
c© 2009 David Robert Albrecht

HIGH-PERFORMANCE NETWORK INTRUSION DETECTION:
A NEW PARADIGM IS NEEDED

BY

DAVID ROBERT ALBRECHT

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Adviser:

Assistant Professor Nikita Borisov

ABSTRACT

Fast data rates and complicated protocols have outpaced network intrusion

detection systems. Administrators are forced to choose between breadth

and depth: systems either deeply analyze traffic for a small handful of

vulnerabilities, or search for many in parallel using more primitive (and

easily evadable) techniques. We present a new parser architecture called

VESPA, which uses the concept of vulnerability signatures to offer both

speed and accuracy. VESPA is informed by a study of network protocols,

which precedes the design. We conclude by reviewing several trends in

computer architecture, and their impact on future intrusion detection

systems. We believe a system which offers both speed and accuracy is

possible, but requires rethinking how network intrusion detectors are

designed, in light of trends in computer architecture.

ii

To Stephanie and Steve, for convincing me to start,

To John, Nikhil, and my research group—Nikita, Prateek, Nabil, Robin,

Amir, and Shishir—for showing me the way,

And Kate, for helping me to finish.

iii

ACKNOWLEDGMENTS

Chapter 4 is derived from “High-speed matching of vulnerability

signatures,” work previously published at the 2008 Recent Advances in

Intrusion Detection Symposium. The work was co-authored with Nabil

Schear and Nikita Borisov. Apart from the noted exception, this thesis is

original work of the author. It has not been published or used previously

for any purpose.

This work was supported by NSF grant CNS 06-27671.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 LITERATURE REVIEW 3
2.1 Pattern Matching . 3
2.2 Protocols, and Protocol Parser Generators 5
2.3 Software Intrusion Detection Systems 5
2.4 Hardware Approaches . 6
2.5 Classification . 7

CHAPTER 3 NETWORK PROTOCOLS AND SOFTWARE VUL-
NERABILITIES . 9
3.1 Protocol Archetypes . 9
3.2 Vulnerabilities . 14
3.3 Forward . 18

CHAPTER 4 VESPA: THE VULNERABILITY SIGNATURE PAR-
SER . 19
4.1 Introduction . 19
4.2 Design . 20

CHAPTER 5 SYSTEMS ISSUES . 37
5.1 Sensitivity Analysis . 38
5.2 The Hardware Mismatch . 41

CHAPTER 6 FUTURE DIRECTIONS 46
6.1 Future Architecture . 46
6.2 Other Concerns . 47

CHAPTER 7 CONCLUSION . 50

REFERENCES . 52

v

CHAPTER 1

INTRODUCTION

In the past decade, the Internet has become mission-critical. Once

peripheral to other communication systems, today the Internet is used to

execute financial transactions, control utility infrastructure, and even serve

court summons [1], [2]. Given the network’s centrality to its users’ personal

and professional lives, service interruptions are quite disruptive. In 2007,

the Estonian government became a victim of cyberterrorism when a

distributed denial of service attack disabled access to several of its web sites

for several hours [3].

Despite the high cost of disruptions, software vulnerabilities persist.

Code and protocol defects in operating systems, servers, and recently, client

applications (e.g. web browsers [4]) offer plenty of opportunities for misuse.

Combined with fast, anonymous broadband access, vulnerabilities in

network-facing code have created an extremely challenging threat landscape

[5].

The need for systems that detect and respond to misuse—network

intrusion detection systems (NIDS)—is greater than ever, yet existing

systems have not kept up. IT organizations with big budgets have made

some headway using expensive commercial solutions; those with fewer

resources sacrifice detection accuracy to keep up with the incoming traffic

stream.

Setting out, we wanted to know whether a NIDS could be built on

commodity hardware while still offering reasonable performance. Ideally,

the system would offer full understanding of protocol semantics, and be

capable of operation at around 1 Gbps. After a year and a half of research

and study, we believe such a system is possible, but it requires rethinking

how to construct a NIDS.

We begin by characterizing the NIDS workload with a detailed study of

network protocols. We continue with experiments on protocol parsing,

1

which demonstrate that today’s systems leave significant performance on

the table in the name of usability and object-orientation. Finally, we

describe why current designs are misaligned with fundamental trends in

computer architecture.

This work focuses on signature-based intrusion detection systems

positioned at an enterprise ingress/egress point. We do not study

anomaly-based systems or positioning a NIDS at another point in the

topology, although in principle our insights should apply to both of these

scenarios.

2

CHAPTER 2

LITERATURE REVIEW

NIDS design is an exercise in systems engineering. The system must

reconstruct the flow of incoming data, convert the stream of bytes into

protocol events, and apply policy to the traffic. With so many related

concerns, the scope of NIDS literature is large.

2.1 Pattern Matching

Pattern matching is a key building block of NIDS. High-speed pattern

matching is especially important, as we want to design a system that

operates at 1 Gbps.

NIDS use substring search (the most primitive search operation) to

locate static strings in network data. The most naive algorithm,

compare-and-backtrack, is the slowest. Compare-and-backtrack requires no

preprocessing, but this is not a major advantage as signature-based NIDSes

use a static pattern set. Knuth-Morris-Pratt [6] does better than

compare-and-backtrak by precomputing a “partial match table,” which

avoids full backtracking. The Aho-Corasick algorithm [7] goes further by

searching for a multi-element “dictionary” of strings in a single, linear-time

pass of the text. Boyer-Moore [8] also offers linear-time search, but its

runtime is scaled by 1
m

, where m is the length of the pattern to match. Wu

and Manber’s “fuzzy string search” [9] offers the ability to find

“approximate” matches (based on Levenshtein distance [10]) of a string

within a corpus of text.

Beyond static strings, regular languages define a set (possibly infinite) of

patterns to match.1 The set of patterns is called a regular language, and is

1While the number of strings in a regular language is potentially infinite, the number of
states in the corresponding automaton is necessarily finite. Consider the regular expression
which matches all strings: its automaton contains a single “accept” state, but it matches

3

specified by a regular expression. Finite automata recognize membership in

a regular language; given a regular language, constructing an automaton to

recognize it is trivial, from the correctness standpoint. However, the

technique used to construct the automaton affects its performance

characteristics. “Nondeterministic” constructions (e.g. pcre [11]) attempt

to find a path through the automaton by backing out when they hit a

“dead end.” The nondeterministic approach requires a modest amount of

memory, but can suffer from long runtimes if excessive backtracking occurs.

“Deterministic” approaches (e.g. flex [12]), on the other hand, generate a

new machine with a state corresponding to every member of the power set

of the nondeterministic machine’s states. Deterministic matchers linearly

bound runtime (they never backtrack), but have huge memory

requirements—potentially exponential in the nondeterministic machine’s

number of states.

Context-free languages generalize regular expressions with production

rules. Our study of network traffic (protocols and vulnerabilities) revealed

few, if any, protocol structures that mapped naturally to context-free

languages (Pang et al. [13]). Context-sensitive languages offer the most

general pattern recognition, but recognizing them lacks the computational

boundedness of context-free languages, which limits their usefulness in IDS.2

Some nontraditional approaches increase performance by exploiting

particular characteristics of the NIDS workload. Smith et al. attempted to

combine the advantages of deterministic and nondeterministic matching

using Extended Finite Automata [14]. Rubin et al. developed

protomatching to heuristically reduce matching complexity by discarding

non-matching packets as quickly as possible, while keeping a low memory

footprint [15]. Hardware-based approaches offer high-speed matching using

custom hardware; Section 2.4.1 explores this further.

an infinite number of strings.
2As an aside, we note that language complexity is, at best, a rough indicator of hardware

complexity; the fact that a traffic pattern is expressable as a regular language in no way
implies its ease of recognition, relative to a context-free language.

4

2.2 Protocols, and Protocol Parser Generators

Similar to yacc/bison [16], [17], protocol parser generators automatically

generate protocol parsers from declarative grammars. Protocol parser

generators augment the functionality of basic parser generators with

features useful for parsing network data: automatic reordering of multibyte

fields, state checkpointing, etc.

The “Generic Application-Layer Protocol Analyzer” [18] was the first of

at least two major efforts to produce a protocol parser generator. GAPA

offers a type-safe, declarative language called GAPAL, in which users

declare protocol grammar. From the GAPAL specification, GAPA generates

a recursive-descent parser to consume protocol data, which runs as a

layered service provider in the Windows Sockets (Winsock) stack. GAPA’s

strong type-safety hardens generated parsers against exploitation, but the

reference implementation achieved an overall throughput of only 11.7 Mbps

on moderately powerful hardware.3 GAPA’s performance is adequate for

end-host protocol parsing, but unsuitable for bulk (in-network) analysis.

Binpac, a project similar to GAPA, also generates network protocol

parsers [13]. However, the binpac authors elected to sacrifice GAPA’s

strong safety for improved performance. Rather than targeting compilation

to an interpreted environment, binpac emits native C++ code suitable for

bulk monitoring and analysis applications. Binpac is used as the standard

protocol parser in the Bro Intrusion Detection System [19].

The VESPA project [20] offers a third alternative for generating protocol

parsers. The VESPA authors noted that intrusion detection policies often

rely on a limited subset of protocol fields, even though most designs

unconditionally parse all fields. By performing parsing in a policy-aware

way, the system realizes order-of-magnitude speedups in some protocols.

VESPA is explained in detail in Chapter 4.

2.3 Software Intrusion Detection Systems

Both commercial vendors and free/open-source groups (FOSS) have

developed software-based NIDS. Snort [21] and Bro [19] have received the

3A Windows XP machine with a 3 GHz CPU and 1 GB of RAM.

5

lion’s share of attention in the literature; both feature wide deployment,

and freely available codebases.

Bro has been under development by researchers at Lawrence Berkeley

National Laboratory and the International Computer Science Institute

several years before a paper describing the system was published in 1998

[19]. Bro features a modular, object-oriented construction designed for

in-network (cf. host-based) monitoring. To control Bro’s operation, users

express policy in the Bro Scripting Language, a high-level, purpose-built

interpreted language. Bro uses binpac (Section 2.2) to parse protocols, and

ships with binpac grammars for many popular protocols (FTP, HTTP,

SMTP, SMB/CIFS, etc.). Protocol grammars define “protocol events,”

which trigger execution of “handlers” written in the Bro scripting language.

Bro’s main code branch uses a single-threaded, non-blocking design. Efforts

to parallelize Bro have produced the Bro cluster, a multi-machine system

with network-based synchronization [22], and “superlinear” Bro, a

multithreaded implementation [23].

Snort [21] was developed by Martin Roesch, and is currently maintained

by Sourcefire, a commercial entity. The code is available under an

open-source license; signatures are available commercially via Sourcefire,

and through the Snort community.

Commercial vendors including TippingPoint, Cisco, and Radware also

produce intrusion detection and prevention systems, but these are not

widely studied in the research community.

2.4 Hardware Approaches

Intrusion detection’s challenging performance requirements have motivated

several groups to explore hardware-based solutions. Approaches range from

developing accelerators to support existing software solutions, to full

systems implemented on special-purpose hardware.

2.4.1 Hardware: Accelerators

Hardware accelerators increase performance by offloading a

narrowly-targeted piece of the workload onto purpose-built hardware.

6

In some cases, a NIDS need only analyze the beginning of a flow to

determine what action (drop, allow, inspect) should be taken for

subsequent traffic. The ICSI Shunt [24] keeps a per-flow hashtable in a fast

hardware cache. If the system determines that a flow is either safe or unsafe

(meaning no further analysis is required), the Shunt avoids routing traffic

to the NIDS, reducing its workload.

Clark et al. [25] explored using Intel IXP network processors and Xilinx

Vertex FPGAs to accelerate string matching operations. The group claimed

1 Gbps attainable throughput, but at a coarse level of semantic analysis.

Brodie [26] demonstrated regular expression matching at 4 Gbps using a

highly optimized FPGA, which consumed the input text two characters at

a time.

2.4.2 Hardware: Systems

The SafeCard [27] project used an Intel IXP network processor to perform

intrusion protection in real time at up to 1 Gbps. Owing to implementation

on the Intel IXP network processor, SafeCard developed novel techniques

for (1) managing a highly vertical (five-level) memory hierarchy, and (2)

partitioning the IDS workload into a form which effectively utilized the

unique execution resources of the IXP architecture: small microengines

coupled with a general-purpose processor.

2.5 Classification

Classification splits network traffic into predefined classes—often based on

application protocol—to control quality of service. A closely related topic

to intrusion detection, classification also requires semantic understanding of

protocols to operate effectively.

Moore and Papagiannaki [28] measured the effectiveness of several forms

of classification. Starting from port-only classification, the group used

progressively more stateful and computationally intensive techniques,

culminating in full per-flow tracking. Port-based classification (the most

basic type) correctly identified the application protocol in approximately

7

70%4 of their flows; inspecting the protocol of the first kilobyte raised

correctness to 80%. Per-flow stateful protocol parsing classified over 99% of

traffic correctly.

BLINC [29], the Blind Classifier, identifies application protocol without

looking at payloads. BLINC takes an omniscient view of the network, and

uses social and functional characteristics of network traffic5 to determine

application protocol. PISA [30], another payload-blind classifier, uses

k -means clustering in an eleven-dimensional space to identify application

protocols.

4Their study has no notion of “recall”: every flow was classified correctly, otherwise, it
was marked as wrong (even if unknown).

5Number of ports for incoming and outgoing traffic, number of IP addresses, and global
topology.

8

CHAPTER 3

NETWORK PROTOCOLS AND

SOFTWARE VULNERABILITIES

Network protocols govern the exchange of information over computer

networks. Trends in protocol design have mirrored broader trends in

software engineering; as programming languages have come in and out of

fashion, so have ideas about network protocol design. Economic factors

have also made their mark: while early designs favored efficient on-the-wire

messaging formats, today’s protocols stress cross-platform portability and

human readability.1

Protocol parsing for NIDS is a delicate juggling act. An effective NIDS

must accurately recover protocol semantics in the face of multi-Gbps data

rates, without adding noticeable latency to network flows (if the NIDS is on

the forwarding path). This chapter discusses common idioms used by

protocol designers, and follows with a review of several representative

vulnerabilities.

3.1 Protocol Archetypes

As a preliminary step in designing a high-performance parser, we made a

detailed study of the most popular Internet protocols. The study yielded

many useful insights about the tradeoffs protocol designers face, as well as

what kind of parser would be suitable for the general task of recovering

protocol semantics (events, pieces of data, etc.) from a man-in-the-middle

perspective. In the following section, we describe the four general design

patterns encountered in our study.

1Most of the insights in this section apply equally to file formats, which (like network
protocols) aim to communicate state from one instance of a program to another. Likewise,
designing a network intrusion detection system shares many goals with a file-based virus
scanner.

9

Struct-Style Protocols

The first class of protocol, characterized by packed, undelineated binary

data, we call struct-style protocols. These protocols are basically struct

types in C, cast to opaque void* buffers encapsulated in transport-layer

segments for transit.

Struct-style protocols are compact. Like struct types in C, fields are

implicitly labeled by their offset relative to the start of the structure,

avoiding the need for explicit labeling. Binary types remain in their

in-memory representation, rather than a human-readabe format

(ASCII/Unicode). In the simplest case, sending application data over the

network is as simple as copying a structure from memory into a

transport-layer buffer, which the application hands off to the operating

system for transit via a system call. Owing to the minimal work necessary

to interchange application and network data, struct-style protocols are

amenable to very high-performance implementation. Additionally, provided

the endpoint application environments (programming language, compiler,

machine architecture, etc.) are sufficiently similar, this kind of protocol is

the most straightforward to program.

The benefits of struct-style protocols lean heavily on the network’s

(assumed) homogeneity. Unfortunately, the success of many early

struct-style protocols meant they were used to network everything from

microcontrollers to mainframes, a decidedly heterogeneous collection of

computers. Sending raw binary data over a network makes assumptions

about host byte ordering, word alignment, and word size, none of which are

broadly standardized. Additionally, the benefits of memcpy-like data

movement are lost on receivers, which must walk protocol data field-by-field

to ensure data integrity (on pain of opening the system to compromise).

Further, struct-style protocols are minimally extensible, and, owing to their

use of C-style strings, do not handle variable-length fields well. Add the

fact that binary formats are not human readable (requiring the use of

analysis tools to inspect protocol messages), and it becomes clear why

struct-style protocols are undesirable for all but legacy, and very

high-performance applications.

Owing to their original implementation in the C programming language,

many of the Internet’s core protocols (e.g. IP, TCP, DNS) are struct-style.

10

Unfortunately, the difficulties of implementing binary protocol parsers by

hand has led to many code defects; DNS, in particular, has been plagued

with a long history of exploitable code defects (e.g. [31], [32], [33]). Further

complicating matters, the difficulties of parsing DNS apply to intrusion

detection systems, making polymorphic exploits against DNS very hard to

detect. The challenges of parsing struct-style protocols are addressed more

fully in Chapter 4.

IETF-Style Protocols

The Simple Mail Transfer Protocol (SMTP), Hypertext Transfer Protocol

(HTTP), and File Transfer Protocol (FTP) fall into the second group of

protocols, which we call IETF-style after the committee that designed

them.2 These protocols feature production rules identified by

English-language ASCII keywords, which make them human-readable.

IETF-style protocols deliberately mimic context-free languages; like CFLs,

IETF-style protocols feature variable-length production rules, and

grammars defined using Augmented Backus-Naur Form (see, for example,

RFC 2616 [34]). Parsing context-free languages is a well-studied topic in

computer science; by designing protocols this way, the IETF accelerated

application development by allowing reuse of insights from compiler design

in network application programming.

By virtue of their CFL-like production rules, IETF-style protocols offer

great extensibility without the complexity of struct-style protocols.

Variable-length parameters and multipart messages are both well-supported

in the IETF paradigm. Also, IETF-style protocols rely on simple ASCII

sequences to identify production rules and delineate fields, which increases

portability and human-readability. The chief disadvantage of these

protocols is the heavyweight translation layer required to send and receive

data to/from the network.

It is worth noting that all classes of attacks against websites—SQL

injection, cross-site scripting, cross-site request forgery, etc.—use HTTP, an

IETF-style protocol. The ability to extract and apply constraints to HTTP

GET/POST parameters at line rate is a key enabler in the battle against

2The Internet Engineering Task Force

11

web-based attacks.

Structured Binary Protocols

The third class of protocol, structured binary, combines some characteristics

of struct-style with IETF-style design. The archetype of this style is

Abstract Syntax Notation 1 (ASN.1 [35]). ASN.1 finds use in the Secure

Sockets Layer (SSL) protocol [36], the Simple Network Management

Protocol [37], X.509 [38], LDAP [39], and some proprietary interbank

financial networks.3

Strictly speaking, ASN.1 is a machine-independent grammar used to

specify the structure of binary messages; ASN.1 encoding rules4 specify how

to serialize and deserialize network data. Like IETF-style protocols, ASN.1

messages have nodes, which can be arranged flexibly; the serialization rules

permit variable-length data fields and arbitrary nesting of child nodes.

ASN.1 message nodes are arranged in Type-Length-Value (TLV) form:

each node has its numerically assigned type and length prepended. With

each node’s length prepended, a fully optimized parser can offer fast

sequential lookup by skipping uninteresting nodes.

Structured Text Protocols

The final class of protocol is structured text. Similar to structured binary

protocols, structured text protocols use a tree-like structure, but lack

length-prefixing. The most heavily used structured text protocol today is

the Extensible Markup Language (XML), and the related suite of

XHTML/DHTML technologies used to author webpages.

XML is the newest of the data formats discussed in this section, and

represents the extreme of making data formats user-friendly at the expense

of efficiency. XML documents are tree-like with very loosely constrained

structure; the format permits variable-length child nodes, to arbitrary

3Sun XDR is another, albeit less popular, example of a structured binary protocol.
4ASN.1 provides several of these “encoding rules,” among them BER, the “Binary

Encoding Rules,” and DER, the “Distinguished Encoding Rules.” One of the major
complaints users have about ASN.1 is that it fails to take a single position on how messages
should be represented on the wire.

12

depth. XML also offers robust support for international character sets with

Unicode, forcing parsers to handle variable-length character encodings (e.g.

UTF-8 [40]). On the other hand, XML documents are very verbose, which

limits how much semantic content a parser must extract at a given data

rate.

To date, XML per se has not been a fertile ground for software

vulnerabilities. While some vulnerabilities have manifested in XML parsers,

the data format itself (like any other protocol) is merely a vehicle by which

data flows between endpoints. However, application writers are continually

demanding greater flexibility, human readability, and support for

internationalization in their protocols and data formats. As these

challenges become more important in Internet engineering efforts, we

believe the design of future data formats will trend toward XML, especially

given its support for internationalization.

The Failure of Regular Expressions

In this work, we define a vulnerability as a defect in a piece of

network-facing software which offers some potential for misuse. An exploit,

then, is a particular way of misusing a vulnerability. Parsing for intrusion

detection involves a fundamental tradeoff between accuracy and

performance.

To this author’s knowledge, there is no intrusion detection system which

can perform full parsing at 1 Gbps or greater on commodity hardware. On

the other hand, some intrusion detection systems have sidestepped full

parsing by, for example, searching for static strings known to correspond to

a particular exploit in a network flow. Fast (sometimes

hardware-accelerated) static string searches and regular-expression

matchers have been built, and while these systems can identify particular

instances of an exploit (e.g. the Code Red Worm’s [41] exploit against the

CVE-2001-0500 vulnerability [42]), their inability to recover protocol

semantics generally, hinders their ability to look past different exploits

which misuse the same vulnerability. In the case of an HTTP-based exploit,

even trivial rearrangement of GET/POST parameters can confound a static

string matcher.

13

Building an effective NIDS requires a parser. While some techniques

(Protomatching [15], VESPA [20]) can optimize the workload, trying to

shortcut around parsing allows an attacker to evade detection with even a

small amount of polymorphism in their attacks.

3.2 Vulnerabilities

This section presents the details of several remotely exploitable software

vulnerabilities. The vulnerabilities are chosen to illustrate the breadth of

detection complexity, from the trivial to the very difficult.

3.2.1 CVE-2002-1368: CUPS Negative Content-Length
Vulnerability

CVE-2002-1368 [43] was triggered by incorrect handling of a signed integer

in HTTP headers. The code defect led to a remotely exploitable

denial-of-service vulnerability in the Common Unix Printing System

(CUPS) implementation of the Internet Printing Protocol (IPP) [44].

As noted in the previous section, Hypertext Transfer Protocol (HTTP) is

an IETF-Style protocol. A HTTP session begins with a request from the

client, followed by a response by the server. The client initiates the

exchange by writing a request similar to what follows over a transport-layer

socket (ellipses represent text omitted for brevity):

GET / HTTP/1.1

Host: localhost:80

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X (...))

Accept: application/xml,application/xhtml+xml,text/html (...)

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: keep-alive

As the reader can see, HTTP requests consist of a command (GET),

followed by a path (/) and protocol version (HTTP/1.1).5 In the example

5No translation tools were used to “decode” the above message; the message format is
flat text (as shown), with ASCII-encoded text and TCP for reliable transport.

14

given above, the client has appended request metadata in the form of

textual key-value pairs.

When a client submits a job to CUPS for printing via IPP, the client

sends the job to the CUPS daemon using an HTTP POST request. The

HTTP POST header includes a Content-Length key-value pair, which

specifies the number of octets in the POST request, e.g., Content-Length:

312. A message cannot have negative length; the shortest possible message

(the empty message) would have length zero. Unfortunately, some versions

of CUPS parsed negative Content-Length “correctly” (they did not signal

an error), and subsequently wrote a negative value into a signed integer

within the server process.

After parsing the length, CUPS passes the signed quantity to malloc().

Since malloc() takes an unsigned argument, passing a signed int to

malloc() results in an improper implicit cast. Due to two’s complement

encoding, the malloc() call would interpret the “negative” content lengths

as a very large unsigned quantity, causing an error.6 On failure to allocate

the huge amount of memory associated with the “negative” value, the

malloc() call fails, returning a null pointer to the application. When

dereferenced, the null pointer causes a segmentation fault, crashing the

process.

Exploits against CVE-2002-1368 conform to a regular language. The

NIDS protocol parser must be able to recognize complex exploit attempts,

but also simple exploits (such as this one) with high performance.

3.2.2 CVE-2002-0063: CUPS Attribute Length Bug

CVE-2002-0063 exposed a remotely exploitable buffer overflow in the CUPS

implementation of IPP [44]. When an IPP client issues a print job to CUPS

via HTTP POST (see the previous section for details), the protocol permits

the client to embed a variable number of “attributes” which specify details

of the job (e.g. paper orientation). The client prepends the length of each

attribute as an unsigned, big-endian 16-bit quantity.

6Two’s complement is a convenient way of representing negative numbers, which allows
digital arithmetic units to ignore the sign of their operands and still operate correctly.
To convert a positive integer into its negative two’s complement representation, simply
complement all its bits, and add 1 to the result. A 32-bit -1 is encoded as 0xffffffff.

15

While 16-bit lengths permit a 64 KB (65,536-byte) attribute, CUPS

declares a buffer of only 8 KB to hold the attribute values. A crafted

request can write past the end of the buffer, allowing arbitrary code

execution using standard buffer overflow techniques.

If the HTTP message carrying the IPP request were constrained to arrive

contiguously, a regular expression could detect an exploit attempt by

scanning for an attribute length over 8192 bytes. However, HTTP provides

functionality to “chunk” POST data, which permits splitting a POST

request across several discontinuous blocks. To detect exploits against

CVE-2002-0063 in the presence of chunking, the protocol parser must scan

across chunk boundaries, which is beyond the capabilities of an unmodified

regular expression engine. Understanding (and potentially parsing) HTTP

syntax is necessary to detect exploits against CVE-2002-0063 effectively.

3.2.3 DNS Pointer Cycles

The DNS protocol [45], a struct-style protocol, is used to resolve domain

names to IP addresses on the Internet.

The overall structure of DNS is a multiply rooted tree, where each

organization controls its own zone of authority. As one traverses downward

through the tree, a domain name is constructed right-to-left, using textual

identifiers called labels. Domain names have no explicit, textual

representation in DNS proper; however, the convention of using periods to

delineate labels has led to the familiar notation of a hostname:

tindalos.crhc.uiuc.edu. Note that, owing to DNS’s tree-like structure,

hosts near each other in the tree share a common suffix.

To conserve bandwidth, DNS includes a mechanism to avoid duplicating

a common suffix within a single message. When writing a DNS response,

the application writes the full hostname the first time it appears—but after

the name appears in full, subsequent names with a common suffix can refer

back to it using a binary sentinel followed by a numeric offset.

DNS permits names with dozens of labels. Unfortunately, allowing such

long names allows an attacker to exploit a DNS parser by crafting packets

with very deep recursive cycles. At best, such packets can slow DNS parsers

to a crawl, or worse, run the parser out of stack space, causing it to crash.

16

To detect a pointer cycle, the NIDS protocol parser must fully walk each

DNS packet that enters the network, and check it for cycles. Performing

such thorough analysis is a daunting task. The prevalence of DNS,

combined with the high performance cost of analyzing it, makes DNS

performance a crucial test of NIDS performance.

3.2.4 CVE-2005-4560: WMF SetAbortProc() Bug

Windows Metafile (WMF) [46] is a vector graphics format developed in the

early 1990s by Microsoft. The format permits specification of a series of

Windows GDI7 calls, which when replayed, draws the contents of the file

onto a GDI rendering surface. The format offered the standard benefits of

vector graphics formats, including small file size and the ability to resize

without pixelation.

When WMF was designed, cooperative (non-preemptive) multitasking

was prevalent. Also, graphics files were not as frequently interchanged as

today, making security less of a concern. In any case, the format allows

specification of a binary “abort procedure,” called if the rendering engine is

interrupted. Attackers began to misuse this feature in late 2005, using the

abort handler for drive-by downloads where an attacker could run arbitrary

code on a victims computer simply by convincing them to render a WMF,

requiring only a web site visit for clients using Internet Explorer [47].

Like DNS pointer cycles, this vulnerability is hard to detect because it

requires scanning a variable field-length binary structure for a particular

pattern of bytes. The WMF SetAbortProc() bug is even more difficult to

detect, due to (1) the huge number of protocol exchanges which could

potentially embed a WMF (e.g. HTTP, instant message chats, email, etc.),

and (2) the length of WMF files, which can reach into the tens, or even

hundreds, of kilobytes in length.

7The Graphical Device Interface, the API Windows exposed to userspace programs for
doing drawing.

17

3.3 Forward

As this section has shown, protocol design embodies many tradeoffs. Older

protocols tend to be more compact, whereas newer ones, while more

“wasteful,” favor ease of human comprehension, and extensibility.

Detecting vulnerabilities is intimately related to protocol parsing. While

it seems attractive to use simple primitives, such as static string searches

and regular expressions, to detect vulnerabilities, these mechanisms are

trivially evaded by even the simplest of polymorphic exploits.

18

CHAPTER 4

VESPA: THE VULNERABILITY

SIGNATURE PARSER

In this section, we introduce VESPA, an architecture for high-speed

protocol parsing.

4.1 Introduction

Detecting and preventing attacks is a critical aspect of network security.

The dominant paradigm in network intrusion detection systems (NIDS) has

been the exploit signature, which recognizes a particular pattern of misuse

(an exploit). An alternative approach is to use a vulnerability signature,

which describes the class of messages that trigger a vulnerability on the

end system, based on the behavior of the application. Vulnerability

signatures are exploit-generic, as they focus on how the end host interprets

the message, rather than how the particular exploit works, and thus can

recognize polymorphic and copycat exploits.

Exploit signatures are represented using byte-string patterns or regular

expressions. Vulnerability signatures, on the other hand, usually employ

protocol parsing to recover the semantic content of the communication and

then decide whether it triggers a vulnerability. The semantic modeling

allows vulnerability signatures to be both more general and more precise

than exploit signatures. However, this comes at a high performance cost.

To date, vulnerability signatures have only been considered for use on end

hosts, severely limiting their deployment.

In our work, we observe that full and generic protocol parsing is not

necessary for detecting vulnerability signatures. Using custom-built,

hand-coded vulnerability signature recognizers, we show that these

signatures can be detected 3 to 37 times faster than the speed of full

protocol parsing. Therefore, there is no inherent performance penalty for

19

using vulnerability signatures instead of exploit signatures.

Motivated by this, we design an architecture, called VESPA,1 for

matching vulnerability signatures at speeds adequate for a

high-performance enterprise NIDS, around 1 Gbps. We build our

architecture on a foundation of fast string and pattern matchers, connected

with control logic. This allows us to do deep packet inspection and model

complex behavior, while maintaining high performance. We also minimize

the amount of implicit state maintained by the parser. By avoiding full,

in-memory semantic representation of the message, we eliminate much of

the cost of generic protocol parsing. Finally, in many cases we are able to

eliminate the recursive nature of protocol analysis, allowing us to skip

analysis of large subsections of the message.

We have implemented a prototype of VESPA; tests show that it matches

vulnerability signatures about three times faster than equivalent

full-protocol parsing, as implemented in binpac [13]. Our architecture

matches most protocols in software at speeds greater than 1 Gbps. Further,

we show that our text protocol parsing is dominated by string matching,

suggesting that special-purpose hardware for pattern matching would

permit parsing text protocols at much higher speeds. Our binary protocol

parsing is also well-adapted to hardware-aided implementation, as our

careful state management fits well with the constrained memory

architectures of network processors.

4.2 Design

This section presents the design of the parser.

4.2.1 Background

Vulnerability signatures were originally proposed by Wang et al. [48] as an

alternative to traditional, exploit-based signatures. While exploit signatures

describe the properties of the exploit, vulnerability signatures describe how

the vulnerability gets triggered in an application. Consider the following

exploit signature for Code Red [49]:

1Vulnerability Signature Parsing Architecture

20

urlcontent:"ida?NNNNNNNNNNNN..."

The signature describes how the exploit operates: it uses the ISAPI

interface (invoked for files with extension “.ida”) and inserts a long string

of N’s, leading to a buffer overflow. While effective against Code Red, this

signature would not match Code Red II [41]; that variant used X’s in place

of the N’s. A vulnerability signature, on the other hand, does not specify

how the worm works, but rather how the application-level vulnerability is

triggered. An extract from the CodeRed signature in Shield [48] is:

c = MATCH_STR_LEN(>>P_Get_Request.URI,"id[aq]\?(.*)$",limit);

IF (c > limit)

Exploit!

This signature captures any request that overflows the ISAPI buffer,

making it effective against Code Red, Code Red II, and any other worm or

attack that exploits the ISAPI buffer overflow. In fact, this signature could

well have been written before the release of either of the Code Red worms,

as the vulnerability in the ISAPI was published a month earlier [50]. Thus,

while exploit signatures are reactive, vulnerability signatures can

proactively protect systems with known vulnerabilities until they are

patched (which can take weeks or months [51]).

4.2.2 High-Level Objectives

To make vulnerability signatures practical for use in network intrusion

detection systems, we developed VESPA, an efficient vulnerability

specification and matching architecture. The processes of writing a protocol

specification and writing a vulnerability signature are coupled to allow the

parser generator to perform optimizations on the generated code that

specialize it for the vulnerabilities the author wishes to match.

Our system is based on the following design principles:

• Use of fast matching primitives

• Explicit state management

• Avoiding parsing of irrelevant message parts

21

Since text and binary protocols require different parsing approaches, we

describe our design of each type of parser and how we apply the design

principles listed above. We first give a brief outline of how the system

works, and then go into detail in the subsequent sections on how our

approach works.

We use fast matching primitives—string matching, pattern matching

(regular expressions), and binary traversal—that may be easily offloaded to

hardware. The signature author specifies a number of matcher primitive

entries, which correspond to fields needed by the signature to evaluate the

vulnerability constraint. Each matcher contains embedded code which

allows the matching engine to automatically extract a value from the result

of the match. For example, the HTTP specification includes a string

matcher for “Content-Length:”, which has an extraction function that

converts the string representation of the following number to a integer.

Along with each matcher, the author also specifies a handler function

that will be executed following the extraction. The handlers allow the

signature author to model the protocol state machine and enable additional

matchers. For example, if a matcher discovers that an HTTP request

message contains the POST command, it will in turn enable a matcher to

parse and extract the message body. We also allow the author to define

handlers that are called when an entire message has been matched.

The author checks vulnerability constraints inside the handler functions.

Therefore constraint evaluation can be at the field level, intra-message level,

and inter-message level. Depending on the complexity of the vulnerability

signature, the author can choose where to evaluate the constraint most

efficiently.

Text Protocols

We found that full recursive parsing of text protocols is both too slow and

unnecessary for detecting vulnerabilities. However, simple string or regular

expression matching is often insufficient to express a vulnerability

constraint precisely in cases where the vulnerability depends on some

protocol context. In our system, we combine the benefits of the two

approaches by connecting multiple string and pattern matching primitives

with control logic specialized to the protocol.

22

Matching Primitives. To make our design amenable to hardware

acceleration we built it around simple matching primitives. At the core, we

use a fast multi-string matching algorithm. This allows us to approximate

the performance of simple pattern-based IDSes for simple vulnerability

signatures. Since our system does not depend on any specific string

matching algorithm, we have identified several well-studied

algorithms [7, 52] and hardware optimizations [53] that could be employed

by our system. Furthermore, hardware-accelerated regular expression

matching is also becoming a reality [26]. As discussed later, this would

further enhance the signature author’s ability to locate protocol fields.

Minimal Parsing and State Managment. We have found that

protocol fields can be divided into two categories: core fields, which define

the structure and semantics of the protocol, and application fields, which

have meaning to the application, but are not necessary to understand the

rest of the message. An example of a core field is the Content-Length in

HTTP, as it determines the size of the message body that follows in the

protocol, whereas a field such as Accept-Charset is only relevant to the

application.

Our approach in writing vulnerability signatures is to parse and store

only the core fields, and the application fields relevant to the vulnerability,

while skipping the rest. This allows us to avoid storing irrelevant fields,

focusing our resources on those fields that are absolutely necessary.

Although many text protocols are defined in RFCs using a recursive BNF

grammar, we find that protocols often use techniques that make

identification of core fields possible without resorting to a recursive parse.

For example, HTTP headers are specified on a separate line; as a result, a

particular header can be located within a message by a simple string

search. Header fields that are not relevant to a vulnerability will be skipped

by the multi-string matcher, without involving the rest of the parser. Other

text protocols follow a similar structure; for example, SMTP uses labeled

commands such as “MAIL FROM” and “RCPT TO,” which can readily be

identified in the message stream.

23

4.2.3 Binary Protocols

While some of the techniques we use for text protocol parsing apply to

binary protocols as well, binary protocols pose special challenges that must

be handled differently from text.

Matching Primitives. Unlike text protocols, binary protocols often

lack explicit field labeling. Instead, a parser infers the meaning of a field

from its position in the message—relative to either the message start, or to

other fields. In simple cases, the parser can use fixed offsets to find fields.

In more complicated cases, the position of a field varies based on inter-field

dependencies (e.g., variable-length data, where the starting offset of a field

in a message varies based on the length of earlier fields), making parsing

data-dependent. Thus, parsers must often traverse many or all of the

preceding fields. This is still simpler than a full parse, since the parser only

examines the lengths and values of structure-dependent fields.

Since binary protocols are more heavily structured than text protocols,

we need a matching primitive that is sufficiently aware of this structure

while still maintaining high performance. We call this type of parser a

binary traverser.

Designing an efficient binary protocol traverser is difficult because binary

protocol designs do not adhere to any common standard. In our study of

many common binary protocols, we found that they most often utilize the

following constructs: C structures, arrays, length-prefixed buffers,

sentinel-terminated buffers, and field-driven case evaluation (switch). The

binpac protocol parser generator uses variations on these constructs as

building blocks for creating a protocol parser. We found binpac to have

sufficient expressive power to generate parsers for complex binary protocols.

However, binpac parsers perform a full protocol parse rather than a simple

binary traversal, so we use a modification to improve their performance.

Minimal Parsing and State Management. We reduced overhead of

original binpac parsers for state management and skipped parsing

unimportant fields. Because binpac carefully separates the duties of the

protocol parser and the traffic analysis system which uses it, we were able

to port binpac specifications written for the Bro IDS to our system. We

retain the protocol semantics and structure written in the Bro versions but

use our own system for managing state and expressing constraints. While

24

we feel that additional improvements may be made in generating fast

binary traversers, we were able to obtain substantial improvements in the

performance of binpac by optimizing it to the task of traversal rather than

full parsing. Furthermore, the binpac language provides exceptional

expressiveness for a wide range of protocols, allowing our system to be more

easily deployed on new protocols.

Discussion

By flattening the protocol structure, we can ignore any part of a message

which does not directly influence properly processing the message or

matching a specific vulnerability. However, some protocols are heavily

recursive and may not be flattened completely without significantly

reducing match precision. We argue that it is rarely necessary to

understand and parse each and every field and structural construct of a

protocol message to match a vulnerability. Consider an XML vulnerability

in the skin processing of Trillian (CVE-2002-2366 [54]). An attacker may

gain control of the program by passing an over-length string in a file

attribute, leading to a traditional buffer overflow. Only the file attribute,

in the prefs/control/colors entity can trigger the vulnerability, while

instances of file in other entities are not vulnerable. To match this

vulnerability with our system, the signature author can use a minimal

recursive parser which only tracks entity open and close tags. The matcher

can use a stack of currently open tags to tell whether it is in the

prefs/control/colors entity and match file attributes which will cause

the buffer overflow. The generated parser is recursive but only for the

specific fields that are needed to match the vulnerability. This type of

signature is a middle-ground for our system—it will provide higher

performance than a full parser while requiring the user to manipulate more

state than a simpler vulnerability.

In rare cases it may be necessary to do full protocol parsing to properly

match a vulnerability signature. While our system is designed to enhance

the performance of simpler vulnerability signatures, it is still able to

generate high-performance full recursive parsers. The drawback to our

approach versus binpac or GAPA in this situation is that the user must

manage the parser state manually, which may be error prone.

25

1 parser HTTP Request {
2 d i spatch () %{ deploy (ver s) ; deploy (i s p o s t) ;
deploy (c r l f) ; }%
3
4 in t ver s = str matcher "HTTP /1."

5 handler hand l e ver s ()
6 %{ end = next whi tespace (r e s t) ;
7 ver s = s t r t o i n t (r e s t , end) ; }%
8
9 hand l e ver s () %{ // handle d i f f e r e n t l y depending on vers ion . . . }%

10
11 bool i s p o s t = str matcher "POST"

12 handler hand l e pos t ()
13 %{ i s p o s t=true ; }%
14
15 hand l e pos t () %{ i f (i s p o s t) { deploy (con t en t l eng th) ; } }%
16
17 i n t con t en t l eng th = str matcher "Content -Length :"

18 handler hand l e c l ()
19 %{ end = nex t l i n e (r e s t) ;
20 con t en t l eng th = s t r t o i n t (r e s t , end) ; }%
21
22 hand l e c l () %{ i f (th i s−>con t en t l eng th < 0) { // EXPLOIT! }
23 e l s e { deploy (body) ; } }%
24
25 bool c r l f = str matcher "\r\n\r\n" | | "\n\n"

26 %{ // do nothing e x p l i c i t here }%
27
28 Buf f e r body = extended matcher c r l f
29 handler handle body ()
30 %{ body = Buf f e r (r e s t , th i s−>con t en t l eng th) ;
31 stopMachine () ; }%
32
33 handle body () %{ // process body using another l ay e r }%
34 }

Figure 4.1: Sample Specification for HTTP Requests (Simplified)

We do not yet address the problem of protocol detection. However, our

system can be integrated with prior work [55] in an earlier stage of the

intrusion detection system. Furthermore, the high-speed matching

primitives used by VESPA may also be used to match protocol detection

signatures.

4.2.4 Language

We have developed a vulnerability signature expression language for use

with our system. We give an example vulnerability specification for the

CUPS negative content length vulnerability in Figure 4.2.4.

Writing a signature involves specifying the matchers for the core fields of

the protocol message and then specifying additional matchers to locate the

vulnerability. We specify a single protocol message using a parser type.

26

The code generator maps this message parser to a C++ class that will

contain each state field as a member variable. Inside a message parser, the

vulnerability signature author defines handler function declarations and

field variable declarations with matching primitives. The author can specify

additional member variables that are not directly associated with a matcher

using member vars %{ ... }%.

Each underlying matching primitive always searches for all the requested

strings and fields with which the matcher is initialized. For example, an

HTTP matcher might search for “Content-Type:” in a message even

though this string should only be expected in certain cases. This allows the

primitive matcher to run in parallel with the state machine and constraint

evaluation, though we have not yet implemented this. It also prevents the

matching primitives from needing to back up to parse a newly desired field.

We provide a utility for keeping track of which fields the matcher should

expect and perform extraction and which to ignore. This state is controlled

using the deploy(var) function. This function may be called from any

handler function, and initially by the dispatch function. deploy marks a

variable as expected in a state mask stored inside the parser. This will

cause the matcher to execute the variable extraction function and handler

when it is matched. A handler function may in turn enable additional

matchers (including re-enabling itself) using the deploy function. The

parser ignores any primitive match that is not set to be active using deploy.

The parser automatically calls the dispatch function each time the

parser starts parsing a new protocol message. This allows the author to

define which fields should be matched from the start of parsing. It also

allows the initialization of member variables created using member vars.

Conversely, the parser automatically calls destroy to allow any resources

allocated in dispatch to be freed.

Matcher Primitives

Protocol fields and matcher primitives are the heart of a vulnerability

specification. The format of matcher primitive specification is:

var_type symbol = matching_primitive meta-data

handler handler_func_name()

27

%{

// embedded C++ code to extract the value

}%

The var type specifies the storage type of the field; e.g., uint32. The

symbol is the name of the field that will be stored as a member of the C++

parser class. There are three types of matching primitives.

1. str matcher (string matcher primitive): The meta-data passed to

this matcher are a string or sequence of strings separated by ||, and

this instructs the underlying multi-string matching engine to match

this string and then execute its extraction function. It supports

matching multiple different strings that are semantically identical

using or (“||”).

2. bin matcher (binary traversal primitive): The meta-data passed to

this matcher are the file name of a binpac specification. This is

followed by a colon and the name of a binpac record type. The

meta-data end with the name of a field inside that record that the

author wishes to extract (e.g. IPP.binpac: IPP Message.version num).

The generated binpac parser will then call back to our system to

perform the extraction and run the handler for the requested field.

3. extended matcher (extension to another matcher): This construct

allows us to perform additional extractions after matching a single

string or binary field. This is often useful when multiple fields are

embedded after a single match. It also allows the author to specify a

different extraction function depending on which state is expected.

The meta-data passed to this primitive are the name of another

variable that uses a standard matching primitive.

Each variable match also specifies an extraction function within braces,

%{ and }%, which extracts a relevant field from the message. We have

provided a number of helper functions that the author can use in the

extraction function, such as string conversion and white space elimination.

In a string matcher extraction function, there are two predefined variables

the signature author can use and modify: rest and end. The rest variable

points to the first byte of input after the string that was matched. The

28

parser also defines end, which allows the extraction function to store where

the extraction ends. Extended matchers run immediately following the

extraction function of the string matcher on which they depend and in the

same context. Hence, any changes to the state of rest and end should be

carefully accounted for in extended matcher extraction functions.

There are two additional functions that the author can use inside the

extraction function of a string matcher: stopMachine() and

restartMachine(ptr). These functions suspend and restart pattern

matching on the input file. This is useful, for example, to prevent the

system from matching spurious strings inside the body of an HTTP

message. The restartMachine(ptr) function restarts the pattern

matching at a new offset specified by ptr . This allows the matcher to skip

portions of the message.

Handlers

Each matcher may also have an associated handler function. The handler

function is executed after the extraction and only if the matcher is set to be

active with deploy. The signature author defines the body of the handler

function using C++ code. In addition to calling the deploy function,

handler bodies are where vulnerability constraints can be expressed. We do

not yet address the reporting mechanism when a vulnerability is matched.

However, since any C++ code may be in the handler, the author may use a

variety of methods, such as exceptions or integer codes. The author may

also use the handler functions to pass portions of a protocol message to

another parser to implement layering and encapsulation.

While structurally different from existing protocol parser generators like

GAPA and binpac, our language is sufficiently expressive to model many

text and binary protocols and vulnerabilities. Porting a protocol

specification from an RFC or an existing spec in another language (like

binpac or GAPA) is fairly straightforward once the author understands the

protocol semantics.

29

4.2.5 Implementation

Compiler

We designed a compiler to generate machine-executable vulnerability

signature matchers from our language. We implemented the compiler using

the Perl programming language. Our implementation leverages the “Higher

Order Perl” [56] Lexer and Parser classes, which kept down the

implementation complexity: the entire compiler is 600 lines. Approximately

70% of the compiler code specifies the lexical and grammatical structures of

our language; the balance performs symbol rewriting, I/O stream

management, and boilerplate C++ syntax insertion.

Our compiler operates on a single parser file (e.g., myparser.p), which

defines a signature matcher. The generated code is a C++ class which

extends one of the parser superclasses. The class definition consists of two

files (following the example above, myparser.h and myparser.cc), which

jointly specify the generated parser subclass.

Parser Classes

Generated C++ classes for both binary and text parsers are structurally

very similar, but differ in how they interface with the matching primitives.

We have optimized the layout and performance of this code. We use inlined

functions and code whenever possible. Many extraction helper functions are

actually macros to reduce unnecessary function call overhead. We store the

expected state set with deploy using a bit vector.

For string matchers, we use the sfutil library from Snort [21], which

efficiently implements the Aho–Corasick (AC) algorithm [7]. Because the

construction of a keyword trie for the AC algorithm can be

time-consuming, we generate a separate reusable class which contains the

pre-built AC trie. Our text matcher is not strongly tied to this particular

multi-string matching implementation, and we have also prototyped it with

the libSpare AC implementation [57].

We use binpac to generate a binary traverser for our parsers. As input,

the compiler expects a binpac specification for the binary protocol. This

should include all the record types in the protocol as well as the basic

30

analyzer, connection, and flow binpac types. We then use the refine

feature of binpac to embed the extraction functions and callbacks to our

parser. Since binpac does simple extractions automatically, it is often

unnecessary to write additional code that processes the field before it is

assigned. Like the AC algorithm for text parsers, the binary parser is not

heavily tied to the binary traversal algorithm or implementation. For a few

protocols, we have developed hand-coded replacements for binpac binary

traversal.

Binary Traversal-Optimized Binpac

We have made several modifications to the binpac parser generator to

improve its performance for binary traversal. The primary enhancement we

made is to change the default model for the in-memory structures binpac

keeps while parsing. The original binpac allocated a C++ class for each

non-primitive type it encountered while parsing. This resulted in an

excessive number of calls to new, even for small messages. To alleviate this

problem, we changed the default behavior of binpac to force all

non-primitive types to be pre-allocated in one object. We use the datauint

type in binpac to store all the possible subtypes that binpac might

encounter. To preserve binpac semantics, we added a new function,

init(params...), to each non-primitive type in binpac. The init

function contains the same code as the constructor, and we call it wherever

a new object would have been created. It also accepts any arguments that

the constructor takes to allow fields to be propagated from one object to

another. We restrict binpac specifications to be able to pass only primitive

types from object to object. While this reduces our compatibility with

existing binpac specifications, it is easy to change them to support this

limitation.

Some objects in binpac must be specified using a pointer to a dynamically

created object and cannot be pre-allocated. For example, in the Bro DNS

binpac specification, a DNS name is composed of DNS labels. A DNS label

type also contains a DNS name object if the label is a pointer to another

name. This circular dependency is not possible with statically sized classes.

We added the &pointer attribute modifier to the binpac language to allow

the author to specifically mark objects that must be dynamically allocated.

31

The final modification we made to binpac was to change the way that it

handled arrays of objects. The original version of binpac created a vector

for each array and stored each element separately. Because binary traversal

only needs to access the data as it is being parsed, we do not need to store

the entire array, only the current element. We eliminated the vector types

entirely and changed binpac to only store the current element in the array

using a pre-allocated object. If the author needs to store data from each

element in the array, he must explicitly store it outside of binpac in the

VESPA parser class using a handler function.

4.2.6 Evaulation

We evaluated VESPA with vulnerabilities in both text and binary

protocols. We implemented matchers for vulnerabilities in the HTTP, DNS,

and IPP protocols. We searched for exploitable bugs in network-facing

code, focusing especially on scenarios where traditional exploit signatures

would fail. As Cui et al. did with GAPA [58], we found the process of

writing a vulnerability signature for a protocol very similar to writing one

for a file format. Thus, we used our system to develop a binary parser for

the Windows Meta-file (WMF) format.

We ran all our experiments on an Ubuntu 7.10 Linux (2.6.22-14-x86 64)

system with a dual-core 2.6 GHz AMD Athlon 64 processor and 4 GB of

RAM (our implementation is single-threaded so we only utilized one core).

We ran the tests on HTTP and DNS on traces of real traffic collected from

the UIUC Coordinated Science Laboratory network. We collected WMF

files from freely available clipart web sites. Since we did not have access to

large volumes of IPP traffic, we tested using a small set of representative

messages. We repeated the trace tests 10 times, and we repeated processing

the IPP messages 1 million times to normalize any system timing

perturbations. We show the standard deviation of these runs using error

bars in the charts.

Micro-benchmarks of Matching Primitives

To evaluate the performance of using fast string matching primitives, we

implemented our parser using two different implementations of the

32

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

Snort SpareParts

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

VESPA
string matching alone

(a) Comparison between string matching
primitive and parsing for HTTP re-
quests

Parser Type Bytes
allocated

Num calls
to new

DNS (binpac) 15,812 539
DNS (traversal) 2,296 14

IPP (binpac) 1,360 33
IPP (traversal) 432 6

WMF (binpac) 3,824 94
WMF (traversal) 312 6

(b) Dynamic memory usage for a single mes-
sage for standard binpac vs. binary
traversal

Figure 4.2: Micro-benchmarks

Aho–Corasick (AC) algorithm and compared their performance (Figure

4.2.6a). We used the sfutil library, which is part of the Snort IDS [21], and

the Spare Parts implementation of AC [57]. We used those base

implementations to search for the same strings as our vulnerability matcher

does, but without any of the control logic or constraint checking. We found

that for either AC implementation, the performance of a basic HTTP

vulnerability matcher (which handles optional bodies and chunking) was

very close to that of the string matching primitive.

The performance of string matching alone approximates (generously) the

performance of a simple pattern-based IDS. If the vulnerability signature is

simple enough to be expressed using a simple string match (e.g., the IPP

vulnerability for a negative Content-Length), our system is able to match

it with comparable performance to a pattern based IDS.

We next investigated the performance of binary traversal in binpac. One

of the primary changes we made to binpac was to change its default

memory and allocation behavior. We instrumented the original version of

binpac and a parser built with our binary traversal-optimized version to

assess the effectiveness of this change (Figure 4.2.6b). We saw an overall

reduction in memory usage despite pre-allocating types that may not be

present in the message. We were also able to cut the number of calls to new

by a substantial factor for all three binary protocols we implemented. Our

IPP and WMF traversers do not contain any explicit pointer types

(specified with &pointer), so the number of allocated blocks is constant for

any protocol message. The number of times the DNS parser calls the new

33

allocator is proportional to the number of name pointers in the message.

Signature Matching Performance

We evaluated the throughput of our vulnerability signature matching

algorithms compared to the binpac parser generator. Binpac is the most

efficient freely available automated protocol parser generator. We do not

evaluate against GAPA because it has not been publicly released.

Furthermore, binpac far exceeds GAPA in performance because it directly

generates machine code rather than being interpreted [13]. Since binpac is

not specifically designed for vulnerability signatures, we added vulnerability

constraint checking to the binpac protocol specifications. In each of the

following sections we describe the protocol and vulnerabilities we tested

against. We show the results in Figure 4.2.6.

HTTP/IPP. The Common Unix Printing System (CUPS), with its

protocol encapsulation and chunk-capable HTTP parser, illustrates several

design choices which confound exploit-signature writers. The vulnerability

given in CVE-2002-0063 [54] occurs because of the way the Internet

Printing Protocol (IPP) specifies a series of textual key–value pairs, called

attributes. The protocol allows attribute lengths to vary, requiring the

sender to use a 16-bit unsigned integer to specify the length of each

attribute. CUPS reads the specified number of bytes into a buffer on the

stack, but the buffer is only 8192 bytes long, allowing an attacker to

overflow the buffer and execute arbitrary code with the permissions of the

CUPS process. A signature for this attack must check that each attribute

length is less than 8192. IPP is a binary protocol, but it is encapsulated

inside of chunked HTTP for transport. Attackers can obfuscate the exploit

by splitting it across an arbitrary number of HTTP chunks, making it very

hard to detect this attack with pattern-based signatures. We also tested the

negative content length vulnerability that we have discussed previously.

We designed a text-based vulnerability signature matcher for HTTP. In

addition to vulnerabilities in HTTP itself, many protocols and file formats

which are encapsulated inside of HTTP also have vulnerabilities. We use

VESPA to match the Content-Length vulnerability in CUPS/IPP, as well

as to extract the body of the message to pass it to another layer for

processing. We support standard and chunked message bodies and pass

34

 0

 100

 200

 300

 400

 500

DNS

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

(a) DNS Throughput
(Mbps)

 0

 5

 10

 15

 20

HTTP IPP WMF

T
hr

ou
gh

pu
t (

G
bi

ts
/s

) VESPA
binpac

(b) Parser Throughput (Gpbs)

HTTP
Message
Type

Message
Rate
(msgs per
sec)

Requests 370,005
Responses 196,897
Chunked 41,644
Overall 314,797

(c) HTTP Message Rate

Figure 4.3: Vulnerability Signature Matcher Performance

them to a null processing layer. Unfortunately, we were unable to make a

direct comparison to binpac for chunked HTTP messages due to a bug in

binpac’s buffering system: binpac will handle such a message but fail to

extract data from each individual chunk. Despite this, we found that

VESPA was considerably faster than the equivalent binpac parser. Since

much of the HTTP message body is ignored by both VESPA and binpac,

the throughputs we observed are very high because the size of the body

contributes to the overall number of bytes processed. We also measured the

message processing rates for various types of HTTP messages and found

them to be adequate to process the traffic of a busy web site (Figure 4.2.6c).

We implemented a binary IPP vulnerability matcher to be used in

conjunction with our HTTP parser. The VESPA IPP matcher ran four

times as fast as the binpac version, largely due to the improved state

management techniques we described earlier. We also developed a

hand-coded drop-in replacement for our binpac binary traverser of the IPP

protocol. Using this replacement, we were able to achieve an order of

magnitude improvement over the performance of the binpac binary

traversal. Therefore, our architecture stands to benefit from further

improvements of the base matching primitives of binary traversal as well.

DNS. The DNS protocol includes a compression mechanism to avoid

including a common DNS suffix more than once in the same message.

Parsing these compressed suffixes, called name pointers, is best done with a

recursive parser, but doing so introduces the possibility of a “pointer cycle,”

where a specially crafted message can force a parser to consume an infinite

amount of stack space, leading to a denial of service [59].

35

DNS name pointers can occur in many different structures in DNS, so the

binary traversal must parse and visit many of the fields in the protocol.

Therefore, parsing DNS is usually much slower than other protocols.

Indeed, DNS is the worst-performing of our vulnerability signature

matchers, though it is still several times faster than binpac, as can be seen

in Figure 4.2.6. Pang et al. suggest that this is due to an inherent difficulty

of parsing DNS, pointing to the comparable performance of their

hand-implemented parser to binpac [13]. We have found this not to be the

case, as our hand-implemented DNS parser that finds pointer cycles can

operate at nearly 3 Gbps. As part of our future work, we will investigate

what part of our current design is responsible for the much worse

performance of DNS; our hope is that we will be able to achieve speeds in

excess of 1 Gbps with an automatically generated parser.

WMF. Vulnerabilities are increasingly being found in file formats (so

called “data-driven attacks”) rather than just network messages. The

WMF format allows specification of a binary “abort procedure,” called if

the rendering engine is interrupted. Attackers began to misuse this feature

in late 2005, using the abort handler for “drive-by downloads,” where an

attacker could run arbitrary code on a victim’s computer by simply

convincing them to render a WMF, requiring only a web site visit for

clients using Internet Explorer (CVE-2005-4560 [54]).

This vulnerability has been problematic for intrusion detection systems,

Snort in particular. Snort normally processes only the first few hundred

bytes of a message when looking for vulnerabilities; however, a WMF

vulnerability can be placed at the end of a very large media file. However,

matching the Snort rule set over an entire message exhausts the resources

of most intrusion detection systems, requiring most sites to resort to a

convoluted configuration with two Snort processes running in concert. Our

architecture allows for a much cleaner approach: after an HTTP header has

been parsed, the WMF vulnerability matcher would be called in the body

handler, while other string matchers and handlers would be turned off.

Figure 4.2.6 shows that WMF files can be parsed at multi-gigabit rates, so

this would not put a significant strain on the CPU resources of the NIDS.

36

CHAPTER 5

SYSTEMS ISSUES

A network intrusion detection system (NIDS) has three principal modules:

• A mechanism for retrieving link-layer data from a file or network

interface, and transforming it into a format the rest of the system can

understand (which might involve TCP reassembly)

• Protocol parsers, which transform an application-layer flow into a

series of semantically rich “application events” (e.g. login, retrieving a

file, sending a message, etc.)

• A policy engine, which analyzes the event stream and looks for

abnormalities.

Our vulnerability signatures work demonstrated the redundancy of full

protocol parsing: recovering the entire application event stream is useful

only insofar as the policy engine cares about every protocol event, which it

normally does not.

Although our technique demonstrated aggressive parse speedup, we made

no attempt to study how a faster parser would affect overall system

performance. Accurately characterizing IDS performance requires carefully

considering a multitude of factors, such as the nature of the traffic

(protocols, packet sizes, fragmentation, etc.), machine characteristics

(interconnect bandwidth/latency, processor characteristics, etc.), and how

the software interacts with the hardware. Absent a thorough understanding

of how these factors interact, micro-optimizing one part of the system risks

running afoul of the cardinal principle of performance engineering: always

base optimization decisions on data.

The experiments in this chapter use the Bro IDS [19], the system

produced by the Networking Group at the International Computer Science

Institute. Recently, the group has produced a cluster- and thread-based

37

version of Bro, but both are still very experimental. We present two results.

First, we found that protocol parsing does not dominate the IDS workload.

Second, we learned that on a machine with a smaller cache, per-code file

processor time and cache misses are more highly correlated than on a

machine with a larger cache, which suggests that explicit management of

the memory hierarchy must be a first-class design issue in next-generation

NIDS.

5.1 Sensitivity Analysis

As the introduction to this chapter explained, accurately characterizing IDS

performance is a high-dimension problem. In lieu of trying to infer the

entire n-dimensional performance surface of the system, another technique

is to use sensitivity analysis, which studies how the system reacts locally to

changes in a subset of its parameters.1 As shown by the vulnerability

signatures work, the variable-length, recursive binary structure of the

Domain Name System (DNS) protocol makes it especially difficult to parse,

making it an ideal candidate to (1) measure sensitivity to complexity, and

(2) establish an upper bound on the amount of time a NIDS spends parsing

protocols.

We developed a tool, dns-thrash,2 which uses a randomized traffic

model to construct syntactically valid, but hard to parse DNS traffic. A

notable feature of the tool is its ability to create deep “waterfalls” of

recursion within a DNS packet, where names recursively point to other

names with arbitrary depth (our experiments used a maximum recursion

depth of eight).

5.1.1 Variable-Length DNS Messages

This experiment was our first attempt to measure runtime sensitivity to

parse complexity.

1Many of the insights in this section resulted from two particularly good courses offered
by Profs. David Nicol and R. Srikant given over the 2008-2009 academic year at the
University of Illinois.

2Available via the author’s web site, http://davidralbrecht.com.

38

The experiment used the standard (single-threaded) distribution of Bro

1.4, with debugging disabled. The traces used for each trial contained one

million UDP segments, each containing a structurally identical (yet

different) DNS message. The number of response records (RRs) in each

packet was varied from zero to eight. Each response record recursively

pointed to the record before it, giving a maximum recursion depth of eight.

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 0 1 2 3 4 5 6 7 8
 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 220

R
un

tim
e

(s
)

T
hr

ou
gh

pu
t (

K
B

/s
)

RRs and Recursion Depth

Bro Runtime
Throughput

Figure 5.1: Variable-Length DNS Messages: Runtime and Throughput

Figure 5.1 shows that, as predicted, overall runtime increases with

greater packet complexity. On the other hand, it is important to note that

the DNS messages in this experiment contain progressively more data,

leading to a curious result: while runtimes increase, overall system

bandwidth actually increases as packet complexity rises, which suggests

that protocol parsing does not dominate the overall workload.

5.1.2 Constant-Length DNS Messages

Building on the results of the last experiment, we designed a second

experiment which used constant-sized DNS messages. This experiment used

a configuration identical to the first experiment, except the number of

response records was kept constant at 55 (the maximum number that would

fit into a UDP segment); we varied only the depth of the recursion used,

from one to eight.

39

 0

 2000

 4000

 6000

 8000

 10000

 1 2 3 4 5 6 7 8
 0

 100

 200

 300

 400

 500

R
un

tim
e

(s
)

T
hr

ou
gh

pu
t (

K
B

/s
)

Recursion Depth

Bro Runtime
Throughput

Figure 5.2: Constant-Length DNS Messages: Runtime and Throughput

Figure 5.2 shows a positive, but very slight, change in overall runtimes as

complexity increases. Clearly, the variable parse complexity of the DNS

packets does not dominate the workload.

5.1.3 Profiling Runs

Working from the insights gained in the DNS experiments, we dug deeper

using Shark, a sampling profiler. In a third flight of tests, we used the same

configuration as the constant-length DNS messages, while running Bro

under Shark. In the most complex configuration (55 reponse records with

eight-deep recursive nesting), we observed the binpac-based DNS parser

consuming a maximum of 16.5% of the CPU time.3 Based on this result,

and the observation that DNS is traditionally one of the most difficult

protocols to parse, we believe 16-17% CPU time constitutes a reasonable

upper bound for the time the system spends parsing protocols. After seeing

this result, it became clear that future efforts should focus on other areas of

the system than protocol parsing.

3We performed ten trials, observing similar results with each trial.

40

5.1.4 Other Approaches

Dreger et al. [60] also studied resource usage of NIDS, but they focused on

system flow capacity, rather than analyzing the system’s workload. Similar

to our work, Schaelicke et al. [61] studied resource usage on a single

machine by a NIDS, but their approach assumed a single-threaded system.

“In particular,” Schaelicke notes, “processor speed is not a suitable

predictor of NIDS performance, as demonstrated by a nominally slower

Pentium-3 system outperforming a Pentium-4 system with higher clock

frequency. Memory bandwidth and latency is the most significant

contributor to the sustainable throughput.”

5.2 The Hardware Mismatch

Since its inception, the semiconductor industry has delivered greater

application performance with every product cycle. Despite sweeping

microarchitectural and process changes, the basic programming model has

not changed: a single von Neumann processor, executing instructions at

ever-greater speed, with ever-increasing amounts of memory.

Memory latency and parallelism represent two threats to the ongoing

hardware-agnosticism of software developers. While processor speeds have

scaled at near-exponential rates, memory manufacturers have failed to

deliver comparably accelerated access latencies. The widening gap between

memory and execution speeds has necessitated complex multilevel caching

strategies, which attempt to address the main memory’s inability to keep

up with the CPU’s need to load and store data [61]. In addition, hardware

parallelism represents a break in how processor performance has scaled:

instead of delivering a single, faster processor, manufacturers have turned

to many-core architectures to continue the march toward greater

instruction throughput.

Despite intense research efforts, developer tools (languages, compilers,

etc.) have yet to emerge which address these concerns, while retaining the

simplicity of today’s general-purpose, single-threaded languages. By

continuing to use design idioms and tools which assume a single-threaded,

flat-memory machine, developers risk stagnant performance even as

hardware moves forward.

41

5.2.1 Preliminary Benchmarks

Porting an existing codebase of Bro’s size to a multithreaded programming

model is quite challenging. On one hand, the developer must exercise care

to ensure data consistency; in the ideal case, several separate pieces of the

program can execute independently, with minimal interaction. In most

cases, however, synchronizing access to data structures involves locking,

which forces threads to wait when they need access to a shared resource.

Waiting on locks can cause sublinear scaling, or in some cases, even degrade

overall performance, relative to the single-threaded version of the program.

Table 5.1: Mean runtimes in seconds over ten trials, with standard deviation
in parens. Adding threads does not necessarily improve performance.

Scripts 0 1:1 1:2 1:2,3
tcp 93 (1) 77.76 (2) 67 (1) 64 (1)
mt 181 (72) 172 (58) 140 (62) 142 (44)
scan, trw 196 (94) 173 (8) 135 (5) 122 (8)
udp, icmp 1930 (48) 2946 (53) 2197 (44) 2169 (448)
http 2579 (70) 3929 (80) 2920 (54) 2600 (34)
ssh, pop3, irc, smtp 3530 (110) 5508 (122) 4028 (90) 3676 (105)

The results given in Table 5.1 were averaged over ten runs of superlinear

Bro on hatswitch, a dual-processor AMD Opteron machine with 4 GB of

RAM. Superlinear Bro always uses one “main” thread to reassemble TCP

flows but allows creating additional parser and event engine threads.

Thread configurations are specified by listing the processors (cores) on

which additional parser threads should run, then a colon, and the cores on

which event engine threads should run. In thread configuration “0”, all

tasks run in the same thread, on the same CPU.

Script complexity is cumulative; each trial adds to the complexity of the

one before it. The “tcp” script reassembles TCP flows, and logs them to a

file. The “mt” script adds analysis of several rudimentary internet services

(finger, ident, ftp, ntp, tftp, and the RPC portmapper), “scan” performs

rudimentary scan checks, and “trw” looks for scans using a more

sophisticated threshold random walk algorithm.

42

5.2.2 The Memory Hierarchy

Memory bandwidth and latency are crucially important to program

performance. Traditionally, software designers left memory access decisions

up to the compiler, operating system, and hardware, but it is unclear

whether this will be possible moving forward.

We begin with an experiment showing superlinear Bro running on

rinseng, a machine with two Intel E5405 processors. The E5405 features

two pairs of two cores, with a 6 MB shared cache between each pair of

cores. The experiment measured the Bro runtime on a 700 MB trace of

enterprise traffic captured at the University of Illinois Coordinated Science

Laboratory. We measured the number of lowest-level (closest to memory)

cache accesses and misses using oprofile, and cachegrind.

Cachegrind [62], part of the Valgrind project, uses an x86 virtual machine

to simulate program execution. As it is a simulator, Cachegrind is designed

to give consistent results across multiple trials—but each trial took 10-20

times as long as a native run. Also, our experiments show that Cachegrind’s

results significantly departed from those measured on actual native runs.

Oprofile [63] works by instrumenting the Linux kernel. The tool measures

system events (cache events, machine faults, etc.) using on-die performance

counters. Oprofile gives extremely accurate results, but at the expense of

sensitivity to parameters which may be beyond the system designer’s

control (how the program interacts with libraries and the operating system,

etc.) Further, optimizing to oprofile risks over-tuning to the particular

machine architecture, in which case speedups will not readily transfer to

different architectures.

Table 5.2 compares Cachegrind to oprofile results; the experimental

configuration is the same as that in Figure 5.1. Table 5.3 gives the same

data, but in percentage form.

With further study and analysis, we determined that the observed

disparity between oprofile and Cachegrind was attributable largely to

thread scheduling. Cachegrind simulates multi-threaded programs using

very fine interleaving, and does not account for the differences in machines

with shared vs. split caches, instruction interleaving from multiple cores, or

cache misses not visible at the instruction level (e.g. translation lookaside

misses).

43

Table 5.2: Cachegrind vs. oprofile L2 results. Results mostly agree, but
differ markedly on the 1:1 and 1:2,3 trials.

Scripts Threads cg L2 refs cg l2 misses op L2 refs op L2 misses
tcp 0 92.8 M 116 K 86.31 M 390 K

1:1 75 M 1.18 M 42.98 M 0.95 M
1:2 78.3 M 213 K 74 M 5.72 M
1:2,3 77.92 M 206 K 85 M 12 M

tcp, mt 0 171.8 M 292 K 166.5 M 730 K
1:1 133 M 3.4 M 69.4 M 1.83 M
1:2 130.8 M 3.5 M 130 M 7.50 M
1:2,3 132 M 5.12 M 152 M 19.89 M

tcp, mt, scan, trw 0 92.8 M 116 K 86.31 M 390 K

Table 5.3: Cachegrind vs. op L2 miss %.

Configuration thread conf cg L2 miss % op l2 miss %
tcp 0 1.25 0.45

1:1 1.57 2.21
1:2 0.27 7.72
1:2,3 0.26 14.12

tcp, mt 0 0.17 0.43
1:1 2.55 2.63
1:2 2.68 5.76
1:2,3 3.88 13.09

tcp, mt, scan, trw 0 0.13 0.45

For our final experiment, we sought to determine whether adding a larger

cache would mitigate the effects of misses on runtime. We used the same

experiment design as the prior L2 miss study, and set oprofile to measure

(1) L2 misses, and (2) time samples, over every file in the entire Bro

superlinear codebase. We treated these two quantities (time and misses) as

two random variables, and calculated their correlations over two machines

(specify machine configurations).

Our results are very preliminary; however, using a scheme for statically

mapping flows to CPUs (based on a hash of the connection key), we found

correlations of ρ = 0.6081 on hatswitch4, and ρ = 0.4926 on rinseng5.

Likewise, using round-robin hashing, we found the time/L2 correlation to

be ρ = 0.7713 on hatswitch, and ρ = 0.5067 on rinseng. These results

4A dual-processor, four core AMD Opteron machine with 4GB RAM.
5A dual-processor Intel Xeon E5405 machine with 32 GB RAM.

44

should not be treated as definitive, as we held the type of traffic constant,

and instrumented only at the granularity of code files (not individual

instructions). However, we do feel these results support further inquiry into

the relationship between cache behavior and runtime performance.

45

CHAPTER 6

FUTURE DIRECTIONS

This section outlines the architecture of an envisioned next-generation

intrusion-detection system, and identifies problems for further study.

6.1 Future Architecture

Over the course of our work, it became clear that fine-grained

object-orientation is not appropriate for bulk packet processors. Bro, in

particular, creates a new object corresponding to every stack frame in its

interpreted policy language. Additionally, a major source of speedup in

VESPA is its avoidance of object creation and deletion overhead. In our

DNS experiments, we noticed Bro spending more than 25% of total CPU

time in object constructors and destructors.1

Further, we believe that a next-generaion IDS must address the two

major hardware challenges identified in the last section: (1) the proliferation

of multicore processors, and (2) the growing cost of moving data to and

from main memory. Future IDS designs, therefore, will require fine-grained

threading, and explicit management of how data moves through the system.

These two concerns must be addressed simultaneously; addressing locality

requires knowledge of when data-dependent code executes. The eventual

result will require a coordinated effort between operating system designers

(locality-aware algorithms for thread and process scheduling), processor

architects (cache and memory design), compiler authors (to provide the

right abstractions for this new programming model), and software

engineers, who will need to learn to program a machine radically different

from the traditional, single-threaded, flat-memory model machine offered

1This figure includes malloc() and free() calls, but even still, we believe it is unreason-
ably high.

46

by the C programming language (and its descendants).

Stream processing is a step in the right direction. Projects such as the

Click Modular Router [64], MIT Streamit [65], and IBM’s System S

initiative approach computation as a “software pipeline,” where the

workload is decomposed into a number of small, simple functional kernels.

Data flows into the pipeline where it is operated on and transformed by the

functional kernels, and eventually is logged or discarded at the end of the

pipeline. Ideally, a streaming system’s functional kernels map nicely onto

operating system threads, exposing as much concurrency to the hardware

as it can handle. Additionally, constraining how data moves through the

system allows optimizing how the kernels are arranged on the processor,

and how data moves from memory into the cache hierarchy.

Constructing a streaming NIDS would require a lot more work. For one,

streaming systems assume a predictable flow of data through the

inter-kernel communication channels, which is hardly the case with bursty

network packets. Additionally, the stages of an IDS pipeline are far from a

streaming system’s “computation kernels”; they are functional units, many

of which require session state tracking. Nevertheless, the potential for

compiler-guided data flow management (including when and how threads

are scheduled to execute) seems too huge to ignore.

6.2 Other Concerns

This section explains some of the challenges encountered in the course of

this work. In the author’s opinion, any of these would make a great topic

for future research.

The need for data. A persistent problem in networking research is the

lack of real-world data for experimentation. Header-only traces are

available, but in general, privacy policies bar system administrators from

recording traces, even for research purposes.

The security community has extensively studied trace anonymization, in

hope of striking some balance between users’ right to privacy, and the need

for legitimate scientific research to advance the state of the art. The

University of Illinois’ excellent IT department, CITES (Campus

Information Technologies and Educational Services), described a past

47

project to set up a “vault,” where researchers could perform experiments,

but were limited in what they could remove from the system after their

work.2 With well-articulated policies and good enforcement, such a “data

vault” could offer a fair middle ground between users and researchers.

Mapping a sequential workload onto parallel hardware. The

parallelism movement in computer architecture is actively studying this

problem, but security presents its own challenges. Load-balancing schemes

must be robust against resource depletion attacks. Also, determining how

to prevent resource starvation by attackers in multi-threaded code generally

will become important as more code is parallelized.

Ambient authority. n-tier applications, such as database-backed web

sites, are riddled with ambient authority. Database administrators

routinely bypass database security by using superuser accounts for daily

operation. Many web attacks, such as SQL injection, would be much harder

if existing protection mechanisms (operating system security, database

security, etc.) used n-tier application principals directly, rather than relying

on application semantics to regulate user capabilities.

Where to place the NIDS. Many NIDS designers assume a single

ingress/egress point for organizational Internet traffic, but this is

increasingly not the case with personal VPN connections, single-site

multihoming, and wide-area organizational intranets. In the past, sensors

have been placed at Internet connection points, inside intranet

infrastructure (e.g. LAN switches), and directly on user machines. A

thorough study of the costs and benefits of each approach would be useful.

Design for parseability. When protocols like DNS were designed,

computers were fast relative to their network interconnects; today, the

situation is reversed. Even given today’s extremely verbose protocols (such

as XML), high-end servers struggle to keep pace with incoming traffic

streams. To date, there has been no explicit study of how to design a

protocol for high-performance parsing.

Special-purpose hardware. Although research IDS efforts focus on

software systems, high-performance networking vendors such as Cisco and

TippingPoint make extensive use of custom hardware. Custom hardware

has been studied piecemeal, with some limited systems work (see Chapter

2Josh Stone, Mike Corn, and Roy Campbell worked on this initiative.

48

2), but further research could explore programming paradigms and tools for

these relatively heterogeneous (or customized) platforms.

Forensic studies of intrusion. Over the course of this work, we came

to believe that many security vulnerabilities were due to misconfiguration

and operator error, not software defects per se. A study examining how

real-word intrusions happened in the past could be invaluable for focusing

future research efforts, as well as directing organizational resources to the

highest-value uses, in terms of keeping intruders out.

What to do when misuse is detected? The standard action is a

connection reset, followed by the insertion of a firewall rule which blocks

further communication from the offending host. However, the author

believes systems could go further, perhaps contributing to a distributed

threat monitoring system.

49

CHAPTER 7

CONCLUSION

The state of the art in intrusion detection is inadequate. Signatures are too

difficult to construct, evasion is too easy, and parsers cannot keep up with

today’s data rates. We wanted to understand what design choices would be

necessary to enable rich semantic analysis (which hardens the system

against evasion) at wire speed.

We began by studying protocol parsing, which required a thorough study

of the protocols themselves. We discovered that, despite the diversity of

protocols on the Internet, designers followed consistent idioms when

constructing protocols. These idioms were influenced by hardware

architectures, programming languages, and economic factors (e.g. the

relative cost of bandwidth vs. compute time). Defects—whether in the

protocols themselves, or in the way that software handles the

protocols—give rise to exploits. Network protocol characteristics strongly

influence what kind of exploits are available against a piece of

network-facing software.

Once we familiarized ourselves with protocols, we turned our attention to

protocol parsing. Parsing, in general, is well-studied in the computer

science literature. Unfortunately, many of the traditional insights the

literature offers (such as complexity classes) are not applicable to

high-speed intrusion detection, a topic which leans heavily on how

algorithms are implemented in hardware.

We studied the Bro Intrusion Detection System and found that binpac,

Bro’s protocol parser, parsed the entire application protocol exchange,

regardless of whether the events were important to the policy engine.

VESPA, our parser architecture, trades off hand-coded signatures for more

than an order of magnitude speedup in protocol parsing. We attribute

VESPA’s gains to (1) its use of a flat, procedural data model (versus

binpac’s nested objects), and (2) eliminating redundant parsing by

50

combining policy and parsing into a single module. VESPA’s chief

drawback is its difficulty of use; it required hand-coded signatures for each

protocol/policy combination. However, we feel a valuable contribution has

been made in identifying the potential for speedup using a different

approach.

Beyond parsing, we noticed that both Bro and Snort—the two major

research IDSes—expressed their application code in a flat, monolithic

programming model. That model is not well-aligned with future trends in

computer architecture, which suggests that it is time to rethink how

intrusion detection systems are designed. The well-exposed parallelism and

explicit dataflow modeling of streaming systems offers the potential to

better utilize next-generation hardware, by letting the compiler make

decisions about how the application should interact with the hardware.

Although we would have liked to implement a next-generation IDS, doing

so was not within the scope of a master’s project. We encourage further

research to complete what we have left undone.

51

REFERENCES

[1] “Pirate Bay Served with Dutch lawsuit via Twitter and Facebook.”
[Online]. Available: http://www.thelocal.se/20244/20090624/

[2] “Court papers served over facebook.” [Online]. Available:
http://www.computerweekly.com/Articles/2008/12/16/233938/
court-papers-served-over-facebook.htm

[3] The Economist, “The mouse that roared.” [Online]. Available:
http://www.economist.com/world/international/displaystory.cfm?
story id=E1 JSVNGNV

[4] C. Grier, S. Tang, and S. T. King, “Secure web browsing with the op
web browser,” in SP ’08: Proceedings of the 2008 IEEE Symposium on

Security and Privacy. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 402–416.

[5] G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On dominant
characteristics of residential broadband internet traffic,” in IMC ’09:

Proceedings of the 2009 Internet Measurement Conference. New York,
NY, USA: ACM Press, November 2009, pp. 90–102.

[6] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in
strings,” SIAM Journal of Computation, vol. 6, pp. 323–350, 1977.

[7] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, vol. 18, no. 6, pp. 333–340,
1975.

[8] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Commun. ACM, vol. 20, no. 10, pp. 762–772, 1977.

[9] S. Wu and U. Manber, “Fast text searching: Allowing errors,”
Commun. ACM, vol. 35, no. 10, pp. 83–91, 1992.

[10] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Cybernetics and Control Theory, vol. 10, pp.
707–710, 1966.

52

[11] “PCRE: Perl-compatible regular expressions.” [Online]. Available:
http://www.pcre.org/

[12] “Flex: The Fast Lexical Analyzer.” [Online]. Available:
http://flex.sourceforge.net/

[13] R. Pang, V. Paxson, R. Sommer, and L. Peterson, “Binpac: A yacc for
writing application protocol parsers,” in IMC ’06: Proceedings of the

6th ACM SIGCOMM conference on Internet measurement. New
York, NY, USA: ACM, 2006, pp. 289–300.

[14] R. Smith, C. Estan, and S. Jha, “Xfa: Faster signature matching with
extended automata,” in SP ’08: Proceedings of the 2008 IEEE

Symposium on Security and Privacy. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 187–201.

[15] S. Rubin, S. Jha, and B. P. Miller, “Protomatching network traffic for
high throughputnetwork intrusion detection,” in CCS ’06: Proceedings

of the 13th ACM conference on Computer and communications

security. New York, NY, USA: ACM, 2006, pp. 47–58.

[16] “Yacc: Yet Another Compiler-Compiler.” [Online]. Available:
http://dinosaur.compilertools.net/

[17] “Bison: Gnu parser-generator.” [Online]. Available:
http://www.gnu.org/software/bison/

[18] N. Borisov, D. Brumley, H. Wang, J. Dunagan, P. Joshi, and C. Guo,
“Generic application-level protocol analyzer and its language,” in
Proceedings of the 14th Annual Network & Distributed System Security

Symposium, 2007.

[19] V. Paxson, “Bro: A system for detecting network intruders in
real-time,” in Proceedings of the 7th USENIX Security Symposium,
1998.

[20] N. Schear, D. Albrecht, and N. Borisov, “High-speed matching of
vulnerability signatures,” in Recent Advances in Intrusion Detection,
2008, pp. 155–174.

[21] “Snort: An open-source network intrusion prevention and detection
system by sourcefire.” [Online]. Available: http://www.snort.org/

[22] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and B. Tierney,
“The NIDS cluster: Scalable, stateful network intrusion detection on
commodity hardware,” Recent Advances in Intrusion Detection, pp.
107–126, 2007.

53

[23] R. Sommer, V. Paxson, and N. Weaver, “An architecture for exploiting
multi-core processors to parallelize network intrusion detection,”
Concurrency and Computation: Practice and Experience, vol. 21, pp.
1255–1279, May 2009.

[24] J. M. Gonzalez, V. Paxson, and N. Weaver, “Shunting: A
hardware/software architecture for flexible, high-performance network
intrusion prevention,” in CCS ’07: Proceedings of the 14th ACM

conference on Computer and communications security. New York,
NY, USA: ACM, 2007, pp. 139–149.

[25] C. R. Clark and D. E. Schimmel, “Scalable pattern matching for
high-speed networks,” in Proceedings of the 2004 IEEE Symposium on

Field-Programmable Custom Computing Machines, 2004, pp. 249–257.

[26] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable architecture
for high-throughput regular-expression pattern matching,” SIGARCH

Comput. Archit. News, vol. 34, no. 2, pp. 191–202, 2006.

[27] W. de Bruijn, A. Slowinska, K. van Reeuwijk, T. Hruby, L. Xu, and
H. Bos, “SafeCard: A gigabit IPS on the network card,” in Recent

Advances in Intrusion Detection, 2006, pp. 311–330.

[28] A. W. Moore and K. Papagiannaki, “Toward the accurate
identification of network applications,” in Passive and Active Network

Measurement, 2005, pp. 41–54.

[29] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC:
Multilevel traffic classification in the dark,” in SIGCOMM ’05:

Proceedings of the 2005 conference on Applications, technologies,

architectures, and protocols for computer communications. New York,
NY, USA: ACM, 2005, pp. 229–240.

[30] R. Dhamankar and R. King, “Protocol identification via statistical
analysis,” 2007. [Online]. Available: https:
//www.blackhat.com/presentations/bh-usa-07/Dhamankar and King/
Presentation/bh-usa-07-dhamankar and king.pdf

[31] “Common vulnerabilities and exposures project: Cve-2007-0035.”
[Online]. Available:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0035

[32] “Common vulnerabilities and exposures project: Cve-2009-0025.”
[Online]. Available:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0025

54

[33] “Common vulnerabilities and exposures project: Cve-2008-1447.”
[Online]. Available:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1447

[34] “Hypertext transfer protocol – http/1.1.” [Online]. Available:
http://www.ietf.org/rfc/rfc2616.txt

[35] ITU, “ITU-T Recommendation X.680.” [Online]. Available: http:
//www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf

[36] IETF, “Rfc 2246: The tls protocol.” [Online]. Available:
http://www.ietf.org/rfc/rfc2246.txt

[37] IETF, “Rfc 1157: A simple network management protocol (snmp).”
[Online]. Available: http://www.ietf.org/rfc/rfc1157.txt

[38] ITU, “ITU-T Recommendation X.509.” [Online]. Available:
http://www.itu.int/rec/T-REC-X.509-200508-I/en

[39] “Rfc 4522: Lightweight directory access protocol (ldap): The binary
encoding option.” [Online]. Available:
http://tools.ietf.org/html/rfc4522

[40] IETF, “Rfc 2279: Utf-8, a transformation format of iso 10646.”
[Online]. Available: http://www.ietf.org/rfc/rfc2279.txt

[41] S. Friedl, “Analysis of the New “Code Red II” Variant,”
www.unixwiz.net/techtips/CodeRedII.html, Aug. 2001.

[42] “Common vulnerabilities and exposures project: Cve-2001-0500.”
[Online]. Available:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0500

[43] “Common vulnerabilities and exposures project: Cve-2002-1368.”
[Online]. Available:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1368

[44] IETF, “Rfc 2568: Rationale for the structure of the model and
protocol for the internet printing protocol.” [Online]. Available:
http://tools.ietf.org/html/rfc2568

[45] IETF, “Rfc 1034: Domain names – concepts and facilities.” [Online].
Available: http://www.ietf.org/rfc/rfc1034.txt

[46] Microsoft Corporation, “Windows metafile format (wmf)
specification,” 2007. [Online]. Available: \url{download.microsoft.com/
download/0/B/E/0BE8BDD7-E5E8-422A-ABFD-4342ED7AD886/
WindowsMetafileFormat(wmf)Specification.pdf}

55

[47] “Common vulnerabilities and exposures project: Cve-2005-4560.”
[Online]. Available:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4560

[48] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier, “Shield:
Vulnerability-Driven Network Filters for Preventing Known
Vulnerability Exploits,” in ACM SIGCOMM Computer

Communications Review, 2004.

[49] CERT, “‘Code Red’ Worm Exploiting Buffer Overflow in IIS Indexing
Service DLL,” www.cert.org/advisories/CA-2001-19.html, Jul. 2001.

[50] Microsoft Corporation, “Unchecked buffer in ISAPI extension could
enable compromise of IIS 5.0 server,”
www.microsoft.com/technet/security/bulletin/ms01-023.mspx, Jun.
2001, microsoft Security Bulletin MS01-033.

[51] E. Rescorla, “Security holes... who cares?” in Proceedings of the 12th

USENIX Security Symposium, August 2003.

[52] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,”
Department of Computer Science, University of Arizona, Tech. Rep.
TR-94-17, 1994.

[53] C. Clark, W. Lee, D. Schimmel, D. Contis, M. Koné, and A. Thomas,
“A hardware platform for network intrusion detection and prevention,”
in Proceedings of the Third Workshop on Network Processors and

Applications, 2004.

[54] MITRE Corporation, “Common vulnerabilities and exposures.”
[Online]. Available: \url{cve.mitre.org}

[55] H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommer,
“Dynamic application-layer protocol analysis for network intrusion
detection,” in USENIX-SS’06: Proceedings of the 15th conference on

USENIX Security Symposium. Berkeley, CA, USA: USENIX
Association, 2006, pp. 18–18.

[56] M. J. Dominus, Higher Order Perl: Transforming Programs with

Programs. San Francisco, CA: Morgan Kaufmann, 2005.

[57] B. W. Watson and L. Cleophas, “SPARE Parts: a C++ toolkit for
string pattern recognition,” Softw. Pract. Exper., vol. 34, no. 7, pp.
697–710, 2004.

[58] W. Cui, M. Peinado, H. J. Wang, and M. E. Locasto, “ShieldGen:
Automatic data patch generation for unknown vulnerabilities with
informed probing,” in Proceedings of the 2007 IEEE Symposium on

Security and Privacy, 2007, pp. 252–266.

56

[59] NISCC, “Vulnerability advisory 589088/NISCC/DNS.” [Online].
Available: www.cpni.gov.uk/docs/re-20050524-00432.pdf

[60] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, “Predicting the
resource consumption of network intrusion detection systems,” in
Recent Advances in Intrusion Detection, R. Lippmann, E. Kirda, and
A. Trachtenberg, Eds., 2008, pp. 135–154.

[61] L. Schaelicke, T. Slabach, B. Moore, and C. Freeland, “Characterizing
the performance of network intrusion detection sensors,” in Recent

Advances in Intrusion Detection, G. Vigna, E. Jonsson, and
C. Kruegel, Eds., 2003, pp. 155–172.

[62] “Cachegrind: A cache and branch-prediction profiler.” [Online].
Available: http://valgrind.org/docs/manual/cg-manual.html

[63] “Oprofile: A system profiler for Linux.” [Online]. Available:
http://oprofile.sourceforge.net/

[64] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263–297, 2000.

[65] W. Thies, M. Karczmarek, and S. Amarasinghe, “Streamit: A language
for streaming applications,” in Proceedings of the 11th International

Conference on Compiler Construction, 2002, pp. 179–196.

57

