producer might be several dynamic tasks away and multiplerspnization and communication
delays might be incurred. This can cut the IPC performande guamatically. On the whole,
data-dependences and task penalties bring down the @btehsipeculative parallelization by

more than a half.

110

10.4 Nested Parallelism and Out-of-Order Task Spawning

The configuration modeled in section 10.1 allows tasks tgplg/aed in a nested manner, that is,
out-of-order task spawning. Most speculative paralléilirasystems, on the other hand, model an
in-order spawning system. This means that a task can onlyrspae other task (that completes
and retires) over its lifetime. Once a task has spawned effet task that has not been squashed
due to misspeculations, it can no longer spawn another Tdsg&.restriction greatly simplifies the
system. The spawned task can be run on the adjacent corepand and reconnect signals can be
sent over a ring-type network. Determining program ordéivéal.

However, in-order spawning prevents the exploitation cteé parallelism. The most
straightforward example is that of a nested loop where [adisah exists both in the inner as well
as outer loop. In-order spawning forces the system to chioetseeen spawning either solely
within the outer loop or only in the inner loop. Out-of-ordgrawning on the other hand can allow
a task can do multiple spawns, as long as the task spawnedslatsted within the earlier task.
This ability frees the system from choosing which nestingll¢éo spawn in, and potentially allow
the ability to exploit parallelism at multiple nests. Howevsupporting it incurs large amounts of
hardware complexity. Attempts have been made to proposgiesisolutions [46] but the problem

is inherently harder.

It is easy to see that out-of-order spawning is required taldbe to exploit all the available
parallelism. For example, in the swim example of sectior2 X).an in-order spawning system
could spawn either in the inner loop (leading to an IPC padénf 17), or at the outer loop level
(leading to a potential of 560). However, to exploit all tregllelism in that loop, tasks need to be
spawned at both levels (leading to a multiplicative impacthe potential, which goes up to 6500).
However, as identified by sections 10.2 and 10.3, the réstmik on task granularity and cost of
data-dependences place significant constraints on theitatpe parallelism. In particular, the task
granularity constraint in most speculative parallelizatsystems limits the maximum size of any
individual task. This also makes it unlikely that there ebbé a large number of nested tasks
possible. For example, most applications won't have maxa ttvo or three loop nests fit within
1K instructions. Further, even if there are multiple nesgsdk spawn opportunities within a range
of 1K instructions, an important question is whether therexploitable parallelism in multiple
nests given the cost from data-dependences and task psnattiaddition, most speculative
parallelization systems have limited cores, so even ifglieparallelism at multiple nesting levels,
there may not be enough resources to exploit all of that ledissth. The objective of this section is
to explore the potential for out-of-order spawning undesthconstraints.

This study explored (from a performance perspective) thential benefits of OO0 spawning
against an optimized in-order selection. The in-order s&ction policy used was described in
section 8.2. A threshold of 20 was used for minimum per-imstabenefit predicted by the model.
Nesting analysis was incorporated for in-order selecti@uat-of-order spawning, on the other
hand, doesn’t require a nesting analysis. Therefore, siktthat exceeded a threshold of 20 (cycles
gain per instance) were selected. The evaluation systeahgymized inter-task data-dependences,

111

and imposed a 5-cycle penalty for task spawning, recormreciind inter-task data communication.

500
450 |
400 |
350 |
300 |
250 |
200 |
150 |
100 |
50 [

Percent Speedup over Superscalar

B ino.thresh 20 mmm 000.thresh_20
= ino.thresh 20.nest

Figure 10.9: In-order spawning (without and with nestinglgsis), compared to out-of-order
spawning, on a system that has infinite cores, has latendptfarthread data communication and
synchronization.

Figure 10.9 shows the performance of OOO spawning on a systtminfinite task units, when
compared to in-order spawning (with and without nestingyesis). Three application behaviors
are observed. The first set (e.g. ammp, apsi, bzip2, etcppications don't benefit much from
the ability to spawn out-of-order, indicating that thereadd much nested parallelism in these
benchmarks. By placing a threshold on task performancepd gelection can be isolated.

A second set of applications (applu, crafty, twolf and vprteg etc.) has nested parallelism and
therefore an upside from OOO spawning. An in-order taskciele that just places a threshold
performs significantly worse than its out-of-order spawrniounterpart. However, incorporating
nesting analysis in the in-order task selection helps kritigs gap quite successfully, taking the
performance quite close to that of OOO spawning.

A final set of applications (equake, gcc, vpr.place, etceHarge amounts of nested parallelism all
of which cannot be exploited by in-order spawning. For examgquake has a nested loop with
parallelism in both nesting levels. The inner loop take®sswdata-cache misses causing buffer
stalls. Further, the loop branch is hard to predict, whicst€a large branch misprediction penalty

112

each time the loop is exited. To exploit parallelism, botmeinloop iterations as well as the loop
fall-through need to be spawned. Out-of-order spawnintgsys can do that. But in-order
spawning systems have to choose between the two nestirlg.leve

Another point to note is that while there is a large perforogapotential gained from out-of-order
spawning at infinite cores, there isn’t much gain when thesare limited. If smartly chosen
in-order tasks can keep the resources busy, then there isatbta bring in the additional
complexity of out-of-order spawning. This is observed ef@rbenchmarks like equake, where
there is enough parallelism in the outer nesting level tplkeores busy.

10.5 Impact of Constraining Available Cores

400
- i
< 350
(&)
& i
L 300
U:') L
« 250
()
8 -
o 200
> L
D
3 150
(%_ L
= 100
8 L
o 50
a i

° 6 Dy Dy Oy O Sy Gy by by Ly
. Dy Yy U G5 Cr &, Q5 O %,
RN AR TN % % o 0,0 %, Y, D, O K L
Wk R T T 8., 0 NS 1y 10, Y
0 %o > /)% + QC‘@(’/‘@‘QG
B 2C E Sc —3 32c
== 4c B 16c 1 Inf cores

Figure 10.10: Impact of scaling cores on performance on gesythat has latency for inter-task
communication and performs inter-task data synchrominati

Evaluations in section 8.2 showed encouraging performforcgpeculative parallelization on a
4-core system. This section investigates the potentiatione performance given a larger number
of cores for spawning tasks, and how this performance sciigare 10.10 shows the speedup
achieved as the number of cores are scaled from 2 to 32. Thtenhen infinite cores are available
is also shown.

113

Several application behaviors are observed when scalengumber of cores. The largest class is
applications that show limited additional returns whenntheber of resources are scaled, such as
ammp, apsi, gap, parser, perlomk, and vpr. For these appfisatwo or four cores is probably the
right operating point. This is because these applicatieesnsto have inherently parallelism at this
granularity. Even with 4 cores the performance on theseaegijuns gets quite close to their
upside performance potential identified in section 10.2r&lare other applications which scale
quite well even to 32 cores or beyond. This includes swim idngnd vortex, which display large
amounts of loop-level or procedure-level parallelism.ainthere are applications that scale
moderately but with largely diminishing returns, and it htitpe worthwhile to scale up to 8 cores

if performance is the prime objective.

114

CHAPTER 11

CONCLUSIONS

The move towards multicore architectures has created agagbn the desire of programmers to
continue programming productively in sequential prograngymodels and the requirement of
parallelizing applications to extract performance from #dlvailable cores. Technologies are needed
to help bridge this gap without placing all the respondipilipon programmers.

Implicit Parallelization is one potential solution thatilids upon the previously successful tradition
of under-the-covers parallelization followed by supelacarchitectures over the last decade or so.
If successful, Implicit Parallelization allows programm¢o think and write in sequential models,
but still reap the benefits of additional cores through iasesl parallel performance.

However, Implicit Parallelization faces several roadkioto its success, both at the level of
architecture as well as from applications. A major chalkeisgdentifying where profitable
parallelism exists in applications, and partitioning toimasks that can execute concurrently. Since
sequential execution semantics have to be maintainedcapph control and data-dependences
must be enforced. In addition, data-dependences can bedialehtify statically especially the
dependences that occur because different memory accdisset® sghe same location. Enforcing
these dependences can add substantial cost to implicithigi&zed execution. These costs can
have a large impact on the profitability of tasks, and makéopmance very sensitive to the quality
of tasks selected for parallelization.

11.1 Thesis Summary

This thesis developed a novel approach of thinking abouthiadlenges that arise in Implicit
Parallelization. The insight is to approach the problemrudifig and exploiting parallelism in
terms of instruction criticality. In that framework, thetpatial for extracting parallelism in a
region of program can be identified by the prevalence of fetdicality of instructions in that
region. This thesis explored the reasons for fetch-ctiticand formalized the notion of
“Fetch-Criticality Generating Events” or FCGEs, that a¥sponsible for causing fetch-criticality
in superscalar execution, thereby creating the potemtiadxploiting parallelism.

The next step was to develop a formal model to represent amogxecution on an Implicit
Parallelization architecture using a “dependence grapteffioThe model is built upon previous
work for modeling superscalar execution. It is able to cepapplication as well as architectural
dependences. It is also able to represent the costs anddalsgciated with task-related actions,

115

such as cost for managing data-dependences that crosotasttanies. The model can be used to
construct a dependence graph for a particular executiopadgram, and find the “critical path”

of execution as well as the slack on various dependence eldgealso a useful tool to help
understand and quantify the performance trade-offs tlisd & Implicit Parallelization, such as
deciding whether or not to spawn a potential task.

Next, this thesis developed a guantitative model to pradeperformance benefit of spawning a
potential task on an Implicit Parallelization system. Thadel is based on an analysis of the
application trace. It was validated to be accurate for sg\mmchmarks. This model was then used
to drive the task selection policy for the Polyflow Impliciafallelization architecture. Polyflow
belongs to a class of Implicit Parallelization architeegiknown as “Speculative Parallelization”
architectures because it can speculate upon ambiguousiela¢éadences. The task selection policy
based on the above model was found to significantly outperfither policies used in previous
work. An important insight in making the task selection whet tfor in-order spawning systems
(such as Polyflow and most other previous architecturessrdttmain), it is important to account
for nesting relationships between tasks to select taskeanbst profitable nesting level.

Next, this thesis looked at the broader picture by explohiag the potential for performance can
be enhanced by relaxing some of the previous constraintssaetp both at application level and at
the architectural level. At the application level, critibaanalysis is once again useful in finding
top bottleneck data-dependences that limit parallelishis Thesis finds, encouragingly, that
several of these dependences are not “essential” to theutatign. Rather they were “accidental”
due to unfortunate implementation choices made by the gnogrer. These dependences can be
removed easily without changing application semanticsiaantly. In other cases, essential
dependences sometimes limit parallelism.

This thesis developed a tool called SPARTAN that can poiogmmers to important bottlenecks
to parallelism so that they can be refactored on a priorigishd he tool was validated by finding
top bottleneck data-dependences in several applicatidris.thesis went one step further and
actually removed an accidental dependence in one benchiflagkimpact of removing the
dependence was quite close to what was predicted by the niddeltool combines nicely with
the task selection tool to form an iterative flow for ImpliBiarallelization.

Finally, the thesis revisited architectural design decisimade by most Implicit Parallelization
systems to understand the disparity between upside paitanti achieved performance. There
were some interesting results. The thesis found that decdike limited task sizes severely limit
the scope of Implicit Parallelization systems. On the otfeerd, other choices like not allowing for
nested task spawns doesn't impact performance much oneeauthstraints are in place while
saving on architectural complexity. Overall, the thesiggasts encouraging directions for moving
forward towards making Implicit Parallelization a more cessful approach.

116

[1]

2]

[3]

REFERENCES

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.téumsls, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and KNalick, “The landscape of
parallel computing research: A view from berkeley,” EECSBement, University of
California, Berkeley, Tech. Rep. UCB/EECS-2006-183, De@g2

P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: 2-8ay multithreaded sparc
processor,1IEEE Micro, vol. 25, no. 2, pp. 21-29, 2005.

B. Fields, S. Rubin, and R. Bodik, “Focusing processaliqies via critical-path prediction,”
Int'l Symp Computer Architectureol. (ISCA-28), pp. 74-85, 2001.

[4] A. Glew, “Mlp yes! ilp no!,” in Wild and Crazy Ideas Session, 8th International Conference

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

on Architectural Support for Programming Languages and 1@peg Systems1998.

K. Malik, M. Agarwal, S. S. Stone, K. Woley, and M. I. FrariBranch-mispredict level (blp)
parallelism for control independence architecturés;| Symp. High Performance Comp.
Arch,, vol. (HPCA-14), 2008.

D. W. Wall, “Limits of instruction-level parallelism,DEC Western Research Laboratory,
Research Report 93/6, Nov. 1993.

M. S. Lam and R. P. Wilson, “Limits of control flow on parelism,” Int'l. Symp. Comp.
Arch, vol. (ISCA-19), pp. 46-57, 1992.

G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kylkand P. Roussel, “The
microarchitecture of the PentiuM4 processor,” irintel Technology Journal001, no. 1.

E. S. Tune, D. M. Tullsen, and B. Calder, “Quantifyingtingtion criticality,” inIn 11 th
International Conference on Parallel Architectures andn@mlation Techniques2002,
pp. 104-113.

B. Fields, R. Bodik, and M. Hill, “Slack: Maximizing p®rmance under technological
constraints,Int’'l Symp Comp Archvol. (ISCA-29), 2002.

B. Fields, “Using criticality to attack performancethlenecks,” Ph.D. dissertation, University
of California at Berkeley EECS Department, 2006.

J. D. Wiest and F. K. LevyA Management Guide to PERT/CPMrentice-Hall, 1974.

S. T. Srinivasan and A. R. Lebeck, “Load latency toleeam dynamically scheduled
processors,” idournal of Instruction Level Parallelisni998, pp. 148-159.

S. T. Srinivasan, A. R. Lebeck, R. D. ching Ju, and C. \&fifon, “Locality vs. criticality,”
Computer Architecture, International Symposium pr0132, 2001.

B. R. Fisk and R. I. Bahar, “The non-critical buffer: Wgiload latency tolerance to improve
data cache efficiency,” im IEEE International Conference on Computer Desija99,
pp. 538-545.

117

[16] B. Calder, G. Reinman, and D. M. Tullsen, “Selectiveueaprediction,” inln 26th Annual
International Symposium on Computer Architectr@99, pp. 64—74.

[17] E. Tune, D. Liang, D. M. Tullsen, and B. Calder, “Dynanpiediction of critical path
instructions,” inn Proceedings of the Seventh International Symposium on
High-Performance Computer Architectyi2001, pp. 185-196.

[18] B. A. Fields, R. Bodik, M. D. Hill, and C. J. Newburn, “letaction cost and shotgun
profiling,” ACM Trans. Archit. Code Optimpp. 272—-304, 2004.

[19] R. Pyreddy and G. Tyson, “Evaluating design tradeaffdual speed pipelines,” Morkshop
on Complexity Effective DesigR001.

[20] J. Seng, E. Tune, and D. Tullsen, “Reducing power withaidyic critical path information,”
Intl Symp Microarchitecturevol. (MICRO-34), pp. 114-123, 2001.

[21] P. Salverda and C. Zilles, “A criticality analysis oliskering in superscalar processotsil
Symp Microarchitecturevol. (MICRO-38), pp. 55-66, 2005.

[22] C.-Q. Yang and B. Miller, “Critical path analysis foralexecution of parallel and distributed
programs,Distributed Computing Systems, 1988., 8th Internationahi€rence on
pp. 366—373, Jun 1988.

[23] J. K. Hollingsworth, “Critical path profiling of messagassing and shared-memory
programs,"IEEE Trans. Parallel Distrib. Systpp. 1029-1040, 1998.

[24] T. Li, A. R. Lebeck, and D. J. Sorin, “Quantifying insttion criticality for shared memory
multiprocessors,” ir6PAA '03: Proceedings of the fifteenth annual ACM symposium o
Parallel algorithms and architecture2003, pp. 128-137.

[25] R. Nagpal and A. Bhowmik, “Criticality driven energy ave speculation for speculatively
multithreaded processors,” International Conference of High-Performance Computing
vol. 12, Dec 2005, pp. 19-28.

[26] J. Tuck, W. Liu, and J. Torrellas, “CAP: Criticality alyais for power-efficient speculative
multithreading,”Intl Conf Computer Desigrvol. (ICCD), 2007.

[27] C.-Y. Cher and T. N. Vijaykumar, “Skipper: A microartheture for exploiting control-flow
independence nt'l. Symp. Microarchitecturevol. (MICRO-34), pp. 4-15, 2001.

[28] A. S. Al-Zawawi, V. K. Reddy, E. Rotenberg, and H. H. Akita‘Transparent control
independence (TCI)Iht'l Symp Comp Archvol. (ISCA-34), 2007.

[29] A. Hilton and A. Roth, “Ginger: Control independencéngstag rewriting,”Int'l Symp Comp
Arch, vol. (ISCA-34), 2007.

[30] E. Rotenberg and J. E. Smith, “Control independencesaicet processorsiht’l. Symp.
Microarchitecture vol. (MICRO-32), pp. 4-15, 1999.

[31] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multisogprocessors,Int'l Symp
Computer Architecturevol. (ISCA-22), pp. 414-425, 1995.

[32] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “@atable approach to thread-level
speculation,Int’l Symp Computer Architectureol. (ISCA-27), pp. 1-24, 2000.

118

[33] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chend&. Olukotun, “The
Stanford Hydra CMP IEEE Micro, vol. 20, no. 2, 2000.

[34] V. Krishnan and J. Torrellas, “A chip multiprocessochitecture with speculative
multithreading,”IEEE Transactions on Computenml. 47, September 1999.

[35] H. Akkary and M. A. Driscoll, “A dynamic multithreadingrocessor,1nt'l Symp.
Microarchitecture vol. (MICRO-31), pp. 226—236, 1998.

[36] M. Agarwal, K. Malik, K. M. Woley, S. S. Stone, and M. I. &k, “Exploiting
postdominance for speculative parallelizatiamf’| Symp. High Performance Comp. Arch.
vol. (HPCA-13), pp. 295-305, 2007.

[37] P. Marcuello, A. Gonzalez, and J. Tubella, “Speculatnultithreaded processordit'l.
Conf. Supercomputingol. (ICS-12), pp. 77-84, 1998.

[38] I. Park, B. Falsafi, and T. N. Vijaykumar, “Implicitly-oitithreaded processordfit'l. Symp.
Comp. Arch.vol. (ISCA-30), pp. 39-51, 2003.

[39] A. Roth and G. S. Sohi, “Speculative data-driven miigading,”"High Perf. Computer
Arch,, vol. (HPCA-7), pp. 37-48, 2001.

[40] J.-Y. Tsai, Z. Jiang, and P.-C. Yew, “Compiler techreégdor the superthreaded
architectures,Int. J. Parallel Program, vol. 27, no. 1, pp. 1-19, 1999.

[41] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “Thgmm dependence graph and its use in
optimization,”ACM Transactions on Programming Languages and Systeohs9,
pp. 319-349, July 1987.

[42] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and.RZ&deck, “Efficiently
computing static single assignment form and the controéddpnce graphACM
Transactions on Programming Languages and Systeais13, no. 4, pp. 451-490, 1991.

[43] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, &ntbrrellas, “POSH: A TLS
compiler that exploits program structur@tinciples and Practice of Parallel Programming
vol. (PPoPP-11), pp. 158-167, 2006.

[44] A.l. Moshovos, “Memory dependence prediction,” Phdixsertation, University of
Wisconsin-Madison Computer Sciences Department, 1998.

[45] A. KleinOsowski and D. Lilja, “Minnespec: A new spec leemark workload for
simulation-based computer architecture research,” 2002.

[46] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J.ellas, “Tasking with out-of-order
spawn in TLS chip multiprocessors: microarchitecture amdgilation,” in 19th Int’l Conf.
Supercomputing (ICS2005, pp. 179-188.

[47] K. Malik, M. Agarwal, and M. I. Frank, “Adaptive memoryschronization (ams):
Balancing the risks and benefits of inter-thread load sjpd¢ion,” Second Annual
Reconfigurable and Adaptive Architecture Workshap. (RAAW-2), 2008.

[48] G. Z. Chrysos and J. S. Emer, “Memory dependence piiedicising store sets,” ia5th
International Symposium on Computer Architecture (ISG)-2une 1998, pp. 142-153.

119

[49] K. Malik, “Critical branches and lucky loads in contrioldependence architectures,” Ph.D.
dissertation, University of Illinois at Urbana Champaidedirical and Computer
Engineering Department, May 2009.

[50] A. Roth, “Store vulnerability window (SVW): Re-exedon filtering for enhanced load
optimization,” inISCA 32 2005, pp. 458-468.

[51] A. Garg, M. W. Rashid, and M. Huang, “Slackened memoryeatelence enforcement:
Combining opportunistic forwarding with decoupled ve@afion,” in ISCA '06: Proceedings
of the 33rd annual international symposium on Computer #ecture (Washington, DC,
USA), IEEE Computer Society, 2006, pp. 142-154.

[52] K. Malik, “Confidence based out-of-order register narirag for dynamically multithreaded
processors,” M.S. thesis, University of lllinois Departmhef Electrical and Computer
Engineering, Dec. 2006.

[53] M. W. Hall, T. J. Harvey, K. Kennedy, N. Mcintosh, K. S. Mimley, J. D. Oldham, M. H.
Paleczny, and G. Roth, “Experiences using the parascop@r ealn interactive parallel
programming tool,’SIGPLAN Not.pp. 33-43, 1993.

[54] K. Kennedy and J. R. AllerQptimizing compilers for modern architectures: a
dependence-based approad®an Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2002.

[55] S.-W. Liao, A. Diwan, R. P. Bosch, Jr., A. Ghuloum, and $1.Lam, “Suif explorer: an
interactive and interprocedural parallelizer,”PoPP '99: Proceedings of the seventh ACM
SIGPLAN symposium on Principles and practice of paralleiggamming 1999, pp. 37-48.

[56] C. Zilles and G. Sohi, “Understanding the backwardediof performance degrading
instructions,” 2000, pp. 172-181.

[57] C. Zilles and G. Sohi, “Execution-based predictiomgsspeculative slices,” 2001, pp. 2-13.

[58] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry, “Tharapede approach to thread-level
speculation,ACM Trans. Comput. Systol. 23, no. 3, pp. 253-300, 2005.

[59] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry, ‘@piler optimization of scalar
value communication between speculative threaflssh. Support Prog. Lang. Operating
Sys, vol. (ASPLOS-X), pp. 171-183, 2002.

[60] M. K. Chen, “Test: A tracer for extracting speculativedads,” inin The 2003 International
Symposium on Code Generation and OptimizatiaiE E Computer Society, 2003,
pp. 301-312.

[61] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.4Rgai, “A cost-driven compilation
framework for speculative parallelization of sequenti@grams,”’Prog. Lang. Design and
Implementationvol. (PLDI), pp. 71-81, 2004.

[62] S.Wang, X. Dai, K. S. Yellajyosula, A. Zhai, and P. churg, “Loop selection for
thread-level speculation,” ilm Proceedings of the 18 th International Workshop on
Languages and Compilers for Parallel Computi2§05.

120

[63] P.-S. Chen, M.-Y. Hung, Y.-S. Hwang, R. D.-C. Ju, and JL&e, “Compiler support for
speculative multithreading architecture with probabdigoints-to analysis,Principles and
Practice of Parallel Programmingvol. (PPoPP-9), pp. 25-36, 2003.

[64] J. Tubella and A. Gonzalez, “Control speculation inltitlwreaded processors through
dynamic loop detectionHigh Perf. Comp. Archvol. (HPCA-4), pp. 14-23, 1998.

[65] P. Marcuello and A. Gonzalez, “A Quantitative Assessiof Thread-level Speculation
Techniques,Int’l. Parallel and Distributed Proc. Sympvol. (IPDPS-14), pp. 595-604, 2000.

[66] L. Hammond, M. Willey, and K. Olukotun, “Data specutati support for a chip
multiprocessor,’Arch. Support Prog. Lang. Operating Syeol. (ASPLOS-VIII), pp. 58-69,
1998.

[67] S.T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, andWfton, “Continual flow pipelines,”
Arch. Support Prog. Lang. Operating Sysol. (ASPLOS-XI), pp. 107-119, 2004.

[68] T. N. Vijaykumar and G. S. Sohi, “Task selection for a tiadalar processor,” iMICRO 31.:
Proceedings of the 31st annual ACM/IEEE international sysiym on Microarchitecture
1998, pp. 81-92.

[69] T. N. Vijaykumar, “Compiling for the Multiscalar arcteicture,” Ph.D. dissertation, University
of Wisconsin-Madison Computer Sciences Department, B98.1

[70] P. K. Dubey, K. O’Brien, K. M. O’Brien, and C. Barton, “Sgle-program speculative
multithreading (SPSM) architecture: compiler-assistad-firained multithreadingConf on
Parallel Arch and Compilation Techniquesol. (PACT-1), pp. 109-121, 1995.

[71] P. Marcuello and A. Gonzalez, “Thread-spawning soeeffor speculative multithreading,”
High Perf. Comp. Arch.vol. (HPCA-8), pp. 55-64, 2002.

[72] A. Bhowmik and M. Franklin, “A general compiler framewvkofor speculative multithreaded
processors,JEEE Trans. Parallel Distrib. Systvol. 15, no. 8, pp. 713-724, 2004.

[73] C. G. Quinones, C. Madriles, J. Sanchez, P. Marcuell&gzdnzalez, and D. M. Tullsen,
“Mitosis compiler: an infrastructure for speculative thding based on pre-computation
slices,”Prog. Lang. Design and Implementatiqrp. 269-279, 2005.

[74] T. A.Johnson, R. Eigenmann, and T. N. Vijaykumar, “Mint program decomposition for
thread-level speculationProg. Lang. Design and Implementatjorol. (PLDI), pp. 59-70,
2004.

[75] N.Vachharajani, R. Rangan, E. Raman, M. J. Bridges, Q) and D. I. August,
“Speculative decoupled software pipelining,”RACT '07: Proceedings of the 16th
International Conference on Parallel Architecture and Gulation TechniqueslEEE
Computer Society, 2007, pp. 49-59.

[76] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke, “Urering hidden loop level
parallelism in sequential applications,”lim Proc. of the 14th International Symposium on
High-Performance Computer Architectyi2008.

[77] M. K. Prabhu and K. Olukotun, “Exposing speculativectdn parallelism in spec2000,” in
PPoPP '05: Proceedings of the tenth ACM SIGPLAN symposiurrimtiples and practice
of parallel programming ACM Press, 2005, pp. 142-152.

121

[78] M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, &hd. August, “Revisiting the
sequential programming model for multi-core,"NiCRO 4Q 2007.

[79] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Loey S. Wallace, V. J. Reddi, and
K. Hazelwood, “Pin: building customized program analysisl$ with dynamic
instrumentation,Prog Lang Design and ImpVol. (PLDI), June 2005.

122

AUTHOR'S BIOGRAPHY

Mayank Agarwal was born in New Delhi, India, on July 14, 19B2 graduated from Indian
Institute of Technology Delhi in 2004 with a Bachelor of Taology degree in Computer Science
and Engineering. He completed the Master of Science degr@emputer Science at the
University of Illinois in 2006. After completing his PhD, héll be joining Microsoft as a
Software Development Engineer.

123

