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ABSTRACT 
 
 

North American freight railroads are expected to face increasing capacity constraints due to 

substantial, expected long-term growth in traffic.  In order to meet this forecasted demand 

railroads must efficiently use existing capacity and effectively plan new capacity.  Infrastructure 

to provide this capacity is capital-intensive so careful consideration of alternatives to 

infrastructure expansion must be considered.  Consequently, railroads need to understand how 

operational practices and new technologies may affect rail line and network capacity. 

A comprehensive literature review of previous work on railroad capacity was conducted 

and the various metrics used to measure it described.  An assessment of the major Class 1 

railroads' capacity planning methods was conducted and their research needs identified. 

Operational factors influencing capacity are identified and described.  Rail capacity is often 

measured using train delay as the metric so the categories and sources of delay were evaluated. 

Train type heterogeneity is a significant factor affecting railroad operating capacity.  The 

relationship between delay, traffic volume and train type heterogeneity was investigated in a 

series of experiments using simulation analysis of trains operating on a single-track rail line.  The 

specific types of conflicts and operational factors affecting delay were identified and quantified.  

Various operational and infrastructure methods to reduce train delay were analyzed and cost 

benefit analyses were conducted to determine their relative cost effectiveness.  A qualitative 

analysis of the impact of positive train control (PTC), communications based train control 

(CBTC) and electronically controlled pneumatic (ECP) brakes was conducted.  Each aspect of 

these technologies with the potential to affect capacity was identified and its effect evaluated 

under various implementation scenarios, including consideration of the conditions under which 

each technology has the potential to increase, reduce, or have no effect on capacity. 
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CHAPTER 1: INTRODUCTION 
 

The ability of the railroads to efficiently move goods is vital to the North American economy.  

However, freight railroads are expected to face increasing capacity constraints due to substantial, 

expected long-term growth in demand (Cambridge Systematics 2007).  In order to meet this 

forecasted demand railroads must efficiently use and effectively plan new capacity.  To 

accomplish this railroads must understand how operational practices and new technologies will 

affect capacity on the North American freight rail network. 

The U.S. Class 1 railroads moved a total of 1.7 trillion ton-miles of freight in 2008 (AAR 

2008a) and this is expected to increase over 80% by 2035 (AASHTO 2007).  Additionally, the 

U.S. plans to introduce new, higher speed passenger services and expanded commuter rail 

operations across the country.  Passenger operations disproportionately use capacity reducing the 

ability to operate existing and future freight traffic (AREA 1921, Mostafa 1951, Harrod 2009).  

Recently, positive train control (PTC) systems have been mandated on many routes and 

communications based train control (CBTC) is the type of PTC system most likely to be 

implemented to meet the mandate.  CBTC alone and in combination with another new 

technology, electronically control (ECP) brakes, have the potential to affect capacity.   

Understanding how increased traffic, passenger trains, and new technology will impact 

capacity is necessary for effective capacity planning.  Expanding infrastructure to meet these 

capacity constraints is time consuming and capital intensive.  On the other hand, operational 

changes are more flexible and rapidly implemented (Lai and Barkan 2009).  Additionally, an 

understanding of operations is necessary to efficiently plan the investment in capacity projects 

that are required.   
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As demand for freight rail services increases, understanding how to increase capacity of 

single track routes will be a major focus for railroads.  Currently over 80% (AAR 2008a) of 

American railroad mainlines are single track and many of these routes will require either 

infrastructure expansion or operational changes to meet the growing demand.  

 

1.1 Objectives and Scope 

The objectives of this research are to better understand the principal operational factors 

influencing railroad capacity on single track routes.  Accomplishing this required consideration 

of the complexities of railroad capacity and the different metrics and units of capacity used by 

the industry.  Interviews with Class 1 Railroads were conducted to understand the current 

capacity planning practices used by the industry and their research needs.  Simulation, research 

was conducted to study the impact of various operational factors on railroad capacity.  With this 

knowledge, alternatives were evaluated in order to improve operations and reduce heterogeneity.  

Lastly, railroads are increasingly turning to new technologies to improve efficiency.  Two highly 

touted technologies, CBTC and ECP brakes, were evaluated for their potential to impact 

capacity. 

 

1.2 Organization 

This thesis is divided into three sections, an overview of railroad capacity, research on the effect 

of operations, and the impact of CBTC and ECP brakes on capacity.  Chapters two and three 

offer an overview of railroad capacity and current capacity planning practices.  Chapters four 

through seven focus on the impact of operational practices on capacity and potential methods to 



 

 3

improve operations.  Chapter eight considers the impact of CBTC and ECP brakes on capacity.  

Chapter 9 discusses conclusions that can be drawn from this work and areas of future work. 

 

1.2.1 Chapter 2 

This chapter contains a discussion of railroad capacity.  The different factors that influence 

capacity and the methods used to increase it are identified.  Rail capacity can be defined and 

measured in a number of different ways.  To provide a framework for later chapters, rail capacity 

is defined based on location, calculation and utilization.  Finally, the metrics used to measure 

capacity are analyzed for their advantages and disadvantages.   

 

1.2.2 Chapter 3 

This chapter describes the current capacity analysis and planning practices of the major North 

American railroads.  By interviewing representatives from each of the class1 railroads the 

specific tools and methodologies employed by each of the railroads were identified.  

Additionally the railroads identified future work that they consider would be most helpful to the 

industry. 

 

1.2.3 Chapter 4 

This chapter presents a discussion of the impact of operations on railroad capacity.  The 

operational factors that influence capacity are identified and described. A literature review of 

previous research on railroad operations was conducted identifying train type heterogeneity as a 

significant factor influencing rail operations and an area needing additional research.  Train delay 
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is the primary unit used to measure the impact of railroad operations.  To better understand this 

important metric the categories and sources of delay are discussed.   

 

1.2.4 Chapter 5 

This chapter investigates the impact of train type heterogeneity on a single track line.  Using 

simulation the relationship between delay, volume and heterogeneity was investigated.  To better 

understand the operational causes that contribute to heterogeneity caused delays, a series of 

experiments were conducted using simulations to isolate the various factors and assess their 

relative importance alone and in combination.  A paper based on this chapter was published in 

the Transportation Research Record (Dingler et. al. 2009a). 

 

1.2.5 Chapter 6 

This chapter is an investigation into the specific factors causing train delay.  The specific 

conflicts or operational factors that result in the increased delay due to heterogeneous traffic are 

not known.  Using simulation, the train performance data of each train was analyzed to identify 

the specific reason for each delay.  The delays were categorized by type of conflict and specific 

train actions.  Material from this chapter was presented at the 2010 Joint Rail Conference (JRC) 

and 2010 American Railroad Engineering and Maintenance-of-Way (AREMA) Annual 

Conference and included in the proceedings of the latter (Dingler et. al. 2010a). 

  

1.2.6 Chapter 7 

This chapter is an analysis of various methods to reduce train delay on a single track line.  

Simulation software was used to evaluate multiple scenarios for their effectiveness.  The 
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different methods reduce train delays but require additional infrastructure and equipment costs. 

These costs and benefits can be considered to determine the cost effectiveness of each method.    

Material from this chapter was presented at the 2009 Joint Rail Conference (JRC) and 2009 

American Railroad Engineering and Maintenance-of-Way (AREMA) Annual Conference and 

included in the proceedings of the latter (Dingler et. al. 2009b). 

 

1.2.7 Chapter 8 

This chapter is a qualitative analysis of the impact of positive train control, communications 

based train control and electronically controlled pneumatic brakes.  A literature review of 

articles, papers, reports and regulations pertaining to each of these technologies was conducted.   

Each of the elements with the potential to affect capacity was identified and its effect evaluated 

under various implementation scenarios.  Consideration was given to the conditions under which 

each technology has the potential to increase, have no effect or decrease capacity.  Material from 

this chapter was presented at and included in the proceedings of the 2009 AREMA Annual 

Conference (Dingler et. al. 2009c) and a later version was published in the Transportation 

Research Record (Dingler et. al. 2010b). 
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CHAPTER 2: INTRODUCTION TO RAILROAD CAPACITY 
 

The principal service freight railroads offer is movement of goods from an origin to a 

destination.  Railroad capacity directly affects their ability to provide this service in a timely, 

reliable and economical manner.  The amount of capacity railroads provide is a complicated 

financial decision.  Insufficient capacity increases travel times, which increases operating cost 

and reduces service quality and reliability thereby reducing demand for some commodities 

(Weatherford et. al.. 2008) and hence revenue.  On the other hand, building and maintaining 

excess capacity is inefficient use of resources.  It can weaken the profitability of a railroad and 

discourage outside investment.  Since excess capacity serves to improve railroad service and 

reliability, capacity is ultimately a function of a shipper’s willingness to pay for a required level 

of service.  Consequently, without consideration of economics, the concept of capacity is 

meaningless (Congressional Research Service 2007).   

 Railroad capacity is influenced by a complex relationship of many factors.  These can be 

grouped into six categories: infrastructure, operations, motive power, rolling stock, maintenance 

and human resources.  Infrastructure factors include the amount and quality of the trackage and 

the geography of the route.  Operational factors include the type and scheduling of traffic (Table 

2.1).  Motive power and rolling stock are other important factors in railroad capacity because 

insufficient locomotives and cars interferes with building and operating the trains needed to 

handle the traffic.  Maintenance of mechanical equipment and infrastructure reduces the 

availability of the assets; however, deferring maintenance can reduce reliability.  Lastly a 

sufficient number of trained and qualified personnel are necessary to perform a variety of tasks 

and functions required for safe and efficient railroad operation.   
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TABLE 2.1:  Infrastructure and Operational Parameters of Railroad Capacity 
 

Factors Parameters
Infrastructure Number of Tracks

Siding/Crossover Spacing
Siding Length
Traffic Control System
Signal System
Track Speed Limits

Operations Train Speed 
Train Mix
Train Priorities 
Stability 
Traffic Patterns 
Level of Service Requirements
Train Size and Tonnage
Train Power to Ton Ratios  

 
 

 According to the Theory of Constraints (TOC) any system is limited by a small number 

of constraints (Goldratt 1990).  Much like a chain where the weakest link limits the strength, 

constraints, often called bottlenecks, limit the system as a whole. On a railroad network there is 

often sufficient capacity on most of the railroad network, but bottlenecks at certain locations or 

in certain functions prevent utilization of all the available capacity (McClellan 2007).  On some 

routes this bottleneck may be the traffic control system or an interlocking, while on others it may 

be an insufficient number of locomotives to power the required number of trains.  Although there 

are numerous exceptions, previous research has found that congestion at terminals is often the 

principal bottleneck on many freight railroad networks (Dirnberger 2005, Laurits R. Christensen 

Associates, Inc 2009). 

 Understanding the available and maximum capacity of a route is important to identifying 

and eliminating bottlenecks and determining the impact of additional traffic.  Unfortunately, no 

single metric of capacity fully captures the complexity of rail performance and therefore no 
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standard definition or measure of rail system capacity exists.  As a result, measures of rail system 

capacity are ultimately a function of the assumptions made by the analyst (Congressional 

Research Service 2007, Weatherford et. al. 2008). 

 While it is difficult to precisely calculate the maximum capacity of a line, routes 

approaching capacity demonstrate certain attributes.  When a route becomes capacity constrained 

the fluidity of the network will decline resulting in longer travel times.  Increased congestion also 

reduces the resilience to unexpected events (e.g., bad weather, mechanical or infrastructure 

failures, unexpected growth in demand).  Insufficient capacity can cause these disruptions to 

result in widespread and prolonged congestion (Saunders 2003, Congressional Research Service 

2007, Weatherford et. al. 2008).  

   There are a number of ways for a railroad to address capacity constraints.  Potential 

strategies include (McClellan 2007, Congressional Research Service 2007):  

 

1. More efficiently use available resources.  Without adding any additional resources the 

railroad may be able to quickly and inexpensively increase the utilization of their current 

resources.  Methods to improve efficiency include: 

 

A. Reschedule traffic.  More efficiently scheduled traffic can reduce delays and increase 

density.  If headways can be reduced, the density of trains on the system will increase.  

This can be achieved through fleeting trains or effectively using available train slots.  

Evenly spreading trains throughout the day reduces delays and allows more efficient 

use of terminal resources. 
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B. Change operations. Operational changes include changing speeds, changing 

priorities, distributed power and changing the power to trailing ton ratios of trains.  

On some routes higher speeds permit a railroad to move more traffic with the same 

amount of equipment, while on others this can increase conflicts and reduce capacity.  

Changing priorities permits more efficient meets and passes.  Distributed power 

permits the use of longer trains, reducing the required number of trains.  Finally, 

greater power to ton ratios allow for faster acceleration, more rapid stopping due to 

greater dynamic braking power and may permit higher speeds. 

 

C. Utilize technological improvements. Technology has long had a role in increasing rail 

system capacity and productivity.  Some new technologies that have the potential to 

increase railroad productivity include: automated condition monitoring systems, 

wayside detectors, cab signaling, computer aided dispatching (CAD), electronically 

controlled pneumatic (ECP) brakes and communications based train control (CBTC).  

 

2. Add resources.  Railroads can address capacity constraints by increasing the available 

resources.  This may require long lead times, is capital intensive and depending on the 

resources may be inflexible to changing demands.  Resources can be added in the 

following ways:     

 

A. Purchase additional locomotives or rolling stock.  Additional equipment can be used 

to replace or supplement aging equipment, added to current trains or used to operate 

additional trains.  Aging cars and locomotives are often less reliable and have lower 
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carrying capacities and horsepower, respectively.  Replacing this aging equipment 

can increase the carrying capacity and pulling power of a train without any change in 

its handling.  If added to an existing train, additional locomotives allow for faster 

acceleration and higher speeds.  Lastly, adding additional railcars to create longer 

trains permits the delivery of more cargo with fewer trains, releasing capacity for new 

traffic.   

 

B. Expand or improve infrastructure.  Strategically constructed infrastructure eliminates 

bottlenecks and increases the fluidity of operations.  Some examples include adding 

sidings or an additional track on heavily-used rail corridors, straightening curves that 

cause trains to slow down, improving the track and structures to permit faster and 

heavier trains, and expanding or building new rail yards and intermodal terminals.  

Traffic control systems such as signals or centralized traffic control (CTC) can also 

be added to increase capacity.  

 

3. Shed traffic.  When facing capacity constraints railroads may shed low margin or 

disruptive traffic.  Sometimes a small minority of trains can create widespread congestion 

on a network.  Removing this traffic may free capacity for additional, less disruptive 

traffic.  For example, although lucrative, highly schedule-sensitive traffic may reduce 

profits because of increased operating expenses resulting from the extra congestion due to 

its operation (Weatherford et. al. 2008). 
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4. Reduce the quality of service.  Increased congestion results in lower levels of service; 

however it may be in a railroad’s best interest to accept these lower service levels.  This 

may result in some loss of traffic, but it may be unprofitable for a railroad to expand 

capacity for short periods of peak demand. 

 

2.1 Capacity Definitions 

Railroad capacity is a complex relationship of many factors and service demands and to date no 

generally accepted definition of railway capacity exists.  In its most general form railroad 

capacity can be defined as, the ability to move a specific amount of traffic with acceptable 

punctuality.  This can be more specifically defined based on location (line, network or terminal), 

calculation (theoretical or practical) and utilization (maximum, used or available).  These terms 

are often used synonymously but refer to different aspects of capacity and need to be clearly 

defined in any discussion.  The capacity definitions based on location are: 

 

Network capacity: The ability to move a specific amount of traffic on a given network with 

acceptable punctuality.  Many discussions about railroad capacity are in reference to network 

capacity.  Rail networks include both terminals and the lines between them.  Therefore, 

network capacity is dependent on the capacity of both of these elements.    

 

Terminal capacity: The amount of traffic a terminal can process in a given time interval. 

 

Line capacity: The ability to move a specific amount of traffic over a defined route with 

acceptable punctuality.  
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There are two commonly used terms when calculating capacity: theoretical capacity and practical 

capacity.  These types of capacity are defined as follows.   

 

Theoretical capacity: The maximum traffic physically possible under ideal conditions.  

Theoretical capacity assumes even temporal spacing throughout the day, with uniform train 

characteristics and priorities.  When calculating theoretical capacity, the time for service 

disruptions and maintenance are ignored. 

 

Practical Capacity: The maximum traffic possible when accounting for actual conditions 

and achieving a reasonable level of reliability.  Practical capacity is the capacity experienced 

during day-to-day operations with sustainable operations.  Practical capacity is usually 

around 60-75% of theoretical capacity (Kraft, 1982; Kruger, 1999). 

 

The maximum capacity of a line is useful; however capacity planners are also interested in 

capacity utilization and availability.  The types of capacity by utilization are defined as follows 

(Kruger 1999, Abril et. al. 2007): 

 

Used Capacity: The actual traffic volume operated while accounting for normal variations 

in traffic and operations. 
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Available Capacity: The difference between used and maximum capacity. It is an indication 

of the additional traffic volume that could be handled while maintaining a predefined 

performance threshold.  

 

2.2 Metrics of Railroad Capacity 

The most intuitive way to calculate railroad capacity is the maximum number of trains that can 

be operated over the network in a given period of time.  The concept seems simple but it 

becomes more complex when the many factors that influence capacity are considered (Stok 

2008).  Throughput is dependent on the specific characteristics of the trains in question.  In some 

cases, the level of service or asset utilization may be more important metrics of capacity.  Each 

metric has specific applicabilities and weaknesses, and analyzing trends using a single metric 

fails to capture the complexity of rail performance (Weatherford et. al. 2008).  Within each 

metric there are several different units that can be used to understand and quantify that metric 

(Table 2.2).  Each metric focuses on one aspect of railroad operations, and unfortunately they are 

not directly convertible.  Instead each metric reveals something different and is important to 

different groups in the railroad industry.   

 

TABLE 2.2: Different Metrics and Units of Railroad Capacity 
 

Metric Units
Throughput Trains, Cars, Tons, Passengers
Level of Service Terminal Dwell, Average Velocity, Delay
Asset Utilization Average Velocity  
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2.2.1 Throughput 

Throughput is a measure of how much material can be transported over a route in a specific 

period of time.  This directly measures the movement of cargo but is variable based on the traffic 

and operations on a route.  Throughput can be measured in trains, cars, tons or passengers. 

 The most common unit of throughput and capacity is trains.  Trains use line capacity and 

direct measurement of the number of trains per unit time offers the ability to estimate the used 

and maximum capacity of a line.  Accordingly, the number of trains per day is often used when 

discussing capacity on a route and has the advantage of being intuitive, easily measured and 

understandable by railroaders and the general public alike. 

Another measure of throughput is cars.  Using cars as a unit of throughput is most useful 

when considering terminals.  Cars per unit time is often used as the metric for terminal 

performance and capacity; much like trains per day is used for line capacity.  This unit is useful 

to terminal designers and operators since in terminals many different car types have similar 

handling requirements and capacity impacts.  However, car length varies widely and may need to 

be accounted for in some aspects of terminal capacity.  Regarding line capacity it measures the 

amount of cargo moved while accounting for the capacity impact of empty cars.  Increasing the 

number of cars per train is a source of increased capacity.  On single track lines, train length and 

therefore the number of cars per train, is dependent on the siding length.  Without information on 

car length, cars alone is an insufficient metric to offer information on this capacity constraint.  In 

general, measuring the number of railcars is not useful as a unit of line capacity because two 

trains with different numbers and sizes of cars may use similar amounts of capacity.   

 Tonnage is often used when considering the ability to move cargo over a route and is 

measured in terms of gross or revenue tons.  Gross tonnage measures the total weight of all the 
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locomotives, rolling stock and revenue and non-revenue lading, while revenue tonnage only 

counts the weight of paid shipments.  Gross tonnage is the simplest and most commonly used 

metric for traffic on a line.  However its meaning in terms of operations is imprecise because of 

the wide variations in its relationship to operating parameters.  For example a coal route will 

move more tonnage in fewer trains than a predominately intermodal route.  Revenue tonnage is 

important to railroad marketing and financial personnel because it provides direct information on 

the movement and volume of traffic earning revenue for railroads.  Revenue tonnage, like gross 

tonnage, is imprecise measurement of capacity due to the relationship to operating parameters. 

Tonnage offers different information than can be gained from knowing the number of 

trains or cars.  The capacity of a line can be increased without increasing the number of cars or 

trains by using higher capacity railcars or longer trains.  While tonnage is useful for comparing 

traffic between lines, it is not very useful in estimating the used or maximum capacity of a line. 

 The last measure of throughput used is number of passengers. While passengers per unit 

time is not relevant for freight routes this measure is important on predominately passenger 

routes.  Planners need to determine the mix of trains (high speed, express, commuter, intercity, 

etc.) that will provide service to the greatest number of people.  Much like tonnage, using 

passengers measures the movement of the items that offer revenue for the service.  However, 

maximum ridership does not always result in maximum revenue.  Many intercity trains have 

different classes and on overnight trains different room sizes.  Consequently, not all passengers 

use the same amount of capacity and like the other measures of throughput the capacity is 

dependent on the characteristics of the trains being used.   

 The critical limitation of using throughput as a capacity metric is its variability depending 

on the specific traffic and operations.  Different train types use different amounts of capacity, 
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carry different amounts and types of cargo and have different numbers of cars.  For instance a 

route with low speed bulk trains may carry more cars and tons than a route with high speed 

intermodal trains but have fewer trains per day.     

 Throughput is a strong metric of capacity because it is a direct measure of the movement 

of goods across a line or through a terminal, but has limitations since it is highly influenced by 

the train and car types.  A more complete understanding of corridor throughput requires one to 

look at all the units together.  While railroads attempt to maximize throughput, shippers demand 

a high level of service.  Consequently, when calculating the maximum capacity of a route, 

throughput cannot be determined without considering the level of service.   

 

2.2.2 Level of Service 

Level of service is a measure of the reliability and timeliness of transportation.  Excessively long 

travel times or unreliable deliveries will be unacceptable to shippers and passengers, but the 

specific level of service that is acceptable will vary widely depending on price, commodity and 

other factors.  Level of service can be measured using terminal dwell, velocity and/or train delay.  

Level of service is an indirect measure of capacity because it only measures the effect of 

insufficient or excess capacity but not capacity itself.     

 Most traffic has scheduled arrival windows for each customer.  Variability in travel time 

reduces the probability in arriving within the designated time window.  Terminal dwell and 

velocity are measures of the travel time of traffic; high variability in these values reflects a low 

level of service (Laurits R. Christensen Associates, Inc 2008).  Terminal dwell is defined by the 

AAR (2010) as the average time a car resides at a specified terminal location. The measurement 
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begins when a customer releases a car for shipment, a car is received in interchange, or a train 

arrival event, and ends with a customer placement, interchange, or train departure event.  

Velocity measures the line-haul movement between terminals.  It is calculated by 

dividing train-miles by total hours operated, excluding yard and local trains, passenger trains, 

maintenance of way trains, and terminal time.  Since velocity and terminal dwell are dependent 

on many factors and not comparable between railroads, it is changes in these values that are 

important.  In general, declining average speeds or increased terminal dwell imply problems, and 

increasing average speed or reduced terminal dwell imply improvements (Weatherford et. al. 

2008).  

 Another unit of capacity that measures level of service is delay.  Delay is the additional 

travel time required to traverse a defined route due to scheduled and unscheduled events.  It is a 

summation of the length and number of late arrivals, therefore it directly measures the magnitude 

of the variability in travel times.  Delay is also important because it is the primary output from 

many simulation models of railroad operations.  Change in delay is often used by railroads to 

determine the benefit of a project. 

 A weakness of using delay as a capacity metric is that different shippers have different 

level-of-service requirements.  Intermodal customers have highly time sensitive shipments while 

bulk cargo deliveries may be less time sensitive.  Consequently the capacity of a route in terms 

of delay is dependent on the traffic mix.  Additionally, level of service alone does not allow for 

estimation of the capacity of a network and offers no information on the movement of goods. 

 The strength of delay as a metric of capacity is that to shippers, level of service is the 

most important metric of capacity.  A low level of service will result in lost business and 

therefore it is important to the railroads to have a high level of service.  Another strength of delay 
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is the strong delay-volume relationship.  While not always true (White 2006), excess capacity 

often results in lower delays and a higher level of service (AREA 1931), while insufficient 

capacity has the opposite effect.  Consequently, delay is often used to determine the impact of 

operational and infrastructure changes on a route.   

 

2.2.3 Asset Utilization 

A railroad’s assets include the infrastructure, rolling stock, motive power and personnel.  

Railcars and locomotives are costly to purchase and maintain and therefore efficient use of them 

is critical to economical operation.  A railroad can move sufficient cargo at a high level of 

service but still be underutilizing its assets.  Asset utilization, like level of service, is an indirect 

measure of capacity. 

The principal metric for system-wide asset utilization is average velocity.  Given a 

constant amount of traffic, an increase in velocity indicates shorter cycle times and thus more 

efficient use of assets.  One major railroad estimates that an increase of one mile per hour in 

average velocity corresponds to an additional 250 locomotives, 5,000 freight cars, and 180 train 

and engine employees available to move additional traffic (Hamburger 2006). 

Unfortunately system velocity is a poor measure of capacity.  Velocity is highly 

dependent on the number and type of trains being operated.  The other disadvantage of using 

velocity is that it does not provide any information on the quality of service.  Two trains may 

have the same average speed but the service demands of one train type may be greater than the 

other.    
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 Velocity is useful for measuring asset utilization and understanding train run times.  

However, if a train has a scheduled average velocity of 10 mph and travels at that speed, while 

there is no delay, level of service will be low and the assets will be inefficiently utilized.   

 

2.3 Discussion 

Railroad capacity is a complex trade off involving a variety of different factors.  Consequently it 

is difficult to define and measure using a single metric.  Each metric reveals different factors 

influencing railroad capacity and must be considered together to get a complete picture of a 

railroad or individual rail line’s ability to handle additional traffic.  Railroads try to maximize 

each of the metrics but there are tradeoffs between them.  Furthermore, the importance of each 

may be weighted differently on different railroads and routes due to variation in traffic, customer 

requirements and profitability.  Railroads will tend to desire the greatest throughput in order to 

maximize profit but as throughput increases, level of service decreases, which is the metric most 

important to many shippers.  If throughput is too low or if the route becomes congested, asset 

utilization will decrease, reducing profitability.  For North American freight railroads, capacity is 

integrally linked with profitability.  The availability of capacity and operational requirements of 

a line should be selected to maximize the profitability of a railroad.  
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CHAPTER 3: CLASS 1 RAILROAD CAPACITY PLANNING PRACTICES 
 

In order to understand how railroads are performing capacity planning and determine topics the 

industry believes need research I conducted interviews with representatives from the four largest 

Class 1 railroads.     

 

3.1 Purpose 

Railroads perform capacity planning to protect and manage their network.  This can be done by 

assessing the impact of train schedule changes, assisting with maintenance-of-way planning, 

testing different operating plans, justifying infrastructure expansion expenditures and 

determining the impact of passenger traffic on both mainlines and in terminals.   

 

3.2 Organization 

Capacity planning is a process performed by many people across multiple departments.  

Modelers are the primary people focused on understanding and modeling operations across the 

network but there are many other personnel involved in the process.  Field transportation 

personnel and dispatchers identify problems and validate the models, engineering personnel 

determine the cost and constructability of projects, finance personnel study the economic return 

of projects and senior management decides which projects should be undertaken.   

The location of the capacity modeling group in each railroad’s organization structure, the 

integration and coordination between terminal and line capacity modeling and size of the groups 

varies between the railroads.  As railroad traffic continues to increase railroads are reevaluating 

these organizations in order to meet these increasing demands. 



 

 21

3.3 Capacity Planning Process 

Depending on the type of project the capacity planning process differs, but the general 

methodology is similar across the industry. The first step for all projects is determining the 

current capacity utilization.  In some cases it is determined that sufficient capacity exists and no 

further modeling is required.  If not, a model must be built and validated.  Once validated the 

model is used to determine the benefit of multiple operational and infrastructure alternatives.  In 

order to determine the impact of changes on future traffic volumes, railroad develop traffic 

forecasts.  Three to five year forecasts of origin destination pairs are converted into trains, 

locomotives and crews for each corridor.  These future traffic levels are added to the route along 

with any other changes to the traffic including reroutes, different train characteristics and 

passenger trains.  Once the operational benefit and costs of each project are determined the return 

on investment for the each project is calculated.  This information is given to a capacity planning 

team which gives the final approval to proceed with a project.   

 

3.4 Models and Tools 

3.4.1 Rail Traffic Controller (RTC) 

The primary tool used by all of the railroads is Rail Traffic Controller (RTC) from Berkeley 

Simulation Software.  RTC is a sophisticated software program designed to realistically simulate 

both freight and passenger operations over a railroad network (Washington Group 2007, Parsons 

2002).  RTC requires the user to input the infrastructure and traffic into the model.  Using the 

built-in train performance calculator (TPC) and meet-pass logic RTC attempts to dispatch the 

traffic in a way similar to an actual dispatcher (Wilson 2010).  The current generation of the 

software resolves conflicts using priority based dispatching; when there are conflicts, the logic 
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seeks alternative routes for the lower priority train (Lai 2008).  The software outputs multiple 

reports on train performance, a time-distance graph, and animations.  The results from RTC have 

been validated with hundreds of real-world networks (Lai 2008) and since its introduction in 

1999 it has become widely accepted by railroads, consultants and government agencies and is the 

de facto industry standard of the North American railroad industry.   

The railroads have modeled most of their network but the data may not be up to date; 

therefore the initial step may be updating an older file.  Once the infrastructure is updated or 

added, traffic is input into the model.  Each railroad has a different philosophy about how to 

build traffic and run the model.  Some railroads input traffic over multiple weeks to match actual 

variations in traffic.  Other railroads will use a shorter period of time and more randomization to 

account for the variations.  The model is then run and validated against actual operations. 

 

3.4.2 Other Line Capacity Tools 

While RTC is the primary tool railroads for capacity modeling, railroads also use theoretical and 

stringline models. 

Theoretical models are used to determine bottlenecks on single-track routes.  Based on 

train and traffic characteristics including train length, priority and TPC attributes, signal and 

siding spacing, siding length and length of slow orders, these models are able to identify the 

capacity of a segment in trains per day.  The models reveal how close traffic volumes are to the 

capacity of a route. 

 Stringline tools permit a railroad to quickly determine train run time and available train 

slots.  The use of these models for capacity analysis is limited since most do not have meet/pass 
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logic built in.  However, one model has meet/pass logic for traffic in a single direction and shows 

how each train uses capacity by showing its “signal wake”.   

 

3.4.3 Terminal Capacity Tools 

Most of the railroads lack a model for capacity planning of terminals.  Terminals are a major 

contributor to the congestion and delay on the railroad network and currently most planning is 

based on personal experience and formal analytical tools or models.  Without a model railroads 

are unable to test operational alternatives to increase efficiency and determine the best expansion 

alternatives.  A terminal model is a current area of development in the industry. 

 

3.5 Capacity Metrics 

Most railroads use delay as the principal metric to measure capacity.  Delay is a measure of level 

of service and is the primary output from RTC.  Acceptable delay is variable based on specific 

railroad requirements, location and traffic type.  Delay limits are based on costs (higher priority 

trains are a higher value) and geography, a more mountainous route will have higher allowable 

delays.  However, delay is a relative measure and its correlation to capacity is complicated.  For 

instance, current levels of delay may be sufficient now but if a passenger train is added a 

reduction in delay may be necessary for fluidity of operations.  When deciding future 

investments the relative change to what is currently operating is often considered.    

 Besides delay railroads will also use average velocity, run times, reliability, throughput, 

and fuel consumption when making decisions about a project or operational change.  Depending 

on the project each of these may be the limiting factor.  Run time will become a constraint when 
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crews start to approach their hours of service limitations.  Recently reduction in fuel 

consumption has become a justification to slow trains down.   

 

3.6 Railroad Capacity Research Needs  

As a part of the interviews to understand the Class1 Railroads current capacity planning process 

each railroad was asked to identify areas they felt had the greatest need for research.  Most of the 

suggestions were to understand the impact of outside influences on railroad capacity, passenger 

rail and positive train control (PTC).  Other suggestions included further terminal research and 

developing a theoretical model for double track that permits rapid evaluation much like there is 

currently is for single track.  Finally, railroads are searching for new and improved tools to 

facilitate more rapid, accurate and integrated analysis of line and terminal capacity. 
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CHAPTER 4: IMPACT OF OPERATIONS ON RAILROAD CAPACITY 
 

4.1 Introduction 

Railroad operations encompass all aspects of the movement of passengers and goods over the rail 

infrastructure between many origin and destination pairs.  This includes how railroads create, 

operate and dispatch trains, and is influenced by a complex interaction of traffic, infrastructure, 

and geographical characteristics.  Efficient railroad operation may require intensive planning and 

analysis.  Decisions to improve one aspect may have unintended consequences on other aspects 

of railroad operations.  Operations affect the use of the available rail network capacity and 

inefficient operations can result in lost capacity.  Consequently, in order to more effectively use 

the available resources, a railroad must understand how their operations influence capacity.    

 

4.2 Operational Factors That Influence Capacity 

Railroad operating factors that influence capacity can be separated into two broad groups: train 

characteristics, and scheduling and dispatching.  The key train characteristics include the length, 

tonnage and power and are determined when a train is made up in a yard.  Scheduling and 

dispatching determine when and how trains are moved from origin to destination.  Scheduling is 

the planning of traffic before leaving the terminal, while dispatching is the control of the trains 

while in transit.  The two groups are closely linked, as train speed is influenced by the power of 

the train, and train length affects which sidings the dispatcher can direct a train into during meets 

and passes.  In the following sections I will discuss each of these operational factors and their 

effect on railroad capacity.  
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4.2.1 Train Characteristics 

Train length affects the required number and handling of trains. Longer train lengths 

reduce the number of trains required to move the same amount of cargo.  Fewer, longer 

trains free up additional train slots for new traffic.   However, longer train lengths cause 

longer train braking distances, resulting in longer blocks and slower speeds.  Train length 

is often limited by yard constraints or the length of sidings on a route.  Operating longer 

trains may also result in longer intervals between trains, with the consequent potential to 

reduce service quality.  

 

Train weight, much like train length, affects the required number and handling of trains.  

Heavier railcars reduce the required number of trains, but increase the distance it takes 

for a train to stop.  Depending on the traffic control system, this may require increased 

train spacing. 

 

Train power affects the ability of a train to accelerate and reach its desired operating 

speed.  A train with a higher power-to-ton ratio or tons-per-equivalent-axle can accelerate 

more rapidly from a stop and reach a higher maximum speed.  Additional power can 

increase speeds, reduce time lost when a train stops due to a conflict and reduce 

additional delays to following trains if they must slow to wait for a train to accelerate.   

 



 

 27

4.2.2 Dispatching and scheduling parameters 

Train mix indicates the degree of heterogeneity in the characteristics of trains operating 

on a route.  When there are multiple train types with different characteristics operating on 

a route, capacity is reduced compared to a route with homogeneous traffic (UIC 2004).    

 

Train priorities are a non-physical characteristic assigned to each train by the dispatcher 

or timetable.  Generally, when two trains meet, the dispatcher will direct the lower 

priority train to enter the siding, while the higher priority train remains on the main line 

and proceeds with little or no delay.  This prioritization sometimes causes a train to enter 

a siding earlier than it otherwise would have with no priorities, increasing travel times 

and reducing capacity (Krueger 1999, Abril et. al. 2008). 

 

Traffic patterns include the headway between trains and how trains are distributed 

throughout the day.  Shorter headways allow more trains but can increase the propagation 

of delays because the delay of one train is more likely to affect following trains (Carey & 

Kwiecinski 1994).  If trains can be scheduled evenly throughout the day conflicts between 

trains and the propagation of delays will be less than if the trains are scheduled in dense 

groups. 

 

Stability is the ability of a network to recover from disruptions.  A route may be able to 

operate with short scheduled headways, but if so, it is less able to recover from 

unexpected delays.  Excess capacity results in more stable operations.   
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Train speed is the maximum speed at which a train is permitted to operate.  Train speeds 

can affect traffic either positively or negatively.  If all the traffic can travel at a uniformly 

higher speed, the throughput of a route will increase.  However if the speed of some of 

trains increases relative to others, the resultant increase in heterogeneity may potentially 

reduce capacity.  Train speed is influenced by the power-to-ton ratio of the trains, the 

geography and infrastructure of the route, and rolling stock and/or locomotive specific 

characteristics   

 

4.3 Literature Review 

Hallowell and Harker (1998) identify two scheduling strategies that railroads can use: master 

scheduling and real-time scheduling.  Master scheduling is commonly used on European 

railroads.  This involves developing a detailed timetable for scheduled trains and slots for 

unscheduled trains, and then operating with strict adherence to these schedules. With real-time 

scheduling, railroads use schedules more as guidelines in making decisions as to how trains 

should operate.  Although  North American railroads are becoming more scheduled, most traffic, 

other than passenger trains, does not conform to a precise schedule.  Consequently in order to 

improve operations in North America research should focus on improved dispatching efficiency.    

A key factor affecting railroad dispatching and operations in North America is 

heterogeneity in train characteristics (UIC 2004).  The impact of the higher speeds and priorities 

of passenger traffic are well documented (AREA 1921, Mostafa 1951, Harrod, 2009), but there 

has been relatively little research on heterogeneity between freight train types.  Most of the 

research on railroad operations comes from Europe and is focused on the impact of different 

passenger train speeds and classes (local, express, commuter, etc.).  Several papers offer insight 
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into the impact of train type heterogeneity, and propose changes to reduce its impact.  Galaverna 

and Sciutto (1999) developed a mathematical model to assess the relationship between capacity 

and traffic composition using running times.  Similarly, Huisman and Boucherie (2001) 

developed a model to estimate running times of trains with heterogeneous traffic.  The latter 

group focused their attention on delays due to differences in speed and showed that as the 

number of slow trains operating on the line increases, the performance of the faster trains 

decreases.  Vromans et. al. (2006) used simulation to study heterogeneous passenger services and 

developed measures of heterogeneity.  By giving local and long distance trains the same number 

of station stops they were able to homogenize the train schedule and improve operations.  Abril 

et. al. (2008) used simulation to investigate different factors influencing capacity on Spanish rail 

lines.  One of the factors they considered was trains operating at two speeds: “normal” and 50% 

of normal on single- and double-track lines.  Their results showed that on single-track lines, 

capacity is more affected by the average train speed rather than the heterogeneity of train speeds.   

 European railroad operations are different from those used in North America.  European 

traffic is highly scheduled and composed of higher speed trains that accelerate faster and have 

shorter braking distances than North American freight trains.  Consequently, due to the different 

operating procedures and train characteristics, the particular factors and the magnitude of their 

impact on train type heterogeneity will be different.  Bronzini and Clarke (1985) investigated 

North American operations using simulation to develop delay-volume curves for traffic with 

varying amounts of intermodal and unit trains on a hypothetical single-track line.  They found 

that heterogeneity had little effect; delay was more affected by the number of slower unit trains 

and not heterogeneity.  Harrod (2009) modeled traffic using mathematical integer programming.  

He considered the different impacts of faster versus slower non-conforming trains and found that 
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the slower the non-conforming train, the greater the impact on the network.  Krueger (1999) used 

simulation to develop a parametric model that calculated the delay-volume curve for single track 

routes.  The model accounted for heterogeneity by using parameters for average speed, speed 

ratio and priority.   

 When considering railroad operations the concept of train delay is one of the primary 

methods to quantify the efficiency and stability of operations.  Mattsson (2007) provides a good 

overview of the relationship between train delay and railroad capacity and examines multiple 

methods of analysis.  Many other papers on delay develop models to predict train delay in order 

to provide a tool for the operator to estimate the impact of different traffic and schedules.  

Gorman (2009), on the other hand, used actual traffic data from the BNSF Railway in an attempt 

to statistically estimate delay for specific routes.  His model showed that the most useful 

measures for predicting congestion delay are meets, passes and overtakes.  Gorman’s work 

provides a good tool for understanding the key factors that contribute to train delay in North 

America.   

 

4.4 Use of Delay to Measure Railroad Operations 

The most frequently used metric for analyzing railroad operations is train delay.  As discussed in 

Chapter 2 train delay is the additional travel time resulting from various events en route.  Delay 

is not a direct measure of capacity but rather a measure of the level of service.  Delay has direct 

costs to the railroads due to penalties from shippers but also results in car and locomotive 

ownership costs, fuel costs, crew costs and lost opportunity costs due to longer cycle times 

(Schafer and Barkan 2008, Lai and Barkan 2009).   
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Trains can be delayed for a number of reasons.  In general these delay types can be 

categorized as either scheduled or unscheduled delays.  Scheduled delay is the delay 

incorporated into the timetable as buffer time to allow for conflicts with other traffic.  These 

delays are related to the volume of traffic on a route.  With more traffic, the number of meets and 

passes increases, and headways are reduced, increasing the probability that a faster train will be 

delayed by a slower preceding train.  It is generally agreed that delays increase exponentially 

with train volume (Krueger 1999, Gibson et. al. 2002, Mattsson 2007), with the specific 

relationship being dependent on the infrastructure and train mix (Bronzini and Clarke 1985, 

Krueger 1999).   

 Unlike scheduled delays, unscheduled delays are random and independent and vary from 

train to train (Mattsson 2007).  For this reason, they are a leading factor in unreliability and 

instability of a network.  Unscheduled delays can be caused by: mechanical failures, 

malfunctioning infrastructure, weather conditions, excessive boarding times of passengers, 

accidents at road-railroad crossings and so on (Carey & Kwiecinski 1999, Vromans et. al. 2006).  

Large unscheduled delays can cause crew shortages and disrupt operations on the entire network.  

While unscheduled delays have a low probability they can cause substantial amounts of delay.  

Consequently, adjustments to a train’s schedule to account for potential unscheduled delays are 

difficult.   

 Unscheduled delays to one train, sometimes referred to as primary or exogenous delay, 

can lead to secondary or “knock-on” delays to other trains.  Secondary delays are a result of the 

shared usage of infrastructure, rolling stock and crews (Carey & Kwiecinski 1999, Vromans et. 

al. 2006).  Delay of one train may cause a following train to stop or reduce its speed and may 

potentially affect subsequent trains as well.  The amount of secondary delay depends not only on 
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the frequency and duration of primary delays, but also on the amount of available capacity.  As a 

route nears its theoretical capacity the probability that primary delays will lead to secondary 

delays increases, while the ability to recover from these delays decreases (Mattsson 2007, 

Congressional Research Service 2007, Weatherford et. al. 2008). 

The relationship between delay and capacity is not simple.  The maximum capacity for a 

route in terms of volume is dependent on operational decisions by the railroad.  Each railroad 

determines the maximum allowable delay based on the traffic mix, route geography and service 

requirements.  Different types of traffic have different requirements; for instance, due to 

competition from trucks intermodal traffic requires higher velocities and fewer delays, than 

shipments of coal that are less time sensitive.  If a railroad requires a more reliable schedule with 

fewer delays, the capacity utilization on a route will be less than if a railroad is willing to accept 

higher delays (Figure 4.1a).   Thus surplus track capacity serves to minimize delay (AREA 1931).  

Additionally, different traffic patterns will result in different delay-volume relationships; 

therefore the maximum volume will be different at the same amount of acceptable delay  

(Figure 4.1b).  
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There are two generally accepted definitions of delay.  One definition for delay is the 

difference between the minimum, or unopposed, run time and the actual run time required to 

traverse the route.  This includes both scheduled and unscheduled delays.  Delays using this 

definition are directly related to the run time or average speed of the traffic.  The other definition 

of delay only calculates the unscheduled delays.  This is calculated as the difference between the 

scheduled and actual run time. Delays using this definition are directly related to the reliability or 

on-time performance of the traffic.     

Delay is often used as the output in simulations and can provide a basis for decisions on 

infrastructure projects or operational changes (White 2006).  Each railroad has calculated the 

costs of train delay to their operations.  Using this value they are able to calculate the economic 

value of a project or operational change.    

 Although delay is a useful and widely used metric, it is not without its limitations.  Delay, 

volume and capacity are not always related (White 2006).  Delay can change independently of 

capacity depending on the train speeds and the arrangement of the sidings.  Additionally, it is 

possible for increased traffic to cause increased delays without a negative effect on existing 

traffic.  For example, assume that an increase in train speeds reduces travel time by twenty 

minutes but new traffic is added that increases delay by ten minutes.   The result is an increase in 

volume and a ten minute reduction in total travel time, but, this improvement is not reflected in 

the delay measurement (White 2006).   
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CHAPTER 5: IMPACT OF HETEROGENEITY ON DELAY ON A  
SINGLE-TRACK LINE 

 

5.1 Introduction 

Efficient use of existing railroad infrastructure and effective planning for new infrastructure or 

other capacity enhancing systems requires an understanding of how operations affect capacity.  

A key factor in railroad operations is the interaction of trains with different operating 

characteristics.  In North America, intermodal, manifest, unit and local trains may all share 

trackage.  Some lines also have intercity passenger trains and in metropolitan regions, commuter 

trains.  Each of these train types can have considerably different characteristics and this 

heterogeneity can have a substantial effect on rail line capacity (Pachl 2002, UIC 2004, Abril et. 

al. 2007).   

 With homogenous traffic, delays on a single track line are mostly due to meets.  With 

heterogeneous traffic, delay is also caused by conflicts that occur as a result of differences in 

train characteristics, some of which increase frequency and duration of meets and passes.  

Additional situations causing delays with heterogeneous traffic include:  

• Train delayed by a slower preceding train 

• Train delayed by a preceding train with slower acceleration 

• Trains experience longer meets waiting for higher priority trains 

• Train delayed waiting for another train to pass 

• Trains experience more conflicts due to lower average speeds resulting from other delays 

due to heterogeneous traffic 

The magnitude of these delays is dependent on the specific train mix, volume and amount of 

heterogeneity. 
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Bronzini and Clarke (1985) used simulation to develop delay-volume curves for traffic 

with varying amounts of intermodal and unit trains on a theoretical single-track line.  To further 

understand and develop their work, simulation software was used to conduct a quantitative 

analysis of the impact of heterogeneity among these two train types, which are among the most 

frequently operated trains on the North American railroad network.  I evaluated the effects of 

different volumes and percentages of each train type on a signalized, single-track route.  Delay 

was used as the principal metric to assess capacity impacts under different scenarios.  The 

objective of this research is to provide insight into the impact of train type heterogeneity and 

understand the key characteristics of traffic heterogeneity that have the greatest impact on delay. 

 

5.2 Methodology 

5.2.1 Capacity Metric 

Delay was used as the principal metric for capacity comparisons in this study.  I define delay as 

the difference between the minimum, or unopposed, run time and the actual run time required to 

traverse the route.  This includes the time spent stopped for meets and passes, along with the 

time for braking and accelerating.  The total delay was divided by train miles for a normalized 

value of delay per 100 train miles. 

 

5.2.2 Dispatch Simulation Software 

I used Rail Traffic Controller (RTC) from Berkeley Simulation Software for my analyses.  RTC 

is a sophisticated software program designed to realistically simulate both freight and passenger 

operations over a railroad network (Parsons 2002, Washington Group 2007).  The software uses 

infrastructure and traffic inputs specified by the user to resolve multi-train conflicts in a manner 
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intended to mimic decisions of a railroad dispatcher.  I used RTC because its flexibility permits 

rapid evaluation of different operating scenarios and because of its widespread acceptance and 

use by the North American railroad industry. 

 

5.2.3 Representative Rail Line 

Specific characteristics of individual rail lines are unique and route characteristics influence 

railroad operations.  For my research I developed a hypothetical rail line intended to represent 

the characteristics of a typical midwestern North America, single-track mainline subdivision 

(Table 5.1). 

TABLE 5.1: Route Used in Analysis 
 

Single track with 10 mile siding spacing
262 miles long

10 miles between siding centers
8,700 ft signaled sidings with #24 powered turnouts

2.75 mile signal spacing
2-block, 3-aspect signaling

0% grade and curvature  
 
 

Although the attributes are somewhat idealized, the purpose is to provide a consistent basis for 

relative comparison of different scenarios of interest in this research under a reasonably realistic 

set of operating conditions.  However, there is no intent to imply that the results presented here 

represent absolute predictive measurements for a particular set of conditions. 

  

5.2.4 Train Types Used in Simulations 

Combinations of intermodal and bulk trains were used to investigate the impact of heterogeneity.   

Bulk goods transported by rail include coal, ore, grain and stone typically in long, heavy, unit 

trains with low horsepower-to-trailing ton (HPTT) ratios (e.g. <1.0).  Intermodal trains transport 
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trailers and containers carrying consumer goods and other high priority shipments to and from 

domestic and international markets.  Since these shipments require fast, reliable service, 

intermodal trains travel at higher speeds and have higher horsepower to trailing ton ratios (e.g. 

>3.0).  Using commodity based railroad transportation statistics it can be estimated that bulk and 

intermodal traffic account for roughly 60% of the US Class 1 railroad’s revenue, 75% of the 

tonnage and 80% of the carloads (AAR 2008a).  

While each individual train is different, the attributes for each train type were selected to 

match their average characteristics (Table 5.2).  The numbers of cars and units were obtained 

from the Cambridge Systematics National Rail Freight Infrastructure Capacity and Investment 

Study (2007) conducted for the Association of American Railroads (AAR).  Typically well cars 

with 5 articulated units are used to transport international containers and spine cars with 3 

articulated units are used to transport domestic trailers.  The number of cars was determined 

based on the relative amounts of domestic and international intermodal traffic.  Tonnages and 

lengths were based on averages for each car type.  The power-to-ton ratios were based on 

experience and information from the TRB Workshop on Railroad Capacity and Corridor 

Planning (TRB 2002). 

Train priority is a non-physical characteristic assigned to it by the dispatcher.  When two 

trains meet, priority is one factor the dispatcher will take into consideration when determining 

how to resolve the conflict.  Dispatchers will generally try to minimize the total cost of delay 

(Washington Group 2007).  This means that the trains carrying lower value or less time-sensitive 

freight, will have lower priority and enter the siding, while the higher priority train holds the 

main and proceeds with little or no delay.  In this study, intermodal trains were assigned the 

higher priority, as is typical in most railroad operations. 
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  While the chosen attributes approximate actual characteristics, at the most basic level 

the “intermodal” trains represent freight trains with the highest maximum speeds, power-to-ton 

ratios and dispatching priorities, while the “bulk” trains represent those with the lowest speeds, 

power to ton ratios and dispatching priorities.  Although I refer to them using the terms 

“intermodal” and “bulk” for convenience, what is actually of significance in the analyses are 

their specific operating characteristics, not the particular type of consist.   

 
TABLE 5.2: Train Composition Characteristics Used in Simulations 

 
Intermodal Bulk

16 Three-pack spine cars 115 loaded hopper cars
9 Five-pack well cars

5,659 ft 6,325 ft
5,900 tons 16,445 tons
3.64 HPTT 0.78 HPTT

Five 4,300 HP Locomotives Three 4,300 HP Locomotives
Maximum Speed: 70 mph Maximum Speed: 50 mph  

 
 
5.2.4.1 Train Braking and Acceleration Characteristics 

When considering the impact of heterogeneity it is important to consider how the operating 

characteristics of the train affect its operation.  Tonnage, power and length of a train have a 

direct impact on its ability to accelerate and brake, and consequently its effect on capacity.  In 

typical operation a train will slow to a stop gradually using a mixture of air and dynamic brakes.  

The braking distances in RTC were calibrated with the assistance from a class 1 railroad to 

approximately match the braking distances of each type of train making a typical brake 

application.   

To better understand the differences in operating characteristics of the two trains in the 

analysis their braking and acceleration distances were compared (Figure 5.1).  Intermodal trains 
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brake at a faster rate, but due to their higher initial speeds, their braking distance is only about 

2,000 feet less than the bulk train.  On the other hand, there are large differences in the 

acceleration distances for the two train types.  Intermodal trains have a much higher horsepower-

to-trailing-ton ratio and therefore are able to accelerate to maximum speed more quickly. 

 
5.2.5 Simulations 

A series of simulations were developed with different traffic volumes and levels of 

heterogeneity.   Eleven different volumes were tested from 8 to 48 trains per day simulated in 

increments of four.  Each volume is based on an equal temporal distribution of trains in each 

direction over a 24 hour period.  This was not intended to represent practical, sustained 

operation, which includes windows for inspection and maintenance, but rather to provide a basis 

for relative comparison of the effect of various factors of interest.  The results are therefore more 

characteristic of the spacing or headway between trains than the actual volume.  Seven different 

levels of heterogeneity were tested based on the percentage of the different train type.  The tests 

were done with 12.5%, 25%, 50% and 100% of each train type.  The traffic was composed of a 

single train of the lower percentage type, followed by the corresponding number of trains for the 

other train type.  For example 12.5% bulk trains means that every bulk train was followed by 

seven intermodal trains.  The ratios and traffic pattern were the same for trains traveling in both 

directions.  For each configuration a series of twenty-five simulations were performed with the 

departure time of each train randomized with a uniform distribution over a 30-minute interval, up 

to 15 minutes before or after the scheduled departure time for that train. 
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FIGURE 5.1: Bulk and Intermodal Train (a) Braking and (b) Acceleration Curves 
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5.3 Delay-Volume-Heterogeneity Relationship 

To better understand the relationship between delay, volume and heterogeneity, simulation 

results were combined to create a surface over the three axes (Figure 5.2).  The delay-volume-

heterogeneity surface reveals two trends: delay increases with increasing volumes and is 

dependent on the traffic mix. To further investigate these trends, each axis was analyzed 

individually (Figure 5.3).  This permits the investigation of the delay-volume relationship, delay-

heterogeneity relationship, and volume-heterogeneity relationship.  
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FIGURE 5.2: Delay-Volume-Heterogeneity Relationship for Intermodal and Bulk Trains 
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FIGURE 5.3: The (a) Delay-Heterogeneity, (b) Delay-Volume and (c) Volume-Heterogeneity 
Relationships for Intermodal and Bulk Trains 
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5.3.1 Delay-Heterogeneity Relationship 

The delay-heterogeneity graph shows the effect of heterogeneity on delay at various volumes 

(Figure 5.3a).  Delay is greatest when the traffic is heterogeneous.  However, the maximum 

average delay is not when heterogeneity is largest (50%) but when the traffic is 75% bulk trains 

and 25% intermodal.  The traffic composition resulting in the greatest delay depends on the train 

characteristics.  In this example bulk trains experience greater delay due to their slower 

maximum operating speed.  The combined effect of the larger number of these slower 

performing trains and heterogeneity is greatest when the traffic is 75% bulk trains.  

 

5.3.2 Delay-Volume Relationship 

The delay-volume graph shows the effect of volume on delay at various levels of heterogeneity 

(Figure 5.3b).  It is evident that the effect of additional trains on delay is non linear.  Delay 

increases at an increasing rate with higher volumes.  At higher volumes there are additional 

meets and shorter headways resulting in greater delays.  The delay-volume relationship is 

different for various traffic compositions.  Higher levels of heterogeneity cause greater delays 

and the delays increase more rapidly than with homogenous traffic.   

 

5.3.3 Volume-Heterogeneity Relationship 

Another aspect of the delay-volume-heterogeneity surface that should be considered is the 

relationship between volume, heterogeneity and various levels of delay (Figure 5.3c).  Delay is 

often used by the railroads to determine capacity.  Capacity planners determine the acceptable 

amount of delay to meet their level-of-service requirements.  In this example, if the maximum 

allowable delay is 60 minutes per 100 train miles and the traffic consists of only intermodal 



 

 44

trains, the maximum capacity is 100 trains per day.  If the traffic changes to an even mix of 

intermodal and bulk trains, capacity drops to 42 trains, 21 intermodal and 21 bulk trains.  

Therefore, by adding 21 bulk trains the ability to run 79 intermodal trains is lost.  This effect is 

greatest when a few bulk trains are added to a route that is primarily intermodal traffic. 

 

5.3.4 Delays due to Heterogeneity for Each Train Type 

Train type heterogeneity increases average delay but the delays are different for each train type.  

At 48 trains per day the delays to each train type were considered individually (Figure 5.4).  In 

every traffic mix the bulk trains have higher delays than the intermodal traffic.  The intermodal 

train delay is relatively constant over all traffic mixes with the greatest delays at the highest 

levels of heterogeneity.  Bulk trains have much higher delays but the delays decline as the 

percentage of bulk trains increases.  When the percentage of intermodal trains is lower it 

becomes less likely for a bulk train to meet a higher priority intermodal train.  When this occurs, 

it often results in a meet that causes greater delays than would have occurred if a train of equal 

priority had been encountered.  Much of the increased delay due to heterogeneity is the result of 

additional delays to the bulk trains, not an increase in the delays to both train types.  The 

difference in delay between the intermodal and bulk train traffic decreases at lower volumes and 

as a result, delays due to heterogeneity are also lower.  
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FIGURE 5.4: Delay Separated by Train Type at 48 Trains per Day  
 
 
5.4 Delay-Volume-Heterogeneity Relationship for Delays due to Heterogeneity 

When traffic is homogenous the average delays for intermodal and bulk trains are different.  

Therefore, as the traffic mix changes, some of the delay is due to more trains experiencing a 

differing delay due to their characteristics, rather than the result of heterogeneity alone.  In order 

to account for this the hypothetical delay that would occur for the same traffic mix in the absence 

of any heterogeneity-caused sources was subtracted from the delay for each particular mixed-

traffic scenario (Figure 5.5).   
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FIGURE 5.5: Delay-Volume-Heterogeneity Relationship for Intermodal and Bulk Trains with 
Delay due to Heterogeneity Isolated 

 

It is clear that heterogeneity causes only some of the total delay a train experiences.  The 

percentage of the total delay caused by heterogeneity increases with greater traffic volume and 

levels of heterogeneity.  However, even at 48 trains per day, when the traffic is an even mix of 

intermodal and bulk trains, heterogeneity accounts for only 40% of the total delay.  With smaller 

volumes and less heterogeneity this percentage is even lower.   

 As with total delay, the delay-heterogeneity, delay-volume relationships and volume-

heterogeneity relationships are considered (Figure 5.6).  The trends are different than total delay 

and provide further useful insights into the impact of heterogeneity.  Since the delays are only 

due to heterogeneity the volume-heterogeneity relationship does not offer any additional insight 

into the effects of heterogeneity.   
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FIGURE 5.6: The (a) Delay-Heterogeneity and (b) Delay-Volume Relationships for Intermodal 
and Bulk Trains with Delays due to Heterogeneity Isolated  
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5.4.1 Delay-Heterogeneity Relationship 

Unlike total delay, the delay due to heterogeneity is when heterogeneity is greatest (Figure 5.6a).  

While the maximum total delay occurs at 75% bulk (25% intermodal), the maximum delay due 

to heterogeneity is when there is an even mix of intermodal and bulk trains.  When the volumes 

are low there is almost no impact of heterogeneity on delay, with the delays due to heterogeneity 

increasing with greater volumes.  

 

5.4.2 Delay-Volume Relationship 

The delays due to heterogeneity have a non-linear relationship (Figure 5.6b).  There is little 

effect of heterogeneity until about 15 trains per day.  At low traffic levels the headways between 

trains are great enough that passes are limited and excess siding capacity allows for efficient 

meets and passes.  However as traffic volume increases beyond this, meets become more 

frequent and headways shorter, thereby magnifying the differing characteristics and creating 

additional conflicts. 

 

5.5 Analysis of Factors that Cause Delays Due to Heterogeneity 

Although the effect of volume and heterogeneity on delay is clear, the specific factors causing 

the increased delays due to heterogeneity are not.  Additional simulations were conducted to 

investigate the sensitivity of delay to speed, braking performance, acceleration performance and 

dispatching priority.  While not possible in actual operations use of simulation enables each 

factor to be isolated to determine its effect on delay and capacity.  Two scenarios were studied 

for each factor: in the first scenario the selected factor was the only source of heterogeneity and 

the delays due to this factor were considered.  The second scenario is the opposite condition; the 
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factor was eliminated from the base scenario and the reduction in delay due to this action was 

evaluated. 

 

5.5.1 Impact of Heterogeneity in Speed 

Trains travel at different speeds depending on their service requirements.  Higher valued 

commodities typically travel in higher speed trains than less time-sensitive commodities.  The 

resultant heterogeneity in train speed can create additional conflicts and delays.  With 

heterogeneous train speeds, a faster train may overtake a slower one.  Before there is an 

opportunity to pass, the faster train may have to slow to the speed of the preceding train.  Once a 

siding is reached the train being overtaken will have to reduce speed to enter the siding and stop 

thereby allowing the faster train to pass.  In this manner heterogeneous train speeds can cause 

extra delay for both the faster and slower trains.   

 In the first scenario I considered intermodal trains traveling at 50 and 70 mph at four 

different traffic levels: 12, 24, 36, and 48 trains per day (Figure 5.7a).  At the two lower volumes 

the delay due to the heterogeneity in speed was negligible.  However, at 36 and 48 trains per day 

the speed difference caused delays.  In general, delay due to speed heterogeneity is greatest at the 

highest volumes and levels of heterogeneity.  In typical operations the higher speed trains receive 

a higher dispatching authority, otherwise when a higher speed train overtakes a slower train it 

will not result in a pass, thus increasing delays.  However, in this scenario the priorities of the 

two trains train types were equal and therefore some additional delays are the result of faster 

trains being slowed. 
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FIGURE 5.7: Delays due to Train Speed Heterogeneity (a) and Reduction in Delay from Base 
Scenario when Speeds of Intermodal Trains are Reduced to 50 mph (b) 
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In the second scenario the only change from the base scenario was a reduction in speed of 

the intermodal trains to 50 mph in order to eliminate the speed difference between trains (Figure 

5.7b).  The impact of this change varied, depending on the volume of traffic.  At 12 trains per 

day the change in delay was minimal.  When the volume increased to 24 trains per day delays 

were reduced at all levels of heterogeneity.  At 36 trains per day the delays were reduced when 

the majority of the traffic was bulk, and increased when the traffic was a mostly intermodal.  At 

the highest volume, 48 trains per day, delays increased with all levels of heterogeneity.   

    At the lowest volumes there may not be any passes due to the large headways between 

trains; consequently, reducing speed to eliminate meets has no effect.  When volumes increase 

delay is reduced due to the elimination of speed difference conflicts.  However, slower train 

speeds increase the time a train occupies the track, resulting in more meets and the associated 

delay.  At the highest volumes the delay from the increased number of meets outweighs the 

savings from the elimination of passes.  Additionally, the reduction in speed from 70 to 50 mph 

for the intermodal trains increases run times by 35.34 minutes per 100 train miles.  Therefore 

while delay is reduced at 24 trains per day, the run time actually increases due to the slower 

speed. 

 

5.5.2 Impact of Heterogeneity in Braking Performance 

Trains with different lengths and tonnages require different distances to stop.  Braking distance 

affects both signal spacing and delay during a meet.  A train with poorer braking performance 

will take longer to reduce speed and thus require more time to resolve a conflict.  Longer meet 

delay will increase run times and can result in additional conflicts due to longer track 

occupancies.   
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The first scenario considers bulk trains with normal braking performance, and with the 

braking performance of intermodal trains (Figure 5.8a).  Braking performance affects the delays 

experienced by a train, however conflicts between trains with different braking performances did 

not result in additional delays.  The delay that occurs while a train is braking is relatively minor 

compared to the time lost while a train is waiting in a siding or the time it takes the train to 

accelerate back to top speed.  Since trains were not delayed by preceding trains with poorer 

braking performance; heterogeneity in braking performance has little impact.  

 In the second scenario heterogeneity in braking performance was eliminated by 

improving the braking performance of the bulk trains to match that of the intermodal train 

(Figure 5.8b).  The changes resulted in a reduction in delay corresponding to the percentage of 

bulk trains.  As the percentage of bulk trains increased, so did the reduction in delay.  The 

reduction also increased with higher volumes since there are a greater number of stops for meets 

and passes.  However, the changes did little to reduce heterogeneity caused delays.  
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FIGURE 5.8: Delays due to (a) Braking Performance Heterogeneity and (b) Reduction in Delay 
from Base Scenario when Braking Performance of Bulk trains is Improved to Match Intermodal 
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In this research, only the impact of braking performance on delay with fixed signal 

blocks was considered.  In actuality, braking performance affects signal spacing and allowable 

train speeds.  Another implication of heterogeneity in train braking is the inability to optimize the 

signal system for a specific train type.  Signal spacing is typically set based on the longest, full 

service stopping distance of any train that regularly operates on a line.  If traffic is homogeneous 

signal spacing can be designed for the specific train type thereby enabling shorter headways.  

Alternatively, without a change in signal spacing improved braking performance can allow for 

faster train speeds since it is possible for a faster train to stop in the same distance as an 

unimproved train at a slower speed.   

 

5.5.3 Impact of Heterogeneity in Acceleration Performance 

Another type of train heterogeneity is acceleration performance.  Acceleration is directly related 

to the HPTT ratio of a train.  A higher power-to-ton ratio allows a train to accelerate faster and 

reach higher top speeds.  There are two ways acceleration performance can influence capacity.  

First, heterogeneity in train acceleration performance can potentially impact capacity if a 

following train is delayed while a train ahead of it accelerates to maximum track speed.  As 

traffic volume increases, the number of meets and passes increases while headways are reduced, 

increasing the potential for this type of conflict.  Secondly, the acceleration performance of a 

train affects its delay because it increases the time it takes for a train to reach maximum track 

speed after a conflict.   

 The first scenario considers traffic composed of bulk trains with normal acceleration 

performance and the acceleration performance matching intermodal trains (Figure 5.9a).  The 

delay due to heterogeneity in acceleration performance was dependent on traffic mix.  Delays 
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were minimal when most trains had superior acceleration performance, but increased with the 

percentage of trains having inferior acceleration performance.  When the majority of trains have 

poor acceleration performance, it is more likely for a trailing train to be slowed by a train 

accelerating from a meet, thereby causing additional delay.   

The second scenario removes heterogeneity in acceleration performance from the base 

scenario by improving the acceleration performance of bulk trains to match that of intermodal 

trains (Figure 5.9b).  This change revealed that acceleration performance is a significant factor 

causing delays to bulk trains and increased delays due to heterogeneity.  The reduction in delay 

increased with greater traffic volumes and with an increasing percentage of bulk trains, however 

the greatest reduction is not with homogenous bulk train traffic but when 75% of the trains are 

bulk.  Since the reduction in delay is when the traffic is heterogeneous, improved acceleration 

performance not only reduces delay to each bulk train but it reduces train conflicts that result in 

delay. 

In typical operations lower priority trains often have poorer operating characteristics.  

This can increase congestion on a route because these trains will make more frequent stops to 

resolve conflicts, increasing the possibility of following trains being delayed.  Without priorities, 

the trains with poorer operating characteristics would make less frequent stops reducing the 

possibility of these types of conflicts.   Therefore, acceleration performance alone does not 

significantly influence delays but in combination with priorities it can cause the additional delays 

that result from heterogeneous train traffic.  
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FIGURE 5.9: Delays due to (a) Acceleration Performance Heterogeneity and (b) Reduction in 
Delay from Base Scenario when Acceleration Performance of Bulk trains is Improved to Match 
Intermodal 
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5.5.4 Impact of Heterogeneity in Priority 

The last characteristic considered was the dispatching priority assigned to trains.  Intermodal 

trains with their higher value merchandise and greater customer demand for fast, reliable service 

are typically given the highest priority by railroad dispatchers.  Bulk trains are typically less time 

dependent and therefore given lower priority on the network (Congressional Research Service 

2007).  Without differential priorities during a conflict, the first train to arrive at a siding will 

enter it and wait for the other train.  With priorities, the lower priority train will often have to 

stop at an earlier siding and wait so as to prevent delays to the higher priority train.  

Consequently priority can increase both the number and duration of meets.    

The first scenario considers traffic composed of intermodal trains with high and low 

priorities (Figure 5.10a).  When priority is considered alone the increased delays are due to more 

frequent and longer delays of lower priority trains during meets.  As would be expected, these 

delays are greatest at the highest volumes and levels of heterogeneity.  The second scenario 

considers the base scenario with all the traffic having the same priority (Figure 5.10b).  With 

homogenous traffic all the trains are the same and have equal priority; consequently removing 

heterogeneity in priority did not change the delays in these scenarios.  However, with 

heterogeneous traffic, removing priorities reduced delay with the greatest reduction at the highest 

levels of heterogeneity and traffic volumes. 
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FIGURE 5.10: Delays due to Heterogeneity with only Heterogeneity in Priority (a) and 
Reduction in Delay from Base Scenario when Priorities are Equalized (b) 
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 The magnitude of the delay caused by heterogeneity in train priorities is dependent on the 

trains characteristics.  In typical operations the trains with the lowest priority often have the 

poorest operating characteristics.  Ironically this means that these trains with the slowest 

acceleration experience the most additional stops due to meets and passes.  While the other 

factors considered contribute to delays with and without heterogeneous traffic, priority only 

reduces delays due to heterogeneity.   

 

5.5.4.1 Impact of Heterogeneity in Priority by Train Type 

To further investigate the effect of priority on train type heterogeneity, the delay to each type of 

train was individually studied (Figure 5.11).  When the priorities are equal the delays to each 

train type are similar and the delays increase with a greater percentage of bulk trains.  Unlike 

when intermodal is given a higher priority (Figure 5.4), in this case the intermodal trains have 

more delay than bulk trains.  Since it is less likely that a faster train will pass a slower train when 

there are no priorities, there may not be enough time for the train to reach its top speed before 

slowing for another meet.  With equal priorities, the average delays are less than when the traffic 

has differential priorities but the reduction comes as a result of increased delays for the higher 

priority intermodal traffic 
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FIGURE 5.11: Delay by Train Type when Priorities are Equal at 48 Trains per Day.  
 
 

5.6 Discussion 

Traffic volume, heterogeneity, and delay are all closely related.  Routes that have the highest 

volumes and are facing the greatest capacity constraints, experience the largest delays due to 

heterogeneity. The two principal train characteristics that reduce capacity are heterogeneity in 

train priority and acceleration performance.  Neither causes substantial delays due to 

heterogeneity alone, but in combination they result in additional stops for the lower priority, 

which are least able to accelerate back to top speed.  Other sources of heterogeneity, braking and 

speed difference, had little effect on delay.  On single track, reducing train speed to homogenize 

traffic increases the occupancy time of the track between sidings thereby increasing delays and 

reducing capacity.   
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 Although not considered in this study, passenger trains can introduce substantial 

heterogeneity on a line.  They create additional delays because their pertinent characteristics are 

substantially different than the variation among freight trains.  Passenger trains have higher 

maximum speeds, power-to-ton ratios and dispatching priorities, than all other freight trains.  

When passenger trains are added to baseline freight schedules, their impact is greater than if the 

same numbers of freight trains are added.  This additional effect needs to be considered when 

additional passenger trains are proposed for a route.  These trains not only take up train slots that 

could otherwise be used by freight, but they can also create additional delays for existing freight 

traffic. 

Understanding the trends and causes of capacity lost due to heterogeneity among trains is 

important when planning for new traffic.  Train type can be as important as the number of trains 

when considering the impact on capacity and volume should not be the sole measure of line 

capacity.  This research has shown that even at a constant volume, traffic can experience widely 

varying delays, depending on the mix of trains.  A route may be operating at capacity at a variety 

of different volumes depending on the traffic mix.  Additionally, depending on the current traffic 

mix, additional traffic will have a different impact on capacity.  For example, when the majority 

of traffic is intermodal the addition of a few bulk trains will have a much greater effect than 

adding a few intermodal trains to a network operating mostly bulk trains.   

 

5.7 Conclusions 

There is increasing demand for freight rail transport in the North America and considerable 

capital is being invested in new infrastructure.  Investing this capital efficiently requires 

understanding the different operational characteristics of the intended traffic.  I performed 
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analyses using dispatch simulation software to determine the impacts of heterogeneity in freight 

traffic.  This assessment reveals the relationship between volume, heterogeneity and delay.  

Further work identified the key factors that contribute to the increased delays due to 

heterogeneity.  The train characteristics of speed, acceleration, braking and priority were 

considered and the combination of priority and acceleration performance were found to have the 

greatest effect.   
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CHAPTER 6: ANALYSIS OF SPECIFIC FACTORS CONTRIBUTING TO 
TRAIN DELAY ON A SINGLE TRACK 

 

6.1 Introduction 

Railroads make extensive use of simulation to determine the impact of different operations and 

infrastructure projects on capacity.  Estimates of train delay are one of the primary outputs from 

the simulation analysis used to measure capacity and efficiency.  Reduction in delay is often used 

to measure the potential benefit of a project; however the specific types of conflicts and 

operational factors that cause these delays are not well understood.   

Gorman (2009) created a train run-time model from empirical data of eight BNSF 

subdivisions.  Using these data he statistically calculated the relative amount of delay caused by 

various factors including: meets, passes, headway, secondary effects, priority, and horsepower-

to-ton ratio.  He identified meets, passes, and overtakes as the principal causes of delay.   

Building on the work by Gorman, simulation analyses were conducted and the types of 

delays were categorized in order to understand the magnitude of delay caused by different 

factors.  The results were studied for trends to develop a better quantitative understanding of the 

factors that contribute to train delay.  Such understanding has intrinsic value to the study of rail 

capacity and will improve railroads’ ability to assess different alternatives and conduct more 

effective capacity planning. 

 

6.2 Methodology  

In order to calculate the impact of heterogeneity and the various mechanisms that impact train 

delay, I used the simulation software Rail Traffic Controller (RTC).  RTC was chosen because 

its flexibility permits rapid evaluation of a variety of different scenarios and because of its 
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widespread acceptance and use by the North American railroad industry.  For this analysis delay 

was again defined as the difference between the minimum, or unopposed, run time, and the 

actual run time required to traverse the route.  Using RTC’s Train Performance Calculator (TPC) 

the speed, position, and acceleration data for each train were collected.  These TPC data along 

with the time-distance diagrams were used to identify the conflicts that caused each delay for 

each train traversing the route.  Delay time was then categorized by whether it was accumulated 

while the train was decelerating, traveling at a constant speed below normal, stopped, or 

accelerating.   

 

6.2.1 Representative Rail Line and Train Types  

The same rail line and train types described in Chapter 5 were used for this analysis.  For 

discussion of the characteristics of the rail line and train types refer to sections 5.2.3 and 5.2.4. 

 

6.2.2 Simulations 

Simulations for this study were developed for seven different levels of heterogeneity with a 

constant volume of 40 trains per day.  The trains were evenly distributed in each direction over a 

24-hour period.  The seven different levels of heterogeneity were based on the percentage of the 

different train types.  Tests were conducted with 0%, 12.5%, 25%, 50%, 75%, 87.5% and 100% 

of each train type.  The level of heterogeneity corresponds to the percentage of one train type 

relative to the other.  For instance, 12.5% intermodal trains corresponds to five intermodal trains 

and thirty-five bulk trains.  Train sequence was directly proportional to the percentage of each 

train type so in the example above each intermodal train would be followed by seven bulk trains.  

The ratios and traffic patterns were the same for trains traveling in both directions.  For each 
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configuration a series of five simulations was performed with the exact departure time of each 

train randomized according to a uniform distribution over a 30-minute interval, 15 minutes 

before or after the scheduled time for that train.  In each simulation a sample of sixteen trains 

was analyzed, eight in each direction with the number of trains of each type corresponding to the 

percentage of that train type in the scenario.   

 

6.2.3 Factors of Delay 

The delays were categorized by conflict type and sources.  The conflict types considered were 

meets, passes, and mainline (Table 6.1).  Meets were classified as any delay due to conflicts with 

one or more trains traveling in the opposite direction.  Passes were classified as any delay due to 

conflicts with one or more trains traveling in the same direction, resulting in one train overtaking 

another.  When a conflict involved multiple meets and passes the acceleration and braking delays 

were attributed to the first conflict while the extra dwell time required to accommodate the 

additional conflicts was attributed to each subsequent conflict accordingly.  Mainline conflicts 

were classified as any delay where one train was required to slow down due to a preceding train 

traveling in the same direction that did not result in an overtake. 

For each conflict the specific operational source of delay was also identified.  These 

sources include the delays while a train is braking, accelerating, traveling at constant speed 

slower then normal or stopped (Table 6.1).  By separating the delay by conflict and source, it is 

possible to determine which type of conflict creates the most delay, why a specific delay is 

occurring, and how the delay changes with changes in traffic composition.  
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TABLE 6.1: Categories of Delays 
 

Conflicts Sources
Meets Accelerating
Passes Braking
Line Reduced Speed

Stopped  
 

6.3 Analysis of Causes of Delay 

The delays due to each conflict and source of delay are combined to determine the total delays 

for each traffic mix (Figure 6.1).  As discussed in Chapter 5, delays are greatest with 

heterogeneous traffic.  However, the longest delays do not occur with the greatest heterogeneity, 

but rather when the traffic is a mostly bulk trains.  Additionally, delays are different when traffic 

is homogenous depending on the train type: bulk trains experience greater delays than intermodal 

trains.   

The analysis considers a smaller sample size than used in Chapter 5 and not all delays 

that occurred in the simulations had causes that could be unambiguously assigned to a particular 

source.  However, these delays were few and the difference between the average delays obtained 

in Chapter 5 with 25 simulations and those categorized in this analysis from five simulations is 

less than 5%.   
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FIGURE 6.1: Average Total Delays with Different Traffic Mixes 

 

6.3.1 Delays with Homogenous Traffic 

Different train types have different operating characteristics and this difference in characteristics 

has a direct impact on the magnitude of delay experienced by each.  40 trains per day of 

homogenous bulk train traffic had an average delay of 49.5 minutes per 100 train miles (Figure 

6.1).  Whereas homogenous intermodal traffic at the same volume was only 16.1 minutes per 100 

train miles.  This difference is due to larger delays while each train is braking, accelerating, or 

stopped (Figure 6.2).  The reduced speed delays were minor and the same for each train type.  

The additional delays while braking and acceleration are due to the slower braking and 

acceleration performance of the bulk trains.  The larger delay while stopped is due to both the 

poorer acceleration and braking performance and the slower maximum speeds of the bulk train.  
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Because of the slower speed, travel times between sidings is increased thereby requiring trains to 

be stopped longer waiting to resolve meets. 

0

2

4

6

8

10

12

14

16

18

20

Reduced Speed Braking Acceleration Stopped

Source of Delay

D
el

ay
 (m

in
/1

00
 tr

ai
n 

m
ile

s)

Intermodal Bulk

 
FIGURE 6.2: Delays by Source with Homogenous Traffic 
 

The greater delays for bulk trains are due to the additional time required to accelerate and 

brake and the greater number of conflicts while en route.  Bulk trains averaged 2.97 conflicts per 

100 train miles while intermodal trains averaged 1.74 conflicts per 100 train miles.  The slower 

average speeds of the bulk trains results in longer occupancy of the route and consequently, more 

meets.  Additionally, while all the conflicts with intermodal traffic were simple, one-train meets, 

the conflicts with bulk traffic were more complex.  Several conflicts with homogenous bulk 

traffic were passes or multiple train meets.  These more complex meets increase the time a train 

is stopped in a siding and consequently increase delay.  

 Since the two train types experience, on average, a different number of meets and passes, 

the delays resulting from train stops were normalized for each event (Figure 6.3).  The delays 
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while braking, accelerating and stopping per conflict are larger for bulk trains.  On average it 

takes over 7 minutes longer for a bulk train to resolve a conflict compared to an intermodal train.  

The delays do not directly correspond to the characteristics of the trains (characteristics of each 

train type are discussed in section 5.2.4).  The braking distance of a bulk train is 15% longer than 

an intermodal train, however, delay while braking is 55% greater.  Likewise, intermodal trains 

take 326% longer to reach 30 mph and 476% longer to reach 45 mph, however the bulk train 

delay while accelerating is only 96% greater.  These relationships will vary depending on the 

specific traffic and route characteristics. 
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FIGURE 6.3: Delays by Source per Meet or Pass Conflict with Homogenous Traffic  
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6.3.2 Delays with Heterogeneous Traffic 

6.3.2.1 Conflicts that Cause Delays with Heterogeneous Traffic 

When separated by conflict type the results show that each type of delay changes differently with 

changing traffic (Figure 6.4).  The delays due to passes are greatest at the highest levels of 

heterogeneity, and mainline delays are the same with all levels of heterogeneity.  The delays 

from meets closely follow the trend of the average delays.  Consequently, the increased delay 

due to heterogeneity is primarily from increased meet delays.   

0

10

20

30

40

50

60

70

0:100 12.5:87.5 25:75 50:50 75:25 87.5:12.5 100:0

% of bulk trains : % of intermodal trains

D
el

ay
 (m

in
/1

00
 tr

ai
n 

m
ile

s)

Meet Pass Mainline

 
FIGURE 6.4: Average Delay by Conflicts 
 

 

In addition to the delays, the number and type of conflicts per 100 train miles were 

recorded (Table 6.3).  Nomenclature for the meet and pass types is included in Table 6.2.  The 

results provide interesting information on the complexity of operations as heterogeneity 

increases.  The number of passes increases with increasing heterogeneity, however there is not a 
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clear trend for meets.  The number of meets increases until there are 75% bulk trains, drop when 

the traffic is 87.5% bulk trains, but reach a maximum when the traffic is 100% bulk trains.  

When the traffic is mostly bulk with a few higher priority intermodal trains the number of meets 

is actually less; however, the meets are longer and more complex.  

TABLE 6.2: Nomenclature for Types of Conflicts 
 

M1P0: Meets 1 train
M2P0: Meets 2 trains
M1P1: Meets 1 train and is passed by 1 train
M2P1: Meets 2 trains and is passed by 1 train
M0P1: Passed by 1 train
M3P0: Meets 3 trains
M3P1: Meets 3 trains and is passed by 1 train
M2P2: Meets 2 trains and is passed by 2 trains
M3P2: Meets 3 trains and is passed by 2 trains
M1P2: Meets 1 train and is passed by 2 trains
M4P0: Meets 4 trains
M0P2: Passed by 2 trains

Nomenclature:

 
 

The complexity of the meets increases with increased heterogeneity.  Most of the 

conflicts are a single train meeting a single train, referred to as a simple meet.  However, as 

heterogeneity increases both the number of meets or passes per conflict and delay per conflict 

increase (Table 6.4).  With each additional train involved in a meet, the delay increases 

disproportionally.  A one-train meet results in an average of 16.15 minutes of delay, a two-train 

meet, 36.02 minutes of delay and a three-train meet, 52.42 minutes.   
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TABLE 6.3: Number of Conflicts per 100 Train Miles 
 

Bulk:Intermodal M1P0 M2P0 M1P1 M2P1 M0P1 M3P0 M3P1 M2P2 M3P2 M1P2 M4P0 M0P2
0:100 1.743

12.5:87.5 1.806 0.067 0.034 0.005 0.101 0.034 0.010 0.005
25:75 1.541 0.158 0.115 0.058 0.115 0.034 0.010 0.005 0.005
50:50 1.551 0.355 0.144 0.034 0.154 0.019 0.005
75:25 1.806 0.394 0.062 0.024 0.110 0.034 0.005 0.005

87.5:12.5 1.801 0.235 0.010 0.005 0.058 0.010
100:0 2.876 0.072 0.010 0.014  

 
 

 
TABLE 6.4: Delay per Conflict 

 
Bulk:Intermodal M1P0 M2P0 M1P1 M2P1 M0P1 M3P0 M3P1 M2P2 M3P2 M1P2 M4P0 M0P2

0:100 9.01
12.5:87.5 11.11 28.90 42.98 58.05 16.48 40.62 121.07 63.70

25:75 12.64 34.05 40.96 70.05 15.57 55.31 103.57 130.32 29.15
50:50 15.82 34.68 52.56 84.13 15.27 51.73 86.97
75:25 17.14 37.54 49.51 73.28 19.03 60.29 91.73 86.52

87.5:12.5 17.74 38.30 50.15 82.00 17.33 70.90
100:0 18.48 37.78 46.73 33.49

Average 14.92 36.02 47.41 74.46 17.00 53.42 96.46 121.07 130.32 63.70 86.52 29.15  
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6.3.2.2 Sources that Cause Delays with Heterogeneous Traffic 

Each source of delay has a different trend with regard to traffic mix (Figure 6.5).  Delays due to 

trains traveling at a reduced speed were minor and relatively constant over all traffic mixes.  The 

delays while a train is braking and accelerating increased with higher percentages of bulk trains.  

These delays do not increase with heterogeneity and are therefore due to greater numbers of bulk 

trains, which have longer accelerating and braking delays per meet.  As discussed previously, 

bulk trains experience more delay during each type of conflict.  Consequently, more bulk trains 

will result in greater acceleration and braking delays. 

0

10

20

30

40

50

60

70

0:100 12.5:87.5 25:75 50:50 75:25 87.5:12.5 100:0

% of bulk trains : % of intermodal trains

D
el

ay
 (m

in
/1

00
 tr

ai
n 

m
ile

s)

Reduced Speed Braking Acceleration Stopped

 
FIGURE 6.5: Average Delay by Source 
 

 

The delay while stopped is the only source of delay that increased with heterogeneity.  

Consequently, the delay increase associated with greater heterogeneity is due to a longer amount 

of time the trains are stopped waiting in sidings. This is potentially due to two reasons. First, at 
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higher heterogeneity levels there is a greater likelihood for less efficient meets when two trains 

of different priorities meet.  Sometimes when two trains of different priorities meet the siding 

that would result in the least delay is not used in order to reduce delays to the higher priority 

train.  The lower priority train will enter an earlier siding and wait for the higher priority train, 

resulting in greater overall delays.  Secondly, meets tend to be more complex when traffic is 

more heterogeneous. If a train is met or passed by more than one train, the time stopped in the 

siding is longer.   

 
 
6.4 Discussion 

By categorizing and analyzing delays, the specific conflicts and sources that contribute to delay 

can be identified and measured.  This enables a better understanding of why heterogeneous 

traffic causes more delay.  The simulation analyses conducted in this study showed that 

increased delay was the result of trains waiting longer in sidings to resolve additional and more 

complex meets when traffic heterogeneity was highest.   

 In Chapter 5 (Section 5.1) five situations with heterogeneous traffic that caused 

additional delays are listed.  The analysis conducted in this chapter investigated the impact of 

each of these situations on delay.  Delays due to a slower preceding train and time lost during a 

pass are minor.  While these situations cause delays, the increase in the number and length of 

meets is the primary cause of the additional delays due to heterogeneity.   

The specific train type characteristics affect the amount of delay they experience.  The 

bulk trains, with their poor acceleration and braking performance and slower speeds, experience 

more delays.  Improving any of those characteristics has the potential to reduce delays and 

improve capacity.  
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 Time spent stopped in a siding for meets was the leading cause of delay suggesting that 

any efforts to reduce train delay should focus on this.  Possible methods of reducing this delay 

include increasing train speed, reducing siding spacing, equalizing priorities, and adding a 

second track.  Increasing speed will reduce the time needed for one train to pass another, either 

during a pass or a meet.  Reducing siding spacing will allow trains to stop closer to the conflict.  

Removing priority makes meets more efficient: instead of forcing the lower priority train to stop, 

the first train to arrive will enter the siding.  Lastly, adding a second track will completely 

eliminate delay time from meets.  Of course each of these has different capital and/or operating 

cost implications that would need to be accounted for in a cost/benefit analysis.  

  

6.5 Conclusions 

The primary output from the simulation analyses was train delay.  Reduction in delay is often 

used to determine the benefit of a project or operational change.  Although delay is used to make 

decisions the specific causes of the delay are not well understood.  Using the internal TPC of the 

simulation software the delays were categorized by the specific conflict or operational situation 

that caused the delay.  Results showed that the only source of delay that substantially increased 

due to heterogeneity was the time trains spent stopped in sidings to resolve meets.  Using this 

information, the best method of improving operations is to make changes that either reduce the 

number of meets or reduce the time a train is stopped while in a meet.   
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TABLE 6.5: Amounts of Delay per 100 Train Miles for Each Source and Conflict 
 

0:100 12.5:87.5 25:75 50:50 75:25 87.5:12.5 100:0
Accel 5.1 7.1 7.6 11.1 12.0 15.4 17.2
Brake 5.1 6.4 6.9 8.9 9.8 12.5 13.5
Reduced Speed 1.2 1.2 1.1 1.1 5.7 1.3 1.2
Stopped 4.7 12.5 18.2 25.4 26.6 22.3 17.6
Accel 0.0 0.5 1.2 1.2 0.8 0.5 0.0
Brake 0.0 0.4 1.0 1.0 0.6 0.4 0.0
Reduced Speed 0.0 0.1 0.2 0.2 0.3 0.1 0.0
Stopped 0.0 1.1 3.1 2.9 1.6 0.7 0.0
Accel 0.0 0.6 0.5 0.6 0.6 0.6 0.0
Brake 0.0 0.6 0.6 0.7 0.7 0.5 0.0
Reduced Speed 0.0 0.3 0.1 0.4 0.3 0.3 0.0
Stopped 0.0 0.1 0.2 0.0 0.0 0.0 0.0
Total 16.1 30.9 40.6 53.5 59.1 54.6 49.5
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TABLE 6.6: Delay per Meet or Pass Conflict 
 

Bulk:Intermodal Acceleration Braking Reduced 
Speed Stopped Total

0:100 5.1 5.0 1.2 4.6 15.8
12.5:87.5 8.1 7.3 1.6 13.5 30.5

25:75 9.2 8.4 1.4 21.2 40.2
50:50 12.8 10.4 1.7 28.0 52.9
75:25 13.3 11.1 6.2 27.9 58.5

87.5:12.5 16.3 13.3 1.7 22.8 53.9
100:0 17.0 13.4 1.2 17.4 49.0  

 
TABLE 6.7: Meets, Passes and Conflicts per 100 Train Miles 

 
Bulk:Intermodal Meets Passes Conflicts

0:100 1.74 0.00 1.74
12.5:87.5 2.11 0.17 2.06

25:75 2.23 0.32 2.04
50:50 2.55 0.34 2.26
75:25 2.84 0.20 2.44

87.5:12.5 2.32 0.07 2.12
100:0 3.03 0.02 2.97  
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CHAPTER 7: MITIGATING TRAIN TYPE HETEROGENEITY ON A 
SINGLE-TRACK LINE 

 

7.1 Introduction 

Demand for freight railroad transportation is increasing (AASHTO 2007).  In order to 

accommodate this new traffic, changes to railroad operations and infrastructure will be required.  

Infrastructure expansion requires long lead times and is capital intensive.  Alternatively, a less 

expensive and faster means of creating additional capacity may be possible through changes in 

operations.  Building on the previous chapters, various methods to reduce train delay and 

increase capacity were considered for their effectiveness and economic benefit.  Simulation 

software was used to investigate the impact of various operational changes with different traffic 

mixes and volumes on a hypothetical, signalized, single-track rail line. 

 

7.2 Methodology 

Multiple operational and infrastructure scenarios were considered in order to calculate the 

effectiveness of various methods of reducing delay.  Dispatch simulation software was used to 

simulate multiple traffic scenarios, with train delay being the primary metric to measure capacity 

and the cost of train operations.  This chapter uses the same software and definition of delay used 

in previous chapters.    

Simulations were conducted using three different representative rail lines in order to 

determine the comparative benefit of changing operations as opposed to modifying or expanding 

infrastructure.  The base simulations and subsequent operational changes were made on a route 

with 20 miles between sidings.  These changes were then compared to the improvements 

obtained when the siding spacing is reduced or a second track is added. 



 

 78

 

7.2.1 Representative Rail Lines 

Specific characteristics of individual rail lines are unique and route characteristics influence the 

study of railroad operations.  For my research I developed three hypothetical rail lines intended 

to represent the characteristics of typical North America midwestern mainline subdivisions 

(Table 7.1).   

TABLE 7.1: Routes Used in Analysis 
 

Single track with 20 mile siding spacing
262 miles long

20 miles between siding centers
8,700 ft signaled sidings with #24 powered turnouts

2.55 mile signal spacing
2-block, 3-aspect signaling

0% grade and curvature

Single track with 10 mile siding spacing
262 miles long

10 miles between siding centers
8,700 ft signaled sidings with #24 powered turnouts

2.75 mile signal spacing
2-block, 3-aspect signaling

0% grade and curvature

Two tracks with 10 mile crossover spacing
260 miles long

10 miles between crossovers
Universal crossovers with #24 powered turnouts

2.75 mile signal spacing
2-block, 3-aspect signaling

0% grade and curvature  

 

Although the attributes are somewhat idealized, the purpose is to provide a consistent basis for 

relative comparison of different scenarios of interest in this research under a reasonably realistic 

set of operating conditions.  Track maintenance and other factors that can affect capacity were 
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not considered and there is no intent to imply that the results presented here predict absolute 

measurements for a particular set of conditions. 

 

7.2.2 Train Types 

The same train types described in Chapter 5 were used for this analysis.  See Section 5.2.4 for 

discussion of the characteristics of these trains. 

 

7.2.3 Simulations 

Simulations were conducted at different traffic volumes and levels of heterogeneity.   Eleven 

different volumes were simulated ranging from 8 to 40 trains per day, simulated in increments of 

four.  The simulations at each volume used a uniform average temporal distribution of trains in 

each direction over a 24-hour period.  The results are intended to provide a basis for relative 

comparison of the effect of various factors of interest; however, inspection, maintenance and 

other factors that affect capacity were not considered.  Consequently, the results are more 

representative of the possible spacing or headway between trains than the actual train volume on 

a line.  Seven different levels of heterogeneity were tested based on the percentage of the 

different train types.  The tests were done with 12.5%, 25%, 50% and 100% of each train type.  

The level of heterogeneity corresponds to the percentage of one train type relative to the other.  

Train sequence was directly proportional to the percentage of each train type; for instance when 

the traffic is 12.5% intermodal, each intermodal train would be followed by seven bulk trains.  

The ratios and traffic patterns were the same for trains traveling in both directions.  For each 

configuration a series of twenty-five simulations was performed with the exact departure time of 
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each train randomized according to a uniform distribution over a 30-minute interval, 15 minutes 

before or after the scheduled time for that train.   

 

7.3 Analysis of Operational and Infrastructure Changes to Improve Capacity 

One of the implications of understanding the factors that influence delay is that this knowledge 

can be used to determine the most effective methods of reducing delay.  On a single-track route 

meets are the principal source of delay and consumer of capacity; therefore, reducing the number 

and duration of meets will have the largest effect on capacity.  Several methods are possible to 

reduce delay due to meets.  Increased power (e.g. using additional locomotives) increases the 

acceleration rate thereby reducing the time to leave a siding after a meet, increased train speeds 

reduce the dwell time of a train waiting in a siding to meet other trains, and removing 

dispatching priorities reduces the number of meets.  Each method may provide benefits due to 

reduced delays and increased capacity.  Infrastructure expansion will also reduce delay time and 

improve operations.  If sidings are more closely spaced it reduces the time trains must wait for 

oncoming traffic, and adding a second track eliminates meets all together.  Although 

infrastructure expansion is an effective method of increasing capacity, it is also expensive.  One 

of the objectives of the analyses described here is to develop a better understanding of how 

operational changes compare to infrastructure in terms of capacity.  Both operational and 

infrastructure changes were simulated and compared to the base scenario with 20 miles between 

sidings.   
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7.3.1 Base Route 

The base route used for this analysis was a single track segment with 20 miles between sidings.  

At a traffic level of 32 trains per day or less, the delays are greatest when heterogeneity is highest 

(Figure 7.1).  However, when traffic volume increases to 40 trains per day the delays increase 

substantially especially when the traffic is mostly bulk trains.  In this case, the delays are greater 

with homogenous bulk trains than with heterogeneous traffic.  The sharp increase in delays for 

bulk traffic is symptomatic of a route nearing or reaching its capacity.  At this point railroads 

would begin to consider alternatives to improve the capacity in order to reduce delays to current 

and future traffic.   
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FIGURE 7.1: Delays on Baseline Route and Train Types 
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7.3.2 Additional Locomotive for Each Bulk Train 

The first alternative considered for its potential to reduce delays is to add an extra locomotive to 

each bulk train.  The additional locomotive increased the horsepower-to-trailing-ton (HPTT) 

ratio for the bulk trains from 0.78 to 1.05, thereby reducing acceleration distance (Figure 7.2).  In 

Chapter 5 I showed that acceleration distance has a significant impact on train delay for 

heterogeneous traffic.  Faster acceleration reduces the time that trains occupy the mainline 

traveling below normal maximum speed.  This reduces the time lost in meets, thereby reducing 

overall run time.  However additional locomotives  require major capital investment as well as 

additional maintenance and fuel costs.   
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FIGURE 7.2: Acceleration Curve of Baseline Bulk Trains and with an Additional Locomotive 
with the Maximum Speed Increased to 60 mph.  

 

The reduction in delay from adding locomotives increases with the percentage of bulk 

trains (Figure 7.3).  This is expected because I showed previously (section 6.3.2) that delays due 

to acceleration and braking performance are directly related to the traffic mix.  As the number of 
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trains with poorer braking and acceleration performance increases, the delays due to these 

activities also increases.  The reduction in delay due to additional locomotives is also related to 

traffic volume.  The benefit at 40 trains per day is much greater than with 32 trains per day.  

When the volume is 40 trains per day the route is heavily congested and nearing its maximum 

capacity.  Consequently, trains are more frequently delayed by trains ahead of them that have not 

yet reached their normal maximum speed.  Under these circumstances the benefit of improved 

acceleration performance is more pronounced.  Furthermore, at higher volumes there are more 

conflicts in which a train must stop and then accelerate back to full speed, so the improved 

acceleration performance helps here as well. 

 

7.3.3 Additional Locomotive and 10 mph Speed Increase for Each Bulk Train 

Additional locomotives not only improve acceleration performance but also permit trains to 

reach higher top speeds.  Consequently, the effect of a 10 mph speed increase for bulk trains was 

tested.  Increasing the speed of slower moving bulk trains will reduce conflicts due to the speed 

difference between train types.  More importantly, increased speeds reduces the time to travel 

between sidings, thereby improving capacity.  However, an increase in train speed increases train 

stopping distance, so this must also be accounted for. 

The combined effect of increased train speeds and additional power leads to a greater 

reduction in delay than additional power alone (Figures 7.3 and 7.4).  At higher speeds the trains 

can traverse the route faster and reduce potential conflicts.  As in the previous case, without the 

speed increase, the delays at the highest volumes are greatest when bulk trains are the majority.  

However there are greater reductions in delay with heterogeneous traffic.  Consequently, the 

speed increase reduces conflicts between trains.   



 

 84

_

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90 100

Heterogeneity (% bulk  trains)

D
el

ay
 (m

in
/ 1

00
 tr

ai
n 

m
ile

s)
40 Trains per Day
32 Trains per Day
24 Trains per Day
16 Trains per Day

40 Trains per Day
32 Trains per Day
24 Trains per Day
16 Trains per Day

 
(a) 

_

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90 100

40 Trains per Day
32 Trains per Day
24 Trains per Day
16 Trains per Day

40 Trains per Day
32 Trains per Day
24 Trains per Day
16 Trains per Day

Heterogeneity (% bulk  trains)

R
ed

uc
tio

n 
in

 D
el

ay
 

(m
in

/ 1
00

 tr
ai

n 
m

ile
s)

 
(b) 

 
FIGURE 7.3: Delays (a) and Reduction in Delay (b) When all Bulk Trains Have One Extra 
Locomotive 
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FIGURE 7.4: Delays (a) and Reduction in Delay (b) When All Bulk Trains Having an Extra 
Locomotive and 10 mph Speed Increase 
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Reduction in delay does not explain all the benefits of higher speed.  By defining delay as 

the difference between the minimum and actual run times, the benefit of a reduction in minimum 

run time is not included in delay calculations.  Increasing the average speed of the bulk trains 

from 50 to 60 mph reduces the minimum run time by 21.13 minutes per 100 train miles.  

Consequently, the benefit of increased speeds is due to both a reduction in delay and a reduction 

in run time.  

 

7.3.4 Equalizing Priorities  

Chapter 5 identified priority as a significant factor influencing delay on a single track rail line.  

Consequently, I analyzed equalizing priorities as a potential operational method to reduce delay.  

In typical operations, the lower priority train will stop and wait at an earlier siding in order to 

prevent delays to the higher priority train.  Consequently, heterogeneous priorities increase both 

the number and duration of meets.  When traffic has the same priority during a meet the first 

train to arrive at a siding will enter the siding and wait for the oncoming train.  In the preceding 

examples the higher priority trains also had a higher maximum speed, but in this analysis the 

faster trains have the same priority as the slower ones.  Therefore, when a faster train overtakes a 

slower train it will not result in a pass unless the preceding train is already stopping for a meet.    

 One of the advantages of equalizing priorities is the limited additional cost, since no 

additional infrastructure or equipment is required.  However, as discussed in section 5.5.4.1 

equalization of priorities increases delays to the train type that previously received the higher 

priority.  Thus, there is a trade off between greater delays to the trains whose customers expect 

higher service quality versus reduction in delays to trains with less demanding schedule 

requirements.  
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Equalizing priorities reduces the delays due to heterogeneous traffic but has no effect 

when the traffic is a single train type (Figure 7.5).  The reduction in delay was greatest when the 

traffic was 25% bulk and 75% intermodal.  As the percentage of bulk trains increased and 

volumes decreased, the benefit of the equalization in priorities was reduced.  At lower volumes 

the delays due to heterogeneity are less; consequently, the potential benefits of equalizing 

priorities are also less.   

 

7.3.5 Adding Extra Sidings 

Reducing siding spacing on a single track line increases capacity because it allows there to be 

more meets and passes (Krueger 1999).  In order to understand the benefit of adding sidings the 

siding spacing was reduced from 20 miles to 10 miles.  This permits a comparison of the relative 

benefits of operational changes to infrastructure expansion.  However, closer siding spacing also 

reduces delay because it allows for meets or passes to be resolved at more ideal locations, 

reducing the time trains must wait in sidings.  The complexity of meets is also reduced because it 

is possible for a train to advance to a siding instead of waiting for another train to meet or pass at 

the current siding.   

 Construction of additional sidings requires both upfront capital cost for construction and 

operating expense for maintenance.  On many rail lines, sidings are unevenly spaced leading to  

bottlenecks.  These are easily identifiable and additional sidings can be built at the appropriate 

locations.  The route used for this analysis however, has evenly spaced siding and no inherent 

bottlenecks.  Therefore, when adding sidings in these simulations, they were placed between 

each pair of sidings in order to not create new bottlenecks. 
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FIGURE 7.5: Delays (a) and Reduction in Delay (b) When all Trains are Given the Same 
Dispatching Priority 
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When the sidings are spaced 10 miles apart the greatest delays occur with heterogeneous traffic 

(Figure 7.6).  The greatest reduction in delay is at the higher volumes and all the reduction in 

delay is greater than observed for any of the operational changes.  Since the maximum capacity 

of the route has been increased, the excess capacity serves to minimize delays at higher volumes.   

 

7.3.6 Adding a Second Track 

The second infrastructure change considered is the construction of a second main track.  

Operations are vastly different with multiple tracks than with one track.  With multiple tracks 

trains can be separated by direction, referred to as directional running, eliminating meets.  It also 

reduces the impact of heterogeneous train speeds.  If there is sufficient capacity, and a suitable 

traffic control system, a faster train can easily crossover to the other track to pass a slower train 

and then return to the original track at a later crossover.  This reduces delays to both the faster 

and the slower trains.  However, a second track requires significant construction and 

maintenance costs and crossovers require twice as many turnouts compared to passing sidings, 

further increasing capital and maintenance costs. 

By adding a second track the delays with homogenous traffic are eliminated, and the 

delays with heterogeneous traffic are few (Figure 7.7).  When all the trains are traveling at the 

same speed the trains can keep a constant headway between the trains, preventing delays.  When 

the traffic is heterogeneous and the traffic volumes are low enough, the higher speed, higher 

priority intermodal trains pass the slower bulk trains with minimal delays to the traffic.  It is only 

at higher volumes and traffic with heterogeneous speeds that there will be delays with multiple 

tracks.  At higher volumes faster trains are unable to crossover due to opposing traffic on the 

other track.   
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FIGURE 7.6: Delays (a) and Reduction in Delay (b) when Additional Sidings are Added 
Reducing the Siding Spacing from 20 miles to 10 miles  
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FIGURE 7.7: Delays (a) and Reduction in Delay (b) When a Second Track is Added 
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7.4 Economic Analysis of Operational and Infrastructure Changes 

In each of the scenarios considered the reduction in delay is due to an operational change or an 

investment that incurs some additional expenditure.  Deciding which, if any, of these approaches 

is most appropriate requires understanding both the costs and benefits.  Consequently, I 

developed a framework to consider each of the scenarios I analyzed.  For each scenario, the 

reduction in delay was considered to be the benefit of the project, while any increases in delay, 

additional locomotives, increased fuel consumption, increased track maintenance costs, and 

additional infrastructure were considered to be the expenses.  In order to quantify these costs, 

estimates for the costs of train delay, new infrastructure, and equipment were developed.  

 

7.4.1 Train Delay, Equipment and Infrastructure Costs 

7.4.1.1 Train Delay Cost 

Train delays affect the railroads through additional expenses and lost revenue.  Each hour a train 

is delayed represents at least some degree of lost opportunity to transport cargo and increase 

revenue.  Delays cause railcars and locomotives to be used less efficiently, and additional crew 

hours are also accrued.  If a railroad can reduce train delay on its network, average train 

velocities will increase, resulting in potentially significant savings to the railroad through 

improved utilization of railcars, locomotives and crews.  According to one railroad, an average 

system velocity increase of one mile per hour can free up 250 locomotives, 5,000 freight cars, 

and 180 train crews to move more traffic with an approximate annual savings of $200 million 

(Hamberger 2006).   

 Several previous studies have quantified train delay cost.  Schaffer and Barkan (2008), 

evaluating the economic impact of broken rails, estimated that the average railroad cost of train 
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delay was $213.52 per hour.  Lai and Barkan (2008) created a network capacity planning model 

to consider the tradeoff between higher transportation costs and infrastructure expansion.  To 

quantify the transportation costs they used a value of $261 per train-hour.  The report of the 

Railroad Safety Advisory Committee (RSAC) to the FRA on the Implementation of Positive 

Train Control (PTC) Systems (FRA 1999a) used train delay value of $250 per train hour for 

freight and $7,125 per train-hour for passenger traffic.  The studies of freight train delay 

considered average cost, independent of the type of cargos; however, not all trains have the same 

delay cost.  For example, intermodal traffic is more time sensitive than other train types and 

consequently has a higher train delay cost.  Train specific delay cost was used previously by 

Smith et. al. (1990)  in their work determining the benefits of more efficient meet/pass planning 

expected from the Advanced Railroad Electronics System (ARES) (Table 7.2).  They considered 

both the lading and equipment delay costs for empty and loaded bulk trains, mixed freight, and 

intermodal trains.  They calculated delay values ranging from $162.98 per train-hour for mixed 

freight to $266.47 per train-hour for intermodal traffic (in 1990 dollars).  

 
TABLE 7.2: Average Delay Cost by Train Type (From Smith et. al.. 1990) 

 

Train Type Lading Delay Cost 
($/Train-hr)

Equip. Delay Cost 
($/Train-hr)

Total Delay Cost 
($/Train-hr)

Loaded Bulk 10.37 172.00 182.37
Empty Bulk 0.00 172.00 172.00
Mixed Freight 35.98 127.00 162.98
Intermodal 136.47 130.00 266.47  
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Schaffer and Barkan (2008) calculated train delay using four components: (1) 

car/equipment cost; (2) unproductive locomotive cost; (3) idling fuel cost; and (4) crew cost.  

However, these factors do not include costs incurred due to delays to the lading.  When a 

railroad’s cars and locomotives are fully utilized, each delay causes the cycle time of a train to 

increase, and the potential revenue from additional shipments is lost.  The shipment will be 

moved by a different railroad or mode of transportation.  Fuel costs are considered separately and 

are not considered in this train delay calculation.  For the current analysis, the train type specific 

delay cost has four components: (1) car cost; (2) locomotive cost; (3) crew costs; and (4) lading 

costs. 

 Car delay cost is estimated using a time-based metric for the cost of rail car ownership.  

A new coal hopper can cost between $72,000 and $82,000, while a new 3-well or 5-well 

intermodal articulated car costs between $175,000 and $275,000 (Murray 2008).  When leased, 

car costs are determined by hourly car hire rates.  Car hire is dependent on the car’s age and 

value (ORER 2009) and can be used to approximate the cost per car-hour of owning and 

operating a railcar.  Car hire rates for TOFC/COFC flat cars can vary from $0.29 to $2.01 per 

hour and $0.07 to $1.63 per hour for open top hopper in special service (ORER  2009).  Since 

trains are often composed of cars with a wide range of ages and values, an average value of 

$1.00 per car-hour was used for intermodal and $0.58 per car-hour for bulk.  The National 

Freight Capacity Study performed by Cambridge Systematics (2007) contains statistics for the 

average number of cars or units per train for automobile, bulk, general merchandise, and 

intermodal traffic for both eastern and western U.S. railroads.  According to the study, bulk 

cargo moved in trains with an average of 99.2 cars, while intermodal units move in trains 

carrying on average 137.5 units.  In 2006 77% of intermodal units were containers (AAR 2008b) 
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therefore assuming double stack ability for containers the average number of cars for intermodal 

was calculated to be 84.9.  It is common that railroads will not own or lease all the cars in a train; 

however, railroads pay compensation for each car they use.  By multiplying the cost per car hour 

and the average number of cars, the car delay cost per train-hour was calculated to be $84.90 for 

intermodal and $57.54 for bulk trains (Table 7.3).   

 
TABLE 7.3: Car Delay Cost 

 
Intermodal Bulk

Avg. Cost per Car Hour $1.00 $0.58
Avg. Cars per Train 84.9 99.2

$84.90 $57.54Car Cost per Train-Hour  
 

 Similar to car delay cost, locomotive delay cost is also a time-based metric, the hourly 

cost of owning a locomotive.  This cost can be calculated from the economic life of a locomotive 

using the purchase cost, expected usable life, discount rate, and salvage value.  The purchase cost 

of a new locomotive varies by type and additional features, however, Murray (2008) and 

Railway Age (2008) provide recent estimates.  Using these values the cost of a new locomotive 

is assumed to be $1,750,000 with a salvage value of $200,000.  The number of locomotives per 

train corresponds to the number used in the simulations.  Using an economic life of 25 years and 

a discount rate of 7% the estimated locomotive cost per train-hour is $87.52 for intermodal and 

$52.52 for bulk (Table 7.4).      
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TABLE 7.4: Locomotive Delay Cost 
 

Intermodal Bulk
Cost of New Locomotive $1,750,000 $1,750,000
Economic Life 25 25
Discount Rate 7% 7%
Salvage Value $200,000 $200,000
Units per Train 5 3

$87.52 $52.51Locomotive Cost per Train-Hour  
 

 
 In addition to equipment expenses, when a train is delayed additional crews are required.  

Typical North American freight train operations use two person crews.  The average straight 

time pay of a transportation (Train & Engine) employee is $24.68 per hour (STB 2008).  In 

addition to their base salary, employees get fringe benefits amounting to an additional 35% 

above their base salary (AAR 2008a).  Since both train types have the same size crew, the delay 

cost due to labor for both intermodal and bulk trains is $66.64 per train-hour (Table 7.5).  

 
TABLE 7.5: Crew Cost 

 
Intermodal Bulk

Crew Members per train 2 2
Average Hourly Pay $24.68 $24.68
Fringe Benefits 35% 35%

$66.64 $66.64Crew Cost per Train-Hour  
 

 The last component of the delay cost is for the lading.  When a train is delayed the cycle 

time of the route increases and the train is unavailable to move additional cargo.  Instead of 

starting a new cycle with its new revenue the train continues to transport cargo that has already 

been paid for.  The lading cost per hour is calculated using the revenue per loaded train, cycle 

time, return ratio and availability rate.  Based on data from several Class 1 railroad annual 

reports (BNSF Railway Company 2008, CSX Transportation, Inc 2008, Norfolk Southern 
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Combined Railroad Subsidiaries 2008, Union Pacific Railroad 2008), the average revenue per 

intermodal unit is $933.  The revenue per carload of bulk cargo was calculated by dividing the 

revenue by carloads originated for each of the cargo types typically transported in bulk unit 

trains (AAR 2008a) giving a value of $2,048 per car.  Multiplying the revenue per car (or unit) by 

the average number of units or cars per train gives a revenue of $128,246 per completely loaded 

intermodal train and $203,182 per completely loaded bulk train.   

In previous research, cycle times of various train types were calculated (Kwon et. al. 

1995).  During a cycle, bulk trains are loaded in only one direction, returning empty to complete 

the cycle and reload.  Alternatively, intermodal trains generally are able to reload and transport 

goods from the destination back to the origin.  The efficiency of this can be calculated by finding 

the ratio of total miles to loaded miles.  These values, known as return ratios, are 2.03 for bulk 

trains and 1.14 for intermodal trains (AAR 2008a).  This means that an intermodal train will, on 

average, be composed of 88% loaded units and 12% empty units.  Lastly, it is assumed that a car 

is available 75% of the time, with the remaining time the car is unavailable due to maintenance, 

lack of demand, repositioning, etc.  Using this method the lading cost per train-hour was 

estimated to be $1,153 for intermodal and $410 for bulk.  While bulk trains make more revenue 

per loaded train the longer cycle times and inability to return loaded cars means that the lading 

delay cost for a bulk train is only about one-third that of intermodal. (Table 7.6)  
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TABLE 7.6: Lading Delay Cost 
 

Intermodal Bulk
Avg. Cars/Units per Train 137.5 99.2
Revenue per Car/Unit $933 $2,048

$128,246 $203,182
Cycle Time in Days 6.15 15.27
Empty Return Ratio 1.13 2.03
Availability Rate 75% 75%

$1,153.38 $409.67Lading Cost per Train-Hour

Revenue per Loaded Train

 
 

Summing the four components yields a total delay cost of $1,392 for intermodal and 

$586 for bulk (Table 7.7).  Although this provides a good estimate it does not account for all the 

costs of delay.  Shipper delay penalties, extra crew costs due to hours of service limitations, fuel 

costs or possible additional maintenance costs were not considered in this calculation.  The 

lading delay is an opportunity cost, based on the assumption that if a train is delayed, the ability 

to move more cargo is lost.  This assumes full utilization of cars and locomotives and that any 

excess equipment could be used to move more cargo.  If equipment is not fully utilized, then 

lading delay cost should be reduced or omitted from delay costs. 

TABLE 7.7 Total Train Delay Cost per Train-Hour 
 

Intermodal Bulk
Freight Car Ownership Cost $84.90 $57.54
Locomotive Ownership Cost $87.52 $52.51
Crew Cost $66.64 $66.64
Shipment Delay Cost $1,153.38 $409.67

TOTAL TRAIN DELAY PER HOUR $1,392.43 $586.35  
 
7.4.1.2 Infrastructure Expansion Cost 

Using information obtained from multiple sources, estimates for the cost to build a siding or a 

second track were calculated.  The calculation includes the cost of the civil work, track, signals, 

design and additional fees.  It is assumed that no additional right-of-way acquisition is required, 

although in some circumstances this may be necessary  The construction cost for a new 8,750 ft 
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siding was estimated to be $6,500,000, and for a new main track $2,750,000 per mile.  

Additional infrastructure will require increased maintenance costs as well.  Zarembski et. al. 

(2004) provide estimates on the maintenance costs for various tonnages and track classes.  Using 

this information the maintenance costs were estimated at $50,000 per mile of siding and $70,000 

per mile of mainline track.   

 

7.4.1.3 Equipment Cost 

As discussed above the purchase cost of a new locomotive varies by type and extra features 

included.  For this analysis the additional cost of a new locomotive was assumed to be 

$1,750,000 (Murray 2008, Railway Age 2008).  Fuel consumption calculations from RTC and a 

cost of $3.13 per gallon of fuel were used (AAR 2008a).  Locomotive maintenance costs are not 

considered due to lack of data. 

 

7.4.2 Analysis of Net Present Value of Infrastructure and Operational Changes 

The net present value (NPV) of each alternative was calculated for each volume and amount of 

heterogeneity per 100 miles of track.  A study period of 10 years was used with a discount rate  

of 7%.   

 

7.4.2.1 Additional Locomotive for Each Bulk Train 

Adding locomotives to each bulk train was not a cost-effective solution to improve operations 

(Figure 7.8).  Although the reduction in delay increases with the higher number of bulk trains, 

the cost of additional locomotives outweighs the benefits of the reduction in delay. This results in 
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a zero or negative NPV for all traffic volumes and mixes, with losses increasing as the 

percentage of bulk trains increases.   
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FIGURE 7.8: NPV of Additional Locomotives for Each Bulk Train  
 
 

7.4.2.2 Additional Locomotive for Each Bulk Train and 10 mph Speed Increase 

Adding additional locomotives in order to increase the speed of the bulk trains has a negative 

NPV for almost all volumes and traffic compositions (Figure 7.9).  As the percentage of bulk 

trains increases the NPV decreases.  As more bulk trains are added the costs of locomotives and 

fuel increase and the resultant reduction in delay does not offset these additional costs. 

 

7.4.2.3 Equalization of Priorities 

Removal of heterogeneity in priorities is cost-effective only when intermodal trains are a 

majority at the highest traffic volumes (Figure 7.10).  When traffic is homogenous the delays are 
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unaffected and therefore there are no additional costs or benefits of removing priorities.  

Removing the priorities reduces the delays to bulk trains but increases the delays to intermodal 

trains.  This trade-off is most beneficial when the traffic volumes are high with mostly 

intermodal trains.  However, if the traffic is only intermodal trains then equalizing priorities has 

no effect.  
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FIGURE 7.9: NPV of Additional Locomotives for Each Bulk Train and a 10 mph Speed Increase 
 

7.4.2.4 Additional Sidings 

The cost effectiveness of adding sidings is directly related to traffic volume (Figure 7.11).  

Below 32 trains per day the NPV for all traffic mixes is negative but it becomes positive when 

traffic volume increases above 36 trains per day.  However, even at the highest volumes the NPV 

is negative when the traffic is all intermodal since homogenous intermodal traffic has a much 

higher capacity than heterogeneous or homogenous bulk train traffic. 
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FIGURE 7.10: NPV when the Priority are Equalized for all Traffic 
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FIGURE 7.11: NPV when Sidings are Added 
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7.4.2.5 Adding Second Track 

At the traffic levels considered, adding a second track is not a cost effective way to reduce delay 

(Figure 7.12).  While adding a second track nearly eliminates delay, the cost to build and 

maintain a second track is substantial.  The NPV increases with volume; however, even at the 

highest volumes the reduction in delay does not justify the expenditure of a second track.   
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FIGURE 7.12: NPV when a Second Track is Constructed 
 
 
7.4.2.6 Best Delay Reduction Strategy 

Each volume and level of heterogeneity has a specific operational or infrastructure change that 

provides the best economic return.  NPV for each scenario was considered at various volumes 

and traffic mixes.  The alternative with the best NPV in each condition is listed in Table 7.8.  

This study found that for all traffic mix and volume combinations one of three alternatives was 

best: no change, equalizing priorities, or adding sidings (Table 7.8).  When the traffic was all 

intermodal there was sufficient capacity and therefore no changes were cost justified.  At 
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moderate to high volumes, equalizing priorities was beneficial with heterogeneous traffic.  At the 

highest volumes, and when bulk was a majority of the traffic, sidings were the alternative with 

the best NPV. 

 
TABLE 7.8: Best Alternative to Reduce Train Delay 
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0 - - - - - - - -

12.5 - =P =P =P =P =P =P =P
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87.5 - =P =P =P - - +SD +SD
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TABLE 7.9: Alternative Nomenclature 
 

=P
+SD

Equalizing Priorities
Adding Sidings  

 
 
7.5 Discussion 

With increasing demand for freight rail services, railroads must evaluate the most economical 

methods to reduce train delay and increase capacity.  Depending on the volume and specific 

traffic mix the best alternative may be infrastructure expansion, operational changes or some 

combination.  

 Operational changes are advantageous because they can be implemented more rapidly, 

are more flexible than infrastructure changes, and may be less capital intensive.  Such changes 

enable a railroad to respond to changing traffic levels and patterns, provide relief during short 

periods of high traffic volumes, or serve as an interim measure while additional infrastructure is 

built.   
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 One of the most effective operational change is equalizing priorities.  The only costs of 

equalizing priorities are the additional delays to higher valued traffic.  On capacity constrained 

routes equalizing priorities is a rapid and flexible method that can be used to improve operations.  

Depending on the traffic level, a dispatcher can choose whether to utilize equal priorities as a 

operational strategy.  

 

7.6 Conclusions 

The projected, long-term demand for rail freight transportation and expanded rail passenger 

service on North American railroads will require considerable capital investment in new 

infrastructure.  However, some additional capacity may be achieved though altering operations.  

This solution is often less expensive and faster to implement than building physical 

infrastructure.  I performed analyses using dispatch simulation software to determine the benefits 

of various operational and infrastructure changes through the reduction of train delay.  For each 

scenario a cost-benefit analysis was performed to determine the most cost-effective ways to 

improve railroad line capacity.  Analysis showed that for moderate volumes and heterogeneous 

traffic, equalizing dispatching priorities is a cost-effective method of improving capacity.  At 

higher volumes more cost intensive infrastructure expansion becomes a better investment option 

since it reduces the delay by a greater amount than operational changes.   
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CHAPTER 8: IMPACT OF CBTC AND ECP BRAKES ON CAPACITY 

 

8.1 Introduction 

Beginning in the early 2000s major North American railroads were increasingly experiencing 

capacity constraints, and long term projections indicate substantial further growth in freight 

traffic (AASHTO 2007, Cambridge Systematics 2007).  Furthermore, new initiatives to expand 

intercity passenger rail operations on freight railroads will have a disproportionate impact on 

capacity due to the differences in operational characteristics between freight and passenger trains 

(AREA 1921, Mostafa 1951, Harrod 2009).  Consequently understanding factors that affect rail 

capacity and the options available to cost-effectively improve it are important. 

Infrastructure expansion will undoubtedly play an important role in accommodating new 

traffic demand; however, two new technologies are being introduced that will also affect rail 

capacity; communications based train control (CBTC) (often referred to as positive train control 

or “PTC” in the U.S.) and electronically controlled pneumatic (ECP) brakes.  Both offer safety 

benefits and both have been touted as offering capacity benefits as well, but in actuality the 

situation is more complicated.  These technologies can enhance capacity under some 

circumstances, have little or no effect under others, and in some cases may actually reduce 

capacity.  Consequently, understanding their net effect on a particular rail line or network 

requires understanding the status quo of the system they are being introduced into, and in what 

manner they are being introduced.  In this chapter I attempt to identify each critical aspect of 

these technologies that has the potential to affect capacity and consider what this affect will be 

under which implementation conditions.  Since both of these systems require significant 

investment from the railroads (estimates range up to $10 billion for PTC (FRA 2009a) and over 
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$6.5 billion  for full ECP brake implementation (FRA 2006) if the capacity impacts of these two 

technologies can be better understood, railroads can make more informed decisions about their 

implementation. 

CBTC is a system in which train monitoring and train control are integrated into a single 

system via data links between vehicles, central office computers and wayside computers (IEEE 

2003).  ECP brakes use an electronic signal instead of the train-line air pressure to transmit 

braking signals.  CBTC has been under development since the mid-1980s (RAC & AAR 1984, 

Detmold 1985, FRA 1999a) and freight railroad ECP brake technology since the early 1990s 

(FRA 1999b); however, wide-scale adoption has not occurred due to technical, practical, 

economic and institutional barriers (Moore Ede et. al. 2009).  Recent regulations and legislation 

have altered the situation.  The Federal Railroad Administration (FRA) is encouraging 

implementation of ECP brakes by offering relief from certain requirements pertaining to 

conventional pneumatic brake operation (Rail Safety Improvement Act 2008, Blank et. al. 2009).  

With regard to PTC, the Rail Safety Improvement Act of 2008 and the subsequent regulations 

issued by the FRA (FRA 2010a) have mandated its implementation on a large portion of the 

Class 1 railroads’ mainlines by 2015.   

A number of previous studies have investigated the impact of CBTC on capacity.  Lee et. 

al. (Lee et. al. 2000) determined that moving blocks could increase the capacity of the Korean 

high speed railway. Another study quantified the capacity benefits of the European Train Control 

System (ETCS), Europe’s version of CBTC (Wendler 2009).  In the United States, Smith, Resor 

and Patel (Smith & Resor 1989, Smith et. al. 1990, Smith et. al. 1997, Resor et. al. 2005) studied 

the potential benefits of the Burlington Northern’s Advanced Railroad Electronics System 

(ARES) and other possible CBTC systems.  They calculated how the more efficient meet/pass 
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planning and the increased dispatching effectiveness possible with CBTC will affect capacity.  

Martland and Smith (1990) calculated the potential terminal efficiency improvements resulting 

from the estimated increases in reliability offered by CBTC.  While many authors have claimed 

that a CBTC system with moving blocks will increase capacity (Detmold 1985, Martland & 

Smith 1990, Dick 2000, Moore Ede 2001, Resor et. al. 2005, Drapa et. al. 2007, Kull 2009, FRA 

2009b), there has been some debate about whether this will in fact be the case (Twombly 1991, 

Moore Ede et. al. 2009). 

There has been less work addressing the capacity effects of ECP brakes.  Most agree that 

they will reduce stopping distances and when fully implemented this will allow closer spacing of 

trains; however, the incremental effect of this reduction will be affected by what other 

technologies are already in use.  Furthermore, taking advantage of this will often require changes 

in the signal system. 

As discussed above, the effect of CBTC and ECP brakes will be context specific, that is, 

in some circumstances one or both technologies have the potential to increase capacity, either 

alone or in combination, in other cases they will have little or no effect, and in some they may 

reduce capacity.  Consequently, the net effect of these technologies on capacity will be 

determined by the magnitude of these context-specific impacts and the relative frequency that 

they occur over a particular route or network. 

 

 

8.2 Elements of a CBTC System that will Affect Capacity 

In North America most of the potential CBTC systems are still under development.  While 

specific technical details remain unclear, in general each will have similar features and 
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capabilities.  These systems are characterized by the data links that provide better information to 

dispatchers and train crews.  This has the potential to increase efficiency though better train 

management and control (Ditmeyer 2006).  However, in order to comply with the legislative 

requirements for PTC they must also “prevent train to-train collisions, over-speed derailments, 

incursions into established work zone limits, and the movement of a train through a switch left in 

the wrong position (FRA 2010a).”  The legislation is a performance standard and does not 

specify the technology that must be used to meet the requirements.  In principle, CBTC can be 

implemented without enforcement braking; however, this has been envisioned as an element of 

CBTC since the earliest concepts of its development (RAC & AAR 1984).  It is also technically 

possible to meet the PTC requirements without use of a pure CBTC system (Hoelschcer and 

Light 2001); however, most PTC systems in the U.S. will likely be some form of pure or hybrid 

CBTC system with enforcement.  Since they are not part of the PTC regulation the additional 

elements available with a CBTC system will not necessarily be part of a PTC-compliant system 

and therefore the potential benefits or costs of PTC and CBTC are different.  For this work I 

consider the potential elements of a CBTC system that may affect capacity including those 

required to meet the PTC requirements. 
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8.2.1 Current Traffic-Control Systems 

Most current automatic traffic control systems use wayside signals to manage train speed and 

headway.  Signal spacing is typically set based on the distance it takes for the worst-case train 

that normally operates on a line, using normal service braking, to stop from the maximum 

permitted train speed at a location.  Since the signals are designed for this worst-case train, many 

trains may have stopping distances shorter than the line’s signal system was engineered for.  

Furthermore, although individual railroads’ rules vary on the exact language, normally an 

engineer is required to begin reducing speed when their train passes a signal displaying a 

restrictive signal.  This means that in order for a train to continuously maintain normal track 

speed it must not encounter signals less favorable than “clear.”  Consequently trains must 

generally be separated by at least two blocks in a three-aspect system and three blocks in a four-

aspect system.  Due to these operating rules and use of worst-case braking distances, trains are 

separated by a distance several times longer than their braking distance.    

There are a variety of traffic control systems currently in use on North American 

railroads but they can be broadly categorized into two types: those in which a manual system of 

spoken or written messages convey movement authority to trains, and those in which the 

dispatcher conveys this authority directly via the wayside signals.  Lower density lines tend to 

use a manual system such as track warrants control, or something similar.  Capacity on these can 

be increased by overlaying them with automatic block signals (ABS) but the authority is still 

conveyed manually.  If more capacity is needed it can be upgraded to centralized traffic control 

(CTC) in which the signals themselves convey movement authority.  On some track warrant and 

all CTC systems the dispatcher is able to remotely control switches allowing for more efficient 

planning and management of meets and passes of multiple trains on a line. 
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There are technologies that offer further improvement in operational efficiency, some of 

which provide more information to train crews and others that help dispatchers.  The oldest of 

these is cab signals that takes advantage of the coded track circuits in the rails that communicate 

the aspect information to the wayside signals.  Specialized equipment on the locomotive enables 

the current signal block aspect to be displayed in the cab.  With wayside signals a signal ahead 

may change to a more favorable indication but the locomotive engineer does not know this until 

the next signal comes into view.  Cab signals allow the engineer to know immediately if a more 

favorable indication applies and can immediately take advantage of it. Another technology that 

assists the dispatcher in managing all the traffic on a line is computer-aided dispatching (CAD).  

In these systems the computer accounts for the operational characteristics of trains and the 

features of a route to help the dispatcher better plan meets and passes.     

 

8.2.2 Elements of a CBTC System 

A PTC-compliant CBTC system has several components and features that have the potential to 

affect capacity, either positively or negatively.  These are: 

• Enforcement braking 

• Real-time train operating and location data 

• In-cab display 

• Moving blocks 

Enforcement braking is necessary in order to comply with the PTC requirements.  Real-time 

train operating and location data gives the dispatcher additional information.  This information 

can also be provided to the locomotive on an in-cab display.  CBTC also potentially permits the 
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use of flexible moving blocks.  Each of these components will impact railroad operations and 

capacity and will be considered separately.   

 

8.2.2.1 Enforcement Braking   

The element of a PTC system mandated by regulation is the enforced braking in order to prevent 

unsafe situations.  The intent is that the system will stop the train automatically if the engineer 

fails to take appropriate action to prevent the train from violating its authority limits or speed 

restrictions.  In order to provide continuous enforcement, an on-board computer must determine 

when a train must begin braking.  This computed braking curve is composed of the distances 

traveled during (Thurston 2004): 

• Equipment reaction time 

• Propulsion removal 

• Brake build-up 

• Full service brake application 

These distances are highly dependent on factors including initial train speed, train length, car 

weights, braking efficiency, operative brakes, brake propagation rate, adhesion and rail 

condition.  These factors are not accurately known when a train leaves the terminal resulting in 

considerable uncertainty in the exact braking distance required (Anderson 1995, Moore Ede et. 

al. 2009) (Figure 1).  For safe operations a train must have close to zero probability of overshoot 

(FRA has targeted 0.000005, or 5 chances in a million (Moore Ede et. al. 2009, FRA 2009)).  

This necessitates a conservative braking algorithm that considers the worst case condition for 

each of the unknown variables.  This causes the enforced braking distance to be greater than the 

average braking distance (Thurston 2004).   
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FIGURE 8.1: Speed, Uncertainty in Average Braking Distance, and Resultant Safe Braking 
Distance 
 

Consequently, the brake application with a PTC system will begin earlier than required for a 

typical full service brake application.  With or without braking enforcement a train will brake in 

the same distance, consequently an earlier application will cause the train to stop sooner than the 

engineer intends (FRA 2009b).  Simulations have shown that the difference between the average 

stopping distance and enforced target can be greater than 1,700 ft (FRA 2009b).  Braking 

enforcement can have several negative effects on capacity including: 

• An unacceptably large number of trains are forced to start slowing much earlier than normal 

service braking to prevent enforcement from taking over, slowing the overall operation; 

• Train crews are not able to prevent enforcement, thus stopping well short of the target; 

• Train crews experience difficulty closely approaching a target stopping point, such as when 

pulling into a siding potentially causing the back of the train to remain on the main line 

blocking traffic (Moore Ede et. al. 2009). 

Work is underway to create a more accurate and adaptive braking algorithms (Moore Ede et. 

al. 2009).  However, trains may travel long distances after departing a terminal without making 

enough brake applications to obtain adequate data to develop sufficiently accurate, updated 
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estimations of braking distance (FRA 2009b), and there will always be some difference between 

the calculated braking distance and the actual or performance braking distance (Thurston 2004).  

The magnitude of this difference is dependent on the conservativeness of the braking algorithm 

used; a more conservative algorithm will increase the difference between the actual and 

enforcement braking distances.  The probability of overshoot used is dependent on the current 

specifications regarding enforcement braking, consequently, the manner in which those 

specifications are interpreted will have a direct impact on the effect of enforcement braking on 

capacity. 

It is also possible that enforcement may have little or no impact on operations or capacity.  

Current wayside, signal spacing is based on the braking distance of the worst-case train plus an 

additional margin of safety.  Signal spacing may be greater than the enforced braking distance; 

therefore, if signals are still used, trains will begin to slow down in response to them instead of 

the enforcement.  Additionally, enforcement algorithms are based on a full service brake 

application.  In most cases the engineer makes use of dynamic brakes and slows the train at a 

more gradual rate than with a full service brake application potentially preventing enforcement.  

Depending on the railroad’s operations and rules, enforcement braking has the potential 

to either increase travel times for the affected train or have no impact at all.  If trains are slowed 

they may also delay following trains, further reducing capacity.  Further discussion and 

explanation of braking enforcement, adaptive braking and their implications can be found in 

papers by Thurston (2004) and Moore Ede et. al. (2009).  
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8.2.2.2 Real-time Train and Location Data   

Real-time train and location data offer the dispatcher additional information.  The dispatcher is 

able to accurately know a train’s location and current speed with more precision than existing 

train control systems provide.  This information will allow train dispatchers to respond more 

quickly to any disruptions or changes and to more quickly formulate alternative dispatching 

plans as circumstances change.  This information also permits more effective meet pass 

planning.  When combined with a CAD system this can potentially decrease run times by 

reducing the time trains wait for meets and passes (Smith et. al. 1990, Smith et. al. 1997).   

Real-time train and location data are also vital to braking enforcement and moving 

blocks.  A technical challenge that has been encountered with real-time data is communications 

delay in the data links.  In a CBTC system a train’s movement depends on receiving periodic 

authority updates as the track ahead clears.  Any limitations in the data link throughput and 

message reliability could limit train capacity.  If the data link delivers a movement authority too 

late the train may have to reduce speed.  Unreliability in the system could result in train position 

information being inaccurate to the extent that the uncertainty buffer distances must be increased, 

increasing train headways (FRA 2009b).  If the communications delay is not excessive, real time 

train and location data can increase capacity.   

 

8.2.2.3 In-Cab Display   

In-cab displays offer additional information to the locomotive engineer permitting him to more 

efficiently operate the train.  An in-cab display will most likely have the following information 

(FRA 2004): 

• Location information 



 

 116

• Authority and speed limits 

• Route and route integrity 

• Start of warning and enforcement braking 

• Location of maintenance-of-way work limits 

• Position of other track vehicles 

An in-cab display offers the engineer near real-time information on the status of blocks ahead. 

With wayside signals, this information is only updated at discrete points as the train approaches 

and passes each block signal.  If the signal is anything less favorable than clear, the engineer will 

need to reduce speed soon or immediately unless already traveling at the speed indicated by the 

signal.  Although the status of the block ahead may improve after the front of the train has 

passed, the engineer has no way of knowing this and will continue reducing speed until the next 

signal comes into view and is displaying a more favorable indication.  However, if the engineer 

has access to continuously updated information on the status of the block ahead they may not 

have to reduce speed as much if the block ahead clears.  A CBTC in-cab display can also have 

benefits in territories where movement authority is given through a manual system because it 

eliminates the time required for the voice transmission and confirmation (Moore Ede 2001).  Cab 

signal technology provides some of the capacity benefits of a CBTC in-cab display by displaying 

the aspect of the next block (Thurston 2004); however, most locomotives and routes in North 

America are not equipped with these technologies so in these cases, CBTC will provide these 

incremental benefits. 

 



 

 117

8.2.2.4 Moving Blocks   

Moving blocks provide continuous train separation and have the potential for this to be based on 

each train’s individual stopping characteristics, rather than the discrete fixed blocks characteristic 

of current signal systems.  Moving blocks thus have the potential to reduce minimum headways.  

With a fixed block system trains outside of terminals or interlocking limits traveling at normal 

track speed are typically separated by at least two blocks, irrespective of their individual 

stopping characteristics.  By contrast, in a moving block system trains can be separated by little 

more than a single block, and potentially by a distance related to each train’s individual stopping 

distance.  This effectively reduces minimum train separation from two or more blocks, as 

required with a fixed-block system, to a single block (or even less for some trains) of separation. 

Moving blocks thus have the potential to reduce minimum headways.  With a fixed block 

system trains outside of terminals or interlocking limits traveling at normal track speed are 

typically separated by at least two blocks, irrespective of their individual stopping characteristics.  

By contrast, in a moving block system trains can be separated by little more than a single block, 

and potentially, with a flexible block system, by a distance related to each train’s individual 

stopping distance.  This effectively reduces minimum train separation from two or more blocks, 

as required with a fixed-block system, to a single block (or even less for some trains) of 

separation. 

 Flexible moving blocks can have a significant benefit on routes with trains having similar 

speeds but heterogeneous stopping distances.  With a fixed block system the signals are spaced 

for the train with the longest braking distance and therefore the headway is longer than needed 

for much of the traffic.  Slower or lighter trains with shorter braking distances, such as passenger 

or commuter trains, will be able to more closely follow other train traffic.  This might help 



 

 118

mitigate the disproportionate impact of certain types of heterogeneity due to mixing of passenger 

and freight traffic (AREA 1921, Mostafa 1951, Harrod, 2009).  Flexible moving blocks also offer 

a benefit when recovering from temporary track outages or delays.  Successive trains will be able 

to follow each other more closely because of their shorter braking distance at slower speeds.  

With a single track, in order to get operations back to normal as quickly as possible, moving 

blocks will allow trains to be fleeted through the work area with much closer spacing than with 

conventional signal systems.  This fleeting may also be of value when a double-track section has 

to be single-tracked during maintenance (Moore Ede 2001). 

Moving block capability can also reduce delays due to passes on single track lines.  

Shorter headways reduce the time the overtaken train waits in the siding (FRA 2009b).  Also 

when leaving the siding new movement authority can be issued to a train immediately after an 

overtaking train has passed the exit switch and the switch has been lined. It is not necessary to 

wait until the first block has been cleared, as may sometimes be required with conventional 

traffic control systems (Moore Ede 2001).  

  

8.3 Elements of an ECP Brake System that will Affect Capacity 

ECP brakes change how the brake signal is transmitted.  The signal will be transmitted using an 

electronic signal instead of a reduction in train line air pressure.  Currently each car is connected 

with an air line that is used to charge the brakes and transmit the braking signal.  With ECP 

brakes each car will also be connected by an electrical connection.   
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8.3.1 Current Systems 

The current pneumatic brake system uses air pressure both to transmit the braking signal and to 

charge the brake reservoirs of the cars in the train.  A reduction in air pressure along the brake 

line causes the control valve to admit air into the brake cylinder applying the brakes.  Two 

important limitations in this system in typical North American freight train applications are that, 

it does not permit the reservoirs to be recharged while the brakes are being applied, nor does it 

permit graduated release.  Repeated application and release of the brakes can deplete the air 

pressure in the reservoirs and substantially reduce the braking force available.  Avoiding this 

poses several operational limitations that affect capacity, and potential safety problems if the 

brake system is not handled properly.  The other limitation is that the air pressure signal is 

transmitted along the length of the train at approximately two-thirds the speed of sound (FRA 

2006).  With longer trains there is a time lag between application and release at the rear of the 

train compared to the front, causing significant in-train forces.  Consequently, this means there is 

a direct relationship between propagation time and braking distances.  This problem is reduced 

when using distributed power (DP) because it permits the braking signal to be initiated at more 

locations in the train, thereby reducing brake signal propagation time and thus braking distance 

(Barrington & Peltz 2009, Petlz 2009).  Railroads are increasingly using DP; one major railroad 

estimates that 50% of its operations are now using distributed power.   

 

8.3.2 Elements of an ECP Brake System 

ECP brakes have several characteristics that have the potential to affect capacity.  These are: 

• Instantaneous transmission of the brake signal 

• Steady brake line pressure 



 

 120

• Self-monitoring capabilities 

Using an electronic signal instead of air pressure to transmit the brake signal allows for virtually 

instantaneous transmission enabling nearly simultaneous application or release of the brakes 

along the entire length of the train.  ECP brakes have a steady brake pipe pressure allowing for 

continuous charging of the brake reservoirs even while brakes are being applied.  The use of a 

train line cable also allows real-time, self-diagnostic ‘health check’ functions to be incorporated 

into the brake system that inform the train crew when maintenance is needed (FRA 2006).   

Each of these characteristics will be considered for their impact on capacity.  There are 

several proposed elements of an ECP brake system, including tri-couplers and the ability to 

remotely uncouple cars, that have the potential to impact capacity.  These have not been included 

in any of the developed systems and therefore they are not considered in this analysis. 

 

8.3.2.1 Instantaneous Transmission of Brake Signal 

With current brake systems there is a delay during the propagation of the brake signal whereas 

with ECP brakes this is eliminated.  It is estimated that this will reduce braking distance by about 

40 to 60 percent compared to conventional braking distance (FRA 2006).  Since headway 

between trains is limited by safe braking distance, if ECP brakes are installed on all trains such a 

reduction will permit closer train spacing if the traffic control system can accommodate it.  The 

alternative to shorter headways is the ability to travel at higher speeds with the same signal 

spacing (Carlson 1994).  Another benefit to having all the brakes on a train apply simultaneously 

is that it reduces in-train forces, permitting longer trains.  Fewer, longer trains free up train slots, 

thereby allowing additional traffic.  However distributed power can provide some of the same 

benefits in reduced braking distances and longer train lengths but not the reduction in signal 
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spacing that ECP brakes provide.  Consequently, in some instances, railroads are already 

deriving some of the benefit that this aspect of ECP brakes offers.  

 

8.3.2.2 Steady Brake Line Pressure 

A steady brake line pressure allows for the continuous charging of the brake reservoirs.  This 

facilitates greater use of the braking system and reduces the time lost waiting to recharge brake 

line and reservoir pressure after an application.  With conventional freight train brakes, once the 

engineer has selected a brake level, the braking force cannot be reduced without completely 

releasing and reapplying the brakes.  Trains must sometimes travel with more braking force 

applied than necessary resulting in slower operations (FRA 2006).  Continuous charging of brake 

reservoirs enables graduated release of brakes offering greater braking flexibility.  This will 

potentially allow a train to conform more closely to appropriate track speed limits and increase 

average speeds.  Another benefit is the shorter restarting time after stops. With current brake 

technology, in areas of descending grades, the auxiliary reservoirs on each car of the train must 

be recharged before restarting from a stop (FRA 2006, Blank et. al. 2009).  With ECP brakes this 

is not necessary, reducing dwell time on routes with large grades. 

 

8.3.2.3 Self-Monitoring Capabilities  

An electrical signal to control the brakes has the added benefit of potentially enabling 

transmission of brake condition data to the locomotive.  The engineer could monitor brake 

condition and be informed of any failure in any car on the train.  In response to these capabilities 

the FRA issued a new regulation that requires brake inspections to be performed every 3,500 

miles instead of 1,000 miles as is required with conventional brakes (Class 1A brake tests- 
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1,000-mile inspection 2004).  This potentially allows an ECP-brake-equipped intermodal train 

originating from the ports of Los Angeles-Long Beach to travel all the way to Chicago without 

stopping for routine brake tests. Similarly, ECP brake-equipped coal trains will be able to make 

quicker deliveries from western coal fields to power plants in the eastern and southern states 

(FRA 2010b).  This not only decreases cycle times but may also reduce congestion at terminals 

where these inspections currently take place.  To achieve these results reconfiguration of 

terminal points and the resulting expenditures may be required. 

 

8.4 Impact of CBTC and ECP Brakes on Capacity 

The potential impact of these new technologies on capacity will depend on the type of 

implementation of each system, traffic mix, track configuration, and the topography of the route.  

For CBTC there are three different possible implementations, a non-vital or vital overlay to an 

existing control system or as a stand-alone system (Drapa et. al. 2007).  In a non-vital overlay, 

the underlying control system provides movement authority, but CBTC provides an additional, 

automatic backup to prevent unsafe conditions.  With a vital overlay, both the underlying system 

and CBTC verify and convey authority.  In a stand-alone system, CBTC plays the sole role in 

verifying, conveying, and enforcing authority (Drapa et. al. 2007).  Non-vital and vital overlay 

systems will still require the use of the current signal system, while a stand-alone system will 

permit moving blocks.  Whether or not a route has single or multiple tracks will also affect the 

impact of these systems.  A single track route is constrained due to the need for meets and 

passes, whereas with a multiple-track route, headway may be a more important constraint.  The 

topography of the route also affects train handling and consequently capacity.   
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8.4.1 CBTC Non-Vital Overlay System 

A CBTC overlay provides enforcement per the PTC requirements in addition to the current 

signal and traffic control systems.  This type of implementation makes use of the current signal 

and traffic control system and therefore closer train spacing is not possible in wayside signal 

territory.  However, in unsignaled (aka,“dark”) territory an overlay system provides a more 

effective means of train separation.  Much like a signal system, installation of CBTC would 

allow closer spacing of trains thereby increasing capacity.  Conversely, enforcement braking will 

result in trains slowing down sooner than they might otherwise, thereby reducing capacity.  With 

or without a signal system, a CBTC overlay does not provide movement authority and therefore 

the current methods for this will remain in place, limiting some of the benefits of the in-cab 

display.  In Europe the overlay version of ETCS has been found to reduce network capacity (SRA 

2005).  In North America, the potential capacity impact will be greatest on signalized, single 

track lines where enforcement has a greater effect due to the more frequent stops from meets and 

passes.   

 

8.4.2 CBTC Vital Overlay System 

A CBTC vital overlay system will have similar capacity constraints as an overlay system due to 

the inability to take advantage of moving blocks.  However with a vital system the signal, traffic 

control, and CBTC system are interconnected and authorities can be issued immediately via the 

in-cab display of the locomotive.  Capacity under a vital overlay system will generally be the 

same or slightly higher compared to a non-vital system.   
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8.4.3 CBTC Stand-alone System 

A stand-alone CBTC system permits the use of real-time train and location data, in-cab displays, 

moving blocks and the benefits they provide.  However, the potential capacity losses of braking 

enforcement still apply.  The greatest potential benefit will be on multiple-track routes where 

reduced headways offer the greatest advantage.  If moving blocks are used, this is likely to more 

than offset any potential capacity losses due to enforcement braking with a resultant benefit in 

capacity. 

  

8.4.4 Impact of ECP Brakes on Capacity 

In an ECP brake system the brake signal is transmitted instantaneously, the brake reservoirs are 

continuously charged, and the frequency of brake inspections is reduced.  ECP brakes provide 

the greatest benefit relative to current systems for trains on severe grades (FRA 2006).  Grades 

can be bottlenecks on a railroad network and ECP brakes provide improved train handling and 

reduced dwell while traveling on these grades.  On single-track lines capacity can be improved 

because less time is lost during stops and on multiple-track lines because shorter headways are 

possible.  Shorter cycles and increased terminal capacity can be achieved as well due to a 

reduction in the number of intermediate brake inspections.   

 

8.4.5 Impact of the Combination of CBTC and ECP Brakes 

The combination of CBTC and ECP brakes may allow better exploitation of the benefits that 

each offers.  It has been suggested that the data from ECP brakes will increase the accuracy of 

the braking algorithms thereby reducing the impact of enforcement braking.  Both of these 

systems increase the information available, and in combination the additional train data from 
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ECP brakes can be transmitted to the dispatcher or other relevant groups via the CBTC data 

network.  Effective use of this information will permit a railroad to more efficiently plan and 

manage its operations.  A stand-alone CBTC system will take greatest advantage of ECP brakes 

because moving blocks will permit railroads to reduce headways that ECP brakes permit without 

the need to modify signal spacing.  Since it will take time for all trains to be equipped with ECP 

brakes, a stand-alone system will permit those trains equipped with ECP brakes to follow more 

closely behind trains ahead, thereby providing incremental capacity benefits before the entire rail 

car fleet has been equipped with ECP brakes.  A related benefit of CBTC with moving block is 

that it will offer flexibility in train spacing if the train mix changes on a line, or as further 

improvements in brake system effectiveness lead to shorter stopping distance and potentially 

closer train spacing.  

 

8.5 Discussion  

CBTC and ECP brakes make the train, signal and traffic control systems more “intelligent” 

(Ditmeyer 2006).  This allows the railroad to better plan and control train movements increasing 

railroad efficiency and capacity. However, braking enforcement will not increase capacity and 

may reduce it (Moore Ede et. al. 2009, FRA 2009b).  As the implementation of these 

technologies is considered, there remain unanswered questions on their net effect on capacity.   

Although railroads are planning to implement overlay CBTC systems and are testing 

ECP–brake-equipped unit trains, there remain technical challenges.  Conservative braking 

algorithms and excessive communications delays within CBTC may reduce capacity.  Also 

moving blocks have not yet been proven to be technically feasible in the North American 

operating environment.  CBTC may permit removal of existing signal systems; however, to date 
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there is no practical alternative to track circuits for detection of broken rails.  If track circuit 

systems cannot be eliminated it may not be possible or economically justifiable to invest in a 

stand-alone CBTC system.  Some authors have argued that even if it is possible, it may not be 

advisable to implement a completely stand-alone system (Baugher 2004).   

Even when a reduction in headways is possible this may not translate into additional 

network capacity due to other capacity bottlenecks.  Headway is just one factor influencing 

capacity; other operational and infrastructure factors may continue to constrain a route.  Sidings, 

interlockings, yards, and junctions are fixed points in the network and reduced headways will not 

improve these capacity constraints.  Additionally, terminals are considered major bottlenecks in 

many railroad networks (Dirnberger 2007).  Consequently, while there may be reductions in 

over-the-road time due to CBTC and ECP brakes, increases in line capacity may not improve 

network capacity if the principal constraints are the terminals. 

When calculating the impact of these new technologies it is necessary to understand how 

their potential capacity benefits compares to what can be obtained from current systems.  With 

ECP brakes the comparative benefits of DP need to be considered.  With CBTC the current train 

control technology on a line will affect the potential benefits of the system.  In areas where there 

is no signal system or signals are widely spaced CBTC will likely increase capacity.  However, 

many of the areas that are currently facing the greatest capacity constraints are urban areas where 

the signals are closely spaced.  Lastly the incremental benefit of CBTC is dependent on the 

implementation; in some cases there may be no benefit without a stand-alone system.  
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8.6 Conclusions 

Implementation of CBTC and ECP brakes will have a direct effect on capacity.  In this analysis I 

considered each critical characteristic of these technologies with respect to their capacity.  All 

CBTC implementation types with enforcement braking have the potential for a loss of capacity; 

but, as CBTC systems become more fully integrated, the potential for capacity enhancement 

improves.  ECP brakes will provide benefits in most operational scenarios due to shorter braking 

distances.  Furthermore, CBTC may enable one of the principal benefits of ECP brakes - shorter 

stopping distances - to be more effectively and efficiently taken advantage of.   These results will 

tend to be route and network specific so individual railroads will need to conduct these analyses 

to understand the effect on their own systems. 
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CHAPTER 9: FUTURE RESEARCH AND CONCLUSIONS 

 

9.1 Future Work 

In the course of this research, several topics were identified as potential areas for further 

research. These areas are discussed in the following sections. 

 

9.1.1 Double Track Heterogeneity Study 

Chapters 5, 6 and 7 consider operations on single track; however, many of the routes with the 

greatest traffic volume have two or more tracks.  The characteristics of operations with multiple 

tracks are quite different.  Multiple tracks allow directional running thereby, eliminating meets.  

Consequently headways are a greater capacity constraint than on single track.  The different 

nature of multiple track operations means that the key factors contributing to lost capacity, and 

their relative impact due to train type heterogeneity, are also different.  Future work should 

thoroughly investigate operational approaches to improve capacity on multiple tracks. 

 

9.1.2 Sources of Delay  

The methodology used in Chapter 6 can be expanded to better understand the impact of various 

operations.  Additional work should be completed considering multiple volumes, no priorities, 

different infrastructure configurations and passenger traffic.  

 

9.1.3 Quantitative Analysis of the Impact of CBTC and ECP brakes on Capacity 

Chapter 8 is a comprehensive review of the potential effects of CBTC and ECP brakes.  

However, further work needs to be done to quantify the impact of each of these technologies on 
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capacity.  Some work was done trying to quantify the impacts of the technologies using RTC but 

further refinements to this software are needed to adequately account for the complexities of how 

these two technologies will affect capacity.  ECP brakes permit shorter braking distances and 

better handling on grades, while PTC will cause a train to brake according to an enforcement 

algorithm and not the experience of an engineer.  Therefore, in order to accurately quantify the 

impacts of these technologies the braking distance of various train types with various speeds and 

conditions must be accurate.  Additional work needs to be done developing accurate braking data 

for various train types and understanding how enforcement braking will influence train handling.   

 

9.1.4 Risk of Delays with Large Traffic Volumes and Levels of Heterogeneity 

At higher traffic volumes and heterogeneity levels the probability of large delays due to an 

unplanned event or even in the course of normal operations increases.  A route may have 

sufficient capacity for normal operations but is unstable because of its sensitivity to disruptions.  

Alternatively, greater amounts of capacity reduce the risk of train delays.  Risk can be used as 

another capacity metric and utilized to determine the cost of new traffic and the benefit of 

expanded capacity. 

 

9.1.5 Impact of Passenger Trains 

There are numerous proposals for expanded and higher speed passenger rail operations on North 

American freight railroads.  This new traffic will increase the heterogeneity of a route thereby 

increasing the delays to the remaining traffic.  An investigation into the impact of additional and 

higher speed passenger traffic on new and existing routes should be completed in order to better 

understand its disproportionate impact. 
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9.1.6 Impact of Non-Scheduled Delays 

The work done for this thesis only considers scheduled delays.  A major challenge for railroads 

is recovering from non-scheduled delays, which include mechanical and infrastructure failures as 

well as train and grade crossing accidents.  Using simulation it is possible to quantify the 

consequence of these different delays on other traffic.  This information can support further 

analysis of the benefit of various technologies and methods to reduce the likelihood of these 

events.   

 

9.2 Conclusions 

Freight railroads are increasingly facing capacity constraints (Cambridge Systematics 2007). 

Coinciding with projected increases in freight traffic are new proposals for expanded and higher 

speed passenger and commuter rail operations and the development of new technologies that 

have the potential to affect capacity.  If railroads do not prepare in advance they will have 

insufficient capacity and service quality will deteriorate and operating costs will increase.  

Railroads must understand their operations in order to effectively use existing capacity and 

efficiently plan new capacity.   

 One factor that affects railroad operations and capacity is train type heterogeneity.  

Research was conducted determining the impact of train type heterogeneity, quantifying the 

specific operations and conflicts that cause delays and possible ways to mitigate delay.  In 

Chapter 5 simulations were performed to look at the relationship between delay, volume and 

heterogeneity.  These showed that delay increases with greater levels of heterogeneity.  Further 

work was done to identify the contributing factors that cause the increased delays.  This provided 
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insight into how acceleration performance and priority together contribute to increased delays.  

Additional delays due to heterogeneity primarily accrue to lower priority trains, which often have 

the poorest operating characteristics and must make additional stops.   

Chapter 6 investigates the sensitivity of various categories of delay to heterogeneity.  For 

each conflict the delay was categorized by cause, offering insight into what types of delays are 

increased due to heterogeneity.  The work showed that the conflict that results in the most delays 

are meets and that most of the delay occurs when a train is stopped in a siding.   

 Chapter 7 uses the data gained from the previous chapters to propose various methods to 

reduce train delays.  On a single track line with wide spacing between sidings, various 

operational and infrastructure scenarios were considered.  The benefit in terms of reduction in 

delay was compared to the cost in terms of greater delays for some train types and new 

infrastructure and maintenance costs.   

 Two new technologies that have been widely discussed for their potential benefits to 

railroad capacity are communications based train control (CBTC) and electronically controlled 

pneumatic (ECP) brakes.  A comprehensive literature review of articles, papers, reports and 

regulations pertaining to each technology was conducted in order to identify the key elements of 

these technologies that will affect capacity.  Using this information the potential impacts of each 

system and the type of locations that will have the greatest impact due to these technologies were 

identified.   

 Finally, it should be emphasized that the simulation results here represent general 

relationships based on idealized conditions on a hypothetical rail line.  As such they are intended 

to provide insight on the relative importance of different factors thought to affect delay, not as 

absolute measures of capacity under the conditions described.  Specific information about a 
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particular infrastructure configuration and mixture of traffic would require a detailed study using 

appropriate data, specific to the conditions being studied.  The methods described in this paper 

could be adapted for such an analysis and this work provides insight regarding what type of 

information is needed and likely to be important in such a study. 
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