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ABSTRACT 

 

 

 
Semantic relations between various text units play an important role in natural language 

understanding, as key elements of text coherence. The automatic identification of these 

semantic relationships is very important for many language processing applications. One 

of the most pervasive yet very challenging semantic relations is cause-effect. In this 

thesis, an unsupervised approach to learning both direct and indirect cause-effect 

relationships between inter- and intra-sentential events in web news articles is proposed. 

Causal relationships are leaned and tested on two large text datasets collected by crawling 

the web: one on the Hurricane Katrina, and one on Iraq War. The text collections thus 

obtained are further automatically split into clusters of connected events using advanced 

topic models. Our hypothesis is that events contributing to one particular scenario tend to 

be strongly correlated, and thus make good candidates for the causal information 

identification task. Such relationships are identified by generating appropriate candidate 

event pairs. Moreover, this system identifies both the Cause and Effect roles in a 

relationship using a novel metric, the Effect-Control-ratio. In order to evaluate the 

system, we relied on the manipulation theory of causality. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Problem Definition 
 

Semantic relations between various text units play an important role in natural language 

understanding, as key elements of text coherence. Examples of such relationships are 

elaboration, explanation, contrast, attribution, etc. The automatic identification of these 

semantic relationships is very important for many language processing applications such 

as question answering, and summarization. One of the most pervasive yet very 

challenging semantic relations is cause-effect. The reason is that, most of the time, the 

automatic identification of causal relations requires a deep semantic analysis of the 

relevant causal contexts.  

Various natural language processing (NLP) researchers [1, 6, 9, 10, 24] have focused 

their efforts in devising approaches for causal information identification from natural 

language text. However, most of these approaches focus on predefined linguistic patterns 

employed in supervised learning models. In this thesis, an unsupervised approach to 

automatically identifying causal information between inter- and intra-sentential events in 

web news articles without relying on deep processing of contextual information is 

proposed. This is a flexible and feasible approach which brings new insights into how 

much a knowledge-poor, statistical approach can help in the automatic identification of   
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causal information from text. The basic causal context consists mainly of two events, the 

cause (a) and the effect (b), such that a � b (where ‘�’ means ‘cause’). This binary 

relationship leads to possible arrangements of events which can involve more than two 

events as shown in figure 1.1. In this thesis an events are defined as <[sube] verbe [obje]>  

instances, where the subject or the object can be missing. Our approach focuses on binary 

causal relationships where an event a is the direct or indirect cause of an event b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Binary causal relationships are learned and tested on two domain specific data sets (one 

on the Iraq war and one on hurricane Katrina) collected from the web. For each data set 

the model identifies event pairs that are potentially causal. We rely here on the hypothesis 
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Causality between two variables: A causes B 

where A may not be direct cause of B. 

Indirect Causality: A causes B and B causes C.  

One Cause many effects: A causes both B and C. 

Many Cause one Effect: B causes A and C 

also causes A 

Figure 1.1. Causal models. These models are similar to various 

models presented in [7, 22] 
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that natural language events that explain a particular scenario tend to be strongly 

correlated and are thus good candidates for cause-effect information. Examples of such 

causal event pairs are given in Figure 1.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2 Overview of Approach 
 
Identifying automatically the text snippets that follow one of the causal models shown in 

Figure 1.1 is an overambitious task and requires automatic discovery of cause-effect 

event pairs (which we call bigram causality or binary causal relationship) which in turn 

help us to learn all the remaining trigram causal chains. In this respect the proposed 

approach focuses on the discovery of binary causal relationships, i.e. a ���� b where an 

event (a) is the cause of event (b). This causal relationship can be direct or indirect due to 

 

1. Data set:  Hurricane Katrina  

 

Example: <Six people were {killed}>, over a million customers   were 

without electricity after <Hurricane Katrina {struck} south Florida> as a 

Category 1 storm. 

Type: Intra-sentential causal relationship 

Causal Relation: “<Hurricane Katrina {struck} south Florida>”� “<Six 

people were {killed}>” 

 

2. Data set:  Iraq War 

 

Example: <Pentagon {fears} last-ditch Iraqi chemical attack>. Iraqi 

leaders could wait for US and British troops to reach Baghdad to < 

{launch} a chemical weapons attack>, a US official said. 

Type: Inter-sentence causal relationship 

Causal Relation: “<{launch} a chemical weapons attack>” � 

“<Pentagon {fears} last-ditch Iraqi chemical attack >” 

Figure 1.2. Binary causal examples for each data set 
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the high variability of natural language. Two domain specific data sets on the Iraq War 

and Hurricane Katrina have been used to test the proposed model and to generate 

potential candidate event pairs which are filtered later on in order to distinguish cause-

effect pairs. Appropriate candidate pairs encoding causality are determined based on the 

hypothesis that natural language events that explain a particular scenario tend to be 

strongly correlated. Therefore it is appropriate to consider highly correlated events that 

explain a scenario as encoding a potential causal relationship. Figure 1.2 shows bigram 

causality examples for each data set mentioned above. 

Many NLP semantic processing tasks are solved through pipelining where each layer 

provides results for the next in order to solve some major task in the end. The proposed 

approach is also tackled in three layers of processing.  Main processing objectives of each 

of these layers are given below: 

1. Identifying Topic-Specific Scenarios and their Events – For each dataset, first topic-

specific scenarios are discovered using a hierarchical topic model which identifies 

fine grained topics by capturing relationships between words [15]. Then events 

associated with each topic-specific scenario are identified. 

2. Generating Event Pair Candidates – Using as input the scenarios and their events 

identified in layer 1, similar events are grouped and then candidate event pairs are 

generated by mining frequent pairs of events. 

3. Identifying Causal Event Pairs and their Roles – Using the event pair candidates, 

statistical measures of independence and strong dependence [22] are applied to 

identify causal dependencies. Once a pair is identified as causal, the system 
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determines its Cause and Effect roles based on a novel metric, the Effect-Control-

ratio. 

1.3 Challenges 
 

Some of the important research challenges in the identification of causal relationships in 

natural language text are presented in this section. These research challenges are 

classified into “system design and development” and “evaluation challenges”. 

1.3.1 System Design and Development Challenges  
 

Following are some of system design and development challenges raised while devising 

this approach. 

 

1. How can we automatically identify topic-specific scenarios existent in a particular 

text collection with no prior domain knowledge? 

2. What is the relationship between these scenarios? How can we exploit this 

relationship for our task of causality detection? 

3. How are the cause-effect relationships expressed in natural language text? 

4. What text snippets (contributing to a scenario) encode causality and how should 

we identify these text snippets? 

5. How to tackle implicit causality expressed in text without relying on predefined 

linguistic cue phrases? 

6. How to distinguish cause-effect relationships from other semantic relationships? 

7. There must be a concrete way to explain causality. Multiple perspectives of 

causality have been developed and this raises the question of what would be the 

best tests of causality we need to identify before devising our approach? 
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8. Is this general notion of causality applicable to natural language text? 

1.3.2 Evaluation Challenges  
 

Following are some of challenges need to be addressed for evaluation of such systems. 

1. Keeping in mind the complexity of this task, what should be the mechanism to 

evaluate such system? 

2. In theory, the two events encoding a cause-effect relationship can appear 

anywhere in a natural language text. Causality can exist between events in the 

same sentence or at a distance of multiple sentences and this makes it difficult for 

humans to evaluate. Moreover, can we empirically identify the distance between 

two events encoding a cause-effect relationship? What would be the largest 

distance for which people can easily and reliably identify the events are being 

causally related? 

3. Some data sets are difficult to evaluate e.g. Iraq war data set causal pairs are 

difficult to evaluate as compared with Hurricane Katrina because annotators are 

required to have some background knowledge about the particular domain (e.g. 

Iraq War) before they annotate test data for causality task evaluation. This raises 

the challenge of educating annotators about domain specific knowledge to have 

accurate evaluation possible for such systems. 

Our approach has tried to address all the above challenges while devising approach for 

causal relationships automatic detection. 

This thesis is structured as follows. The next chapter presents relevant previous work. 

Chapter 3 describes the model and introduces the modules used at each processing layer.   
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The system evaluation is presented in Chapter 4, followed by discussions on future work 

in chapter 5. 
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CHAPTER 2 

 

BACKGROUND 
 

2.1 Introduction 
 
Causal relationships between text units are an important feature of natural language that 

makes understanding and reasoning possible for humans. Each text analysis requires the 

exploration of semantic relationships and causality can be distinguished here as one of 

the most important relationships. Causality can be expressed both explicitly and 

implicitly in natural language in various ways [4, 8, 10, 11]. However, most of the 

computational approaches for cause-effect relationship detection focus mainly on the use 

of some predefined lexico-syntatic patterns of language [6, 9, 10]. These approaches 

however, have their limitations due to the challenges imposed by the highly ambiguous 

nature of these language patterns. Moreover, these patterns are not well suited for a 

detailed temporal analysis. The absence of causal markers makes the task even more 

challenging for automatic causal systems [11, 18, 19, 20, 23]. 

This chapter provides a review of the English language features of the explicit and 

implicit causality expressions in English, along with appropriate definitions of causality 

and computational approaches for the discovery of the cause-effect text components. 

2.2 Causality in Natural Language 
 
A detailed analysis of various English expressions of cause-effect relationships is 

mandatory before devising any approach the automatic identification of causal relations 
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from text. Various researchers have identified and analyzed relevant causal language 

features [4, 8, 10, 11]. Cause-effect relationships between two text units can be expressed 

either explicitly by using cue phrases or implicitly. Girju and Moldovan 2002 [10] 

reviewed four major classes of explicit causal relations which are presented below: 

1. Causal Connectives 

These are cue phrases which connect two text units in causal relationship. A few such 

examples of adverbial phrases are “The meaning of a word can vary a great deal 

depending on the context. For this reason, pocket dictionaries have a very limited 

use.”, “A local man was kept off a recent flight because of a book he was carrying.” 

[10]. 

2. Causative Verbs 

These are causal verbs which connect two elements e.g. ‘lead to’, kill‘, ‘poison’ etc. 

Causative verbs combine two causal roles “cause” and “effect” mainly in the format 

“NP-Cause Verb NP-Effect”. However, the semantics of these causative verbs is 

ambiguous since they do not refer to causality in all contexts. 

3. Conditionals 

Conditional statements express causality by relying on “if .. then..” statements. One 

such example is “If this bridge falls then people will die”. 

4. Causative Adverbs and Adjectives 

Adverbs and adjectives can encode cause-effect information. A few such examples 

are “Brutus fatally wounded Caesar” and “Caesar’s wound was fatal” [8, 10]. 

Causality detection approaches using such causative expressions must have a mechanism 

which helps in disambiguating the linguistic patterns. Causality can also be expressed 
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implicitly as well and this brings more challenges to this task. Implicit causal contexts do 

not link text elements based on cue phrases. Instead, they require deep semantic inference 

in order to judge causal relationships. Some implicit causative expressions presented 

previously by Girju and Moldovan 2002 [10] are presented next: 

1. Complex Nominals and Other Complex Expressions  

Complex nominals are expressions of the type “N N”   (where N is a noun) -- e.g. 

“cold tremble” [10]. There are also complex expressions with ambiguous explicit 

cues of form “NP1-producing NP2”   (e.g., “malaria-producing mosquitoes”). These 

expressions are ambiguous and they can appear in non-causal contexts as well (e.g., 

“leather-producing factory”).  

There are also other complex expressions with unambiguous explicit cues (e.g., “NP1 

caused NP2”   where “caused” is unambiguous, specifically when used in causal 

contexts. 

2. Implicit causality of verbs 

Implicit causality of verbs dictates the reader to determine that pronoun in text is 

pointing to which referent [4, 10]. For example Caramazza et al [4] observed 

examples like “The actor admired policeman because he was brave” to explain 

implicit causality of verb admire is the reason of determining that pronoun “he” is 

referring to policeman rather than actor. 

3. Discourse Structure  

Causal relations can also occur and thus be analyzed at the discourse level. Discourse 

passages are characterized by characters, goals, motives, events, plans etc [11]. This 

set of factors contributes towards generating inferences about causal events and their 
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effects. Researches who focus on the detection of intra-sentential causal connections 

need to understand and make inferences by relying on these discourse factors. Our 

approach captures intra-sentential causal relationships as well. Although such 

contexts require a deep and accurate analysis, our proposed approach has tried to 

approximate it by looking at the scenarios in which events would be contributing 

towards same kind of goal with strong semantic relationships between them. This is a 

necessary approach since the state-of-the-art in discourse processing does not allow 

for an in-depth and accurate analysis of text [18, 19, 20]. 

 

2.3 Definition of Causality 
 
Causality has been studied for a long time from different perspectives by philosophers, 

logicians, linguists, data-mining researchers, bio-statisticians, and economists [7, 12, 16, 

22, 26]. 

In philosophy and logic, two of the most influential theories are the counterfactual theory 

of causality [16] and the manipulation theory of causality [26]. These theories identify as 

causal conditions (1) the temporal precedence of the cause (a) and the effect (b) events, 

and (2) the causal dependency between them (a�b). Since the manipulation theory of 

causality was proven to provide an easy and objective notion of causality on some 

language tasks [1], it was used for annotation and evaluation purposes for our approach. 

For example, Beamer and Girju 2009 [1] identify an important condition for causality: 

keeping constant as many other states of affairs of the world in the given text context as 

possible, modifying event a entails predictably modifying event b (details are given in 

[1]). This annotation test is both simple to execute mentally and is relatively objective. 
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Consider for instance the example “Mary shot the thief. He died in an hour.” In this 

context the shooting event caused the thief’s death. Had Mary not shot him, one could 

necessarily infer that the thief would not have died is true. 

The automatic identification of causal relations has been addressed by the data mining 

community as well. Various approaches [7, 22] have been proposed to learn chains of 

events in structured datasets, such as census data and transaction databases. These 

approaches identify causality by employing the constraint based model for Bayesian 

network inference. A causal network using the Markov condition can be learned using the 

following rules (cf. [22]): 

Rule1) If variables a, b, c are pair wise dependent and if a and c become independent 

conditioned on b, then three causal models are possible: 

 a � b � c     OR     a  b � c     OR     c � b � a 

In order to choose the correct model from these three choices we need to rely on prior 

information. For example, Silverstein et al [22] analyze an example from the census data 

where the variables “voting”, “drive a car”, and “18 years old” are pair-wise dependent 

(e.g., since “voting” entails “one can drive a car” , they are thus dependent). If the system 

predicts that conditioned on the variable “18 years old”, the other two variables “voting” 

and “drive a car” become independent. Thus, three causal arrangements are possible: 

“voting” � “18 years old” � “drive a car”,  or 

“drive a car” � “18 years old” � “voting”,  or 

“voting”  “18 years old” � “drive a car” 

The correct arrangement can be inferred based on the prior information about which of 

these variables has no cause. In this example, “18 years old” has no prior cause (nothing 
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causes somebody to be “18 years old”) and thus, the last arrangement can be inferred 

(i.e., “voting”  “18 years old” � “drive a car”). 

Rule2) If variables a, b and a, c are pair wise dependent, but b and c are independent then 

if b and c become dependent conditioned on a, then it can be inferred that b and c cause a 

(i.e., (b and c) � a). 

Silverstein et al. [22] failed to successfully apply Rule1 to textual data since they did not 

have any prior information available to choose the correct model out of the three choices 

specified by Rule1 above. In order to apply on text data the causal inference method 

proposed by Silverstein et al [22], one needs to take into consideration the following 

issues: 

• Textual data is unstructured and, unlike for structured data (e.g. census data), its 

discrete variables are not readily available. Causality can exist between various 

segment of text (e.g., noun phrases, verb events, etc). Therefore the text has to be 

processed first and the meaningful text units that encode causality need to be 

identified.  

• In textual data there is no prior information available for the identification of the 

Cause and the Effect roles as required by Rule1 above. 

In this thesis, we also employ the statistical measures introduced by Silverstein et al. [22]. 

However, these measures are adjusted in such a way that they are suited for unstructured 

linguistic data. 
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2.4 Learning Causality 

In linguistics, many researchers have focused on the analysis of English expressions 

which can encode causal relations. These expressions are lexico-syntatic patterns (e.g. 

“mosquitoes cause malaria” is of the type “NP-Cause verb NP-Effect”) which are 

employed most of the time in supervised learning models [6, 9, 10]. However, in these 

approaches, the patterns are identified either manually or semi-automatically, which 

makes the systems difficult to port to different domains. Moreover, most of these patterns 

are ambiguous and thus, they need to be disambiguated in context. One such approach to 

identifying causal relations [9] which relies on a pattern disambiguation procedure (for 

patterns of type “NP Verb NP”) achieves a precision of 73.91%. The approach tests first 

if the component noun phrases in such patterns are present in WordNet [27],  and then 

queries the Internet or some large text collection using the pattern “* verb/expression *”. 

Then semantic constraints are generated from WordNet to ensure that the pattern 

identifies causal relation instances. The extracted instances are annotated and provided as 

input to the C4.5 decision tree learning model [21] which is then tested on unseen 

examples. 

Causality can also be expressed implicitly with no causal markers (e.g., as a result of, due 

to, because of, cause), especially at the discourse level. One such example is “I just 

missed the bus. I will be late for the meeting”. Discourse passages are characterized by 

protagonists, goals, motives, events, plans, etc [11], which are presented in a cohesive 

and coherent way in text. Such causal discourse relations are inferred from the context, 
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rather than being explicitly stated. Thus, the absence of causal markers makes the task 

even more challenging for automatic causal systems [11, 18, 19, 20, 23]. 

In this thesis, proposed research focus is on both explicit and implicit causal relationships 

at intra- and inter-sentential levels. Our approach tries to approximate the context by 

identifying first topic-specific scenarios containing events that describe them and which 

are connected by strong causal relationships. This is a necessary approach since the state-

of-the-art in discourse processing is still far from providing a deep analysis of textual 

context [18, 19, 20]. 

Other researchers [1] have made use of statistical methods to learn approximate solutions 

for this hard problem without relying on cue phrases. These approaches employ special 

data sets (e.g., those where the events are temporally ordered), which makes the causal 

learning task easier. Since the causal task requires a semantic as well as a temporal 

analysis of the events to ensure accurate results, using such data sets reduces the 

complexity of the task. One such recent approach [1] relies on a statistical measure, 

Causal Potential, which is applied on a text corpus of screen plays where the verb events 

are already temporally ordered. The obtained degree of correlation between the causal 

potential prediction and the human judgments was 0.497. The authors used the 

Spearman’s rank correlation coefficient and verified that the human ranking and the 

ranking predicted by their measure were positively correlated. Event pairs which score 

very highly had very high observed causal frequencies and vice versa. 

Other researchers [24] have proposed another measure, the Event Causality Test (ECT), 

which was employed in the discovery of causal relationships between events in search 

queries extracted from temporal query logs. Their model determines if two queries are 
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causally related if the change in one query causes the other query to change during a time 

period. They assumed that if the frequencies of two queries increase over a time period, 

then they might be correlated. Following this assumption queries were extracted from 

temporal query logs and then checked for causality based on the Event Causality Test 

(ECT) and then re-ranked using the Granger Causality Test (GCT) [12]. For the top-100 

examples predicted, the model achieves an accumulated precision from 32% to 21% for 

instances ranked 1 to 99. Instead of relying on datasets with temporally-ordered events or 

on temporal classifiers which are difficult to build accurately [5], in this thesis an 

approach is proposed which finds first which events are strongly correlated and then, 

based on a novel metric (called Effect-Control-ratio), identifies the Cause and the Effect 

roles of a pair instance once it is identified as causal. 
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CHAPTER 3 

 

METHODOLOGY 
 

 

3.1 Introduction 
 

This chapter explains three-layer unsupervised statistical system (Figure 3.1) proposed to 

automatically identify causal information in domain specific text collections. The system 

discovers inter- and intra-sentential causal information without relying on a deep context 

analysis. This will give better insights into how far we can go with such a knowledge-

poor approach to causality detection. Moreover, our approach is totally unsupervised 

which saves us the trouble of getting manually annotated data which is very expensive. 

The proposed approach focuses on the detection of inter- as well as intra-sentential causal 

relations. Although such contexts require a deep and accurate analysis which is 

impossible today without heavy supervision, we have tried to approximate it by looking 

at topic-specific scenarios containing events that describe them and which are connected 

by strong dependency relationships. We hypothesize that events contributing to 

one particular scenario tend to be strongly correlated, and thus make good candidates for 

the causal task. Identifying causal relations and assigning the Cause and the Effect event 

roles are done based on a set of statistical measures. Moreover, the approach is applied 

and tested on two text corpora. Three layers of processing are briefly reviewed here along 

with details on implementation in section 3.3. 
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1. Identifying Topic-Specific Scenarios and their Events – For each dataset, first topic-

specific scenarios are discovered using a hierarchical topic model which identifies 

fine grained topics by capturing relationships between words [15]. Then events 

associated with each topic-specific scenario are identified. 

2. Generating Event Pair Candidates – Using as input the scenarios and their events 

identified in layer 1, similar events are grouped and then generate candidate event 

pairs by mining frequent pairs of events. 

3. Identifying Causal Event Pairs and their Roles – Using the event pair candidates, 

statistical measures of independence and strong dependence [22] are applied to 

Causal 

relationships 

Text 

documents 

Layer-1: Identifying Topic-Specific 

Scenarios and their Events 

Discovering 

topic-specific 

scenarios 

Scenarios 

Identifying 

scenario-

specific events 

Layer-3: Learning Causal Relations 

Causal 

dependency 

Cause and effect 

roles 

assignment 

Layer-2: Generating Event Pair 

Candidates 

 Grouping 

events 

Identifying 

frequent event 

pairs 

Figure 3.1. The causal learning system architecture 
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identify causal dependencies. Once a pair is identified as causal, the system 

determines its Cause and Effect roles based on a novel metric, the Effect-Control-

ratio. 

3.2 Text Corpus 
 
Our proposed approach requires a domain specific text collection to determine causal 

relationships between events. In order to acquire such domain specific collections, we 

crawled the web and collected two datasets: one on the Hurricane Katrina
1
 and one on 

Iraq War
2
. The downloaded text archives have been post-processed such that the various 

formatting tags were removed (e.g., html etc.).  This way we have collected data 

(excluding stop words) with following statistics: 

 
Table 3.1. Text Corpus Statistics 

Text Corpus News Articles Word-Tokens Word-Types 

Hurricane Katrina 447 189,840 14,996 

Iraq War 556 304,481 20,629 

 
Here word-tokens refer to words separated by space in text corpus and word types refer 

to unique words (correspond to text corpus vocabulary). 

News articles for each of the two domains were used to run the proposed unsupervised 

causal learning tasks. The models were evaluated on a subset of these text collections as 

explained in chapter 4. 

                                                 
1
 http://websearch.archive.org/katrina/list.html, http://www.news.google.com/archivesearch 

2
 http://www.comw.org/warreport/ 
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3.3 Unsupervised Learning for Causal 

Relationships 
 
This section explains three layered approaches proposed for the causality detection task 

(see Figure 3.1). 

3.3.1 Layer-1: Identifying Topic-Specific Scenarios and 

their Events 
 

The first layer module identifies scenarios and their events. This module clusters text 

units according to their probability distributions to build topic-specific scenarios. The 

idea is that a single text document can contain multiple topics, and thus can identify 

multiple scenarios (e.g., a news article about the Iraq war can refer to “the allegations and 

the inspection process in Iraq” and “the come back of American forces and post-war 

developments”, etc). Thus, our intuition is that the events describing a particular topic-

specific scenario are strongly correlated. Examples are given in Table 3.2. 

 

Table 3.2. Examples of topic-specific scenarios and their events 

Scenario1: 

“War effects - economic 

progress in Iraq and side effects 

on the world’s economy” 

 

Scenario 2: 

“US accusations and the UN 

inspection”  

 

“rehabilitate Iraqi people”; 

“writing new constitution”; 

 “destroying chemical weapons 

plant” 

“Iraq might have developed 

chemical weapons”; 

“UN teams asking scientists various 

questions”; 

“Suspecting the existence of a 

chemical weapon plant in Iraq”  
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For example, sentences such as “Iraq might have developed chemical weapons” and “the 

UN team asking scientists various questions” denote events which identify the scenario 

“US accusations and the UN inspection” and are strongly correlated.  

These scenarios can be identified by clustering semantically similar text units into 

different clusters. For this we rely on topic modeling. Basic topic models like PLSA 

(Probabilistic Latent Semantic Analysis) and LDA (Latent Dirichlet Allocation) [2, 14] 

cluster the words in a given text collection into topics. Topic models are generative 

models where each topic is a multinomial distribution over words and each document is 

generated by the mixture of topics. Therefore a text document can be generated by 

multiple topics. More advanced topic models, such as the Pachinko Allocation Topic 

Model (PAM) [15], capture not only correlations between words to determine topics but 

also identify relationships between topics. In this research we employ PAM to discover 

topic-specific scenarios only, and leave the correlation between topics for future research. 

This can be done in two ways: 1) applying PAM to words or 2) applying PAM to events. 

Since statistical models such as PAM require large data sets as input, it is not feasible to 

run it on events since they are less frequent than simple words. Therefore we run PAM on 

words and then extract the events corresponding to each identified scenario. This 

procedure is explained next. 

3.3.1.1 Discovering Topic-Specific Scenarios 
 

Using as input a large text collection, PAM generates an n-level Directed Acyclic Graph 

(DAG) structure (see Figure 3.3 for a 4-level DAG). It starts with the root node at level 0 

which is connected to all other nodes at level 1 (called super topics). In turn, each super 

node is fully connected with other nodes (their children) at level 2. Nodes at level 3 are 
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the leaves which contain words. Each internal node is a super topic which has a 

multinomial distribution over all its subtopics (children at the next level). Words are 

assigned to sub-topics based on their probabilities of occurrence conditioned on subtopic 

Zt, i.e P(w| Zt). Figure 3.3 also shows correlations between topics along the edges between 

super topics and subtopics. However, this research does not consider correlations 

between topic clusters.  

In order to learn the DAG structure, PAM uses a generative model in which each super 

topic is represented as a multinomial distribution over subtopics and each subtopic has a 

multinomial distribution over words. Each super topic is associated with a Dirichlet 

distribution parameterized by αi where the i dimension is equal to the number of 

subtopics and each subtopic at level L-1  is associated with a single Dirichlet distribution 

parameterized by β. For the sake of simplicity, parameter β remains fixed and is not re-

estimated for a particular data set. For each document, the PAM generative model 

samples a multinomial distribution of super topics and then samples the path for each 

word w (path from root to level L-1) in document d from the multinomial distributions, 

and finally samples words from the level L-1 topic distribution   (see Figure 3.2). 

PAM uses Gibbs sampling for the parameters' inference procedure. With a four level 

DAG, for each word w in a document d the joint probability of super topics and sub-

topics is as follows: 

 

(3.1) (cf. [15]) 
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Here Zts is the super-topic and Ztr is the sub-topic. Z-w means that it does not consider the 

current assignment for word w,  is the number of words in document d labeled with 

the super topic k and the sub topic p,  is the number of times word w labeled with 

topic p, W is total number of words, αxy and β are the Dirichlet parameters.  αxy captures 

the correlation between the super-topic x and the sub-topic y. In order to learn the DAG 

structure, the above inference procedure is used for a number of iterations to label word w 

in document d as belonging to various topics. During each iteration αxy the parameters are 

updated using an approximate method of moment matching.  For the learning topic-

specific scenarios and their events we use the same PAM procedure on words (excluding 

stop words) for the given data sets (see Table 3.1). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.2.  The PAM generative model (cf. [15]). 
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The scenarios identified by PAM for data set are then analyzed for event identification. 

Figure 3.3 shows the top 10 representative words for each of the three scenarios 

identified for the Iraq War collection. Two human annotators labeled the discovered 

scenarios as cluster-1 (“War effects - economic progress in Iraq and side effects on the 

world’s economy”), cluster-2 (“US accusations and the UN inspection”), and cluster-3 

(“Pre-war: War strategies and planning”). 

We use the words in each topic-specific scenario for each dataset to extract the events 

belonging to these scenarios. The event identification process is explained in the next 

subsection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster-1 

America 

Iran 

Control 

Help 

Freedom 

Occupation 

Economic 

Democratic 

Elections 

Opportunity 

Cluster-2 

Officials 

Intelligence 

Mass 

U.N 

Resolution 

Question 

Disarm 

Accuse 

Uranium 

Inspection 

Cluster-3 

Free 

Enemy 

Marine 

Happen 

Police 

Israel 

Corps 

Troops 

Tactics 

Air 

0.6 
0.85 

0.8 

0.7 

0.9 

1.2 

Figure 3.3. The three topic-specific scenarios for 

the Iraq War collection. 
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3.3.1.2 Identifying Scenario-specific Events 
 

At this point, we need to identify events contributing to a particular scenario. We can do 

this by recovering the sentences which correspond to the scenario clusters discovered by 

PAM and then by identifying the events in these sentences. We represent each cluster as a 

vector v whose elements are words. Each word has a weight w which is the number of 

times the word was assigned to a scenario cluster. Since we want to ignore unimportant 

words, we keep only those elements in v with the frequency greater than a threshold t (set 

up here to t=10). Thus, each sentence s (the weight for each word in sentence s is 1.0) is 

assigned to a cluster v based on the normalized cosine similarity measure between s and v 

(N is the vocabulary size): 

 

 

 

The procedure to assign sentence s to scenario cluster v is as follows: 

1. Calculate cosine-sim(s,vi) for all scenario clusters. Here i is the number of clusters. 

2. Assign sentence s to cluster vi with which it has the highest cosine measure. In case of 

a tie between clusters assign the sentence to all clusters with the same cosine measure.  

 

From these scenario-specific sentences we identify their events (i.e., <sube verbe obje> 

instances). Thus, we rely here on a semantic role labeler, SWiRL [25], to identify the 

(3.2) 
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subject and the object. Figure 3.4 shows a snapshot of scenario-specific sentences and 

their events. 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2 Layer-2: Generating Event Pair Candidates 
 

This layer module generates event pair candidates. First, all the events generated at layer 

1 are grouped together based on their similarity. Then frequent event pairs are identified. 

These procedures are explained in this section. 

3.3.2.1 Grouping Events 
 

Similar events identified for each scenario in the previous layer need to be grouped 

together. For example, the instances “UN teams suspect Iraq” and “The UN Security 

Council suspects Iraq” are referring to the same event in the scenario “US accusations 

 

Scenario 1 – “War effects - economic progress in Iraq and side effects on 

the world’s economy”  
 

Event in context: <Financial markets {wobble}> as Iraq war 

unfolds. 

 

Scenario 2 -- “US accusations and the UN inspections”  

 

Event in context: <Pentagon {fears} last-ditch Iraqi chemical 

attack>. 

 

Scenario 3 -- “Pre-war: War strategies and planning”  

 

Event in context:  If the <Kurds join the Shiites> in a general 

offensive against the Sunnis, <the Sunnis will probably lose>. 
 

 

 

Figure 3.4. Sentences along with their events (shown in italic) 

assigned to the scenarios identified for the Iraq war collection. 
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and the UN inspection”. The grouping is done based on the naïve lexical similarity 

between events. The procedure is presented next. 

Procedure: Grouping events 

Input: Events e1, e2, …,en 

Output: Event Groups G1, G1,…, Gm where m ≤ n 

1. Initially place every event ei = <[subei] verbei [objei]> into its own group  

(Gi = {ei}) 

2. For each event ei ∈Gi                        

              For each group Gk≠i where Gk.Lemma(verb) =Gi.Lemma(verb) 

Calculate average_cosine_similarity(ei, Gk), (for each event ej in Gk find 

cosine-similarity(ei, ej) and take the average) 

Identify that Gk for which the  average_cosine_similarity(ei, Gk) is maximum. 

Then add event ei to Gk and discard Gi.. In case of tie put event ei randomly in 

any of the tie groups. 

3. Return the resulting event groups G1, G1,…,Gm. 

3.3.2.2 Identifying Frequent Event Pairs 
 

Once events are grouped as shown above, candidate event pairs need to be generated for 

the causal detection step. For this task, we rely on the FP-Growth algorithm [13] to mine 

frequent event pairs with minimum support of 5. These are pairs (a, b) which appear in at 

least 5 documents (i.e., news articles). The FP-Growth algorithm is used frequently in the 

data mining community [3, 22] to generate patterns (combinations of items) and learn 

associations between various pattern items. Transaction database records containing 

information about what items people are purchasing together provide interesting patterns, 



 

 28 

 28  

such as (laptops, hard drive) when people tend to buy hard drives when purchasing 

laptops. Another example of frequent pattern is (bread, butter) – indicating that people 

tend to purchase bread and butter together with a frequency of at least n (called minimum 

support). Silverstein et al [22] also used the frequent pattern mining algorithm to mine 

patterns before identifying causality between census variables and text words.  

FP-Growth algorithm was applied on our text data sets considering documents as 

transactions. Each document Di contains a set of events e1, e2,.., en. Since some of these 

events are similar and thus, belong to the same event group, we generalize the 

representation by replacing the events with the groups they are part of, as explained by 

the Grouping events procedure (see Figure 3.5 for an example of application of FP-

Growth algorithm). Next, we apply FP-Growth which generates event group pairs (Gi, 

Gj) with minimum support 5. Here group Gi can contain an event instance like “US 

suspects Iraq”, while a group Gj contains an event instance such as “Iraq develops 

weapons of mass destruction”. If the event pair (Gi,, Gj) appears in at least 5 documents, 

we say that it is a frequent pair of minimum support 5 (see Figure 3.5 for example of FP-

Growth application with minimum support 3). 

Causality learning statistics are applied on these frequent events-group pairs (explained in 

next section) where each group Gk, of a frequent pair (Gi,, Gj) represents one event. 

Therefore we are using words, event(s) and events pair instead of group(s) and events-

group in next section. 
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3.3.3 Layer-3: Learning Causal Relations 
 

This section focuses on the identification of causal relations between two events. Various 

novel statistical measures are introduced. This task is based on two procedures which are 

explained below: 

1. Determine if two events identified as frequent in the previous layer are strongly 

correlated. This condition is similar to the condition introduced by the manipulation 

theory of causality which states that modifying the causing event entails predictably 

modifying the effect event [26]. 

2. Assign the Cause and the Effect roles once the two events are identified as causal. 

Group Events and 

Documents 

D1     G1.suspect, G2.kill, G3.fall 

D2     G1.suspect, G2.kill, G4.go 

D3     G1.suspect, G3.fall, G5.inspect 

D4     G1.suspect, G2.kill, G3.fall 

 

Di is the ith document (news 

article). Replace events in Di 

with their group ids.  

Frequent Pattern mining 

algorithm 

It uses two user inputs  

1. Min support s (patterns must 

appear atleast s times in 

scenario) 

2. Max pattern length r (if r = 2 

then find frequent pairs of 

items (Gi,Gj) which appear at 

least s times in news articles). 

Frequent Patterns Mined for minimum support s= 3 and 

Pattern length r=2 

G1.suspect, G2.kill – support = 3 

G1.suspect, G3.fall – support = 3 

 

Rest of the events-group pairs e.g. (G1.suspect, G1.go) are not frequent 

events-group pair because its support, s < 3 

Figure 3.5: Frequent Pattern Mining for events-group 
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3.3.3.1 Causal Dependency 
 

For this task we used the Chi-square test of independence and the dependence test 

proposed in [3, 22]. The Chi-square test of independence is used to test the hypothesis 

according to which two events (a, b) are independent. A two-tailed test of independence 

proposed in [22] is defined as follows: 

1. If χ
2
 > χα

2 
at the level of significance α, then the two events are correlated. For 

example, α = 5% means that 5% of the uncorrelated pairs are incorrectly judged as 

correlated. 

2. If χ
2
 < χα

2 
at the level of significance α, then the two events are uncorrelated or 

independent. For example, if α = 95% then 5% of the uncorrelated pairs are 

incorrectly judged as correlated. 

Silverstein et al [22] claimed that it is easier to predict independence (uncorrelation) 

using the Chi-square measure. However, there are pairs of variables (a, b) which are 

neither correlated nor uncorrelated. Therefore, they have defined an interesting 

equivalence between the Chi-square test and the correlation measure (i.e., χ
2 

= np
2 

where 

n is data set size) and assumed that the variables are dependent or strongly correlated 

only if “the correlation coefficient is greater than a cut off value”, i.e. the confidence 

level is below np
2. 

: 

 

 

Here n is the data set size (the number of documents) and c is the support (a, b), i.e. the 

number of documents in which a and b appear together (a is the number of documents in 

which event a appears and b is number of documents in which event b appears).  

(3.3) 
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For this research, we used a confidence level of 95% and a significance level of 5% to 

identify the dependence between events. Since we consider event pairs (a, b), only two 

variables are being used. Thus, the degree of freedom for the Chi-square test is 1. For the 

current task, we exclude the pairs with negative correlations. However a negative 

correlation may lead to interesting causal relationships (e.g., the occurrence of event a 

causes event b not to occur). Silverstein et al [22] also used a support threshold 

requirement for the pairs (i.e., the events in a pair (a, b) need to appear together at least s 

times). They used this support threshold requirement to avoid infrequent pairs which may 

not be interesting. Moreover, the effectiveness of Chi-square increases when it is applied 

to frequent pairs. Similarly we have used the FP-Growth algorithm for frequent event pair 

mining with support of at least s (we consider s=5). 

3.3.3.2 Cause and Effect Roles Assignment 

Once we identify two events as dependent, we have to determine which of them is the 

Cause and which is the Effect. For example, after the system has identified the events 

“Iraq used chemical weapons” and “US accused Iraq” as dependent (i.e., the occurrence 

of one event is dependent on the occurrence of the other event) we still have to find 

which event occurrence causes the other event to occur. Therefore, a mechanism is 

required which can assign roles to the events in a causal context. Thus, we have devised a 

novel metric called Effect-Control-ratio to label events with their corresponding roles. 

The Effect-Control-ratio is defined and explained below: 

Effect-Control-ratio (a,b) = 

 

(3.4) 
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Here sup(a,b) is the support of the event pair (a, b) (i.e., in how many documents events 

a and b appear together). We consider only the event pair for which the minimum support 

(a,b) is 5. If event a appears with m other events in the text documents then, 

max(sup(a,bt)) chooses the event bt with which event a has the highest support and uses 

that support here. Similarly max(sup(as,b)) is defined for event b, (i.e., it chooses the 

event as with which event b has the highest support). The Effect-Control-ratio makes the 

decision as follows: 

1. Predict a � b,    if Effect-Control-ratio (a,b) > 1.0 

2. Predict b � a,    if Effect-Control-ratio (a,b) < 1.0 

 

In this research we do not deal with the case when the Effect-Control-ratio is 1.0, since 

we need a deeper temporal or semantic analysis for such pairs in order to decide which 

event is the Cause and which is the Effect. However, this does not affect our predictions 

much since only 2% of the event pairs in each scenario had a ratio of 1.0. 

The intuition behind this ratio is simple. First consider for example, the numerator: 

 

The numerator term indicates that event a is the Cause and event b is the Effect. The two 

fractions of the numerator indicate that: 

1. If the event a causes b, then a can appear independently while b’s occurrence is 

controlled by a.  In this case, the fraction sup(a,b)/(sup(b)-sup(a,b)) will be greater 

than 1.0 if b appears more frequently with event a than alone  (i.e., sup(a,b) > sup(b) 

- sup(a,b)). 

(3.5) 
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2. The second fraction assumes that event a can be the cause of many other events, so if 

it appears with event bt   more often than with any of m-1 other events (i.e. sup(a,bt) > 

sup(a,bl≠t)), then it indicates what fraction of this maximum support it appears with 

event b. Clearly, if bt = b then this fraction would be 1.0, otherwise it will be less than 

1.0. 

Similarly the denominator indicates that b is the Cause event and a is the Effect event. 

Thus the prediction would be as follows: 

1. Predict a � b,   if the numerator > denominator (i.e., the ratio > 1.0),  

2. Predict b � a,    if the denominator > numerator (i.e., the ratio < 1.0) 

Figure 3.6 shows examples of causal examples predicted by system for different 

scenarios from Hurricane Katrina and Iraq War. 

 

1. Data set:  Hurricane Katrina  

 

Scenario: Hurricane Katrina disaster and damage 

Example: <Six people were {killed}>, over a million customers   were 

without electricity after <Hurricane Katrina {struck} south Florida> as a 

Category 1 storm. 

Type: Intra-sentential causal relationship 

Causal Relation: “<Hurricane Katrina {struck} south Florida>”� “<Six 

people were {killed}>” 

 

 

2. Data set:  Iraq War 

 

Scenario: US accusations and the UN inspection 

Example: <Pentagon {fears} last-ditch Iraqi chemical attack>. Iraqi 

leaders could wait for US and British troops to reach Baghdad to < 

{launch} a chemical weapons attack>, a US official said. 

  Type: Inter-sentence causal relationship 

  Causal Relation: “<{launch} a chemical weapons attack>” � 

“<Pentagon {fears} last-ditch Iraqi chemical attack >” 

Figure 3.6. Binary causal examples for each data set 
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CHAPTER 4 

 

SYSTEM EVALUATION 
 

4.1 Introduction  
 
This chapter describes experiments and evaluation task for three layer unsupervised 

approach to identifying causality relations from relevant scenarios. We performed an 

evaluation at two important levels: Identifying Topic-Specific Scenarios and their Events 

(layer 1) and Learning Causal Relations (layer 3). 

4.2 Experiment Set Up 
 
This section presents the experiment set up on the two data sets: one on Hurricane 

Katrina and another on Iraq War. 

Here is the list of parameters that needed to be specified for various processing layers: 

1. For the PAM topic model [15], we considered two super topics and three 

subtopics, and we ran the model with 3,000 iterations using an initial αxy=0.01 

(for all super topics(x) and subtopics(y)), and β=0.01. αxy and β are the parameters 

for the Dirichlet distributions. αxy parameters are estimated to capture the 

relationships between a super topic and a subtopic (i.e., each super topic is 

associated with a subtopic with a Dirichlet distribution parameterized by α), while 

β which captures relationships between words with respect to topics remains 

constant (i.e., each subtopic is associated with a single Dirichlet distribution 

parameterized by β). 
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2. For frequent event pair mining, we used a minimum support of 5. 

3. For causal dependency task we run our system for 95% and 99% confidence 

intervals. 

The same parameter setup was used for each of the two datasets. During the experiments 

we observed that a DAG with 3 subtopics performs well on the scenario learning task on 

both data sets. A very large number of subtopics generates noisy scenarios. Therefore we 

preferred a small number of subtopics for both data sets. 

4.3 Evaluation 
 

We performed an evaluation at two important levels: Identifying Topic-Specific 

Scenarios and their Events (layer 1) and Learning Causal Relations (layer 3). 

4.3.1 Evaluating the Scenario Generation Task 
 

We evaluated each of the three clusters obtained on each text collection through blind 

judgments of cluster quality. 

 

Table 4.1. Labels assigned to topic-specific scenario clusters 

Text Corpus Cluster 1-label Cluster 2-label Cluster 3-label 

Hurricane 

Katrina 

Hurricane Katrina 

disaster and damage 

Global Warming 

and climate 

change issues 

Rescue efforts and 

criticism of 

government rescue 

plans 

Iraq War 

War effects - 

economic progress 

in Iraq and side 

effects on the 

world’s economy 

 

US accusations 

and the UN 

inspection 

 

Pre-war: War 

strategies and 

planning 
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We evaluated the PAM clusters against human judgments for each scenario. Our human 

evaluation procedure is similar to that used by Li and McCallum [15] who compared the 

results of two topic models, LDA and PAM. Here instead, we compare the scenarios 

identified by PAM with those labeled by human observers. 

For each scenario, we provided the top-50 ranked words to two human annotators and 

asked them to label them as “YES”, if they are semantically similar, representative for a 

particular scenario (topic), or “NO” otherwise. In particular, the annotators were asked to 

judge the semantic coherence of each cluster as a whole (e.g., are the words in the 

clusters related, identifying a particular topic? - we call this test evaluating words’ 

relatedness). The results show that for hurricane Katrina, clusters 1 and 3 are less noisy 

as compared with cluster 2, and for the Iraq war the clusters 1 and 2 were also good. 

Tables 4.2 and 4.3 show a good inter-annotator agreement for each topic-specific cluster 

for both data sets. The annotators found that cluster-3 in the Iraq War dataset is noisier 

and difficult to judge as compared with other scenario clusters. There results are shown in 

Tables 4.2 and 4.3. 

After the cluster annotation and evaluation which were performed independently by each 

annotator, the annotators discussed and agreed on the appropriate labels for these clusters 

(see Table 4.1). 

Table 4.2. Evaluation for word relatedness for each of Hurricane Katrina  

scenario clusters along with the inter-annotation agreement 

Test Cluster 1 Cluster 2 Cluster 3 

Related words 66% 57% 65% 

Inter-Annotator 

Agreement  
86% 94% 92% 
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Table 4.3. Evaluation for word relatedness for each of Iraq War  

scenario clusters along with the inter-annotation agreement 

Test Cluster 1 Cluster 2 Cluster 3 

Related words 90% 83% 39.5% 

Inter-Annotator 

Agreement  
80% 96% 86% 

 

We also calculated the Jensen-Shannon divergence (Formula (4.1) below) between each 

two scenario distributions to find how different they are. Jensen-Shannon divergence is a 

symmetrized version of KL-divergence and indicates the difference between two 

distributions. The results show that the three scenarios for both data sets are very 

different (Table 4.4, where “JS (i-j)” refers to the Jensen-Shannon divergence for 

distributions of clusters i and j). 

 

JS(P||Q) = D(P||M)+D(Q||M)           

Where D(P||M) is KL-divergence measure and M=(P+Q)/2 

Table 4.4. The Jensen-Shannon divergence for scenario distributions.  

“JS (i-j)” refers to the Jensen-Shannon measure for distributions of clusters i and j 

Test JS (1-2) JS (1-3) JS (2-3) 

Hurricane Katrina 0.75 0.69 0.68 

Iraq War  0.67 0.72 0.66 

 

4.3.2 Evaluating the Causality Detection Task 
 

Our system discovered strong semantic relationships between events from Clusters 1 and 

3 for hurricane Katrina, and from Clusters 1 and 2 for the Iraq War (see Tables 4.5 and 

(4.1) 
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4.6). We evaluated the system’s performance against human judgments on 100 randomly 

selected events pair examples for each text corpora (after the annotator agreement) as 

follows: 

1. Hurricane Katrina: 100 events pair examples for each Cluster 1 and 3. The annotators 

labeled a total of 200 examples for this data set. 

2. Iraq War: 100 events pair examples for each Cluster 1 and 2. Thus annotators labeled 

a total of 200 examples for this data set. 

Our system detects inter- and intra-sentence causal relationships, irrespective of the 

distance between the two events. However, in order to make the evaluation task easier we 

considered only those events which were separated by at most 3 sentences in the articles 

in which they occur.  In this research we focused only on those pairs of events which 

belong to the same article (Figure 3.6 shows examples of event pairs occurring at 

different distances in the same document).  

Thus, the two events are provided with their surrounding context to make the annotation 

task easier. The annotations were done according to following guidelines: 

1. Label example “YES” or “NO” if the events are causally dependent in context. For 

this task follow the causal condition adopted from [1] which says that, keeping 

constant as many other states of affairs of the world in the given text context as 

possible, modifying event a entails predictably modifying event b [1]. 

2. Assign the Cause and the Effect roles to each causal events pair from previous step. 



 

 39 

 39  

 

Table 4.5. The evaluation of the causality detection procedure for hurricane Katrina 

and the Iraq War data sets with a 95% confidence interval 

Data set 

Precision  

(Roles 

Accuracy*) 

Recall  
F1 

measure  

Annotator 

Agreement  

HK: Cluster-1 
58.3% 

(67.3%) 
83.0% 68.4% 87% 

HK: Cluster-3 
50.9% 

(40.7%) 
81.0% 62.4% 89% 

IW: Cluster-1 
39.1% 

(62.06%) 
74.3% 51.2% 85.7% 

IW: Cluster-2 
32. % 

(85.7%)  
80.7% 46.1% 81% 

HK: Hurricane Katrina 

IW: Iraq War 

*Roles Accuracy is the measure of accuracy of correct roles predicted for 

causal examples. 

Roles Accuracy = # of correct roles predicted/# of correct causal 

examples. 

The annotator agreement is for given here for the causal dependency labels. 

For roles’ annotation there was a 98% to 99% agreement between the two 

annotators for all clusters. 

 

System was also tested with a 99% confidence interval (with only 1% chance of making 

an error). The results are shown in Table 4.6. 

Table 4.6. The evaluation of causality detection for hurricane Katrina  

and the Iraq War data sets with a 99% confidence interval 

Data set 
Precision  

(Roles Accuracy*) 
Recall  F1 measure  

HK: Cluster-1 55% (66%) 55.6% 55% 

HK: Cluster-3 50% (40.9%) 66% 56.8% 

IW: Cluster-1 36.9% (66%) 61.5% 46.2% 

IW: Cluster-2 33%(85.7%) 80.7% 47.0% 

 

The results obtained for the causality task show that for a 95% confidence interval (i.e., 

there is a 5% chance of making errors) the system is likely to predict causal dependencies 

between events (a, b) which explains the high recall for each cluster test data (Table 4.5). 
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Meanwhile, the results for a 99% confidence interval show that the recall drops because 

the system chooses only those causal dependencies with a much higher confidence factor. 

Compared to recall, the precision is not as high. In order to explain this, we did some 

error analysis of the test data and observed that scenario-specific events are likely to be 

strongly dependent. However, these dependencies can happen for many reasons, not just 

causal (e.g., elaboration, and other semantic relationships between events). Since there 

can be various kinds of semantic dependencies between events, the annotators were more 

likely to label the examples as "not-causal" rather than "causal". Therefore, in order to 

improve precision, the strongly dependent events pairs thus predicted need to be filtered 

further to eliminate those which are due to other semantic relationship. A further filter of 

dependent pairs requires a deep semantic analysis which currently is a quite challenging 

task for inter-sentential causal events. Moreover, our system obtained a better precision 

for the 95% than for the 99% confidence interval. This reduction can be explained by the 

fact that that system is more strict in predicting the causal dependencies. This can lead to 

missed interesting causal events (a, b) which do not appear together frequently in the 

corpus (i.e., the events a and b are independent in the corpus), but encode a causal 

relationship. 

The performance obtained by the system on the Cause and the Effect role assignment 

task is good. The Effect-Control-ratio achieved a good accuracy of 85.7% on the Iraq 

War cluster 2. In this research we are not using any temporal classifier nor any deep 

semantic analysis tool to decide which event is the cause and which is the effect. Thus, 

the high performance obtained by our system for the role assignment task shows that this 
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measure can be applied effectively when the temporal information about such events is 

missing. 

4.4 Discussions 
 
This section analyzes out system’s results along with some issues raised in this research. 

As mentioned in the previous section, our system’s precision is low compared with the 

recall. This is due to the strong dependencies identified between the natural language 

passages representing the events which are not only of causal nature. Thus, the system 

has to further filter the predicted causal event pairs such that it identifies only the true 

causal instances. Consider the following example: 

“A decade of tourism development in Mississippi was wiped out in a few hours as the 

full extent of <Hurricane Katrina's destructive force {emerged}>. A casino barge sits 

among residential homes north of highway 90, bottom, in Biloxi, Miss., Tuesday, Aug. 

30, 2005 after <hurricane Katrina {passed}> through the area. “ 

Here, the events <Hurricane Katrina's destructive force {emerge}> and <hurricane 

Katrina {passed}> appear together very often, and thus the system predicted them as 

causally dependent. The annotators labeled this example as non-causal, since these events 

are similar rather than causally related.  

Another problem is generated by the usage of the Chi-square measure and the correlation 

for identifying causal dependencies. This is because Chi-square measures do not perform 

well for very low frequencies. Thus, better dependency measures are required. 

Moreover, the event grouping process which is required to combine similar events uses a 

shallow lexical similarity metric. Relying only on lexical similarity is not sufficient for 

this task. For example, it would be better to focus on verbs and other words which are 
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semantically similar in the context of each event (e.g., “the hurricane hit Florida”, “the 

hurricane struck Florida”). Such events might not be grouped and thus, might not be 

identified as encoding a causal relationship, for example when the data has more frequent 

events pair V = (“hit Florida”, “kill people”), but less frequent pairs U = (“struck Florida”, 

“kill people”). On one hand the system will detect V as a strongly dependent pair and will 

incorrectly predict U as independent when in reality, the pairs are similar.  

In this thesis we introduced a novel metric for the assignment of Cause and Effect, the 

Effect-Control-ratio. This metric is very easy to apply since it does not rely on a deep 

semantic and temporal analysis. The good performance obtained by the Effect-Control-

ratio shows that it is a good measure for the identification of these roles when a deep 

context analysis is difficult, or when the context is missing. 

One observation interesting to make here is the fact that the annotators found it more 

difficult to label causal event pairs when the events are further apart (e.g., for a distance 

of 3 or higher). This however, can lower the inter-annotator agreement. We also noticed 

that in case of event pairs with events appearing in different documents, the annotators 

found it more difficult to label the instances due to the time needed to identify and search 

the relevant documents. Thus, although in this research we focused only on causal events 

occurring in the same document, this issue is worth exploring in future developments. 

We hope that all these issues are considered as food-for-though by researchers interested 

in this problem. 
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CHAPTER 5 

 

FUTURE WORK 
 

5.1 Introduction 
 

This chapter discusses possibilities of future research issues regarding causality learning 

problem. Causality learning problem is very challenging and it requires lots of research 

and NLP resources to overcome complexities in detecting causal relationships. This 

thesis provides an unsupervised approach to handle this problem but there are lots of 

research questions raised during experiments and evaluation of this system which makes 

this problem even more challenging.  

 

5.2 Future Research  
 

The presented results and observations show that it is possible to obtain a good 

performance on this task without a deep context analysis, although causal contexts also 

play an important role and their consideration may lead to better performance. 

Specifically, the problem of identifying inter-sentential causal information is very hard 

because it requires a deep discourse and temporal analysis. Our approach based on 

scenario-specific events allows us to analyze and identify causal relationships between 

strongly related events. We noticed that scenario-specific events tend to be strongly 

related and our approach can capture the information flow through sequences of scenario-

specific events within a scenario. Such set of events are good candidates for causal 



 

 44 

 44  

semantic relationships. Our approach identifies scenarios and effectively generates 

suitable events pair candidates for the causality detection task. Thus, this approach based 

on scenario-related events generation reduces the chance for noisy relationships. 

One important feature of our approach is the use of the Effect-Control-ratio metric which 

effectively assigns Cause and Effect roles with high accuracy (cf. Table 4.5 and 4.6). 

Various causality detection statistical approaches are bound to work on temporal data 

since in temporal data it is easier to identify as causal those events which are temporally 

ordered [1, 24]. However, events in raw text data are not always temporally ordered, and 

thus systems need to rely on temporal classifiers or some deep semantic analysis. Instead, 

our statistical measure of Effect-Control-ratio helps identify roles without the need for 

deep semantic and temporal analysis. This approach also provides insights about how far 

we can go in identifying causal information without relying on a deep causal context 

analysis. We believe that this research has the potential to open up new avenues of 

research which, although challenging they are important for text analysis: 

• How important is context in detecting causal relationships?  

• How complex is this text understanding task and how difficult it is for human 

annotators to annotate causal relationships with high agreement specifically when the 

events are further apart (e.g., at distance 4 or more)? 

• What is the best way to capture and evaluate relationships between scenarios such 

that we avoid the inclusion of noisy relationships as well as missing interesting causal 

relationships? 

• Statistical measures are good at finding strong dependencies between events. 

However, in natural language text strong dependencies can indicate a number of 
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semantic relationships (e.g., elaboration, etc). What kind of semantic analysis is 

required to differentiate among these relationships?  

• How can we improve the statistical measures such that we can take context into 

account? 

• We observed that some domains (e.g. Iraq War) are harder to annotate as compared 

with simple domains (e.g. Hurricane Katrina). This requires us to educate annotators 

to have background knowledge about complex domains to achieve better evaluation 

possible. 
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