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Abstract

The goal of this dissertation is to design, implement, and evaluate design techniques and software support

for performance composition and dynamic performance management in large-scale performance-sensitive

systems. The topic is motivated by the complexity of large-scale software systems due to increased use of

automated adaptation policies in lieu of manual performance tuning.

Composition of multiple adaptive components in large-scale software systems, however, presents chal-

lenges that arise from potential incompatibilities among the respective components. Self-reinforcing “vi-

cious cycles” caused by interactions between them lead to unstable or poorly-tuned adaptive components,

consequently resulting in performance deterioration even in the absence of failures and bottlenecks. The

problem essentially lies in performance composability or lack thereof; a challenge that arises because in-

dividual optimizations in performance-sensitive systems generally do not compose well when combined.

Performance adaptation in such systems needs to be carefully designed and implemented by holistically

considering the resulting combined behavior of adaptive components in order to achieve desired system

performance. In this dissertation, we aim to develop (i) a software service to ease the implementation of

holistic performance management techniques for controlling and optimizing system performance and (ii)

runtime diagnosis and recovery techniques for guarding the system from instability.

We first develop a software service, called OptiTuner, that allows easy implementation of different holis-

tic performance management schemes based on theoretical concepts of constrained optimization and feed-

back control. Such performance management approaches share common characteristics that are exploited by

OptiTuner to provide a flexible supporting software layer. With the provided abstractions, APIs, and various

services, OptiTuner monitors the current performance and the resource availability in performance-sensitive

systems and executes implemented holistic performance management techniques to achieve performance

goals. Further, OptiTuner provides a integration-time mechanism, called adaptation graph analysis, for

identifying potential incompatibilities between composed adaptive policies. Since it is not always the case
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that the entire software system is designed together, different independently-designed subsystems may cause

adverse interactions. Simplifying the concept of the stability condition in control theory, OptiTuner can de-

tect such interactions at system integration time by reasoning about potential side-effects of component

composition.

Due to the high complexity of large-scale software systems, the possibility of potential performance

problems still remains at run-time. Undocumented or dormant behavior that was ignored by the designer

may be triggered in some corner cases. This makes a seemingly correct model of system behavior assumed

at design-time violated, consequently producing unexpected interactions between components. Software

configuration changes even due to regular software updates may also invalidate the assumed system model

causing performance problems. The purpose of our online diagnosis and recovery service, AdaptGuard,

is simple: in the absence of an a priori model of the software system, anticipate system instability by

identifying the “vicious cycle” causing the performance problem, and disconnect the problematic adaptive

component, replacing it with conservative but stable open-loop control until further notice.

We demonstrate the benefits of the presented techniques by implementing realistic scenarios on a testbed

comprised of 18 machines. Recognizing the growing concern for the energy problem in data centers, we take

as a main scenario an energy minimization application in a three-tier Web sever farm with multiple energy

saving policies. Other scenarios include dynamic memory control in a consolidate environment in response

to the newly emergent cloud computing environments and a case study of a performance anomaly caused by

unexpected interactions between an admission controller and the Linux anti-livelock mechanism. Empirical

results obtained from such scenarios prove the efficacy of the approaches presented in this dissertation.
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Chapter 1

Introduction

This work is to design, implement, and evaluate software support and design techniques for performance

composition and dynamic performance management in performance-sensitive systems. As modern performance-

sensitive systems become larger and their applications become more complicated, an increasing need arises

for self-tuning and adaptive components to accommodate environmental dynamics and uncertainty [39].

This dissertation encompasses our efforts to develop (i) a software service to ease the implementation and

composition of holistic performance management techniques for controlling and optimizing system perfor-

mance and (ii) runtime diagnosis and recovery techniques for guarding the system from instability.

In this chapter, we first motivate the work by recognizing challenges in achieving good aggregate per-

formance in large-scale performance-sensitive systems (Section 1.1). We then present our contributions

(Section 1.2) and, finally, we outline the rest of the dissertation (Section 1.3).

1.1 Motivation and Challenges

The topic is motivated by the growing complexity of modern performance-sensitive systems, which increas-

ingly calls for adaptive capabilities to reduce the need for manual tuning. Automatic energy management

policies [21, 34], rate adaptation techniques (e.g., in 802.11 cards) [33], and congestion window adaptation

(e.g., in TCP)[3] are common examples of adaptive policies in current systems. These recent trends are

exemplified by IBM’s autonomic computing initiative [39] that suggests increased need for self-managing,

self-calibrating, self-healing, and self-tuning components in software systems. A proliferation of adaptive

policies is thus expected in future software that automatically re-calibrate system parameters (e.g., fine-tune

false alarm thresholds of sensors or change transmission power and frequency of wireless communication

devices), re-distribute load (e.g., by load balancing), adapt the amount of resources available (e.g., turn

off resources not in use), or control data flow topology (e.g., re-route around hot spots). These adaptive

1



mechanisms will be executed unsupervised to reduce the need for human input.

While automatic adaptation can significantly reduce the need for human intervention (and hence soft-

ware ownership cost), controlling and optimizing performance of large-scale adaptive systems are becoming

a very hard problem. Subtle interactions between individually well-tuned components may result in unex-

pected and adverse emergent behavior contributing to significant performance degradation, due to a growing

number of tunable parameters, abstractions that hide performance-related knobs, and limited observability

of internal software state at run-time. Performance of the overall system becomes an emergent property that

depends on the aggregate behavior of the individual adaptive components.

To better illustrate the problem of unintended adverse interactions among different performance adap-

tation modules [30, 31, 54, 55] in a large-scale performance-sensitive system, let us consider an energy

minimization application in a 3-tier web server farm where the first tier provides a web interface to clients,

the second tier implements business logic, and the third tier serves as a backend database. Two mechanisms

are installed to save energy. The On/Off policy powers off some machines when the system is underutilized

and powers on extra machines when overutilized. The DVS policy employs dynamic voltage/frequency

scaling (DVFS) on individual processors such that the speed and voltage of a machine are adjusted based on

the system load. However, when put together, their combined performance depends on the relative tuning

of their respective overload and underutilization thresholds. If the DVS policy is too aggressive, whenever

the utilization of a machine decreases, the policy reduces clock frequency (and/or voltage) thus restoring

a high utilization value. From the perspective of the On/Off policy, the farm becomes “fully utilized”, as

the measured utilization remains high. This will drive the On/Off policy to needlessly turn machines on

in an attempt to relieve the full utilization condition. DVS will slow down the clock further, causing more

machines to be turned on, and so on. This interaction may, in fact, increase the total energy consumption as

the extra energy overhead of keeping more machines up (even at a low frequency) may dominate.

The above example of bad interactions between adaptive components are not uncommon and many

similar problems are reported [28, 30, 54, 55]. The second example is from a Web Sphere server farm

experiment where a load balancer distributed client sessions among servers equipped with a DVS capability.

The load balancer attempts to balance response times. Occasionally, temporary utilization imbalance among

servers caused by session load fluctuations caused the DVS policy on a lightly-loaded server to reduce CPU

frequency, hence increasing delay. In response to such increased delay, the load balancer moved some work
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from the already lightly loaded server to other servers. The cycle repeated itself, as DVS took advantage of

the reduced load and decreased frequency further, eventually leading to a very skewed load distribution.

A third example comes from the anti-receive-livelock mechanism in Linux [56]. In a server with a

utilization controller running on a Linux system, when request rate increased beyond some point, the anti-

livelock mechanism would switch from event-based to polling-based network I/O. This would result in

reduction in utilization, to which the utilization controller would respond by taking action that increased

request rate (e.g., tell a load balancer that the server can accept more requests). The increased rate only

exacerbated the problem, ultimately resulting in a very high connection drop ratio.

In the above examples, no components failed and the degraded performance (in terms of energy con-

sumption) was not caused by bottlenecks. The performance problems were in fact caused by self-reinforcing

interactions between adaptive components that lead to bad states [30, 31, 54, 55]. In process control, such

interactions are called feedback loop instability. A similar effect is also observed in software systems when

component interactions produce poor resource allocation in the system reinforcing themselves repeatedly.

Due to the unstable cyclic nature of these interactions, gradual performance degradation ultimately leads

to highly suboptimal behavior. Such challenge in achieving good aggregate performance arises essen-

tially because individual optimizations in performance-sensitive systems generally do not compose well

when combined due to possible undesired interaction between them. The key in developing performance-

sensitive systems is therefore that, performance composability, or the ability of individually well-optimized

components to compose in ways that achieve good aggregate behavior, should be considered carefully by

properly coordinating their combined effect and resource allocation. This observation is likely to be more

true in large-scale distributed systems that have multiple ”knobs” for adjusting performance and resource

allocation.

Due to the high complexity of large-scale software systems, the possibility of potential performance

problems still remains at run-time even when software systems are optimally designed and composed in a

way that reduces malicious interactions among components. To optimize and control the aggregate system

performance, the design of adaptive components should make assumptions about their effect on resource

allocation, other system components, and the external environment. Those seemingly correct assumptions,

however, may be violated as the software configuration changes or undocumented or dormant behavior that

was ignored by the designer is triggered in some corner cases. For instance, when a particular initial load
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condition is met, the secondary effect may become dominant actively interacting with other components.

When assumption violations occur, the once coordinated behavior may respond inappropriately, conse-

quently driving performance in the wrong direction in ways not predicted by the designer. Unfortunately,

when instability caused by interactions among individually well-behaved components is the problem, it of-

ten can not be easily localized at run-time. There are no malfunctioning components to identify and no

bottleneck nodes to isolate in order to explain the performance problem. To effectively detect and recover

from the problem at run-time, therefore, it is critical to identify the “vicious cycles” or unstable closed-loop

behavior causing the problem. It is also critical to accomplish this preferably without an explicit model

describing the system, since it is usual that the exact system model is not known at run-time.

1.2 Contributions

To address the aforementioned challenges, a supporting software layer needs to be developed to facilitate

holistic performance management techniques such that it is possible to compose adaptive components in a

performance-maximizing fashion, control their resulting combined behavior, optimize run-time system per-

formance autonomically in the face of unpredictability and avoid undesirable interactions. Moreover, since

software is usually not designed from scratch but rather composed from new and legacy components, mech-

anisms are needed to check for composability at integration time and diagnose and recover from residual

errors at run-time.

In this work, two directions are explored to provide (i) a software service to ease the implementation

and composition of performance management techniques for preventing unwanted interactions, thereby

achieving good aggregate performance and (ii) online diagnosis and recovery techniques at run-time for

guarding the system from instability caused by emergent anomalous interactions. For specificity, these

directions will focus primarily on interactions between adaptive components of distributed systems; a choice

inspired by the increased need for future software system autonomy and hence for correct adaptive behavior.

The benefits of the presented techniques are demonstrated and evaluated by implementing various realistic

scenarios on a testbed comprised of 18 machines.
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1.2.1 Software Service for Performance Composability

The next generation of performance-sensitive systems is expected to be more distributed and dynamic.

They will have multiple “knobs” that affect performance and resource allocation. However, relying on the

conglomeration of independent knob controls can become increasingly suboptimal.

To address the challenge of performance composability, performance adaptation needs to be carefully

designed and implemented by holistically considering performance composability in order to achieve de-

sired system performance. Various holistic design techniques for performance management such as opti-

mization techniques and feedback control approaches can be considered to ensure proper adaptation to dy-

namic changes in the external environment or in system load that require manipulating performance knobs.

A flexible supporting software layer is therefore required to register the available performance tuning mech-

anisms (called control knobs) in a large system and coordinate their operation to achieve or approach stated

performance goals subject to applicable constraints. In this dissertation, we present OptiTuner, a software

service designed to achieve the above.

The main contribution of our software service lies in facilitating the implementation of different holistic

performance management mechanisms in large software systems based on principles of constrained opti-

mization and control. OptiTuner provides simple abstractions and necessary services to support common

operations of various performance optimization and feedback control techniques. With the supported ab-

stractions and services, OptiTuner then runs a collection of performance management modules connecting

performance monitoring and control knob manipulation modules. All modules in OptiTuner are pluggable

and can be distributed, allowing flexible development for performance-sensitive systems. We explain our

software service for performance composition, OptiTuner, in Chapter 2.

To thoroughly evaluate the efficacy of OptiTuner, we present two case studies in large-scale distributed

systems. First, in response to the newly emergent cloud computing environments, a case study of dynamic

memory control in a consolidated environment is presented in Chapter 3. Implementing such a system re-

quires a flexible software support to easily access various kinds of sensors and actuators exported by the

virtualization layer and the application. Using OptiTuner’s services and APIs, we develop a joint dynamic

CPU and memory controller based on the observation that memory allocation conflict with other compo-

nents only in a certain corner case. By avoiding such a region, we show that the joint controller implemented

using OptiTuner can achieve the desired performance goal.
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In many cases, however, interactions between composed adaptive components are inherent and may

not be completely avoided. The best solution in such cases is to proactively coordinate their combined

behavior to reduce anomalous interactions, hence achieving the desired performance goals. In Chapter 4,

we present an energy minimization application in a three-tier Web server farm comprised of 18 machines,

where three types of energy saving knobs are used incurring constant interactions between them. In order

to effectively minimize power consumption, those knobs need to be continuously adjusted and coordinated

in the presence of workload changes. We implement three different holistic approaches for adjusting energy

saving knobs and show that how OptiTuner can be used to control the combined behavior of those knobs,

hence successfully achieving energy savings.

1.2.2 Online Diagnosis and Recovery

Assuming that models used to design adaptive components are not perfect, it may be that some unintended

interactions survive composition-time checks and manifest themselves at run-time, creating system instabil-

ity, and hence performance problems. However, performance problems resulting from such bad interactions

often cannot be easily diagnosed by previous debugging approaches geared for detecting single component

failures [11, 80], or those geared for isolating performance bottlenecks [2, 13, 43]. The key in recognizing

such performance problems is to identify “vicious cycles” that can potentially explain the problem.

In this dissertation, we present AdaptGuard, an online diagnosis and recovery service for performance-

sensitive systems that guards the target system from instability without the benefit of a priori system models

in Chapter 5. The purpose of AdaptGuard is simple: in the absence of an a priori model of the adaptive

software system, anticipate system instability, attribute it correctly to the right “runaway” adaptive com-

ponent, and disconnect it, replacing it with conservative but stable open-loop control until further notice.

Borrowing the concept of loop stability from classical control theory, it understands application-independent

preconditions of instability, thereby correctly identifying the responsible adaptation loop (i.e. adaptive com-

ponent) consistent with the “vicious cycle”. While control theory can identify unstable adaptation loops

when the variables involved can be described by difference or differential equations, the detection process

by AdaptGuard is performed without knowing the system model a priori.

AdaptGuard provides two different diagnosis mechanisms. The first mechanism uses a simple statistical

correlation analysis to automatically infer the implicit assumptions a designer must have made that have a
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bearing on stability. When they are violated, it expects instability to occur and performs intervention, break-

ing the actual runaway adaptive components. Since the first mechanism is more effective when variables

are continuous, AdaptGuard provides another diagnosis technique that extends the first mechanism to detect

discrete chains of events causing performance problems by using data mining techniques. It leverages dis-

criminative sequence mining using logs of correct past behavior in order to identify, by contrast, any recent

anomalous chains of events that are candidates for blame for the performance problem.

Our online diagnosis and recovery service, AdaptGuard, is evaluated by injecting various software faults

into a QoS-adaptive Web server installed in the testbed and by using an energy minimization application in

a three-tier server farm. A case study of a performance anomaly caused by unexpected interactions between

an admission controller and the Linux anti-livelock mechanism is also presented to demonstrate the efficacy

of AdaptGuard.

1.3 Outline

The rest of the dissertation is organized as follows. Chapter 2 presents a software service for performance

composition, OptiTuner. In the following two chapters, we describe how OptiTuner can be used to develop

performance management in different scenarios in distributed performance-sensitive systems: Chapter 3

describes a case study where OptiTuner is used for dynamic memory allocation to Xen virtual machines

in a consolidated environment and Chapter 4 implements and evaluates various holistic performance man-

agement techniques using OptiTuner in an energy minimization application for a multi-tier Web server

farm. Chapter 5 presents and evaluates our online recovery and diagnosis approach, AdaptGuard. Chapter 6

presents an extensive literature survey and, finally, Chapter 7 concludes the dissertation.
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Chapter 2

OptiTuner: Software Service for
Performance Composition

2.1 Introduction

This chapter develops a software service for dynamic performance optimization and control in performance-

sensitive systems. The topic is motivated by the growing importance of adaptive capabilities to automatically

manage and control system performance in large-scale software systems [3, 21, 33, 34]. These recent trends

are exemplified by IBM’s autonomic computing initiative [39] that suggest increased use of self-managing,

self-calibrating, self-healing, and self-tuning components in various areas of future software.

Although such adaptive capabilities has considerably diminished the need for human intervention, con-

trolling and optimizing performance of large-scale performance-sensitive systems are becoming a very hard

problem. Subtle interactions between individually well-tuned components may result in adverse emergent

behavior when combined contributing to significant performance degradation [30, 31, 54, 55]. Such in-

compatibilities may exist even though the adaptation mechanisms in question attempt to optimize the same

performance objective. For instance, in the previous chapter, we presented an example of bad interactions

between two energy saving policies in a three-tier Web server farm, where the interactions of the two policies

eventually caused the server farm to use more machines than needed, hence wasting energy.

Such a performance problem is caused by self-reinforcing interactions between adaptive components

that lead to bad states [30, 31, 54, 55]. Due to the unstable cyclic nature of these interactions, gradual

performance degradation ultimately leads to highly suboptimal behavior. To address those problem, when

designing adaptive components in performance-sensitive systems, performance composability, or the abil-

ity of individually well-optimized components to compose in ways that achieve good aggregate behavior,

should be considered carefully. Various design techniques for performance management can be considered

to ensure proper adaptation to dynamic changes in the external environment or in system load that require

manipulating performance knobs. For example, optimization approaches [10, 12, 15, 30, 38, 50] can be
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used to find a best combination of the performance knob settings that optimizes performance, hence reduc-

ing undesired interactions among them. Similarly, feedback control approaches [17, 32, 78, 79] can be used

to achieve desired performance set points by adjusting performance knobs properly. Further, a certain type

of approaches may be preferred to others based on system requirements (e.g., distributed vs centralized). A

flexible supporting software layer is therefore required to register the available performance tuning mecha-

nisms (called control knobs) in a large system and coordinate their operation to achieve or approach stated

performance goals subject to applicable constraints. In this chapter, we describe OptiTuner, a software

service designed to achieve the above.

OptiTuner provides simple abstractions and necessary services to support common operations of various

performance optimization and feedback control techniques such as constantly monitoring the current perfor-

mance and resource availability of the target system and dynamically adjusting performance control knobs.

OptiTuner then runs a collection of performance management modules connecting performance monitoring

and control knob manipulation modules. All modules are pluggable and can be distributed, allowing flexible

development for performance-sensitive systems.

Further, since it is not always the case that the entire software system is designed together, an integration-

time mechanism is needed for identifying potential incompatibilities between composed adaptive poli-

cies. In OptiTuner, the user can register any integration-time checking module. As an example of such

integration-time checking mechanisms, we present a simple heuristic called adaptation graph analysis.

Inspired by control theory, the adaptation graph analysis analyzes interactions between independent com-

ponents by reasoning about potential side-effects of component composition.

A running case study illustrates the usefulness of OptiTuner in this chapter. We present an autonomous

energy minimization application in a multi-tier server farm testbed of 18 machines, in which two adaptive

policies are used to save energy during off-peak load conditions. We show how unexpected adverse inter-

actions may happen and make it non-trivial to integrate these adaptive policies into one coherent control

framework. Using the adaptation graph analysis, OptiTuner identifies potentially adverse interactions. The

technique uncovers the composition problem between the two policies. Further, it is shown that a holis-

tic energy minimization approach implemented using OptiTuner indeed achieves significant energy savings

while energy inefficiencies are clearly shown when the two policies are composed without regard to their

interactions.
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The rest of the chapter is organized as follows. Section 2.2 describes the design of OptiTuner. An

integration-time checking mechanism, the adaptation graph analysis, for identifying potentially adverse

interactions between adaptation policies is described in Section 2.3. Section 2.4 discuss the usefulness of

OptiTuner by showing how it is used to analyze potential conflicts in the energy minimization application

on our experimental testbed. Further, empirical results demonstrate that an holistic energy minimization

approach implemented with OptiTuner considerably improves performance in terms of energy. Finally,

conclusions are given in Section 2.5.

2.2 Design

A significant number of QoS adaptation and other performance adaptation policies have been reported in

real-time computing literature over the last decade (e.g., [61, 66, 67]). In much of the current literature, these

policies are designed and evaluated in isolation, showing efficacy in achieving the performance requirements

of the system. However, unintended interactions between independently designed adaptive policies have not

traditionally been addressed. As these policies gain popularity in deployed systems, a significant number of

applications, middleware components and operating system mechanisms will exhibit adaptive behavior. A

performance-sensitive software system of the future will therefore likely include multiple adaptive compo-

nents. While these components will perform well in isolation, the interactions between them must be well

coordinated to prevent unintended consequences.
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Figure 2.1: An energy minimization application in a 3-tier Web server farm with OptiTuner.

As a main example to illustrate how OptiTuner can be used for designing and implementing performance-
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sensitive systems, we develop an energy cost minimization application for 3-tier Web server farms and use it

throughout this dissertation. We assume that a server farm runs a typical 3-tier Web application and provides

a database backup service for other organizations to fully utilize its extra computing power (e.g., CPU and

storage). The total energy cost incurred by the system is composed of two parts: (i) the energy cost of server

machines in the system and (ii) less the utility achieved from database backup requests. The objective of the

optimization problem is to minimize the total cost incurred by the system, subject to the delay constraints

of client requests and a resource constraint on the number of available servers.

Three different types of performance control knobs can be used to adjust power consumption. First,

we adjust the number of assigned machines for the server farm by dynamically turning machines on and

off. Second, dynamic voltage frequency scaling on an individual processor is used to change the speed

and voltage of the processors in an active machine. It is reduced when the machine is underloaded and

increased when it is overloaded. Finally, we adjust the rate of the incoming database backup requests for the

database tier using admission control. We call the three types of performance control knobs On/Off, DVS,

and BackupAC respectively.

In order to effectively minimize desired power consumption, energy saving knobs need to be contin-

uously adjusted and coordinated in the presence of workload changes. A certain holistic technique for

performance adaptation needs to be employed to coordinate performance knobs to achieve the performance

goal (e.g., minimizing power consumption) while meeting the imposed constraints (e.g., end-to-end delay

and the number of available machines).

Focusing on the critical issue of coordination of different knob settings in performance-sensitive sys-

tems, OptiTuner provides a supporting software layer for composing performance adaptation modules in

ways that follow sound theoretical concepts of performance optimization and control. The contribution lies

in the ease of applying different holistic optimization and control techniques simply by changing the policy

modules that sit between performance measurement and control interfaces.

In general, performance adaptation modules (i.e. adaptive components) are at their very essence feed-

back loops (i.e. adaptation loops) as depicted in Figure 2.2. These loops take measurements of the system

(e.g., request rate, delay, utilization, or queue length) and respond by a corresponding action that adjusts

some variable such as the amount of resources allocated to a given process or the priority of a thread.

Such common structure observed in different performance adaptation design techniques leads to a set of
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abstractions exported by OptiTuner. In OptiTuner, performance control knobs are governed by regulation

policies. Regulation policies in OptiTuner are essentially performance adaptation modules periodically de-

termining the values of the performance control knobs. In order to help the decision of regulation policies

effectively, OptiTuner exports performance sensors that are thin software interfaces wrapped around per-

tinent performance measurements. Actuators are software modules that enforce the settings of the control

knobs determined by regulation policies. Constraint monitors monitor the availability of resources to in-

form individual regulation policies of how much further performance can be improved without breaking the

constraints.

These abstractions are implemented as corresponding objects registered with OptiTuner. Since Opti-

Tuner runs on all machines in the target system to properly monitor and act on it, nodes are introduced to

abstract the involved physical machines. The purpose is to simplify the communication between the objects

on different machines and manage them efficiently. Using the exported abstractions and the provided object

access mechanisms, OptiTuner runs a collection of regulation policies that connect to the right registered

sensors and actuators. By changing the policy, a system administrator can experiment with different holistic

optimization and control schemes.

In the next section, we first present the system architecture and services provided to support the execu-

tion and management of object abstractions. We then explain APIs for implementing holistic performance

management techniques based on performance optimization and control.

2.2.1 System Architecture

An OptiTuner process runs on each machine involved in the target performance-sensitive system to properly

capture the system state. All modules in OptiTuner are distributed objects and can reside on any machine.
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To support this, the OptiTuner process in each machine is essentially an object container that manages

local objects. Further, every OptiTuner process in the target system is seen as a peer by others, providing

communication methods for the objects running on other machines. This peer-to-peer property is desirable

since OptiTuner needs to support performance management in large-scale distributed systems.

To provide an uniform access to objects across all OptiTuner processes, a global configuration file is

shared among the OptiTuner processes. Simply put, the configuration file contains the information of the

registered objects: which machine manages what objects and the properties of the objects. Object properties

include sensing period, measurement value types, and an invoking period for regulation policies. Based on

the configuration information, each OptiTuner process initiates itself by starting up the objects residing in

the machine. While having the global view of the target system, each OptiTuner process focuses only on

managing the local objects by providing necessary remote communication methods for the remote objects.

With this architectural support, any regulation policies can easily find the location of any necessary sensors

as well as their properties to connect to them.
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Figure 2.3: Runtime architecture of a performance-sensitive system with OptiTuner

The node manager manages a list of node objects that represent all machines controlled by OptiTuner,

while each node object maintains a table that caches local objects. In OptiTuner, objects that need periodic

invocation register themselves with the event manager. The even manager then invokes the registered objects

based on their execution period. It should be noted that most OptiTuner objects are periodic. For instance,

regulation policy objects adjust their corresponding control knobs periodically and, similarly, sensor objects

usually collect data periodically.

Our design of OptiTuner doesn’t limit the choice of the implementation language. The current prototype

implementation of OptiTuner is written in Python. Choosing a script language didn’t affect the performance

severely, because most of the computation is done periodically, hence consuming negligible CPU time.

Our measurement shows that OptiTuner implementation written in Python consumes less than 3% of CPU
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utilization most of the time.

2.2.2 Object-Based APIs

OptiTuner provides simple object-based application programming interfaces (APIs) for application pro-

grammers to easily implement and run holistic performance management techniques.

The two most basic functionalities required for executing performance management algorithms is 1) to

gather necessary measurement data from the target system (e.g. sensing) and 2) to enforce the decisions

made by the performance management algorithms on the target system (e.g. actuation). For this purpose, it

defines two remote methods in the node object class for accessing the sensor and actuator objects residing in

remote nodes. With the object name and its location (the node name) that are specified in the configuration

file, any sensor and actuator objects registered in OptiTuner can be uniformly accessed. Given the name of

a sensor, node.getSensorVal(sensor name) returns the value of the sensor. Actuators are invoked by calling

node.invoke(actuator name, value). Observe that regulation policy and constraint monitor objects also need

to export their corresponding knob settings and price values so that the exported values can be used by other

regulation policy and constraint monitor objects. The exported values can be accessed by using the same

method, node.getSensorVal(sensor name), since regulation policy and constraint monitor object classes are

inherited from the sensor object class. Hence, using the two methods, application programmers can access

any objects (and their exported values) to implement regulation policy and constraint monitor objects.

As explained, the objects that need a periodic invocation to do their jobs register themselves with the

even manager by specifying their desired period. As the timer for an object expires, the event manager will

call back the tick() method of the object. Hence, the tick() method of an object can be used as a placeholder

for implementing periodic jobs such as collecting measurement data (for sensor objects), updating knob

settings (for regulation policy object), and updating price values (for constraint monitors).

2.3 Adaptation Graph Analysis

Within each independently designed subsystem, the adaptation loop is typically well tuned. A problem

occurs if an unintended loop emerges by virtue of composition of multiple subsystems. OptiTuner provides

an interface with which the user can register and run an integration-time checking mechanism to analyze the

behavior of combined adaptive components. In this section, we explain a simple heuristic approach called
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Adaptation Graph Analysis. Inspired by control theory, the adaptation graph analysis can detect potential

instabilities caused by conflicting adaptive components at system integration time.

2.3.1 Adaptation Graphs

To uncover unintended loops, we present the notion of adaptation graphs. Nodes in an adaptation graph

represent the key variables in the system such as delay, throughput, utilization, length of different queues,

settings of different policy knobs, etc. Arcs represent the direction of causality. For example, consider a Web

server that serves requested pages over a network. When the utilization, U , of the outgoing link (connecting

the server to the Internet) increases, the delay, D, of served requests increases as well (because they wait

longer to be sent over the congested link). Hence, an arc exists from utilization to delay, U → D, indicating

that changes in the former affect the latter. The arcs in the adaptation graph are annotated by either a “+”

or a “−” sign depending on whether the changes are in the same direction or not. In our above example,

since an increase in utilization causes a same-direction change in delay (i.e., also an increase), the arc is

annotated with a “+” sign: U →+ D. Moreover, some of the arcs represent fundamental natural phenomena

(for example, an increase in delay is a natural consequence of an increase in utilization). Others, however,

represent programmed behavior, or policies. For example, an admission controller of a performance-aware

server may be programmed to decrease the fraction of admitted requests, R, to the server in response to

an increase in delay, D. Hence, an arc exists in the adaptation graph from delay to admitted requests,

D →− R. The arc is annotated with a “−” sign because an increase in delay results in a change in the

opposite direction (i.e., a decrease) in admitted requests. This arc does not represent a natural phenomenon

but rather the way the admission control policy is programmed. We call such arcs policy arcs and annotate

them with the name of the module implementing the corresponding policy. Hence, we have D →−
AC R,

where AC stands for the admission control module. Figure 2.4(a) depicts the adaptation graph of the

server under consideration. The graph is composed of three arcs. The arc D →−
AC R reflects that the

admission controller reduces the number of admitted requests when delay increases and vice versa. The

arc R →+ U reflects the natural phenomenon that any changes in the number of admitted requests result

in same-direction changes in outgoing link utilization. Finally, the arc U →+ D expresses the fact that

changes in link utilization cause changes in delay (in the same direction). The three arcs form a cycle (a

feedback loop). An interesting property of the loop is that the product of the signs of the arcs is negative.

15



D R

AC

D

F

(a)  Adaptation graph of an 

admission controller of a 

performance-aware server

(b)  Adaptation graph of a 

network power management 

middleware

U
++

U V

PM

P

+

+

PM

+

+

D

F

U V

PM

P

+

+

PM

+

+

R +

+

(c)  Combined adaptation graph 

of the two 

AC
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This indicates a negative feedback loop, which is expected (since all stable feedback loops are negative).

As another example, consider a network power management middleware that measures network utiliza-

tion, U , on the LAN of a load-balanced server cluster. If the network utilization is low, the cluster workload

must be low. The middleware thus engages dynamic voltage scaling (DVS) on all machines in the cluster

to lower processor voltage V , and frequency, F , hence reducing power consumption, P , due to the off-peak

load condition. This adaptation action can be expressed as U →+
PM V and U →+

PM F , where PM stands

for power management middleware (i.e., a decrease in link utilization causes the policy to decrease both

voltage and frequency which explains the signs on the arcs). In turn, we have V →+ P and F →+ P ,

which says how power consumption changes with voltage and frequency. Finally, we have F →− D, since

lowering frequency (i.e., slowing down a processor) increases delay and vice versa. Figure 2.4(b) depicts

the adaptation graph for the network power management middleware.

As might be inferred from above, each component or subsystem of a larger system has its own adaptation

graph that describes what performance variables this component is affecting and what causality chains (or

loops) exist within. The reader might notice that the adaptation graph is a simplified version of the block

diagrams used in control theory to represent open loop and closed loop control systems. We do not use full-

fledged block diagrams (complete with transfer functions of components) because transfer functions require

more accurate component modeling and present analysis challenges in the presence of non-linearities, as

would be common in computing systems.

When a system is composed, the adaptation graphs of individual components are coalesced. Fig. 2.4(c)
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shows the combined adaptation graph that results when a server described in Fig. 2.4(a) operates on a LAN

cluster managed by the middleware described in Fig. 2.4(b). This creates a system-wide graph. To check for

incompatibilities (adverse interactions), the graph is searched for loops using any common graph traversal

algorithm. Loops that are entirely contained within the same subsystem (i.e., loops whose arcs are labeled

by the same module name) are safe. Such loops are internal to single components and must have been well-

tuned prior to composition. Loops that traverse component boundaries, however, may have not been created

by design. These loops (i.e., loops where some arcs have different module names) may have emerged

unintentionally due to composition of the corresponding modules. This insight leads to simple techniques

(carried out at integration time) to discover potentially unintended interactions as described below.

2.3.2 Checks for Potential Incompatibility

We suggest two simple checks for potentially incompatible adaptation policies. These checks operate on the

adaptation graph of the composed system as follows:

• Positive feedback: A key requirement of adaptation graphs is that all cycles in the graph must be of

a negative sign (i.e., the product of all arc signs on the cycle is negative). This requirement stems

directly (and can be easily proved) from stability conditions in control theory [9]. A positive cycle

indicates a potentially unsafe feedback loop. In other words, a stimulus reinforces itself causing more

change in the same direction. Such a cycle may inadvertently develop when multiple adaptation poli-

cies are combined. All positive feedback loops in the adaptation graph are thus flagged as potentially

unintended interactions.

• Unstable negative feedback: Another problematic condition that can be flagged when composing

adaptation graphs is potentially unstable negative feedback loops. While adaptation loops that are

governed by a single module will tend to be well-tuned and hence stable, emergent adaptation loops

that arise from a combination of multiple modules must be explicitly analyzed for stability. All loops

where some arcs have different module labels in the adaptation graph are thus flagged as potentially

unintended interactions. Another example of potentially unstable negative feedback is if loops from

different modules join in a node, indicating that the loops may interfere while trying to control the

common variable. The web server case study is an example of this situation. Again, even if the
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individual loops are well-tuned and stable, they may interact in a way that degrades total performance

or even causes instability.

Applying the above checks to Fig. 2.4(c), we flag the cycle U →+
PM F , F →− D, D →−

AC R, R →+ U

that crosses module boundaries, suggesting it may have not been created by design. The cycle is also positive

indicating that unstable interactions may result (between the server admission controller and the network

middleware). Interpreting this cycle, the interaction is explained as follows. Starting with the node labeled,

U , when the network utilization decreases in the server cluster, the power management middleware will

cause individual servers to slow down their processors. This, in turn, will increase the delay experienced by

served requests causing the admission controller to accept fewer requests. The reduced accepted number of

requests will further decrease the load on the network, causing the power management middleware to slow

down processors even more. This, in turn, will cause a more significant reduction in admitted requests and a

further reduction in network load. This positive (i.e., self-reinforcing) feedback cycle will ultimately bring

the server farm to a crawl, indeed an adverse consequence of unintended interaction.

2.4 Evaluation

In this section, we demonstrate the efficacy of OptiTuner using the energy minimization application for a

three-tier server farm installed with two different types of energy saving policies (DVS and On/Off).

We first show that composing two energy saving policies (DVS and On/Off) without considering their

combined behavior can lead to an excessive energy spending problem using OptiTuner’s adaptation graph

analysis. Let us now analyze the undesirable interaction between a DVS policy (that controls frequency, f ,

of machines in a server farm given their delay D) and an independently designed machine On/Off policy

(that increases the number of machines m in the server farm when the delay is increased and removes

machines when the delay is decreased). This interaction is shown in Fig. 2.5. The DVS policy is described

by the adaptation rule D→+
DV S f . Its effect is f →− D. The On/Off policy is described by the rule

D →+
ON/OFF m. Its effect is m →− D. The adaptation graph for the combined system is shown in Fig 2.5

(c), in which we see that the loops representing the two policies join in the common D node. This indicates

a possible incompatibility, which may lead to performance degradation or even unstable behavior when the

two policies are combined.
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Figure 2.5: Adaptation graphs for the different adaptive policies for the multi-tier server farm.

Indeed, as flagged by the analysis, the two individually stable negative feedback loops actually exhibit

an undesirable interaction that may increase total energy consumption instead of reducing it. The adverse

interaction works as follows. When the system is underloaded, the DVS policy reduces the frequency of a

processor, increasing system utilization. This will eventually increase the end-to-end delay of the system.

Increased delay may cause the (DVS-oblivious) On/Off policy to consider the system to be overloaded,

hence turning more machines on to cope with the problem. This may cause the DVS policy to slow down

the machines further, leading the On/Off policy to turn more of them on. The energy expended on keeping

a larger number of machines on may not necessarily be offset by DVS savings. Hence, the resulting cycle

may lead to poor energy performance, even despite the fact that both the DVS and On/Off policies have the

same energy saving goal.

Fig. 2.6 shows experimental results from our three-tier Web server farm testbed. An energy minimiza-

tion application is implemented in the testbed using OptiTuner. The detailed setup and complete experimen-

tal results are described in Chapter 4. In this chapter, we present results of a set of experiments where four

different energy saving configurations are compared: the On/Off policy, the DVS policy, the combination

of On/Off + DVS (exhibiting adverse interaction) and finally a holistic energy saving approach where the

two knobs are holistically adjusted (we will discuss the details about various holistic approaches in Chapter

4). In the figure, it is clearly demonstrated that when the workload increases, the combined On/Off + DVS

policy spends much more energy than all other policies. In contrast, the holistic policy shows best perfor-

mance, especially for high workload. This experiment, performed on an actual server farm, indicates that
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Figure 2.6: Comparison of estimated total system power consumption for different adaptive policies.

the adverse interaction problem is not hypothetical but is something measurable in practice. Indeed, as the

figure shows (at high loads), combining two good energy saving policies without considering performance

composability may yield savings that are worse than with either policy in isolation. Instead, they should be

properly coordinated by considering the combined result to improve overall performance.

In the next two chapters, we describe how OptiTuner can be used to develop performance management

in different scenarios in distributed performance-sensitive systems. In Chapter 3, we develop a joint dynamic

CPU and memory controller in a virtualized environment using Xen virtual machines. The controller utilizes

the observation that memory and CPU allocations conflict each other only in a certain corner case. By

avoiding such a region, we show that the joint controller implemented using OptiTuner can achieve the

desired performance goal. This is different from the energy minimization application shown in this chapter

where energy saving knobs constantly interact each other that require proactive coordination to reduce bad

interactions between them.

Chapter 4 presents a detailed case study of the energy minimization application in a three-tier server

farm discussed in this chapter. We develop three different holistic performance management techniques for

energy minimization using OptiTuner. Thorough empirical results are presented to prove the usefulness of

OptiTuner for aiding in implementing different holistic approaches.
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2.5 Conclusions

In this chapter, we presented a software service, called OptiTuner, for achieving performance composabil-

ity in distributed performance-sensitive systems. Achieving performance composability in such systems

is a great challenge because individual optimizations in performance-sensitive systems generally do not

compose well when combined due to unexpected and emergent interactions between them. OptiTuner pro-

vides proper abstractions and necessary services to help the implementation of performance management

approaches for coordinating different knob settings. OptiTuner also provides a mechanism, called adap-

tation graph analysis to identify potential incompatibilities between multiple adaptation policies. This is

useful when the administrator needs to integrate adaptive components into a legacy system. The efficacy of

OptiTuner was briefly demonstrated by applying it to energy minimization in multi-tier server farms. Us-

ing adaptation graph analysis, we first identified incompatibilities between the On/Off and dynamic voltage

scaling policies used in the server farm. Experimental results demonstrate that a holistic energy minimiza-

tion approach implemented with OptiTuner can save a considerable amount of energy compared to the ones

that do not holistically optimize energy within acceptable bounds.
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Chapter 3

Performance Management In Virtualized
Environment

3.1 Introduction

In the previous chapter, we presented a software service, OptiTuner, to aid in application of holistic per-

formance management approaches. In this chapter, we evaluate OptiTuner thorough a case study where

feedback control is implemented for joint dynamic memory and CPU allocations to Xen virtual machines

in a consolidated environment. The case study is in part motivated by the newly emergent cloud computing

environments. In developing such a joint dynamic memory and CPU control mechanism with OptiTuner,

the key observation is to recognize that memory, disk I/O operations, and CPU badly interact with each

other only when a certain condition is met in terms of application-level performance. Based on this observa-

tion, a joint CPU and memory allocation mechanism for virtual machines is designed and developed by not

allowing the corner case where bad interactions between memory and other components happen, thereby

achieving the desired performance goal.

The cloud computing environments such a such as Amazons EC2 [4] that host hundreds to thousands of

services on a shared resource pool. The sharing is enhanced by virtualization technologies such as Xen [5]

and VMware [72] allowing multiple services to run in different virtual machines (VMs) in a single physical

node. The same technologies have been used by enterprises to consolidate servers in order to improve re-

source efficiency, reduce data center footprint, and to reduce power consumption and environmental impact

of IT organizations. Although the average resource utilization in traditional data centers ranges between 5-

20%, servers in consolidated data centers or cloud computing environments are likely to run at much higher

utilization levels, exposing applications to possible resource shortages [73] .

Researchers in both academia and industry have studied mainly three resource management strategies

for consolidated environments capacity planning [64] , virtual machine (VM) migration [37] , and dynamic

resource allocation. These techniques are complementary to one another because they typically operate at
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different time scales and different scopes of a data center [86]. In this chapter, we focus on dynamic resource

allocation in a virtualized server that hosts multiple services. Runtime allocation of server resources to

individual VMs enables resource overbooking, where the total capacity of a resource is below the sum of

the peak demands of all the VMs sharing this resource. This allows each physical server to achieve much

higher resource utilization while still maintaining performance isolation among the co-hosted services.

In the past, researchers have mostly studied overbooking of the CPU resource on virtualized servers and

dynamic control mechanisms for allocating CPU to the individual virtual machines [59, 81, 85]. At the same

time, memory overbooking and runtime re-allocation of memory among multiple VMs has not been widely

studied, except in the VMware ESX Server [74]. However, the dynamic memory management policies in

ESX do not directly support application-level performance assurance. The availability of memory balloon

driver in recent Xen Server releases [83] provides a mechanism for memory sharing, but no dynamic policies

have been implemented.

We have built an experimental testbed using Xen virtualized servers and performed a set of experiments

to understand the relationship between memory allocation to a VM and performance of the hosted appli-

cation. We observe that this relationship is different from the relationship between CPU allocation and

application performance. We further recognize that memory allocation may have conflicts with disk I/O

and CPU allocation when memory utilization is over a certain threshold, thereby severely affecting applica-

tion performance once fallen into that region. To meet the desired application-level performance goal, such

“bad” region must be avoided.

Based on these observations, we make the following two contributions in this chapter. First, we have

designed a dynamic memory allocation controller that ensures that each VM gets sufficient memory to avoid

anomalous interactions between CPU and memory. We validate this controller against time-varying memory

demands and demonstrate that memory overbooking on Xen can be achieved using our controller. Second,

we have built a prototype of a joint CPU and memory control system for a consolidated environment.

Implementing such a system requires a flexible software support to easily access various kinds of sensors

and actuators exported by the virtualization layer and the application. The control system is implemented

using OptiTuner’s services and APIs to achieve the goal. We evaluate the performance of this control system

by driving multiple test applications with either synthetic or real world demand traces, and demonstrate

that all the hosted applications can achieve their service level objectives (SLOs) without creating CPU or
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memory bottlenecks.

3.2 System Setup and Architecture

Using OptiTuner, we have built a testbed for experimentation, modeling, development, and performance

evaluation of dynamic memory allocation schemes in a consolidated environment. In this section, we first

briefly describe the setup of our testbed, and then present the architecture of a feedback-based resource

control system we developed.

3.2.1 Testbed Setup

Our experimental testbed consists of 4 HP Proliant DL 320 G4 servers. Each server has dual 3.2GHz

Pentium D processors with 2MB L2 cache and 4GB main memory. The servers run SLES 10.1 or SLES

10.2 with a Xen-enabled 2.6.16 kernel. One server is used to run a control application that monitors and

controls the resource sharing of the virtual machines. A second server is configured to have 1-4 production

VMs, each running an Apache Web server (version 2.2.3). Each of the last two servers hosts two client

VMs, where httperf (ftp://ftp.hpl.hp.com/pub/httperf), a scalable client workload generator, is used to send

concurrent HTTP requests to the Apache Web servers running on the production VMs. The virtual machines

run the same kernel image, SLES 10.1, and have the same /usr file system. The virtual machines and the

servers are located on the same network, interconnected via a Gigabit Ethernet.

We have developed an application called MemAccess that drives the memory usage and CPU consump-

tion of a VM from trace files. We employ an Apache module to implement MemAccess on the Apache Web

server. When a new HTTP request arrives, this Apache module is invoked to execute some computation

(e.g. public key encryption) to consume a certain amount of CPU time, while randomly accessing a portion

of the heap memory of the MemAccess application.

Memory usage patterns in a trace file are recreated by properly adjusting the size of the allocated heap in

the Apache module over time. The heap memory is created when the Apache process starts and it consists

of memory chunks of 5MB each. Memory chunks are allocated or de-allocated based on the memory load

in the trace. The heap is randomly accessed when requests are received as explained formerly, to actively

utilize the entire heap region.

CPU consumption of the application is adjusted by properly changing the average rate of HTTP requests
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generated from an httperf client. We calibrated the CPU consumption per request in order to compute

the needed request rate for a VM’s CPU consumption to match the CPU consumption in the trace. The

calibration process is performed in one VM, since all the VMs running the Apache server are configured the

same.

3.2.2 Control System Architecture with OptiTuner���������	�
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Figure 3.1: Runtime architecture of a performance-sensitive system

Figure 3.1 shows the architecture of our resource control system, where two or more applications run-

ning on virtual machines share the resources in a physical node. The resource control system is developed

using our software service, OptiTuner, which proves that it is also useful for performance management in

a virtualized environment. OptiTuner processes run on all physical machines (including the ones running

the Xen virtual machine monitor) and VMs as well to allow access to sensors and actuators exported by

them to monitor application performance and control resource allocations to VMs. All such sensors and

actuators are encapsulated and registered with OptiTuner to run as objects. A dedicated machine is used for

the resource controller running as a regulation policy in OptiTuner.

The Xen virtualization layer allow us to allocate portions of the CPU and the physical memory to VMs

to achieve desired performance. The resource controllers gather information on the resource usage of VMs

and application performance from a set of sensors, as well as the service-level objectives (SLOs) for the

applications, and determines in real time the CPU and memory allocations for all the VMs in the next

control interval. Details about the actuators, sensors and controller are described below.

A CPUActuator object is implemented to use the Xen credit scheduler for setting the CPU shares for
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VMs. The credit scheduler provided by the virtualization layer allows each VM to be assigned a cap, which

limits the amount of CPU a VM can use. This non-work-conserving mode of CPU scheduling allows better

performance isolation among multiple VMs, preventing a poorly-behaving application from draining the

CPU capacity.

A MemActuator object uses the balloon driver in Xen to dynamically change the memory allocations

for the virtual machines. Each VM is configured with a maximum entitled memory (maxmem). The value of

maxmem is the sum of the balloon value and the allocation value. If one VM does not need all of its entitled

memory, the unused memory can be transferred to another VM that needs it. This is done by inflating the

balloon (reducing allocation) in the first VM and deflating the balloon (increasing allocation) in the second

VM. This mechanism allows multiple VMs to be configured with a higher amount of total memory than the

size of the physical memory.

Various sensor objects are implemented and configured to run in OptiTuner to periodically collect re-

source consumption and application performance statistics. CPU consumption is measured using Xen’s

xentop command. Memory allocation and usage are measured from the balloon in the /proc file system.

We also monitor page fault rates of individual VMs using the /proc interface. Application performance is

measured by an interposing proxy between the client and the server. Our resource controller consists of

two parallel controllers for CPU and memory. Each controller periodically changes the CPU or the memory

allocations for the individual VMs in every control interval. The control decisions are made based on a

quantitative model inferred from black-box testing of the system, described in the next section.

3.3 Memory Usage and Performance

In order to develop the memory controller shown in Figure 3.1, we need to first understand the quantitative

relationship between an applications performance and its memory allocation. To this end, we performed the

following experiments using our Xen-based testbed and the MemAccess application described in Section 3.2.

We ran the MemAccess application in one of the production VMs. An httperf client generated a work-

load with exponentially distributed inter-arrival times and a mean request rate of 30 requests/s. We allocated

certain heap size for the application, and then varied the memory allocation to this VM from 230 MB to 1

GB. For each memory allocation setting, we ran the experiment for 50 seconds to allow the system to settle

down to a steady state. In the meantime, the credit scheduler was running in the work-conserving mode so
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no CPU cap was imposed on the VM. The following metrics were collected during that 50-seconds inter-

val: average memory usage, mean response time (MRT) of the application, and rate of major page faults.

The experiment was repeated three times, for a different application heap size of 300, 400, and 500 MB,

respectively.

(a) (b)

Figure 3.2: Mean response time (a) and memory usage (b) as a function of memory allocation

Figure 3.2(a) displays the measured MRT as a function of the memory allocation for the three different

heap size configurations. For each configuration, the MRT of the application remains at around 20 ms for

most values of the memory allocation until the latter drops below a certain threshold. To better understand

this behavior, we also show the measured memory usage versus the memory allocation in Figure 3.2(b). We

can see that the memory usage is constant when enough memory is allocated, and starts to decrease linearly

with the memory allocation when the latter becomes small.

In Figure 3.3(a), we demonstrate the MRT as a function of the average memory utilization for the

three configurations, where memory utilization of a VM is computed as the ratio of memory usage to

memory allocation. It is easy to see that the MRT increases sharply as the memory utilization goes beyond

90%. This is consistent with our expectation, because when memory utilization is high, the guest operating

system experiences significant memory pressure and starts reclaiming memory by paging a portion of the

application memory to disk [4]. This will lead to a higher number of page faults when the application tries

to access the main memory, resulting in higher latency for the application. To validate this, we also plot

the number of major page faults per second as a function of the memory utilization in Figure 3.3(b). The
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(a) (b)

Figure 3.3: Mean response time (a) and rate of major page faults (b) as a function of memory utilization

sudden surge in the page fault rate when the memory utilization is above 90% confirms our explanation for

the relationship we see in Figure 3.3(a). This is an indication of bad interactions between memory allocation

and disk I/O that anomalously affect application performance. Such interactions should be avoided or

reconciled whenever possible to achieve the desired application performance.

(a) (b)

Figure 3.4: VM CPU consumption vs. memory utilization for three different heap sizes (a) and breakdown
of VM CPU consumption for heap size of 300MB (b)

Figure 3.4(a) shows the average CPU consumption of the VM as a function of the memory utilization.

We can see that the VM’s CPU consumption remains below 50% for a memory utilization less than 90%,
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independent of the heap size configuration. However, as the allocated memory is near saturation, we observe

significant CPU overhead where the CPU consumption becomes much higher. To further illustrate this, we

also show a breakdown of the VM’s CPU consumption in Figure 3.4(a), as a function of the memory

allocation, for a heap size of 300 MB. As the memory allocation becomes smaller, we first see the total

CPU consumption goes up, mainly due to the extra paging activities by the guest OS, as shown by the CPU-

system line in Figure 3.4(b). However, if the memory allocation is further reduced, the VM’s CPU usage

starts to decrease, mainly because the CPU spends a higher portion of time waiting for IO, as the CPU-

iowait line indicates. This is also an indication of bad interactions between CPU and memory allocations

that should be avoided to achieve good application performance.

In order to understand whether the dynamic CPU control techniques developed in [81, 85] are applicable

to controlling memory, we needed to compare the relationship between application performance and mem-

ory utilization to the similar relationship for CPU. To this end, we performed a similar set of experiments

where the CPU credit scheduler was used to vary the CPU allocation to the VM while using a constant

heap size of 300 MB and a memory allocation of 512 MB. In this case, the memory utilization of the

VM remained constant, whereas CPU utilization of the VM varied between roughly 20% and 100%. The

same experiment was repeated three times, for a different workload intensity of 20, 30, and 40 requests/s,

respectively.

Figure 3.5: Mean response time vs. CPU utilization

Figure 3.5 shows the mean response time as a function of the CPU utilization for the three different

workload conditions. By comparing Figure 3.3(a) and Figure 3.5, we can see that these two relationships
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are similar in that the applications MRT is a monotonically increasing function of either the CPU utilization

or the memory utilization. At the same time, we also observe two differences: First, for CPU, the curve

that represents the relationship varies with the workload, whereas for memory, the relationship remains

almost the same when the applications memory demand changes; Second, the function that represents the

relationship is smoother and more differentiable for CPU, but is almost a binary function for memory.

This means, when CPU allocation is reduced for an application, there is more graceful degradation in its

performance. But we should never allow a VM’s memory utilization to go beyond a certain threshold in

order to ensure good application performance. When the system falls into the region beyond the threshold,

memory allocation may interfere with CPU and disk I/O, which in turn affects response time badly. From

Figure 3, we observe that a reasonable threshold to use is 90% for memory utilization.

3.4 Dynamic Memory Allocation

In this section, we present a dynamic memory controller that periodically adjusts the memory allocation to

individual VMs such that the application running in each VM can meet its SLO.

3.4.1 Memory Controller Design

Based on the discussion at the end of Section 3.3, it is desirable to maintain the utilization of a VM’s allo-

cated memory below a critical threshold. Therefore, we apply the design of the utilization controller pre-

viously developed for CPU allocation [81] to dynamic memory allocation. Let umem(k) and vmem(k) be the

memory allocation and usage for a VM during the kth control interval, and let rmem(k) = vmem(k)/umem(k)

be the VM’s average memory utilization for the same interval. Then the Memory utilization controller uses

the following equation to compute the desired memory allocation for the next, or the (k + 1)th interval:

umem(k + 1) = umem(k)− λmemvmem(k)(rrefmem − rmem(k))/rrefmem. (3.1)

This control law has two configurable parameters, where rrefmem is the desired level of memory utilization

for the VM, and λmem is a constant for fine tuning the aggressiveness of the controller. In [81], we have

shown that the above controller is stable as long as λmem ≤ 2. For the experiments in this chapter, we set

rrefmem = 90% and λmem = 1. The design of the control law in (3.1) was driven by the bimodal behavior
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rrefmem λmem Umin
mem Umax

mem Tmem

0.9 1 230 MB 1024 MB 3 s

Table 3.1: Parameter values of the memory controller

of the system, as shown in Figure 3.3(a). The controller aggressively allocates more memory when the

previously allocated memory is close to saturation, and slowly decreases memory allocation in the underload

region. This memory utilization controller is fairly easy to implement where the only measurement needed is

the memory usage of the VM. The controller also ensures that the value of the memory allocation, umem(k+

1), remains within a specified range of [Umin
mem, Umax

mem], where Umax
mem = memmax, the maximum amount of

memory the VM is entitled to, and Umin
mem is the minimum amount of memory to keep the VM running. It is

also important to choose a proper control interval, Tmem, for the memory controller. We chose the control

interval to be as short as possible so that the controller can respond quickly when there is a spike in the VMs

memory usage, while taking into consideration the latency in adding and removing memory.

3.4.2 Memory Controller Evaluation

We ran the following experiment to test the performance of the memory controller. We used the MemAc-

cess application to emulate a synthetic memory usage trace that has two peaks and one valley and that

varies between 256 and 512 MB. Table 3.1 lists the values of the memory controller parameters used in the

experiment, and Figure 3.6 shows the results.

The red line in Figure 3.6(a) represents the measured memory usage, and the blue line represents the

memory allocation computed by the controller. As we can see, our memory controller does a good job in

providing enough memory to the VM, in spite of the varying memory demand from the application. The

green line in the figure shows the size of the balloon. This is the amount of memory that can be borrowed

by another VM when needed to handle load spikes.

The resulting average response time of the application is shown in Figure 3.6(b). It is evident that

the application performance was good throughout the duration of the experiment, where the response time

remained below 50ms.
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(a) (b)

Figure 3.6: Memory allocation, usage, and balloon size for the VM (a) and measured response time (b) as
a result of the memory controller

3.5 Combined CPU and Memory Control

3.5.1 Nested CPU Controller

We use the nested controllers developed in [85] for CPU allocation to each VM: a CPU utilization con-

troller running in the inner loop, which periodically adjusts the CPU allocation to maintain utilization of the

allocated capacity at a given target, and a Response Time controller in the outer loop, which sets the target

utilization in real time based on the observed error between the response time reference and its measurement.

Figure 3.7 shows a block diagram of the nested control loops.

Figure 3.7: Nested CPU utilization controller and response time controller

The CPU utilization of an application is a common metric monitored in production systems to determine

whether more or less CPU resource should be allocated to the application. Similar to the notation for

memory, let ucpu(k) and vcpu(k) be the CPU allocation and consumption for a VM during the kth control
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interval, and rcpu(k) = vcpu(k)/ucpu(k) be the VM’s average CPU utilization for the same interval. Then

the controller uses the following equation to compute the desired CPU allocation for the next, or the (k+1)th

interval:

ucpu(k + 1) = ucpu(k)− λcpuvcpu(k)(r
ref
cpu − rcpu(k))/r

ref
cpu. (3.2)

In this controller, rrefcpu is the desired level of CPU utilization for the VM. The parameter λcpu is a

constant again for fine tuning of the aggressiveness of control actions. The controller is stable for λcpu ≤ 2

(see [85]). For the experiments in this chapter, we set λcpu = 1.5 , allowing the CPU controller to be slightly

more aggressive than the memory controller. The output of the integral controller is then bounded in the

range [Umin
cpu , Umax

cpu ].

We see from Figure 3.5 that the application’s MRT is a monotonically increasing function of the CPU

utilization. For a given response time target, RT ref , the corresponding CPU utilization target, rrefcpu , is

different for different workloads. For example, the same figure shows that, for RT ref = 0.1s, the ideal

CPU utilization is 0.73, 0.82, and 0.87 for our workload at 20, 30, and 40 requests/s, respectively. Given

that both workload mix and intensities can change at runtime, a second controller is required to translate the

value of the RT target to the value of the CPU utilization target automatically in real time. We refer to this

controller as the RT controller.

As in [85], we use the following integral control law for the RT Controller:

rrefcpu(i+ 1) = rrefcpu(i) + β(RT ref −RT (i))/RT ref , (3.3)

where RT (i) is the measured average response time for the ith control interval. The value of the integral

gain, β, can be computed based on the approximate slope of the response time curve in Figure 3.5 at the

expected operation point, RT ref . For example, if the maximum estimated slope is α, then we need to have

β < 1/α to ensure stability of the RT controller. The controller also ensures that the rrefcpu value fed to the

CPU utilization controller is bounded to an interval [Rmin
cpu , Rmax

cpu ].

Note that two different time indices are used in (3.2) and (3.3) to indicate that the utilization controller

and the RT controller use different control intervals. In a nested design, typically the inner loop has faster

dynamics and therefore uses a shorter control interval than that of the outer loop. Let TUC
cpu and TRT

cpu be the
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λcpu Umin
cpu Umax

cpu TUC
cpu RT ref β Rmin

cpu Rmax
cpu TRT

cpu

1.5 0.1 0.9 3 s 0.1s 0.1 0.5 0.95 12 s

Table 3.2: Parameter values of the CPU controller

control intervals for the CPU Utilization controller and the RT controller, respectively. Then TUC
cpu < TRT

cpu .

The difference between the two should depend on how many intervals are required for the inner controller to

converge before its reference setting is changed by the outer controller. (See more discussion of this nested

design in [85]).

3.5.2 Joint CPU and Memory Controller

As we have seen from many resource utilization traces of real world applications, both the CPU and the

memory demands of an application can vary over time. Therefore, our resource controller runs the CPU

controller and the memory controller side by side, as shown in Figure 3.1, to ensure that each application

running in a VM can obtain enough of both CPU and memory resources such that its SLO can be met.

Note that, unlike the CPU controller, the memory controller is not driven by the response time target in

real time due to the sharply different behavior of memory as shown in Figure 3.3(a). Instead, we use 90% as

the target for the memory utilization controller to ensure that there is always some amount of free memory

available within each VM to avoid memory-related performance degradation in the hosted applications.

Both the CPU and the memory controllers include an arbiter to handle overload situations, where the

total computed allocation for the next interval exceeds the resource capacity. In this case, the arbiter reduces

the CPU or memory allocation to each VM in proportion to the requested allocation.

3.5.3 Performance Evaluation Results

We have run performance evaluation experiments of the joint CPU and memory controller on our testbed,

described in Section 3.2. In this subsection, we present the results of two such experiments, one using

synthetic workload traces, and the other using utilization traces collected from real systems. In these experi-

ments, the parameter values for the memory controller are the same as shown in Table 3.1, and the parameter

values for the nested CPU controller are displayed in Table 3.2.

1) Results from Using Synthetic Workloads:

In the first experiment, we ran two Xen virtual machines, VM1 and VM2, on the same physical node,
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each hosting a MemAccess application. The two guest VMs were pinned to one of the two processors while

Dom-0 was pinned to the other processor. In addition, 3GB out of the 4 GB of memory was allocated to

Dom-0, and the remaining 1 GB was shared by VM1 and VM2. For each application, we varied both the

CPU and the memory loads according to synthetically generated time-varying patterns. For either CPU or

memory, the patterns for the two applications are complementary to each other such that the sum of the

two peaks is above the capacity of that resource, but the sum of the two instantaneous values is much lower.

These workload patterns and resource configurations were specifically chosen to test the performance of our

joint CPU and memory controller when both resources are overbooked.

We consider two controller configurations in our experiment. One is the joint CPU and memory con-

troller described earlier, and the other is the CPU controller only without the memory controller. In the latter

case, the memory allocation for each VM is statically configured at 512 MB. For both cases, the response

time target, RT ref , was set at 100 ms (or 0.1 s) for both applications. The experiment was run for 10

minutes for each controller configuration. The results are shown in Figures 3.8-3.10.

(a) Joint CPU and memory control

(b) CPU control only

Figure 3.8: Memory allocation and usage for VM1 and VM2 under two controller configurations

Figure 3.8 shows the memory allocation and measured memory usage for both VM1 and VM2 under

the two controller configurations. We can see that the memory allocations for the two VMs perfectly track

the time-varying memory demands of both applications, when the memory controller was used, as shown
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in Figure 3.8(a). In contrast, Figure 3.8(b) shows that when no dynamic memory allocation was used, both

VMs had their peaks capped by the fixed allocation.

(a) Joint CPU and memory control

(b) CPU control only

Figure 3.9: CPU allocation and consumption for VM1 and VM2 under two controller configurations

Figure 3.9(a) shows the CPU allocations and consumptions for the two VMs with the joint CPU and

memory controller, where the allocations track the consumptions well. Figure 3.9(b) shows the same metrics

when only CPU controller was used. We observe that the peak CPU consumption by VM1 was increased

from 50% to 70% around the 40th and the 180th time intervals as a result of the memory shortage in this

VM.

This is similar to what we observed in Figure 3.4. Consequently, the required CPU allocation to VM1

was also increased, causing the shared processor to be overloaded. The arbiter in the CPU controller was

applied to reduce CPU allocations to both VMs.

The resulting mean response times of the two applications running in VM1 and VM2 are shown in

Figure 3.10. When the joint CPU and memory controller was used, the MRTs of both applications were

maintained around their target value of 100ms. When no memory controller was used, both applications

experienced significant service level violations where the peak response times were up to two orders of

magnitude higher, due to both memory shortage and CPU overload conditions.

2) Results from Using Real World Traces:

In the second experiment, we emulate a scenario where four virtual desktops are consolidated onto a
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(a) VM1 (b) VM2

Figure 3.10: Mean response times (in log10 scale) under two controller configurations for the two applica-
tions running in VM1 and VM2

single physical node. To this end, we ran four MemAccess applications in four different Xen VMs on the

same node. The workloads used for these applications were based on real CPU and memory demand traces

collected on four different desktop machines at HP Labs. Each trace contained average CPU and memory

consumption for every 1 minute interval during the 9am-2pm window on the same day. This window

was chosen such that all the machines were reasonably active where both CPU and memory consumptions

demonstrate dynamic behavior. We consider this a more challenging scenario for our resource controller

compared to other time periods where either the CPU load was mostly below 10% or the memory usage was

flat.

As described in Section 3.2.1, we reproduced both the CPU and the memory demand patterns in each

of the applications by dynamically varying both the mean request rate in the workload as well as the heap

size allocation to the application once every minute. We also did a capacity planning exercise in advance

where we estimated the peak of the total CPU load to be around 85%, and the peak of the total memory load

to be around 3.1 GB. Therefore, we allocated one processor to Dom-0 and VM1, and the other processor

to the remaining VMs (VM2, VM3, and VM4). We also allocated 512 MB of memory to Dom-0, and the

remaining 3.5 GB of memory to be shared by the four guest VMs. The experiment was run for 5 hours, and

the results are shown in Figures 3.11-3.13.

Figure 3.11 shows the memory allocation and usage for the four VMs, and Figure 3.12 shows the CPU
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(a) VM1 (b) VM2

(c) VM3 (d) VM4

Figure 3.11: Memory allocation and usage for four VMs
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(a) VM1 (b) VM2

(c) VM3 (d) VM4

Figure 3.12: CPU allocation and consumption for four VMs
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allocation and measured consumption for the four VMs. Both sets of metrics were collected over the 3-

second control intervals.

The measured mean response time for every 12-second interval is shown as a function of the interval

number in Figure 3.13(a) for the four applications running in the four VMs. To better assess the overall

performance, we also show a cumulative distribution function (CDF) of the MRT for the four VMs in

Figure 3.13(b). Interestingly, the CDFs for the four applications are almost identical, although their CPU

and memory demands are different. This is likely due to the large number of samples in the data. All the

four applications were able to achieve an MRT of 100 ms 65% of the time, and an MRT of 300 ms more than

98% of the time. Such performance is fairly good considering that both CPU and memory are shared among

the four VMs, and overall resource utilization of this system is much higher than that of typical enterprise

servers.

(a) Time series (b) CDF

Figure 3.13: Measured MRT of the four applications

3.6 Conclusions

In this chapter, we described how OptiTuner can be used to develop dynamic memory allocation to vir-

tual machines on Xen-based platforms. Based on experimental results that characterize the quantitative

relationship between memory allocation to a VM and performance of the application running inside the

VM, we have designed a joint resource controller combining a utilization-based memory controller and a

performance-driven CPU controller by avoiding the region where memory allocation interacts with other
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components in a way that badly affects application performance. To effectively monitor application perfor-

mance and control the resources allocated to VMs, the designed joint control system is implemented using

OptiTuner that allows an easy access to various sensors and actuators exported by the virtualization layer and

the application. Experimental results from the testbed validate that memory overbooking can be achieved

using our memory controller, and our joint controller can ensure that all of the consolidated applications can

have access to sufficient CPU and memory resources to achieve desirable performance.
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Chapter 4

Holistic Approaches for Energy
Minimization

4.1 Introduction

In the previous chapter, we presented a case study where OptiTuner was used to implement a joint CPU

and memory controller in a consolidated environment. In the case study, it was shown that the interaction

between CPU and memory controllers in terms of application-level performance was minimal as long as

memory utilization is below a certain threshold. Therefore, the design goal of the joint controller was to

stay away from the region in which the interaction between the two controllers arises. However, in many

cases, interactions between composed adaptive components are inherent and may not be completely avoided.

The best solution in such cases is to proactively coordinate their combined behavior to reduce anomalous

interactions, hence achieving the desired performance goals.

Differently from the case study in the previous chapter, the energy minimization application in a Web

server farm introduced in Chapter 1 and 2 uses three types of energy saving knobs (DVS, On/Off, Back-

upAC) that incur constant interactions between them affecting energy consumption of the system. Those

knobs should be continuously coordinated in the presence of workload changes to reduce anomalous inter-

actions between them. In this chapter, we implement and evaluate three different holistic approaches for

performance management that have been widely used in achieving desired performance in computing sys-

tems - centralized optimization [30, 50, 63], distributed optimization [10, 12, 15, 38, 52], and multi-input

and multi-output (MIMO) feedback control [17, 78, 79] - in the context of energy minimization in a Web

server farm testbed. We show how OptiTuner can be used to apply the three techniques to successfully

coordinate control knob adjustment and configure power management for the application.

Our testbed consists of 18 machines with an Amazon-like online book store installed. The performance

objective of the resulting application is to minimize the total energy consumption of the server farm, subject

to end-to-end delay constraints on client requests and resource constraints on available computational capac-
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ity. The testbed is equipped with three different types of performance control knobs to save energy. Through

a thorough evaluation process using an industry standard eBusiness benchmark, TPC-W, we show that the

three energy minimization approaches can save more energy compared to the baselines, demonstrating that

OptiTiuner is indeed useful for developing performance optimization and control for performance-sensitive

systems.

The rest of the chapter is organized as follows. We develop an energy minimization application in a 3-tier

Web server farm using three different performance management techniques with OptiTuner in Section 4.2.

We evaluate OptiTuner in Section 4.3. We conclude the chapter with Section 4.4.

4.2 Three Holistic Performance Management Approaches

In the energy cost minimization application for 3-tier Web server farms, the total cost incurred in the applica-

tion includes two parts: (i) the energy cost of server machines in the system less (ii) the utility achieved from

database backup requests. The goal is to minimize the total cost, subject to the delay constraints of client

requests and a resource constraint on the number of available servers. Three types of performance control

knobs are used to save energy: On/Off, DVS, and BackupAC. Since their interactions cannot be removed,

the three types of energy saving knobs need to be continuously coordinated in the presence of workload

changes in a way that reduces bad interactions among them, thereby effectively minimizing energy.

To show the use and efficacy of OptiTuner, we implement three different holistic performance man-

agement approaches for the server farm energy minimization application: (i) a centralized optimization

approach, (ii) a distributed optimization approach, and (iii) finally a MIMO feedback control approach. We

then evaluate and compare the three approaches in Section 4.3.

4.2.1 Centralized Performance Optimization

In this section, we implement a centralized optimization approach for an energy minimization application

in server farms using OptiTuner. A centralized optimization approach is a natural choice for achieving good

performance given multiple control knobs to tune. The goal of optimization is to find a best combination of

the three types of control knobs in the server farm that minimizes power consumption.
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Optimization Formulation

We assume that the load is evenly distributed across the machines at each tier in steady state. That is, all mi

machines belonging to a tier i operate at the same frequency fi. Let Ptier(i) be the power consumption of

tier i in the system, which is a function of the DVS frequency level and number of machines operating in

that tier. λbackup is the rate at which database backup requests are admitted (in cycles/sec). The end-to-end

delay bound of client requests is denoted by K. The total number of machines available is denoted by M ,

and each machine is either turned off or is operating at one of the 3 tiers. It is desired to minimize:

min
3∑

i=1

Ptier(i)− h · log(λbackup) (4.1)

subject to
3∑

i=1

Delay(i) ≤ K,

3∑
i=1

mi ≤ M. (4.2)

Observe that the formulation assumes that utility for backup requests increases logarithmically with backup

request rate. Power consumption at tier i, Ptier(i), is estimated based on the current frequency, fi, and the

number of machines operating at tier i:

Ptier(i) = mi · Pmachine = mi · (Ai · fn
i +Bi), (4.3)

where Bi is the power consumption that is independent of the current frequency and Ai is a positive constant

that indicates the effect of the frequency on power consumption. Ai, Bi, and n can be measured using offline

experiments. In general, power changes linearly with frequency and quadratically with voltage [20]. Further,

a change in voltage involves a proportional change in frequency. Hence, we will use the value 3 for n for

the preliminary results in the next section.

In our testbed, fi has 8 different discrete values, while optimization works more efficiently when all

variables are continuous. We effectively approximate fi as a continuous variable by replacing it with Ui

which is continuous. After getting Ui, we can closely approximate the given Ui by choosing an effective

frequency that makes the utilization closest to Ui. This effective frequency can be implemented by time-

multiplexing two of the discrete frequencies available on the processor in question. Techniques for doing

so have been proposed in earlier literature [51]. To replace fi with Ui, the steady-state result of an M/M/1
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queuing model [47], utilization = λ/µ, is used, where µ is the service rate and λ is the arrival rate. We use

a queuing model, because it has been widely used for estimating various performance metrics for computing

systems such as delay and resource utilization [45]. It yields:

Ui =
λi/mi

fi
=

λi

fimi
, (4.4)

where λi denotes the rate of arrival of requests to tier i, and Ui denotes the utilization of a machine at tier i.

Using the relationship shown in Equation (4.4), we rewrite Equation (4.3):

Ptier(i) = mi · Pmachine = mi ·
(

Aiλ
3
i

U3
i m

3
i

+Bi

)
. (4.5)

Also, λbackup is estimated using the relationship between Ubackup, m3, and f3 from Equation (4.4):

λbackup = Ubackup ·m3f3 = (U3 − Uuser)m3f3, (4.6)

where Ubackup is the utilization of backup requests alone at the third tier, and Uuser denotes the utilization

of user requests.

Assuming the load is equally distributed over the machines at each tier, the delay experienced at each

tier i, Delay(i), is estimated using the steady state result of M/M/1 queuing:

Delay(i) =
Ci

fi − λi
mi

=
miCi

λi
·

λi
mifi

1− λi
mifi

=
miCi

λi
· Ui

1− Ui
, (4.7)

where Ci is a constant in cycles per request to normalize the delay, since fi is measured in cycles and λi is

estimated in cycles/sec rather than in requests/sec.

Finally, the resulting cost minimization problem is formulated with the control knobs
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x = [U1 U2 U3 Ubackup m1 m2]
T and the two constraints as follows:

min

3∑
i=1

mi

(
Aiλ

3
i

U3
i m

3
i

+Bi

)
− h · log(Ubackup ·m3f3)

subject to

3∑
i=1

miCi

λi
· Ui

1− Ui
≤ K,

3∑
i=1

mi ≤ M

.

(4.8)

Observe that in the current testbed, the On/Off knob in the third tier is inactive due to data migration

problems (we will explain about our testbed in detail in Section 4.3). Hence, m3 is a constant and the goal

of optimization is to find the set of six knob settings, x = [U1 U2 U3 Ubackup m1 m2]
T, that minimizes the

cost function subject to the two constraints.

Implementation of Regulation Policies in OptiTuner

We use Shor’s r-algorithm to solve the constrained minimization problem shown in Eq (4.8), because the

success of the algorithm for nonlinear optimization has been reported recently [8] and its implementation is

available in an open source package, OpenOpt [82].

Since it is a centralized solution, we implement a regulation policy running on a dedicated machine that

periodically solves the optimization formulation to determine control knob settings at each control period

t. One of the machines at each tier is then selected as the leader to run a regulation policy that periodically

contacts the central optimization solver (e.g., the regulation policy on the dedicated machine). It sets the

control knobs for the next control period t+1 for the corresponding tier. The leader is statically defined and

specified in the configuration file globally shared by OptiTuner processes.

We also implement tier-wise sensor objects called TierSensor that collect performance measurements

and resource usage information such as the utilization, request rate, and response time for the correspond-

ing tier that are required to solve the optimization problem. They aggregate performance measurements

collected from sensors instrumented in individual machines. Similarly, we implemented two tier-wise actu-

ators, TierDVSActuator and TierOn/OffActuator, that act on the DVS and On/Off actuators instrumented in

individual machines.

When a machine is being turned on or off, there may be some period that it is still consuming power but
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it cannot serve any new requests. While this overhead can be captured by the problem formulation shown in

Eq. (4.8), the worst-case overhead (i.e., toggling a machine every period) depends only on the rate at which

the optimization solution is re-computed. Given a fixed rate, the overhead is constant and hence does not

affect the solution to the problem. We do not address the rate of recomputing the solution itself as one of

the parameters to optimize.

4.2.2 Distributed Performance Optimization

A disadvantage of the above approach is that is is centralized. In this section, we describe distributed

performance optimization using OptiTuner. This approach uses optimization decomposition [12], recently

applied at length in network theory, to break complex system-wide global optimization problems into less

coupled subproblems that can be optimally solved at run-time in a distributed fashion.

Background

Optimization decomposition techniques work best when the constrained optimization problem is convex,

in which case a unique optimal solution exists and convergence to the optimal point is guaranteed [6].

When an optimization problem is non-convex in nature, approximate convex models can be used in the

optimization formulation. Consider a set of (energy or performance) regulation policies, where xi denotes

the performance control knob setting of regulation policy i, where i = 1, · · · , n (there are n regulation

policies, each manipulating one knob). Let x = [x1, . . . , xn]
T denote a vector of the knob settings that need

to be jointly optimized. A constrained utility maximization problem is formulated as follows:

max
x≥0

U(x)

subject to gj(x) ≤ 0, j = 1, . . . ,m, (4.9)

where U is the utility function to be maximized; gj(·), j = 1, . . . ,m, are the resource and performance

constraints. We assume that the knob settings are real numbers, the utility function U(·) is concave and

differentiable, and constraint functions gj(·) are convex and differentiable.

Introducing Lagrange multipliers p1, . . . , pm for the constraints, the Lagrangian of the problem is given
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as:

L(x,p) = U(x)−
m∑
j=1

pjgj(x), (4.10)

where p denotes the vector of Lagrange multipliers, p = [p1, . . . , pm]T . The Lagrange multiplier, pj , is

considered as a price for constraint j, indicating the availability of the resource corresponding to constraint

j.

The original problem shown in Equation (4.9) has the optimal point at x∗, if and only if there exists the

optimal point (x∗,p∗) that maximizes the Lagrangian in Equation (4.10) with respect to x and minimizes

the Lagrangian with respect to p. To reach the optimal point (x∗,p∗), each regulation policy i periodically

adjusts the associated control knob setting xi to maximize L(x,p) with regard to xi individually. In the

mean time, each resource constraint monitor j periodically changes pj to minimize L(x,p) with regard

to pj , achieving decomposition between the various regulation policies. For example, each period t, each

regulation policy i that adjusts the performance control knob setting xi (to maximize L(x,p)), may use the

gradient method (a steepest descent algorithm) [6]:

xi(t+ 1) =

[
xi(t) + αxi

(
∂U(x)

∂xi
−

m∑
j=1

pj
∂gj(x)

∂xi

)]+
(4.11)

where αxi is a step size that determines the rate at which the error to the optimal point (x∗, p∗) is reduced1.

The price value pj for constraint j is updated in a similar way:

pj(t+ 1) =
[
pj(t)− αpj (−gj(x))

]+ (4.12)

The step size constant affects the convergence rate and the stability of the system. It is shown that smaller

step size values help improve system stability, while larger step size values help improve convergence

rate [26]. Also the update period should not be too large to promptly cope with the workload changes

and closely approach optimality [26].

Thus, the decomposition of the optimization problem enables regulation policies to update their per-

formance control knobs asynchronously and independently of each other. The coordination of regulation
1[Y ]+ means that the resulting value should be greater than or equal to 0. Arithmetically it is the same as max(0, Y )
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policies toward the optimal point is done by exchanging the price values of the related constraints and the

current settings of the dependent control knobs. This information exchange occurs locally among the de-

pendent regulation policies and the related constraint monitors. The price values adjusted by constraint

monitors serve to inform the regulation policies of how much further performance can be improved without

breaking the constraints.

The above has some resemblance to market-based resource allocation approaches [58, 77] in that re-

source availability is expressed as prices and resource allocation is carried out in a distributed fashion based

on the prices. However, participants in market-based approaches are usually assumed to be self-interested.

Optimization Formulation and Decomposition into Subproblems

We can use the same optimization formulation shown in Eq (4.8) since it is a convex problem. In order to

derive subproblems from the optimization formulation, we first get the Lagrangian of the problem (4.8) as:

L(x, p1, p2) =

3∑
i=1

mi

(
Aiλ

3
i

U3
i m

3
i

+Bi

)
− h · log(Ubackup ·m3f3)

+ p1 ·

(
3∑

i=1

(
miCi

λi
· Ui

1− Ui
)−K

)
+ p2 ·

(
3∑

i=1

(mi)−M

)
,

(4.13)

where p1, p2 ≥ 0 denote the Lagrange multipliers for the two constraints.

By differentiating the Lagrangian with respect to each of the optimization variables, we can decompose

the problem into subproblems that adapt their knob setting individually. Six different regulation policies are

created to iteratively adjust the 6 knob settings, x = [U1 U2 U3 Ubackup m1 m2]
T (m3 is a constant in our

testbed). A constraint monitor is created to adapt the two price values, p1 and p2, for the two constraints.

By differentiating the Lagrangian with respect to U1 and U2, the update equations for the DVS policies

at tiers 1 and 2 are obtained as:

Ui(t+ 1) =

[
Ui(t)− αUi

(
− 3Aiλ

3
i

m2
iUi(t)4

+
p1miCi

λi(1− Ui(t))2

)]+
. (4.14)

Once Ui is calculated, the corresponding frequency, fi, is determined using Equation (4.4). Since the

frequency value is discrete in a real system, we choose the closest frequency setting to the calculated value,

fi. Alternatively, a time-multiplexed combination of frequencies can be used as described in [51]. The DVS
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Policy at tier 3 updates its knob setting U3 in a similar way:

U3(t+ 1) =
[
U3(t)− αU3 ·(

− 3A3λ
3
3

m2
3U3(t)4

+
p1m3C3

λ3(1− U3(t))2
− h

U3(t)− Uuser

)]+
.

(4.15)

The DVS policy at tier i determines its control knob setting, Ui (hence fi) every second, since the frequency

can be changed very quickly. For all tiers, we use 0.05 for the step size constants, αUi . This value is

empirically determined. Formal control-theory analysis of stability of convergence of the above convex

optimization approach can be found in [12].

Since the control knob settings Ubackup and U3 are related to each other, we calculate Ubackup based on

U3:

Ubackup(t+ 1) =
λbackup

λ3
U3(t+ 1). (4.16)

With the calculated Ubackup, the BackupAC policy adjusts the portion of the incoming database backup

requests accordingly. It uses a control theoretic approach to keep the measured utilization for the backup

requests around the set point, Ubackup, by properly adjusting the admission rate for the incoming backup

requests.

The On/Off policies at tiers 1 and 2 update their control knob settings m1 and m2 at each invocation

period as follows:

mi(t+ 1) =
[
mi(t)− αmi ·(

− 2Aiλ
3
i

mi(t)3U3
i

+Bi +
p1Ci

λi
· Ui

1− Ui
+ p2

)]+
.

(4.17)

The update period for the On/Off policies is set to 1 seconds.

The constraint monitor periodically adjusts p1 and p2 respectively using the following update rules:

p1(t+ 1) =
[
p1(t) + αp1

(
D(t)−K

)]+
p2(t+ 1) =

[
p2(t) + αp2

( 3∑
i=1

(mi)−M
)]+

. (4.18)

where D(t) is the measured end-to-end delay at time t. Both p1 and p2 are updated every second. αp1

is set to 0.05 and αp2 is set to 0.5 (which are empirically determined). In order to accurately calculate

p1, we use a measured end-to-end delay instead of an estimated value using the M/M/1 queuing equation
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∑3
i=1(

miCi
λi

· Ui
1−Ui

), because end-to-end delay can be easily measured in our testbed. On the contrary, in

the centralized approach, the measured delay cannot be directly used for the delay constraint inequality in

Eq. (4.8). Replacing the delay estimation equation with the measured delay would make it impossible to

express the dynamics between the delay and control knob values in the optimization process. For example,

if the measured delay is less than the bound, K, the inequality becomes inactive so that it has no influence

over the optimization process. On the other hand, if the measured delay is larger than K, the optimization

solver stops immediately because there is no feasible solution.

The direction of changes in the update rules are opposite to the ones explained in Section 4.2.2, since

the objective is to minimize total cost rather than to maximize utility.

Observe that the time scales and step sizes are empirically chosen. Instead of analytically proving the

stability of this approach with the time scales and step sizes chosen, we limit the amount of changes in

On/Off and DVS knobs to small steps at one period. We observed in the evaluation results (described later

in Section 4.3) that the system responds to the approach well, while not losing stability. Formal stability

analysis of convex optimization solvers can be found in [12].

Implementation of Regulation Policies in OptiTuner

The decomposition of the optimization problem results in regulation policies to adjust the six different

performance control knobs and a constraint monitor to adjust the two price values for the constraints.

Three DVSPolicy objects were implemented to perform the adaptation rules, described in Equation (4.14)

for the first and the second tier and Equation (4.15) for the third tier. Similarly, two On/OffPolicy objects

were implemented to perform the adaptation rules specified in Equation (4.17) for the first and the second

tier. The BackupACPolicy object executes the update rules in Equation (4.16). As all policies work on

tiers instead of individual machines, they are placed in the leader machines. The ConstraintMonitor object

implements the update rules for the two constraints described in Equation (4.18) and runs on the leader

machine of each tier. The constraint monitor needs some information (e.g., the average utilization and the

number of machines currently used at each tier) from all three tiers to adjust the price values. While this

entails that there is exchange of information between all the tiers, the regulation policies at different tiers are

still implemented in a distributed fashion and their control knobs are adjusted independently of each other.

As in the centralized optimization approach, the tier-wise sensor TierSensor objects, are used to collect
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performance data and two actuators, TierDVSActuator and TierOn/OffActuator, are used to enforce the

control knob settings.

4.2.3 MIMO Feedback Control

In this section, we implement a MIMO controller using OptiTuner. MIMO control approaches have been

successfully used to maintain the desired performance in performance-sensitive systems [17, 78, 79]. The

implemented MIMO controller dynamically finds the control knob settings, x = [U1 U2 U3 Ubackup m1 m2]
T

to keep the end-to-end delay constraint. At the same time, by adjusting the three types of power saving con-

trol knobs, power consumption is reduced. The MIMO controller designed in this chapter is based on the

one used in [78]. We chose it because the MIMO controller they used is directly applicable to our energy

minimization application. This also proves the usefulness of OptiTuner because it can be used to implement

an existing design technique without difficulties.

Controller Design

In this section, we formally explain the design of the controller. Since the goal of the controller is to

minimize the control error, we first define the control error e(t) at each control period t as the difference

between the the current average delay D(t) and the end-to-end delay constraint K, hence e(t) = D(t)−K.

The controller tries to keep the error as small as possible by adjusting the control input (i.e. the control

knobs, x).

Before adjusting the control knob values x, they are normalized by subtracting their average, ∆x(t) = x(t)− x,

where x is the average of x(t). This is the process of linearlization around the operating point because our

controller assumes a linear system. Hence, the designed controller periodically adjusts a control knob

change vector ∆x(t) = [∆x1(t), ..., ∆xn(t)] with given the current error e(t) to minimize the next error

e(t+ 1), where n is the number of control knobs.

In order to effectively design a controller, we need a dynamic model describing the relationship between

the control input ∆x(t) and the output e(t). We apply system identification to derive a linear model for

designing our controller as follows:

e(t) = A e(t− 1) +B∆x(t− 1) (4.19)
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where A is a n× 1 matrix and B is a n× n matrix and n is the number of control knobs.

Using the linear model identified, we design our controller using the Linear Quadratic Regulator (LQR)

control [27]. The linear quadratic regulator (LQR) is a well-known control technique that provides prac-

tical feedback gains for MIMO control problems. We determine the feedback gain matrix F for the LQR

controller using the matlab dlqry function:

F = [KP KI] (4.20)

where KP and KI are constant matrix. Given the gain matrix F, the controller calculates a control knob

change vector ∆x at each control period t:

∆x(t) = −F [e(t− 1) v(t)]T (4.21)

where v(t) represents the accumulated error used for applying the integral gain KI to reduce residual error.

v(t) is defined as follows:

v(t) = λ v(t− 1) + e(t− 1). (4.22)

where λ is a forgetting factor indicating the importance of the past accumulated error. We use 0.8 for λ.

4.3 Evaluation

In this section, we show the evaluation results of OptiTuner with an energy minimization application in our

3-tier Web server farm testbed of 18 machines. We first describe the implementation details of OptiTuner

in Section 4.3.1 followed by the setup of the testbed in Section 4.3.2. In Sections 4.3.5 and 4.3.6, we

present results from experiments without and with database backup requests, respectively. We carry out

experiments without database backup requests for an appropriate comparison with the approach used in our

previous work [30] that didn’t consider database backup requests.

4.3.1 OptiTuner Implementation

In this section, we briefly explain the details of OptiTuner architecture and its implementation.

An OptiTuner process runs on each machine involved in the target performance-sensitive system, man-
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aging objects residing in the machine. This peer-to-peer property is necessary since modern performance-

sensitive systems are usually distributed and large-scale. To provide a uniform access to objects across all

OptiTuner processes, a global configuration file is shared among these processes. It contains the informa-

tion of the registered objects: the location of objects and their properties such as their period (if they are

periodically used), measurement value types, control knob value types, and price values.

The node manager in an OptiTuner process manages node objects that represent the machines controlled

by OptiTuner. Each node object maintains a table for the objects residing in the corresponding machine. In

OptiTuner, objects performing periodic operations register themselves with the event manager. The event

manager invokes the registered objects periodically based on their execution period. Observe that most

object classes provided by OptiTuner are periodic. For example, regulation policy objects update their

corresponding control knobs periodically and sensor objects usually collect data periodically.

The design of OptiTuner does not limit the choice of the implementation language. The current pro-

totype implementation of OptiTuner is written in Python. Choosing a script language did not affect the

performance severely, because most of the computation is done at relatively large periods, hence consuming

negligible CPU time. Our measurement shows that OptiTuner implementation written in Python consumes

less than 3% of CPU utilization.

4.3.2 Testbed Setup

We constructed a testbed for a three-tier Web server farm with a total of 18 machines. In the setup, we

used Apache 2.0 Web server for the first tier, Tomcat for the second tier, and MySQL 5.0 for the third tier.

Three machines with Intel Pentium IV 3GHZ CPU and 2GB of RAM are used to run a load balancer for the

first tier (Apache 2.3 with mod proxy balancer), a load balancer for the third tier (a JDBC-based database

clustering solution [14]), a backup request generator, and a client request generator respectively.

Out of the remaining 14 machines with Intel Celeron 2.53GHZ CPU and 512MB RAM, tier 1 and 2

were given 5 machines each and tier 3 was given 4 machines. Each machine belongs to a specific tier and

the allocation is static. For example, a machine does not serve as a tier 1 machine part of the time and

tier 2 machine at another time. This is in part to avoid the complications of moving machines between

different tiers. One might need to implement virtual machine migration to do so. Further, the On/Off Policy

in the third tier is inactive in the current testbed, since the database clustering solution does not fully support
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consistent data migration between replicas. Hence, the configuration of the server farm is: m1 ≤ 5, m2 ≤ 5,

and m3 = 4. Observe that these per-tier upper limits for tier 1 and 2 do not affect the optimization result

with the one total machine constraint because the upper limits are not violated with the workload used in

the evaluation (explained below).

We used the p4-clockmod driver to change the processor frequency within 8 different frequency levels

from 317MHZ to 2.53GHZ. Load balancers for the first and third tiers run on machines with Intel Pentium

4 3GHZ CPU and 2GB RAM. Another machine with an Intel Pentium 4 3GHZ CPU and 2GB RAM was

used to generate backup requests for the database tier. MySQL Proxy is installed in the same machine to

implement an admission control mechanism for the backup requests. All machines were equipped with

Redhat Fedora Core 4 Linux and run OptiTuner as described in Section 4.2.2.

We installed a 3-tier Web application on our testbed based on TPC-W [71], a transactional web bench-

mark specifically designed for evaluating e-commerce systems. We modified a Java implementation of

TPC-W from the PHARM group at the University of Wisconsin [57] to make it compatible with the newest

version of Tomcat and MySQL installed in our testbed. The database is configured to contain 10,000 items

and 288,000 customers.

In the following experiments, 1500 seconds of TPC-W workload were applied for each test run, with

a 300-second ramp-up period, a 1000-second measurement interval, and finally a 200-second ramp-down

period. We used the shopping mix workload consisting of 80% browsing and 20% ordering, which is

considered the primary performance benchmark in TPC-W. We applied different client loads by changing

the number of emulated browsers (EBs). The user think-time between consecutive requests from one EB

is set to 1.0 sec. The performance objective is to minimize energy cost subject to the end-to-end delay

constraint of 0.5 sec (500 msec) and the resource constraint of the given 14 machines. The remaining three

machines for load balancing and backup request generation are not considered when calculating power

consumptions.

4.3.3 Power Measurement

We estimate the power consumption of the server farm in two ways. The first method we use is to measure

power consumption with external power meters. We use an AC power meter, Watts Up? Pro [19], to

measure power consumption in the server farm. 14 server machines are divided into two groups, where
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the power cords from seven machines are plugged into one AC power meter and those of the remaining are

plugged into the other power meter. Each power meter is connected through a serial line to a server machine,

periodically recording AC power every second.

We also estimate power consumption based on frequency measurements of the processors. This allows

us to evaluate our algorithms on system settings where the effect of DVS on power savings are different.

Specifically, the current frequency is measured every sampling interval and we then estimate the achieved

power consumption based on the measured frequency.

We first average the power consumption when the maximum frequency level is applied against different

offered workload and use it as the base power consumption. Let us call this value Pmax. We use the

relationship between power and frequency from Equation (4.3) and set the Ai- and Bi-values such that

A1 = A2 = A3 = A and B1 = B2 = B3 = B, since all the server machines are assumed identical across

all tiers. B represents the fixed energy consumption regardless of the current frequency setting and A is a

coefficient for calculating the effect of frequency changes (hence the core voltage of the processor). We can

then set B as a scaling of the maximum power as B = δPmax where 0 < δ < 1. In this way, δ characterizes

how much the DVS scaling affects the overall power consumption. A larger δ means that the effect of DVS

is less and a smaller δ means that energy consumption is more dominated by the CPU frequency. Then we

may calculate A as A = Pmax−B
fn
max

Finally, the estimated power P̂f with frequency f is

P̂f = Afn +B = Pmax

[
(1− δ)

(
f

fmax

)n

+ δ

]
. (4.23)

With given Pmax and the measurement of the current frequency, f , we can calculate the estimated power

consumption from this equation. We will use this equation in the evaluation section later in this paper.

4.3.4 Turning Machines On and Off

Turning on or off machines dynamically while the system is serving requests is one of the big challenges

to deal with when implementing our proposed distributed energy minimization algorithm. One cannot just

turn off a machine when requests are still served, especially if it is a checkout transaction. Removing those

sessions might lead to a large loss of revenue and it will also annoy users.

To gracefully turn off a first-tier machine, the front-end load balancer disables a route to the machine. Al-

though the route is disabled, it is still possible that the machine maintains connections waiting for responses
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from the second tier. Hence, the machine should be turned off only after all the remaining connections are

drained out. The middleware checks periodically to see if there are any remaining connections. Turning on

a first-tier machine is simply done by enabling the route at the load balancer after the machine is turned on.

Turning on or off second-tier machines is done in a similar way to first-tier machines. In addition, to prevent

the loss of session information for subsequent requests from a user of the same session, we enable a Tomcat

clustering scheme to replicate session information over the second tier.

4.3.5 Experiments Without Backup Requests
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Figure 4.1: Performance (power consumption) comparison between various approaches without backup
requests: When B is 70% of the maximum power
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Figure 4.2: Performance (power consumption) comparison between various approaches without backup
requests: When B is 50% of the maximum power

In this set of experiments, we consider two different types of performance control knobs, processor

frequency level (DVS knob) and the assigned number of machines (On/Off knob) for each tier, hence con-
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Figure 4.3: Performance (power consumption) comparison between various approaches without backup
requests: When B is 30% of the maximum power
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Figure 4.4: Throughput

sidering a total five control knobs (Note that the On/Off knob in the third tier is inactive in the testbed). We

evaluate six different energy saving approaches in the absence of backup requests:

• The Ondemand governor approach uses only DVS knobs. It uses the Linux Ondemand governor [60],

which is a dynamic in-kernel CPU frequency governor that changes CPU frequency levels for energy

saving based on CPU utilization.

• The independent approach uses independent regulation policies for On/Off and DVS knobs. They

determine their knob settings in isolation only on the basis of the current load. Therefore, they are not

jointly optimized.

• The RTSS07 approach, described in our previous work [30], adapts both types of control knobs.

It derives a set of necessary (but not sufficient) conditions for optimality, then uses heuristic-based
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Figure 4.5: Delay
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Figure 4.6: Average number of machines for tier 1 and tier 2

feedback.

• The centralized approach jointly adapts On/Off and DVS knobs by solving the global optimization

problem using the OpenOpt constrained optimization solver (explained in Section 4.2.1).

• The distributed approach decomposes the global optimization problem, naturally deriving separate

On/Off and DVS policies for On/Off and DVS knobs respectively (explained in Section 4.2.2).

• The MIMO control approach adjusts On/Off and DVS knobs determined by the designed MIMO

controller (explained in Section 4.2.3).

Among the six approaches, we consider the Linux Ondemand governor approach as the baseline since

it is included in the Linux kernel.

Figure 4.1, 4.2 and 4.3, show the power consumption of the various approaches for different values of the
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Figure 4.7: Average cube of frequency (f3) per machine
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Figure 4.8: Normalized power consumption

parameter B representing systems with different DVS capabilities. The centralized, distributed, and MIMO

control approaches save more power in all three different system settings than the other three approaches.

For example, at high loads, the distributed approach saves more than 15% energy over the baseline (the

Ondemand governor approach). Among the top three approaches, the distributed approach performs slightly

better than the centralized and MIMO control approaches.

One of the possible reasons why the distributed approach performs slightly better than the centralized

approach is that the distributed approach uses a measured delay when adjusting the price value for the delay

constraint. On the contrary, the centralized approach estimates delay using the model shown in Eq. (4.7)

when solving the minimization problem. Therefore, the distributed approach can adapt to workload changes

more accurately, leading to a better performance. Further, the distributed approach performs a little better

than the MIMO control approach because the MIMO control approach presented in this paper does not aim

to minimize power. Its goal is to keep the end-to-end delay around the set point, while doing so can still
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considerably save power consumption.

The RTSS07 approach comes next to the centralized, distributed, and MIMO control approaches because

it uses a heuristic feedback approach to search for the optimal point. The baseline, the Linux Ondemand

governor approach, has higher energy consumption as it uses only DVS knobs. The independent approach

adjusts On/Off and DVS control knobs independently, incurring higher energy consumption at high loads

since they are not jointly optimized.

Figure 4.6 shows the average number of machines used during the experiments. We only consider

tier 1 and tier 2 machines to calculate averages because the number of machines at tier 3 is fixed. The

Linux Ondemand governor approach shows the largest values as expected, since they use a fixed number

of machines. Interestingly, at high loads, the independent approach uses almost all available machines,

hence spending more power. As introduced in Section 4.1, this is an instance of undesirable interactions

between regulation policies when executed independently. This result shows the need for design techniques

to coordinate the adjustment of control knobs. The centralized, distributed, and MIMO control approaches

show smaller average values than the other three approaches confirming their control knob adjustment is

coordinated.

Figure 4.7 shows the average cube of frequency (f3, where f is CPU frequency) per machine. We use

f3 because the power equation Eq. (4.3) uses it to calculate power consumption. Overall, the independent

approach shows the highest frequency sum because of uncoordinated control of control knobs.

Figure 4.4 and 4.5 depict throughput and end-to-end delay respectively. All approaches show similar

performance in terms of throughput and end-to-end delay. But the Ondemand governor approach shows a

slightly higher delay at high load (e.g., when EB is 600) than the other approaches because it only considers

CPU utilization when changing CPU frequency.

Finally, Figure 4.8 depicts the normalized power consumption of the presented approaches calculated as

power consumption divided by throughput. The three approaches - the centralized, distributed, and MIMO

control approaches - show smaller normalized power consumption than the other three approaches, proving

that throughput is not sacrificed to achieve power savings.
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Figure 4.9: Cost comparison between various approaches without backup requests: When B is 70% of the
maximum power
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Figure 4.10: Cost comparison between various approaches without backup requests: When B is 50% of
the maximum power

4.3.6 Experiments with Backup Requests

In this set of experiments, we consider database backup requests that result in an additional performance

control knob, BackupAC knob, that determines the admission rate for the backup requests in addition to

DVS and On/Off knobs. We evaluate six different energy saving approaches: the Linux Ondemand governor

approach (the baseline), the independent approach, the RTSS approach with an independent BackupAC

policy (we call RTSS07-independent), the centralized approach, the distributed approach, and finally, the

MIMO control approach.

• The Ondemand governor approach uses only DVS and BackupAC knobs. The Linux Ondemand

governor (for DVS knob) and BackupAC policy (for BackupAC knob) independently adjusts their

control knobs. The BackupAC policy controls the incoming backup request rate based on the end-to-
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Figure 4.11: Cost comparison between various approaches without backup requests: When B is 30% of
the maximum power
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Figure 4.12: Power comparison between various approaches without backup requests: When B is 70% of
the maximum power

end delay constraint regardless of the decision of the Ondemand governor.

• The independent approach uses independent regulation policies for On/Off, DVS, and BackupAC

knobs. All regulation policies independently determine their knob settings based on the current load.

• The RTSS07-independent approach combines the RTSS07 approach that jointly adapts DVS and

On/Off knobs, with a BackupAC policy for database backup requests that runs independently of the

other two control knobs.

• The centralized approach jointly adapt DVS, On/Off, and BackupAC knobs by solving the global

optimization formulation (explained in Section 4.2.1).
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Figure 4.13: Power comparison between various approaches without backup requests: When B is 50% of
the maximum power
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Figure 4.14: Power comparison between various approaches without backup requests: When B is 30% of
the maximum power

• The distributed approach has the DVS, On/Off, and BackupAC policies for the control knobs co-

adapted as per the optimization decomposition methodology described (explained in Section 4.2.2).

• The MIMO control approach adapts DVS, On/Off and BackupAC knobs as determined by the MIMO

controller designed (explained in Section 4.2.3).

For different system settings obtained by varying the parameter B, the overall cost (calculated with

Eq. (4.8)) incurred by the three approaches - the centralized, distributed, and MIMO control - is less than

that of the other three approaches as shown in Figure 4.9, 4.10, and 4.11, because they serve more backup

requests while incurring comparable or less power consumption. When the workload is not high, the power

consumption of the centralized, distributed, and MIMO control is comparable to that of the independent

and RTSS07-independent approaches as shown Figure 4.12, 4.13, and 4.14. However, the centralized,
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Figure 4.15: Served Backup Requests
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Figure 4.16: Throughput

distributed and MIMO control approaches accept more backup requests as shown in Figure 4.15. This can

be attributed to the fact that those three approaches successfully minimize undesired interactions between

the three control knobs, saving energy cost which is a function of energy consumption and the number of

served backup requests.

While the Linux Ondemand approach performs poorly at low workloads (has more machines turned

on than required) in terms of cost, it performs better than the independent and the RTSS07-independent

approaches at high load (see Figure 4.9, 4.10, and 4.11). This is because, as the workload increases, the

settings of all three control knobs are not jointly adapted in these approaches. Hence, they incur more cost

than the Linux Ondemand approach that uses only two control knobs.

This ill-coordinated behavior at high workloads in the independent and the RTSS07-independent ap-

proaches, becomes obvious from Figure 4.15 and 4.18. At high loads, the number of backup requests served

by these approaches actually increases with system load as shown in Figure 4.15. Further, the two ap-
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Figure 4.17: Delay
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Figure 4.18: Average number of machines for tier 1 and tier 2

proaches use more machines at high loads as shown in Figure 4.18. Especially, the independent approach

uses almost all available machines. These are also instances of undesirable interaction between multiple

control knobs when they are adjusted independently.

For the same experiment, the throughput and end-to-end delay are shown in Figure 4.16 and 4.17 re-

spectively. The three approaches - the centralized, distributed, and MIMO control - show comparable per-

formance with the other schemes with respect to all these metrics, showing that the three approaches do

not compromise on throughput or delay in order to achieve the reduced energy cost. By admitting more

backup requests when the user load is low, and by always coordinating adjustment of control knobs, they

save considerable amount of energy cost compared to the baseline.
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Figure 4.19: Average cube of frequency (f3) per machine

4.3.7 Discussion

While all three approaches - the centralized optimization, distributed optimization, and MIMO control ap-

proaches - successfully achieve good aggregate behavior in terms of adjusting multiple control knobs, there

exist differences between them.

While the centralized and distributed approaches try to minimize power consumption, the main goal of

the MIMO feedback approach presented in this work is to maintain end-to-end delay around the set point

(e.g., the end-to-end delay constraint). Although it doesn’t explicitly try to minimize power consumption,

in order to keep the end-to-end delay around the set point, the MIMO feedback approach lowers down

CPU frequency and turns off unnecessary machines when the system is underutilized, hence saving power

consumption.

Further, the distributed approach differs from the other two approaches in that the decisions of the other

two approaches are performed in a centralized way while the distributed approach determines control knobs

settings in a distributed way.

This distinction may have scalability implications. In principle, in very large farms, it could be that a

centralized solution will eventually cause a bottleneck. Hence, the distributed solution may be preferred. At

the same time, the performance of the distributed solution may start degrading with scale. Unfortunately,

we are not in possession of a data-center scale testbed where we could experiment with life-size systems.

The point from the paper is merely to offer OptiTuner as a service that would allow system administrators

to easily evaluate the pros and cons of the different approaches on their systems.
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4.4 Conclusion

In this chapter, in order to show the efficacy of OptiTuner, we applied it to implement and configure three

different holistic performance management approaches that have been widely used in achieving desired per-

formance in computing systems - centralized optimization, distributed optimization, and MIMO feedback

control approaches - for an energy minimization application in a Web server farm. With the abstractions pro-

vided by OptiTuner that encompass common operations of different performance management techniques,

the three holistic approaches were easily implemented and configured to run in OptiTuner. Results from the

evaluation in a server farm testbed with 18 machines showed that those approaches were able to reduce total

energy consumption considerably compared to the baseline approaches through intelligently coordinating

control of multiple performance knobs.
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Chapter 5

AdaptGuard: Online Diagnosis and
Recovery Service

5.1 Introduction

While design-time and integration-time tools, developed in this dissertation, will significantly reduce the

possibility of software instability at run-time, perfection cannot always be assumed. Hence, subtle unstable

interactions may occur that result in performance problems. Such interactions must be corrected at run-

time. Differently from performance problems caused by component failures or resource bottlenecks, this

dissertation focuses primarily on performance problems caused by self-reinforcing interactions between

subsystems that lead to bad states [28, 30, 54, 55].

Since individual components are easier to test in isolation, errors that manifest themselves within a

single component are usually removed early in the development process. The residual errors not identified

at system design and integration time are those that occur because of the way components interact. For

example, undocumented assumptions on acceptable inputs might be broken when different modules are

combined. The cause of performance problems resulting from such bad interactions often cannot be easily

diagnosed by previous debugging approaches geared for detecting single component failures [11, 80], or

those geared for isolating performance bottlenecks [2, 13, 43].

Such unexpected bad interactions may occur even in well-managed commercial systems. Recently,

Gmail took some of their servers offline to do some maintenance, which made some of the servers over-

loaded. By not allowing traffic to flow into the overloaded servers, the problem got worsened as the traffic

had to be directed to an even smaller number of servers. Eventually all servers stopped accepting requests.

Similarly, Facebook was down for a few hours as an automated system for verifying cache values conflicted

with an one-time persistent copy changes for error correction. As the persistent copy changed, the auto-

mated system treated all changes as errors and thereby overwhelmed the back-end database system. This

created “real” errors due to the overloaded condition, aggravating the situation.
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To address design of automatic problem diagnosis and recovery, we present AdaptGuard, an online

diagnosis and recovery service for performance-sensitive systems, that guards the target system from in-

stability without the benefit of a priori system models. The online diagnosis service is implemented by

using OptiTuner, thereby running as a separate software service to properly monitor the target performance-

sensitive system. It can detect transient errors and performance problems arising from residual unexpected

side-effects of module composition and recover from instability caused by such problems when possible.

The rest of the chapter presents two different diagnosis mechanisms that AdaptGuard provides. Section

5.2 presents a mechanism that uses a simple statistical correlation analysis. It automatically infers the im-

plicit assumptions a designer must have made that have a bearing on loop stability. When they are violated,

it expects instability to occur and performs intervention, breaking the actual runaway loop. This mechanism

is, however, constrained to systems where correlation analysis between single events is sufficient for solving

the problem. We also consider problems where order of events is important as well. Section 5.3 describes a

mechanism that extends the first mechanism to detect discrete chains of events uses data mining techniques

and identify anomalous actions causing performance problems. It leverages discriminative sequence mining

using logs of correct past behavior in order to identify, by contrast, any recent anomalous chains of events

that are candidates for blame for the performance problem.

5.2 Online Diagnosis and Recovery Service

Adaptive components in performance-adaptive systems are carefully designed by domain experts to prevent

the system from becoming unstable. Naturally, the design of adaptive components makes implicit assump-

tions about their effect on other system components and the external environment. For example, one may

assume that turning off a server may increase load on its mirrors [30]. When such seemingly correct assump-

tions are violated, the system may respond inappropriately to external stimuli possibly driving performance

in the “wrong direction” in ways not predicted by the designer. When the problem occurs, the mission of

AdaptGuard is threefold. In the absence of a user-supplied model that describes the system, AdaptGuard

should (i) anticipate imminent performance degradation, (ii) attribute it correctly to the responsible chain

reaction, and (iii) stop it. It is key to notice here that since performance degradation may occur in ways not

predicted by the designer, it might not, in fact, be measurable (e.g., because the designer did not anticipate

to measure the right variable). A key requirement of AdaptGuard is therefore to fulfill its threefold mis-
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sion without the benefit of actually observing the performance degradation. AdaptGuard must use means

other than direct observations to anticipate degradation. This distinguishes it from the trivial case where a

control-loop-gone-bad is stopped because of a measured performance problem.

Using the interfaces provided by OptiTuner, any regulation policy can be connected to any performance

sensor or actuator registered by the programmer. Hence, AdaptGuard knows which sensor-regulation policy-

actuator loops are in place. It then uses a simple heuristic to monitor stability of such loops. Unstable loops

are opened and stability is restored since software systems are generally open-loop stable.

To better illustrate our approach, we implement a QoS-adaptive Web server testbed using AdaptGuard.

We implement two typical regulation policies frequently encountered in the literature [30, 36]: an admission

control policy and a power saving policy. We then artificially cause assumption violations by injecting

software faults. We first consider two simple software faults, the missing file and the busy loop faults,

followed by an interesting case where the two regulation policies are combined together creating instability.

Our evaluation results demonstrate the efficacy of AdaptGuard in detecting assumption violations caused by

the injected faults and restoring acceptable performance.

Further, we present a running case study to demonstrate that AdaptGuard is also useful in real-world

scenarios. We present an admission controller for Web servers that preferentially drops lower priority re-

quests over higher priority ones under overload. We show, however, that due to an interesting kernel-level

mechanism [65] to protect against livelock and denial of service attacks, the feedback control loop of the

admission controller destabilizes, causing the server to plunge deeper into overload and dropping indis-

criminately a significant fraction of both low-priority and high-priority requests. When AdaptGuard detects

preconditions of instability (namely, positive feedback), it takes action to stop the offending feedback loop.

Correspondingly, it is shown that the server is able to provide better service to high priority clients.

The rest of the section is organized as follows. Section 5.2.1 highlights key features of AdaptGuard. Sec-

tion 5.2.2 describes the design of AdaptGuard. Section 5.2.3 evaluates our approach. Finally, we conclude

with Section 5.2.4.

5.2.1 Overview

Performance adaptation modules (i.e. regulation policies) make assumptions about the effect of their correc-

tive actions. When these assumptions are violated due to system anomalies or faults that were not captured
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in the assumptions, software systems exhibit poor performance. The primary concern of AdaptGuard is to

detect such violations and recover acceptable performance of the target system upon assumption violations.

When building performance-adaptive systems with AdaptGuard, the implementation of regulation poli-

cies (using sensor, regulation policy, and actuator object interfaces provided by AdaptGuard) can be easily

and automatically translated into adaptation graphs that represent the underlying causality assumptions.

AdaptGuard does not understand the user implementation of these objects. It merely implements the inter-

face that carries communication between them. This communication happens to convey the performance

variables being measured and controlled. It implements a causality chain from measurements to responses.

This chain is, in essence, a feedback control loop, closed by a target application (e.g. process) that is moni-

tored by AdaptGuard. Feedback control theory tells us that a stable feedback control loop must be negative.

In contrast, positive feedback is unstable.

With the observation, AdaptGuard uses a heuristic-based approach. Given the communication chain

between sensors, regulation policies, and actuators that a programmer implements (using the interfaces

exported by AdaptGuard), it monitors the correlations between variables in the chain. When any correlation

coefficient changes sign (or an odd number of them in the same chain do), the sign of the corresponding

adaptation loop must have changed and hence, the loop must have become unstable. AdaptGuard learns the

correct signs of correlation coefficients by monitoring system execution for a sufficiently long amount of

time. This approach assumes a normally-correct system, which is reasonable because AdaptGuard is geared

for protecting deployment-ready systems, as opposed to those in their early stages of debugging. It takes

only a few minutes to learn the right coefficient signs, which is negligible compared to the time-to-failure

of modern embedded and server systems. Hence, AdaptGuard discovers the causality assumptions made in

the design of an regulation policy without needing explicit user input.

5.2.2 Design

Adaptive systems make assumptions regarding the external effects of adaptive actions. We call these as-

sumptions causality assumptions. For example, when designing QoS-adaptive Web servers, we know (from

queuing theory) that the response time, D, decreases with increased system speed (e.g., CPU service rate),

µ, and increases with increased workload (e.g., request arrival rate), λ. This queuing-theoretic fact is a

common foundation to much prior work on server admission control [36], performance adaptation [1], and
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energy control [30].

While queueing theory is correct, a designer might not always take everything into consideration. For

example, a designer’s model might have ignored a secondary effect (such as virtual memory swapping over-

head or a limit on the maximum number of open file descriptors). Ordinarily, the secondary effect does not

appreciably affect performance, but it may become dominant in certain corner cases thus invalidating the

model that ignored it. Since most models are merely abstractions of the actual implementation, approxi-

mations inevitably exist and may cause assumption violations. Assumption violations may cause feedback

(i.e., adaptation) loops to become unstable.

Section 5.2.2 defines more formally what we mean by causality assumptions that AdaptGuard automati-

cally identifies and explains the procedures of inferring causality assumptions in Section 5.2.2. Section 5.2.2

reviews the notion of adaptation graphs. Section 5.2.2 describes our mechanism for detecting such violations

at runtime. Recovery is described in Section 5.2.2.

Causality Assumptions

A causality assumption, A → B, (i) states that changes in variable A cause subsequent changes in variable

B, and (ii) indicates the direction of change (i.e., whether the two variables change in the same direction or

in opposite directions). This definition is geared towards computing systems where most relations between

parameters are algebraic (as opposed to, for example, relations expressed by differential equations). While

estimation and control theory offer much more precise tools for model estimation (such as Kalman filters and

recursive least squares estimators), our goal is to allow for a wide range of linear and non-linear functions

to be represented by a simple and general model. A violation of assumption, A → B, therefore occurs if

and only if either the causal relation between the two variables is broken (e.g., the two variables become

independent), or the direction of change is reversed (e.g., they become inversely proportional instead of

directly proportional).

Focusing on the stability of adaptation loops (feedback control loops), AdaptGuard only considers the

variables used in adaptation loops for inferring causality assumptions. Since AdaptGuard implements the

interface between performance sensor, actuator, and regulation policy objects, once the application designer

has implemented an adaptation loop, AdaptGuard can identify the variables involved without actually know-

ing the implementation details (e.g. the designer’s model for implementing the loop). It then monitors the
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identified variables to detect the relation between them. Causality assumptions therefore can be automat-

ically inferred by AdaptGuard from the structure of the system implementation and a small amount of

run-time monitoring.

Observe that, in terms of identifying the variables of interest for inferring causality assumptions, Adapt-

Guard is significantly different from the previous approaches that make substantial efforts to discover vari-

ables of interest and their correlations from a large number of variables extracted from system logs and

measurements [35, 48]. Those techniques, however, may be used by application designers, for example, to

determine the key variables that affect system performance when designing an adaptation loop.

Inferring Causality Assumptions

With the identified variables (that are visible to regulation policies), AdaptGuard infers (pair-wise) causal

relations among the variables. Given a pair of variables, x and y, AdaptGuard tries to figure out if causal

relations, x → y and y → x, exist. It calculates the correlation coefficient between the variable at the head

of the arc and the time-displaced (into the past) variable at the tail, since past values of the latter causally

affect the former. The correlation coefficient tells us the relationship between the two variables. A value

of 1.0 corresponds to a perfectly positive correlation and −1.0 represent a perfectly negative correlation.

Zero (or a very small value) indicates that no (or very small) correlation exists. The correlation coefficient

between variables (time-displaced) x and y is estimated at the kth period as follows:

Rj
xy(k) =

∑N
i=1(xk−i−j − E[xk−j ])(yk−i − E[yk])

(N − 1)sxk−j
syk

(5.1)

where xk−j and yk are the value of the variables at instant k − j and k, respectively. E[xk−j ] and E[yk]

are sample means for the recent N (sample) values at instant k − j and k, respectively, and sxk−j
and syk

are the sample standard deviations. Hence, Rj
xy(k) describes the causal effect of x on y after j time units.

The delay of the causal effect varies depending on the two variables that are monitored. For example, an

increase in workload (e.g. the number of requests) may affect the CPU utilization almost immediately.

In comparison, turning on a machine in a server cluster would not increase the total processing capacity

instantly. To capture the causal relations more effectively, a number of different correlation values (in terms

of delays) can be calculated. For example, AdaptGuard can try R1
xy(k) and R2

xy(k) to infer the causality

assumption, x → y. AdaptGuard then picks the one with the highest absolute value that shows the strongest
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correlation. Note that the best value for j in the Rj
xy(k) depends also on the sampling frequency; a higher

sampling frequency may lead to a higher j value.

Then, AdaptGuard maps the continuous correlation value, Rj
xy (with the highest absolute value) to a

discrete set of causal relations, {+,−}. To do so, a cut-off threshold, τ , is used such that correlation values

above τ are interpreted as positive, those below −τ as negative, and values in between as no correlation (no

arc). The same procedures are applied to infer y → x.

Observe that AdaptGuard in fact does not really develop a “quantitative” model to infer causality as-

sumptions. It merely learns the sign of temporal correlation between a pair of variables. Differently from our

approach, authors in [35] used a linear regression model to search relationships between system variables

for fault detection and diagnosis. Also, authors in [23] presented an approach for capturing probabilistic

relationships among system variables using a Gaussian mixture model for fault analysis. While those ap-

proaches may provide more precise and richer explanations, if the underlying model changes (e.g. due

to workload changes), the inferred model (e.g. a model learned against one type of workload) would not

hold any more, possibly giving false alarms in detecting faults. In comparison, our approach can still learn

the sign correctly as long as the underlying causal relation remains unchanged, hence more robust to the

changing operating environment.

Typically regulation policies need a small number of variables (usually less than 5 variables) to imple-

ment adaptation loops [1, 36]. Since AdaptGuard only focuses on the variables used in regulation policies,

the number of the inferred causality assumptions that should be monitored tends to be small. Hence, in terms

of scalability, AdaptGuard has a clear advantage over other fault detection mechanisms that explore all the

possible variables to figure out variables of interest [23, 35, 70] or statistical or learning-based mechanisms

that try to pin down the root cause of the problem [2, 18, 24, 68].

Adaptation Graphs

In order to reason about stability, it is useful to recap the notion of adaptation graphs that are presented in

Section 2.3.1. Briefly, vertices in an adaptation graph represent system variables of interest (automatically

identified by AdaptGuard as discussed above). In a particular implementation, these typically include key

performance metrics (e.g. response time, utilization, etc) and performance control knobs (e.g., number of

threads allocated to a task, CPU speed in a DVS-capable system, or the percentage of requests dropped by
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admission control). AdaptGuard does not understand the semantics of these variables. It merely sees the

values communicated across the interfaces it provides to the programmer for sensor, actuator and regula-

tion policy objects. The directed edges (arcs) in the adaptation graph represent the causality assumptions

between such variables. The edges are labeled positive, “+”, if the changes are in the same direction and

negative, “-”, if they are in opposite directions. These edges are automatically discovered by AdaptGuard

by performing the aforementioned inference techniques. A cycle in the adaptation graph represents a cor-

responding adaptation loop and the sign of the loop is defined as the product of the signs of the arcs in the

cycle. Since a stable feedback loop is negative, the sign of an adaptation loop should be maintained negative.

Detecting Assumption Violations

Once variables of interest are identified and correlations are discovered between these variables, an adap-

tation graph can be constructed. The automated-detection module monitors the sign of each arc in the

adaptation graph to determine if a violation occurred. At each period, the automated-detection estimates the

(current) sign of an arc x → y (in the same way when it constructs the adaptation graph) and compares it

against the (previously learned) sign of the arc given in the adaptation graph. If they are different, there is a

violation. Further, if the sign of the corresponding adaptation loop becomes positive, it indicates a positive

feedback loop, meaning system instability is observed. This process of checking causality assumption vio-

lations and positive feedback loops can be efficiently done online, since it is performed on a small number

of inferred assumptions and is not computationally complex.

Observe that the sample size N in Eq. (5.1) for calculating correlation values may affect both the stability

and the responsiveness of the automated-detection, since we use the cut-off threshold to determine the sign

of causality assumptions. If the sample size is too small and the calculated correlation values keep varying

around the boundary of the threshold, it may create instabilities. In comparison, with a too large sample

size, the automated-detection may not act promptly upon assumption violations. Further, it can incur more

overhead.

Typically, the reason a correlation sign is flipped is because the designer’s model (and hence variables

measured) is inadequate. The actual system model has more inputs and some of these may not be measured.

Notwithstanding this lack of observability, positive feedback is still detected from the measured loop sign

and hence instability can be assumed even if measured performance variables look “normal”.
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While the broken assumptions can give us some hint why the loop is destabilized, it does not tell us

what exactly caused the problem. However, the root-cause-agnostic attribute of AdaptGuard is desirable for

online detection purposes, considering that finding out the root cause of the problem is time-consuming and

usually not suitable for online detection purposes.

Observe that AdaptGuard will not catch all instability problems. In particular, unstable negative feed-

back is not detected. It is not equipped to detect unstable negative feedback because it only uses signs for

stability analysis (and not loop gain). As long as the signs of all causality arcs remain the same, AdaptGuard

will not intervene.

Recovery of Stability

When a violation is detected (i.e., an arc changes sign), the feedback control loops involving the bad arc are

opened by AdaptGuard (which implements sensor and actuator communication as we described earlier), a

backup control action is taken as defined a priori for each loop. In our current implementation, the loop is

then resumed after a pause, in hope that the transient condition (e.g., thrashing) that caused the anomalous

behavior may have passed. Figure 5.1 illustrates this procedure. The sequence of opening, fixing, and

closing the loop is repeated with an exponential back-off in resuming the feedback. If the violation is

transient, this approach usually works well as the feedback resumes correctly. If, after a pre-configured

number of trials, the system cannot recover, feedback is not resumed. Since open-loop actions are stable,

it is less likely that the execution of backup control actions severely disturbs the normal execution of the

system.

The backup control action executed in the open-loop mode depends on the loop broken and must be

specified in advance. Observe that, in the case of overload control loops in general, a safe open-loop action

would be to reduce load using a non-regulation policy (e.g., drop all/most low priority requests). The

backup control action may be different based on the main performance metric of applications. Suppose an

adaptive system is managed by an energy-saving policy that uses dynamic voltage/frequency scaling. One

can assume that power consumption is the main performance metric. Then, the backup control action is to

set the voltage/frequency level to its lowest value in order to minimize energy consumption. If it is most

important to process as many user requests as possible when violations occur, the backup control action

should be to set the voltage/frequency level to its highest value.
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Figure 5.1: The recovery action of AdaptGuard: when a violation is detected, a backup control action takes
over the current regulation policy with the violation.

5.2.3 Evaluation

In this section, we thoroughly evaluate AdaptGuard using both artificial fault injection and a case-study on

a QoS-adaptive Web server testbed. We first present the results of the fault injection followed by the results

of the case study. Then we summarize them at the end of the section.

Fault Injection

In this section, we evaluate AdaptGuard by injecting various faults that cause causality assumption vi-

olations. First, we explain the application implementation as seen by AdaptGuard then proceed with a

description of testbed set-up and the experiments performed.

1) Application Implementation:

We implement two typical regulation policies that are frequently found in the literature using Adapt-

Guard to manage the performance of a Apache Web server. The admission control policy [36] implements

an admission control mechanism that adjusts the workload of the server by dropping a portion of incoming

requests to prevent the system from being overloaded. The implemented control loop measures the current

CPU utilization Util. The measurement is implemented as a sensor object that outputs Util and sent to

the admission control policy module that outputs a drop probability Pd to the actual admission controller

(implemented as an actuator module), which drops a fraction Pd of incoming requests. Hence, the object

outputs visible to AdaptGuard are Util and Pd. AdaptGuard monitors correlations between these variables.

Figure 5.2(a) shows the dominant causal relations. Indeed, as shown in figure, The arc Util →+
AC Pd

reflects the admission control policy output explaining that increased utilization, Util, will raise the drop
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probability, Pd, by the feedback loop. The arc Pd →− Util illustrates that the utilization, Util, is enforced

based on the drop probability, Pd. The two arcs form a cycle (a feedback loop) where the product of the

signs of the arcs is negative, indicating a negative feedback loop.

Util Pd

+

AC

Util Freq

+

DVS

(a) admission control  policy (b) DVS policy

Figure 5.2: Adaptation graphs of the QoS-adaptive Web server (a) with the admission control policy and
(b) with the DVS policy

The DVS policy [30] implements a power saving mechanism using dynamic voltage and frequency

scaling (DVS). Similar to the admission control policy, the DVS policy measures the current CPU utilization

Util. With the increased utilization beyond the target value, the DVS policy increases the frequency/voltage

level Freq to decrease the utilization and vice versa. Fig. 5.2(b) shows the dominant causal relations among

them that form a negative feedback cycle.

2) Testbed Setup:

AdaptGuard is installed to monitor Apache Web server that runs on the same machine. The machine

is equipped with an Intel Celeron 2.53GHZ CPU and 512MB of RAM. We instrument several sensors

using AdaptGuard to collect measurements such as the inbound request rate (as seen by Apache) and CPU

utilization. Actuators are implemented to enforce the decisions made by the two policies respectively. We

use httperf to generate HTTP requests on a client machine with Intel Pentium IV 3GHZ CPU and 2GB

of RAM. The inter-arrival time of the generated requests is exponentially distributed with a mean of 0.01

sec. The admission control policy tries to maintain the utilization around 0.45 and the DVS policy aims to

maintain the utilization around 0.8. All machines are equipped with Redhat Fedora Core 4 Linux.

For the first set of experiments, we consider two different types of faults: the busy loop fault and the

missing file fault. The missing file fault happens, for example, when an administrator mistakenly removes

files from the HTML directory in a Web server. The busy loop fault happens when the exit condition

of a loop is never met so that the program runs infinitely. The two faults are injected individually into the

QoS-adaptive Web server that runs either the admission control policy or the DVS policy. No backup control
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actions are defined for the experiments since the purpose is to investigate if the AdaptGuard can successfully

detect assumption violations caused by the injected faults.

For the second set of experiments, we investigate a more interesting scenario where the two regulation

policies run at the same time in the QoS-adaptive Web server, causing the target system (the Web server)

to destabilize due to conflicts between the two policies. This could happen even when there are no explicit

software faults. In Chapter 2, we studied how one can detect such conflict at integration time. In this section,

we show that AdaptGuard can detect causality violations caused by such conflict and restore acceptable per-

formance at run-time. For comparison, we conduct experiments with and without the automated-detection.

A backup control action is installed for the DVS policy that forces the system to operate at the maximum

frequency for 30 seconds, assuming the main concern is the achieved throughput when violations occur. No

backup control action is installed for the admission control policy.

We set the cutoff threshold τ to 0.15 to determine the sign of each edge from the correlation coefficient

value and the sample size N is set to 50. The sampling frequency is set to 3 seconds.

3) Simple Fault Injection:

We present the results when the two faults, the missing file and the busy loop faults, are injected to the

QoS-adaptive Web server with the DVS and the admission control policies. For each experiment, one of

the two faults is injected into the Web server managed by one of the two policies. Hence, we conduct 4

experiments totally.
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(a) Missing file: Pd → Util is violated
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(b) Busy loop: Pd → Util is violated

Figure 5.3: Faults are injected to a QoS-adaptive Web server with the admission control policy

Fig 5.3 depicts the result when the admission control policy runs and Fig 5.4 shows the result when

the DVS policy runs. Faults are injected at 450th second and the experiments are conducted for total 900
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(b) Busy loop: Freq → Util is violated

Figure 5.4: Faults are injected to a QoS-adaptive Web server with the DVS policy

seconds. For all four cases shown in Fig 5.3 and Fig 5.4, AdaptGuard successfully detects violations as one

of the two correlation coefficient values changes its sign shortly after the fault is injected. The missing file

fault drives the system to experience low utilization regardless of the changes in the related variables (Pd for

the admission control policy and Freq for the DVS policy), as the requests for the missing files are rejected.

Hence, the causality assumptions, Pd →−
AC Util for the admission control policy and Freq →−

DV S Util for

the DVS policy, are violated. Similarly, the busy loop fault makes the causality assumptions, Pd →−
AC Util

for the admission control policy and Freq →−
DV S Util for the DVS policy, broken as the utilization remains

100% once the fault is injected. A while after the faults are injected, all correlation values become undefined

value (plotted as zero in the figures), since it is impossible to compute correlation values when one of the

two variables does not change over time (Util and Freq remain unchanged).

Both types of faults are not easily recognizable without carefully investigating all the related variables.

The difficult part is to differentiate the symptom from the normal behavior of the system. For example, with

the busy loop fault, the 100% CPU utilization can be simply interpreted as the overload condition due to

increased user requests. However, we demonstrated that AdaptGuard effectively detected the violations by

monitoring only a small number of causality assumptions automatically identified.

4) Combined Regulation Policies:

We present the results when the two (well-working) regulation policies are combined together. We first

run the DVS policy alone for 450 seconds and start the admission policy at 450th second. Hence, after 450th

second the two policies run together. The testbed previously explained is used.

Destabilization of the two regulation policies is clearly seen in Fig. 5.5. In Fig. 5.5(a), both of the
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two correlations of the DVS policy start to fluctuate after 450th second when the admission control policy

is launched. Their sign changes unpredictably showing that the feedback loop implemented by the DVS

policy destabilizes. The admission control policy also destabilizes as seen in Fig. 5.5(b). To help readers

understand why this happens, we depict the values of the key variables such as the CPU frequency and the

drop probability in Fig. 5.6. For comparison, we also show the values when the automated-detection module

is present in the figure together.
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Figure 5.5: Correlations when the two regulation policies conflict and destabilize
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Figure 5.6: Comparison of the key variables between when AdaptGuard is not used and AdaptGuard is
used

In Fig. 5.6, without AdaptGuard, it is interesting to see that the frequency drops to the lowest level,

while almost all incoming requests are dropped (the drop probability goes up to 1.0). This means that the

application (Web server) does not accomplish any useful work. In detail, as the admission control policy
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starts to run, it sees that the utilization is around 80% since the DVS policy was already running. Hence, it

drops requests to meet its target, 60%. As a result, the DVS policy gets to see the utilization is lower than

its target, 80%, decreasing the frequency further to increase the utilization. This chain of actions forms a

positive feedback cycle across the two policies, destabilizing the entire system to get all requests dropped

eventually (see Fig. 5.6(b)), though the system is not really overloaded.

Merely monitoring performance metrics such as throughput, the CPU frequency, and the drop prob-

ability would not easily reveal the problem unless you have certain models established to compare with.

AdaptGuard automatically learns the causality assumptions and detects their violations without any a priori

model. When the assumption violations are detected in the DVS policy, the backup control action replaces

the original DVS policy to set the CPU frequency to its maximum. As a result, it allows the CPU uti-

lization to decrease, causing the admission control policy to drop less requests than the case without the

automated-detection module.

Case-Study

In this section, we present a running case study to better demonstrate the efficacy and the limitations of our

approach. We will demonstrate that AdaptGuard can successfully detect assumption violations caused by

subtle interactions between a kernel-level mechanism for overload control and an admission control policy

that manages a QoS-adaptive Web server. Further, we will show that AdaptGuard can effectively recover

from performance degradation caused by the violations.

1) Testbed Setup:

In addition to CPU utilization Util, the admission control policy measures the current service request

rate Req to adjust the drop probability Pd in a more fine-grained way. The drop probability Pd enforces

the number of accepted requests Req which in turn affect the CPU utilization Util. Hence, the variables

visible to AdaptGuard are Req, Util and Pd. Figure 5.7 shows the identified causal relations. Further, the

admission control policy serves client requests with multiple priority classes.

A QoS-adaptive Web server is implemented using AdaptGuard in the same way as presented in Sec-

tion 5.2.3. In order to overload the Web server, we use total three client machines with Intel Pentium IV

3GHZ CPU and 2GB of RAM. Requests are generated using multiple instances of httperf such that the

average request rate increases linearly over time to see reactions of the admission controller to the various
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Figure 5.7: Adaptation graph of the QoS-adaptive Web server
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Figure 5.8: Comparison of the number of dropped requests

ranges of workload. The total request rate starts at 30 req/s and becomes 1500 req/s after 1000 sec. One

client machine generates high priority class requests and the other two generate lower priority class requests.

For comparison, we ran the system with and without the automated-detection module. Since the loop in

our example is an overload control loop, backup control simply sets the drop probability Pd to a fixed high

value for 30 seconds when the automated-detection module is present.

2) Experimental Results:

We observed that the closed loop admission control policy performs well most of time, protecting the

system from being overloaded while keeping the utilization around the desired value of 0.8. Not all runs,

however, are repeatable. On some occasions, the feedback loop is destabilized (at the same level of load

that was previously handled successfully). A sharp indiscriminate increase is observed at the client side in

dropped high-priority and low-priority requests alike. The high drop rate persists for both types of requests

even though the external rate of high-priority requests alone should not overload the system. This is in direct

contradiction to the design intent of the admission controller that is to drop low-priority requests first. As
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Figure 5.9: Results of closed loop when the admission controller works well
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Figure 5.10: Results of closed loop when the admission controller is destabilized
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we show in the rest of the evaluation, the anomaly is due to an assumption violation triggered by the kernel’s

anti-livelock mechanism.

We then observed that when the automated-detection module is used, performance is quickly restored

and the drop probability of higher-priority clients goes back to (approximately) zero. These results are

shown in Figure 5.8(a) and Figure 5.8(b). Figure 5.8(a) shows the number of low-priority and high-priority

requests dropped indiscriminately at the kernel interface when the feedback loop works well, when it does

not work, and when AdaptGuard automated detection is used. Figure 5.8(b) shows the same for the total

number of dropped requests as seen by the client (i.e., including both kernel and admission control drops).

The interesting part about this example, as we show shortly, is not that stability was restored. After

all, AdaptGuard simply opens the unstable loop and we have only one feedback control loop in this simple

example. The interesting part was that instability was detected at all. The issue is, to the server, all perfor-

mance metrics looked normal while instability was in progress. Server utilization was moderate, the input

request rate seen was low, the admission controller was fully open most of the time, and the delay was within

bounds. The signs of the problem were manifest only at the client side, where most requests timed out. The

disparity was because we did not have a sensor to measure drops from the kernel queue. The regular socket

API does not offer such interface, and since server software is designed for portability it cannot depend

on it. Drops from the kernel queue were substantial and completely invisible to the server. Nevertheless,

AdaptGuard “conjectured” (given only those measurements that the designer used in their control loop) that

the control loop must be unstable and disconnected it. In the following, we explain in more detail the above

scenario and performance observations.

3) Closed Loop Control:

Figure 5.9 depicts closed loop performance when the admission controller works well. The utilization

is successfully kept around the desired value of 0.8 (Figure 5.9(a)). As the incoming request rate increases,

the admission controller increases the drop probability (Figure 5.9(b)) to keep the utilization around 0.8.

Observe also that as the request rate increases the kernel overhead due to network interrupts increases as

shown in Figure 5.9(c).

Figure 5.10 presents a case when the admission controller is destabilized. The figure shows that a sharp

drop in utilization occurs (compare Figure 5.10(a) to Figure 5.9(a)) causing the admission controller to

believe that the system is underloaded. Hence the admission controller stops dropping requests (compare
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Figure 5.10(b) to Figure 5.9(b)). What the admission controller does not know (as shown in Figure 5.8(a)),

is that a significant number of requests are now being dropped at the network card in the kernel. The

utilization drop in Figure 5.10(a) was not due to a decrease in load. It is in fact triggered by an increase

in load! The drop is attributed to the new Linux API called NAPI of kernel 2.6 that prevents livelocks by

resorting to polling under heavy workload with reduced network interrupts. This results in an assumption

violation since utilization decreased (instead of increasing) with increased request rate. The switch from

interrupt-driven to mostly polling I/O is well illustrated in Figure 5.10(c), where we see a sharp drop in

interrupt overhead.

While the admission controller believes that utilization has dropped and attempts to increase it, polling

does not in fact catch all packets successfully, resulting in indiscriminate drops of packets at the network

interface. Both high-priority and low-priority clients suffer as was shown in Figure 5.8(a) and Figure 5.8(b).
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Figure 5.11: Closed loop with AdaptGuard

4) Closed Loop with AdaptGuard:

Figure 5.11 presents the result of running a closed loop experiment with AdaptGuard support for
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automated-detection. Figure 5.11(c) depicts the estimated correlation coefficient values of the arcs in the

adaptation graph. We do not explicitly show the correlation coefficient for the arc Util →+ Pd since it is

implemented by the admission control software, and thus does not constitute an interesting measurement.

The correlation coefficient of arc Pd → Req becomes positive as the utilization drops sharply and stays

negative after that, while that of Req → Util starts fluctuating after the load settles in. We set the threshold

τ to 0.25. AdaptGuard checks causality assumption violation resolving the violation when detected. Note

that the zero values (undefined values) of arc Pd → Req are not considered as violations since the controller

was not in action. The resulting drop probability is depicted in Figure 5.11(b). Figure 5.11(a) depicts the

utilization and Figure 5.11(d) shows network interrupts. The oscillations in the right half of those figures

occurs as AdaptGuard invokes the backup action several times for a fixed amount of time.

The impact of AdaptGuard was illustrated in Figure 5.8(a) and 5.8(b). The third bar in each set shows

the drops experienced with AdaptGuard. It can be seen from Figure 5.8(a) that the silent kernel drops

are virtually eliminated. This explains the performance in Figure 5.8(b) showing that only low-priority

requests are dropped while the high-priority requests are not, despite the assumption violation. Note also,

that the mechanism does not increase the number of drops among low-priority clients. This demonstrates

that AdaptGuard is effective at restoring proper function of the closed loop.

5.2.4 Conclusions

In summary, we developed and demonstrated, using a number of examples, AdaptGuard capable of detect-

ing instability due to assumption violations. Such instability is insidious because it progresses while all

performance measurements look “normal”. In essence, AdaptGuard does not see the performance degrada-

tion either and hence does not know for a fact that the target system is unstable. This is because the target

system does not offer access to the sensors needed to measure the performance degradation, and even if

such measurements could be made, it is not clear in advance what sensors AdaptGuard should have to see

unexpected problems. The contribution, therefore, lies in detecting the problem using only those sensors

that the target system uses for their normal operation. Given only those sensors, AdaptGuard automatically

“reverse-engineers” the causality assumptions the designer must have made, and monitors them for viola-

tions. When a violation is detected using those sensors, AdaptGuard “guesses” that the system may now be

unstable (even though it cannot observe the instability), and takes action to restore stability successfully.
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5.3 Diagnosis Using Discriminate Pattern Analysis

Since the diagnosis mechanism presented in the previous section uses statistical correlation to relate indi-

vidual variables, it does not easily generalize to identifying sequences of discrete events that are correlated

with problems. This is because individual events in the sequence may not be correlated with bad behavior,

except when they occur in a particular order. Hence, techniques are needed that are order-sensitive. In this

section we present a diagnosis mechanism that identifies chains of recurrent discrete events that may explain

root causes of such problems.

In our previous work [30], we presented examples of the aforementioned interaction-induced perfor-

mance problems. In one example, two independently working energy saving policies in a multi-tier web

server farm interacted in a way that ended up increasing energy consumption. No components failed and

the degraded performance (in terms of energy consumption) was not caused by bottlenecks. The key in diag-

nosing the root causes of such performance problems is to identify cyclic event patterns that can potentially

explain the problem. Techniques based on classical control theory can identify vicious cycles (unstable

loops) when the variables involved can be described by difference or differential equations, but when the

cycles are composed in part of discrete events with no good models of the software systems that generate

them, new different techniques are needed.

In order to identify cyclic patterns that cause performance degradation, we extend a data mining tech-

nique called discriminative pattern analysis that was successfully applied to identifying bad interaction

patterns to diagnose protocol design bugs in wireless sensor networks [41, 42]. When the system performs

poorly, the diagnosis module uses the extended algorithm to identify any anomalous chains of events con-

sistent with “vicious cycles” that may explain the cause of the performance problem. To further reduce

the number of such identified candidates and increase accuracy, it focuses on patterns that include seman-

tically conflicting events. Semantically conflicting events are those that arise, for instance, when different

performance management mechanisms make adjustments in conflicting directions, suggesting that they are

“fighting” over the same actuation “knobs”.

Given the traces of runtime events (defined by the user), the diagnosis module is invoked periodically and

checks whether the system is working as expected or not. If the system is working as expected, the tool labels

the collected trace for that time period as“good” and stores in the repository. If the systems performance

was worse than expected, the trace is labled as “bad” and the diagnostic routine is launched. For example, in
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the server farm energy minimization example, when energy consumption significantly increases compared

to the normal observation, collected events are labeled as “bad”. The discriminative analysis then identifies

the culprit pattern that may be highly correlated to excessive energy spending.

AdaptGuard is deployed in a three tier web server testbed of 18 machines to evaluate our approach.

To make the comparison of the scheme to prior works including the approach in the previous section more

concrete, we choose to reproduce two real-life problem scenarios reported in earlier literature. In one case,

we show how our tool successfully identifies a bad pattern that highlights a conflict between two independent

energy saving policies, dynamic voltage scaling (DVS) policy and On/Off policy. In another case, the tool

successfully attributes the cause of an anomalously low throughput to bad interactions between an admission

controller and a dynamic voltage scaling (DVS) policy.

The rest of the section is organized as follows. In Section 5.3.1, we describe the overall design and

implementation of the system along with the challenges and our solutions. Section 5.3.2 presents real-life

case studies that show the effectiveness of our tool. Finally, Section 5.3.3 concludes the section.

5.3.1 Design

Briefly, the second diagnosis mechanism works as follows. During normal system operation, the diagnosis

module collects traces of runtime events (defined by the user) from event sensors, and labels them as “good”

logs. When system performance is degraded, the module labels the trace as “bad” and performs diagnosis to

identify any anomalous sequences of events that are consistent with vicious cycles causing the performance

problem. Performance degradation itself can either be flagged manually by a user of the diagnostic tool, or

can be automatically identified by specifying limits of acceptable performance (e.g., delay < 3 sec).

To effectively identify repeated sequences of events, we extend data mining techniques called discrimi-

native pattern analysis, previously applied to diagnosing bugs in wireless sensor networks [41, 42]. We omit

the details of these techniques since data mining is not a contribution of this section. One should note that

data mining is especially appropriate for diagnosing root causes of non-reproducible behavior in complex

systems with a dynamic and time varying nature, because the observed behavior diversity itself enhances

ability to learn [41]. Further, discriminative pattern analysis is adequate for an online service as it reduces

the search space tremendously and hence the processing time for diagnosis.

Identifying culprit patterns can be perceived as a classification problem. The goal is to identify dis-
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criminative patterns (i.e., sequences of events) that can correctly separate the bad logs from the good logs.

Observe that it is usually enough to log only basic actions of software components or policy modules that

directly affect the performance of the system, because the purpose of our service is to find out what actions

cause performance to deviate from the desired goal. For instance, if the problem lies in excessive energy

consumption, it is sufficient to log primary actions of policies that directly affect power consumption (e.g.,

DVS increase/decrease and Machine On/Off operations).

The diagnosis module first generates frequent sequences of events in both good and bad logs. After

frequent patterns are generated, a frequent pattern from the bad log is recognized as discriminative if the

pattern is not found in the good log or has disproportionate support. If a pattern is identified as discrimi-

native, it joins a set of candidate patterns to consider as possible root causes of the problem. It remains to

rank-order the patterns according to the likelihood that they are responsible for a problem.

Our algorithm reports both cyclic and non-cyclic patterns. Since a vicious cycle is necessarily a cyclic

pattern, discriminative cyclic patterns are given a higher ranking when patterns are reported to the user. A

cycle of repeating events A, B, and C can be thought of as a set of attractor states that once entered, repeats

indefinitely. Entry can occur at any event in the cycle. Hence, ABC, BCA, and CAB are the same. This

equivalence is taken into account when counting frequent patterns. This reduces the number of reported

patterns improving the usability of our approach.

We further develop a simple heuristic to reduce the number of false positives by focusing on patterns that

are semantically conflicting. This requires user help with coloring events such that conflicts are identified

based on color. For example, if the user is trying to determine the cause of excess energy consumption, the

user can annotate actions that increase consumption (such as “TurnMachineOn” and “FrequencyIncrease”)

by the color red whereas those that decrease consumption (such as “TurnMachineOff” and “Frequency-

Decrease”) by color green. Our tool can then make more informed decisions regarding the importance of

the patterns. Namely, if a pattern consists of events of color Green only, they can be safely ignored. On

the contrary, if a discriminative pattern (i.e., one that does not normally occur) consists of events of both

colors, it may be one that reflects a conflict among policies that needs to be reported. (Normal upwards and

downwards adjustment of controls around a set point will also generate a mixed-color pattern, but it will

not be discriminative since it occurs in normal operation as well.) Using this simple coloring scheme, our

diagnostic service is able to prune uninteresting patterns and retain only those that are potentially revealing.

91



In general, a user may use N unique event colors, which leads to an N by N matrix, called the conflict ma-

trix, where the (i, j)th element represents a conflict value between color i and color j. To properly compare

patterns of different frequency and internal conflict values, pattern rankings are determined by the weighted

sum of the frequency and the conflicts within the pattern, as follows:

ranking = ω · conflict value+ (1− ω)·

frequency/total frequency,

(5.2)

where ω is a weight constant between 0 and 1. A large ω indicates that rankings are more weighted by

conflict values. With the conflict matrix constructed, the diagnosis module can determine rankings of all

identified frequent patterns. Note that, the conflict matrix is provided by the user and not intended to be

exact. It is merely a means to express the user’s subjective knowledge of compatibility between events. Not

all events need to be colored. Those not colored can be thought of as being of a default color that has no

conflicts with other colors.

We expect that in many cases, using two colors is sufficient. One color can be used to represent actions

in a direction that should improve the performance metric of interest. Another can be used to represent

actions in the opposite direction. Indeed, the evaluation section presents examples where only two colors

are used.

Note that legacy systems are expected to evolve slowly over time. Various changes such as software

and hardware upgrades, the set of tasks, system configurations etc. does not change drastically every day.

This slow rate of evolution lets the user to build up a repository over long period of time that can represents

the expected behavior of the system. Our diagnosis technique can leverage such knowledge to filter out

unimportant patterns to improve the diagnosis accuracy for effective debugging.

5.3.2 Evaluation

To evaluate the effectiveness of our online diagnostic service, we reproduced two performance problems

reported in the previous section and Chapter 2 and applied them to our tool. In both cases, we were able

to successfully identify “vicious cycles”, and hence the cause of the problem. We elaborate on the testbed

setup and the case studies below.
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Logged Events for Admission Controller Color
DropProbabilityIncreased Red
DropProbabilityDecreased Green

Logged Events for dvs Policy Color
FrequencyDecreased Green
FrequencyIncreased Red

Table 5.1: Logged Events for Case Study I

Logged Events for dvs Policy Color
FrequencyDecreased Green
FrequencyIncreased Red

Logged Events for Machine On/Off Policy Color
MachineTurnedOn Red
MachineTurnedOff Green

Table 5.2: Logged Events for Case Study II

Testbed Setup

We evaluated our tool on a three tier Web server farm that consists of 17 machines. Each machine has 2.53

GHz Intel Celeron Processor and 512MB of RAM. We used an extra machine with Pentium IV 3GHz CPU

and 2 GB RAM to generate HTTP requests.

In the first case study, we use one machine (with 2.53 GHz CPU) to run a QoS-adaptive Web server.

Another machine (with 3GHz CPU) generates HTTP requests to the Web server using httperf. The QoS-

adaptive Web server aims to provide an acceptable quality of service to the user by keeping CPU utilization

around the set point (thus not to overload the system). At the same time, it tries to save energy when the

system is underutilized. We implement two software modules for this purpose: the admission controller

and the DVS policy. The admission controller adjusts the probability to drop a client request dynamically

based on the current CPU utilization (i.e., whether to drop a request or not) to keep utilization around the

set point. Similarly, the DVS Policy decides whether to increase or decrease the CPU frequency based on

the current CPU utilization to save energy when the system is underutilized. We choose to log the main

operations of the two software modules: DropProbabilityIncreased and DropProbabilityDecreased of the

admission controller that directly affect CPU utilization and FrequencyDecreased and FrequencyIncreased

of the DVS policy that directly changes power consumption.

For the second case study, we configure a typical 3-tier Web server farm in our testbed where the first tier
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receives HTTP requests from the user, the second tier executes a business logic, and the third tier provides

a persistent storage for the second tier. For this case study, all 17 machines are used: each tier is given 5

machines and two machines are used for load balancers for the first and third tier respectively. The extra

machine with 3GHz CPU is used for generating HTTP requests. We use a well-known Web benchmark,

TPC-W, to construct an Amazon-like 3-tier Web site. The performance goal is to save energy while response

times are constrained to ensure a proper service quality for users. We enforced two energy saving policies:

the DVS policy (explained above) and the Machine On/Off policy together. The Machine On/Off policy

dynamically decides whether to turn on additional machine or to turn off machines depending on the average

delay of the server farm. The same principle was applied for choosing which events to log. We log the main

operations of the two policies that affect both power consumption and the delay: FrequencyDecreased,

FrequencyIncreased, MachineTurnedOn, and MachineTurnedOff.

We label the logged events as either “Green” or “Red” depending on whether the corresponding deci-

sion is desirable or not from the perspective of the corresponding policies. For example, increasing the drop

probability is not desirable and hence assigned the color Red. In contrary, decreasing CPU frequency is al-

ways desirable from the perspective of the energy saving policy and hence assigned the Green color. Logged

events and the associated modules are listed in Table 5.1 and Table 5.2. We elaborate these experiments and

the corresponding diagnosis below.

Case Study - I

In our first case study, we applied out tool to troubleshoot a performance problem in a QoS-adaptive Web

server with the admission controller and the DVS policy installed. In short, the admission controller prob-

abilistically decides whether to accept a client request or to drop based on the current CPU utilization. If

the CPU utilization is higher than 60%, it drops a client request with high probability. The DVS policy

periodically checks the CPU utilization and decreases the processor frequency to save energy if the current

CPU utilization is lower than some predefined threshold (e.g., 90%). If the CPU utilization is higher than

the threshold, it tries to increase the processor frequency. The admission controller is concerned with the

quality of service and the DVS policy is an energy saving policy. Although the two components are trying

to optimize two different metrics(i.e., average delay and energy), they interfere with each other and cause

the system to perform poorly as shown in Figure 5.12(a) and in Figure 5.12(b).
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Figure 5.12: Case Study - I

1) The Problem:

As can be seen in Figure 5.12(a), initially only the DVS policy was in action and the CPU frequency

oscillates around 2GHz. After a while (i.e., around point 37), we introduced the admission controller as

well. As it can be seen from the figure that the admission controller reacted immediately and increased

the drop probability as the CPU utilization was higher than its predefined threshold (60%). As a result, the

admission controller starts dropping requests. This eventually reduces the workload and decreases the CPU

utilization. As the CPU utilization went down, the DVS policy assumed that the server is underutilized and

correspondingly reduced the CPU frequency to save energy. At the lower frequency, the CPU utilization

again goes high for the same amount of workload and the admission controller increased the drop probability

again and so on. Ultimately, the drop probability stabilizes around 1 and the CPU frequency is set at

the lowest possible speed and the system got stuck at that point. As can be seen in Figure 5.12(b), the

DVS policy alone maintains the average cpu utilization around the set point(e.g., 90%) and the admission

controller alone maintains the average cpu utilization around the set point (e.g., 60%). But when both of

these policies are put together, the average cpu utilization oscillates around 60% with large oscillations due

to instability. Interestingly, the situation is much worse than what Figure 5.12(b) suggests which someone

may fail to realize by just looking at Figure 5.12(b). The Figure 5.12(b) shows that the two policies enforced

together has almost similar utilization as the admission controller alone. But the figure fail to reveal that this

utilization is achieved at a much lower CPU speed which can be seen from Figure 5.12(a).
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Reported Patterns Color of the Pattern
1. < DropProbabilityIncreased >,< FrequencyDecreased > (Red, Green)
2. < DropProbabilityDecreased >,< FrequencyIncreased > (Green, Red)
5. < DropProbabilityIncreased >,< FrequencyIncreased > (Red,Red)

Table 5.3: Discriminative patterns due to conflicts between the DVS policy and the admission controller

2) Diagnosis:

In the repository, we have two traces of good cases. One trace corresponds to the log that was collected

when the DVS policy was enforced alone during testing and performed as expected. The other trace corre-

sponds to the log that was collected when the admission controller was enforced alone during testing and

performed as expected. During runtime, the throughput found to be much less than expected (i.e., less than

when any of the individual policy was acting alone) and was labeled as bad log.

To diagnose the bug, we applied our tool and it came up with the patterns shown in Table 5.3 as discrimi-

native. The patterns clearly identify the problem in one step. The pattern < DropProbabilityIncreased >

,< FrequencyDecreased > clearly shows a conflict as while admission controller is dropping requests,

the DVS policy is trying to save energy. Saving energy at the expense of quality of service is never desir-

able. Interestingly, < DropProbabilityDecreased >,< FrequencyIncreased > explains the normal

operation where DVS policy is trying to cope up with the increased workload by increasing CPU speed .

The last pattern (< DropProbabilityIncreased >,< FrequencyIncreased >)just shows what happens

when the system is overloaded.

Case Study - II

In our second case study, we applied our tool to troubleshoot an excessive energy spending problem in a

3-tier Web server farm. All servers in the Web server farm are equipped with the DVS policy and the On/Off

policy in an effort to reduce power consumption when the system is underloaded. In short, the DVS policy

periodically checks the CPU utilization and decreases the processor frequency if the CPU utilization is lower

than some predefined threshold (e.g., 90%). If the CPU utilization is higher than the threshold, it would try

to increase the processor frequency. Machine On/Off policy tries to optimize the number of machines that

are on at a particular time depending on the current system load. It periodically checks the average delay of

the client requests. If the average delay is higher than a predefined threshold, it turns on additional machine,

otherwise it turns off machines.

96



100

200

300

400

500

600

700

800

900

1000

200 300 500 600
Workload

P
o

w
e
r

dvs policy on/off policy dvs+on/off policy

Figure 5.13: Applying dvs and on/off policy together consumes more energy at high load

Reported Patterns Color of the Pattern
1. < FrequencyDecreased >,< MachineTurnedOn > (Green,Red)
2. < FrequencyIncreased >,< MachineTurnedOff > (Red,Green)
3. < FrequencyIncreased >,< MachineTurnedOn > (Red,Red)

Table 5.4: Discriminative patterns due to conflict between the DVS policy and the On/Off policy

1) The Problem:

Interestingly, although the goal of both of the policies is to optimize energy consumption, when both

policies were enforced together, the energy saving was less than when any one of the policies was enforced

individually as shown in Figure 5.13. The reason was as follows. At high load, as the delay increases, the

On/Off policy turned on additional machines. This eventually reduces the average workload per machine and

decreases the CPU utilization. As the CPU utilization went down, the DVS policy assumed that the server

is underutilized and correspondingly reduced the CPU frequency to save energy. At the lower frequency,

the CPU utilization again goes high for the same amount of workload and the On/Off policy turned on

more machines and so on. Ultimately, more machines were on at a lower frequency and overall energy

consumption went high. Interestingly, the On/Off policy alone gives the best performance in terms of delay

and throughput as shown in Figure 5.14(a) and Figure 5.14(b). This is due to the fact that the On/Off policy

does not change the cpu speed and hence all the machines run at the highest speed.

2) Diagnosis:

In the repository, we have two traces of good cases. One trace corresponds to the log that was col-
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Figure 5.14: Case Study II

lected when the DVS policy was enforced alone during testing and performed as expected. The other trace

corresponds to the log that was collected when the On/Off policy was enforced alone during testing and per-

formed as expected. During runtime, at high load, the amount of energy consumed found to be higher than

expected (i.e., higher than any of the individual policy alone) and was labeled as bad log. After analysis, the

tool returned the patterns listed in Table 5.4 as discriminative. The pattern < FfrequencyDecreased >

,< MachineTurnedOn > clearly suggests a conflict as the two policies are trying to do opposite (i.e., the

DVS policy is trying to save energy by decreasing frequency while the machine on/off policy is turning on

additional machine). This is counterintuitive as turning on additional machine while running other machines

at low speed does not make any sense. This immediately explains the problem.

Interestingly, the pattern < FrequencyIncreased >,< MachineTurnedOn > highlights the fact

that the policy were trying to save overall energy by turning off machines and increasing frequency to

offset for the reduced number of available machines. Although the pattern < FrequencyIncreased >,<

MachineTurnedOn > is not a conflicting pattern, we decided to retain such patterns as this highlights that

the system was trying to cope up with high workload by increasing CPU speed and by turning on additional

machines. These patterns are quite intuitive and help the developer to understand how the policies are

actually affecting each other.
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Algorithm Overhead

For the first case study, we collected traces for approximately 25 minutes. It took the discriminative pattern

mining module less than one second to finish and to produce the patterns. For the second case study, we

collected samples for approximately 15 minutes and the discriminative pattern mining module took less than

one second to come up with the patterns. One thing to note is that the lengths of the discriminative patterns

were two in our experiments as we logged events from only two system components for each experiment.

The run time is expected to vary with the length of the discriminative patterns and the number of the system

components involved in the analysis. Detail analysis of the performance of the data mining algorithm is

outside the scope of our current work.

5.3.3 Conclusion

In this section, we extend AdaptGuard to perform diagnosis using a data mining technique, discriminative

pattern analysis. The diagnosis technique in the previous section that used statistical correlation may work

well where all variables are continuous and the specific order of events are not important to detect instability.

On the contrary, the approach presented in this section is able to recognize discrete event patterns that

represent the“vicious cycles” causing the problem. To reduce false positives, we developed a heuristic to

discard patterns that are not semantically conflicting using a simple coloring scheme. We provided two

real life case studies in a three tier Web server testbed of 17 machines to show that our tool can effectively

diagnose the problems and provide more intuitive feedback to the administrator.
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Chapter 6

Related Work

6.1 Performance-Sensitive and Adaptive Systems

A significant number of QoS adaptation and other performance adaptation policies have been reported in

the computing literature over the last decade (e.g., [29, 61, 66, 67]). For example, several researchers used

online feedback control to meet those goals [1, 36, 66, 67]. For example, Abdelzaher et al. [1] presented a

Proportional-Integration (PI) control loop for an Apache Web server that adaptively changes the number of

assigned processes (or threads) to meet soft real-time latency requirements. Admission control is another

useful adaptive policy to adapt the system’s response to the current workload. Yaksha uses admission prob-

ability to adjust load on a multi-tier Web server system to guarantee end-to-end delay requirements [36].

Admission probability is adjusted by a feedback control loop to meet the delay constraints. The authors of

[21] present a soft real-time feedback control-based DVS policy combined with request batching for energy

control. Similarly, a DVS policy is implemented in a stand-alone Apache Web server in [67] with multiple

QoS service classes, which have soft real-time deadlines.

In much of the current literature, these policies are designed and evaluated in isolation, showing effi-

cacy in achieving the performance requirements of the system. However, unintended interactions between

independently designed adaptive policies have not traditionally been addressed. As these policies gain pop-

ularity in deployed systems, a significant number of applications, middleware components and operating

system mechanisms will exhibit adaptive behavior. Future performance-sensitive and adaptive software will

therefore likely include multiple adaptive components. For example, it might include an adaptive CPU al-

location in the kernel scheduler, an adaptive admission controller at the application layer, and perhaps an

adaptive energy management module in middleware. While these components will perform well in isola-

tion, the interactions between them must be well understood to prevent unintended consequences. In this

dissertation, we focus on such interactions between adaptive components in performance-sensitive systems.
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6.2 Energy Minimization in Servers

Our choice of case study used in this dissertation is motivated by the importance of energy saving in multi-

tier Web server farms. The cost of energy is one of their dominant operating costs. In large server farms,

it is reported that 23-50% of the revenue is spent on energy [7, 21, 62]. This is because in order to handle

peak load requirements, server farms are typically over-provisioned based on offline analysis. Thus, most

of the time, energy-consuming idle resources exist in the system and considerable amounts of energy can be

saved by reducing resource consumption during non-peak conditions.

Several previous works focus on DVS in stand-alone servers and server clusters. The authors of [21]

present a soft real-time feedback control-based DVS policy combined with request batching. They show

from simulation studies that up to 42% CPU energy is saved in a single Web server. They do not evalu-

ate their method in a real system. A DVS policy is implemented in a stand-alone Apache Web server in

[67] with multiple QoS service classes, which have soft real-time deadlines. Elnozahy et al. present and

evaluate by simulation five different power management schemes for single-tier server clusters [20]. The

schemes employ VOVO (vary-on/vary-off, i.e., turning nodes on and off depending on cluster load) and/or

independent or coordinated (across the cluster) DVS. VOVO attempts to consolidate all workload to just

as many nodes as necessary, leaving enough slack for load spikes. An independent DVS policy (IVS) is

completely node-local, while a coordinated one (CVS) is constrained to a small frequency range around the

cluster average. VOVO combined with CVS is shown to be superior. A theoretical framework to optimize

power and performance at runtime for an e-business data center is derived in [44]. The authors evaluate

power savings and performance of a multi-chip memory system server cluster. Their results demonstrate

that around 70% savings are made in power as compared to static power management. Wang et al. [76]

propose a fully decentralized control framework. In their work, the optimization problem is divided into

sub-problems, each solved separately. Individual controllers are implemented using optimal control theory.

The framework is applied to a computing cluster to minimize the power consumption while satisfying the

specified response time requirement.

In this dissertation, we consider the problem of applying multiple power saving mechanisms (such as

DVS, switching off machines, and admission control), and jointly optimizing them for performance subject

to resource constraints. Further, our energy minimization application using OptiTuner is distinguished from

the literature in the fact that we address the energy minimization problem with delay constraints in a multi-
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tier server farms evaluated in a real testbed of 17 machines.

6.3 Holistic Performance Management Approaches

Utility maximization has been widely adopted in many areas such as real-time systems and wireless sensor

networks [30, 50, 53, 63]. Q-RAM [50] provides a centralized optimization solution to assign available

system resources to multiple applications along multiple QoS dimensions in a way that maximizes the total

utility. Q-RAM also presents fast approximate algorithms as an alternative to time-consuming optimal al-

gorithms for NP-hard problems. The Time/Utility Function/Utility Accrual (TUF/UA) model [63] provides

an effective way for resource management in time-critical applications. In this dissertation, we implement

a centralized optimization approach using OptiTuner and show that it can effectively coordinate adjustment

of multiple control knobs. We use an open source optimization solver, OpenOpt [82], to solve the energy

minimization problem.

Utility maximization problems can be also solved in a distributed way under certain assumptions (e.g.,

convexity of problems). Recent breakthroughs in networking literature have led to the development of

a mathematical theory for optimally layering network protocols using optimization decomposition tech-

niques [10, 12, 15, 38, 69] to maximize the global utility of the involved network components. Optimization

decomposition as applied to network layering has been summarized and explained in [12]. In this work, we

show how optimization decomposition techniques can be applied to distributed performance optimization

and resource management problems in performance-sensitive systems. Unlike centralized approaches, the

distributed approach presented in this dissertation provides a distributed solution for achieving good aggre-

gate performance. While focusing on a smaller set of problems assuming continuous variables and convexity

of objective functions, however, we showed that the distributed approach presented in this dissertation works

well in practical soft-real time systems.

MIMO control has been successfully used to maintain the desired performance in performance-sensitive

systems. In [78] authors developed a two-layer control architecture using an MIMO feedback control ap-

proach to provide real-time guarantees for virtualized web servers while reducing power consumption. In

their more recent work [79], they presented a power control algorithm for chip multiprocessors (CMPs)

using MIMO optimal control theory to coordinate power consumptions of individual cores. While doing

so, each core’s temperature is kept below a certain threshold. In this dissertation, we implement an MIMO
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feedback algorithm used in [78] to show that OptiTuner can be easily used to apply an existing design

technique. Further, through evaluation, we show that the presented MIMO control approach exhibits com-

parable performance to the two optimization approaches, successfully reducing undesirable interactions

between different power saving mechanisms.

In [84], the authors designed and developed a middleware layer for QoS control, called ControlWare,

that provides control-theoretic performance guarantees under uncertainty for Internet services. ControlWare

specifically focuses on a control-theoretic approach to maintain performance around the desired set point.

In comparison, OptiTuner is more general in the sense that it can support various holistic performance

optimization and control techniques. Furthermore, ControlWare does not consider the aggregate behavior

of controlling multiple performance knobs in the system, while OptiTuner’s central goal is to ensure good

aggregate behavior when multiple performance knobs are concurrently adjusted.

6.4 Problem Detection and Diagnosis in Software Systems

Several automated detection and diagnosis mechanisms have been proposed recently. Some of them have

focused on troubleshooting problems caused by system misconfiguration [49, 75, 80]. For example, Wang et

al. [75] proposed an automated troubleshooting approach to diagnose the root cause of system misconfigura-

tion. It uses a statistical method to derive rankings on probable causes using empirical Bayesian estimation.

On the other hand, several techniques tackled the isolation of performance problems or system failures.

[2, 18, 24, 68]. For example, Aguilera et al. [2] proposed a tool that isolates the performance bottleneck in

a distributed system composed of heterogeneous components (from different vendors without source code).

It traces messages exchanged between the nodes to find a critical path that caused the system’s latency.

Vertical profiling [24] is a profiling technique to correlate various system measurements with each other to

explain performance anomalies using statistical and visualization techniques.

All of the above debugging techniques focus on localizing the cause of performance problems or failures

by finding faulty components (e.g., a faulty router), faulty code segments (e.g., a bad function), system

misconfigurations, or bottleneck paths. Unfortunately, when interactions among individually well-behaved

components are the problem, the conflict often cannot be easily localized. There are no malfunctioning

components to identify and no bottleneck nodes to isolate in order to explain the performance problem. Our

work provides tools to address this challenge.
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Furthermore, all the above automated detection and diagnosis techniques are usually performed offline

since they employ a complex statistical method. Our work complements those offline tools rather than

replacing them, as it only provides a temporary recovery mechanism at run-time when causality assumptions

are broken.

Run-time monitoring/verification techniques have been developed to provide assurance of the correct-

ness of program execution [16, 25, 46]. In those systems, monitoring is usually performed based on a

specification of system requirements (correct behaviors) and the target software system needs to be instru-

mented to notify the monitoring system of its state changes. For example, Java PathExplorer [25] monitors

the execution of a Java program to check the system state against the desired system properties written in

temporal logic provided by users. The Java bytecode is instrumented to provide an execution trace of the

program, generating a sequence of events used by the monitoring process. AdaptGuard is similar, with

the exception that causality assumptions to be monitored can be inferred by AdaptGuard in an automated

fashion.

A number of approaches [23, 35, 48, 70] have been developed for the purpose of automatic fault de-

tection and performance management without a priori knowledge or the help of domain experts, similar to

our work. For example, Sun et al. [70] developed a mechanism for problem detection in distributed systems

by constructing a state machine. However, it needs detailed system logs to build a state machine, while

AdaptGuard does not need any to build adaptation graphs. Kumar et al. [48] developed an approach to

automatically infer the relationship between the variables of interest and the controllable variables using

probabilistic modeling techniques to derive component-level objectives. Although their approach can sug-

gest new component-level objectives to meet the service level objectives (SLAs) according to changes in

the operating environment, it cannot differentiate SLA violations from system instability.

In [23, 35], authors presented fault detection mechanisms using linear models [35] and probabilistic

models [23]. These techniques aim to extract invariants, which are temporal correlations between a pair

of system variables that hold all the time. By tracking abrupt changes in invariants, one can detect faults

in distributed systems. However, they may trigger false alarms when the model is invalidated for benign

changes, for example, such as user workload changes [22]. our work differs in that it does not use any

quantitative model, only deriving the sign of temporal correlation. Hence, it is more robust to changes in

the operating environment.
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Finally, our work extends our previous efforts in the wireless sensor network community [40–42], where

we presented tools to troubleshoot bugs in wireless sensor networks using frequent sequence mining. Our

current work is more concerned with performance problems, and is more focused on finding self-reinforcing

cycles that exacerbate such problems over time.
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Chapter 7

Conclusions

As performance-adaptive systems become larger and their applications become more complicated, an in-

creasing need arises for self-tuning and control components to accommodate environmental dynamics and

uncertainty. A significant amount of recent work on server systems addressed automatic performance man-

agement. Such systems employ various adaptive components to tune different software performance knobs

automatically to maintain acceptable performance and timing behavior in the face of a changing external

environment.

However, without properly considering the combined effect of such adaptive components, self-reinforcing

interactions between them may lead to bad states, significantly degrading performance. This dissertation

focused on such problems of bad interactions between adaptive components. This work developed software

support and design techniques to achieve performance composability in developing and running large-scale

performance-adaptive systems.

We first presented a software service layer, OptiTuner that facilitates different holistic performance man-

agement techniques in distributed software. It provides proper abstractions and services to help the imple-

mentation of such approaches based on the concept of constrained optimization and control. Composition-

time tools are provided by OptiTuner to uncover unsafe, unintended interactions between different adaptive

software components. Further, an online diagnosis mechanism, called AdaptGuard, is presented to ensure

system robustness with respect to residual errors at run-time. This improves robustness and achieve recovery

in adaptive software systems.

Various realistic scenarios are implemented on a testbed comprised of 18 machines to evaluate the

presented approaches. Recognizing the growing concern for the energy problem in data centers, we take

as a main scenario an energy minimization application in a three-tier Web sever farm with multiple energy

saving policies. OptiTuner is further evaluated in a consolidated environment using Xen virtual machines.

Finally, a case study of a performance anomaly caused by unexpected interactions between an admission
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controller and the Linux anti-livelock mechanism is presented to evaluate AdaptGuard. Empirical results

obtained from such scenarios demonstrate the efficacy of the approaches presented in this dissertation.

Much of our future infrastructure, such as power grids, healthcare, homeland defense systems, and

disaster recovery systems will likely be vulnerable to performance problems investigated in this dissertation.

We believe this work will lead to significant improvements in performance of adaptive distributed systems

and has potential to result in significant pervasive impact on the cost and efficiency of our future software-

driven infrastructure.
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[58] Özgür Erçetin and Leandros Tassiulas. Market-based resource allocation for content delivery in the
internet. IEEE Transactions on Computers, 52(12):1573–1585, 2003. ISSN 0018-9340. doi: http:
//dx.doi.org/10.1109/TC.2003.1252853.

[59] Pradeep Padala, Kang G. Shin, Xiaoyun Zhu Mustafa, Uysal Zhikui Wang, and Sharad Singhal Arif.
Adaptive control of virtualized resources in utility computing environments. In In Proceedings of the
European Conference on Computer Systems, pages 289–302, 2007.

[60] Venkatesh Pallipadi and Alexey Starikovskiy. The ondemand governor. In Proc. of the Linux Sympo-
sium, volume 2, 2006.

[61] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scaling for low-power embedded
operating systems. In SOSP, pages 89–102, 2001.

[62] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang, and Xiaoyun Zhu. No
”power” struggles: coordinated multi-level power management for the data center. In ACM ASPLOS
XIII, pages 48–59, 2008.

[63] Binoy Ravindran, E. Douglas Jensen, and Peng Li. On recent advances in time/utility function real-
time scheduling and resource management. In IEEE ISORC, volume 0, pages 55–60, 2005. doi:
http://doi.ieeecomputersociety.org/10.1109/ISORC.2005.39.

[64] Jerry Rolia, Ludmila Cherkasova, Martin Arlitt, and Artur Andrzejak. A capacity management service
for resource pools. In WOSP ’05: Proceedings of the 5th international workshop on Software and
performance, pages 229–237, New York, NY, USA, 2005. ACM. ISBN 1-59593-087-6. doi: http:
//doi.acm.org/10.1145/1071021.1071047.

[65] Jamal Hadi Salim, Robert Olsson, and Alexey Kuznetsov. Beyond softnet. In USENIX ALS ’01, pages
165–172, Berkeley, CA, USA, 2001. USENIX Association.

[66] Lui Sha, Xue Liu, Ying Lu, and Tarek Abdelzaher. Queueing model based network server perfor-
mance control. In RTSS ’02: Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS’02),
page 81, Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1851-6.

[67] Vivek Sharma, Arun Thomas, Tarek Abdelzaher, Kevin Skadron, and Zhijian Lu. Power-aware qos
management in web servers. In IEEE RTSS, pages 63–72, 2003.

[68] Kai Shen, Ming Zhong, and Chuanpeng Li. I/o system performance debugging using model-driven
anomaly characterization. In FAST’05, pages 309–322, Berkeley, CA, USA, 2005. USENIX Associa-
tion.

[69] Weihuan Shu, Xue Liu, Zonghua Gu, and Sathish Gopalakrishnan. Optimal sampling rate assignment
with dynamic route selection for real-time wireless sensor networks. In RTSS ’08, 2008.

[70] Kewei Sun, Jie Qiu, Ying Li, Ying Chen, and Weixing Ji. A state machine approach for problem
detection in large-scale distributed system. In NOMS ’08, pages 317–324, 2008.

112

http://jmob.objectweb.org/tpcw.html


[71] Transaction Processing Performance Council. TPC Benchmark W (Web Commerce). URL http:
//www.tpc.org/tpcw.

[72] VMware. http://www.vmware.com.

[73] Werner Vogels. Beyond server consolidation. Queue, 6(1):20–26, 2008. ISSN 1542-7730. doi:
http://doi.acm.org/10.1145/1348583.1348590.

[74] Carl A. Waldspurger. Memory resource management in vmware esx server. SIGOPS Oper. Syst. Rev.,
36(SI):181–194, 2002. ISSN 0163-5980. doi: http://doi.acm.org/10.1145/844128.844146.

[75] Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi-Min Wang. Automatic misconfiguration
troubleshooting with peerpressure. In OSDI’04, pages 245–258, Berkeley, CA, USA, 2004. USENIX
Association.

[76] M. Wang, N. Kandasamy, A. Guez, and M. Kam. Adaptive performance control of computing systems
via distributed cooperative control: Application to power management in computing clusters. In IEEE
International Conference Autonomic Computing. IEEE Computer Society, 2006.

[77] Weihong Wang and Baochun Li. Market-based self-optimization for autonomic service overlay net-
works. IEEE JSAC, 23:2320–2332, 2005.

[78] Yefu Wang, Xiaorui Wang, Ming Chen, and Xiaoyun Zhu. Power-efficient response time guarantees
for virtualized enterprise servers. In RTSS ’08, pages 303–312, Washington, DC, USA, 2008. IEEE
Computer Society. ISBN 978-0-7695-3477-0. doi: http://dx.doi.org/10.1109/RTSS.2008.20.

[79] Yefu Wang, Kai Ma, and Xiaorui Wang. Temperature-constrained power control for chip multiproces-
sors with online model estimation. ISCA 2009, 2009.

[80] Yi-Min Wang, Chad Verbowski, John Dunagan, Yu Chen, Helen J. Wang, Chun Yuan, and Zheng
Zhang. Strider: A black-box, state-based approach to change and configuration management and
support. In LISA ’03, pages 159–172, Berkeley, CA, USA, 2003. USENIX Association.

[81] Zhikui Wang, Xiaoyun Zhu, and Sharad Singhal. Utilization and SLO-based control for dynamic
sizing of resource partitions. In 16 th IFIP/IEEE Distributed Systems: Operations and Management,
pages 24–26, 2005.

[82] www.openopt.org. OpenOpt. URL http://openopt.org.

[83] Citrix XenServer. http://www.citrixxenserver.com.

[84] Ronghua Zhang, Chenyang Lu, Tarek Abdelzaher, and John A. Stankovic. Controlware: A middleware
architecture for feedback control of software performance. In IEEE ICDCS, pages 301–310, 2002.

[85] Xiaoyun Zhu, Zhikui Wang, and Sharad Singhal. Utility-driven workload management using nested
control design. In American Control Conference, 2006.

[86] Xiaoyun Zhu, Donald Young, Brian J. Watson, Zhikui Wang, Jerry Rolia, Sharad Singhal, Bret McKee,
Chris Hyser, Daniel Gmach, Rob Gardner, Tom Christian, and Ludmila Cherkasova. 1000 islands: an
integrated approach to resource management for virtualized data centers. Cluster Computing, 12(1):
45–57, 2009.

113

http://www.tpc.org/tpcw
http://www.tpc.org/tpcw
http://openopt.org

	List of Tables
	List of Figures
	Chapter 1 Introduction
	Motivation and Challenges
	Contributions
	Software Service for Performance Composability
	Online Diagnosis and Recovery

	Outline

	Chapter 2 OptiTuner: Software Service for Performance Composition
	Introduction
	Design
	System Architecture
	Object-Based APIs

	Adaptation Graph Analysis
	Adaptation Graphs
	Checks for Potential Incompatibility

	Evaluation
	Conclusions

	Chapter 3 Performance Management In Virtualized Environment
	Introduction
	System Setup and Architecture
	Testbed Setup
	Control System Architecture with OptiTuner

	Memory Usage and Performance
	Dynamic Memory Allocation
	Memory Controller Design
	Memory Controller Evaluation

	Combined CPU and Memory Control
	Nested CPU Controller
	Joint CPU and Memory Controller
	Performance Evaluation Results

	Conclusions

	Chapter 4 Holistic Approaches for Energy Minimization
	Introduction
	Three Holistic Performance Management Approaches
	Centralized Performance Optimization
	Distributed Performance Optimization
	MIMO Feedback Control

	Evaluation
	OptiTuner Implementation
	Testbed Setup
	Power Measurement
	Turning Machines On and Off
	Experiments Without Backup Requests
	Experiments with Backup Requests
	Discussion

	Conclusion

	Chapter 5 AdaptGuard: Online Diagnosis and Recovery Service
	Introduction
	Online Diagnosis and Recovery Service
	Overview
	Design
	Evaluation
	Conclusions

	Diagnosis Using Discriminate Pattern Analysis
	Design
	Evaluation
	Conclusion


	Chapter 6 Related Work
	Performance-Sensitive and Adaptive Systems
	Energy Minimization in Servers
	Holistic Performance Management Approaches
	Problem Detection and Diagnosis in Software Systems

	Chapter 7 Conclusions
	References

