
c© 2009 Shiau Hong Lim

EXPLANATION-BASED FEATURE CONSTRUCTION

BY

SHIAU HONG LIM

B.C.S., University of Malaya, 2000
M.C.S., University of Malaya, 2001

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Doctoral Committee:

Professor Gerald DeJong, Chair
Professor Dan Roth
Professor David Forsyth
Assistant Professor Eyal Amir

Abstract

Incorporating additional information from our prior domain knowledge can be the key to solv-

ing difficult classification tasks, especially when the available training data is limited. The crucial

stage of feature construction, often done manually, plays a significant role in allowing such infor-

mation to be incorporated into a learner.

We propose algorithms for automated feature construction where available domain knowledge,

even though imperfect and approximate, can be utilized by the learning system. Robustness is

achieved by incorporating this prior knowledge in a task-specific manner, guided by the actual

training examples. These goals are realized with Explanation-Based Learning (EBL).

The EBL paradigm provides the necessary bridge between domain knowledge and the training

examples, which allows us to design solutions that are conceptually well-formed and work for the

right reason. The ideas of well-formed concepts and “working for the right reason” are our guiding

principles for supervised learning.

Using these underlying principles, we propose three algorithms for incorporating prior domain

knowledge into discriminative learning with different levels of interaction between the feature con-

struction process and the final classifier learning. The first approach involves automated construc-

tion of generative models for phantom examples, which can be used to enhance the training data

for subsequent classifier learning. Both the second and the third approaches involve the construc-

tion of semantic features. Each semantic feature encapsulates a well-formed concept which, ac-

cording to the domain knowledge, corresponds to a conceptual difference between classes of ob-

jects.

We illustrate and evaluate the proposed algorithms on the challenging problem of classifying

offline handwritten Chinese characters, focusing on distinguishing difficult, mutually-similar pairs

of characters. Empirical results show that our approaches can outperform the state-of-the-art al-

gorithms.

ii

To my parents

iii

Acknowledgments

I am deeply grateful to my advisor, Gerald DeJong for his guidance and support throughout the

years. His enthusiasm for research, especially on EBL, is unmatched and has become a constant

source of motivation. His insights and inspirations often shed new light on alternative ways to

address a problem and open up new research directions, eventually allowing me to complete my

PhD.

I also wish to thank all the members of the EBL group that I have the privilege of working

with: Li-Lun Wang, Geoffrey Levine, Arkady Epshteyn, Qiang Sun and Adam Laud. Each person

has helped me in unique ways and has offered me invaluable comments on my research. It is a

great pleasure sharing thoughts and working with them.

Finally, I thank my parents for their immeasurable love and support. They had great confi-

dence in me and allowed me complete freedom to pursue my own passions. This work is dedicated

to them.

iv

Table of Contents

List of Tables . viii

List of Figures . ix

Chapter 1 Introduction . 1
1.1 Models, Features and Learning . 1
1.2 Explanation-Based Learning . 2
1.3 Offline Handwritten Character Recognition . 2
1.4 Our Proposed Approaches . 4
1.5 Scope . 5
1.6 Organization . 6

Chapter 2 Working for the Right Reason: An Overview 7
2.1 Motivation . 7

2.1.1 Classification Tasks and Solution Space . 7
2.1.2 Prior Knowledge and Training Data: An Information Point of View 8
2.1.3 Features and Prior Knowledge: An Illustration 11

2.2 Working for the Right Reason . 16
2.3 Domain Knowledge and EBL . 18

2.3.1 Semantic Features . 18
2.3.2 Well-formed Concepts . 19
2.3.3 Well-Formed Concepts and Bayesian Prior . 20

Chapter 3 Model Construction for Phantom Examples 21
3.1 Introduction . 21
3.2 Analysis . 24

3.2.1 Domain Knowledge Bias . 24
3.2.2 Model Space . 26
3.2.3 Model Space and Well-Formed Concepts . 28

3.3 Domain Theory . 28
3.4 Explaining the Examples . 30
3.5 Algorithm . 33
3.6 Experiments . 34

3.6.1 Experiment 1: Discriminative Information from Domain Knowledge 36
3.6.2 Experiment 2: Dynamic Model Construction 36
3.6.3 Experiment 3: Effect of Varying Number of Real Examples Used in Phantom

Training . 39
3.6.4 Experiment 4: Interaction is Crucial . 40
3.6.5 Experiment 5: Domain Knowledge Helps More with Fewer Real Training Ex-

amples . 41
3.6.6 Experiment 6: Discriminative Classifier Helps 41
3.6.7 Experiment 7: Robustness in the Presence of Noise 42

v

3.6.8 Experiment 8: Comparison with Virtual Support Vectors 44
3.6.9 Experiment 9: More Challenging Pairs . 45

Chapter 4 Simple Discriminative Semantic Features 48
4.1 Introduction . 48
4.2 Semantic Features and Generalization . 49
4.3 Reference Features . 54
4.4 Explanation-based Feature Construction . 56
4.5 Classifying Handwritten Chinese Characters . 57

4.5.1 Building Explanations . 58
4.5.2 Identifying Potential Similarities . 59
4.5.3 Finding Efficient Reference Stroke Detector 59
4.5.4 Learning the final Feature . 61

4.6 Experiments . 62
4.6.1 ETL9B Database . 62
4.6.2 HITPU Database . 63

Chapter 5 Complex Discriminative Semantic Features 66
5.1 Introduction . 66
5.2 Explanation-Based Learning and Semantic Features 67
5.3 Sensors . 69

5.3.1 Interpreting Sensor Outputs . 70
5.3.2 Consistency Metrics . 71
5.3.3 Induced Sensors . 72

5.4 Features . 73
5.4.1 Combining Sensors . 74
5.4.2 A Markov Logic Interpretation . 76
5.4.3 Semantic Features . 76
5.4.4 Induced Sensors for Semantic Features . 77

5.5 Sensor Tree . 77
5.5.1 Neural Network for the Sensor Tree . 79
5.5.2 Computational Complexity . 81

5.6 Learning Algorithm . 81
5.6.1 Target Semantic Feature . 82
5.6.2 Constructing Sensor Trees . 83
5.6.3 Parameter Optimization . 85
5.6.4 Evaluating the Training Examples . 86
5.6.5 Analyzing Training Errors . 86
5.6.6 Stopping Condition . 88
5.6.7 A Refinement to the Algorithm . 88

5.7 Experiments . 89
5.7.1 Domain Theory . 89
5.7.2 An Illustration . 91
5.7.3 Adjusted Training Error . 92

Chapter 6 A Unifying View and Comparison of the Three Approaches 95
6.1 Generative and Discriminative Prior Knowledge . 95
6.2 Generative and Discriminative Feature Training . 96
6.3 Elements in Domain Theory . 97
6.4 Computational Complexity . 98

vi

Chapter 7 Related Works . 99
7.1 Motivation from Some Previous Works . 99
7.2 Artificial Training Examples . 100
7.3 Feature Generation and Selection . 101
7.4 Features in Object Recognition . 102
7.5 Handwritten Chinese Character Recognition . 102

Chapter 8 Conclusions and Future Works . 104
8.1 Contributions . 104
8.2 Future Works . 105

8.2.1 Formal Representation of the Semantic Features 105
8.2.2 Partial and Incremental Explanation . 105
8.2.3 Document-level Recognition . 105
8.2.4 Other Problem Domains . 105

References . 107

Curriculum Vitae . 113

vii

List of Tables

3.1 Generative vs Discriminative Classifier . 42

4.1 ETL9B Error Rate (%) (5-fold cross-validation) . 63
4.2 HITPU Error Rate (%) (5-fold cross-validation) . 65

5.1 Classification Error Rate (5-fold cross-validation) . 93

6.1 Generative and discriminative elements in the proposed approaches 95

viii

List of Figures

1.1 Some pairs of very similar characters . 3
1.2 Example reference and target features . 5

2.1 Tradeoff between the amount of prior knowledge and training data needed to achieve
a specific generalization performance . 11

2.2 Solution space. Q′ utilizes the most information from P 11
2.3 Example images of horizontal (top row) and vertical (bottom row) strokes 13
2.4 SVM learning results . 14
2.5 Data-Knowledge Tradeoff . 16
2.6 Feasible Solution Space . 17
2.7 Semantic/High-level features . 20

3.1 Relative parameters between strokes (line widths are not shown) 30
3.2 Two examples of qualitative constraints . 31
3.3 EBL . 31
3.4 The characters 1,2,3,4 (left to right) . 35
3.5 Examples of character 1: Real (top row), phantom with straight lines (middle row),

phantom with curves (bottom row) . 35
3.6 The effect of varying number of phantom examples 37
3.7 3.7a shows the character models chosen by the algorithm for the hardest pair when

an error rate threshold of 8% or higher is specified. The contours represent the
real character images, and the shaded areas are the representations of our character
model. Straight line models are used in all strokes in both characters. 3.7b shows
the character models chosen by the algorithm when an error rate threshold of 6% is
specified. Straight line models are used in all strokes except the longest, most curved
stroke in both characters. 38

3.8 Averaged 5-fold cross-validation error rates given different number of model refine-
ments (i.e. at different stages of model construction). 38

3.9 3.9a shows the character models chosen by the algorithm for an easy pair when an error
rate threshold of 8%, 6%, or 1% is specified. The contours represent the real character
images, and the shaded areas are the representations of our character model. Straight
line models are used in all strokes in both characters. 3.9b shows the character models
chosen by the algorithm when an error rate threshold of 0.1% is specified. Straight
line models are used in all strokes except the longest, most curved stroke in the first
character. 39

3.10 Performance gain with phantom examples trained with varying number of real examples 40
3.11 Domain knowledge measured in terms of additional real examples 41
3.12 Effect of interactions . 42
3.13 Performance gain with phantom examples trained with fixed number of real examples 43
3.14 Effect of label noise (without phantoms) . 44
3.15 Effect of label noise (with phantoms) . 45

ix

3.16 Comparison with virtual support vectors . 46
3.17 Some of the most challenging pairs of characters in ETL9B 47
3.18 Errors for the challenging pairs . 47

4.1 Prototype and typical feature values . 53
4.2 Two very similar Chinese characters . 55
4.3 Exploiting similarity and difference with reference feature 55
4.4 Two very similar Chinese characters . 58
4.5 Within-class Variability . 58
4.6 A Character Model and an Explained Example . 59
4.7 The strokes in M are shown as dotted lines . 60
4.8 The ideal “target” rectangles . 61
4.9 The actual “target” rectangles with respect to the feature-points. Note that there are

no feature-points for the left and the bottom edge. 61
4.10 ETL9B Error Rate (%) Scatter Plot . 64
4.11 HITPU Error Rate (%) Scatter Plot . 64

5.1 Example pair of similar characters . 68
5.2 Within-class variation; each row shows 5 examples from the same character 68
5.3 Consistency metric functions for various values of θ 72
5.4 Similar sensor outputs from different objects . 78
5.5 A simple sensor tree . 78
5.6 Neural network architecture for sensor trees . 80
5.7 Example target and reference features . 82
5.8 Examples object parts . 89
5.9 Example of a first tree . 91
5.10 Example final tree . 92
5.11 Object part labels for the example trees . 92
5.12 Raw training error . 93
5.13 Adjusted training error . 94

6.1 Conceptual view of the learning systems. The dotted box shows where prior domain
knowledge and training examples interact. 96

7.1 Example pair of similar characters . 99
7.2 Top row: adaptive concentration. Bottom row: absolute concentration. 100

x

Chapter 1

Introduction

1.1 Models, Features and Learning

Machine learning has been successfully applied in a large variety of domains, from natural lan-

guage processing to search engines, from bioinformatics to computer vision and so on. On the

other hand, we have yet to achieve human-level performance in many tasks, even seemingly sim-

ple ones from a human point of view, such as handwriting recognition.

The proven futility of bias-free learning [Mitchell, 1980, 1997], as well as the no-free-lunch

theorems [Wolpert, 1996, 2001], constantly remind us that the successful application of machine

learning must be attributed to carefully chosen inductive bias, which should naturally come from

our prior knowledge about the application domains. The incorporation of prior knowledge into

learning systems, however, remains a challenging and largely unsolved problem.

We believe that for many learning tasks, the very basic stage of model or feature construction

plays the biggest role in determining its success. This is also where most of our prior knowledge is

needed. Many, if not most, successful applications of machine learning can be attributed to care-

fully crafted models and features that fit particularly well to the target domains.

We pursue a direction where at least part of this crafting process can be automated. We focus

specifically on classification problems, where the construction of good features is crucial. Indeed,

for many classification problems, once the “right” feature set is constructed, the problem is essen-

tially solved.

The challenge of automated, data-dependent feature construction is often in avoiding over-

fitting while entertaining an expressive space of possible solutions, especially when the available

training data is limited. We seek a principled method that allows us to incorporate rich prior do-

main knowledge into this process.

1

1.2 Explanation-Based Learning

Consider the set of all solutions that fit the training data well. In an expressive solution space this

set can be huge. However, in many cases, the number of solutions that “make sense” to a human

expert cannot be too large. In other words, the set of solutions that “work for the right reason” is

necessarily small.

Exactly which solution works for the right reason depends entirely on the expert’s knowledge.

We can think of encoding our prior domain knowledge into a domain theory, which implicitly de-

fines the set of reasonable or well-formed solutions. Although the space of reasonable solutions

can still be very large, the ones that actually work (i.e. fit well) on a particular training set may

be very small.

Explanation-Based Learning (EBL) [DeJong and Mooney, 1986; Mitchell et al., 1986; DeJong,

2006] can be viewed as a learning paradigm where the training examples are used to expose the

set of reasonable solutions from an expert-defined domain theory. Finding this set of reasonable

solutions is called explanation. Any residual uncertainty can be resolved by standard statistical

techniques. Given that the set of reasonable solutions is small, which is often an indication that

the domain theory is adequate, a small training set may be sufficient.

1.3 Offline Handwritten Character Recognition

While handwriting recognition systems for online or machine-printed handwriting have been suc-

cessfully implemented as off-the-shelf products, offline, unconstrained handwriting recognition has

achieved much limited success. To date, the most notable successes of offline handwriting recog-

nition are in digits recognition, with applications in postal address reading [Srihari and Kuebert,

1997] and bank check processing [Impedovo et al., 1997].

The relative success in digit recognition can be attributed to the availability of large training

sets (with thousands of examples per digit), as well as carefully designed feature extraction proce-

dures. For example, some of the best results (rivaling that of a human) reported for the MNIST

digits database are achieved using convolutional neural network with architectures specifically de-

signed for handwritten digits [Lecun et al., 1998; Simard et al., 2003; Ranzato et al., 2006]. We

also see similar level of performance achieved using Support Vector Machines with jittered sup-

port vectors [Decoste and Schölkopf, 2002], where prior knowledge in the form of invariant trans-

formations has been utilized.

2

In contrast to digits and Roman alphabets, offline handwritten Chinese character recognition

remains a challenging problem after more than 20 years of research. Several factors contribute to

this difficulty:

• Large set of characters – where the commonly used set contains more than 4000 characters,

compared to the relatively small set of 26 Roman alphabets. This often results in limited

available training data, where a typical database may contain as few as 200 examples per

character.

• Each character, on average, has more strokes than a typical digit or Roman alphabet and

therefore more complex structure and patterns.

• Large number of mutually similar pairs/sets of characters.

The large variety of patterns, and the existence of mutually similar pairs of characters result

in potentially very large within-class variability but very small between-class difference among the

examples, i.e. very low signal-to-noise ratio. Figure 1.1 shows some of these pairs.

Figure 1.1: Some pairs of very similar characters

To a machine learner that sees only the pixel values within each example image, discovering

the subtle differences between these pairs, if possible at all, requires an enormous amount of train-

ing data. One traditional approach to addressing this problem is to directly extract the under-

lying strokes of a given input and make decision based on stroke-level information. The problem

with this approach is that stroke extraction is itself an inefficient and noisy process, especially in

the presence of mutually similar characters.

We see that in the case of digits, even with ample training data, some relatively simple prior

knowledge (e.g. invariant transformations) goes a long way to improving the learning performance.

3

It is natural to believe that prior knowledge should play even bigger roles in the case of Chinese

characters.

We wish to incorporate our knowledge about strokes and interactions among strokes into the

learning system during training. At the same time, we would like the final classifier to be efficient

and robust in the presence of noise.

1.4 Our Proposed Approaches

We propose three approaches of incorporating prior knowledge into classification learning systems

through model and feature construction. Each can be seen as a way of incorporating generative

prior knowledge into a discriminative learner, with different levels of interaction between the fea-

ture construction process and the discriminative learner itself. EBL plays a central role of con-

necting the observable features (e.g. pixels) in the training examples to the abstract structure of

strokes and stroke-level interactions.

Our first and simplest approach involves automated construction of generative models at a

largely conceptual level (e.g. character strokes). These models, tuned with the actual training ex-

amples, are then used to generate artificial training examples, which we call phantom examples.

The augmented training set, containing both real and phantom examples, can then be used as in-

put to any discriminative learner to learn the final classifier.

While relatively simple to implement, the phantom examples approach does not fully utilize

our prior knowledge about potential similarities and differences between characters. It also places

much of the burden of learning on the discriminative learner. Both the second and the third ap-

proach employ the concept of semantic features, which are basically features that are more in line

with a domain expert’s vocabulary. For example, these are features that are derived from stroke-

level interaction, in contrast to pixel-level interactions.

Our second approach constructs relatively simple semantic features based on stroke-level sim-

ilarities and differences between characters. Similarities are exploited to produce perceptually

salient reference features that can be reliably detected without knowing the label of the input.

This serves as a mechanism of adaptively registering an input image. On the other hand, differ-

ences between characters are used to define target features, which correspond to regions of an im-

age with high concentration of discriminative information. Figure 1.2 illustrates this. A mapping

from reference to target features is learned from the training examples and the final classifier is

4

learned using the target features as input to a discriminative learner.

Target

Reference

Figure 1.2: Example reference and target features

There exist situations when simple reference features are insufficient to accurately locate the

target features. The third approach addresses this by constructing more complex semantic fea-

tures, where the target feature in a given input is found in a procedural manner via a construct

we call sensor trees. Each sensor tree can be thought of as encapsulating a complex reference fea-

ture that accumulates information from multiple sensors in order to achieve higher robustness and

accuracy in the detection of the target feature. Furthermore, each sensor tree is optimized dis-

criminatively and therefore can itself be the final classifier.

1.5 Scope

In this work, we use the tasks of distinguishing Chinese characters as the main illustrative do-

main. Furthermore, we restrict ourselves to classifying pre-segmented characters. However, the

concept of semantic features, and the use of perceptually salient reference features to focus the at-

tention of a classifier onto informative target features can be adapted to a larger scale, document-

level recognition system, which can include coarser-grained layout analysis.

At the larger scale of document-level recognition system, one could utilize other sources of in-

formation, such as a language model. Although not necessarily applicable in all situations (e.g.

isolated entries in a form), such models can potentially improve the overall recognition accuracy.

We do not pursue this direction in this work, but it can be used in conjunction to our proposed

methods.

By employing a different domain theory, the proposed approaches can be applied to domains

beyond that of Chinese character recognition, to a much broader range of domains including ob-

ject recognition or even non-image-based classification tasks. For closely related domains such as

5

handwriting in other languages (especially Asian scripts) or line drawings, our domain theory on

Chinese characters can be easily transfered and adapted.

1.6 Organization

Chapter 2 provides an overview of the underlying principle for our approaches with regard to su-

pervised learning and generalization.

Chapter 3 discusses the approach of model construction for phantom examples.

Chapter 4 and 5 describe the simple and complex semantic feature construction algorithms,

respectively.

Chapter 6 provides a unifying view as well as comparison of the three approaches under vari-

ous perspectives, particularly with regard to the use of generative and discriminative knowledge in

learning.

Chapter 7 discusses related works in the literature.

The final chapter summarizes the contributions of this work and discusses potential future

works.

6

Chapter 2

Working for the Right Reason: An
Overview

2.1 Motivation

It is well-known that successful application of machine learning depends strongly on the kind of

inductive bias that we impose on the learner. A very general kind of inductive bias involves a

preference over the space of all possible solutions. We will be looking at preference in the form

of a Bayesian prior over the solution space and analyze how this is related to our prior knowledge

about the problem, especially in the context of feature construction. This analysis provides the

motivation for our approaches to incorporating prior domain knowledge via explanation-based fea-

ture construction.

2.1.1 Classification Tasks and Solution Space

We first define what we mean by a classification task, or simply a task. A task is defined by the

following components 〈X ,Y, D, l, τ〉, which include:

• An input space X . We assume X = Rn unless otherwise stated.

• An output space (i.e. the set of class labels) Y . We assume Y = {−1, 1} unless otherwise

stated.

• A distribution D over (x, y) ∈ X × Y.

• A loss function l : Y × Y → R. A common loss function is the zero-one loss, where

l(y, y′) =





1 if y 6= y′

0 if y = y′

• A performance threshold τ ∈ R, where τ ≥ 0.

7

For a given function f̂ : X → Y, we define its loss with respect to D as ED(l(f̂(X), Y)) where

ED denotes the expectation with respect to D. We also consider stochastic solutions (Gibbs strate-

gies) where for each new input, we pick a function according to a distribution Q over the function

space (YX) and use it to label the input. The loss of this strategy is given by Ef∼QED(l(f(X), Y)).

Note that a deterministic solution is simply a special case of Q where all the probability mass con-

centrates on one function. We use the shorthand l(Q,D) to mean Ef∼QED(l(f(X), Y)).

A strategy Q is a solution for the task if l(Q,D) ≤ τ . It is possible that a solution does not

exist – this happens when the minimal achievable loss, given by

l∗ = inf
Q∈P(YX)

l(Q,D) ,

is greater than τ , where P(YX) denotes the space of all strategies (i.e. the solution space). In the

case of zero-one loss, l∗ is given by the optimal Bayes error. Note that there exists a deterministic

solution that attains the Bayes error, namely, by always choosing the label with the highest condi-

tional probability Pr(y|x). This of course requires that we know the distribution D.

2.1.2 Prior Knowledge and Training Data: An Information Point of

View

Given a task 〈X ,Y, D, l, τ〉, we would like to find a solution by learning from a set of labeled ex-

amples (i.e. the training set) z = ((x1, y1), . . . , (xm, ym)), drawn i.i.d from D. The questions of

interest here are:

1. How much information do we need to find a solution?

2. How much information does the training set provide?

3. How much prior information do we have about the task?

4. How much prior information can actually be utilized by the learner?

It is sometimes possible to quantify the information needed to find a solution. For example,

when |X | is finite, the space of all mappings YX is also finite where |YX | = 2|X |. Assuming that

there is only one (deterministic) feasible solution f∗ ∈ YX . Using Shannon entropy, the (max-

imally uninformative) uncertainty over the function space is log2(2|X |) = |X | bits. This is the

amount of information we need to find f∗. Assuming that by “information in the training exam-

ples” we mean the information from the labels alone. In this case each example can contribute a

8

maximum of 1 bit, and we essentially need to see all possible x ∈ X to exactly pinpoint f∗. This

is consistent with the no-free-lunch theorem.

In general, we usually have prior information in one way or another. For example, if it is known

beforehand that f∗ ∈ H ⊂ YX and |H| ¿ 2|X |, then we may not need to see all of X to find f∗.

Even when X is infinite (or even uncountable) and there is no prior information, it is still pos-

sible that the training set alone provides all the information we need to find a solution. For ex-

ample, if training data is unlimited, we can use classification strategies such as k-nearest neigh-

bor that are proven to be universally consistent (i.e. asymptotically optimal) under mild technical

conditions.

On the other hand, when we have perfect knowledge about the task, no learning is necessary

since we can directly identify and implement the solution.

The last question above is particularly interesting. While most learners can readily utilize the

information in the training examples (i.e. information from the labels), it is unclear how the prior

knowledge is utilized in terms of amount of information. Furthermore, there is a distinction be-

tween the prior knowledge that we do have (or can be readily obtained) and the prior knowledge

that is actually utilized by the learner.

Since most practical problems fall somewhere in between the two extremes, it is helpful to

know how much information from our prior knowledge can be utilized by the learner. In cases

where the available training data is limited, this becomes crucial.

The PAC-Bayesian bound [Mcallester, 1999, 2003] allows us to investigate the above questions,

at least approximately. Let P be a prior belief over the function space (P itself can be thought

of as a strategy). The PAC-Bayesian bound is an upper bound to the generalization error of a

strategy Q based on the KL-divergence between Q (the data-dependent “posterior”) and the prior

P . Let z be a random training set of size m, and l̂(Q, z) be the loss of strategy Q with respect to

the (empirical) distribution induced by z. With probability at least 1 − δ over drawings of z, we

have

∀Q l(Q,D) ≤ l̂(Q, z) +

√
KL(Q||P) + ln m

δ + 2
2m− 1

. (2.1)

In theory, we can find a solution with high probability by simply finding a Q such that l̂(Q, z)+√
KL(Q||P)+ln m

δ +2

2m−1 ≤ τ .

Notice that KL(Q||P) is the only term concerning the prior information. It is unclear how the

prior P can be obtained, especially when the available prior knowledge is not in this form. For

now, we assume that all our prior information does indeed go into P .

9

If we ignore the non-dominant terms and all the constants, the bound becomes

l̂(Q, z) +

√
KL(Q||P)

m
≤ τ . (2.2)

Fixing the sample size m, we see a tradeoff between the fit to the training data l̂(Q, z) and re-

specting the prior information KL(Q||P). For any Q that satisfies the bound (i.e. Q a feasible

solution), and when l̂(Q, z) is large (i.e. Q does not fit the data well), KL(Q||P) must be small in

order for Q to satisfy the bound. This means that the information that we use to convince our-

selves that Q is a solution comes from the fact that it very much respects the prior P . We can

therefore use the quantity 1
KL(Q||P) as a measure of the amount of prior information actually uti-

lized by Q, given that Q satisfies the bound. We denote this as ∆(Q,P) = 1
KL(Q||P) .

Note that our interpretation of ∆(Q,P) is more qualitative than quantitative. Nevertheless it

provides a basis in which to measure the amount of prior information actually utilized by a given

solution.

Rearranging terms in 2.2, and plugging in ∆(Q, P), we obtain:

m ≥
(1

(τ − l̂(Q, z))2

) 1
∆(Q,P)

.

Since any feasible solution Q must also satisfy l̂(Q, z) ≤ τ , we have

m ≥
(1

τ2

) 1
∆(Q,P)

.

Fixing τ , we observe the tradeoff between the data (characterized by the sample size m) and

the prior information (characterized by ∆(Q,P)). Figure 2.1 shows this tradeoff. All solutions

that satisfy the bound must belong in the shaded region.

Note that the PAC-Bayesian bound is just an upper bound. In other words, there may exist

Q that is a feasible solution for the task but violates the bound when applied to certain training

sets. We define the amount of prior information in a specific P that can be utilized in solving the

task, independent of any training data, based on the true loss of any Q (i.e. l(Q,D)) as:

∆(P) = sup
Q:l(Q,D)≤τ

∆(Q,P)

10

Prior knowledge (∆(Q, P))

Data (m)

∞

∞

The amount of
data and prior
knowledge needed
to achieve a given
generalization
performance

Figure 2.1: Tradeoff between the amount of prior knowledge and training data needed to achieve a
specific generalization performance

Figure 2.2 shows an example solution space where the shaded regions are the solutions with

true loss l(Q, D) ≤ τ . The solution that maximally utilizes the prior information is marked as

Q′. Note that the KL-divergence not a distance metric so the only distance that is meaningful is

between each Q and the prior P (i.e. KL(Q||P)). Also note that Q′ is not necessarily the optimal

solution.

P

Q’

KL(Q′||P)

Figure 2.2: Solution space. Q′ utilizes the most information from P .

∆(P) cannot be easily computed in practice since it depends on the true loss l(Q,D) and re-

quires a maximization over all strategies Q. However, if D is known, we can approximate ∆(P)

using only the solutions that are actually found by the learner. This will be illustrated in the next

section.

2.1.3 Features and Prior Knowledge: An Illustration

There exist real-world problems where adding more data is no longer an option. This could be

due to limitations in computational/storage resource, or the fact that it is too costly to obtain

11

more data. In this case, incorporating more prior knowledge into the learning system becomes

crucial, and possibly the only option. However, in contrast to adding more data, incorporating

more “knowledge” can be a challenging problem, which is still largely unsolved.

While there are many ways of incorporating prior knowledge into the learning system, we be-

lieve that the most fundamental is through the construction of good models. For classification

problems this usually translates to constructing good features. The learner itself can often be-

come inconsequential once the “right” models are constructed. Model construction (as opposed

to model selection), however, is rarely done automatically and is sometimes considered an “art”.

Tools such as Bayesian inference or MDL can be powerful in selecting among alternative models

but they do not tell us how to come up with the models in the first place. SVM learning, for ex-

ample, involves the choice of a good kernel, which can be seen as a form of model construction,

where features are implicitly constructed.

Equipped with the definition from the previous section for the contribution of prior informa-

tion to a task, we illustrate our point with a simple but non-trivial real-world classification task.

In particular, we wish to evaluate the amount of information utilized by the learning system when

different kinds of features are used in learning. Ultimately, we seek evidence that this amount of

information directly affects the generalization performance.

We shall view the learning task as consisting of two stages.

• The first stage involves feature construction. The outcome of this stage is a feature transfor-

mation that will be applied to every task input.

• The second stage involves finding a classifier from a class of functions on the (transformed)

input features. This is usually named the hypothesis space. We will restrict ourselves to

only linear functions.

We will employ the SVM as the learner in the second stage. The use of kernels in SVM allows

an implicit transformation of every input to a possibly higher dimensional feature space. This can

itself be viewed as the first stage, or an extension to the first stage.

We assume that the prior P assigns uniform probability to every function in the hypothesis

space and zero elsewhere, where “elsewhere” refers to all other functions not in the hypothesis

space. For the SVM the hypothesis space consists of linear functions on the kernel-induced feature

space.

The inputs of this task are images of single handwritten strokes, extracted from actual hand-

12

written Chinese characters. The task is to differentiate between images containing horizontal strokes

from those with vertical strokes. Figure 2.3 shows some examples.

Figure 2.3: Example images of horizontal (top row) and vertical (bottom row) strokes

Each image is a bitmap of 64-by-64 pixels. We added translations and slight rotations in each

example to simulate the variations in locations and orientations of single strokes relative to the

other strokes in actual, multi-stroke characters.

We will evaluate three types of features:

1. A baseline, “knowledge-poor” approach to this problem is to simply use the raw input fea-

tures, i.e. to represent each image as a 4096-dimensional vector of pixel values. One could

then employ various types of kernels to build nonlinear features over the raw inputs. We

note that this transfers the feature construction problem to a kernel construction problem.

2. For the second, more “knowledge-rich” set of features, we employ the weighted directional

histogram (WDH), which is known to be particularly useful for classifying handwritten Chi-

nese characters. Each example is transformed into a 392-dimensional vector summarizing

edge directions over different regions of the input image.

3. The third set of features, which is very task specific, is based on the knowledge that each

stroke can be approximated by a straight line segment, and that the Hough transform can

be used to extract line segments from an image. We perform a Hough transform on each

input image and extract the longest detected line segment. The positions of the center and

the endpoints, as well as the length and angle of the extracted line segment are then used to

construct an 8-dimensional feature vector representing each example. We will call this the

Hough feature.

For each feature set, we perform SVM learning with linear, polynomial as well as RBF kernels.

SVM parameters (e.g. polynomial degrees) are optimized during training with grid search based

13

on cross-validation error estimates. A separate test set is used to estimate the test error (we as-

sume zero-one loss in this task). Figure 2.4 shows the results.

Linear Polynomial RBF

Pixel

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

Number of training examples

E
rr

or
 r

at
e

Training error
Test error

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of training examples

E
rr

or
 r

at
e

Training error
Test error

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of training examples

E
rr

or
 r

at
e

Training error
Test error

WDH

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

Number of training examples

E
rr

or
 r

at
e

Training error
Test error

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of training examples

E
rr

or
 r

at
e

Training error
Test error

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of training examples

E
rr

or
 r

at
e

Training error
Test error

Hough

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

Number of training examples

E
rr

or
 r

at
e

Training error
Test error

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of training examples

E
rr

or
 r

at
e

Training error
Test error

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of training examples

E
rr

or
 r

at
e

Training error
Test error

Figure 2.4: SVM learning results

With the raw pixel representation, we observe a large performance improvement when moving

from linear to the polynomial and RBF kernels. While the raw pixel representation retains all the

information in the input, the information crucial to the classification task (i.e. the stroke angle in

this case) is “hidden” in a nonlinear manner within the pixel values. (Note: this “information” is

between X and Y and should not be confused with the information for the learning task itself.)

With both the WDH and the Hough features, we do not see significant difference in general-

ization performance when we move from linear to the polynomial and RBF kernels. This suggest

that the high dimensional feature space afforded by the polynomial or the RBF kernel is not nec-

essary when the nonlinearity (in this case, from pixel values to line directions) is already captured

in the feature representation of the input images. This suggests that once the key nonlinearity (or

the relevant latent feature) is revealed, no significant performance gain can be achieved except by

adding more data.

14

We assume the performance threshold τ = 2.5%. The number of training examples required

to achieve a test error of less than 2.5% is around 40 for the pixel features, 20 for WDH, and less

than 10 for the Hough features. These are the minimum number of examples needed in each case

to achieve the specified performance. In other words, these solutions are the most likely to max-

imally utilize the information in the prior P in each respective case. With regard to Figure 2.1,

they should be close to the boundary of the shaded region, and we would like to estimate the

value of ∆(P) in each of the three cases.

The definition of ∆(P) involves finding a solution with the smallest KL(Q||P). We would ap-

proximate this with the maximum margin solution found by the SVM. Denoting the maximum

margin linear function fw where w is the weights in the feature space, using the idea of Bayes ad-

missibility [Herbrich and Graepel, 2001], this solution has the same loss as a uniformly distributed

Gibbs strategy over a hypersphere centered on fw with a radius based on the margin. Let Qw de-

note this strategy, then KL(Qw||P) can be approximated using the log-ratio between the volume

of the sphere (VQ) and the volume of the support of P (VP).

Let Υ(w) be the normalized margin of fw with respect to the training set, defined by

Υ(w) = min
i=1,...,m

yi〈ϕ(xi),w〉
||w|| · ||ϕ(xi)|| ,

where ϕ(xi) is the feature vector of input xi in the kernel-induced feature space. Then KL(Q||P)

is given by [Herbrich and Graepel, 2001]:

KL(Qw||P) = ln
(VP

VQ

)
≤ d ln

(1
1−

√
1−Υ2(w)

)
+ ln(2)

where d = min(m,nϕ) (nϕ is the dimension of the feature space, which can be infinite as in the

case of the RBF kernel).

From the margin, we obtain an upper-bound for KL(Qw||P), and therefore a lower-bound for

∆(Qw, P). Using the actual observed margin of the learned solution from the training data, we

obtain Figure 2.5. As approximations for ∆(P) these certainly are not accurate (they are simply

lower bounds), but the qualitative pattern as expected in the previous discussion is evident.

Note that each point in Figure 2.5 comes from a solution based on different prior (P). They

all achieve roughly the same true loss (as estimated by the test set). The knowledge-rich features

definitely show that the induced hypothesis space allows more information to be utilized by the

learner, and therefore needs less training data to achieve the same performance. Interpreting the

15

0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25

30

35

40

45

50

∆(Q, P)

m

Pixel (RBF)

WDH (RBF)

WDH (linear)

Hough (linear)

Hough (RBF)

Figure 2.5: Data-Knowledge Tradeoff

features as Bayesian priors allows us to gain insight into their contributions in terms of informa-

tion used in learning.

2.2 Working for the Right Reason

The idea of feature construction as an implicit prior, together with the PAC-Bayesian bound, can

be used as a basis for a principled approach to learning classifiers that generalize well.

Recall Eq. 2.1. Given a fixed prior P , and a fixed training set with size m, all feasible solu-

tions Q for a given task must satisfy

KL(Q||P) ≤ τ2(2m− 1)− ln
m

δ
− 2 .

We will not be concerned with the actual numerical values of this constraint but rather the fact

that all strategies that deviate too much from the prior need not ever be examined by the learner.

On the other hand, any strategies within this bound that work well on the training data (i.e.

small l̂(Q, z)) will automatically generalize well.

An optimal learner will only search for solutions within this “feasible” region – these are the

solutions that work for the right reason according to P . This is illustrated in Figure 2.6.

Searching for solutions within the feasible region can be realized and automated if we can

come up with a structure that characterizes all the solutions that are close to P .

A simple example of such structure is to partition the entire function space into an ordered

16

P Strategies that

will generalize

well

Need not look further

Figure 2.6: Feasible Solution Space

sequence of subsets (F1,F2, . . .). Each subset is then assigned a probability mass in an exponen-

tially decaying manner. Equivalently, we can provide an encoding of each subset. If we use a proper

prefix code, the probability for each subset is then given by Kraft’s inequality based on the length

of the code, where longer codes have smaller probability. The probability mass of each subset can

then be distributed uniformly to all its members.

Given such a partition, we can find a feasible solution by finding a solution within each par-

tition, starting with the one having the shortest code. Assuming that we use binary codes, and

that the solution Q has uniform distribution over a volume VQ within partition F . Let VF be the

volume of F and that L is the code length of F . KL(Q||P) is then given by

KL(Q||P) =
∫

Q

1
VQ

ln
2LVF
VQ

dF

= L(ln 2) + ln
VF
VQ

= L(ln 2) + KL(Q||PF)

where PF denotes the prior P restricted to F .

We see that there is a price L ln 2 for solutions in partitions with code length L. At certain

point L will be too large for KL(Q||P) to remain within the bound and the search can be stopped.

A brute-force search within the feasible space may still be computationally infeasible. We will

see that information within the training examples, other than the label itself, can be exploited to

facilitate this search.

17

2.3 Domain Knowledge and EBL

We use the term domain knowledge to refer to general understanding of how the world works,

from an expert’s point of view. When this knowledge has been precisely encoded in an appropri-

ate vocabulary, the resulting collection of information will be referred to as the domain theory.

Expert-supplied domain theory has the strength that it can provide information that can oth-

erwise be very hard to obtain statistically, e.g., the concept of a “line” and “angle” in an image.

However, with regard to any specific real-world task, we generally do not place belief in any part

of the domain theory itself unless there is evidence that supports such belief. We rely on real ex-

amples to supply such evidence.

Explanation-Based Learning (EBL) can be viewed as a learning paradigm where actual train-

ing examples are used to extract task-relevant information from an expert-supplied domain theory.

This is achieved through explanation of the training examples. Being able to explain the training

examples is the evidence for the relevance of the particular part of domain theory with respect to

the task.

Statistical inference techniques can be powerful and robust but typically rely on the availabil-

ity of good models. Bayesian inference, for example, is an excellent model selection tool but it

does not tell us how to construct models. We can think of the domain theory as a model gener-

ator. Tools such as Bayesian inference can then be utilized by the explanation process to assess

how well the models fit the real world data.

We use the term model to refer to either an abstract description of objects or a collection of

distributions over objects (or both). We use the term feature to refer to either a function on the

raw input or the output of such functions.

2.3.1 Semantic Features

Given a label, a concept, or an object category, a domain expert can usually provide information

that exposes further structure in the concept or class of objects. For example, parts that consti-

tute an object can be identified, together with the relationship between parts.

However, such information is often expressed in a vocabulary that is different from what is

available in the raw input. For example, a handwritten character can be easily described in terms

of the strokes that form the character, but strokes are not directly observable if the inputs are im-

ages.

18

If strokes live in a space S while the input images live in X then knowing the relationship be-

tween S and X allows us to exploit the structure in S in solving our tasks. We use the term se-

mantic features or high-level feature to refer to features on S. This definition is certainly relative,

and in general there can be a hierarchy of features with multiple levels of abstractions. In this

sense, the class label itself can be viewed as the highest level feature.

If the domain theory supplies a model that connects semantic features to the input X , then we

can infer the hidden features from the observed inputs. These models can be logical, probabilistic,

or a mixture of different models based on the specific domain theory. We use the term explana-

tion to refer to the process of inferring higher-level features from the observables. In the case of a

logical model, the explanation process may involve theorem proving. In the case of a probabilistic

model, the explanation process involves probabilistic inference (e.g. Bayesian inference).

Notice that generalization bounds such as the PAC-Bayesian bound only utilizes the label (Y)

information (i.e. between X and Y, characterized by the empirical loss). Semantic features allow

the learning system to obtain additional information within the input X itself. Turning this in-

formation into a form usable by the learning system is the key challenge that we address in this

work.

2.3.2 Well-formed Concepts

Semantic features impose both a structure over the input space X and a restriction over the so-

lution space. For example, most images cannot legitimately contain a handwritten character, and

that a horizontal stroke should be distinguished from a vertical one based on its angle.

We can think of the space of solutions when all the inputs are given in terms of the semantic

features. We use the term well-formed concepts to refer to solutions in this space. When a solu-

tion that corresponds to a well-formed concept actually performs well on the training example, we

have strong evidence that it works for the right reason, and therefore should generalize well.

A direct, but potentially costly approach to learn well-formed concept is to perform inference

on every input to reveal the hidden features. For example, a stroke extraction procedure can be

applied to every input image to extract stroke configurations. The extracted strokes can then be

used to make decision about the class label. This can be computationally costly and the stroke

extraction procedure may also be vulnerable to noise if not properly designed.

Instead, EBL approaches focus on spending the computational resources during training, but

learn efficient and robust feature detectors to be used in the final solution. This is depicted in Fig-

19

ure 2.7.

Well-formed

Concepts

Class label

Hidden

Features

Raw input

Feature

Detectors

Figure 2.7: Semantic/High-level features

2.3.3 Well-Formed Concepts and Bayesian Prior

With well-formed concepts, we now have a principled way to connect our domain theory to the

Bayesian prior P . In particular, each well-formed concept is associated to a partition over the

function space as described in section 2.2. From the coding point of view, this also suggests that

simple concepts are associated with shorter codes, and therefore are always explored first com-

pared to more complex concepts.

Notice that we utilize the training examples in two different ways. First, the information in

both X and Y is used in the explanation process to reveal the hidden features and the space of

well-formed concepts. Learning the final classifier can then proceed via robust statistical tech-

niques and this mainly utilizes only the label information (i.e. to find solution that has low em-

pirical loss).

20

Chapter 3

Model Construction for Phantom
Examples

3.1 Introduction

Combining generative and discriminative approaches to statistical learning has been an important

research direction in machine learning and pattern recognition [Tong and Koller, 2000; Lin et al.,

2005; Jaakkola and Haussler, 1999; Raina et al., 2004]. The generative approach models the data

generation process explicitly, usually in a top-down manner, e.g. modeling Pr(X|Y). This is often

consistent with the natural way we describe objects. For discriminative tasks (e.g. classification)

however, the generative approach may perform poorly when the models are inadequate.

Discriminative learners model the decision boundary directly, e.g. by modeling Pr(Y |X) di-

rectly, and can outperform generative learners when the training size is large [Ng and Jordan,

2002]. However, it is usually much harder to incorporate prior knowledge into the learning system.

We propose the use of artificial training examples, which we call phantom examples as a mean

to incorporate generative prior knowledge into a discriminative learner.

Artificial, or “virtual” training examples have been used in learning systems under different

settings. [Baird, 1992] uses a document image defect models to create new examples by subjecting

the original examples to various noise or defects. [Poggio and Vetter, 1992] uses known symme-

tries and transformations to create new examples that are new “views” of the original examples.

Invariant transformations are also used to create “virtual support vectors” [Burges and Schölkopf,

1996; Decoste and Schölkopf, 2002].

These works make use known transformations that are applied to the input examples in order

to generate new ones. These transformations are known to preserve the label or class-membership

of the examples and are predefined for each specific task. While easy to apply, such transforma-

tions do not task advantage of extra information within the content of each input example that

can be helpful to the learning task. In order words, there is no interaction between the training

examples and prior domain knowledge involved.

21

[Miyao and Maruyama, 2006] makes use of online strokes information of handwritten charac-

ters and learns a generative model for Chinese characters at the strokes level. Its motivation was

that the use of stroke-level modeling can capture more of the variability in handwritten Chinese

characters. The “hidden”, stroke-level information is provided by online examples. There is in-

teraction between the training examples and the prior knowledge in terms of fitting the strokes

distribution to a predefined model.

Our proposed phantom examples approach can be seen as a generalization of the above ap-

proaches. The invariant transformations can be seen as a generative model where each task in-

stance is generated by a random transformation applied to a prototype, which is in turn drawn

from some underlying distribution.

We use the term “model” to refer to either a particular probabilistic source, or a collection of

(maybe parametric) probabilistic sources, depending on the context.

In most real-world tasks the range of possible models will be huge. Take handwritten character

images for example, the final image may be affected by the writing style of the writer, the writing

implement, the digitization noise, and even the mental state of the writer. Most of these factors

would be unobservable, but appreciation of such factors may substantially benefit the learning

system.

We would like to build a system that admits an expressive space of possible models, and learn

an appropriate model after looking at the actual training examples. The key to successful learning

in such space is that only aspects of the domain theory that are actually “observed” in the train-

ing examples will be modeled. The learned model is then used to generate the phantom examples,

which are added to the training set for subsequent discriminative learning.

In the ideal case where the true model is known, the learning problem becomes easy. Since,

in principle, we could use the model to generate an arbitrarily large training set and as long as a

consistent learner is used, we can allow an arbitrarily rich hypothesis space.

In practice, we face the following three challenges:

1. How do we deal with unobservable, conceptual objects or “hidden features”?

2. A domain theory may suggest many (or even infinitely many) potential models, how do we

find an adequate one?

3. It is almost certain that our models are wrong. What is the risk when we employ phantom

examples that are generated from such models?

22

We associate the first challenge with the process of “explaining” the training examples. An ex-

planation of a training example with respect to its class label reveals the conceptual objects/features

that, according to the domain theory, explains why the example qualifies as a member of that par-

ticular class. We note that the explanation process is meant for labeled training examples, and is

therefore only needed during the training process. Explanations can either come from an exist-

ing information source (such as online examples), manually constructed by an expert, or extracted

from the training examples by an automated algorithm – usually involving some form of inference

(logical and/or probabilistic).

The second challenge is usually associated with the “model selection” problem. Consider the

task of distinguishing a pair (or more generally, a set) of mutually-similar Chinese characters,

where the differences among these characters can be very subtle. It is conceivable that each set

of these similar characters needs a different model, tailored such that informative parts of the

characters are modeled with more details. Conventional model selection techniques such as AIC

[Akaike, 1974], BIC [Rissanen, 1978] and MDL [Schwarz, 1978] rely on an a priori defined space

of models, where the models are evaluated against the training data in order to find a balance be-

tween good fit and model complexity. With these approaches, we would need to either predefine

a huge set of possible models to accommodate all such sets, or hand-tailor a smaller, relevant set

of models for each task. The former method requires the system to evaluate too many irrelevant

models and risk overfitting to a wrong model, while the latter requires too much manual effort

and is often impractical.

In order to work with a huge and expressive space of possible models, some structure within

the space would be necessary. One common approach is to predefine a hierarchy of models, usu-

ally sorted from the simplest to the most complex. We would like to introduce a structure beyond

that of a simple hierarchy and that does not require the system to evaluate all potential models.

A suitably designed domain theory can supply the conceptual objects and relationships between

such objects that in turn create a structure over the space of possible models.

We address this problem by employing an automated, adaptive strategy where an initial, sim-

ple (or trivial) model is refined in stages, and guided by observing how the current model “ex-

plains” the training data. Such system allows the possibility of employing a very expressive space

of potential models, but for any particular task, only a small fraction of this space needs to be ex-

plored. We call this process explanation-based model construction.

The final challenge deals with the analytical properties of a system trained with phantom ex-

23

amples. Due to the use of incorrect models, it is no longer true that the larger the training set,

the better the learning result. We will address this issue both analytically and empirically through-

out this chapter.

3.2 Analysis

3.2.1 Domain Knowledge Bias

Consider a binary classification task where given the input x ∈ X we try to predict the label y ∈
{−1, 1}, assuming that there exists an underlying joint distribution D for (x, y) ∈ X × Y which

is unknown. When training a discriminative learner, we present the learner with labeled examples

from two different classes, sampled from their respective underlying true distributions p0(X) =

PrD(X|Y = −1) and p1(X) = PrD(X|Y = 1).

We can think of communicating the distributions p0(X) and p1(X) to the learner through the

training examples. However, for a finite training set, the empirical distribution may be inadequate

for the learner to come up with a good decision boundary.

We augment the training set by generating phantom examples drawn from class-specific gen-

erative models with parameters θ = (θ0, θ1), where θ0 ∈ Θ0 describes the model for class −1 and

θ1 ∈ Θ1 for class 1. The corresponding distributions are denoted qθ0
0 (X) = Prθ0(X|Y = −1) and

qθ1
1 (X) = Prθ1(X|Y = 1) respectively. Both θ0 and θ1 are obtained by fitting the parameters to

the real training set.

For complex, real-world problems, it is extremely unlikely that our space of generative models

contains the true distributions p0 and p1. However, we expect that q0 and q1 will be closer to

the true distributions when tuned with more real examples. Using KL-divergence as a measure of

closeness, we define the bias of the trained generative models as follows:

Bias(θ0, θ1) = KL(p0||qθ0
0) + KL(p1||qθ1

1)

where KL denotes the KL-divergence.

Since the KL-divergence is nonnegative, there exist a minimal bias

ε∗θ = inf
θ0,θ1

Bias(θ0, θ1).

We call this the bias of our domain knowledge. It is reasonable to expect that, when trained with

24

more real examples, the resulting models θ0 and θ1 will have bias εθ0,θ1 closer to ε∗θ.

The bias provides an upper bound to the deviation from the optimal Bayes error rate when

distributions q0 and q1 are used to classify test examples which are drawn according to p0 and

p1. This is given by:

Proposition 1. Assume that the class prior for each class is uniform (i.e. Pr(Y = −1) = Pr(Y =

1) = 1/2). Let ε∗ be the optimal Bayes error for examples drawn according to p0 and p1. The

expected classification error when qθ0
0 and qθ1

1 are used to make decision (instead of p0 and p1),

denoted εθ0,θ1 , is upper-bounded by:

εθ0,θ1 ≤ ε∗ +

√
Bias(θ0, θ1)

2
(3.1)

Proof.

εθ0,θ1 − ε∗ ≤
∑

X

1
2
|p0(X)− q0(X)|+ 1

2
|p1(X)− q1(X)|

≤ 1
2

(√
2KL(p0||q0) +

√
2KL(p1||q1)

)

≤
√

KL(p0||q0) + KL(p1||q1)
2

where the first inequality is due to [Devroye et al., 1996] and the second inequality employs the

Pinsker’s inequality.

Proposition 1 tells us that as long as the generative models are close enough to the true mod-

els, the achievable error rate will be close to the true optimal. Depending on the problem, it may

or may not attain the true optimal, and this largely depends on the amount of information our

generative models can provide regarding the decision boundary of the problem.

Assume that the space of classifiers learnable by our discriminative learner includes those with

performance arbitrarily close to the optimal Bayes error. Let εÑ,M,N be the expected error of the

resulting classifier when N real examples and M phantom examples are used to train the discrim-

inative learner, where the phantom examples are generated using a model tuned with Ñ real ex-

amples (Ñ and N will usually be the same, i.e. all real examples participate in tuning the gener-

ative models as well as training the final classifier). Let ε∗ be the best possible error rate (Bayes

optimal error) for the particular problem distribution D, we expect that εÑ,M,N → ε∗ as the num-

ber of real examples N → ∞ (holding Ñ and M fixed), assuming that a consistent discriminative

25

learner is used.

The more interesting question would be regarding the expected performance when we increase

the number of phantom examples used in the training of the discriminative learner. This largely

depends on the quality of the generative models used, which in turn depends on the quality of the

prior domain knowledge. Regardless of this, we expect that εÑ,M,N → ε∗θ when both Ñ , M → ∞
(holding N fixed).

As the phantom set grows, we can expect that the amount of information that it extracts from

the generative models to reach an asymptote (the corresponding error rate would be ε∗θ). If the

generative models are helpful (good domain knowledge), the effect will be positive; if the genera-

tive models are harmful (bad domain knowledge), the effect will be negative.

Another advantage of using phantom examples, in addition to the improved classification accu-

racy, is the robustness to classification noise. With the domain knowledge, the classifier is learned

not only on the noisy distribution given by the training examples, but a distribution biased to

one justified by the domain theory (e.g. the generative models for the hidden strokes), making

the classifier less likely to fit the noise. When tested on the (noise-free) testing data, the classifier

may more likely reveal the true labeling of the examples rather than the noisy labeling.

3.2.2 Model Space

Since we tune our generative models using only a finite number of real examples, it is susceptible

to overfitting. This in turn will affect the quality of the actual phantom examples generated. We

would like our system to adaptively select a model that achieves a balance between good fit and

model complexity.

Instead of using an a priori fixed generative model for each class of objects, we allow a (pos-

sibly infinite) space M of different generative models, each with different complexity and can be

parameterized differently. As mentioned earlier, learning in the space of models can be greatly

facilitated by having a structure over the model space M. The structure should ideally allow a lo-

cal search within model classes, where models of similar complexities are close to each other. For

this work, we assume that each object class can be decomposed into conceptual parts. The model

space is then constructed based on the models for individual parts.

We first define the variables involved in any particular model. We use X to denote the input

space (for example, images) and X the corresponding random variable that represents an input

instance, where X takes values from X . It is often the case that X is a high-dimensional space

26

where each individual component contains very little information about the class label (e.g. pixels

in an image). Modeling a distribution over X is therefore undesirable. With prior domain knowl-

edge, however, we can usually identify a higher-level, low-dimensional space of “hidden” variables

(such as properties of strokes in a character), denoted here as Z, which takes values from Z. We

assume that there is a function φ : Z 7→ X that converts each instance of Z into a corresponding

input-space instance X = φ(Z).

The variable Z can be further decomposed as:

Z = (ZΓ1 , ZΓ2 , . . . , ZΓk
)

where each Γi, (i = 1, . . . , k) denotes a model for part i of the object class/category. Each model

Γi is represented by a d(Γi)-dimensional random vector, which we denote as

ZΓi = (Z1
Γi

, Z2
Γi

, . . . , Z
d(Γi)
Γi

), i = 1, . . . , k.

Therefore, Z is a d̃-dimensional random vector where d̃ =
∑k

i=1 d(Γi).

The model Γi for each object part i can be chosen differently from a set of possible models Γ ∗.

For example, when modeling strokes in a handwritten character, each stroke can either be mod-

eled as a straight line segment or a curve segment. In this case, let Γ ∗ = {Γline,Γcurve}. Then

each Γi can either be Γline or Γcurve.

The complete generative model for a particular object class C that consists of k object parts

can be fully specified by selecting an object model for each part. We use a k-tuple ΓC = 〈Γ1, . . . , Γk〉
to represent this selection. Again, using the stroke models above, a character with 3 strokes, for

example, can have a particular model 〈Γline,Γline,Γcurve〉, indicating that the first 2 strokes are

modeled as straight lines, while the 3rd stroke as a curve segment.

Considering now a binary classification task between some object classes C0 and C1. Let k0

and k1 denote the number of parts in each object class respectively, then the space of possible

models for this particular task, MC0,C1 , consists of all possible model combinations for C0 and

C1, that is,

MC0,C1 = {〈ΓC0 ,ΓC1〉}

where ΓC0 and ΓC1 are k0-tuple and k1-tuple describing the respective choices of part models for

each class.

27

By decomposing each object into parts and allowing the possibility of modeling each part dif-

ferently, we have introduced a structure within the model space. By taking advantage of this struc-

ture, we can perform adaptive model refinement that does not require the system to evaluate ev-

ery possible model and can therefore entertain a much richer space of models.

3.2.3 Model Space and Well-Formed Concepts

Each member of MC0,C1 (i.e. an instance of 〈ΓC0 , ΓC1〉) can be seen as representing a well-formed

concept discussed in Chapter 2. Each pair of distributions (over Z) for class C0 and C1 defines an

implicit decision boundary, which corresponds to the Bayes optimal decision for the task if these

were the true task distributions.

From a Bayesian point of view, the search for the optimal model can be seen as optimizing a

posterior on the model space:

Pr(M|z) ∝ Pr(z|M)Pr(M)

where M represents a model in M and z is the training data.

Since this is a classification task, the data likelihood, Pr(z|M) should be based on the empiri-

cal classification loss and not the data modeling probability within the individual class. For exam-

ple, Pr(z|M) =
∏

i Pr(yi|xi,M) but not Pr(z|M) =
∏

i Pr(xi, yi|M). In our algorithm, we directly

estimate Pr(z|M) using the empirical error rate of a classifier trained using the augmented data

set.

For Pr(M), it is natural to assign less probability to models that are more complex. Since, by

design, we can only reach a more complex model by refining a current one (e.g. by refining the

model for a specific object part), we can perform a best-first search on the model space based on

the estimated Pr(z|M) alone without the need to evaluate all possible models. Note also that this

best-first search is consistent with the general search strategy that we outlined in Chapter 2.

3.3 Domain Theory

We illustrate our approach with the task of distinguishing similar Chinese characters. This section

describes the prior domain knowledge about Chinese characters that we use in our experiments.

We employ a rather simple domain theory for describing handwritten Chinese characters. Never-

theless, we will show that this already results in improved classification performance through the

use of phantom examples.

28

Our domain theory consists of three parts. First, we provide a prototype model for each char-

acter. These prototypes can either be manually constructed by an expert, or extracted from an

existing vector font database. Each prototype consists of several parts, where each part corre-

sponds to a particular stroke in the character.

The second part of the domain theory consists of different models for each stroke. Here, we

employ only two possible models: either a straight line segment or a quadratic Bezier curve seg-

ment. Using the notation from the previous section, the set of possible stroke models is Γ ∗ =

{Γline,Γcurve}. A character C0 that consists of k strokes can therefore have 2k different models.

Both models assume a uniform width (i.e. stroke thickness) for each stroke. The line model uses 5

parameters for each stroke (the two endpoints, plus the width), while the curve model uses 7 (the

3 control points, plus the width). This can be summarized in our notations, with

ZΓline
= (x1, y1, x2, y2, w),

ZΓcurve = (x0, y0, x1, y1, x2, y2, w),

where k(Γline) = 5, and k(Γcurve) = 7. In our actual system, a variation of the above parame-

terization is often used, where, instead of absolute coordinates, the parameters for each stroke ZΓi

(except the first stroke) are relative to the previous stroke:

Z ′Γline
= (δx, δy, δθ, δl, δw),

Z ′Γcurve
= (δx, δy, δθ1, δl1, δθ2, δl2, δw).

The re-parameterization is intended to reduce the dependency among the parameters, and to sim-

plify the distribution (e.g. making it more Gaussian-like). This is illustrated in Figure 3.1.

The final part of our domain theory consists of a set of qualitative constraints between strokes

in each character. These constraints are optional, but it allows the expert to incorporate addi-

tional information into the models. We use the 24 atomic relations between oriented line segments

as introduced in [Moratz et al., 2000] for qualitative spatial reasoning. These relationships natu-

rally extend to curve segments as well, and can be used to indicate and/or enforce intersections,

junctions etc between strokes.

To specify any of the atomic relations between two directed line segments, four relationships

must be given. Let p1 and p2 be the two endpoints of line segment Lp, q1 and q2 be the two end-

29

(x, y)

θ

l

δθ

δθ1

δθ2

1 2

3

4

5

Character with 5 strokes

δl

δl1

δl2

stroke 2 relative to stroke 1 (both straight lines)

stroke 4 (curve) relative
to stroke 2

δy

δx

δy

δx

Figure 3.1: Relative parameters between strokes (line widths are not shown)

points of line segment Lq. The four relationships are:

• Location of p1 relative to Lq

• Location of p2 relative to Lq

• Location of q1 relative to Lp

• Location of q2 relative to Lp

Each relative location can be either left(l), right(r), start(s) or end(e). Figure 3.2 shows two ex-

ample relationships.

3.4 Explaining the Examples

The process of explaining the examples is central in any EBL approaches. Functionally, it serves

to reveal any hidden structure within each training example as predicted by the domain theory.

From an information point of view, it is a way to exploit information within the input X itself.

30

p1

p2

q1

q2

Lp

Lq

Relation :lrrr

p1

p2

q1

q2

Lp

Lq

Relation : errs

Figure 3.2: Two examples of qualitative constraints

“Classical” EBL requires that an explanation logically derives the class label from the observ-

able inputs, using only statements contained within or derivable from the domain theory. When-

ever a domain theory is adequate for the task, there exists a non-empty set of possible inference

paths from any legitimate inputs to the class label. The actual training set serves to identify the

subset of inference paths that are relevant to the particular task and to construct a hypothesis

that is a generalization of this subset (see Fig. 3.3). Statistical robustness can be added by sub-

jecting the derived hypothesis to test data, as proposed in [DeJong, 2006].

Input Label

Inference paths

Training set

Hypothesis

Figure 3.3: EBL

We note that in the classical EBL approach, the burden of being able to derive the label from

the input lies entirely within the domain theory. This can be troublesome if the observable inputs

are conceptually low-level features, such as pixels in image.

Instead of insisting on strictly logical inference, we can allow probabilistic inference by replac-

31

ing the set of possible inference paths with the set of possible generative models. The search of

possible inference paths then becomes the search of useful models.

As described in the previous section, our model space is structured by decomposing the class

object into parts. These parts are described by hidden variables Z. Explaining the training exam-

ples then involves finding the most likely Z that corresponds to each input X.

Fixing the model (i.e. Γ), the explanation process can be viewed as an instance of Bayesian

inference, where a prior over possible ZΓ is given by the domain theory. The posterior Pr(Z|X) is

given by the Bayes rule:

Pr(ZΓ|X) =
Pr(X|ZΓ)Pr(ZΓ)

Pr(X)

Taking the logarithm, we find the ZΓ that maximizes

lnPr(ZΓ|X) ∝ ln Pr(X|ZΓ) + ln Pr(ZΓ)

If we define loss functions H(φ(z), x) = − 1
η1

ln Pr(x|z) and L(z) = − 1
η2

ln Pr(z), (both η1 and

η2 positive constants), then finding the most likely ZΓ (denoted z∗) is equivalent to the following

optimization problem:

Find: z∗ = arg min
z∈Z

H(φ(z), x) + ηL(z) (3.2)

where the constant η = η2
η1

is a weighting parameter balancing between H and L.

The function φ is as defined in section 3.2.2. H is a distance metric between the two images x

and φ(z), For H, we used a Hausdorff-like distance [Rucklidge, 1996],

H(x1, x2) = x1 · D(x2) + x2 · D(x1)

where D(x) represents the distance transform of image x (that is, D gives the distance from each

pixel to the nearest nonzero pixel). L penalizes violation of any qualitative constraints (see section

3.3) specified by the prototype character. We penalize each violation by the minimal distance that

the target point has to move in order to satisfy the qualitative relationship.

The final, tuned generative model is a distribution over Z. Notice that in the above setting we

have a prior Pr(Z) based on the domain theory and we use this to find the most likely Z for indi-

vidual example. The Z’s for individual example are then used to estimate the generative model,

parameterized by θ. If we treat Z as latent variables, we can in fact find the generative model

without the need to find the individual Z’s using an EM-like algorithm. We do not pursue this

32

due to the complexity involved, and to avoid potential overfitting. Instead, we simply trust the

prior as given indirectly by the domain theory.

3.5 Algorithm

Given a binary classification task between character C0 and C1, our algorithm attempts to con-

struct an adequate model for this task by performing a greedy search in the structured space

MC0,C1 of possible models. The “search operator” here is a refinement operation, where a part

of the current model is replaced with a more complex one. For simplicity, we assume that a model

with more parameters is more complex than one with less parameters. Therefore, the curve model

Γcurve is considered more complex than the line model Γline. It follows that, the simplest model

in MC0,C1 is 〈ΓC0 , ΓC1〉 with ΓC0 = 〈Γline, . . . ,Γline〉 and ΓC1 = 〈Γline, . . . ,Γline〉.
The algorithm is outlined below:

1. Pick the simplest model M = 〈ΓC0 , ΓC1〉 from MC0,C1 to be used as the initial model.

2. Repeat

(a) Estimate the parameters Z of the current model M for each training example and learn

a distribution over Z.

(b) Generate phantom examples from the calibrated model.

(c) Learn a classifier with the augmented training set and perform cross-validation to esti-

mate its classification accuracy.

(d) If the accuracy is satisfactory, or if no further refinement to M can be made, stop.

(e) Pick a single stroke component Γi from vector 〈ΓC0 , ΓC1〉 such that its refinement would

result in a model M ′ that best fits the training character images. We then replace the

current model M with the more sophisticated M ′.

Step 2a requires that we extract stroke-level parameters from each training image. This would

be easy if online sample is used since the stroke information is readily available. For offline sam-

ple where only pixel information is available, we perform the following optimization as described

in Section 3.4. We use a simulated-annealing algorithm to perform the optimization and in most

cases the automatically extracted strokes are satisfactory (close to what a manual stroke-labeling

would have produced).

33

We model the distribution for Z as a multivariate Gaussian, where the mean and the covari-

ance are estimated from the extracted stroke parameters in the above step.

For step 2b, each phantom example is generated by first sampling from the calibrated Gaus-

sian distribution, then tested against the qualitative constraints. Examples violating the con-

straints are simply discarded. This rejection sampling process results in a rather complicated gen-

erative model which reflect our knowledge about Chinese characters.

For step 2c, we perform 5-fold cross-validation on an augmented training set using a support

vector machine with a Gaussian kernel. 5000 phantom examples are drawn from the calibrated

model for each fold of the cross-validation. The cross-validation is repeated five times (i.e. a total

of 25 SVM trainings are performed) and the average accuracy is recorded.

If the classification accuracy is not satisfactory, and if there are still possible refinements, i.e.,

there are still strokes that use the simpler stroke model Γline, we pick a stroke for refinement by

replacing it with the more sophisticated model Γcurve in step 2e. Each refined model is evaluated

by locally refitting the new stroke parameters for each training image using the same objective

function as in Eq.(3.2). The one that achieves the best fit (i.e. lowest total loss) among the candi-

date refinements is chosen.

By “satisfactory” we mean that the cross-validation error rate is lower then a pre-specified

threshold. A low threshold will ensure that the system works “harder” to find a good model, and

vice versa.

3.6 Experiments

Distinguishing offline, handwritten Chinese characters images is a challenging learning task. The

greater complexity of Chinese characters necessitates higher resolution images. We use ETL9B

which uses 63 × 64 pixels for each image, compared to 20 × 20 in the NIST digit databases. With

thousands of common Chinese characters no database begins to rival those of digits or Latin char-

acters. ETL9B contains only 200 labeled handwritten images for each class.

We illustrate our approach by first focusing on the four characters shown in Figure 3.4 which

form six pair-wise classification tasks of different difficulties. Pair 1-2 is particularly hard; 1-3 and

2-3 are moderate. Character 4 is very different; its three classification tasks are all easy.

Experiments 1 to 8 are in-depth evaluation of the proposed approach based on these pairs.

In Experiment 9, we apply our algorithm to other, more challenging pairs of Chinese characters.

34

Figure 3.4: The characters 1,2,3,4 (left to right)

For the construction of a complete classification system for Chinese characters, we propose the

use of a two-stage classifier, as in [Prevost et al., 2005]. The first stage classifier can be a fast,

“coarse-grained” classifier that can quickly and reliably identify a small set of possible candidate

labels. The second stage classifier would then focus on distinguishing mutually confusing charac-

ters within such sets. The second stage is where more domain knowledge and modeling effort is

needed, and our approach can be applied.

We use soft-margin SVM with RBF kernels as our discriminative learner. The input to the

SVM consists of vectorized images, each is a 4032-dimension vector of pixel values. SVM parame-

ters are chosen using grid-search and cross-validation over only the real training set. All our pre-

sented results are based on 5-fold cross-validation. Unless otherwise stated, experiments are re-

peated 10 times and error bars denote the 95 percent confidence interval.

Figure 3.5: Examples of character 1: Real (top row), phantom with straight lines (middle row),
phantom with curves (bottom row)

The actual phantom examples are pixel images derived from the stroke descriptions. Figure

3.5 shows four real training examples and their corresponding approximations with the simple

all-straight-line as well as the complex all-curve phantom generative models. Even with the most

complex models according to our domain theory, the phantom examples still have noticeable dif-

35

ferences (sharp corners, uniform width etc) from the real ones, since our domain theory is only

approximate.

Our experiments did not treat phantom examples differently than real examples. Phantom and

real examples are provided undifferentiated to the SVM. Properly weighting phantom examples

less could potentially improve the overall performance.

3.6.1 Experiment 1: Discriminative Information from Domain

Knowledge

Our first set of experiments explores the nature of the discriminative information resulting from

our simplest models where all strokes are modeled as straight lines. In Experiment 1.1, we varied

the number of phantom examples (M) from zero to 10,000. Zero phantom examples is equivalent

to conventionally training the native SVM on the real training examples only. As the phantom

training set is increased, the information (good or bad) from the constructed generative models is

more completely forced into the learner. We reason that if the generative models provide useful

information, the error rate should decrease with additional phantom training. If not, more phan-

tom examples will increase the error rate over the base-line level. The results are shown in Figure

3.6

The error rates in the difficult and medium-difficult learning problems decrease significantly

with additional phantom examples. On the easy pairs, performance is already at ceiling and phan-

tom training has little discernable effect. In no condition and at no level of training do phantom

examples significantly harm performance.

3.6.2 Experiment 2: Dynamic Model Construction

In this experiment we demonstrate our system’s ability to adaptively construct appropriate char-

acter models based on the classification problem at hand and the desired error rate specified using

the algorithm proposed in section 3.5. The error rates are obtained by averaging five 5-fold cross-

validations, with the training set augmented with 5000 phantom examples generated using the

character models.

We have identified the relative difficulties to classify the six pairs of characters in the previous

experiment. When we test our algorithm with the most difficult pair, with an error threshold of

8% or higher, the algorithm selects the simplest character model consisting of only straight-line

stroke models, which achieves a 7.05% error rate, as illustrated in Figure 3.7a. If we require an er-

36

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

12

No. of phantom examples

E
rr

or
 r

at
e

(%
)

Pair 1
Pair 2
Pair 3
Pair 4
Pair 5
Pair 6

Figure 3.6: The effect of varying number of phantom examples

ror rate of 6% or better, the algorithm refines the longest, most curved stroke in each character to

a curve model, and achieves an 5.1% error rate (see Figure 3.7b). Refining the character models

further only gives marginal improvements or even hurts the classification accuracy, as can be seen

in Figure 3.8.

If we apply our algorithm to one of the easiest pairs, with the error rate thresholds of 8%, 6%,

or even 1%, the algorithm will still choose the simplest all straight-line model for both charac-

ters, as shown in Figure 3.9a. It is only when we require a 0.1% error threshold that the algorithm

chooses to refine the most curved stroke in the first character, as in Figure 3.9b.

By using phantom examples and automated model construction, we managed to obtain perfor-

mance close to that achieved with state-of-the-art, hand-tailored features for handwritten Chinese

characters, for example, the weighted directional code histogram [Kimura, 1997].

37

(a) (b)

Figure 3.7: 3.7a shows the character models chosen by the algorithm for the hardest pair when an
error rate threshold of 8% or higher is specified. The contours represent the real character images,
and the shaded areas are the representations of our character model. Straight line models are used
in all strokes in both characters. 3.7b shows the character models chosen by the algorithm when
an error rate threshold of 6% is specified. Straight line models are used in all strokes except the
longest, most curved stroke in both characters.

−2 0 2 4 6 8 10 12
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Number of stroke refinements

E
rr

or
 r

at
e

(%
)

Figure 3.8: Averaged 5-fold cross-validation error rates given different number of model refine-
ments (i.e. at different stages of model construction).

38

(a) (b)

Figure 3.9: 3.9a shows the character models chosen by the algorithm for an easy pair when an er-
ror rate threshold of 8%, 6%, or 1% is specified. The contours represent the real character images,
and the shaded areas are the representations of our character model. Straight line models are used
in all strokes in both characters. 3.9b shows the character models chosen by the algorithm when
an error rate threshold of 0.1% is specified. Straight line models are used in all strokes except the
longest, most curved stroke in the first character.

3.6.3 Experiment 3: Effect of Varying Number of Real Examples Used

in Phantom Training

In this experiment we further investigate properties of our generative models. We believe that the

quality of the constructed generative models improves uniformly as more real examples are used

in their construction. To test this prediction we vary the size of the real training set (Ñ) from less

than 10 per class to 320 (160 per class) on the hardest pair (1-2). The results are shown in Figure

3.10. The first condition (dotted line) is the native SVM. The second condition (solid line) is the

same SVM but with an additional 5000 phantom examples sampled from the generative models

constructed from the very same real training examples. We include results for phantoms trained

with the simplest model (all straight lines) as well as those with a more refined model (the longest

strokes modeled with curves).

The results show that the generative models always help this hardest classification problem.

Similar results seem to hold for the medium-hard problems. Interestingly, even relatively small

real training sets can produce beneficial phantom examples.

Figure 3.11 shows the same experiment results in different form. Here we measure the im-

provement afforded by the generative models. We plot the (approximate) number of additional

real training examples that the native SVM would have required to match the error rate of the

combined real+phantom training set. The benefit is always positive and we observe that the phan-

tom examples trained with a refined model “worth” more than those with a simple model.

39

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40

45

No. of real examples

E
rr

or
 r

at
e

(%
)

Real examples only
Real+5000 Phantoms (simple model)
Real+5000 Phantoms (refined model)

Figure 3.10: Performance gain with phantom examples trained with varying number of real exam-
ples

3.6.4 Experiment 4: Interaction is Crucial

When Ñ (i.e. the actual number of real examples used to tune the phantom generative model) is

small (or zero), the generative model is only tuned with very little “real” information. We claim

that this lack of “interaction” between the domain knowledge and the real training examples will

not benefit (and may even harm) the performance.

We test this hypothesis with Experiment 4. For the non-interaction case, we employ a prior

generative model to generate the phantom examples as before. But this prior model is not tuned

with real examples, thus it allows a larger variance in the stroke parameter space, although each is

still subjected to the same set of qualitative constraints that are used in the tuned case (i.e. those

violating the constraints are still discarded). Experiment 4 compares two conditions: interaction

(the solid lines) and non-interaction (the dotted lines) on two learning pairs: the hardest pair 1-2

(top) and a medium hard pair 1-3 (bottom).

Figure 3.12 shows the results. For the medium-hard pair, the non-interaction phantom exam-

ples do not appear to help. For the hard pair, they significantly harm performance. The result

clearly rejects the alternative hypothesis; merely the additional information of domain theory

without allowing explanation and calibration interaction with training examples cannot explain

the observed benefit.

40

10 20 30 40 50 60 70 80 90 100 110
0

50

100

150

200

250

300

No. of real examples

D
om

ai
n

kn
ow

le
dg

e
w

or
th

 (
ad

di
tio

na
l r

ea
l e

xa
m

pl
es

)

Real+5000 Phantoms (simple model)
Real+5000 Phantoms (refined model)

Figure 3.11: Domain knowledge measured in terms of additional real examples

3.6.5 Experiment 5: Domain Knowledge Helps More with Fewer Real

Training Examples

Our analysis claims that when sufficient number of real examples are used, imperfect domain

knowledge will eventually affect the performance negatively. We test this hypothesis with Experi-

ment 5.

This setup of this experiment is similar to Experiment 3, except that we purposely limit the

number of real examples used to tune the generative model, in order to obtain an artificially im-

poverished domain theory.

Figure 3.13 shows the results when 16 and 40 real examples are used to tune the generative

models. 5000 phantom examples are generated and added to the training set in each case. Note

that the x-axis shows the number of real examples used in the training set (for the SVM – not for

tuning the generative model). When fewer real examples are used to tune the model, the contri-

bution of phantom examples worth less. When only 16 real examples are used to tune, beyond

about 200 real training examples, the performance is actually worse when phantom examples are

used.

3.6.6 Experiment 6: Discriminative Classifier Helps

We incorporate domain knowledge into the learning problem through the use of generative models

estimated from the real training examples. Since these generative models are suggested by the

41

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

12

14

16

18

20

No. of phantom examples

E
rr

or
 r

at
e

(%
)

Pair 1 (Char 1 vs 2) (tuned)
Pair 2 (Char 1 vs 3) (tuned)
Pair 1 (Char 1 vs 2) (untuned)
Pair 2 (Char 1 vs 3) (untuned)

Figure 3.12: Effect of interactions

domain theory, one would then question whether the trained generative models are already good

enough for the classification task.

Pair Generative (% error) Discriminative (% error)

1 38 11.25
2 23.75 4.25
3 18.25 3.75
4 1.5 0.5
5 0.75 0.25
6 1.5 0

Table 3.1: Generative vs Discriminative Classifier

To answer this question, we use the tuned generative models to classify test examples based on

likelihood of the stroke parameters of each example with respect to each character class. Table 3.1

shows the results. The generative classifiers perform much worse, and the gap is larger for harder

tasks. This verifies that our generative models are indeed only (very) approximate, and the use of

discriminative learner is essential in order to benefit from our generative models.

3.6.7 Experiment 7: Robustness in the Presence of Noise

A crucial issue of machines learning is robustness in the presence of noise. Here, we focus on noise

in the labels (i.e. part of the training set is wrongly labeled). When an example is wrongly la-

beled, the “explanation” process should indicate that our confidence on that particular example is

42

0 50 100 150 200 250 300 350
5

10

15

20

25

30

35

40

45

No. of real examples

E
rr

or
 r

at
e

(%
)

Real only
Real + 5000 Phantoms (tuned with 16 reals)
Real + 5000 Phantoms (tuned with 40 reals)

Figure 3.13: Performance gain with phantom examples trained with fixed number of real examples

lower than in cases when the labels are correct. In the case of tuning phantom examples, the es-

timated parameters of the generative model may be affected by such label noise, but the overall

structure of the model would still respect the inherent stroke structure given by the domain the-

ory. The use of phantom examples would then serve to bias the learner such that it is less affected

by such noise, and therefore achieve better robustness.

We test this by injecting varying amount of noise in the labels. In each instance of the exper-

iment, the labels of some randomly chosen subset of the real examples are flipped. Each training

set is augmented with phantom examples (that are correctly labeled). We evaluate both the “per-

ceived” error rate and the “true” error rate (i.e. if correct labels are used) during training and

testing.

Figure 3.14 shows these error rates without using phantom examples, on the hardest pair. In

terms of the training error, the true error is higher than the perceived error. This indicates some

amount of overfitting to the training set. However, in terms of the test error, the true error is con-

sistently less than the perceived error. This exposes a major strength of the soft-margin SVM in

terms of robustness to noise.

We predict that with phantom examples, an even higher level of robustness is achievable due

to strong bias from domain knowledge. Figure 3.15 shows the results when each training set is

43

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

40

Noise level (%)

E
rr

or
 R

at
e

(%
)

Perceived Test Error
True Test Error
Perceived Training Error
True Training Error

Figure 3.14: Effect of label noise (without phantoms)

augmented with 2500 phantom examples. We see that the augmented training sets manage to im-

prove the performance on the test set (both true and perceived errors) even when the phantom

examples are tuned using noisy examples. Moreover, there is a larger gap between the perceived

and the true test error, indicating a higher level of robustness to noise. When the noise level is

high, we observe a remarkable phenomenon where the true test error is actually lower than the

perceived training error. This indicates a strong bias from the domain knowledge against overfit-

ting to wrongly labeled examples.

3.6.8 Experiment 8: Comparison with Virtual Support Vectors

This final experiment compares phantom examples with virtual support vectors [Burges and Schölkopf,

1996; Decoste and Schölkopf, 2002] in terms of improvement in classification error rate. The vir-

tual support vector method creates new virtual examples from the real ones by applying known

invariance transformations (i.e. transformations that do not alter the label of the examples) to

the real examples. [Decoste and Schölkopf, 2002] tested translations of each training example by

1 pixel in all 8 directions, and 2 pixels in the horizontal and vertical directions (a total of 12 dif-

ferent translations). It was also reported that rotations and varying stroke thickness help. We

44

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

40

Noise level (%)

E
rr

or
 R

at
e

(%
)

Perceived Test Error
True Test Error
Perceived Training Error
True Training Error

Figure 3.15: Effect of label noise (with phantoms)

employ the same transformations and evaluate the performance on the hardest pair. Figure 3.16

shows the results.

The horizontal lines depict the error rates achieved by the virtual sample method. For the

combination of translations, rotations and thickness, we reduce the number of translations (and

replace them with varying thickness) due to memory limit. Combining both translations and ro-

tations does improve the performance, while replacing some translations with thickness variations

does not help (the two horizontal lines overlap – the error rate is the same as using just the 12

translations).

From our point of view, the invariants are just another form of domain knowledge, easier to

apply but weaker in the sense that it is pre-determined and does not allow much interaction with

the training examples. The experiment results show that better error rates can be achieved with

phantom examples, and there is still room for further improvement.

3.6.9 Experiment 9: More Challenging Pairs

For this experiment, we first identify the most difficult pairs of Chinese characters from the ETL9B

database. We first learn a standard multiclass classifier (with multiclass linear discriminant) for

45

0 2000 4000 6000 8000 10000 12000
3

4

5

6

7

8

9

10

No. of phantom examples

E
rr

or
 r

at
e

(%
)

Phantom (learned model)
Virtual SV 12 translations
Virtual SV 12 translations + rotations
Virtual SV 4 translations + rotations + thickness

Figure 3.16: Comparison with virtual support vectors

the entire set of more than 3000 Chinese characters in the database. Next, for each error, the con-

fusing pair of characters is noted. The top 10 most easily confused pairs of characters are then

identified. They are shown in Figure 3.17.

Although a human expert can easily tell them apart, each pair in this set is different in only

minor details that may not be easily picked up by a machine learner. We evaluate our approach

on these 10 pairs, and as in experiment 8, compare the results with that of the virtual support

vectors (12-neighbor translations and up to 6 degree of rotations). Figure 3.18 shows the results

where 5000 artificial examples are used in each trial.

Significant performance improvements are achieved in all 10 tasks. In all but one of the pairs,

better error rates are achieved with the phantom examples (with the same number of real and

artificial examples).

We believe that the two types of artificial examples (those from the virtual SV approach and

those from the phantom approach), provide very different kinds of information to the discrimina-

tive learner. The virtual support vectors are transformed versions of the real examples and still

look very similar to the real ones. On the other hand, the phantom examples are manufactured

from the learned generative models and can look very different from the real ones (shape corners,

46

1: 6:

2: 7:

3: 8:

4: 9:

5: 10:

Figure 3.17: Some of the most challenging pairs of characters in ETL9B

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Pairs

E
rr

or
 r

at
e

(%
)

Base SVM
Virtual SV
Phantom

Figure 3.18: Errors for the challenging pairs

uniform width etc). The information content of both types of examples, although may not be en-

tirely independent, can complement each other and an adaptive, hybrid approach may potentially

achieve better performance from the same number of real and artificial examples.

47

Chapter 4

Simple Discriminative Semantic
Features

4.1 Introduction

Sensitivity to appropriate features is crucial to the success of supervised learning. The appropri-

ateness of a feature set depends on its relevance to the particular task. Various notions of rele-

vance have been proposed [Blum and Langley, 1997; Kohavi and John, 1997] and statistical tools

to evaluate and select relevant feature sets are available (e.g. hypothesis testing, random probes,

cross-validation). Unfortunately, most feature construction strategies focus on feature subset se-

lection (e.g. filters [Almuallim and Ditterich, 1991; Kira and Rendell, 1992], wrappers [Kohavi

and John, 1997], embedded methods [Guyon et al., 2006]) from either a pre-determined set or a

space defined by some feature construction operators [Markovitch and Rosenstein, 2002] and re-

quire many training examples to evaluate.

In challenging domains, the “native”, observable features (e.g. pixel values of an image) are

high-dimensional and encode a large amount of mostly irrelevant information. There are standard

statistical techniques such as principal components analysis (PCA) and linear discriminant anal-

ysis (LDA) to reduce the dimensionality of the input features. But often the features that sim-

plify the task are complex nonlinear combinations of the native features. Increasing the complex-

ity of the hypothesis space to include nonlinear combinations will require an impractical amount

of training data. We believe that the most effective approach is to incorporate additional infor-

mation in the form of prior domain knowledge. In this direction, one approach [Gabrilovich and

Markovitch, 2005] utilizes the large repository of the Open Directory Project to aid in natural lan-

guage classification and the proposed feature generation technique results in significantly improved

performance.

Most feature generation approaches, however, still rely on first augmenting the current feature

set with potentially useful features, followed by a feature selection process. The relevance of fea-

tures largely depends on their empirical predictive performance on the labels. We would like to

48

utilize prior domain knowledge in determining the relevance by incorporating information in the

form of “analytical evidence”, in addition to the empirical performance. Explanation-based learn-

ing (EBL) is a method of dynamically incorporating prior domain knowledge into the learning

process by explaining training examples. The explanation process serves as the source of analyti-

cal evidence. In character recognition tasks for example, we know that not all pixels in the input

image are equally important. [Sun and DeJong, 2005] used this observation to learn specialized

Feature Kernel Functions for support vector machines. These embody a specially constructed dis-

tance metric that is automatically tailored to the learning task at hand. That approach automati-

cally discovers the pixels in the images that are more helpful in distinguishing between classes; the

feature kernel function magnifies their contribution.

However, it is not the raw pixels that intrinsically distinguish one character from one another.

Rather, the pixels are due to strokes of a writing implement and these strokes in relation to one

another distinguish the characters. Not telling the learner of these abstract relationships means

that it must perform the moral equivalent of inventing the notion of strokes from repeated expo-

sure to patterns of raw pixels, making the learning task artificially difficult. We would like the

feature construction process to appreciate such abstractions of the domain theory and perform a

“dynamic” feature selection. This allows, for example, the use of different pixel subset or distance

metric for individual character image.

4.2 Semantic Features and Generalization

The criteria for feature construction are usually based on how well a particular set of features re-

tains the information about the class while discarding as much irrelevant and redundant infor-

mation as possible. Information-theoretic methods, based on mutual information, channel coding

and rate-distortion theorems have been applied to this problem [Battiti, 1994; Tishby et al., 1999;

Torkkola, 2003]. Let X and Y be random variables that represent the input and the label respec-

tively, and there is an underlying joint-distribution on (X,Y). It can be shown [Akaike and Mer-

hav, 1994] that the optimal Bayes error is upper bounded by 1
2H(Y |X), where H is the entropy in

bits. Therefore, a feature F (X) that retains as much information as possible about the label will

have H(Y |F (X)) ≤ H(Y |X) + ε, where ε > 0 represents the amount of information loss that

we are willing to tolerate. On the other hand, discarding irrelevant information can be achieved

by minimizing H(F (X)|Y) while satisfying the condition on H(Y |F (X)). Intuitively, this implies

49

that most information about the class label is preserved, while irrelevant information (e.g. within-

class variations) is discarded.

We show how a feature F (X) with small H(F (X)|Y) and small H(Y |F (X)) leads to better

generalization bound in terms of Rademacher complexity, for the specific case of binary classifica-

tion. We make use of the following theorem:

Theorem 1. [Bartlett and Mendelson, 2002] Let D be a probability distribution on X × {±1}, let

G be a set of {±1}-valued functions defined on X , and let (Xi, Yi)m
i=1 be training samples drawn

according to Dm. With probability at least 1− δ, every function g in G satisfies

PrD(Y 6= g(X)) ≤ P̂m(Y 6= g(X)) +
Rm(G)

2
+

√
ln(1/δ)

2m

where P̂m is the empirical risk. Rm(G) is the Rademacher complexity of G, given by

Rm(G) = Eσ1...mEX1...m

[
sup
g∈G

| 2
m

m∑

i=1

σig(Xi)|
∣∣∣X1, . . . , Xm

]

where σ1, . . . , σm are independent {±1}-valued random variables.

Given a feature F , where F (X) takes values in S. Let G : S → {+1,−1} be a space of func-

tions. We make the following assumption:

Assumption 1. Given H(F (X)|Y) ≤ H(F (X)) = β, there exists a finite set Ft ⊂ S of k dif-

ferent “typical” values (i.e. |Ft| = k) such that Pr(F (x) ∈ Ft) > 1 − ε for some ε > 0. It is

straightforward to show that k ≈ 2β when ε is small.

The following lemma shows that Rm(G) is bounded if H(F (X)|Y) is bounded.

Lemma 1. By assumption 1, for all 0 < δ < 1,

Rm(G) ≤ 2(δ + ε) + 2

√
2β

m
+

√
2
m

ln
1
δ

Proof. Let F = (F (X1), . . . , F (Xm)) be the sequence of feature values of the training sample

(X1, . . . , Xm). Let It(F) = {i|F (Xi) ∈ Ft} be the indices of examples with “typical” feature val-

ues, and nt(F) = |It(F)|. Then, consider Rm(G) with respect to the set of typical and non-typical

50

values,

Rm(G) = EFEσi,...,m

[
sup
g∈G

| 2
m

m∑

i=1

σig(F (Xi))|
∣∣∣F

]

≤ EF

[
Eσi|i∈It(F)

(
sup
g∈G

| 2
m

∑

i∈It

σig(F (Xi))|
∣∣F)

+

Eσi|i/∈It(F)

(
sup
g∈G

| 2
m

∑

i/∈It

σig(F (Xi))|
∣∣F)]

≤ EF

[
Eσi|i∈It(F)

(
sup
g∈G

| 2
m

∑

i∈It

σig(F (Xi))|
∣∣F)

+

2
m

(m− nt(F))
]

For training examples with typical values, we group these into k groups, where the members within

each group all have the same feature value. Regardless of function g, all members Xi within the

same group must have the same g(Xi). Let Ij
t (F) be the set of indices for members of group j and

nj
t (F) = |Ij

t (F)|, j = 1, . . . , k. The expected absolute sum is therefore independent of G, with

Eσi|i∈It(F)(|
2
m

∑
σi|) ≤ 2

m

k∑

j=1

Eσi|i∈Ij
t(F)

(|
∑

i∈Ij
t(F)

σi|
)

≤ 2
m

k∑

j=1

√
nj

t (F)

≤ 2
m

√
knt(F)

We therefore have,

Rm(G) ≤ EF

[2
m

√
knt(F) +

2
m

(m− nt(F))
]

By assumption 1, the probability of obtaining a typical feature value is at least 1− ε and therefore

the distribution of nt(F) is binomial with mean m(1− ε). By Hoeffding’s inequality,

Pr(nt(F) ≤ m(1− ε)− γ) ≤ e−
2γ2

m .

Let δ = e−
2γ2

m . Then, using nt(F) = 0 with probability δ and nt(F) = m(1−ε)−γ with probability

51

1− δ, we have

Rm(G) ≤ δ(2) + (1− δ)
2
m

(√
k(m(1− ε)− γ) + mε + γ

)

= 2δ + (1− δ)
(
2

√
k

m
(1− ε) + 2ε +

√
2
m

ln
1
δ

)

≤ 2(δ + ε) + 2

√
k

m
+

√
2
m

ln
1
δ

With k = 2β we proved the lemma.

Theorem 2. Given discriminative feature f∗ with H(f∗(X)|Y) ≤ β, where Y takes values from

{±1}. Let G be a set of {±1}-valued functions defined on {f∗(x) : x ∈ X}. With probability at

least 1− δ, every function g in G satisfies

Pr(Y 6= g(X)) ≤ P̂m(Y 6= g(X)) +

√
2β

m
+ (δ + ε) +

√
2ln(1/δ)

m

Proof. Apply Lemma 1 to Theorem 1. Note that we equate the δ in Lemma 1 with δ in Theorem

1.

Corollary 1. Given discriminative feature f∗ with H(Y |f∗(X)) ≤ α and H(f∗(X)|Y) ≤ β, where

Y takes values from {±1}. Given a sufficiently rich space of hypothesis space G, the risk bound

will be minimized if both α and β are minimized.

Proof. From the risk bound in Theorem 2, the first term on the right hand side, which is the em-

pirical risk, can be minimized (given the assumption that G is sufficiently rich) by minimizing

H(Y |f∗(X)) , or equivalently, by minimizing α. The second term on the right hand side can be

minimized by minimizing β.

Assumption 1 requires that there is only a finite set of “typical” feature values. This is nec-

essary since the theorems apply to all possible function space. This requirement can be relaxed

if we make the assumption that “typical” feature values fall within some distance ε of one of the

members of Ft, and that all functions assign the same value to each of these “typical” regions.

This is illustrated in Figure 4.1.

When comparing alternative features, each satisfying H(Y |F (X)) ≤ H(Y |X) + ε, we there-

fore prefer the one with the smallest H(F (X)|Y). Alternatively, we may aim at minimizing the

52

Typical feature values.

Non-typical feature valuesPrototype features

Figure 4.1: Prototype and typical feature values

following functional:

J(F) = H(F (X)|Y) +
1
ε
H(Y |F (X))

Unfortunately, without additional knowledge about the underlying probability distribution, it

is impossible to accurately estimate the conditional entropy empirically from the data when the

training set is small. For example, when all the training examples have different X, one can sim-

ply define a feature F based on the nearest neighbor rule (itself a classifier) and empirically, with

a naive estimator, achieve Ĵ(F) = 0. There is no reason to believe that the feature F (X) and the

resulting classifier will generalize to unseen examples. In this sense, building a right feature is as

hard as building the right classifier, that is, it does not work without any inductive bias.

However, it is possible that for some tasks, there exist features that are known a priori to have

J(F) ≈ 0. Such features capture our knowledge about patterns that are unique to a particular

class of objects. What is not known, however, is a reliable way to detect or extract the feature

from any unlabeled input. The problem of constructing a good feature can therefore be viewed as

the problem of building a good detector for such “semantic” or “high-level” features, based on the

training data. If we can ensure that the detector produces the right output for the right reason,

i.e., it detects the intended semantic feature, then we will have high confidence that the resulting

feature will generalize well.

How do we verify that a detector produces the right output for the right reason? Doing so

statistically, if possible at all, will require too many training examples for many tasks. Instead,

if available domain knowledge can be used to build explanations for the training examples, then

they can be used to verify whether a feature’s output is consistent with our prior knowledge. We

53

show how to use this idea to automatically construct features that focus on the most informative

part of any input object with regard to the particular task.

4.3 Reference Features

For classification tasks, it is generally desirable that the constructed features preserve the between-

class differences while eliminating as much similarity as possible. Prior domain knowledge pro-

vides a source of information for both potential differences and similarities. Our proposed algo-

rithm exploits both differences and similarities that can be detected with feature detectors, or

“sensors”. We examine this from an information theoretic viewpoint.

Suppose there exists a feature transform T such that T (X) = (X1, X2) decomposes the in-

put X into independent components X1 and X2. Such decomposition might not be possible at

the level of the raw input, but can exist at a higher abstract level. One example would be a re-

parameterization of hidden variables (e.g. relative stroke parameters in handwritten characters).

Another example of such decomposition is the registration of image, where, the resulting image

is independent of the transformation used to register the image. Imagine that after the digit “1”

is rotated such that its main vertical stroke is at exact 90 degrees, the residual variation would be

independent from the rotation itself.

The second assumption is that the first component X1 has almost no information about the

class label. In other words, it is a similarity between the classes. More precisely,

I(X1; Y) ≤ ε

where I is the mutual information.

Figure 4.2 shows two very similar Chinese characters. Conceptually, the only difference be-

tween the two is an extra short-stroke in one of them. Figure 4.3 shows a decomposition where X1

is given by the location of the two marked long strokes and X2 is the content of the image in the

region below X1 registered against X1.

Proposition 2. Assuming the two assumptions above, F (X) = T (X)2 = X2 is a feature that

satisfies our criteria of minimizing H(F (X)|Y) while maintaining H(Y |F (X)) ≤ H(Y |X) + ε.

Proof. We first show (the rather trivial) H(F (X)|Y) ≤ H(X|Y),

H(F (X)|Y) = H(X2|Y) ≤ H(X|Y)−H(X1|Y) ≤ H(X|Y)

54

Figure 4.2: Two very similar Chinese characters

Figure 4.3: Exploiting similarity and difference with reference feature

Next, we show that H(Y |F (X)) ≤ H(Y |X) + ε,

H(Y |X) = H(Y |X1, X2)

= H(X1, X2|Y) + H(Y)−H(X1, X2)

= H(X1|Y) + H(X2|X1, Y) + H(Y)−H(X1, X2)

= H(X1|Y) + H(X2|Y) + H(Y)−H(X1,H2) (independent assumption)

= H(X1|Y) + H(Y |X2) + H(X2)−H(X1, X2)

55

(reorder:)

H(Y |X2) = H(Y |X)−H(X1|Y)−H(X2) + H(X1, X2)

≤ H(Y |X) + H(X1, X2)−H(X1)−H(X2) + ε (assumption 2)

= H(Y |X) + ε (independent assumption)

For assumption 2, we make use of the fact that I(X1; Y) = H(X1)−H(X1|Y) ≤ ε

We name the feature detector R(X) = T (X)1 = X1 the reference feature, and the feature

detector F (X) = T (X)2 = X2 the target feature. Note that this process can be repeated (and

nested) as long as such decomposition is possible. The use of reference feature plays a significant

role in our feature construction algorithm.

4.4 Explanation-based Feature Construction

In classical EBL, an “explanation” is a logical proof that shows how the class label of a particular

labeled example can be derived from the observed inputs. But our version is weaker. We only re-

quire the explanation to identify potential low level evidence for the assigned classification label.

We then use training data to calibrate and evaluate the strength of that evidence.

Our prior knowledge includes ideal stroke models of the characters of interest (roughly of the

sort one obtains from a vector font) and the model of a stroke as a connected straight line of finite

width.

Feature construction is performed by the following steps which we state abstractly and de-

scribe specifically in the context of the Chinese character domain.

1. Explain each training example to obtain the association between the assigned la-

bel and the observed native features mediated by high-level domain theory con-

cepts. After this step, each pixel is associated with a stroke (the line that most likely made

it) constrained so that the line configurations match the stroke requirements of the assigned

character.

2. Using the prior knowledge, identify 1) high-level features that are similar in

both categories, and 2) high-level features that are different between the cate-

gories. The first set form our reference strokes. These can be confidently found in new test

56

images since a similar stroke should be present for either instance type. The second set are

information-bearing; they are character dependent.

3. With the generated explanations, evaluate each potential similarity statistically

using the training set, keeping the ones that can be detected efficiently and with

high confidence. These are strokes that are easily found in an unlabeled image and form a

frame of reference to guide us to the high class-distinguishing information.

4. Using the training examples, optimize the process of finding detection features

from the reference features. This identifies the high information image regions w.r.t.

the reference strokes. The regions chosen to be larger if over the training set there is greater

variance of the location of the detection strokes w.r.t. the reference strokes and tighter oth-

erwise.

Generally, finding lines in an image is problematic. Many lines will be missed and often non-

lines will be found. The process can be expensive. However, this is only done for labeled examples

during the learning phase. Thus, we know what lines we should find and their approximate geo-

metrical configuration. This greatly improves the line-finder’s performance. But what if we can

find no reference strokes? If there are no easily-found similarities between the categories, then the

two classes must be very different; the classification task should be simple. Many features and al-

gorithms should be able to differentiate them, and our knowledge-based approach is unnecessary.

Next we examine this process in more detail for Chinese characters.

4.5 Classifying Handwritten Chinese Characters

Offline handwritten Chinese character recognition remains a challenging task due to the large

variability in writing styles and the similarity of many characters. Approaches are either struc-

tural or feature-based [Suen et al., 2003]. The former extract strokes from a new input image and

try to match the extracted strokes to the known stroke-level models. Extracting strokes is unreli-

able and consequently the model-matching process is problematic. Feature-based approaches uti-

lize statistics on well-designed features and have proven to be more robust. However, the features

are hand-crafted and it is not easy to exploit prior knowledge during the learning process; similar

characters are difficult to differentiate using such globally-defined features.

In this work, we focus our attention to the task of distinguishing pairs of similar characters. In

our approach automatically constructed features are tailored to best differentiate the characters.

57

Consider the pair of Chinese characters in Figure 4.4.

Figure 4.4: Two very similar Chinese characters

They are almost identical except the leftmost radical. Extracting a global feature that summa-

rizes the whole character dilutes the class-relevant information concentrated on the far left of the

image.

Once the informative region has been identified, there is still much variability in the exact lo-

cation of the informative region. Figure 4.5 illustrates the variability among the first character of

the pair.

Figure 4.5: Within-class Variability

Attempting to define an absolute set of pixels (say, one 3rd of the image from the left) would

result in noisy features. Too small the region we risk missing the important stroke for some of the

characters, too large the region our advantage of focused feature is lost. This is where we utilize

our knowledge about similarities between the two characters. The three long, roughly vertical

strokes present in both characters may serve as “reference strokes.” Finding them allows the tar-

get region to be more accurately identified.

4.5.1 Building Explanations

Our prior model of each character is a graph, where nodes represent a stroke and edges represent

the relationship between strokes. Each stroke is itself modeled as a line segment with 5 parame-

ters denoting its center, direction, length and thickness. Such models can either be hand-specified,

58

or obtained from existing character-stroke database.1 The model need not be highly accurate as

the explanation process relies primarily on its structural information. The model is used to ex-

plain each training example by finding the most likely parameters for each requisite character

stroke.

In general, searching for the best set of parameters is a combinatorial problem for the general

graph. This may still be acceptable since the size of the graph is small and the process is done

only once for each character during training.

For efficiency, we structure these graphs into trees to employ a dynamic programming ap-

proach to produce the explanations. We use an algorithm based on [Felzenszwalb and Hutten-

locher, 2000]. Our implementation uses two automatically generated trees, focusing on horizon-

tally and vertically oriented strokes separately. Figure 4.6 shows a character model and an exam-

ple explanation.

Figure 4.6: A Character Model and an Explained Example

4.5.2 Identifying Potential Similarities

Given the models for a particular pair of characters, we perform graph matching to identify strokes

that are similar in terms of location, direction and length. The result of this process is the identi-

fication of a set of strokes M which have a match in both characters. We refer to this set as the

matching set M. These are the candidates for reference strokes. Figure 4.7 shows an example.

4.5.3 Finding Efficient Reference Stroke Detector

Any efficient feature extractor can be used in this step. Since we are concerned with lines, we use

a Hough transform [Forsyth and Ponce, 2002]. In particular, we perform a Hough transform on

an input image, and look for a local minimum in a specified region which reflects the variability
1For example, the Wen Quan Yi Project, http://wenq.org/

59

Figure 4.7: The strokes in M are shown as dotted lines

of the matching set stroke in the training data. We refer to this as the “Hough detector”. Not ev-

ery stroke in M can be reliably detected by the Hough detector. We use the following algorithm

to select from the matching set a set of reference strokes that can be reliably detected. The expla-

nation for each training example is used to measure how accurately the Hough detector detects a

particular stroke.

1. Initialize the set of reference stroke R to empty

2. For each stroke S in M

(a) Find the range of directions and offsets for this stroke among all the training examples

(from the explanations), namely, find the smallest bounding rectangle with the center

(θ̄, ρ̄), the width ∆θ, and the height ∆ρ.

(b) For each s ∈ {0.8, 1, 1.2, 1.4, 1.6} and each t ∈ {0.8, 1, 1.2, 1.4, 1.6}

i. Define the bounded region in Hough space as a rectangle centered at (θ̄, ρ̄) with

width s∆θ and height t∆θ.

ii. For each training example

A. Search for the highest peak in the region

B. Check whether the peak is within a threshold distance τ from the actual stroke

orientation

iii. Record the hit ratio h(s, t) (percentage of reference strokes correctly detected using

the specified parameters)

(c) Find s∗ and t∗ with the highest h(s, t)

(d) if h(s∗, t∗) > h0 then add S to R

The range of the detector window (s and t) in the above algorithm is chosen for simplicity.

The thresholds τ (distance in Hough space) and h0 are optimized using cross-validation.

60

4.5.4 Learning the final Feature

Once reference strokes are identified, the system estimates the informative region relative to the

parameters of the reference strokes. We use a simple definition for our “informative region”. In

each character, every stroke that is not in M is considered a potentially informative stroke. From

the explanations, we know the location of these strokes in the training examples. Using these lo-

cations, we find the smallest rectangle that includes each stroke. Whenever there are overlapping

strokes, the two rectangles are combined into a single larger rectangle bounding both strokes. Fig-

ure 4.8 illustrates this.

Figure 4.8: The ideal “target” rectangles

Feature points, which can be the center or endpoints of a reference stroke, receive a distance

score with respect to each edge of the target window, where the score is define as aµ̂ + bσ̂. This

combines the mean distance (µ̂) to the window edge and its standard deviation (σ̂) given the ref-

erence strokes. The feature point with the smallest score is selected. If none of the feature points

qualifies, then the edge of the image is used as the definition of the target window. Figure 4.9 il-

lustrates this.

top anchor

right anchor

Figure 4.9: The actual “target” rectangles with respect to the feature-points. Note that there are
no feature-points for the left and the bottom edge.

61

We assume a joint-distribution on the location of the reference strokes and the target “win-

dow” as defined by the feature-points. Each reference stroke is parameterized by the direction and

the offset Ri = (θi, ρi) obtained from the Hough detector. Each target window is parameterized

by 4 parameters T = (t1, t2, t3, t4) which correspond to left, top, right and the bottom of the win-

dow. For example, k reference strokes and one target window form a joint-distribution on (R, T)

where R = (R1, R2, . . . , Rk). The joint distribution is estimated from the training examples, since

we know both R and T from the explanations. For unlabeled examples, we first apply the Hough

detector to localize the reference strokes, r = (r1, . . . , rk), then find the maximum-likelihood lo-

cation of the window according to the conditional probability Pr(T |R = r). Assuming that the

joint-distribution is Gaussian with mean




µR

µT




and covariance 


ΣRR ΣRT

ΣTR ΣTT


 ,

the conditional is itself Gaussian with mean

µT |R = µT + ΣTRΣ−1
RR(r − µR)

and covariance

ΣT |R = ΣTT − ΣTRΣ−1
RRΣRT .

4.6 Experiments

4.6.1 ETL9B Database

We evaluate our system on pairwise classifications between difficult pairs of characters. We use

the ETL9B database (a popular database of more than 3000 Chinese and Japanese characters,

each with 200 examples). We first learn a literature-standard multiclass classifier using linear dis-

criminants to identify 100 most difficult pairs (i.e. pairs of characters that result in greatest confu-

sion). These are, as expected, pairs of very similar characters. We use the weighted direction code

histogram (WDH) [Kimura, 1997] as features. These features are generally the best or among the

62

Pair SVM SVM(EBL) Pair SVM SVM(EBL)
1 18.0 18.0 16 6.8 6.8
2 17.8 17.0 17 6.8 6.8
3 14.3 14.3 18 6.5 6.5
4 13.0 5.8 19 6.5 6.5
5 13.0 13.0 20 6.3 5.3
6 11.0 8.3 21 6.3 6.3
7 8.5 8.5 22 6.3 6.3
8 8.0 7.0 23 6.0 6.0
9 7.8 7.8 24 5.8 5.8
10 7.5 8.8 25 5.8 5.0
11 7.5 8.5 26 5.8 5.3
12 7.0 3.0 27 5.5 3.5
13 7.0 5.8 28 5.5 5.5
14 7.0 2.0 29 5.5 5.5
15 7.0 3.8 30 5.5 5.3

Table 4.1: ETL9B Error Rate (%) (5-fold cross-validation)

best for handwritten Chinese character recognition [Chen, 2005].

For each pair of characters, we learn a classifier using a linear support vector machine. We ob-

serve that the support vector machine performs significantly better than those with linear dis-

criminants. For our system, we use the same classifier, but the input to the SVM are the WDH

features extracted only from the target feature window found with respect to the detected refer-

ence strokes. Table 4.1 and Figure 4.10 show the results of the experiment on the 30 most chal-

lenging pairs of characters. Even though the SVM is generally robust in the presence of irrelevant

features, our system managed to achieve significant improvement in many of these pairs.2

4.6.2 HITPU Database

In addition to the ETL9B database, we evaluated the same feature construction algorithm on the

HITPU database [Shi et al., 2003], where the reported overall classification accuracy is signifi-

cantly lower than that of the ETL9B. Similar to the ETL9B, the database has about 200 exam-

ples for each character. Table 4.2 and Figure 4.11 show the results for the 15 most difficult pairs

in HITPU.

For most of these pairs, no reliable reference strokes can be found and therefore the entire in-

put image is used, resulting in the same classification error rate. This is due to the larger vari-

ability and noise in the training examples (e.g. more curves), and our simple straight-line Hough

2We note that in several cases the examples in the database are mislabeled and our algorithm could achieve
better results if these are corrected, but we decided not to modify the original database to retain its integrity.

63

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

SVM(EBL) Errors

S
V

M
 E

rr
or

s

Figure 4.10: ETL9B Error Rate (%) Scatter Plot

detector is less effective at reliably detecting strokes in these inputs. However, when reliable ref-

erence strokes can be found by the algorithm, the classification performance can improve signifi-

cantly.

Using a more sophisticated detector may allow more reference features to be detected reliably.

Alternatively, a more complex algorithm that extracts more information from our detectors can be

used. The next chapter describes one such algorithm.

0 5 10 15 20 25
0

5

10

15

20

25

SVM(EBL) Errors

S
V

M
 E

rr
or

s

Figure 4.11: HITPU Error Rate (%) Scatter Plot

64

Pair SVM SVM(EBL)
1 21.30 21.30
2 20.15 20.15
3 15.79 15.79
4 15.21 15.21
5 14.50 12.50
6 14.29 14.29
7 13.82 13.82
8 13.13 11.87
9 13.07 9.80
10 11.97 11.97
11 11.75 11.75
12 11.00 11.00
13 11.00 5.50
14 10.50 10.50
15 10.25 6.75

Table 4.2: HITPU Error Rate (%) (5-fold cross-validation)

65

Chapter 5

Complex Discriminative Semantic
Features

5.1 Introduction

Consider a binary classification task, where we wish to find a mapping from an input x ∈ X to

the class label y ∈ Y = {+1,−1}. The most general, uninformed solution space consists of all

mappings f ∈ YX . It is well known that learning in this space is generally impossible.

From a machine learning point of view, it is generally required that we either restrict the ef-

fective solution space (i.e. hypothesis space) to a small subset of YX , or to enforce a preference

among hypotheses in this space. For example, in the case where X consists of D-dimensional real

vectors, we might restrict ourselves only to linear functions on X . Such linear models typically are

easy to handle analytically and the resulting hypothesis space has relatively low complexity com-

pared to nonlinear models.

However, such restrictions (e.g. to linear models) are artificial and we usually have no prior

belief that a good classifier can be found within the solution space, especially when dealing with

real-world problems. A simple extension to this is to retain linear dependency on the parame-

ters but introduce any potential nonlinearities by mapping the original input space X to a feature

space ϕ(X). For example, the hypothesis space {h|h(x) = λ(w · ϕ(x))} (where w is the parame-

ters to be learned, and λ is a fixed activation function for the class label) still has linear decision

surfaces, although they live in the feature space ϕ(X) instead of the original input space X . If the

feature mapping ϕ successfully simplifies, or “linearizes”, the input space, for example, by turn-

ing each input X into a set of independent boolean variables while retaining all the information

about the class label, then the hypothesis space may indeed contain the optimal solution (under

the right optimality criteria). This approach however requires that the feature mapping ϕ(X) is

fixed before sending the training examples to the learning system.

It is usually difficult to come up with the “right” features in the first place. An easier option

is to come up with a large set of potentially useful features and perform a feature selection proce-

66

dure to select the relevant ones. However, it is often statistically hard (i.e. requires large training

set) to reliably select relevant features.

Instead of hand-crafting the right feature mappings for each task, we would like the learning

system itself to automatically construct task-relevant features. To enable this, we need to provide

additional information to the system. We would like this information to be in the form of a do-

main theory that captures an expert’s prior knowledge about the domain, and that the same do-

main theory can be used by multiple, different tasks that belong to this domain. It is then up to

the system to extract relevant information from the domain theory in order to construct features

that are specific and relevant to individual tasks.

We propose a learning system that achieves this objective.

5.2 Explanation-Based Learning and Semantic Features

In classical EBL, one generates explanation for a given training example by deriving the class la-

bel from the observed input. Each derivation step in the explanation process is required to be

based on statements given by or derivable from the domain theory. The resulting hypothesis is

then required to be a generalized version of the explanation. For a particular input x ∈ X and

label y ∈ Y, the possible “inference paths” from x to y are restricted to those that can be derived

from the domain theory. This precludes most of the mappings in YX from being considered to be

a hypothesis.

Given a set of training examples, the class label provides information that restricts the hy-

pothesis space to those that are consistent with the label. Assume that the set Σ consists of all

statements in the domain theory that derive the class label in one step. In other words, all hy-

potheses must be constructed from explanations that map the observed input to some elements

of Σ. This set Σ now provides information in addition to the class label that further restricts the

hypothesis space. The same reasoning can be recursively applied and we observe how additional

information is introduced to the learning process.

From a feature construction point of view, such additional information comes in the form of

semantic features.

For an example of semantic features, consider the pair of Chinese characters shown in Fig-

ure 5.1. To a human “expert”, the main difference between the two characters is the presence of

the intersection near the upper-left corner of the first character. Although this difference may be

67

Figure 5.1: Example pair of similar characters

Figure 5.2: Within-class variation; each row shows 5 examples from the same character

rather obvious for a human reader, it is not easy to discover by a machine learner that parses each

image as an array of pixel values, more so when there is a large within-class variation in the train-

ing examples (see Figure 5.2).

For our example pair of characters, it is rather easy to learn a classifier that correctly labels

all the examples in the training set. In fact, with 200 examples per character, using raw images

as input, even a linear SVM can achieve 0% training error (but with 14.25% test error). The best

classifier learned using standard soft-margin SVM with Gaussian kernel, across a wide range of

parameters, achieves 0% training error but only manages 11.25% test error (with 5-fold cross-

validation). A human, on the other hand, can easily achieve less than 1% error rate on this pair

by training on only a few examples, when the above-mentioned semantic feature has been pointed

out by the teacher.

In this particular example, Σ can be the presence of the above-mentioned intersection, or sim-

ply the presence of the “protrusion” above the top horizontal stroke. This “feature” however, can-

not be directly observed and cannot be discovered easily by the learner (e.g. it is not a simple lin-

ear combination of any subset of pixel values). If there is a way to insist that a hypothesis makes

decision based on this feature (or an approximation to it), then we have greater belief that it will

generalize well to unseen examples.

The above discussion shows how domain knowledge provides information that should help the

68

learning process. From a feature construction point of view, we assume that the domain theory

is capable of suggesting potentially useful semantic features. However, it is still up to the learn-

ing system to construct a detector for this feature. The next section describes how we construct

semantic feature detectors from available lower-level sensors.

5.3 Sensors

A feature detector, or sensor, is a computable mapping from X to a (possibly empty) set of sensor

outputs:

S : X 7→ P(S)

where P denotes the power set, such that each sensor output is a member of S. Each sensor out-

put can be a simple finite-dimensional real vector, or a structured piece of data. In all our exam-

ples, the sensor outputs are either pixel values (e.g. image patches) or geometrical objects such as

line segments, edge segments etc. Although we do not formally impose any requirements in terms

of computational cost, we assume that a sensor can produce its output in polynomial time (e.g.

polynomial in terms of the size of input images).

We differentiate between the term “feature” and “sensor”. A feature is a property of the in-

put object that is abstract and its value can either be computed from the input itself or simply

be given by an expert. A sensor, on the other hand, is strictly a computable function on the in-

put. It is possible to define a feature based on the output of a sensor (its values are then simply

the sensor outputs). We refer to such features as “low-level” features, in contrast with “semantic”

or “high-level” features, whose values are typically not directly computable, but can sometimes be

approximated by sensors.

The object category, or the class label itself, can therefore be viewed as a feature (as assigned

by an expert). We can think of this feature as the ultimate, highest-level feature for our task. The

solution f ∈ YX that we seek is therefore simply a feature detector for this feature. From this

point of view, learning a classifier is equivalent to constructing a semantic feature detector.

At the other extreme, the raw input (e.g. pixel values) can be regarded as the lowest level fea-

tures. Working directly at this level is often undesirable since the class label is usually a complex,

nonlinear function of the raw input. Intermediate-level features, which consist of simple, but may

be nonlinear functions of the input can be much more informative and easier to work with. Our

approach focuses on the use of such features in the forms of sensors and their corresponding “in-

69

terpretations” to construct more complex semantic feature detectors.

5.3.1 Interpreting Sensor Outputs

In order to support reasoning with features and sensors, we need a mechanism to relate (low-level)

sensor outputs with higher-level features. We allow such relationships to be expressed both quali-

tatively and quantitatively in the domain theory.

The qualitative part of the domain theory defines abstract objects that can be associated with

sensor outputs. An abstract object is a named conceptual entity with properties. For example, a

stroke in a handwritten character is an abstract object. The properties of a stroke may include its

length, curvature etc. An abstract object can also be part of another abstract object. For exam-

ple, a stroke object intersecting with another stroke can be decomposed into two stroke segments,

where each stroke segment can be a separate abstract object. Similarly, a “handwritten character”

object consists of several stroke objects. We do not formally restrict the ways in which abstract

objects are represented in the domain theory, as long as each has a unique name. For example,

each stroke in a character has a unique name, such as C17 or S21.

Each abstract object can have an associated appearance model. An appearance model defines

a parameterized space of configurations. Each instance of the abstract object can have a different

configuration. For example, a stroke C17 can be modeled as a line segment with a fix width, with

parameters specifying the location of the two endpoints and the width. Different instances of C17

have different configurations, due to variations in handwriting.

Each sensor output can be associated with one or more abstract objects. The associated object

is considered a potential interpretation of the sensor output. In other words, the sensor output

can be used to infer the configuration of the associated object. For example, suppose there exists

a sensor S that can extract straight line segments from any image. Suppose a given image x is a

handwritten example of a character that contains a stroke C17. Then a particular sensor output

(i.e. a line segment) s0 ∈ S(X) can be associated with C17 (or “interpreted” as C17). It is up to

the domain expert to determine whether s0 is correctly interpreted, or in other words, whether it

is consistent with this particular interpretation.

The quantitative part of the domain theory provides the means to evaluate the consistency

between a sensor output and an abstract object. Associated with each interpretation is a set of

consistency metrics. Each consistency metric is a function that maps a sensor output to a non-

negative real value. This value is a quantitative assessment of the sensor output in terms of the

70

amount of “deviation” from the ideal configuration of the abstract object. Each consistency met-

ric addresses a particular aspect of the object. For example, suppose stroke C17 is supposed to be

completely straight and vertical in its ideal configuration. A possible consistency metric can mea-

sure the angular difference between a given line segment and the ideal vertical direction. Another

metric can measure the curvature of the line segment.

Similarly, consistency metrics can also be associated with a pair (or more generally a set) of

interpretations. For example, two sensor outputs s0 and s1 can be interpreted as objects C17 and

C3 respectively. Suppose C17 is known to intersect with C3, then a consistency metric that mea-

sures how much s0 and s1 “intersect” can be defined.

We emphasize that although the consistency metrics provide quantitative assessment to inter-

pretations, their numerical values are not required to be accurate or absolute. It is often the case

that our domain knowledge can only make confident assessments qualitatively, but not quanti-

tatively. For example, how do we set the boundary for “being vertical”? These are uncertainties

that not even an expert can easily handle and it is usually better if they are resolved using the ac-

tual training data. We only require that the consistency metrics allow comparisons between com-

peting interpretations in a relative sense, and as long as extreme cases (e.g. very unlikely interpre-

tation) can be confidently ruled out, the metrics will remain informative even if they are noisy.

5.3.2 Consistency Metrics

We now provide the precise definition for the form of consistency metrics used in this work. The

consistency metrics serve two purposes. First, they provide a consistent way to linearize any prop-

erties of abstract object parts and allow simple combination with other properties. Secondly, they

allow uncertainties to be resolved statistically.

For the first purpose, we define a transform that normalizes the range of each metric to be-

tween 0 and 1. For the second purpose, we associate a tunable parameter with each metric. Re-

call that each abstract object, when used as an interpretation for a sensor output, is associated

with a set of consistency metrics. Denoting the abstract object as I and the sensor output as s,

let M I = {mI
j |j = 1, . . . , k} be the set of consistency metrics for I. Each mI

j is defined as a func-

tion in the following form:

mI
j (s) = σ

(
θI

j −
1
T

dI
j (s)

)

where σ is the standard logistic sigmoid function and θI
j is the tunable parameter. T is a fixed

constant that sets the “steepness” of the sigmoid function and dI
j is the fixed non-negative “devi-

71

ation” function associated with the metric mI
j . Qualitatively, we want mI

j to be large when dI
j is

small (i.e. small deviation from ideal implies good consistency). Although T can be made into a

tunable parameter, but fixing it will disallow the sign change of the gradient of the sigmoid func-

tion, preserving the intended relationship between mI
j and dI

j . The deviation functions dI
j are also

assumed to be bounded and normalized to a range between 0 and 1. This enables a more uni-

formly controlled range for the tunable parameters θI
j . Figure 5.3 shows the form of the function

with varying values of θI
j and a fix T .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

d(s)

m
(s

)

Figure 5.3: Consistency metric functions for various values of θ

5.3.3 Induced Sensors

We have previously defined a sensor to be a mapping from the input to a (possibly empty) set of

sensor outputs. For example, an edge detector can be used as a sensor that extracts all significant

edges from an input image (with a fixed threshold for significance).

In this work, we use sensors mainly as detectors for abstract object parts. Each sensor, when

applied to the input, has an intended “target object” It. Since the sensor may actually detects

multiple outputs, it is computationally costly (and not strictly necessary) to keep every sensor

output. Instead, we simply select the sensor output that is the most likely to be the intended ob-

ject. As we will see later, this choice needs not be correct and a simple way to make a choice is

to use the deviation functions dIt
j in the consistency metrics of the target object. For each sensor

output s, the “total deviation” dtotal =
∑k

j=1 dIt
j (s) is computed and the one with the smallest

dtotal is selected. This dtotal can be refined, for example, by weighting each dIt
j (s) differently and

adaptively in order to improve the accuracy of the sensor with respect to the target object. We

do not pursue this direction, since it does not provide true improvement to the solution as there

72

are uncertainties in sensor interpretations that cannot be resolved this way. Instead, we avoid this

extra complication and employ a different strategy to handle the inherent imperfection in our sen-

sors.

These sensors are said to be induced by the intended target object, and they are biased to-

wards detecting sensor outputs that are more likely to be consistent with the target object. We

note that, using this strategy, significantly different sensors can be derived from the same basic

sensor by associating different target objects with the basic sensor.

From this point on, we assume that every sensor is an induced sensor, and always produces

exactly one sensor output. In the case where an empty set is detected, we assign a special dummy

value as its output. When a sensor S is applied on an input x, we may now denote its (single)

output as simply S(x), with S(x) ∈ S.

5.4 Features

Consider a sensor S and an interpretation I of its output (as an abstract object part). This (S,I)

pair can itself be considered a feature. Associated with the interpretation I is a set of consistency

metrics mI
j , j = 1, . . . , k. As defined in the previous section, each metric mI

j is a non-negative,

real-valued function on the sensor outputs:

mI
j : S 7→ R

We can think of this set of functions as a vector-valued function that generates a k-dimensional

feature vector for each sensor output:

M I : S 7→ Rk

This feature vector can then be used to evaluate how consistent a particular sensor output is with

interpretation I. Note that k needs not be the same for every interpretation.

Similarly, a pair of sensors S1 and S2, together with a corresponding pair of interpretations I1

and I2 are associated with a set of consistency metrics mI1,I2
j , j = 1, . . . , k. We then have M I1,I2

as a function that generates k-dimensional feature vectors from sensor output pairs. This feature

vector evaluates how consistent a given pair of sensor instances is with the relationship between

the two abstract object parts.

Given a (sensor,interpretation) pair, we can construct a decision function that outputs the be-

73

lief (or likelihood) that a given sensor output is indeed correctly interpreted (as the object part).

Since we rely on the individual consistency metric to handle any necessary non-linearities, we sim-

ply use a sigmoid function over a linear combination of components of the feature vector for this

belief function:

BI(s) = σ
(
wI

0 + wI
1mI

1(s) + · · ·+ wI
kmI

k(s)
)

= σ
(
wI ·M I(s)

)

where wI = 〈wI
0 , . . . , wI

k〉 are tunable parameters, and σ is the function:

σ(x) =
1

1 + e−x
.

Note that BI also depends on the parameters for individual consistency metrics θI = 〈θI
1 , . . . , θI

k〉.

5.4.1 Combining Sensors

Armed with the belief function BI , one may come up with a general probabilistic model that can

be used as a classifier. We first describe one such model then discuss the problems associated with

it and how it motivates our final solution.

Suppose the class membership of a given input object largely depends on the presence of cer-

tain sets of abstract object parts. Suppose also that we have at our disposal a set of sensors, where

each sensor is capable of detecting some of the object parts. However, given the set of sensor out-

puts obtained from an input it is unclear what the correct “joint-interpretation” for the entire set

of sensor outputs is (i.e. what part does each sensor actually detect for this particular input?).

We address this uncertainty by modeling a joint distribution over the possible interpretations

for each sensor output. Let X and Y be the random variables for the input and the class label

respectively. Let Si, i = 1, . . . ,m be the sensors. Let H = (Hi), i = 1, . . . ,m be the random vari-

ables for the interpretation of each corresponding sensor. Each Hi takes values from the (finite)

set of abstract object parts I = {I1, . . . , In}. Note that not all object parts can be detected by all

sensors, so each Hi typically takes its values from only a subset of I.

We model the conditional distribution over (Y,H) given X with a conditional random field as

follows:

P (Y,H|X; Θ) =
1
Z

∏

C

ψC(Y,H, X; Θ)

where Θ is the model parameter, Z is the normalization factor, and C ranges over single nodes (i)

74

or pairs of nodes (i, j). Each ψC is a potential function, to be defined below.

Each node i in the graph for the random field corresponds to the interpretation Hi for sensor

Si. For pairs of interpretations where consistency metrics are defined, the corresponding nodes are

connected. We refer to the pairwise interpretations for nodes i and j as H(i,j) = (Hi, Hj) and the

sensor outputs S(i,j) = (Si, Sj). Assuming that we only have consistency metrics (and therefore

the belief function) for either single-nodes or pairs of nodes, then C can either be a single node (i)

or a pair of nodes (i, j). Each ψC is a potential function for the corresponding interpretation HC

(single or pairwise), and is defined based on the belief functions BHC as follows:

ψC(Y,H, X; Θ) = exp{uHC BHC (SC(X)) + vY,HC} (5.1)

The function BHC is exactly as defined in the previous section and it depends on parameters wHC

and θHC (as defined in the previous sections). The scalar weights uHC and vY,HC , together with

wHC and θHC for all Y and HC form the entire set of model parameters Θ.

The belief functions evaluate the consistency between interpretation HC and the sensor out-

puts SC . The “bias” vY,HC evaluates the consistency between the abstract objects associated with

HC and the class Y .

Given an input x, classification can be performed by selecting y with the highest marginal

probability P (y|x; Θ), given by:

P (y|x; Θ) =
∑

H

P (y,H|x; Θ)

It is possible to learn the model parameters Θ from a training set of examples, by defining an

appropriate objective function. For example, given N training examples (xi, yi), i = 1, . . . , N , we

can find the maximizer for the regularized log likelihood of the data:

L(Θ) =
N∑

i=1

log P (yi|xi; Θ)− γ‖Θ‖2

where γ is a scalar weight for the (zero-mean Gaussian) regularizer. This is most easily done when

the correct interpretation for each sensor H is available for the training set, since there is no need

to marginalize over all possible interpretations H when calculating the log likelihood. Otherwise,

the random field becomes a hidden conditional random field (see [Quattoni et al., 2007]) and learn-

ing can be more costly and noisy. In either case, inference (e.g. performing the classification) can

75

be computationally intractable since the marginalization over H is exponential in terms of the

largest clique size of the graph. Restricting the graph to a tree, on the other hand, can seriously

limit the information that we can incorporate into the model.

5.4.2 A Markov Logic Interpretation

Our way of using the belief functions in the conditional random field can be viewed as a gener-

alized Markov logic network (see [Richardson and Domingos, 2006]). In first-order Markov logic

networks, each node represents a ground predicate, and each clique represents a formula. Each

formula is associated with a potential function similar to the one defined in Eq. 5.1, with the be-

lief function BHC replaced by the activation function of the corresponding formula. The activa-

tion function has a value 1 if the formula is satisfied, and 0 otherwise. Our belief function, on the

other hand, takes real values between 0 and 1. It plays the role of the logical formula, where its

“activation” is determined by the level of consistency between the sensor outputs and the assigned

interpretations.

As with Markov logic networks, we can therefore view our model as a way of combining both

logical and statistical inference. A logical “inference path” in our case corresponds to a set of in-

terpretations that jointly achieves high consistency with the sensor outputs. This special set of

interpretations is in fact, simply the semantic feature that we try to detect with our sensors. This

motivates the design of our final solution.

5.4.3 Semantic Features

We assume that each semantic feature requires a set of object parts under certain configurations

as evidence for its presence. When a sensor instance is paired with (i.e. interpreted as) each of the

required object parts, this group of sensors becomes a potential detector for this semantic feature.

Recall that each (SC ,HC) pair is itself a (lower level) feature, whose feature vector is gener-

ated by the associated set of consistency metrics. The overall consistency of this interpretation is

given by the belief function BHC (SC). We use both single (C = (i)) and pairwise (C = (i, j))

interpretations.

Consider a subset of d connected nodes I = {i1, . . . , id} in the graph of the conditional random

field, with a particular interpretation assigned to each i ∈ I, such that Hi = hi for each i ∈ I.
Recall that hi ∈ I for all i ∈ I. Let IF denote the set of all node indices (single and pairwise)

among nodes in I where there exists a corresponding belief function. The set of all interpreta-

76

tions {hC |C ∈ IF} constitute the necessary abstract objects in the semantic feature (or“inference

path”) F . Instead of the log-linear model in the conditional random field, we use a sigmoid func-

tion to combine the set of belief functions for IF and define the likelihood function for F as:

LF (x) = σ

(
vF +

∑

C∈IF

uhC BhC
(
SC(x)

))

where, again, vF and uhC are the parameters.

Let F be a Bernoulli random variable, with value 1 if feature F is present and 0 otherwise. We

can view LF as a conditional likelihood function for F , i.e., P (F = 1|X) = LF (X) and P (F =

0|X) = 1− LF (X).

5.4.4 Induced Sensors for Semantic Features

Recall the notion of induced sensors (see section 5.3.3), where each sensor is constructed with re-

spect to an intended target object. We extend this notion to a sequence of sensors that is con-

structed with respect to an ordered set of intended target objects.

The first sensor in this sensor sequence selects its sensor output based on the consistency met-

rics for its intended interpretation. The second sensor, however, uses both the consistency metrics

for its intended interpretation and the consistency metrics for the pairwise interpretation between

the first two sensors. In this manner, each sensor in the sequence makes use of consistency metrics

for all pairwise interpretations between itself and each of its “parent” sensors, in addition to the

interpretation for its own intended target object.

Alternatively, we can view each sensor in the sequence as a conditional sensor, where its out-

put is influenced by a particular interpretations of the outputs from previous sensors. Such a se-

quence of sensors can be much more effective in detecting a set of related abstract objects com-

pared to a set of sensors that act independently.

5.5 Sensor Tree

Consider a classification task. Suppose, according to the domain theory, that a semantic feature F
is unique to the members of one class. We refer to this class as the target class.

In an ideal case, feature F can be reliably detected by a sequence of sensors. In other words,

there exists a very discriminative likelihood function LF for F . To classify an input x, this se-

77

quence of sensors is applied to x and if LF (x) > 0.5 then x belongs to the target class.

Finding such a set of sensors and learning the corresponding parameters can be difficult for

many reasons. First, there exists inherent noise in a sensor’s output such that it cannot always

detect the intended target object. Secondly, there might be inherent noise in the input in the

sense that two different abstract objects with similar appearance can be mistaken for one another.

Lastly, the same semantic feature may appear differently in different class instances and a single

sensor sequence cannot handle all such variations.

As an illustration, consider the two examples in Figure 5.4, both from the same character. The

black line segments show sensor outputs that are similar, but in fact representing different strokes.

For this character, there may not exist a single sensor that can consistently detect either the top

or the bottom horizontal stroke.

Figure 5.4: Similar sensor outputs from different objects

Instead, consider the following strategy of applying sensors. Assume that I1 and I2 refer to the

top and bottom horizontal strokes of the character in Figure 5.4 respectively. First, a sensor S1

is applied, looking for I1. Then, a second sensor S2 is applied, looking for I2, conditioning on the

interpretation of S1’s output as I1. Next, a third sensor S3 is applied, looking for I1, conditioning

on the interpretation of S1’s output as I2. This setup of sensors can be represented by a tree as

shown in Figure 5.5.

S1

S2 S3

I1
I2

I1

I1I2

Figure 5.5: A simple sensor tree

In any case, at most one of the sensor sequences (either (S1, S2) or (S1, S3)) can have correct

78

joint-interpretations. We note that although both S1 and S3 look for I1, S3 is a different sensor

since, given S1’s interpretation, it will have higher preference for line segments located above S1’s

output (and could fail if S1 had correctly detected I1). We believe that, as long as the domain

theory is adequate, the two sensor paths will have likelihood functions that allow easy identifica-

tion of the correct interpretations.

The above example shows that, instead of relying on a single well-tuned sensor sequence, we

can combine sensors into a tree structure such that uncertainties in sensor interpretations can be

resolved by applying additional sensors.

5.5.1 Neural Network for the Sensor Tree

Assume that a sensor tree is created for detecting the semantic feature F . By definition, the pres-

ence of F depends on a particular set of abstract objects being detected. The structure of a sen-

sor tree is a directed acyclic graph with a specific node designated as the root. Each path of the

sensor tree (from the root node to a leave node) represents a sequence of sensors with a corre-

sponding sequence of intended interpretations that is considered sufficient for detecting F . We

will deal with the issue of what is considered “sufficient” in later sections.

Let I = {1, . . . , m} be the set of node indices of the sensor tree with m nodes. The correspond-

ing sensor for node i is denoted Si. Each (directed) edge in the tree from node i to j is associated

with an interpretation for sensor Si. We use p = 1, 2, . . . as the index for each path in the tree (no

particular order). Given the path index p and a node i, there is at most one outgoing edge from

i that belongs to path p. The associated interpretation for Si in path p (if it exists) is designated

hp
i .

Associated with each path is a likelihood function that evaluates how much we believe that

the sensors in the path have the correct interpretations. This likelihood in turn depends on the

belief functions associated with each interpretation in the path. We define Ip to be the set of all

node indices (both single and pairwise) in path p. For example, if path p has the node sequence

(i1, i2, i3), then Ip = {i1, i2, i3, (i1, i2), (i1, i3), (i2, i3)}. We also use the shorthand hp
(i1,i2)

for

(hp
i1

, hp
i2

) and S(i1,i2) for (Si1 , Si2). The likelihood function for path p is defined as:

Lp(x) = σ

(
vp +

∑

C∈Ip

up
CBhp

C

(
SC(x)

))
(5.2)

Given a sensor tree, we naturally expect that some sensors share the same interpretation. Fur-

79

thermore, any two paths can have some common sensors, possibly with common interpretations.

This information sharing can be captured by representing the likelihood functions as a neural net-

work with multiple outputs.

Lp

Bh
p
C

u
p
C

mI

wIθI

dI

dI

dI

Figure 5.6: Neural network architecture for sensor trees

Figure 5.6 shows the neural network architecture for a sensor tree and identifies the parame-

ters and activation functions for each layer. Both the consistency metrics and the belief functions

are activation functions for hidden nodes in the neural net. All activations use the logistic sigmoid

functions.

We enforce weight sharings at the level of belief functions (the wI ’s and θI ’s) by forcing all

sensors with the same interpretation to use the same weights for the shared belief functions. For

example, for the sensor tree in Fig. 5.5, the belief functions for interpretation (S1, I1) and (S3, I1)

use the same weights (for the consistency metrics associated with I1). The use of weight sharings

in this manner not only reduces the capacity of the neural network, but does it in a way that is

consistent with the domain theory.

Given that the sensor tree is designed to detect a specific semantic feature F , the likelihood

functions Lp are used jointly to indicate not only the presence of F but also the sensors that are

responsible for the detection. This allows us to evaluate not only how well the sensor tree works,

but whether it works for the right reason.

80

5.5.2 Computational Complexity

With the conditional random field, evaluating the likelihood function requires the marginalization

over possible interpretations of all sensor outputs, which is intractable in general (even if we re-

strict ourselves to only single and pairwise interpretations).

With the neural network, the computational complexity is dominated by the size of the sensor

tree. For any paths, the number of belief functions (potential functions) to evaluate is quadratic

in terms of the path length since we use only single and pairwise interpretations. So, it is straight-

forward to show that the computational complexity is only polynomial in terms of the tree size.

To gain insight into the difference between the two approaches. Consider looking for the two

horizontal strokes in Figure 5.4. With a conditional random field, one applies the “horizontal

stroke detector” to obtain the set of sensor outputs (assume that they are all line segments that

are more or less horizontal). Associated with each sensor output is a node in the random field.

Each sensor output can have several interpretations (e.g. whether it is the top or the bottom hor-

izontal stroke). The inference process has to essentially evaluate each “joint-interpretation” over

the sensor outputs. It is easy to see that for features that consist of many parts, the computa-

tional cost grows exponentially in the number of parts.

With the sensor tree (e.g. Figure 5.5) each sensor is associated with the target object and the

major computational cost comes from the fact that sensors deeper in the tree need to be evalu-

ated against each “parent” sensor. In the most unfortunate case, every detection order needs a

separate path in the tree and the resulting tree will be large. However, due to sharing of informa-

tion, we typically expect the number of paths to be much smaller (less than exponential), and this

depends on the domain theory.

5.6 Learning Algorithm

We propose an iterative algorithm to construct and refine sensor trees. In each iteration, a new

sensor tree is created and its parameters optimized. Its performance on the training set is then

evaluated and the errors analyzed. The error evaluation updates a “confusion database”, which is

then used in the next iteration to create a new sensor tree. The followings are the major steps in

the algorithm:

1. Find a target semantic feature F .

2. Construct a sensor tree for F using the current confusion database.

81

3. Apply the sensor tree to the training examples (to obtain sensor instances) and obtain the

target labels.

4. Optimize sensor tree parameters.

5. Evaluate the sensor tree performance on the training examples.

6. Analyze errors and update the confusion database

7. If stopping condition is not met, go to step 2.

Multiple sensor trees can be created, each targeting a different (or even the same) semantic

feature. The final classifier is simply an ensemble of sensor trees.

5.6.1 Target Semantic Feature

Each sensor tree is constructed and optimized so that it is a reliable detector for a designated tar-

get semantic feature. For a classification task, this target feature is a proposed “difference” be-

tween object classes or a unique pattern in an object class. We rely on the domain theory to come

up with such potential features.

In the previous chapter, we proposed a method of finding such features by comparing proto-

type characters. The same reasoning method applies to here.

For binary classification tasks, a target feature F specifies two matching sets RF1 and RF2 of

abstract objects in each of the object class. These constitute the reference features. In addition,

a target object T F unique to one class is specified. The reference features can be seen as setting

up a “frame of reference” since they are expected to exist in either class. Given the reference fea-

tures, the target object T F is expected have a distinctive appearance such that an appropriate

sensor can be used to detect its presence (or absence) reliably. Figure 5.7 shows an example.

Reference
Target

Figure 5.7: Example target and reference features

82

5.6.2 Constructing Sensor Trees

We assume that every sensor is an induced sensor, and is therefore associated with an intended

abstract object. Additionally, a set of conditional objects can be specified — these correspond to

any previous sensor outputs. We also assume that a procedure GET SENSOR is available such

that given a target object, together with any conditional objects, one or more sensors can be ob-

tained. We also allow GET SENSOR to fail in case there is no available sensor for the target ob-

ject.

The basic idea in constructing a sensor tree is to identify possible interpretations for a given

sensor, conditioning on the interpretations of all the previous sensors in the same sequence (i.e.

path). In the ideal case, every sensor, when applied, will detect precisely the intended target ob-

ject and nothing else. In this case, the only interpretation is the target object. In general, how-

ever, we expect that a set of objects can be detected.

The set of possible interpretations for a given sensor can be constructed based on the prior

information in the domain theory as well as actual observations on the training examples.

• Obtaining possible interpretations from domain theory

In the most uninformative case, we can simply assume that the only possible interpreta-

tion for a sensor is the target object. In this case, we rely solely on empirical observations

to identify possible interpretations.

Alternatively, given a sensor S, we can use the consistency metrics of its intended interpreta-

tion I to find other possible interpretations. Recall that associated with interpretation I is a

set of consistency metrics M I = {mI
j |j = 1, . . . , k} with parameters θI

j . We define a default

value for each θI
j .

For a candidate interpretation, we generate a sensor output for that object (e.g. by using

a prototype class example) and compute each mI
j . The candidate interpretation becomes a

potential interpretation if mI
j > 0.5 for all j.

• Obtaining possible interpretations empirically

This can be done after the sensor tree has been applied to the training examples. The expla-

nation for each example provides the correct (or most likely) interpretation for each sensor

output. A confusion database can be used to keep track of all interpretations that have been

actually observed in the training examples. Each entry in the confusion database specifies

83

the sensor’s intended object, all its conditional objects, and gives the list of objects that can

be detected by this sensor.

We assume that a procedure GET INTERPS(S) returns all possible interpretations for sensor

S using one or both of the above methods. Note that although all intended interpretations are

objects from the target class, we keep track of interpretations from both classes of objects.

We assume that the set I1 contains all abstract objects in the target class that are of inter-

est for this feature (and similarly I2 for the non-target class). The sets I1 and I2 may initially

contain simply the objects in F but will grow after observing new objects being detected by the

sensors in the training examples.

The following algorithm constructs a new node in a sensor tree for feature F . It can be recur-

sively applied until the tree is complete. The tree is complete when every path includes all the

reference objects in RF1 as well as the target T F , and that the final leave node does not have any

interpretation from the non-target class.

1. Create a new tree node i. Let Ip be the set of all interpretations for sensors in the path

leading to i.

2. For each I ∈ I1

(a) Skip I if I ∈ Ip

(b) SI ← GET SENSOR(I)

(c) JI ← GET INTERPS(SI)

(d) Calculate the total number of possible interpretations, Score(I) ← |JI |

3. MinScore ← minI Score(I)

4. Imin ← {I | Score(I) ≤ MinScore + τ}

5. If RF1 ⊂ Ip and T F ∈ Imin then Ti ← T F

(a) Otherwise if there exists I ∈ RF1
⋂

Imin such that I /∈ Ip then Ti ← I

(b) Otherwise choose any I ∈ Imin and set Ti ← I

6. Si ← STi

7. Create a new edge for each I ∈ JTi
⋂ I1

84

5.6.3 Parameter Optimization

After the sensor tree is constructed, it is applied to the training examples. We assume that the

explanation (i.e. the correct interpretation) for each sensor output can be obtained (see the pre-

vious chapter). Using this information, it is straightforward to determine for each training exam-

ple in the target class, the path that has the correct interpretations for all its sensor outputs (or

none).

For each training example, we assign a target label tp for every path p in the sensor tree. For

examples in the target class, tp for is 1 for the correct path and 0 for all other paths. For exam-

ples in the non-target class, all tp is set to 0.

The likelihood function for path p, Lp is as defined in section 5.5.1. The corresponding neural

network for the sensor tree has parameters Θ = 〈Θp〉 for all path p where each Θp is given by

Θp = 〈vp, up
C ,whp

C , θhp
C 〉 for all C in path Ip.

Given N training examples (xi, yi), i = 1, . . . , N , together with the labels tpi , i = 1, . . . , N for

each path p, we find the maximizer for the following regularized log-likelihood of the data:

L(Θ) =
N∑

i=1

∑
p

log P (tpi |xi; Θ)− γ‖Θ‖2

Note that we assume each path label to be independent from the others. This is certainly not true

but a reasonable approximation and allows consistent handling of training examples from both the

target and non-target class. Using the likelihood function Lp (as defined in equation 5.2), we can

rewrite log P (tpi |xi) as:

log P (tpi |xi) = tpi log Lp(xi) + (1− tpi) log(1− Lp(xi))

and therefore the regularized log likelihood as:

L(Θ) =
(N∑

i=1

∑
p

tpi log Lp(xi) + (1− tpi) log(1− Lp(xi))
)
− γ‖Θ‖2

L(Θ) is a smooth function, and its gradient can be efficiently evaluated using back-propagation.

However, this objective function is in general non-convex so we do not expect to find the global

maximum. Any optimization algorithm can be used to find a (locally) optimal Θ. In our experi-

ments we use the BFGS Quasi-Newton method which only needs the gradient information.

85

5.6.4 Evaluating the Training Examples

For any input x, it is straightforward to compute the likelihood function Lp(x) for each path p

of the sensor tree. Recall that each path represents a particular interpretations for the sensor se-

quence in that path and that, intuitively, at most one path should be the “correct” path. A sim-

ple strategy to decide the final label for x is to assume that the feature F is present in x if there

exists a path p with Lp(x) > ϕ (e.g. ϕ = 0.5), and that F is not present otherwise. The value of

ϕ can be optimized based on the training example, and can even be different for each path. This

strategy assumes a positive detection for F even when there is more than one p with Lp(X) > ϕ.

Alternatively, one could adhere to the independence assumption and use an entirely proba-

bilistic evaluation. Let the random variable Fp be a boolean variable with value 1 if feature F is

detected in path p and 0 otherwise. Each Fp has independent (conditional) Bernoulli distribution

P (Fp = 1|X) = Lp(X). Then the probability that F is present in x is simply:

P (F present) = 1− P (F not present) = 1−
∏
p

(1− Lp(x))

5.6.5 Analyzing Training Errors

When the sensor tree wrongly labels a training example, the system analyzes this error and up-

dates the confusion database if necessary. The confusion database, as described in section 5.6.2

keeps track of the possible interpretations of a sensor’s output. This database is initially empty

and new entries are added after observing the training errors.

We identify two types of errors. The first type is due to structural deficiency in the neural net-

work. For example, there may exist instances of the feature F where none of the sensor sequences

in the tree can detect. This type of error cannot be fixed by tuning the network parameters. The

introduce of new interpretations for the existing sensors (hence new paths and potentially new

sensors in the tree) on the other hand can potentially address such errors. Our error analysis pro-

cedure focuses on addressing this type of errors.

The second type of errors is due to inadequate parameters (e.g. the weights) in the neural net-

work. This may either be caused by under-optimized parameters or structural deficiency in the

neural net. We belief that when the network is structurally “adequate”, even parameters far from

the global optimum can perform well. Therefore we argue that by fixing the first type of errors,

we also alleviate the second type of errors.

We handle the positive and negative examples differently. Positive examples are those in the

86

target class where feature F is expected to be present. Note that all positive examples (even those

that are correctly labeled — but perhaps not for the right reason) participate in this procedure.

The following steps are used to update the confusion database using the positive examples:

• For each positive example

1. Traverse the sensor tree (beginning from the root) by following the correct interpreta-

tion given by the explanation.

2. If the leave node is reached and the target object T F is detected, skip to the next ex-

ample.

3. If at node i, there is no outgoing edge that corresponds to the correct interpretation for

Si

(a) Add an entry for Si to the confusion database.

(b) Stop traversing the tree and go to the next example.

It is possible that some sensor outputs do not have interpretations in the domain theory. We

define an “unknown” object and use this as the interpretation for such sensor outputs.

For negative examples, we only process those that are wrongly labeled. In each of these exam-

ples, there must exist at least one sensor sequence that triggers the false detection. The following

steps are used to update the confusion database using the negative examples:

• For each negative example

– For each path with false activation, traverse the path beginning from the root node.

1. At each node i, examine the list of expected interpretations for Si.

2. If the correct interpretation is not in the list, add an entry to the confusion database

and skip to the next path.

3. Otherwise, process the next node in the path.

This error analysis process ensures that any unexpected interpretations of a sensor (given its

conditions) are recorded and will be added to any future trees that employ the same sensor under

the same conditions. This is the source of information for structural refinement in the learning

process.

87

5.6.6 Stopping Condition

It is straightforward to show that, for a given feature F , with only a finite number of abstract ob-

jects and sensors in the domain theory, the space of possible sensor trees is finite. This means that

we will eventually run out of new trees to build and the algorithm is forced to stop.

In practice, however, sensor trees that perform well can be constructed after very few itera-

tions of the algorithm. Therefore, a simple threshold on the training error can be defined and the

algorithm is stopped when K such trees have been constructed. K can be 1 if we do not intend to

combine multiple trees for the same F in the final classifier.

5.6.7 A Refinement to the Algorithm

The basic learning algorithm requires that parameter optimization is performed for each con-

structed tree. This could result in waste of computational power on many “bad” sensor trees. In-

stead, we can perform a search through a series of candidate trees and only proceed to the param-

eter optimization step when a “structurally adequate” tree is found.

The followings are the two sources for alternative trees that do no require actually evaluating

the optimized sensor tree:

• Step 5b in the tree construction algorithm (see section 5.6.2) does not specify any way to

resolve ties. We can keep track of such nodes in the sensor tree, and use a simple breadth-

first search to enumerate all alternative choices.

• Structural errors in the positive examples can be analyzed without first optimizing the pa-

rameters. This results in updates of the confusion database and the tree construction step

can be repeated to generate new trees (as long as new updates are made in the confusion

database).

The two options above can be used together to generate multiple candidate trees without go-

ing through parameter optimization. To decide whether a tree is “structurally adequate”, we ana-

lyze the positive examples and count the number of structural errors (as determined by the expla-

nation). A simple threshold (e.g. 90%) can be used to decide when a tree is structurally adequate.

88

5.7 Experiments

We evaluate our learning algorithm on the task of distinguishing difficult pairs of Chinese charac-

ters. We use the ETL9B database of offline handwritten Chinese characters. For each character

there are 200 examples, each is a 63x64 binary image. As in previous chapters, we focus on binary

classification tasks, each targeting a pair of similar (i.e. hard to distinguish) characters.

5.7.1 Domain Theory

For this algorithm, the domain theory needs to provide three components. First, for each object

class, a set of abstract objects (with the associated appearance model) needs to be specified. We

define the following three types of objects:

1. A stroke object, modeled as a line (or curve) segment with a fix width.

2. A “stroke segment” object, modeled as a (polygonal) patch of image that corresponds to

pixels of a stroke. For a stroke that does not intersect any other strokes, the entire stroke

itself creates a stroke segment object. For a stroke that is split into different parts due to

intersecting with other strokes, each part creates a separate stroke segment.

3. A “stroke segment edge” object, modeled as a directed line (or curve) segment. For each

stroke segment object, two edge objects are created (one for each side).

Figure 5.8 illustrates all 3 types of objects.

Stroke segments

Stroke edges

Stroke

Figure 5.8: Examples object parts

89

Secondly, for each type of objects, one of more sensors need to be defined. We use the follow-

ing sensors, each targets an object type defined above.

1. A line segment extractor based on Hough transforms. Sensor outputs are obtained by per-

forming a Hough transform on an input image and parsing the image for line segments, each

corresponds to a peak in the Hough transform.

2. A “blob” sensor for detecting stroke segments. The blob sensor depends on the conditional

objects. For each conditional object that has a side constraint from the character model (see

previous chapters), a line that divides the image plane into two halves is defined. The in-

tersection of these half-planes then define a polygonal region from which an image patch is

obtained. This patch becomes the sensor output. For example, in Fig. 5.8, given that the

diagonal stroke has been detected, the stroke segment on its left can be detected by a (con-

ditional) blob sensor.

3. An edge sensor for detecting edges. Sensor outputs are obtained by performing edge detec-

tion on the input image and extracting straight edge segments that are longer than a fixed

threshold.

The last component needed is a set of consistency metrics associated with each object as well

as each pair of objects. Note that not all pairs of objects need to have consistency metrics. We

use the constraints from the character models as the source of consistency metrics, which include

the followings:

• For strokes and edges, we define functions that measure the deviation from the ideal direc-

tion and location as defined in the character model.

• For pairs of strokes and/or edges, we define consistency metrics for their relative angles as

well as relative positions.

• For pairs of strokes and/or edges where there exists a side constraint, we define consistency

metrics that penalize violating configurations by the minimum distance needed to move each

part into an acceptable configuration.

• For stroke segments, we define a consistency metric that measures the ratio between the ex-

pected number of dark pixels and number of detected dark pixels.

90

5.7.2 An Illustration

We illustrate how the algorithm performs on the pair of characters from Figure 5.1. The semantic

feature that we try to detect is as defined in Figure 5.7.

We run the learning algorithm for 50 iterations and choose the tree that has the best train-

ing error rate. We use the proposed refinement to the algorithm such that in each iteration, a

breadth-first search in the tree space is performed to find the smallest tree among 30 candidate

trees. Figure 5.9 shows the very first sensor tree that is constructed. We also pre-analyze the posi-

tive examples and use a 90%-threshold to decide whether to proceed with parameter optimization

or to repeat the breadth-first search. Therefore, although we only perform parameter optimization

for 50 trees, many more trees were actually constructed.

17

12 2

12

2 17

2

Figure 5.9: Example of a first tree

Figure 5.10 shows an example tree that is chosen at the end of the training process. The corre-

sponding part labels are shown in Fig. 5.11.

We note an unexpected, but interesting surprise in the learned tree in Fig. 5.10, where one of

the paths ends with an additional sensor for part no. 3, instead of stopping at the “target” part

no. 12. A further examination of this shows that the additional sensing provides additional evi-

dence for resolving potential uncertainty, which resulted in errors in some previously constructed

trees. This illustrates the ability of the algorithm to enhance robustness through structural refine-

ment.

We perform classification with two different versions of labeling, one with a fixed ϕ = 0.5 and

the other with optimized ϕ for each sensor tree path. Table 5.1 compares the results we obtained

with the sensor tree algorithm with those from the SVMs. The error rates are based on 5-fold

cross-validation.

91

9

14

6 4 2 3

9

3
11 14

1

2

12

2

12

12 2

3 12

2 2

12 12

6

4
2 17

3
14

2
2 12 2

2 2

Figure 5.10: Example final tree

11

3

4

2

17

6

9

12

1: Unknown

14

Figure 5.11: Object part labels for the example trees

5.7.3 Adjusted Training Error

Given the explanations for the training examples, we can actually evaluate training errors in two

different ways. The first, “raw” training error is simply the error rate based on the labels. How-

ever, for each positive example, we know the exact path in the sensor tree that correctly detects

the intended semantic feature. If the example is correctly labeled but based on a different path in

the tree, we know that the sensor tree does not work for the right reason on that particular ex-

ample. Using this information, we define a second, adjusted training error where an example is

counted as correctly labeled only when it is triggered by the correct path in the sensor tree. Fig-

92

Learner Error Rate (%)
SVM (raw image) 11.25

SVM (WDH features) 5.5
Simple Semantic Feature 5.25

Sensor tree (ϕ = 0.5) 2.75
Sensor tree (ϕ optimized) 2

Table 5.1: Classification Error Rate (5-fold cross-validation)

ures 5.12 and 5.13 show the two kinds of errors for our pair of characters, measured at each itera-

tion of the algorithm on a newly constructed sensor tree. Plotted on the same figures are the test

errors, which are not observable during training.

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iterations

E
rr

or
 r

at
e

Raw training error
Test error

Figure 5.12: Raw training error

The raw training error shows noticeable overfitting especially during later iterations when

larger sensor trees are used. On the other hand, the adjusted training error remains very similar

to the actual test error. This shows that the adjusted training error is a strong indicator for the

actual test error, and this is a significant piece of evidence that working for the right reason im-

plies good generalization.

93

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iterations

E
rr

or
 r

at
e

Adjusted training error
Test error

Figure 5.13: Adjusted training error

94

Chapter 6

A Unifying View and Comparison
of the Three Approaches

The proposed approaches of feature and model construction can be viewed as different ways of

incorporating prior knowledge into supervised learning. Although the final classifier training is

discriminative, we observe both generative and discriminative elements in the prior domain knowl-

edge itself as well as the in the feature training process. This has consequences in terms of the

kind of domain theory required, the computational cost involved, the amount of prior information

utilized by the learning system, and of course the final performance. Ultimately, we would like

to answer questions such as “given the type of prior knowledge I have, which approach should I

use?”

We use the shorthands PHANTOM, SF-SIMPLE and SF-COMPLEX to refer to the phantom

examples approach, and the two feature construction approaches respectively. Table 6.1 provides a

summary of the various aspects of learning involved.

Prior Knowledge Feature training Classifier training
PHANTOM Generative Generative Discriminative
SF-SIMPLE Generative+Discriminative Generative Discriminative

SF-COMPLEX Generative+Discriminative Generative+Discriminative Discriminative

Table 6.1: Generative and discriminative elements in the proposed approaches

Figure 6.1 shows a conceptual view of the three approaches in terms of the interaction between

prior domain knowledge and the training examples.

6.1 Generative and Discriminative Prior Knowledge

Generative prior knowledge usually means information about the joint distribution Pr(X, Y),

in particular, the distribution in the input X. A particularly natural form of generative knowl-

edge is in terms of the input distribution given the object class Pr(X|Y). For Chinese characters

this would mean given a specific character, we have information about how its instances are dis-

95

Generative Domain Theory Training examples

Explanation

Discriminative

learning

Classifier

Model Construction

Generative Model

PHANTOM

Generative Domain Theory Training examples

Explanation

Discriminative

learning

Classifier

Discriminative

Domain Theory

Feature Construction

Feature detector

SF-SIMPLE / SF-COMPLEX

Figure 6.1: Conceptual view of the learning systems. The dotted box shows where prior domain
knowledge and training examples interact.

tributed. Decomposition of objects into parts and different levels of abstraction provides further

information in a generative sense. For example, from character to strokes, then strokes to pixels.

Discriminative prior knowledge is less common. It is information on Pr(Y |X), which has direct

connection to the classification decision surface itself. In other words, given input X, discrimina-

tive knowledge provides information about the locations of the decision boundaries.

The decision boundaries, intuitively, must be located where the differences between class are.

Although this boundary may be very complex in the raw input space (e.g. images), it may be

much simpler at a more abstract level (e.g. in terms of character strokes). In our feature construc-

tion algorithms, we exploit this fact and perform a between-class comparison at the stroke level to

locate potentially useful differences. Subsequent learning can then focus on only these informative

regions.

6.2 Generative and Discriminative Feature Training

By “feature training”, we mean how the training data is used to find the best-fitting model or fea-

ture transformations. In all approaches this involves an optimization process. The distinction be-

tween generative and discriminative training can be made clear by looking at the objective func-

96

tion used in the individual optimization process.

The “explanation” process, which reveals the hidden structure within each input (e.g. strokes)

is common to all three approaches, and it utilizes mainly generative information. In PHANTOM,

a generative model is fitted to this information. By definition, this is generative training.

In SF-SIMPLE, a robust detector is learned to find both the reference as well as the target

feature. Although the target feature is known to contain discriminative information, the detector

is not optimized such that the resulting feature transform is discriminative. Again, this is genera-

tive training.

In contrast, SF-COMPLEX trains the feature detector in a discriminative manner. Here, we

note that the objective function used in the optimization of the sensor tree parameters actually

penalizes label loss.

6.3 Elements in Domain Theory

All EBL approaches require that we have a domain theory. This is our source of information in

addition to the training data.

Common to all approaches is the object model that we use to describe each class. In partic-

ular, we utilize prototype characters which contain stroke-level information including qualitative

constraints on possible stroke configurations. The connection between strokes and pixels is pro-

vided by a stroke appearance model (e.g. straight lines or curves). This information is sufficient

for the PHANTOM approach.

For the two feature construction approaches, the domain theory is required to provide addi-

tional information, namely,

1. A mechanism to perform between-class similarity/difference comparison. This is assumed

to operate at a high-level abstraction (e.g. stroke level) and is not required to be accurate.

This is our source of semantic features.

2. Sensors whose output can be interpreted into abstract object parts (e.g. strokes or parts of

stroke).

SF-COMPLEX has a further requirement that each sensor-interpretation pair can be quantita-

tively evaluated, through one or more consistency metrics. The consistency metrics, however, are

expected to be approximate and imperfect.

97

We observe that the more complex approaches require more information from the domain the-

ory. While this means that more information can be utilized by these approaches, they are also

more susceptible to any imperfections in the domain theory. This tradeoff is certainly expected

and in practice we can make our decision based on the level of confidence we have in our domain

theory.

This said, our empirical results indicate that all the approaches are generally robust with re-

spect to imperfection in the domain theory.

6.4 Computational Complexity

We note that for all our approaches, the computational effort is mainly spent during the training

phase. Once trained, the classifier can evaluate new inputs efficiently, with at most polynomial

growth in the computational time with respect to the solution size.

In training, most computational effort is spent during the explanation and the feature training

phase. The computational complexity of the final discriminative learner is relatively insignificant

since for SVM training the worst case time complexity is still polynomial (O(m3) where m is the

size of the training set). The exception is PHANTOM since in principle, we can add unlimited

number of phantom examples to the training set but in practice, the storage complexity (O(m2))

may quickly become prohibitive.

The explanation process largely depends on the structure of our character prototypes, where

for a general graph it is intractable. However, this might not be a problem if every stroke-level

interaction is limited to a small set, which is usually the case in practice.

For SF-COMPLEX, the feature training (sensor tree optimization) may involve non-convex

optimization and can be computationally more costly than the other approaches. Our empirical

observation is that the better the quality of the domain theory, the faster the optimization.

98

Chapter 7

Related Works

7.1 Motivation from Some Previous Works

This research was partly motivated by previous works by Sun [Sun, 2005]. In particular, the phan-

tom examples approach can be considered an extension and generalization of the work in [Sun,

2005]. Also related is work in [Brodie and DeJong, 2001] that used phantom examples for control

learning.

The proposed feature construction algorithms are related to the feature kernel functions pro-

posed in [Sun and DeJong, 2005] in the sense that both bias the discriminative learner to concen-

trate on informative regions in the input image. However, instead of using weights on absolute

pixel coordinates through the kernels, our approach uses a more adaptive detection method, which

can be viewed as a form of dynamic image registration. For an example, consider the pair of char-

acters in 7.1.

Figure 7.1: Example pair of similar characters

The top-left corner of the input image is the most informative for this pair. However, due

to the large variability among instances of the same character, an absolute coordinate approach

needs to define a sufficiently large region in order to cover most cases. This may result in loss of

sensitivity to the target feature. An adaptive approach would ameliorate this problem. Figure 7.2

illustrates this difference.

The adaptive detection, however, cannot be easily translated into an SVM kernel, hence our

proposed feature construction algorithms. We note that the jittered SV method [Decoste and

99

Figure 7.2: Top row: adaptive concentration. Bottom row: absolute concentration.

Schölkopf, 2002] has some flavor of dynamic image registration, however, the jittering is done to

the entire image and therefore does not take advantage of any particularly informative parts of

the input.

7.2 Artificial Training Examples

Approaches that use invariant transformations to augment the training data include [Pomerleau,

1991; Baird, 1992; Poggio and Vetter, 1992; Burges and Schölkopf, 1996; Roth et al., 2000; De-

coste and Schölkopf, 2002]. Our phantom example approach can be seen as a form of generaliza-

tion of these approaches where an underlying generative model is assumed. With this view, we ad-

mit the incorporation of richer domain knowledge through the construction of task-specific mod-

els.

In the context of object recognition and computer vision, many approaches that employ syn-

thetic graphics data have been explored. In [Sapp et al., 2008], synthetic images of objects in dif-

ferent background/foreground combination are generated with a trained generative model. [Michels

et al., 2005] use 3D models of outdoor scenes to generate images for autonomous driving. In [Heisele

et al., 2001] and [Everingham and Zisserman, 2005], textured 3D head models are used to gener-

ate faces in arbitrary poses and illumination. [Miyao and Maruyama, 2006] use online handwriting

data to learn a generative model for Chinese characters.

Most of the approaches mentioned above rely on a generative model that is handcrafted for

the specific tasks. Our model construction algorithm provides a way to partially automate this

process by employing available domain knowledge as a model generator and use the training ex-

amples to guide the construction of task-specific models.

100

7.3 Feature Generation and Selection

Most works on feature construction can be seen as a combined feature generation-selection ap-

proach. The feature generation part either explicitly or implicitly defines a space of possible fea-

tures. The most useful features within this space are then selected using some data-dependent

criteria. The feature selection methods include filters [Almuallim and Ditterich, 1991; Kira and

Rendell, 1992], wrappers [Kohavi and John, 1997], as well as embedded methods [Guyon et al.,

2006]. Central to the feature selection approaches is the notion of relevance [Blum and Langley,

1997; Kohavi and John, 1997], which is the basis for deciding the usefulness of any given feature.

Arguably the simplest form of this generate-selection approach is feature subset selection from

a predefined list of all potential features. A simple extension to this is to consider linear combi-

nations of the existing features. The standard principal components analysis (PCA) and linear

discriminant analysis (LDA) are examples of this. To address nonlinearity, kernel-based extensions

to these algorithms have also been proposed (e.g. kernel PCA [Schölkopf et al., 1996]).

An observation of these feature selection approaches is that they are generally oblivious to any

task or domain specific information, other than what have been captured by the given features. In

contrast, our semantic features are mainly derived from a domain theory in a task specific manner

through the explanation-based interaction with the training examples. An “analytical” component

has been added to the otherwise empirically guided process.

Domain-aware features have been used in the context of constructive induction and inductive

logic programming, where features are logical formulas. Using logical operators, an expressive

space of potential features can be generated from basic predicates. Works in this regard include

[Markovitch and Rosenstein, 2002; Utgoff, 2001; Flach and Lavrac, 2000; Hu and Kibler, 1996;

Fawcett and Utgoff, 1992]. We note that many of these approaches intend to invent new features

in a bottom-up, data-driven manner. Our semantic features, on the other hand, are derived from

the domain theory in a top-down manner and instead of finding new semantic features, training

data is used to resolve any uncertainties between the semantic features and the observed features.

Our semantic features have resemblance to the “types” of features defined in [Cumby and

Roth, 2002, 2003], which can be seen as high-level generalizations of lower-level ground features.

In their works, formal syntax and semantics are defined for these features, which allows analysis

in terms of representation expressiveness and computational complexity. We do not define such

formal representations for our features, but concentrate on more interaction between data and the

domain theory in a complex domain.

101

7.4 Features in Object Recognition

Features play an important role in object recognition. One particularly popular direction of re-

search is in designing invariant features. Features that are robust under transformations such as

scaling, rotation, illumination changes or 3D projection have great potential of being able to gen-

eralize to unseen configuration of objects. Many such features have been proposed, examples in-

clude those based on corner detectors [Schmid and Mohr, 1997; Zhang et al., 1995], SIFT-based

features [Lowe, 1999; Lazebnik et al., 2004], Haar wavelets [Mohan et al., 2001] or Gabor filters

[Serre et al., 2005].

A particularly successful approach to feature construction is via the use of a hierarchy, where

intermediate, or hidden features are used. Some of these approaches are inspired by the hierar-

chical nature of the visual cortex [Serre et al., 2005; Mutch and Lowe, 2006]. Other hierarchical

approaches include convolutional networks [Lecun et al., 1998; Hua] and hierarchical SVM classi-

fiers [Heisele et al., 2001]. In many approaches, intermediate features are associated with object

parts or components such that their spatial relationships can be exploited in recognition [Agarwal

and Roth, 2002; Ullman et al., 2002; Heisele et al., 2001; Weber et al., 2000]. More recently, unsu-

pervised training of individual feature layer has been shown to be promising [Bengio et al., 2007;

Ranzato et al., 2007].

Many, if not most of these features are intended to be generic and insensitive to the underlying

task objects or the meaning of individual object parts. These features generally work well when

the available training set is large but can perform poorly otherwise. What our approaches bring to

this is the incorporation of task-specific knowledge about the underlying objects into the feature

construction process. In particular, our semantic features specify relationships among object parts

in terms of their well-formedness, and our feature construction process involves interpretation of

lower-level sensor outputs in terms of these object parts.

7.5 Handwritten Chinese Character Recognition

There has been a huge body of literature on handwritten Chinese character recognition. Two ma-

jor approaches are the structural and the feature-based approach [Suen et al., 2003]. Structural

approaches, e.g, [Liu et al., 2001] involve the extraction of possible strokes in a given image and

the matching of the extracted strokes to existing templates. The major weakness of this approach

comes from noise in the stroke-extraction process, which often result in poor matchings, especially

102

for similar characters. The feature-based approaches, e.g, [Tang et al., 1998] rely on extracting a

number of features (e.g. directional features, stroke density, etc) and build a classifier based on

the statistics of these features. These approaches are usually more robust but require a large num-

ber of training examples, which is rarely available for handwritten Chinese characters. See [Suen

et al., 2003; Arica and Yarman-Vural, 2001] and references therein for more works in this regard.

Our approach to Chinese character recognition is to decompose the problem into smaller tasks

(e.g. binary classification between difficult pairs). One such decomposition is via a two-phase ap-

proach, where a coarse classifier is used as the first phase. A coarse classifier can typically detect

the top k most likely candidates for each input with very high accuracy for some small k. The

second phase involves more fine-grained classifiers that are specifically trained to distinguish be-

tween mutually confusing characters. It would be too tedious to manually design features for each

of these subtasks and our automated feature construction algorithms can be of significant help.

103

Chapter 8

Conclusions and Future Works

We conclude with a summary of the contributions of this work and a brief discussion of potential

future works.

8.1 Contributions

The main contribution of this work is in taking a few first steps in addressing the critical but

under-explored area of automated model and feature construction, and the incorporation of prior

domain knowledge into this process. In particular, we proposed three approaches for incorporating

both generative and discriminative knowledge into discriminative learning:

• An automated model construction algorithm for phantom examples. Available domain knowl-

edge is used to construct a space of task-specific alternative models for describing the train-

ing examples in terms of their underlying, hidden structures. Once learned, the model is

used to generate phantom examples that enhance subsequent discriminative learning.

• Simple, discriminative semantic features. Available domain knowledge is used to derive

potentially useful semantic features by exploiting high-level similarities and differences be-

tween classes of objects. Efficient and robust detectors for these features are learned through

explanation-based interaction between the training data and the domain knowledge.

• Complex discriminative semantic features. An extension to the simple semantic feature is

proposed where more expressive sensor trees are used as the feature detectors. Our algo-

rithm uses various interpretations of sensor outputs with respect to the underlying object

parts in conjunction with the explanations of the training examples to ensure that the con-

structed sensor trees actually detect the intended semantic features.

The proposed algorithms are all motivated by the idea of “working for the right reason” and

“well-formed concepts”, which we view as key guiding principles for the ability to generalize in

104

supervised learning. In particular, we contributed a novel view of generalization by considering

the interaction between prior knowledge and training data using information theory and PAC-

Bayesian analysis.

In the domain of offline handwritten Chinese character recognition, we made contributions in

addressing a particularly challenging problem of distinguishing similar characters. All our pro-

posed algorithms are shown to be effective in this regard and achieve performance level on par or

better than the state-of-the-art solutions.

8.2 Future Works

8.2.1 Formal Representation of the Semantic Features

We did not insist on any particular form of representation for our domain theory or the semantic

features. A well-defined syntax and semantics, however, will allow further analysis in terms of ad-

equacy of a domain theory and its impact on the derived features and their ability to generalize.

This also enables analysis on the tradeoff between expressiveness of representation and computa-

tional complexity.

8.2.2 Partial and Incremental Explanation

Our proposed approaches assume a separate explanation process independent of the actual feature

construction itself. This also implies that we need to fully explain each training example, which

can be computationally costly. A combined or embedded approach, with the ability to perform

partial and incremental explanation in an on-demand fashion may significantly reduce this cost.

8.2.3 Document-level Recognition

We focused on fine-grained features in our classification tasks. Scaling up to a document-level

recognition task is a potential next step, where coarser-grained features can be employed. This

also opens the doors for incorporating other sources of information such as a language model.

8.2.4 Other Problem Domains

Many closely related domains can be explored with relatively little modification of our domain

theory. These include recognition of other Asian scripts, as well as line drawings classification.

105

Other, more general object recognition tasks may require more substantial change in the domain

theory, but will provide further insight into the generality of the proposed approaches across dif-

ferent application domains.

106

References

Shivani Agarwal and Dan Roth. Learning a sparse representation for object detection. In ECCV
’02: Proceedings of the 7th European Conference on Computer Vision-Part IV, pages 113–130,
London, UK, 2002. Springer-Verlag. ISBN 3-540-43748-7.

H Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic
Control, (19):716–723, 1974.

M Akaike and N Merhav. Relations between entropy and error probability. IEEE Transactions on
Information Theory, 40(1):259–266, 1994.

H Almuallim and T G Ditterich. Learning with many irrelevant features. In Proceedings of the
Ninth National Conference on Artificial Intelligence, pages 547–552. AAAI Press/The MIT
Press, 1991.

N. Arica and F. T. Yarman-Vural. An overview of character recognition focused on off-line
handwriting. Systems, Man and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 31(2):216–233, 2001. doi: http://dx.doi.org/10.1109/5326.941845. URL
http://dx.doi.org/10.1109/5326.941845.

H S Baird. Document image defect models. In Structured Document Analysis, pages 1–16.
Springer-Verlag, 1992.

P Bartlett and S Mendelson. Rademacher and gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, (3), 2002.

R Battiti. Using the mutual information for selecting features in supervised neural net learning.
IEEE Transactions on Neural Networks, (5):537–550, 1994.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of
deep networks. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Informa-
tion Processing Systems 19, pages 153–160. MIT Press, Cambridge, MA, 2007.

AL Blum and P Langley. Selection of relevant features and examples in machine learning. Artifi-
cial Intelligence, (97):245–271, 1997.

Mark Brodie and Gerald DeJong. Iterated phantom induction: A knowledge-based approach to
learning control. Machine Learning, 45(1):45–76, Oct 2001. doi: 10.1023/A:1010976022071.
URL http://dx.doi.org/10.1023/A:1010976022071.

Christopher J. C. Burges and Bernhard Schölkopf. Improving the accuracy and speed of support
vector machines. In NIPS, pages 375–381, 1996.

C. H. Chen. Handbook Of Pattern Recognition And Computer Vision. World Scientific Publishing
Co., Inc., River Edge, NJ, USA, 2005. ISBN 9812561056.

107

C. Cumby and D. Roth. Learning with feature description logics. In Proc. of the
International Conference Inductive Logic Programming, pages 32–47, 2002. URL
http://l2r.cs.uiuc.edu/ danr/Papers/ilp02.pdf.

C. Cumby and D. Roth. Feature extraction languages for propositionalized relational learning. In
IJCAI Workshop on Learning Statistical Models from Relational Data, 2003.

Dennis Decoste and Bernhard Schölkopf. Training invariant support vector machines. Mach.
Learn., 46(1-3):161–190, 2002. ISSN 0885-6125.

Gerald DeJong. Toward robust real-world inference: A new perspective on explanation-based
learning. In In Proc. ECML/PKDD. Vol. 4212 of LNCS, pages 102–113. Springer Verlag, 2006.

Gerald DeJong and Raymond Mooney. Explanation-based learning: An alternative view. In Ma-
chine Learning, pages 145–176, 1986.

Luc Devroye, Laszlo Györfi, and Gabor Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer, 1996. ISBN 9780387946184.

Mark Everingham and Andrew Zisserman. Identifying individuals in video by combining ”gener-
ative” and discriminative head models. In ICCV ’05: Proceedings of the Tenth IEEE Interna-
tional Conference on Computer Vision, pages 1103–1110, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 0-7695-2334-X-02. doi: http://dx.doi.org/10.1109/ICCV.2005.116.

Tom E. Fawcett and Paul E. Utgoff. Automatic feature generation for problem solving systems.
Technical report, Amherst, MA, USA, 1992.

P Felzenszwalb and D Huttenlocher. Efficient matching of pictorial structures. In Proc. IEEE
Computer Vision and Pattern Recognition Conf., 2000, pages 66–73, 2000.

Peter A. Flach and Nada Lavrac. The role of feature construction in inductive rule learning. Tech-
nical report, Bristol, UK, UK, 2000.

David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Prentice Hall Profes-
sional Technical Reference, 2002. ISBN 0130851981.

E Gabrilovich and S Markovitch. Feature generation for text categorization using world knowl-
edge. In In IJCAI 05, pages 1048–1053, 2005.

I.M. Guyon, S.R. Gunn, M. Nikravesh, and L. Zadeh. Feature Extraction, Foundations and Appli-
cations. Springer, 2006.

B. Heisele, T. Serre, M. Pontil, T. Vetter, and T. Poggio. Cate-
gorization by learning and combining object parts, 2001. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9269.

Ralf Herbrich and Thore Graepel. A pac-bayesian margin bound for linear classifiers: Why svms
work. In In Advances in Neural Information Processing Systems 13, pages 224–230. MIT Press,
2001.

Y Hu and D Kibler. Generation of attributes for learning algorithms. In Proc. 13th International
Conference on Machine Learning, pages 806–811. Morgan Kaufmann, 1996.

S Impedovo, P Wang, and H Bunke. Automatic Bankcheck Processing. World Scientific, 1997.

Tommi S. Jaakkola and David Haussler. Exploiting generative models in discriminative classifiers.
In Proceedings of the 1998 conference on Advances in neural information processing systems II,
pages 487–493. MIT Press, 1999. ISBN 0-262-11245-0.

108

F. Kimura. Improvement of handwritten japanese character recognition using weighted direction
code histogram. Pattern Recognition, 30(8), 1997.

Kenji Kira and Larry A. Rendell. A practical approach to feature selection. In ML, pages 249–
256, 1992.

Ron Kohavi and George H. John. Wrappers for feature subset selection. Artif. Intell., 97(1-2):
273–324, 1997. ISSN 0004-3702. doi: http://dx.doi.org/10.1016/S0004-3702(97)00043-X. URL
http://dx.doi.org/10.1016/S0004-3702(97)00043-X.

Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Semi-local affine parts for object recogni-
tion. In In BMVC, pages 959–968, 2004.

Yann Lecun, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, pages 2278–2324, 1998.

Ruei-Sung Lin, David A. Ross, Jongwoo Lim, and Ming-Hsuan Yang. Adaptive discriminative
generative model and its applications. In Advances in Neural Information Processing Systems
17, pages 801–808. MIT Press, 2005.

C-L Liu, I-J Kim, and J H Kim. Model-based stroke extraction and matching for handwritten
chinese character recognition. Pattern Recognition, (34):23392352, 2001.

D. G. Lowe. Object recognition from local scale-invariant features. volume 2, pages
1150–1157 vol.2, 1999. doi: http://dx.doi.org/10.1109/ICCV.1999.790410. URL
http://dx.doi.org/10.1109/ICCV.1999.790410.

S Markovitch and D Rosenstein. Feature generation using general constructor functions. In Ma-
chine Learning, pages 59–98. The MIT Press, 2002.

David A. Mcallester. Pac-bayesian stochastic model selection. In Machine Learning, page 2003,
2003.

David A. Mcallester. Pac-bayesian model averaging. In In Proceedings of the Twelfth Annual
Conference on Computational Learning Theory, pages 164–170. ACM Press, 1999.

Jeff Michels, Ashutosh Saxena, and Andrew Y. Ng. High speed obstacle avoidance using monoc-
ular vision and reinforcement learning. In ICML ’05: Proceedings of the 22nd international
conference on Machine learning, pages 593–600, New York, NY, USA, 2005. ACM. ISBN 1-
59593-180-5. doi: http://doi.acm.org/10.1145/1102351.1102426.

T Mitchell, R Keller, and S Kedar-Cabelli. Explanation-based generalization: A unifying view.
Mach. Learn, (1):47–80, 1986.

Tom M. Mitchell. The need for biases in learning generalizations. Technical report, 1980.

Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

Hidetoshi Miyao and Minoru Maruyama. Virtual example synthesis based on pca for off-line
handwritten character recognition. In Document Analysis Systems, pages 96–105, 2006.

Anuj Mohan, Constantine Papageorgiou, and Tomaso Poggio. Example-based object detection in
images by components. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23:
349–361, 2001.

R Moratz, J Renz, and D Wolter. Qualitative spatial reasoning about line segments. In ECAI
2000. Proceedings of the 14th European Conference on Artifical Intelligence, pages 234–238. IOS
Press, 2000.

109

Jim Mutch and David G. Lowe. Multiclass object recognition with sparse, localized features. In
CVPR ’06: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 11–18, Washington, DC, USA, 2006. IEEE Computer Society.
ISBN 0-7695-2597-0. doi: http://dx.doi.org/10.1109/CVPR.2006.200.

A. Ng and M. Jordan. On discriminative vs. generative classifiers: A comparison of logistic regres-
sion and naive bayes, 2002. URL citeseer.ist.psu.edu/542917.html.

Tomaso Poggio and Thomas Vetter. Recognition and structure from one 2d model view: Obser-
vations on prototypes, object classes and symmetries. Laboratory, Massachusetts Institute of
Technology, 1347, 1992.

Dean A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural Computation, 3:97, 1991.

Lionel Prevost, Löıc Oudot, Alvaro Moises, Christian Michel-Sendis, and Maurice Mil-
gram. Hybrid generative/discriminative classifier for unconstrained character recog-
nition. Pattern Recogn. Lett., 26(12):1840–1848, 2005. ISSN 0167-8655. doi:
http://dx.doi.org/10.1016/j.patrec.2005.03.005.

A. Quattoni, S. Wang, L. p Morency, M. Collins, T. Darrell, and Mit Csail. Hidden-state con-
ditional random fields. In IEEE Transactions on Pattern Analysis and Machine Intelligence,
2007.

Rajat Raina, Yirong Shen, Andrew Y. Ng, and Andrew McCallum. Classification with hybrid
generative/discriminative models. In Advances in Neural Information Processing Systems 16.
MIT Press, 2004.

Marc’ A. Ranzato, Christopher Poultney, Sumit Chopra, and Yann Lecun. Efficient learn-
ing of sparse representations with an energy-based model. In NIPS, 2006. URL
http://nips.cc/Conferences/2006/Program/event.php?ID=425.

Marc’Aurelio Ranzato, Fu-Jie Huang, Y-Lan Boureau, and Yann LeCun. Unsupervised learning of
invariant feature hierarchies with applications to object recognition. In Proc. Computer Vision
and Pattern Recognition Conference (CVPR’07). IEEE Press, 2007.

Matthew Richardson and Pedro Domingos. Markov logic networks. In Machine Learning, page
2006, 2006.

J Rissanen. Modeling by shortest data description. Automatica, (14):465–471, 1978.

Dan Roth, Ming hsuan Yang, and Narendra Ahuja. A snow-based face detector. In Advances in
Neural Information Processing Systems 12, pages 855–861. MIT Press, 2000.

William Rucklidge. Efficient Visual Recognition Using the Hausdorff Distance. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1996. ISBN 3540619933.

Benjamin Sapp, Ashutosh Saxena, and Andrew Y. Ng. A fast data collection and augmentation
procedure for object recognition. In AAAI, pages 1402–1408, 2008.

Cordelia Schmid and Roger Mohr. Local grayvalue invariants for image retrieval. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 19(5):530–535, 1997. ISSN 0162-8828. doi:
http://dx.doi.org/10.1109/34.589215. URL http://dx.doi.org/10.1109/34.589215.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis
as a kernel eigenvalue problem, 1996.

G Schwarz. Estimating the dimension of a model. Annals of Statistics, (6):461–464, 1978.

110

Thomas Serre, Lior Wolf, and Tomaso Poggio. Object recognition with features inspired by vi-
sual cortex. In CVPR ’05: Proceedings of the 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05) - Volume 2, pages 994–1000, Wash-
ington, DC, USA, 2005. IEEE Computer Society. doi: 10.1109/CVPR.2005.254. URL
http://dx.doi.org/10.1109/CVPR.2005.254.

Daming Shi, Robert I. Damper, and Steve R. Gunn. Offline handwritten chinese character recog-
nition by radical decomposition. ACM Transactions on Asian Language Information Processing
(TALIP), 2(1):27–48, 2003. ISSN 1530-0226. doi: http://doi.acm.org/10.1145/964161.964163.

Patrice Y. Simard, Dave Steinkraus, and John C. Platt. Best practice for convolutional neural
networks applied to visual document analysis. In In International Conference on Document
Analysis and Recogntion (ICDAR), IEEE Computer Society, Los Alamitos, pages 958–962,
2003.

Sargur N. Srihari and Edward J. Kuebert. Integration of hand-written address interpretation tech-
nology into the united states postal service remote computer reader system. In ICDAR ’97:
Proceedings of the 4th International Conference on Document Analysis and Recognition, pages
892–896, Washington, DC, USA, 1997. IEEE Computer Society. ISBN 0-8186-7898-4.

Ching Y. Suen, Shunji Mori, Soo H. Kim, and Cheung H. Leung. Analysis and recognition of
asian scripts - the state of the art. In ICDAR ’03: Proceedings of the Seventh International
Conference on Document Analysis and Recognition, page 866, Washington, DC, USA, 2003.
IEEE Computer Society. ISBN 0-7695-1960-1.

Q Sun and G DeJong. Feature kernel functions: Improving svms using high-level knowledge.
CVPR, (2):177–183, 2005.

Qiang Sun. Explanation-Based Approach to Incorporating Domain Knowledge into Support Vector
Machine: Theory and Applications. PhD thesis, University of Illinois, Urbana-Champaign, 2005.

Yuan Y. Tang, Lo-Ting Tu, Jiming Liu, Seong-Whan Lee, Win-Win Lin, and Ing-Shyh Shyu. Of-
fline recognition of chinese handwriting by multifeature and multilevel classification. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(5):556–561, 1998. ISSN 0162-
8828. doi: http://doi.ieeecomputersociety.org/10.1109/34.682186.

N Tishby, F C Pereira, and W Bialek. The information bottleneck method. In In Proc. 37th An-
nual Allerton Conference on Communication, Control and Computing, 1999.

Simon Tong and Daphne Koller. Restricted bayes optimal classifiers. In Proc. of AAAI-00, pages
658–664. AAAI Press / The MIT Press, 2000. ISBN 0-262-51112-6.

K Torkkola. Feature extraction by non-parametric mutual information maximization. Journal of
Machine Learning Research, (3):1415–1438, 2003.

Shimon Ullman, Michel Vidal-Naquet, and Erez Sali. Visual features of intermediate complexity
and their use in classification. Nat Neurosci, 5(7):682–687, July 2002. doi: 10.1038/nn870. URL
http://dx.doi.org/10.1038/nn870.

Paul E. Utgoff. Feature construction for game playing. pages 131–152, 2001.

Markus Weber, Max Welling, and Pietro Perona. Unsupervised learning of models for recognition.
In ECCV ’00: Proceedings of the 6th European Conference on Computer Vision-Part I, pages
18–32, London, UK, 2000. Springer-Verlag. ISBN 3-540-67685-6.

David H. Wolpert. The supervised learning no-free-lunch theorems. In In Proc. 6th Online World
Conference on Soft Computing in Industrial Applications, pages 25–42, 2001.

111

David H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural Computa-
tion, 8:1341–1390, 1996.

Zhengyou Zhang, Rachid Deriche, Olivier D. Faugeras, and Quang T. Luong. A ro-
bust technique for matching two uncalibrated images through the recovery of the un-
known epipolar geometry. Artificial Intelligence, 78(1-2):87–119, 1995. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.9733.

112

Curriculum Vitæ

Shiau Hong Lim

Department of Computer Science, 201 N. Goodwin Ave., 6616 Siebel Center

University of Illinois, Urbana, IL 61801, USA

E-mail: shonglim@gmail.com

RESEARCH INTERESTS

Machine learning, explanation-based learning, reinforcement learning, pattern recognition, computer

vision and artificial intelligence.

EDUCATION

Ph.D. in Computer Science, University of Illinois at Urbana-Champaign, 2009

Thesis: Explanation-Based Feature Construction

Advisor: Gerald DeJong

M.C.S. (with Distinction), University of Malaya, 2001

Thesis: Traffic Engineering Enhancement to OSPF for IP QoS with Diffserv and MPLS

B.C.S. (First Class Honors), University of Malaya, 2000

Thesis: Fuzzy Logic in ATM: Policer and Queue Control

PROFESSIONAL POSITIONS

Program Committee IJCAI-2007 Workshop on Analytics for Noisy Unstructured Text Data

Research Assistant

• Dept. of Psychology, University of Illinois, (2009)

Worked with Professor Regenwetter on research in quantitative psychology.

• Dept. of Computer Science, University of Illinois, (2005-2008)

Worked with Professor DeJong on research in Explanation-Based Learning.

• Faculty of Computer Science and IT, University of Malaya, (2000-2002)

Worked with Prof. Yaacob, Dr. Ling and Dr. Phang on research in computer networks.

113

Teaching Assistant

• Dept. of Computer Science, University of Illinois, (2002-2005, 2007-2008)

Conducted lab sections for Introduction to Computing (CS 101 and CS 105).

TA for CS 440 Artificial Intelligence.

AWARDS AND HONORARIES

• Excellent Teaching Assistant Award, Fall 2004.

• Excellent Teaching Assistant Award, Fall 2003.

• Excellent IT Student Award 2000 by Malaysian National Computer Confederation (MNCC).

• Anugerah Bestari Celcom for outstanding thesis in the field of telecommunications, computer

science, information technology and engineering, 2000.

PRESENTATIONS

• Paper presentation, “Towards Finite-Sample Convergence of Direct Reinforcement Learning,”

at the European Conference on Machine Learning, Porto, Portugal, Oct 3-7, 2005.

• Paper presentation, “Explanation-Based Feature Construction” at IJCAI-07, India, 2007.

PUBLICATIONS

Journal Articles

1. Lim, S.H., Wang, L., DeJong, G. Integrating Prior Domain Knowledge into Discriminative

Learning using Automatic Model Construction and Phantom Examples To appear in Pattern

Recognition, 2009.

2. Sun, Q., Wang, L., Lim, S.H., DeJong, G. Robustness through prior knowledge: using

explanation-based learning to distinguish handwritten Chinese characters International Jour-

nal on Document Analysis and Recognition, Vol 10, No. 3-4, pp. 175-186, Dec 2007.

3. Lim, S.H., Yaacob, M., Phang, K.K., Ling, T.C. Traffic engineering enhancement to QoS-

OSPF in DiffServ and MPLS networks. IEE Proc. on Communications, Vol 151, No. 1, Feb

2004.

114

Refereed Conference Papers

4. Lim, S.H., Wang, L., DeJong, G. Integrating Prior Domain Knowledge into Discriminative

Learning Using Phantom Examples. In Proc. 11th International Conference on Frontiers in

Handwriting Recognition, 2008.

5. Lim, S.H., Wang, L., DeJong, G. Explanation-Based Feature Construction. In Proceedings

IJCAI-07, 2007.

6. Lim, S.H., DeJong, G. Towards Finite-Sample Convergence of Direct Reinforcement Learning.

In Proceedings ECML 2005, 2005.

7. Phang, K.K., Lim, S.H., Yaacob, M., Ling, T.C. Design of Fuzzy Usage Parameter Controller

for Diffserv and MPLS. In Proc. IEA/AIE 2002, Lecture Notes in Computer Science, Vol.

2358, pp.470-481, 2002.

8. Lim, S.H., Yaacob, M., Phang, K.K., Ling, T.C. Fuzzy VBR Policer for ATM Networks. In

Proc. MMU International Symposium on ICT 2000, 2000.

115

