
c© 2010 Chong Jiang

PARAMETRIZED STOCHASTIC MULTI-ARMED BANDITS WITH BINARY
REWARDS

BY

CHONG JIANG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Adviser:

Professor Rayadurgam Srikant

ABSTRACT

In this thesis, we consider the problem of multi-armed bandits with a large number of

correlated arms. We assume that the arms have Bernoulli distributed rewards, independent

across arms and across time, where the probabilities of success are parametrized by known

attribute vectors for each arm, as well as an unknown preference vector. For this model,

we seek an algorithm with a total regret that is sub-linear in time and independent of the

number of arms. We present such an algorithm, which we call the Three-phase Algorithm,

and analyze its performance. We show an upper bound on the total regret which applies

uniformly in time. The asymptotics of this bound show that for any f ∈ ω(log(T)), the total

regret can be made to be O(f(T)), independent of the number of arms.

ii

To my parents, for their love and support

iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Model . 2
1.3 Prior Work . 3

CHAPTER 2 ALGORITHM AND MAIN RESULTS 5
2.1 Definitions . 5
2.2 Three-Phase Algorithm . 5
2.3 Main Results . 8
2.4 Generalizations of the Basic Model . 14

CHAPTER 3 SIMULATIONS . 16
3.1 Simulation Examples . 17
3.2 Discussion . 18

CHAPTER 4 CONCLUSIONS . 22

APPENDIX A SIMULATION CODE . 23

REFERENCES . 28

iv

CHAPTER 1

INTRODUCTION

1.1 Motivation

The stochastic multi-armed bandit problem is the following: suppose we are allowed to choose

to “pull,” or play, any one of m slot machines (also known as one-armed bandits) in each of

T timesteps, where each slot machine generates a reward according to its own distribution

which is unknown to us. Furthermore, the rewards are independent across machines, and

independent and identically distributed across time slots. The choice of which arm to pull

may be a function of the sequence of past pulls and the sequence of past rewards. If our goal

is to maximize the total reward obtained, taking expectation over the randomness of the

outcomes, ideally we would pull the arm with the largest mean at all times. However, we do

not know in advance which arm has the largest mean, so a certain amount of exploration is

required. Too much exploration, though, wastes time that could be spent reaping the reward

offered by the best arm. This exemplifies the fundamental trade-off between exploration and

exploitation present in a wide class of online machine learning problems.

We consider a model for multi-armed bandit problems in which a large number of arms are

present, where the expected rewards of the arms are coupled through an unknown param-

eter of lower dimension. That is, the reward distributions between the arms are no longer

independent. In this way, it is no longer necessary for each arm to be investigated in order

to estimate the expected reward from that arm. Instead, we can estimate the underlying

parameter; in this way, each pull can yield information about multiple arms. We present

a simple algorithm, and a bound on the expected regret for any time horizon under this

algorithm. While possibly sub-optimal, this algorithm has an asymptotic expected total re-

gret which can be bounded above by functions of time which are independent of all problem

parameters, including the number of arms.

1

This model is applicable to certain e-commerce applications: suppose an online retailer has

a large number of related products, and wishes to maximize revenue or profit coming from

a certain set of customers. If the preferences of this set of customers are known, the list of

items which are displayed can be sorted in descending order of expected revenue or profit.

However, we may not know a priori what this preference vector is, so we wish to learn online

by sequentially presenting each user with an item, observing whether the user buys the item,

and then updating an internal estimate of the preference vector. In practice, it could be

impractical to track each individual user’s preferences; partitioning the set of customers into

demographic groups and estimating each group’s preference vector may suffice.

As a concrete example, imagine an online camera store, with hundreds of different camera

models in stock. However, there are perhaps closer to ten features which people will compare

when deciding which, if any, to purchase. There are permanent features of the camera itself,

such as megapixel count, brand name, and year of introduction, as well as extrinsic features,

such as price, review scores, and item popularity. All of these features might be considered

by the customer in order to decide whether or not to buy the camera. If bought, the store

gains a profit corresponding to the item. A key distinction of our model, when compared

to previous work, is the incorporation of this inherently binary choice customers are faced

with: to buy or not to buy.

Another similar example is an online search engine, in which having the results ordered by

relevancy increases user satisfaction, as well as ad revenue from sponsored links. While the

user has some real-valued probability of clicking any given link, the primary piece of feedback

the search engine gets is whether or not the link has been clicked, again a binary decision.

1.2 Model

Our model consists of a multi-armed bandit with m arms (items) and n underlying parame-

ters (attributes), where m ≥ n, and potentially m� n. Each arm i is associated with a con-

stant n-dimensional attribute vector ui, and we assume that rank [u1, . . . , um] = n. There is

also a constant but unknown n-dimensional preference vector z∗ ∈ Rn. The quality βi = uTi z
∗

of arm i is a scalar indicating how desirable the item is to a user. The expected reward of an

arm i assuming a given z is defined as αi(z) = f
(
uTi z

)
=

1

1 + exp (−uTi z)
, ∀ i ∈ {1, . . . ,m} ;

2

thus we see that the expected rewards of all of the arms are coupled through z∗. We note

that our results are applicable to more general functions f ; we will comment more on this

later. For notational simplicity, let α∗i = αi(z
∗). Let b ∈ {1, . . . ,m− 1} denote the number

of equally best arms, so that α∗1 = α∗2 = · · · = α∗b > α∗b+1 ≥ · · · ≥ α∗m. At each timestep t

up to a finite time horizon T , a policy will choose to pull exactly one arm, call this arm Ct,

and a reward Xt will be obtained, where Xt ∼ Ber(α∗Ct
). We wish to find policies g which

maximize the total expected reward,
∑T

t=1Xt, or equivalently, minimize the expected total

regret, Eg

[∑T
t=1 (α∗1 −Xt)

]
= T · α∗1 − Eg[

∑T
t=1 α

∗
Ct

].

1.3 Prior Work

For an introduction and survey of classical multi-armed bandit problems and their variations,

see Mahajan and Teneketzis [1]. One of the earliest breakthroughs on the classical multi-

armed bandit problem came from Gittins and Jones [2], who showed that the optimal policy

assigns an index to each arm, now known as the Gittins index, and pulls the arm with the

largest Gittins index. Other proofs of this optimality have been given later by Weber [3] and

Tsitsiklis [4]. Whittle [5] proved a similar index-based result in the “restless bandit” variation

of this model, in which the arms which are not pulled also evolve in time. While these policies

greatly simplify a single m-dimensional problem into m 1-dimensional problems, it is still,

in general, too computationally complex for online learning.

Lai and Robbins [6] proved an achievable O(log T) lower bound for the expected total regret

of the stochastic multi-armed bandit problem in the case of independent arms, and they

termed algorithms which achieved the bound to be asymptotically efficient. However, the

pre-constant in the O(log T), in general, scales linearly with the number of arms. Agrawal et

al. [7,8] considered a similar model with a different parametrization of the arms, and obtained

asymptotically efficient policies in both the i.i.d. and Markov cases. Anantharam et al. [9,10]

considered another similar model with “multiple plays,” in which multiple arms are played

at each timestep, and also obtained optimal policies in both the i.i.d. and Markov cases.

Agrawal et al. [11] showed that the Lai and Robbins model, amended with the addition of

a “switching cost” to discourage frequent switching of chosen arms, still has asymptotically

efficient policies.

3

Mersereau et al. [12] proposed a model in which the expected rewards are affine functions of

a single scalar parameter z, which has some underlying continuous distribution Z. Further-

more, the set of arms is allowed to be a bounded, convex region in Rn, in which case m is

uncountably infinite. They then derived a policy whose expected total regret is Θ
(√

T
)

and

whose Bayes risk, the expectation of the regret over Z, is Θ (log T). Rusmevichientong and

Tsitsiklis [13] expanded this model to allow for a multi-variate parameter z of dimension n,

and showed that the expected total regret (ignoring log T factors) is Θ
(
n
√
T
)

, and that the

Bayes risk is Θ
(
n
√
T
)

. Dani et al. [14] independently considered a nearly identical model,

and obtained similar results.

Auer et al. [15] were the first to consider a non-stochastic version of the multi-armed bandit

problem, in which the rewards are no longer drawn from an unknown distribution, but can

instead be adversarially generated. The resultant total weak regret, calculated by comparison

with the single arm which is best over the entire time horizon, is shown to be O
(√

mT
)

.

The change from logarithmic to polynomial regret in this model is due to having rewards

which are time-dependent and potentially adversarially generated, instead of being drawn

from a time-independent distribution.

Audibert et al. [16] considered the problem of best arm identification in a stochastic multi-

armed bandit setting, but where the goal is to maximize the probability of determining the

best arm at the end of a time horizon, as opposed to the usual goal of minimizing total regret

over a time horizon. This model is useful when considering exploration and exploitation as

occurring in series, instead of in parallel. The authors’ algorithm successively rejects the

worst arm, based on empirical mean, until only the best arm remains. The probability of

error is shown to be upper bounded by a decaying exponential in T .

Auer et al. [17] investigated the finite-time regret of the multi-armed bandit problem, assum-

ing bounded but otherwise arbitrary reward distributions. Using upper confidence bound

algorithms, where the confidence interval of an arm shrinks as the arm is subjected to more

plays, they achieve a logarithmic upper bound on the regret, uniform over time, that scales

with the “gaps” between the expected rewards for the arms.

A common idea used in crafting policies to solve the multi-armed bandit problem is that of

the doubling trick [18,19]. This technique is used to convert a parametrized algorithm which

works on a time horizon T , along with its corresponding bound, into a non-parametrized

algorithm that runs forever, with an upper bound that holds uniformly over time.

4

CHAPTER 2

ALGORITHM AND MAIN RESULTS

2.1 Definitions

Let N0 = {0, 1, 2, . . .}, and N1 = {1, 2, . . .}.

Let f, g : N0 → R. We write

f(t) ∈ O (g(t)) if ∃c > 0 s.t. lim
t→∞

f(t)

g(t)
≤ c,

f(t) ∈ o (g(t)) if ∀c > 0, lim
t→∞

f(t)

g(t)
< c,

f(t) ∈ ω (g(t)) if ∀c > 0, lim
t→∞

f(t)

g(t)
> c.

Let log∗(x), the iterated logarithm, be defined by

log∗(x) =

0, if x ≤ 1

1 + log∗ (log x) , if x > 1
.

2.2 Three-Phase Algorithm

We first present an algorithmic description of a policy for the multi-armed bandit problem

described in Section 1.2. This algorithm, which we call the Three-phase Algorithm, will

depend on a scheduling function g : N1 → N0 , such that g is strictly increasing, and that

5

g(l) ∈ o (exp (k · l)) , ∀k > 0. Since g is not surjective in general, its inverse g−1 is not

defined over all of N0; however, the strict monotonicity of g allows us to define g−1 in the

following natural way: let g−1(t) = max {1,max {l ∈ N1 : g(l) ≤ t}} , ∀t ∈ N0. In Theorem

1, we will show that the expected total regret of this policy is E[RT] ∈ O (g−1(T)), with a

pre-constant which is independent of the problem parameters n, m, {ui}mi=1, and z∗.

Algorithm 1 Three-phase Algorithm

Require: g : N1 → N0, such that g is strictly increasing, and g(l) ∈ o (exp (k · l)) , ∀k > 0
Require: Σ = {σ(i)}ni=1 ⊆ {1, . . . ,m}, such that UΣ =

[
uσ(1), . . . , uσ(n)

]
has rank n.

1: t← 1, l← 1
2: qi,0 ← 0, qi,1 ← 0 ∀i ∈ Σ
3: while t ≤ T and ∃i ∈ Σ, j ∈ {0, 1} , such that qi,j = 0 do
4: Pull arm Ct ← min {i ∈ Σ : qi,0 = 0 or qi,1 = 0} and obtain reward Xt {Phase 0}
5: qCt,Xt ← qCt,Xt + 1
6: t← t+ 1
7: end while
8: loop
9: Pull arm Ct ← σ ((l − 1) (mod n) + 1) and obtain reward Xt {Phase 1}

10: qCt,Xt ← qCt,Xt + 1
11: t← t+ 1
12: Form the estimates α̂i ←

qi,1
qi,0 + qi,1

, ∀i ∈ Σ

13: Form the estimate ẑ ←
(
UT

Σ

)−1

 f−1
(
α̂σ(1)

)
...

f−1
(
α̂σ(n)

)


14: C(l) ← arg maxi∈{1,...,m} αi(ẑ)
15: for s← 1 to g(l) do
16: Pull arm Ct ← C(l) and obtain reward Xt {Phase 2}
17: t← t+ 1
18: end for
19: l← l + 1
20: end loop

The algorithm requires a selection of n arms, Σ = {σ(i)}ni=1 ⊆ {1, . . . ,m}, such that

UΣ =
[
uσ(1), . . . , uσ(n)

]
has rank n. Such a choice exists since we assume [u1, u2, . . . , um]

has rank n. The algorithm starts by pulling arms in Σ until each has yielded both a 1 and a

0. Note this takes a random, but a.s. finite number of timesteps (together called Phase 0).

After this, the algorithm proceeds in epochs. Epoch l consists of a single exploration pull

(called Phase 1) of an arm in Σ, the estimation of the underlying parameter z∗, and g(l)

exploitation pulls (called Phase 2) of the best arm given that estimate. If we impose a time

horizon of T , epochs 1, 2, . . . are appended until the time horizon T has been reached. The

6

Figure 2.1: Given a time horizon T , we partition the T timesteps into Phase 0, Phase 1,
and Phase 2 timesteps. The Phase 1 and Phase 2 timesteps are grouped into a total of
L(ω) epochs.

three phases are illustrated in Figure 2.1.

For each timestep t which is either Phase 0 or Phase 1, which implies an arm i ∈ Σ was

chosen, we increment the empirical count qi,Xt by 1. Prior to each Phase 2 timestep during

epoch l, there have already been l Phase 1 pulls. We can form empirical estimates for α∗i

based on only the Phase 0 and Phase 1 timesteps, namely α̂i,l =
qi,1

qi,0 + qi,1
, ∀i ∈ Σ. Note

that being in Phase 2 implies we have completed Phase 0, which ensures that qi,0 ≥ 1 and

qi,1 ≥ 1, and thus 0 < α̂i,l < 1.

Since f is strictly increasing and continuous, its inverse exists. Since UΣ is an n× n matrix

with full rank,
(
UT

Σ

)−1
exists. We can now form an estimate for z∗, namely

ẑ =
(
UT

Σ

)−1


f−1

(
α̂σ(1)

)
...

f−1
(
α̂σ(n)

)


and choose Ct = arg maxi∈{1,...,m} αi(ẑ).

Remark 2.2.1 In practice, LU decomposition, instead of matrix inversion, can be used to

solve for ẑ. Also, since f is strictly increasing, the estimated best arm in epoch l, C(l), can

be computed as arg maxi∈{1,...,m}
(
uTi ẑ

)
.

We shall point out some of the ideas behind this algorithm. First, the algorithm is defined to

run indefinitely; to obtain the total regret for any finite time horizon T , we simply terminate

the algorithm when timestep T has been reached. This achieves the same outcome as an

application of the doubling trick, in that the algorithm is not dependent on a time horizon

7

T . Our algorithm is similar to the algorithm UCB2 of [17]. The main difference is that

in our exploration phases, the choice of arm exploits the correlation model that we have

assumed in our problem. Furthermore, as we will see later, unlike UCB2, the lengths of the

exploitation phases are chosen to grow sub-exponentially in the epoch number in order to

obtain a regret bound that grows (slightly larger than) logarithmically in the time horizon.

As we gain more information and are able to estimate z∗ more accurately, we can spend a

greater fraction of timesteps exploiting the arm we think is best; this is achieved by choosing

a suitable scheduling function g to control the ratio of the number of exploitation (Phase 2)

pulls versus exploration (Phase 1) pulls, as a function of the epoch number l.

2.3 Main Results

Note that there is only randomness in {Xt}Tt=1, since the Three-phase Algorithm is otherwise

deterministic. We will use ω to denote the sample-paths of {Xt}Tt=1. Let L (ω) denote the

number of Phase 1 timesteps up until time T , or equivalently, the number of epochs (including

partial epochs, as the final one may be truncated), for a given sample-path ω.

Let Ri,T (ω) be the total regret up to timestep T in the Phase i timesteps for a sample-path

ω. Now, let RT (ω) = R0,T (ω) +R1,T (ω) +R2,T (ω), the total regret up to timestep T for a

sample-path ω. Our goal is to find an upper bound on E [RT], the expected total regret. In

particular, we are interested in the asymptotic behavior of the upper bound as T →∞.

Lemma 2.3.1 For the Three-phase Algorithm, we have the following bound on the expected

total Phase 0 regret up to timestep T :

E [R0,T] ≤α∗1
∑
i∈Σ

[
1

α∗i (1− α∗i)

]
.

Proof:

Note that E [R0,T] ≤ α∗1E
[∑

i∈Σ Wi

]
, where Wi ∼ Geo (α∗i) + Geo (1− α∗i) is the time it

8

takes to first observe a 1 and subsequently observe a 0 from an arm i ∈ Σ. Thus,

E [R0,T] ≤α∗1
∑
i∈Σ

[(
1

α∗i
+

1

1− α∗i

)]
=α∗1

∑
i∈Σ

[
1

α∗i (1− α∗i)

]
.

�

Lemma 2.3.2 For the Three-phase Algorithm, we have the following bound on the expected

total Phase 1 regret up to timestep T :

E [R1,T] ≤
(
α∗1 −

1

n

∑
i∈Σ

α∗i

)
· (E[L] + n) .

Proof:

E [R1,T] =E

L(ω)∑
l=1

[
α∗1 − α∗σ((l−1)(mod n)+1)

]
≤

E[bL(ω)
n c+1]∑
l=1

(
α∗1n−

∑
i∈Σ

α∗i

)

≤
(
α∗1 −

1

n

∑
i∈Σ

α∗i

)
· (E[L] + n) .

�

Lemma 2.3.3 For the Three-phase Algorithm, for a given choice of scheduling function g,

we have the following bound on the expected total Phase 2 regret up to timestep T :

E [R2,T] ≤ α∗1

L′−1∑
l=1

[
2n exp

(
− l
n
· γ
)
g(l)

]
+
α∗1
2
E[L],

where L′ is a constant which depends on n, {ui}mi=1, and z∗.

9

Figure 2.2: As an example, consider a scenario with n = 2 and m = 3. The arms {ui}3
i=1

and the preference vector z∗ are located at the indicated points. The shaded region is A.

Proof: Recall that α∗i = f
(
uTi z

∗), where f (β) =
1

1 + exp (−β)
is strictly increasing and

continuous. Thus f−1 is well defined, strictly increasing and continuous. Since α∗1 = α∗2 =

· · · = α∗b > α∗b+1 ≥ · · · ≥ α∗m, and because f
(
uTi z

)
is continuous in z and defined over Rn, it

follows that there exists a neighborhood of z∗, denoted A, such that arg maxi∈{1,...,m} αi(z) ∈
{1, . . . , b}, ∀z ∈ A. Since UΣ is full rank, A must contain an open parallelotope centered at

z∗, Bz∗ (δ) =
{
z :
∥∥UT

Σ z − UT
Σ z
∗
∥∥
∞ < δ

}
, where δ > 0 and is largest possible. An example

of the problem parameters and the induced region A is shown in Figure 2.2.

Consider any z ∈ Bz∗ (δ). By definition, |uTi z − uTi z∗| < δ, ∀i ∈ Σ. This is equivalent to

|f−1 (αi(z))− f−1 (α∗i)| < δ, ∀i ∈ Σ. Since f−1 is continuous, this is equivalent to having

a set of constants {αi, αi}i∈Σ, such that αi < αi(z) < αi, where αi = f (f−1 (α∗i)− δ) and

αi = f (f−1 (α∗i) + δ), ∀i ∈ Σ.

For a Phase 2 timestep during epoch l, the algorithm forms the empirical average rewards

α̂i, ∀i ∈ Σ. If it is the case that αi < α̂i < αi, ∀i ∈ Σ, then by the discussion above,

ẑ ∈ Bz∗(δ) ⊆ A, and hence, Ct = arg maxi∈{1,...,m}{uTi ẑ} ∈ {1, . . . , b}, and we will have

chosen one of the best arms, accumulating zero regret.

10

Note that during epoch l, we have that qi,0+qi,1 ≥ 2+

⌊
l

n

⌋
≥ l

n
, ∀i ∈ Σ, where the first term

is due to the Phase 0 pulls and the second term is due to the Phase 1 pulls. Furthermore,

during epoch l, α̂i is a sum of qi,0 + qi,1 i.i.d. Ber (α∗i) random variables, ∀i ∈ Σ. By the

Chernoff bound,

P (α̂i < αi) ≤ exp [− (qi,0 + qi,1) ·D (αi||α∗i)] ≤ exp

[
− l
n
·D (αi||α∗i)

]
, and

P (α̂i > αi) ≤ exp [− (qi,0 + qi,1) ·D (αi||α∗i)] ≤ exp

[
− l
n
·D (αi||α∗i)

]
, ∀i ∈ Σ,

where D (p||q) = p · log
p

q
+ (1− p) · log

1− p
1− q is the K-L divergence between two Bernoulli

distributions.

Let γ = mini∈Σ min {D (αi||α∗i) , D (αi||α∗i)}. Note that from the definitions of αi and αi, it

follows that αi < α∗i < αi, ∀i ∈ Σ. Since D (p||q) = 0 ⇐⇒ p = q, we have that γ > 0.

By the union bound, P (∃i ∈ Σ : α̂i /∈ (αi, αi)) ≤ 2n exp

(
− l
n
· γ
)

.

Reviewing the chain of implications, we have

P (ẑ /∈ A) ≤P (ẑ /∈ Bz∗(δ))

=P
(∥∥UT

Σ ẑ − UT
Σ z
∗∥∥
∞ > δ

)
=P

(
∃i ∈ Σ :

∣∣uTi z − uTi z∗∣∣ > δ
)

=P
(
∃i ∈ Σ :

∣∣f−1 (α̂i)− f−1 (α∗i)
∣∣ > δ

)
=P (∃i ∈ Σ : α̂i /∈ (αi, αi))

≤2n exp

(
− l
n
· γ
)
.

Then, we have a bound on the expected per-timestep regret r2,l during epoch l:

E [r2,l] =E [r2,l|ẑ ∈ A] · P (ẑ ∈ A) + E [r2,l|ẑ /∈ A] · P (ẑ /∈ A)

≤0 · P (ẑ ∈ A) + α∗1 · P (ẑ /∈ A)

≤2α∗1n exp

(
− l
n
· γ
)
.

11

We can now find the expected total regret in the phase 2 times up to time T :

E [R2,T] =E

L(ω)∑
l=1

r2,l · g(l)


=

E[L]∑
l=1

[E [r2,l] · g(l)]

≤
E[L]∑
l=1

[
2α∗1n exp

(
− l
n
· γ
)
g(l)

]

=
L′−1∑
l=1

[
2α∗1n exp

(
− l
n
· γ
)
g(l)

]
+

E[L]∑
l=L′

[
2α∗1n exp

(
− l
n
· γ
)
g(l)

]

≤α∗1
L′−1∑
l=1

[
2n exp

(
− l
n
· γ
)
g(l)

]
+

E[L]∑
l=L′

α∗1
2

≤α∗1
L′−1∑
l=1

[
2n exp

(
− l
n
· γ
)
g(l)

]
+
α∗1
2
E[L]

where L′ = max

{
l : 2n exp

(
− l
n
γ

)
g(l) >

1

2

}
is a parameter which depends on n, {ui}mi=1,

and z∗ (and is therefore unknown to the algorithm). However, since we have assumed

g(l) ∈ o (exp (k · l)) ∀k > 0, it follows that liml→∞

[
2n exp

(
− l
n
· γ
)
g(l)

]
= 0 , and thus

L′ is finite. Therefore, the sum
∑L′−1

l=1

[
2n exp

(
− l
n
· γ
)
g(l)

]
is well defined.

�

Theorem 2.3.4 For the Three-phase Algorithm, we have the following asymptotic bound on

the expected total regret up to timestep T : E [RT] = O (g−1(T)).

Proof:

Let us break down the total time T as T = T0(ω)+T1(ω)+T2(ω), where Ti(ω) is the number of

timesteps in Phase i for sample-path ω. Note that for all sample-paths ω in which L (ω) ≥ 2,

we have that g (L (ω)− 1) ≤ T , where the left side counts the number of Phase 2 timesteps

in the penultimate epoch. Thus, L (ω) ≤ g−1(T) + 1, and hence, E[L] ≤ g−1(T) + 1.

12

Using Lemmas 2.3.1, 2.3.2, and 2.3.3,

E[RT] = E[R0,T +R1,T +R2,T] ≤ K +

(
3

2
α∗1 −

1

n

∑
i∈Σ

α∗i

)
g−1(T) ∈ O

(
g−1(T)

)
,

where

K =α∗1
∑
i∈Σ

[
1

α∗i (1− α∗i)

]
+

(
α∗1 −

1

n

∑
i∈Σ

α∗i

)
· (n+ 1)

+ α∗1

L′−1∑
l=1

[
2n exp

(
− l
n
· γ
)
g(l)

]
+
α∗1
2

is a constant which depends on n, {ui}mi=1, and z∗ (and is therefore unknown to the algo-

rithm), but is finite for any valid set of problem parameters. Note that K does not depend

on T , and is therefore O(1); thus the asymptotic expected total regret is O (g−1(T)).

�

Corollary 2.3.5 If g−1(t) ∈ ω (log(t)), then g is a valid scheduling function for the Three-

phase Algorithm.

Proof: Since g−1(t) ∈ ω (log(t)), by definition, limt→∞
g−1(t)

k · log(t)
> 1, ∀k > 0. Equivalently,

limt→∞
k1 · g−1(t)

log(t)
>

1

k2

, ∀k1, k2 > 0.

Since g : N1 → N0 is strictly increasing, liml→∞ g(l) = ∞. Also, note that by construction,

∀l ∈ N1, g−1(g(l)) = l. Thus, we can make the substitution t = g(l),

liml→∞
k1 · g−1(g(l))

log(g(l))
= limt→∞

k1 · l
log(g(l))

= limt→∞
exp(k1 · l)

g(l)
>

1

k2

,

Hence limt→∞
g(l)

exp(k1 · l)
< k2. Thus, ∀k1 > 0, g(l) ∈ o(exp(k1 · l)), and g is therefore a valid

scheduling function, as desired.

�

13

Corollary 2.3.6 An expected total regret of E[RT] ∈ O (log(T) · log∗(T)) is achievable with

the Three-phase Algorithm.

Proof: Pick gLLS(l) = max {t ∈ N1 : log(t) · log∗(t) ≤ l}. Now, g−1
LLS(t) = blog(t) · log∗(t)c,

so limt→∞
g−1
LLS(t)

log(t)
= limt→∞ log∗(t) → ∞. Thus, gLLS ∈ ω (log(t)) is a valid scheduling

function for the Three-phase Algorithm, and a expected total regret of E[RT] ∈ O (g−1(T)) ⊆
O (log(T) · log∗(T)) is achievable.

�

Remark 2.3.7 In accordance with other results, such as [6], we suspect this problem has a

lower bound that is asymptotically c·(log(T)), where c is dependent on the problem parameters

n, {ui}mi=1, and z∗. If this is the case, then by including the term log∗(T), we are able to

obtain an upper bound which is not tight, but within a factor of log∗(T); however, this allows

us to gain simplicity, in the sense that our pre-constant is 3
2
, independent of the problem

parameters.

2.4 Generalizations of the Basic Model

2.4.1 Arm-Dependent Rewards

Suppose that each arm i has a potentially different value of the reward, so that instead of a

{0, 1} reward, it has a {0, wi} reward. Furthermore, suppose that {wi}mi=1 is known. Now,

Xt ∼ wCt · Ber
(
α∗Ct

)
instead of Xt ∼ Ber

(
α∗Ct

)
. Let the indices of the arms be sorted by

decreasing expected reward wiα
∗
i .

Then, we can generalize Theorem 2.3.4 with only minor modifications to the proof, namely,

E[RT] = E[R0,T +R1,T +R2,T] ≤ K ′ +

(
3

2
w1α

∗
1 −

1

n

∑
i∈Σ

wiα
∗
i

)
g−1(T) ∈ O

(
g−1(T)

)
,

14

where

K ′ =w1α
∗
1

∑
i∈Σ

[
1

α∗i (1− α∗i)

]
+

(
w1α

∗
1 −

1

n

∑
i∈Σ

wiα
∗
i

)
· (n+ 1)

+ w1α
∗
1

L′−1∑
l=1

[
2n exp

(
− l
n
· γ
)
g(l)

]
+
w1α

∗
1

2
.

Thus, Corollary 2.3.6 is unchanged with the addition of arm-dependent rewards.

2.4.2 Generalized Functional Dependency on Quality

If we generalize the definition of the expected reward of an arm i assuming a preference

vector z to be αi(z) = fi
(
uTi z

)
, ∀i ∈ {1, . . . ,m}, with the condition that fi(β) : R→ (0, 1)

is strictly increasing and continuous, but otherwise arbitrary, all of the discussion above still

holds. The algorithm only needs a slight modification in the formation of the estimate ẑ,

which is now

ẑ =
(
UT

Σ

)−1


f−1
σ(1)

(
α̂σ(1)

)
...

f−1
σ(n)

(
α̂σ(n)

)
 .

15

CHAPTER 3

SIMULATIONS

The Three-phase Algorithm has been implemented in F# 2.0, and several simulations were

run in order to observe its empirical behavior. We will use the following set of problem

parameters as a nominal experiment:

n = 2, m = 4, f(β) =
1

1 + exp(−β)
, {u1, . . . , um} =

{
2 1 0.7 0

0 0 0.3 1

}
, z∗ = {0.5, 0.4}.

The following set of nominal parameters was provided to Algorithm 1, unless noted otherwise:

T = 108, g(l) = l2, Σ = {2, 4}.

Each plot below shows the empirical average of the total pseudo-regret over 1000 sample-

paths ω. That is, for each sample-path ω and each t ≤ T , we compute the total pseudo-

regret Rt(ω) =
∑t

s=1 α
∗
Cs(ω). This is the average of Rt over all sample-paths with the same

sequence of chosen arms {Cs(ω)}ts=1. Next, we compute an empirical average of the total

pseudo-regret, R̂t =
1

1000

∑1000
i=1 Rt(ωi). Note that Rt and R̂t are unbiased estimators of

E [Rt], when expectation is taken over all sample-paths ω. We plot this instead of expected

total regret due to computational limitations.

16

3.1 Simulation Examples

Dependence on scheduling function g

The Three-phase Algorithm was run on the nominal problem parameters, with the following

scheduling functions: g(l) = la for each a in {1.5, 2, 3}, and g(l) = gLLS(l), as defined in

Remark 2.3.6. The results are shown in Figure 3.1.

Dependence on gap α∗1 − α∗2

The Three-phase Algorithm was run on the nominal problem parameters, with the nominal

set of arms {ui}mi=1, as well as with the nominal {ui}mi=1 with (0, 2.45) inserted as u2. The

gaps α∗1 − α∗2 are 0.109 and 0.004, respectively. The results are shown in Figure 3.2.

Dependence on Σ

The Three-phase Algorithm was run on the nominal problem parameters, with the sets

of selected arms Σ = {2, 4} and Σ = {3, 4}. The corresponding UΣ are

(
1 0

0 1

)
and(

0.7 0

0.3 1

)
, respectively. The results are shown in Figure 3.3.

Dependence on m

The Three-phase Algorithm was run on the nominal problem parameters, with the nominal

set of arms {ui}mi=1, as well as with the {ui}mi=1 when 1000 other arms are inserted uniformly

at random from [0, 1]2 ∩
{
u : uT z∗ < 1

}
. The results are shown in Figure 3.4.

17

10
0

10
2

10
4

10
6

10
8

10
0

10
2

10
4

10
6

Timestep (t)

E
m

pi
ri
ca

lt
ot

al
ps

eu
do

-r
eg

re
t

(R̂
t
)

g(l) = l1.5

g(l) = l2

g(l) = l3

g(l) = gLLS (l)

Figure 3.1: Empirical total pseudo-regret vs. timestep, with varying scheduling function g.

3.2 Discussion

In each of the plots, we see the effect of Phase 0, in that the first 80 or so timesteps accumulate

linear regret (having slope 1 in our log-log plots), after which there is eventually sub-linear

regret (slope < 1 in log-log).

In example 1, we see that the faster the scheduling function g grows, the worse its short

time horizon performance. This is readily understandable, as a fast-growing g will take more

timesteps to explore and estimate z∗ to any particular confidence. Such a scheduling function

will accumulate more regret over short time horizons, before becoming superior as T →∞.

In example 2, we see that a smaller gap α∗1 − α∗2 results in lower regret for short time-

horizons. Since our algorithm does not have to explore arms 1 and 2 in order to estimate

z∗, the difference arises only in selecting the estimated best arm in Phase 2. With a smaller

gap, poor estimations ẑ which do not lie in the region A may often cause a nearly-optimal

arm to be pulled, incurring only small regret.

18

10
0

10
2

10
4

10
6

10
8

10
0

10
2

10
4

10
6

Timestep (t)

E
m

pi
ri
ca

lt
ot

al
ps

eu
do

-r
eg

re
t

(R̂
t
)

α1 − α2 = 0.004
α1 − α2 = 0.109

Figure 3.2: Empirical total pseudo-regret vs. timestep, with varying gap α∗1 − α∗2.

In example 3, we see that the choice of Σ affects the resultant regret. This is expected, since

our nominal choice of Σ = {2, 4} yields an orthogonal UΣ. Another choice of Σ which has

a smaller minimum eigenvalue would imply slower estimation of z∗ in the direction of the

corresponding eigenvector.

In example 4, we see that the addition of sub-optimal arms has little effect on the short

time-horizon regret. As only the selection of the estimated best arm in Phase 2 is affected,

the dependence of the regret on m is indirectly through introduction of arms which reduce

the region A.

These results are in line with our expectations of the algorithm; we see two main factors

controlling the rate at which ẑ converges to z∗, which in turn controls the short time horizon

regret. First, the region A ⊂ Rn, the set of z for which the best arm is one of the actual

best arms assuming z∗, is a crucial property of the problem parameters. For narrow A, it is

very difficult to estimate ẑ to be within A, and hence we expect to accumulate linear regret

in the short time horizon. Such an A occurs when sub-optimal arms are in close proximity

(in terms of their attribute vectors {u1, . . . , um}) to the best arms. Second, the choice of

19

10
0

10
2

10
4

10
6

10
8

10
0

10
2

10
4

10
6

Timestep (t)

E
m

pi
ri
ca

lt
ot

al
ps

eu
do

-r
eg

re
t

(R̂
t
)

Σ = {3,4}
Σ = {2,4}

Figure 3.3: Empirical total pseudo-regret vs. timestep, with varying Σ.

Σ, which we provide to the algorithm without knowledge of z∗, also affects the convergence

rate of ẑ. In particular, the components of z∗ along the eigenvectors corresponding to small

eigenvalues are estimated more slowly. Hence, whenever possible, Σ should be chosen to

comprise an orthogonal set of arms.

20

10
0

10
2

10
4

10
6

10
8

10
0

10
2

10
4

10
6

Timestep (t)

E
m

pi
ri
ca

lt
ot

al
ps

eu
do

-r
eg

re
t

(R̂
t
)

m = 1004
m = 4

Figure 3.4: Empirical total pseudo-regret vs. timestep, with varying number of arms m.

21

CHAPTER 4

CONCLUSIONS

We have proposed a class of parametrized multi-armed bandit problems, in which the reward

distribution is Bernoulli and independent across arms and across time, with a parameter that

is a non-linear function of the scalar quality of an arm. The real-valued quality is an inner

product between the unknown preference and known attribute vectors. Under this model,

we are able to capture the fundamentally binary choice inherent in certain online machine

learning problems. Our proposed algorithm can be implemented efficiently, and is nearly

optimal in the sense that its asymptotic expected total regret can be made to be O (g−1(T)),

for any function g−1(T) ∈ ω (log(T)). This is in contrast to the O (m log(T)) bound of Lai

and Robbins, and the O
(
n
√
T
)

, large-m bound of Mersereau et al.

Several extensions to this work are possible. For example, if z∗ is allowed to be time depen-

dent, would it still be possible to estimate z∗ in an online fashion, and obtain an asymptotic

regret that is close to log(T)? And what if {ui}mi=1 is allowed to be time dependent? Another

extension is to multiple plays: If the user pulls d arms at every timestep, with the reward

being some function of the d Bernoulli outcomes, how would the asymptotic expected total

regret scale with d? Finally, we are also interested in characterizing the short time-horizon

performance of the Three-phase Algorithm, through optimization of the Σ and g parameters.

22

APPENDIX A

SIMULATION CODE

The F# 2.0 code for performing the simulations is included below.

Listing A.1: Algorithm1.fs

1 m o d u l e Algorithm1

open System

open System . IO

open System . Linq

6 open Microso f t . FSharp . Co l l e c t i o n s

// note : T, C, Cl , sigma are 1−indexed

// pX i s the pseudo−reward

11 l et pr intmatr ix (m : matrix) =

l et (x , y) = m. Dimensions

l et m2 = m. ToArray2D ()

f o r i in 0 . . x−1 do

f o r j in 0 . . y−1 do

16 Console . Write (m2 . [i , j] . ToString () + ” ”)

done

Console . WriteLine ()

done

21 l et pr in ta r ray (a : ’ a []) =

f o r (i : i n t) in 0 . . (a . Length − 1) do

Console . Write (a . [i] . ToString () + ” ”)

done

Console . WriteLine ()

26

l et Algorithm1 T a (sigma : i n t l i s t) f f Inv

(problemParams : i n t ∗ i n t ∗ matrix ∗ vector) gFloor (sampleTimeArray : i n t []) seed =

//Console . WriteLine (” beg inning seed : ” + seed . ToString ())

31 l et rand = Random seed

l et (n , m, U, z) = problemParams

l et uSigma = Array2D . i n i t n n (fun i j −> U. [i , sigma . [j]−1])

36 l et uSigmaMNM = MathNet . Numerics . LinearAlgebra . Matrix . Create (uSigma)

uSigmaMNM. Transpose ()

l et uSigmaTransposeLUD = MathNet . Numerics . LinearAlgebra . LUDecomposition (uSigmaMNM)

// rank check

41 i f not uSigmaTransposeLUD . IsNonSingular then

f a i l w i t h ”uSigma cannot be s i n gu l a r ”

l et mutable t = 1

l et mutable l = 1

46 l et q0 = Array . zeroCreate n

l et q1 = Array . zeroCreate n

l et alpha = Array .map f ((U. Transpose ∗ z) . ToArray ())

l et mutable C = 0

51 l et mutable X = f a l s e

23

l et mutable pX = 0.0

l et mutable pXTot = 0.0

l et mutable sampleValueList= []

l et mutable Cl = 0

56

l et e i t h e r (x : i n t Option) (y : i n t Option) =

match (x , y) with

Some x , −> Some x

| , Some y −> Some y

61 | , −> None

l et sample more = Seq . mapi (fun i x −> i f 1 > x then Some i else None)

while ((t <= T) && ((Array . e x i s t s ((>) 1) q0) | | (Array . e x i s t s ((>) 1) q1))) do

66 l et idx =

match Seq . t ryPick id (Seq .map2 e i t h e r (sample more q0) (sample more q1)) with

Some id −> id

| None −> f a i l w i t h ” unreachable ”

71 C <− sigma . [idx]

pX <− alpha . [C − 1]

pXTot <− pXTot + pX

X <− rand . NextDouble () < pX

i f X then

76 q1 . [idx] <− q1 . [idx] + 1

else

q0 . [idx] <− q0 . [idx] + 1

i f sampleTimeArray . Contains t then

81 sampleValueList<− pXTot : : sampleValueList

t <− t + 1

done

while (t <= T) do

86 l et idx = (l − 1) % n

C <− sigma . [idx]

pX <− alpha . [C − 1]

pXTot <− pXTot + pX

X <− rand . NextDouble () < pX

91 i f X then

q1 . [idx] <− q1 . [idx] + 1

else

q0 . [idx] <− q0 . [idx] + 1

96 i f sampleTimeArray . Contains t then

sampleValueList<− pXTot : : sampleValueList

t <− t + 1

l et alphaSigmaHat = Array .map2 (fun e0 e1 −> f l o a t (e1) / f l o a t (e0 + e1)) q0 q1

101 l et betaSigmaHat = Array .map f Inv alphaSigmaHat

l et betaSigmaHatMNV = MathNet . Numerics . LinearAlgebra . Vector betaSigmaHat

// betaSigmaHat i s a column vector when mapped in to a matrix

l et betaSigmaHatMNM = MathNet . Numerics . LinearAlgebra .

Matrix . CreateFromColumns [| betaSigmaHatMNV |]
106 l et zHatMNM = uSigmaTransposeLUD . Solve (betaSigmaHatMNM)

l et zHat = vector ((zHatMNM. GetColumnVector 0) . ToArray ())

l et betaHat = (U. Transpose ∗ zHat) . ToArray ()

l et betaHatMax = Array .max betaHat

Cl <− (Array . f indIndex ((=) betaHatMax) betaHat) + 1

111

l et s = Math . Min(gFloor l a , T − t + 1)

f o r i in 1 . . s do

C <− Cl

116 pX <− alpha . [C − 1]

pXTot <− pXTot + pX

i f sampleTimeArray . Contains t then

sampleValueList<− pXTot : : sampleValueList

t <− t + 1

121 done

l <− l + 1

done

l et sampleValueArray = sampleValueList . Reverse () . ToArray ()

24

126 l et regretArray = Array .map2 (fun t v −>

alpha . [0] ∗ f l o a t (t) − v) sampleTimeArray sampleValueArray

regretArray

l et createSampleTimeArray T =

131 l et mutable sampleTimeList = []

l et mutable t = 1 .0

l et mantissa = 1 .5

while i n t (t) < T do

i f sampleTimeList . IsEmpty | | not (i n t (t) = sampleTimeList . Head) then

136 sampleTimeList <− i n t (t) : : sampleTimeList

t <− t ∗ mantissa

done

i f not (T = sampleTimeList . Head) then

sampleTimeList <− T : : sampleTimeList

141 sampleTimeList . Reverse () . ToArray ()

l et JSONencode (sampleTimeArray : i n t []) (regretArray : f l o a t []) =

”{” + ”\” t\” : [” + St r ing . Join (” , ” , sampleTimeArray) + ”] , ”

+ ”\” r e g r e t \” : [” + Str ing . Join (” , ” , regretArray) + ”]} ”

146

l et ExportData f i l ename (j s onSt r : s t r i n g) =

l et f = F i l e . CreateText (f i l ename)

f . WriteLine (j s onSt r)

f . Flush ()

151 f . Close ()

l et RunExperiment T a sigma f f Inv problemParams gFloor numSamples outputFileName =

l et sampleTimeArray = createSampleTimeArray T

156 l et regretArrayPSeq = PSeq . i n i t numSamples (fun seed −>

Algorithm1 T a sigma f f Inv problemParams gFloor sampleTimeArray seed)

l et addArray = Array .map2 (+)

l et tota lRegretArray = PSeq . reduce addArray regretArrayPSeq

161 l et avgRegretArray = Array .map (fun e −> e / f l o a t (numSamples)) tota lRegretArray

l et j s onSt r = JSONencode sampleTimeArray avgRegretArray

ExportData outputFileName j sonSt r

Listing A.2: RunAllExperiments.fs

1 m o d u l e RunAllExperiments

open System

l et SetupAllExperiments =

6

l et generateOutputFileName problemParamsName gName numSamples T a sigma =

// we w i l l always use a T that i s a power of 10

l et numZeros = Math . Log10 (f l o a t T) |> round

problemParamsName + ” ” + gName + ” ” + numSamples . ToString () + ” 1e ”

11 + numZeros . ToString () + ” ” + a . ToString () + ” ”

+ Str ing . Join (” , ” , L i s t .map (fun x −> x . ToString ()) sigma) + ” . txt ”

l et mutable exper iments = []

16 l et canonica lF beta =

1 . 0 / (1 . 0 + Math . Exp(−1.0 ∗ beta))

l et canonica lFInv alpha =

Math . Log (alpha / (1 . 0 − alpha))

21

l et rec l ogS ta r x =

// a l l x < 10ˆ1656520 have l ogSta r x <= 4

match x with

| x when x <= 1 −> 0

26 | x when x <= 2 −> 1

| x when x <= 15 −> 2

| x when x <= 3814279 −> 3

| −> 4

31 l et gFloorLogTLogStarTInv x =

25

(Math . Log (f l o a t x)) ∗ f l o a t (l ogSta r x)

l et gFloorLogTLogStarT l a =

l et mutable t = 1

36 while gFloorLogTLogStarTInv t <= f l o a t l do

t <− t + 1

done

t − 1

41 l et gFloorLPowA l a =

Math .Pow(f l o a t l , a) |> i n t

l et mutable T = in t 1e8

l et mutable a = 2 .0

46 l et mutable sigma = [2 ; 4]

l et mutable numSamples = 1000

l et f = canonica lF

l et f Inv = canonica lFInv

l et mutable outputFileName = ”output . txt ”

51

l et problemParamsBasic =

l et n = 2

l et m = 4

l et UTranspose = matrix [[2 . 0 ; 0 . 0] ;

56 [1 . 0 ; 0 .0] ;

[0 . 7 ; 0 .3] ;

[0 . 0 ; 1 .0]]

l et U = UTranspose . Transpose

l et z = vector [0 . 5 ; 0 .4]

61 (n , m, U, z)

l et problemParamsSmallGap =

l et n = 2

l et m = 5

66 l et UTranspose = matrix [[2 . 0 ; 0 . 0] ;

[0 . 0 ; 2 .45] ;

[1 . 0 ; 0 .0] ;

[0 . 7 ; 0 .3] ;

[0 . 0 ; 1 .0]]

71 l et U = UTranspose . Transpose

l et z = vector [0 . 5 ; 0 .4]

(n , m, U, z)

l et problemParamsLargeM =

76 l et n = 2

l et m = 1004

l et mutable UTranspose = [[2 . 0 ; 0 . 0] ;

[1 . 0 ; 0 .0] ;

81 [0 . 7 ; 0 .3] ;

[0 . 0 ; 1 .0]]

l et z = vector [0 .5 ; 0 .4]

86 l et rand = Random 1

while UTranspose . Length < m do

let x = rand . NextDouble ()

l et y = rand . NextDouble ()

l et beta = (vector [x ; y]) . Transpose ∗ z

91 i f beta < 1 .0 then

UTranspose <− [x ; y] : : UTranspose

done

l et sortByBeta = (fun (x : f l o a t l i s t) −> −1.0 ∗ ((vec tor x) . Transpose ∗ z))

l et UTransposeSorted = L i s t . sortBy sortByBeta UTranspose

96

// f i nd the p o s i t i o n s of [1 . 0 ; 0 . 0] and [0 . 0 ; 1 . 0]

l et betaArray = Seq .map sortByBeta UTranspose |> Array . ofSeq

l et i n d i c e s = Array . i n i t betaArray . Length id

System . Array . Sort (betaArray , i n d i c e s)

101 l et sigma = [(Array . f indIndex ((=) (m−3)) i n d i c e s) + 1 ;

(Array . f indIndex ((=) (m−1)) i n d i c e s) + 1]

// Console . WriteLine (sigma)

// Console . ReadLine () |> i gnore

i f not (sigma = [4 0 7 ; 606]) then

26

106 f a i l w i t h ” largeM sigma mismatch”

l et U = (matrix UTransposeSorted) . Transpose

(n , m, U, z)

111 // experiment to look at dependency on cho i c e of a

// t h i s i s the nominal experiment

a <− 2 .0

outputFileName <− generateOutputFileName ”Basic ” ” l ˆa” numSamples T a sigma

116 exper iments <− (T, a , sigma , f , f Inv , problemParamsBasic , gFloorLPowA ,

numSamples , outputFileName) : : exper iments

a <− 1 .5

outputFileName <− generateOutputFileName ”Basic ” ” l ˆa” numSamples T a sigma

121 exper iments <− (T, a , sigma , f , f Inv , problemParamsBasic , gFloorLPowA ,

numSamples , outputFileName) : : exper iments

a <− 3 .0

outputFileName <− generateOutputFileName ”Basic ” ” l ˆa” numSamples T a sigma

126 exper iments <− (T, a , sigma , f , f Inv , problemParamsBasic , gFloorLPowA ,

numSamples , outputFileName) : : exper iments

// experiment to look at dependency on cho i c e of sigma (c f . nominal)

a <− 2 .0

131 sigma <− [3 ; 4]

outputFileName <− generateOutputFileName ”Basic ” ” l ˆa” numSamples T a sigma

exper iments <− (T, a , sigma , f , f Inv , problemParamsBasic , gFloorLPowA ,

numSamples , outputFileName) : : exper iments

136 // experiment to look at dependency on gap alpha 1 − a lpha 2 (c f . nominal)

sigma <− [3 ; 5]

outputFileName <− generateOutputFileName ”SmallGap” ” l ˆa” numSamples T a sigma

exper iments <− (T, a , sigma , f , f Inv , problemParamsSmallGap , gFloorLPowA ,

numSamples , outputFileName) : : exper iments

141

// experiment to look at l a r g e m (c f . nominal)

sigma <− [4 0 7 ; 606]

outputFileName <− generateOutputFileName ”LargeM” ” l ˆa” numSamples T a sigma

exper iments <− (T, a , sigma , f , f Inv , problemParamsLargeM , gFloorLPowA ,

146 numSamples , outputFileName) : : exper iments

// experiment to look at LogTLogStarT schedu l ing (c f . nominal)

sigma <− [2 ; 4]

outputFileName <− generateOutputFileName ”Basic ” ”LogTLogStarT” numSamples T a sigma

151 exper iments <− (T, a , sigma , f , f Inv , problemParamsBasic , gFloorLogTLogStarT ,

numSamples , outputFileName) : : exper iments

exper iments

156 l et RunAllExperiments exper iments =

l et ou tpu t f o l d e r = ””

f o r exp in exper iments do

let (T, a , sigma , f , f Inv , problemParams , gFloor , numSamples , outputFileName) = exp

161 Console . WriteLine (”Beginning experiment ” + outputFileName)

i f not (System . IO . F i l e . Ex i s t s (ou tpu t f o l d e r + outputFileName)) then

let stopwatch = System . Diagnos t i c s . Stopwatch . StartNew ()

stopwatch . Star t ()

Algorithm1 . RunExperiment T a sigma f f Inv problemParams

166 gFloor numSamples (ou tpu t f o l d e r + outputFileName)

Console . WriteLine (”Time taken to run experiment ” + outputFileName

+ ” : ” + stopwatch . Elapsed . TotalSeconds . ToString () + ” seconds ”)

else

Console . WriteLine (”Experiment ” + outputFileName + ” was skipped ”)

171 ()

l et exper iments = L i s t . toArray SetupAllExperiments

l et p = System . Diagnos t i c s . Process . GetCurrentProcess ()

p . P r i o r i t yC l a s s <− System . Diagnos t i c s . P ro c e s sP r i o r i t yC l a s s . I d l e

176 RunAllExperiments exper iments

Console . WriteLine ” Al l exper iments f i n i s h e d ”

l et = Console . ReadLine ()

27

REFERENCES

[1] A. Mahajan and D. Teneketzis, “Multi-armed bandit problems,” in Foundations and
Applications of Sensor Management, A. O. Hero, D. A. Castañón, D. Cochran, and
K. Kastella, Eds. Springer-Verlag, 2007, ch. 6, pp. 121–151.

[2] J. C. Gittins and D. M. Jones, “A dynamic allocation index for the sequential design of
experiments,” Progress in Statistics, vol. 1, pp. 241–266, 1974.

[3] R. Weber, “On the Gittins index for multiarmed bandits,” The Annals of Applied Prob-
ability, vol. 2, no. 4, pp. 1024–1033, Nov. 1992.

[4] J. N. Tsitsiklis, “A short proof of the Gittins index theorem,” The Annals of Applied
Probability, vol. 4, no. 1, pp. 194–199, Feb. 1994.

[5] P. Whittle, “Restless bandits: Activity allocation in a changing world,” Journal of
Applied Probability, vol. 25, pp. 287–298, 1988.

[6] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation rules,” Advances
in Applied Mathematics, vol. 6, pp. 4–22, 1985.

[7] R. Agrawal, D. Teneketzis, and V. Anantharam, “Asymptotically efficient adaptive
allocation schemes for controlled i.i.d. processes: Finite parameter space,” IEEE Trans-
actions on Automatic Control, vol. 34, no. 3, pp. 258–267, Mar. 1989.

[8] R. Agrawal, D. Teneketzis, and V. Anantharam, “Asymptotically efficient adaptive
allocation schemes for controlled Markov chains: Finite parameter space,” IEEE Trans-
actions on Automatic Control, vol. 34, no. 12, pp. 1249–1259, Dec. 1989.

[9] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically efficient allocation rules
for the multiarmed bandit problem with multiple plays-Part I: I.I.D. rewards,” IEEE
Transactions on Automatic Control, vol. 32, no. 11, pp. 968–976, Nov. 1987.

[10] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically efficient allocation rules
for the multiarmed bandit problem with multiple plays-Part II: Markovian rewards,”
IEEE Transactions on Automatic Control, vol. 32, no. 11, pp. 977–982, Nov. 1987.

[11] R. Agrawal, M. Hegde, and D. Teneketzis, “The multi-armed bandit problem with
switching cost,” in 26th IEEE Conference on Decision and Control, 1987, vol. 26, Dec.
1987, pp. 1106–1108.

28

[12] A. J. Mersereau, P. Rusmevichientong, and J. N. Tsitsiklis, “A structured multiarmed
bandit problem and the greedy policy,” IEEE Transactions on Automatic Control,
vol. 54, no. 12, pp. 2787–2802, Dec. 2009.

[13] P. Rusmevichientong and J. N. Tsitsiklis, “Linearly parameterized bandits,” Mathemat-
ics of Operations Research, vol. 35, no. 2, pp. 395–411, May 2010.

[14] V. Dani, T. P. Hayes, and S. M. Kakade, “Stochastic linear optimization under ban-
dit feedback,” in Proc. of the 21st Annual Conference on Learning Theory, Helsinki,
Finland, July 2008, pp. 363–374.

[15] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The nonstochastic multi-
armed bandit problem,” SIAM Journal on Computing, vol. 32, no. 1, pp. 48–77, 2002.

[16] J.-Y. Audibert, S. Bubeck, and R. Munos, “Best arm identification in multi-armed
bandits,” in Proc. of the 23rd Annual Conference on Learning Theory, Haifa, Israel,
June 2010, pp. 41–53.

[17] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit
problem,” Machine Learning, vol. 47, no. 2, pp. 235–256, 2002.

[18] G. Stoltz, “Incomplete information and internal regret in prediction of individual
sequences,” Ph.D. dissertation, University of Paris-Sud, Nov. 2005. [Online]. Available:
http://eprints.pascal-network.org/archive/00001692/

[19] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. New York, NY:
Cambridge University Press, 2006.

29

