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ABSTRACT

In this thesis, we present a framework to characterize and leverage people movement for improve-

ments of content distribution in mobile Peer-to-Peer (P2P) networks. Particularly, we study two

typical classes of people movement including the Schelling behavior and repetitive behavior. The

Schelling behavior exists in real-world scenarios where co-located people collaboratively share mu-

tual content interest when they are moving towards the same Point of Interest such as shopping

mall, football stadium, and outdoor concert. Meanwhile, the repetitive behavior of people move-

ment can be found in numerous places where people visit regular locations and make regular social

contacts for their daily routines such as university campuses and work places.

For the first part of the thesis, we start by analyzing the original segregation model proposed

by Thomas Schelling, a Nobel prize winner in economics. We find that the properties of the

segregation model exist in numerous real-world scenarios, in which the co-located people may

form groups and collaboratively share data messages using their wireless devices when they are

moving towards the same Point of Interest. This grouping behavior of people (or their mobile

devices) is called the “Schelling behavior” of people movement. We find that when mobile nodes

exhibit Schelling behavior, the network formed by these nodes has two important properties: (1)

co-located mobile nodes form “moving” coalitions, and (2) the coalition size increases at the closer

distance from Point of Interest. We then conduct a validation study on these properties by: (1)

simulating people movement on real Google maps, and (2) modeling people movement in different

street configurations by using the Mobius modeling tool. Our validation study confirms the two

properties of the Schelling behavior of people movement. Then, we exploit these properties to

design three protocols to improve content distribution in mobile P2P networks, including COADA,

iShare, and DENTA. We evaluate our protocols via simulation and the evaluation results show that

our protocols outperform other existing content distribution schemes significantly by improving

message delivery and reducing message overhead.
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For the second part of the thesis, we exploit the repetitive behavior of people movement for the

design of content distribution protocols. Particularly, we propose a new methodology to collect

people movement trace using mobile phones. We then apply this method to implement a trace

collection system named UIM, which collects MAC addresses of Wifi access points and Bluetooth-

enabled devices in the proximity of the experiment phones. The UIM system is deployed on Google

Android phones carried by 123 faculties, staff, and students in University of Illinois campus from

March 2010 to August 2010. The collected MAC addresses of Wifi access points are used to infer

location information and the collected Bluetooth MACs are used to infer social contact. To the

best of our knowledge, the UIM system is the first system to collect both location information and

social contact of people movement. The inferred location information and social contact then are

used in the characterization study, which shows that people movement exhibits a high degree of

repetition. We then propose a novel method named Jyotish 1 to construct a predictive model of

people movement from the joint Wifi/Bluetooth trace to predict future information of location,

stay duration at the location, and social contact. Applying the Jyotish method, we construct a

predictive model from the joint Wifi/Bluetooth trace collected by the UIM scanning system. To

the best of our knowledge, Jyotish is the first method to construct the predictive model of people

movement from the joint Wifi/Bluetooth trace and our constructed predictive model is the first to

provide altogether predictions for location, stay duration, and social contact. Finally, we leverage

the constructed predictive model to design a new content distribution protocol named COMFA,

which exploits the regularity of social contact found in the Bluetooth trace collected by the UIM

system to maximize the message delivery probability and preserve message delivery deadline. We

compare the performance of COMFA with Prophet routing and Epidemic routing over the collected

Bluetooth trace and the evaluation results show that COMFA outperforms other alternatives by

reducing the message delivery delay and message overhead considerably.

1In Sanskrit, Jyotish (Ji-o-tish) is a person who predicts future events.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

An extremely large percentage of personal devices (e.g., cell phones, PDAs, Zune, iPod, iPad)

are now equipped with wireless network interfaces such as Wifi and Bluetooth. This opens the

door to a wide range of decentralized and ubiquitous communications in which personal wireless

devices can collaboratively create mobile peer-to-peer (P2P) networks of mobile nodes for data

exchange. On the other hand, mobile users nowadays do not passively wait for the content to be

pushed to their personal wireless devices as in the past. Instead, they actively use their personal

wireless devices to create and share their own data. For example, mobile users can easily use

their iPhones to take photos, record short video clips and share with their friends, who also use

their cell phones to receive the content. As a result, content distribution for mobile users becomes

increasingly important. Mobile P2P networks have drawn significant attention from the research

and industry communities since they offer a low-cost and scalable solution for content distribution

among personal wireless devices [1, 2, 3, 4, 5, 6, 7].

Mobile P2P networks can be classified into three main types of network: Hybrid mobile P2P

Network, Mobile Ad hoc Network (MANET), and Delay Tolerant Network (DTN). Nodes in Hy-

brid mobile P2P Network have two main communication modes: infrastructure-based and P2P.

Particularly, the infrastructure-based mode can be performed over the cellular base stations or

Wifi access points. Meanwhile, the P2P communication mode is the ad hoc channel such as Wifi

ad hoc and Bluetooth. Nodes in MANET only have the P2P commnication mode where they com-

municate with each other directly via the ad hoc channel. The communication between a pair of

nodes in MANET is performed in a timely manner when the communication path between the two

nodes is established and maintained for the entire communication period. Since the communication

path must be maintained under network dynamics and node mobility, MANET seems to be only
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applicable for the military context rather than the civilian context. Like MANET, nodes in Delay

Tolerant Network only communicate via the ad hoc channel. However, unlike MANET, nodes in

DTN perform the carry-and-forward paradigm where the communication between the sender and

the receiver of the message is not required to be performed instantly. Instead, data forwarding is

based on the opportunistic encounters of nodes in the network. Therefore, communication path

between the sender and receiver is not required to be established and maintained for the entire

communication period. As a result, data forwarding and content distribution in DTN suffer from

a longer communication delay than those of MANET.

Data dissemination and content distribution in mobile P2P networks research literature can

be divided into three major categories, in which each category is for one of the above networks.

Content distribution in the Hybrid mobile P2P Network usually provides the most efficiency in

terms of message delivery delay and message overhead since this network has the infrastructure to

cache and distribute content messages to the recipients [8, 9, 10, 11]. However, the distribution

efficiency comes from the cost of constructing and maintaining the wireless infrastructure of the

network. Data dissemination in MANET, on the other hand, is based on the opportunistic ad

hoc connection among mobile nodes. Moreover, in MANET the data dissemination between the

sender and the receiver is successful only if there is a connected communication path between these

two nodes [12, 5, 13, 14]. This requirement results in major burden on research and limits the

applicability of data dissemination in MANET in civilian context where the communication path

may get broken at any time due to the node mobility. Unlike MANET, data dissemination between

a pair of nodes in DTN is not required to be performed in a timely manner [15, 16, 17, 18]. Instead,

a long delay of data dissemination is accepted in DTN since data forwarding in DTN is performed

by the intermittently connected path and the opportunistic encounters of mobile nodes. This opens

a wider range of practical applications for data dissemination in civilian context. Since content

distribution in Hybrid mobile P2P Network, MANET, and DTN depends on the P2P opportunistic

communications among mobile nodes, the performance of these protocols depends significantly (if

not fully) on the ad hoc P2P connectivity pattern created by the mobile nodes. Meanwhile, the

P2P connectivity pattern of these networks depends on the node mobility, which is essentially the

movement pattern of the people who carry the mobile devices. As a result, understanding people

movement plays a pivotal role in the design of efficient content distribution protocols for mobile

P2P networks.
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Knowledge of people movement is not only crucial for content distribution in mobile P2P networks

[19, 20, 21, 22, 23, 24] , but also fundamental for other research domains such as urban planning,

traffic engineering, social science, and environmental science [25, 26, 27, 28, 29, 30, 31]. As a result,

there has been a rich research literature on modeling and characterizing people movement from

these research domains in order to understand people movement. Particularly, previous mobility

models of people movement can be divided into two main categories: macroscopic-level mobility

models and microscopic-level mobility models. Macroscopic-level mobility focuses on the aggregated

effects of people mobility in a large scale for metropolitan, nation, and worldwide [25, 32]. The

aggregated user mobility in urban context was also studied [28, 33], in which people were classified

into different classes based on the socioeconomic characteristics and the aggregated spatiotemporal

movement patterns of these classes were modeled. In contrast, microscopic-level mobility focuses on

the movement of individuals ranging from Random Walk mobility [23] to Time-variant community

mobility [34], from group mobility [19] to cluster-based mobility [22], from event-based mobility [35]

to first-responder mobility [36], from Freeway mobility [37] to obstacle-based mobility [21, 38], from

mathematical mobility based on social network theory [39, 40, 26] to trace-driven mobility based on

real WLAN trace [41, 42]. It is understood that the movement of people is complex and depends on

various environmental factors such as time, temperature, weather, etc., and socioeconomic factors

such as age, gender, etc. For example, movement of firefighters in the first-responder scene differs

significantly from that of shoppers in the shopping malls. Similarly, movement of students in

university campuses differs from that of workers on the fields. As a result, on one hand, there has

been no one-fit-all mobility model that represents all real-world scenarios. On the other hand, a

deeper understanding of people movement remains challenging, especially in the level that can be

useful for the efficient design of content distribution protocols in mobile P2P networks.

In this thesis, we present a framework to characterize and leverage people movement for content

distribution in mobile P2P networks. Particularly, we characterize two typical classes of people

movement found in numerous real-world scenarios: Schelling behavior and repetitive behavior. For

each of these movement classes, we characterize people movement to draw the key properties, which

are used to design new protocols for improvements of content distribution in mobile P2P networks.

We first observe that the grouping behavior of people, who share the mutual content interest and

move towards the same targeted destination (i.e., Point of Interest), exists naturally in numerous

real-world scenarios. We also observe that the grouping behavior of people movement is similar
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to the segregation behavior (or Schelling behavior) presented by Thomas Schelling, a Nobel prize

winner in economics. We then characterize the Schelling behavior by simulating people movement

on real Google maps and by modeling people movement using the Mobius modeling tool [43]. The

characterization study shows that when people movement exhibits the Schelling behavior, mobile

nodes carried by these people create a dynamic coalition P2P network, in which the size of coalitions

formed by co-located mobile nodes increases at the closer distance from the PoI. More importantly,

the characterization study also shows that the coalition pattern of the dynamic coalition P2P

network follows an exponential function with respect to the distance from the PoI. We then exploit

the Schelling behavior of people movement in the design of three content distribution protocols:

COADA [9, 43], iShare [10], and DENTA [11]. Particularly, COADA combines cellular and P2P

interfaces of the mobile devices, and exploits the exponential-coalition-size function to adaptively

tune the cellular download timer to reduce the cellular download and meet the file download

deadline of the cellular users. iShare provides a lightweight solution so that the nodes in the same

coalition can share downloaded data in a fair fashion. DENTA leverages the uneven network density

of the dynamic coalition P2P network to disseminate data messages from the Wifi base stations at

the Point of Interest to the coming mobile nodes. We evaluate these three protocols and compare

them with other state-of-the art content distribution solutions. The evaluation results show that

our protocols outperform other alternatives and provide improvements of content distribution for

mobile P2P networks.

In the second part of thesis, we study the repetitive movement behavior of people and leverage

the regularity of people movement for improvements of content distribution. It is believed that

people exhibit regular movement pattern in their daily activities. For example, students take classes

in certain weekdays, professors give lectures at certain time slots, and workers do their routines at

work regularly. In order to understand the regularity of people movement, we opt for collecting

the real movement trace of people at University of Illinois campus. To this end, we first propose

a novel methodology to collect people movement trace using mobile phone. We then apply this

methodology to implement a scanning system called UIM, which stands for University of Illinois

Movement, to collect Wifi trace and Bluetooth trace [44]. The UIM system then is deployed on

123 Google Android phones carried by faculties, staff, and students in the University of Illinois

campus from March 2010 to August 2010. The collected Wifi access point information is then

used to infer location and the collected Bluetooth MACs are used to infer social contact. The
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inferred information is used in the characterization study of people movement and the result from

the characterization study confirms that people exhibit a high degree of regularity in their daily

movements. Although the regularity of people movement can also be found by studying the daily

calendars of people [45], we believe our collected data set provides a much finer granularity of

people movement. Due to its finer grain, our collected movement trace can be used to learn other

characteristics of people movement such as real social contact, accurate contact duration, and exact

stay duration at the location, which can not be derived accurately from the calendars. We then

propose a method named Jyotish that exploits the regularity of people movement found in the

collected joint Wifi/Bluetooth trace to construct a predictive model to predict future location, stay

duration at the location, and social contact [46]. Finally, we leverage the constructed predictive

model to design a new content distribution protocol named COMFA to expedite data messages

in Community-based Delay Tolerant Networks. We evaluate and compare the performance of

COMFA with Epidemic routing [17] and Prophet routing [47] over the real trace collected by the

UIM system. The evaluation shows that COMFA outperforms the other alternatives considerably.

1.2 Contributions and Dissertation Outline

1.2.1 Contributions

This thesis will show that the movement behavior of people can be characterized and leveraged

for the design of efficient content distribution protocols in mobile P2P networks. In summary, the

thesis has the following contributions:

1. We present a framework to characterize and leverage people movement for improvements of

content distribution in mobile P2P networks.

2. We present the Schelling behavior of people movement. Schelling behavior essentially repre-

sents the instant grouping behavior of co-located people when they move towards the same

Point of Interest. The Schelling behavior shows the impacts of individual movement (i.e., the

microscopic level) on the aggregated network density (i.e., the macroscopic level), which has

not been explored in existing mobility models.

3. We characterize Schelling behavior of people movement and validate its properties by simulat-

ing people movement on real Google maps and by modeling people movement in the Mobius
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modeling tool.

4. We exploit the properties of the Schelling behavior to design three content distribution pro-

tocols for mobile P2P networks, including COADA, iShare, and DENTA.

5. We propose a novel trace collection methodology to collect people movement trace by using

mobile phones. Then, we apply the methodology to implement the UIM scanning system

to collect Wifi trace and Bluetooth trace. The joint Wifi/Bluetooth trace is used to infer

location and social contact information. To the best of our knowledge, the UIM system is the

first scanning system, which collects both location information and social contacts of people

movement.

6. We deploy the UIM system on 123 Google Android phones carried by participants at the Uni-

versity of Illinois campus fromMarch 2010 to August 2010. The collected joint Wifi/Bluetooth

trace provides a rich data set of people movement.

7. To the best of our knowledge, our proposed Jyotish method is the first method to construct

a predictive model of people movement from the joint Wifi/Bluetooth trace.

8. To the best of our knowledge, our constructed predictive model is the first method to provide

predictions for location, stay duration, and social contact altogether.

9. We leverage the regularity of people movement to design COMFA, a new content distribution

protocol for Community-based Delay Tolerant Networks. COMFA is evaluated over the real

movement trace collected by the UIM system.

1.2.2 Dissertation outline

Figure 1.1 shows the content of our thesis, which is organized as follows. We first present the

framework of characterizing and leveraging people movement for content distribution in mobile

P2P networks in Chapter 2. Then, in Chapter 3 we present the Schelling’s segregation model and

characterize the Schelling behavior of people movement. After that, we present three content distri-

bution protocols to exploit the properties of the Schelling behavior to improve content distribution,

including COADA (Chapter 4), iShare (Chapter 5), and DENTA (Chapter 6).

Starting from Chapter 7, we characterize and leverage the repetitive behavior of people movement

to improve content distribution in mobile P2P networks. Particularly, in Chapter 7 we present
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Figure 1.1: Thesis content and organization

the design, implementation, and deployment of UIM scanning system, which collects Wifi and

Bluetooth traces. This joint Wifi/Bluetooth trace is used to infer the repetitive pattern and to

construct the predictive model of people movement in Chapter 8. Then, we exploit the constructed

predictive model to design a new forwarding scheme called COMFA for Community-based Delay

Tolerant Networks in Chapter 9. We conclude the thesis and discuss the future work in Chapter

10.

In this thesis, we also include several appendix chapters. The first appendix in Chapter A presents

operators in Relational Algebra, which are used in the thesis for the presentation clarification of

the collected data set in Chapter 8. In the appedix Chapter B, we present the measurement results

obtained from our UIM collected data set. Finally, we present a Hybrid Epidemic Routing protocol

in the appendix Chapter C to evaluate the performance of a data dissemination scheme, which uses

both Wifi and Bluetooth interfaces of the mobile nodes to forward data.
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CHAPTER 2

FRAMEWORK OF CHARACTERIZING AND LEVERAGING

PEOPLE MOVEMENT FOR CONTENT DISTRIBUTION IN

MOBILE P2P NETWORKS

In this chapter, we first present the framework to characterize and leverage people movement for

content distribution protocols in mobile P2P networks in Section 2.1. Then, we present the system

model in Section 2.2. Finally, we present the design objectives in Section 2.3.

2.1 Framework Description

Figure 2.1 shows our framework of characterizing and leveraging people movement for content

distribution in mobile P2P networks. Particularly, we study the Schelling behavior of people

movement in the first part of the thesis and the repetitive behavior of people movement in the

second part. In each part, we start by characterizing the movement behavior and then exploiting

the lessons from the characterization study to design new content distribution protocols.

For the first part of the thesis (the left hand side of the Figure 2.1), we use the top-down

approach by first obtaining the qualitative properties of the mobility model and then validating

these properties from the extensive simulation. Particularly, we first analyze the original segregation

model proposed by Thomas Schelling and find that its properties exist in numerous real-world

Figure 2.1: The framework of characterizing and leveraging people movement for content distribution in
mobile P2P networks
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scenarios, in which the co-located people may form groups and collaboratively share data messages

using their wireless devices when they are moving towards the same targeted destination (i.e.,

Point of Interest). The grouping behavior of people (or their mobile devices) when they are moving

towards the mutual Point of Interest is called the “Schelling behavior”. We find that when mobile

nodes exhibit Schelling behavior, the network has two important properties: (1) co-located mobile

nodes form “moving” coalitions, and (2) the coalition size increases at the closer distance from

the PoI. With this analysis, we have the mobility model of people and the network model of the

devices carried by these people. We then validate the mobility model (i.e., Schelling behavior)

by: (1) simulating the movement on real Google maps of mobile nodes along with the shortest

paths returned by Google Map APIs, and (2) modeling the movement of mobile nodes along with

the probabilistic paths returned by our probabilistic path selection model in the Mobius modeling

tool [48]. Our validation study confirms the two above properties, which then are exploited in

the design of three protocols to improve content distribution in mobile P2P networks, including

COADA [9, 43] , iShare [10], and DENTA [11].

For the second part of the thesis (the right hand side of Figure 2.1), we use the bottom-up

approach by first collecting real people movement trace and then extracting movement properties

from the collected trace for content distribution. It is believed that people movement exhibits

a high degree of repetition, in which people usually visit regular places and make regular social

contacts for their daily activities [49]. However, there has been no fine-grained people movement

trace to validate this observation. We opt for this bottom-up approach to collect a fine-grained

people movement trace since we want not only to validate the regularity of people movement in

their daily activities, but also to explore other information (e.g., social contacts, stay duration

at the location, etc.) provided by the fine granularity of the collected trace. To this end, we

propose a novel methodology to collect the fine-grained people movement trace using mobile phone

and implement the UIM scanning system, which collects MAC addresses of Wifi access points

and Bluetooth-enabled devices in the proximity of the experiment phones. The UIM system is

deployed on Google Android phones carried by 123 faculties, staff, and students in University of

Illinois campus fromMarch 2010 to August 2010. The collected MAC addresses of Wifi access points

are used to infer location information and the collected Bluetooth MACs are used to infer social

contact. The inferred location information and social contacts then are used in the characterization

study, which shows that people movement exhibits a high degree of repetition. Particularly, people
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visit regular locations and have contacts with a regular set of other people for their daily schedules.

This motivates us to construct a predictive model from the collected joint Wifi/Bluetooth trace

to provide predictions for location, stay duration at the location, and social contact [46]. Finally,

we leverage the predictive model to design a new data forwarding protocol named COMFA, which

maximizes the message delivery probability and preserves message delivery deadline for content

distribution in the Community-based Delay Tolerant Networks. We compare the performance of

COMFA with Prophet routing and Epidemic routing over the real movement trace collected by

the UIM system. The evaluation results show that COMFA outperforms other alternatives by

considerably reducing the message delivery delay and message overhead.

Besides the two major parts of the thesis, we also present several appendix chapters. The first

appendix in Chapter A presents operators in Relational Algebra, which are used in the thesis for

the presentation clarification of the collected data set in Chapter 8. In the appedix Chapter B, we

present the measurement results obtained from our UIM collected data set. Finally, we present a

Hybrid Epidemic Routing protocol in the appendix Chapter C to evaluate the performance of a

data dissemination scheme, which uses both Wifi and Bluetooth interfaces of the mobile nodes to

forward data.

In this thesis, we present the COADA protocol for the content distribution in Dynamic Coalition

P2P network and the COMFA protocol for the content distribution in Community-based Delay

Tolerant network. In our context, coalition and community can be distinguished as follows. On

one hand, a coalition or a community refers to a group of people who share mutual interests or

socioeconomic characteristics. On the other hand, while coalition is formed by co-located people

for a short period (i.e., in the order of hours or minutes), the community is formed by people in

the same geographical area over the long period of time (i.e., in the order of weeks or months).

In other words, the community is more stable than coalition. The coalition can be found in the

shopping street scenario, where shoppers form coalition while they are moving towards the same

shop. After the shoppers arrive at the shop, the coalition may not exist anymore. In contrast, the

community can be found in the university campus environment, where students in the same class

can form a community and they meet each other during the class period every week for the entire

semester.
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2.2 System Model

In this section, we present the network model and data model that are used in the design of content

distribution protocols in the thesis.

2.2.1 Network model

We focus on a mobile P2P network of mobile nodes. Each mobile node is assumed to have one

mandatory P2P interface such as Wifi or Bluetooth. This P2P interface is used in all of our

content distribution protocols including COADA, iShare, DENTA, and COMFA. The mobile node

is also assumed to have the cellular interface to work with COADA and iShare while mobile node

is assumed to be able to communicate in infrastructure-mode to work with DENTA. For COMFA,

the mobile node only needs the P2P interface.

Mobile nodes in our network exhibit different movement behaviors, depending on specific sce-

narios. For example, nodes may exhibit the Schelling behavior and perform the instant grouping

with other co-located nodes when they are moving towards a Point of Interest. For the Schelling

behavior, nodes can use COADA, iShare, and DENTA protocols to download and exchange data

messages. On the other hand, if the node exhibits the repetitive movement behavior, it can use

COMFA to forward data messages.

Since the mobile nodes are carried by people, we use the terms “mobile nodes” and “mobile

users” interchangeably in this thesis.

2.2.2 Data model

The data exchanged among mobile nodes is in the format of text or video, depending on the specific

protocol. For COADA and iShare, mobile nodes download the video file content from the content

server via the cellular interface and exchange downloaded data via the P2P interface. For DENTA,

mobile nodes exchange the text messages via the P2P interface and also download text messages

from the Wifi access points at the Point of Interest. For COMFA, mobile nodes exchange the

text/video messages by using only the P2P interface.
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2.3 Design Objectives

The ultimate objective of this thesis is to improve content distribution in mobile P2P networks.

Since the connectivity and topology of the networks depend on mobility of the mobile devices (or

the movement behavior of the mobile device carrier), we characterize people movement and then

apply the learned lessons from the characterization study for the design of content distribution

protocols. As the result, the thesis has two objectives, including: (1) understanding the correct

movement behavior of people, and (2) improving the content distribution in mobile P2P networks.

For the first objective, we use simulation, modeling technique, and real system deployment to

characterize the Schelling behavior and the repetitive behavior of people movement. Since the

Schelling behavior (or instant grouping behavior) of people movement exists when a large number

of people is moving towards the same Point of Interest, we do not have enough resources and

facilities to collect real trace of people movement to validate the Schelling behavior. Instead, we

first simulate movement of multiple nodes on real Google maps where the nodes take the paths

returned from Google Map APIs towards the Point of Interest. We further validate the Schelling

behavior by modeling the movement of mobile nodes by using the Mobius modeling tool. For

repetitive behavior of people movement, we propose a new methodology to collect people movement

using mobile phone. Then, we apply the methodology to implement and deploy the UIM scanning

system on 123 Google Android phones carried by students, staff, and faculties in University of

Illinois campus to collect a real people movement trace from March to August 2010. The trace

collected by the UIM system is used to characterize the regularity of people movement and construct

the predictive model of people movement.

For the second objective, we leverage the lessons learned from the characterization study for the

design of content distribution protocols in mobile P2P networks. For content distribution protocols,

our objectives include improving message delivery probability, reducing message delivery delay, and

limiting message overhead.
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CHAPTER 3

CHARACTERIZING SCHELLING BEHAVIOR OF PEOPLE

MOVEMENT

3.1 Introduction

Recently, a large percentage of wireless devices comes equipped with additional short-range ad

hoc (or Peer-to-Peer) wireless communication interfaces such as Wifi and Bluetooth. P2P commu-

nication thus has been taken extensively into consideration in the design of content distribution

protocols for mobile P2P networks [8, 16, 50, 51]. However, leveraging P2P communication re-

mains challenging since the P2P communication is limited by a short transmission range and thus

becomes broken under mobility of cellular users. More importantly, cellular users may not have

the intermediate incentive to communicate in the P2P channel, which is highly energy-consuming.

Let us consider a shopping street scenario where customers walk to their interested shops and

download the product preview video to their cell phones using the cellular connectivity, and at the

same time they exchange the video via the Bluetooth or 802.11 wireless interfaces of the phones.

Given two co-located customers A and B, according to previous protocols [8, 16, 50], A and B

are required to collaboratively exchange/forward messages. However, A and B may have different

targeted shops, so they may move towards different directions in very near future, causing their

wireless connection to break. Further, if A is interested in jewelry and B is interested in digital

cameras, what is the immediate incentive for A to disseminate the messages about digital cameras

from B, and vice versa? We therefore believe that sharing mutual content interest is crucial to

motivate people (with their smart phones) to collaboratively exchange content messages.

Interestingly, we observe numerous scenarios where co-located people motivate themselves to

collaborate since they share mutual content interests. For example, smart phones of co-located

audiences or co-located soccer fans may group to exchange data via the P2P channel, while these

mobile users are heading towards the same Points of Interest (PoI) such as the concert theater or

the soccer stadium. Also, audiences of an exhibition or students in a campus can group to exchange

13



messages while heading towards the same destinations such as exhibition halls or classrooms. More

interestingly, the grouping behavior of people who share similarities was presented in the segregation

model, one of the most cited models in economics, proposed by Thomas Schelling [52]. According

to the segregation model, people move apart from each other if they have different economic/social

interests; whereas, they group if they share mutual economic/social interests. We find that this

grouping behavior of the Schelling model can be characterized and exploited to improve content

distribution in mobile P2P networks.

In this chapter, we perform an analysis on the original Schelling model to highlight its important

properties in Section 3.2. We present real world scenarios where these properties of the Schelling

model exist and can be exploited for content distribution in Section 3.3. In Section 3.4, we present

the Dynamic Coalition P2P network created by mobile nodes carried by mobile users whose move-

ments exhibit the Schelling behavior. In order to understand the coalition pattern of this network,

we study the relationship between the size of coalition formed by mobile nodes and the distance

from the mobile nodes to the PoI on three real maps taken from Google Map [53] in Section 3.5.

Our study shows that the coalition size distribution follows an exponential function with respect

to the distance from the mobile nodes to the PoI. This result is further confirmed by our study of

coalition pattern using Mobius modeling tool [48] in Section 3.6. In Section 3.7, we present the

related work. Finally, in Section 3.8 we present briefly how the Dynamic Coalition Mobile P2P

network is exploited to design content distribution protocols in Chapter 4, Chapter 5, and chapter

6 of this thesis.

3.2 Schelling Model

In our context, the term similar individuals or similar people is defined as follows: individuals are

considered similar if they share common similarity (race, education, community) or mutual interest

on some topic (books, music, movies).

3.2.1 Schelling’s original model

In 1969, Thomas Schelling, a Nobel-prize winner in economics, proposed one of the most cited

models named segregation model in economics to explain how similar people (i.e., people with

same race, education, community) group in American neighborhoods [52]. According to Schelling’s
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Figure 3.1: In Schelling’s original model, people always move towards their similar neighborhoods

segregation model, the grouping is created by movements of individuals who want at least a certain

portion of similar neighbors. In other words, when a person is unsatisfied with his neighborhood,

he moves towards a place where he has more similar neighbors. Such movements eventually create

clusters of similar individuals. Figure 3.1 shows the idea of Schelling’s model where a circle denotes

an individual and shading patterns represent different interests. In this example, A1 moves towards

its closest and similar neighbor, A2. When everyone is satisfied with their neighborhoods, the

clustering reaches the stable equilibrium. In what follows, we use the terms group and cluster

interchangeably.

3.2.2 Analysis of Schelling’s model

We introduce two important properties of the Schelling’s model, which are later exploited by our

protocols in Chapter 4, Chapter 5, and Chapter 6 for improving data accessibility in mobile P2P

networks.

3.2.2.1 Property 1: Density of similar individuals increases in proximity of clusters

This property directly follows Schelling’s original model since individuals move towards their desired

neighborhoods and thus create clusters of similar individuals at these neighborhoods. As a result,

the density of similar individuals increases significantly in proximity of these clusters.

3.2.2.2 Property 2: Similar individuals form “moving” clusters during their movements

According to Schelling, each individual always moves to his final cluster where he is satisfied

with the neighborhood and stays. In Schelling’s model, on the way to their final clusters, similar

individuals form small clusters. However, individuals at the boundary of these small clusters may

not be satisfied with their current mixed neighborhoods. Thus, they tend to move towards bigger

clusters where they have better (similar) neighborhoods. When an individual at the boundary

leaves, other inner individuals form the boundary; this again might cause them to leave. This

process creates small “moving” clusters, which merge to bigger clusters.
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3.3 Schelling Behavior and Content Distribution in Mobile P2P Networks

3.3.1 Schelling behavior

Schelling’s original model focuses on economic and social phenomena where individuals gradually

form groups on a very large timescale. For example, the formation of a China town in a city

might take decades. However, in the context of wireless technologies, we observe numerous sce-

narios where mobile wireless devices carried by similar people (people share mutual interests on

some topic such as books, music, movies) exhibit Schelling’s model on a much smaller timescale.

For instance, co-located customers can group for 20 minutes and exchange their mutually favorite

product information via their wireless handheld devices, while heading towards the same shopping

mall. Further, Schelling’s model originally focuses only on the outcome of the grouping process

(or the final clusters). Meanwhile, we observe that in the context of wireless technologies, not only

the outcome but also the grouping process itself can be exploited to expedite data dissemination.

This motivates us to study the analogies of Schelling’s segregation model, where the two above

properties exist in a much smaller timescale and the grouping occurs during the physical move-

ments of people carrying wireless devices. In what follows, we use the term Schelling behavior to

denote the analogies of the Schelling’s segregation model. In the context of wireless technology,

the Schelling behavior represents the “instant” grouping behavior of people as we present in the

following sections.

3.3.2 Schelling behavior and wireless technology

There are many real world scenarios where mobile wireless technology and Schelling behavior co-

exist. In the scenarios presented below, people exhibit an “instant” grouping behavior since they

only group while they move towards the targeted destinations (or Point of Interest). After that,

the group may not exist anymore.

Our first scenario can be found in the commercial sector. Let us consider a shopping street

where customers cluster while arriving at their targeted shops. In this scenario, wireless base

stations at shops can broadcast product advertisements, hot sales, discounts. Meanwhile, customers

are individuals in the Schelling’s model who walk to shops and can form groups to exchange

their opinions, reviews, and comments about their mutually interested products via their wireless

personal devices. The sizes of the groups formed by co-located customers grow at the closer distance
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from the targeted shops (the second property) and the density of customers gets maximum at the

shops (the first property). The Schelling behavior also exists when the customers drive towards the

targeted shops and at the same time, the customers download the product review video from the

cellular interface of their cell phones and exchange the downloaded content via the P2P interface

such as Wifi and Bluetooth.

Our second scenario is a campus life where places such as book stores, libraries, and class rooms

are visited frequently by university students. These places represent final clusters and students

represent moving individuals in the Schelling’s model. Similar to shopping street scenario, wireless

base stations at these places broadcast announcements and advertisements to the coming students.

Meanwhile, coming students can form groups due to their co-locations and similar targeted places

to exchange their information during their movements. Again, at the closer distance from these

places, the density of students reaches maximum (the first property) and the sizes of groups formed

by these students increase (the second property).

Our third scenario is a social event such as an art exhibition or an outdoor music concert in

the downtown area of a city. The event “attracts” interested audiences and plays the role of

a final cluster in the Schelling’s model. The wireless base station at the event can broadcast

advertisements, content and showtime of the event to arriving audiences. These audiences can

form groups and exchange their opinions and comments about the event via their personal wireless

devices. The group size grows up and the node density increases at the closer distance from the PoI.

Similarly, audiences who drive towards the location of the social event can group and download

the event program video from the cellular interface to their cell phones, and then exchange the

downloaded data via the P2P interface to expedite the downloading process.

In summary, we believe these above examples represent popular classes of scenarios where (1) the

movement of mobile nodes (carried by mobile users) exhibits the Schelling behavior, and (2) these

mobile nodes, which share the same content interest, form a mobile P2P network to exchange the

mutual content. We name this network “Dynamic Coalition Peer-to-Peer Network” and present

the network in the following section.

3.4 Dynamic Coalition P2P Network

In our context, the dynamic coalition P2P network consists of two concepts: Point of Interest and

mobile node. Point of Interest (PoI) represents a fixed place destination such as soccer stadium,
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Point of Interest

Mobile node

Figure 3.2: Dynamic Coalition P2P Network

concert theater, shopping mall, etc., where people move towards. The mobile node concept rep-

resents the cell phone of pedestrians or drivers, who are heading towards the PoI. When moving

towards the PoI, co-located people form groups and the mobile nodes carried by these people form

coalitions to exchange data messages. Henceforth, we use the terms “mobile nodes” and “mobile

users” interchangeably. A coalition is considered as a “Communication Coalition” and is defined

recursively as follows:

1. Nodes are connected in collaborative one-hop manner: If mobile nodes n1 and n2 are in the

communication range of each other via the P2P channel, they are moving towards the same

Point of Interest, and they share the same PoI mutual content interest, then n1 and n2 belong

to the same communication coalition. In this case, n1 and n2 are one-hop neighbors of each

other.

2. Nodes are in transitive relation: If nodes n1 and n2 belong to the communication coalition

C, and n2 and n3 belong to the communication coalition C, then n1 and n3 belong to the

communication coalition C. This transitive property means that communication coalition can

be expanded to multiple hop networks.

3. The coalition is per topic content/interest, so one mobile node n may belong to multiple

coalitions at the same time. For example, if n is downloading two content files in the topics

of soccer and classical music at the same time, then n may belong to two different coalitions

of “soccer fan” and “classical music fan”. Also, one cluster of co-located people may form

multiple coalitions if these people exchange content of different interests.

Henceforth, we use the terms communication coalition and coalition interchangeably. The dy-

namic coalition P2P network has two following important properties: (1) only mobile nodes in

the same coalition collaborate to exchange data via the P2P channel, and (2) the size of coalitions
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formed by mobile nodes becomes bigger at closer distance from the PoI. Figure 3.2 shows a dynamic

coalition P2P network with three Points of Interest and mobile nodes in which the shading pattern

represents the node’s content interest. In this figure, there is a transition in coalition pattern in

the dynamic coalition P2P network. Particularly, at the closer distance from the PoI, the density

of nodes heading towards the PoI increases. In contrast, at the farther distance from the PoI,

the density of nodes moving towards the PoI becomes sparse. For a further understanding of this

coalition pattern, we study the coalition pattern on three real maps taken from Google Map and

the coalition pattern modeled by the Mobius modeling tool [48].

3.5 Validation Study of Coalition Pattern on Real Google Maps

To understand the coalition pattern of mobile nodes in realistic scenarios, we perform the following

experiment. First, we select a real map MP from Google Map with a Point of Interest P at the

center of the map. Second, we select N nodes at random locations on MP in the surrounding areas

of P . Let these selected locations of N nodes be their initial locations. We simulate two different

scenarios for pedestrians and cars. If the map MP is for the pedestrians, the distance from N nodes

to P is shorter than that of the map MP , which is used for cars. Third, we use Google Map APIs

[53] to find the routes, which we call Google routes, for nodes from their initial locations to P .

We observe that the routes returned by Google Map APIs usually represent the shortest routes.

Fourth, we assume that all nodes arrive at P at approximately the same time and thus nodes closer

to P will depart towards P later than nodes farther from P . In the simulation, N nodes will start

at their initial locations, then they follows their Google routes to move towards P . When these

nodes are moving towards P , we calculate the average coalition size at different distances from P .

Here, the communication range of the nodes is 200 (m). In other words, if the distance between

two nodes n1 and n2 is less than 200 (m) while they are moving towards P , n1 and n2 are in the

same coalition and they are one-hop neighbors. The coalition can be expanded to multiple hops as

presented in the definition of Coalition in Section 3.4.

We perform our simulation on three real maps for three realistic scenarios. The first map is

for the Assembly Hall, Champaign, Illinois (i.e., longitude=40.096327, latitude=-88.238583) where

the basketball matches or concert events are held at the University of Illinois. For this map, we

select 320 pedestrians (e.g., basketball fans) at random locations as shown in Figure 3.3. When

the simulation starts, these 300 nodes move from their initial locations to the Assembly Hall (i.e.,
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Figure 3.3: Initial positions of mobile nodes before simulation, with PoI at Assembly Hall.
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Figure 3.4: Initial positions of mobile nodes before simulation, with PoI at Time Square area.
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Figure 3.5: Initial positions of mobile nodes before simulation, with PoI at Market Place Mall.
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Figure 3.6: Coalition size distribution of pedestrians moving towards Assembly Hall or Times Square
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Figure 3.7: Coalition size distribution of cars moving towards Market Place Mall

PoI) along with their Google routes. Similarly, we select 300 pedestrians at random locations in

the surrounding area of the Times Square (i.e., longitude=40.759903, latitude=-73.984294) in New

York City as shown in Figure 3.4. When the simulation starts, these 300 nodes move from their

initial locations to the Times Square (i.e., PoI) along with the Google routes. The third map is a

the Market Shopping Mall in Champaign, Illinois (i.e., longitude=40.142927, latitude=-88.244419)

as shown in Figure 3.5. Here, we select 350 cars at random locations with farther distances than

those in Assembly Hall and Times Square simulations. When the simulation starts, these 350 nodes

move from their initial locations to the Market Mall (i.e., PoI) along with their Google routes. For

this simulation, the speed of cars (i.e., 8-10 (m/s)) is much higher than that of pedestrians (i.e.,

1-2 (m/s)) in the two previous simulations for Assembly Hall and Times Square.

Figures 3.6 and 3.7 show that the coalition size increases significantly at the closer distance

from the Point of Interest, although the actual value of the coalition size depends on the street

configuration of the selected map. More interestingly, we found that the coalition size fits very

well the exponential function. In particular, the exponential fitting functions of Assembly Hall,

Times Square, Market Mall experiments are y(d) = 300e−0.006d + 7, y(d) = 300e−0.003d + 25, and

y(d) = 350e−0.0008d + 10, respectively. Here, d is the distance from the current location of mobile

nodes to the PoI and y(d) is the coalition size, which is an exponential function with respect to the
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distance d.

In conclusion, the simulations of people/car movement on three real Google maps shows that the

coalition size exhibits an exponential function in which the coalition size increases exponentially

with respect to the distance from the PoI. We observe that the routes returned by Google Map

APIs usually are the shortest routes. Meanwhile, recent studies stated that people with differ-

ent socioeconomic characteristics may prefer different routes [54] when they move from the same

starting location to the same Point of Interest. Therefore, in the next section, we investigate a

further study to confirm whether the movement of people along with the shortest routes returned

by Google Map APIs results in the exponential coalition size.

3.6 Modeling Coalition Pattern in Mobius Modeling Tool

3.6.1 Motivation

As we discussed in Section 3.5, the Google routes returned by the Google Map APIs are usually the

shortest routes. However, the analysis of the pedestrian movement trace in Koblenz city shows that

given the same pair of starting location and destination, different people may choose different routes

when they move from the starting location towards the destination [31]. Particularly, people prefer

the shorter route towards the destination, but they do not always select the shortest route. Another

recent study claims that people with different socioeconomic characteristics may prefer different

routes [54] when they move from the same starting location towards the same destination (e.g.,

Point of Interest). In other words, people usually select the shorter route towards the destination

with a higher probability, but the final choice depends on the person’s socioeconomic characteristics

such as age, gender, and other environmental factors such as weather, social events, time of day.

In order to represent the aforementioned route selection behavior of people, we present a proba-

bilistic model of route selection, in which a shorter route towards the PoI is selected with a higher

probability. Then, we use this route selection model as the mobility model of mobile nodes in two

different street configurations: Manhattan street and random street maps. For each configuration

(or map), we have two Points of Interest. Then, the street configurations and the probabilistic

route selection model are simulated by the Mobius modeling tool [48], which has been extensively

used to model various stochastic systems. Finally, we study the coalition patterns resulted from

the movement of mobile nodes towards their PoI in the Mobius modeling tool.
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Figure 3.8: Sample street configuration with PoI at v6

3.6.2 Probabilistic route selection

We present a probabilistic route selection model, which assigns a higher probability to the shorter

route from the starting location to the PoI. We believe our probabilistic model represents the route

selection behavior of people better than previous mobility models [23, 19, 55] since it introduces

the flexibility into the route selection and represents the realistic movement behavior as studied in

[54, 31]. Particularly, we use the probability to represent the uncertainty of the route selection and

the impacts of socioeconomic factors in people’s route selection. The probabilistic model of route

selection is presented below.

We consider a mobile node n moving within a physical movement area, which consists of multiple

street segments and intersections. Each street segment has two intersections at two ends. To

simplify the model, we assume that the PoI is also an intersection. From its current location, node

n follows consecutive street segments towards the PoI. We use an undirected graph G =< V,E > to

present the movement area as follows. The ith intersection in the movement area is represented by

a vertex vi ∈ V . Meanwhile, a street segment connecting the ith and jth intersections is represented

by an edge (vi, vj) ∈ E. An edge (vi, vj) ∈ E has a weight dij representing the physical distance

between vi and vj. So dij = d(vi, vj) and we assume that the distance from vi to vj is equal to

that from vj to vi (i.e., dij = dji and G is an undirected graph). Further, each vertex vi ∈ V has

a value Di representing the shortest distance from vi to the PoI. Figure 3.8 shows an example of

the graph representation of a movement area. In this figure, v6 is the PoI and mobile nodes from

other vertices will move towards v6, and each vertex maintains the shortest distance to v6.

In our model, a route towards the PoI consists of vertexes in V . The intuition of selecting a route

is that a person prefers a shorter route towards the PoI with a higher probability. So, we define

the transition probability pij as the probability that the node n selects vj as the next vertex in the

route towards the PoI if n currently stays at vertex vi. The next step is to calculate pij. Let Ai be

the set of adjacent vertexes of vi, and each vertex of Ai has a shorter distance to the PoI than vi. In

other words, if the node n is staying at the current intersection vi, n will not select an intersection
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vj as its next intersection towards the PoI if Dj ≥ Di. Formally, Ai = {vj : Dj < Di, (vi, vj) ∈ E},

and we have:

pij =











dij+Dj∑
vk∈Ai

(dik+Dk)
,∀vj ∈ Ai

0 ,∀vj 6∈ Ai

(3.1)

In Figure 3.8, if node n stays at v2 and its PoI is v6, then n selects v3 as the next vertex with the

probability p23 =
d23+D3

d23+D3+d24+D4
. Given a street configuration with intersections and a PoI, we can

construct a graph G to represent this street configuration, in which each intersection is represented

by one vertex in v ∈ G.

Notice that in previous section since we use Google Map APIs to find the route for mobile nodes,

nodes have to follow the routes returned by Google Maps APIs, which is usually the shortest path.

Here, we present the probabilistic route selection model, which allows us to vary and customize the

route selection process and study people movement in different street configurations and different

levels of detail. The next step is to study the coalition patterns formed by nodes moving in specific

street configurations, in which each node uses the probabilistic model to select the route towards

the PoI. For this study, we use the Mobibus modeling tool as presented in the following section.

3.6.3 Exponential coalition size resulted from probabilistic route selection

We use the Mobius modeling tool [48] to study the coalition patterns of two different movement

areas (or street configurations): Manhattan street configuration and Random street configuration

as shown in Figure 3.9 and Figure 3.10. Mobius modeling tool is the Stochastic Activity Network,

which has been used extensively for modeling the behavior of distributed systems and networking

systems. We are interested in the coalition size distribution at the steady state of the system since

we believe the steady state provides insightful movement characteristics of the system. The Mobius

modeling tool is used to model the street configuration and the route selection as follows.

Figure 3.9 shows the Manhattan street configuration, in which the distance between two adjacent

vertexes is l = 100(m) or l is the length of a street segment. Figure 3.10 shows the Random street

configuration where we specify the distance with the street segment. For each movement area, we

have 1000 mobile nodes moving towards the two PoIs v1 and v25 with a random speed s in the rage

[1.0, 2.0] (m/s). We select the movement speed in the range of [1.0,2.0] since we believe this is the

normal walking speed of pedestrians in reality.
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Figure 3.9: Manhattan street configuration with two PoIs at v1 and v25
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Figure 3.10: Random street configuration with two PoIs at v1 and v25

First, we use an undirected graph G =< V,E > to represent the street configuration. Then, for

each vertex vi ∈ V , we create one atomic model in Mobius and specify the transition probability

of the case activity in this atomic model as the probability calculated by the Equation (3.1). The

duration a node n stays in the activity of the atomic model follows an exponential distribution with

the mean ⌈l/s⌉ seconds. Notice that ⌈l/s⌉ is the traveling time node n spends to travel the street

segment of length l. By using the exponential distribution with the mean ⌈l/s⌉ as the traveling

time of n on the street segment of length l, we use Mobius to model the movement of n. On arriving

at one PoI, nodes stay for a random period, which follows an exponential distribution. For each

street configuration, we study the impact of the staying period at the PoIs on the coalition size

distribution. Particularly, for each street configuration, we have two different cases: the first case

has staying period t1 (i.e., nodes stay at PoI for t1 period) and the second case has staying period

t2 (i.e., nodes stay at PoI for t2 period), in which t1 > t2. After staying at the PoI, nodes start

moving towards the other PoI, again by following the probabilistic route.

Figure 3.11 and Figure 3.12 show the coalition size distribution in two above movement areas

in which t1 = 5t2. From these figures, we see that the coalition size gets maximum at the PoI
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Figure 3.11: Manhattan street configuration (Here “destination” is PoI)

 0

 20

 40

 60

 80

 100

 120

 140

 0  100  200  300  400  500

C
oa

lit
io

n 
si

ze
 (

nu
m

be
r 

of
 n

od
es

)

Distance to destination (m)

Coalition size (t1)
Exponential fit (t1)
Coalition size (t2)

Exponential fit (t2)

Figure 3.12: Random street configuration (Here “destination” is PoI)

and decreases when the distance to the PoI increases. Moreover, in the first case (with the staying

period t1), nodes are more clustered at the PoI since the staying period is longer than the second

case (with the staying period t2). We further fit the coalition size distribution to the exponential

function in the form of y(d) = ae−cd + b with d > 0, a > 0, c > 0, b ≥ 0. We see that the coalition

size distributions of these two movement areas fit very well with the exponential function. Here,

y(d) is the coalition size, d is the distance from the PoI, and a, b, c are coefficients.

In conclusion, when the route to PoI is selected such that the shorter route has a higher prob-

ability to be selected, the nodes form coalitions in which the coalition size follows an exponential

function with respect to the distance from the PoI. This result confirms the results obtained in

Section 3.5 from the simulation of people movement on three real Google maps. In the next section,

we briefly present how this exponential coalition size is exploited to improve content distribution.

3.7 Related Work

Since the Schelling behavior can serve as the mobility for mobile nodes in mobile P2P network,

we present existing mobility models as the related work in this section. Particularly, we classify

existing mobility models into two main categories: microscopic mobility models and macroscopic
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mobility models. The former is about the movement behavior of individual mobile node in the

network while the later focuses on the aggregated effects of individual node mobility on the entire

network.

3.7.1 Microscopic mobility models

The first class of microscopic mobility model comes from random models including Random Walk

mobility [23], Hybrid Random Walk mobility [56], and Random Waypoint mobility [57]. For these

random mobility models, a node selects a random destination in the network space and moves from

the current location to that random destiantion with a random speed. These models are obvious

unrealistic since in reality people do not move between random locations. However, these models

are used mostly in all current simulations due to their simplicity.

The second class of microscopic mobility model is group mobility models [19, 58, 59, 60, 61]

where each group moves from one random location to another random location and the group size

remains unchanged over time. This static grouping behavior is suitable to the military scenarios

where group members are required to stay in a proximity to accomplish their cooperative tasks.

Relying on this grouping behavior, there have been several mobility models for first responder and

disaster-recovery scenarios [62, 36, 35]. In these models, nodes are assigned a certain roles such

as police, fire fighters, victims, etc., where nodes with the same role move in groups and each

group has one group leader. In general, the static grouping behavior of these models may work for

mission-based scenarios but may not work for civilian scenarios where people move in much more

free fashion. Recently, the Heterogeneous Random Walk model is presented to capture the notion

of groups observed in civilian scenarios [22]. However, the model assumes an extreme clustering

behavior where nodes in the big clusters group together and nodes move between big clusters do

not have any neighbors. This extreme clustering behavior may not be realistic since clusters may

be created at different locations of the networks.

There have been several mobility models, which aim to capture the movement of people in urban

space with geographic restriction such as City Section Mobility Model [63], Manhattan, Freeway[37],

Pathway [20]. However, these models do not capture the spatiotemporal movement behavior of

pedestrians. There also exists mobility model for modeling obstacles in the network area and how

nodes move with the existence of these obstacle [21, 38]. For this model, nodes take the obstacles

into consideration and try to find a path to avoid these obstacles.
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In 2003, Ray presented the Generic Mobility Model (GEMM), a tool to generate mobility traces

[64], which introduces and uses four concepts: Attraction Point, Activity, Role, and Group Be-

havior. However, GEMM can not be used to model the pedestrian movement in urban area since

GEMM assigns nodes fixed roles and nodes stay with fixed schedules of movement. Meanwhile,

pedestrian movement is more dynamic and the trip plan of pedestrians may change over time.

Besides the above synthetic mobility models, researchers recently spend a considerable effort

in collecting real traces of human movement to validate existing mobility models and derive new

models based on the real traces [41, 42]. The first trace-based mobility model is derived from a

WLAN campus at ETH [65]. In this model, the network area is divided into equal-sized squares

and authors study the probability that nodes transits among these squares. Another mobility

model for PDA users named Campus Way Point Mobility Model is studied at UCSD where users’

appearances are associated with access points in campus buildings [66]. Hsu et al. present several

trace-based mobility models at USC and University of Florida [42], including Weighted Way Point

[67] and Time-variant community mobility model [34]. In Weighted Way Point model, the authors

use the Markov model to represent the probability of user movements between different locations in

the USC campus [67]. In Time-variant community mobility model, the authors study the repetitive

movement patterns of people from the real mobility traces of campuses and vehicular networks.

Ekman et al. present the Working Day Movement model to present the daily movement of average

people who go to work in the morning, spend their day at work, and commute to their homes in

the evening [68].

Another class of mobility models comes from social network theory [39, 40, 26]. For these mobility

models, the social relationships among nodes are captured and represented where nodes tend to

move toward nodes with which they have strong social connections. These models fit very well with

the Delay Tolerant Network (DTN) paradigm and they can be used for DTN-based communication

protocols.

3.7.2 Macroscopic mobility models

Macroscopic models present the aggregated effects of user mobility in a large scale. The first class of

macroscopic models comes from traffic engineering and transportation where the teletraffic models

for metropolitan, national and worldwide scale are studied for location traffic management [25, 32].

The aggregated mobility of users in urban context are also studied [28, 33, 24]. Particularly, authors
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classify people into different classes based on their socioeconomic characteristics and model their

aggregated spatiotemporal movement patterns. The models can be used to generate the aggregated

workload of mobile users to validate communication protocols for urban areas.

In 2009, Maeda et al. present a macroscopic mobility model to represent the movement flow of

pedestrians in urban area [69]. In particular, the average density of pedestrians at different locations

in Osaka downtown is captured. The model represents changes of pedestrian density over time at

different places of the Osaka downtown. Moreover, a large body of macroscopic mobility models

comes from urban planning and transportation including flow based [70] and cellular automata

[71]. Particularly, flow-based methods model the density of nodes in continuous flows. Cellular

automata divides the space into cells and model the density of nodes in each cell. Recently, Ahas

et al. model the short-term mobility of people in Estonia using mobile positioning data [72]. Given

the location of cell phones at different times, authors confirm that the developed model describes

the geography of population well.

In conclusion, the Schelling behavior of people movement lies in the middle of microscopic and

macroscopic mobilities since the grouping behavior of individuals creates the uneven network den-

sity in the macroscopic level. In other words, the movement of people towards their Points of

interest creates: (1) coalitions of peole sharing mutual content interest and (2) the transition of

network density from sparse to dense. Schelling behavior thus can be used to study the effects

of individual node’s mobility on the aggregated effects of the network density. As we show in the

later chapters of this thesis, Schelling behavior essentially provides a novel opportunity to improve

content distribution.

3.8 Exploiting Dynamic Coalition P2P Network for Content Distribution

Nowadays, there have been numerous P2P systems that allow people to share file content (e.g.,

eMule, Bittorrent) or video streaming content (PPLive, Sopcast, TVUPlayer) in the Internet. These

systems work beautifully by leveraging the mutual content interest of the users as the intermedia

incentive for the users to collaborate and share their mutual content. For example, a person in

England can share his network bandwidth and streaming content with a person in China if their

computers are streaming the same football match from Sopcast. For these above P2P systems,

the geographical location of users is important but not the crucial factor since users from different

continents can still collaboratively share their bandwidth and mutual content. In contrast, the
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Figure 3.13: Dynamic Coalition P2P Network for one Point of Interest

geographical location of mobile users is the deciding factor for content distribution in mobile P2P

networks since the network topology depends on P2P connectivity, which has a limited transmission

range. In other words, in order to make the P2P sharing happen in mobile P2P networks, besides

mutual content interest, the co-location of mobile users is necessary to enable the P2P connectivity.

We find that the Schelling behavior represents the movement behavior of co-located mobile users

who potentially share mutual content interest since they are moving towards the same PoI. The

Schelling behavior thus one on hand can be used to identify the scenarios where the mobile P2P

networks becomes practical, and on the other hand it can be used model the movement of mobile

users for the design of content distribution protocols for these practical scenarios.

In its general form, the dynamic coalition P2P network consists of multiple Points of Interest

as shown in Figure 3.2. However, in this thesis we only focus on the dynamic coalition P2P

network, which has one Point of Interest as shown in Figure 3.13. In this figure, the mobile nodes

form coalitions C1, C2, and C3 when they are moving towards the PoI. Also, the coalition size

increases at the closer distance from the PoI. For example, |C1| = 1, |C2| = 3 and |C3| = 6 and

thus |C1| < |C2| < |C3|. As presented in Section 3.5 and Section 3.6, the coalition size increases

exponentially with respect to the distance from the PoI. The exponential coalition pattern and

the transition of network density in the dynamic coalition P2P network are exploited to improve

content distribution as follows.

In Chapter 4 we leverage the exponential coalition size function to design COADA, a COalition-

aware Adaptive content DownloAd for cellular users. With COADA, mobile nodes predict the

exponential coalition pattern of the network and tune the cellular download timer adaptively to

meet the file download deadline. In Chapter 5, we design iShare, an Intra-coalition data Sharing

protocol to provide a lightweight and fair data exchange solution for nodes within the same coalition.
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With iShare, mobile nodes download content from the cellular channel and at the same time

exchange downloaded via the P2P channel. For example, nodes in the coalition C2 of the Figure

3.13 use iShare to exchange their downloaded content. Finally, in Chapter 6, we present DENTA,

a DENsity-aware daTa disseminAtion, which exploits the uneven node densities at the PoI and

other areas of the dynamic coalition P2P network to efficiently disseminate data messages.
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CHAPTER 4

COADA: COALITION-AWARE ADAPTIVE CONTENT

DOWNLOAD PROTOCOL FOR CELLULAR USERS

4.1 Introduction

As presented in Chapter 3, the movement of mobile nodes in the dynamic coalition P2P network

exhibits the Schelling behavior. As shown in Figure 4.1 , while mobile nodes move towards the

same Point of Interest they form coalitions and at the closer distance from the PoI, there are more

nodes moving towards the POI and thus the coalition size increases. In constrast, at the further

distance there are less mobile nodes moving towards the PoI and thus the coalition size decreases.

In Figure 4.1, we have |C1| < |C2| < |C3|. Validation study in Chapter 3 shows that the coalition

size formed by co-located mobile nodes follows an exponential function with respect to the distance

from the Point of Interest. In this chapter, we exploit the exponential coalition size function to

design an adaptive protocol named COADA, which stands for COalition-aware Adaptive content

DownloAd protocol, to improve content file download of cellular users. The COADA protocol was

presented in our previous papers [9, 43].

This Chapter is organized as follows. We first present the system model in Section 4.2 . Then,

we present the detail of COADA design in Section 4.3. After that, we evaluate and compare the

performance of COADA with an non-adaptive protocol in Section 4.4. Finally, we present the

Figure 4.1: Dynamic Coalition P2P Network for one Point of Interest (Revisit)
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related work in Section 4.5 and conclude the Chapter in Section 4.6.

4.2 System Model

4.2.1 Network model

We focus on a dynamic coalition P2P network as shown in Figure 4.1, where the coalition size

follows the exponential function. In our network, we assume that each mobile node has a long-

range connectivity interface (e.g., cellular) and short-range connectivity interface (e.g., Bluetooth,

Wifi). We consider the scenario where a mobile user moves towards a PoI, requests download of

files from the content server, sets the deadlines for these downloads, and uses multiple connectivity

interfaces to download the file. For each file download, the user may need to set a different deadline

depending on her needs. The mobile node (i.e., cell phone) then downloads some data blocks from

the file server via the cellular communication, sends its own and receives other downloaded data

blocks via the P2P communication to/from other nodes in the same coalition to expedite the

download and meet the file download deadline. In this chapter, we use “mobile users” and “mobile

node” interchangeably.

4.2.2 Data model and online codes

We use Online Codes [73] in our protocol design in which the file server divides the original file

into B equal-sized message blocks. The content file server usually uses a big value of B so that

duplication in block generation can be avoided1. For example, a 16MB file can be divided into 213

message blocks and each is 2KB.

Given B message blocks, the server performs the following encoding procedure. The server will

first create Bkδ auxiliary blocks from the B message blocks. To create these auxiliary blocks, each

message block will be added by k distinct randomly-chosen auxiliary blocks and each auxiliary

block is the sum of 1/δ message blocks on average, where δ is a tunable parameter. In practice,

the typical value of δ is 0.005 and value of k is 3 as presented in [73]. These auxiliary blocks are

used to facilitate the decoding procedure in the client side. Finally, the server has a set F , in which

|F | = B +Bkδ blocks.

1The big value of B is also important in our design of COADA since we can estimate the data availability in the
P2P channel more accurately. See Section 4.3.5 for detail
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Upon receiving a request for a block from a mobile node n, the server will create a check-block

using the F blocks and send the check-block to n. Notice that the check-block is the transmitted

data unit between mobile nodes and the server via the cellular channel, and among nodes in the

P2P channel. To create a check-block, server picks a random number p (i.e., p ≤ |F |) and selects

p blocks at random from F . Then, the server calculates the sum of these p blocks (e.g., server

performs XOR operations on p blocks) to obtain the check-block q. The server then sends the

packet in the form of (x, q) to n, where x is a vector (or meta-data) of all indexes of p selected

blocks in F .

To decode the original file, node n collects all received check-blocks (xi, qi), where the index

i denotes the ith check-block received by n. Node n then can iteratively recover original blocks

from these received check-blocks until all B message blocks are decoded. As shown in [73], the B

message blocks will be decoded in linear-time as long as n receives at least (1− δ)F blocks (either

from the server via cellular channel or from other nodes via P2P channel). In the next section, we

use the terms “check-block” and “block” interchangeably.

4.3 COADA: Coalition-aware Adaptive Content Download Protocol

4.3.1 Design objective and COADA protocol overview

The objective of COADA is to minimize the amount of downloaded data blocks from the cellular

channel and meet the file download deadline. In our protocol, each mobile node n has a cellular

download timer T , which specifies how often n downloads a content block from the content server

via the cellular interface (i.e., at each T interrupt, a file data block is downloaded via cellular

network from the file server). Our objective is to tune T adaptively to the coalition pattern of the

network so that n can minimize the cellular download while meeting the file download deadline.

In order to minimize the cellular download and meet the file download deadline, n needs to predict

the coalition pattern of the network and tunes the download timer T adaptively. Since nodes choose

different routes to the PoI, coalition sizes observed by different nodes may be different, and thus

the actual shapes of their exponential-coalition-size functions are different. Therefore, each mobile

node n will periodically obtain and keep the coalition sizes in a coalition size list. Then, n predicts

the future coalition size function by fitting the coalition size list to an exponential function (i.e.,

curve fitting) and uses this function to estimate the data availability in P2P channel based on
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Online Codes [73] (See Section 4.3.5 for calculation of data availability). Given the estimation

of data availability in P2P channel, n tunes the cellular download timer T to meet the download

deadline. For example, if it is estimated that there are a lot of available downloaded data in the P2P

channel, n should make T longer so that it can reduce the download from the cellular channel. In

contrast, if it is estimated that there are not enough available downloaded data in the P2P channel,

n should make T shorter to download more check-blocks from the content server via the cellular

channel to meet the file download deadline. The protocol is adaptive since n predicts the coalition

size function and tunes the cellular download timer T on the move. Notice that one download

timer T is for one file download. If the user has two concurrent downloads for different files, we use

two different timers T . Since the number of people downloading each of the two files is different

or the coalition pattern for each file is different (See the definition of coalition in Section 3.4), the

download timer for each file should be adaptively tuned separately. Table 4.1 shows notations used

in our protocol design, which will be presented in detail in the following sections.

Name Description
F Number check-blocks n must download to decode original file, F = (1− δ) ·B′

TD Deadline at which n must finish downloading the file
TC Current time
T Cellular download timer. After each T , n downloads a check-block from the content server

g(t) Predicted exponential-coalition-size function, g(t) = a · eλ·t + b
G(tk) Set of nodes in the same coalition with n at time tk, including n. Size of G(tk) is g(tk)
M Number of check-blocks n is carrying throughout current time TC

∆ The protocol time period. For each period ∆, n samples one coalition size
Bp Estimated # of check-blocks n may obtain from the P2P channel during period [TC , TD]
Bc Estimated # of check-blocks n downloads from server during period [TC , TD]

Table 4.1: Notations used for design of COADA

4.3.2 Bootstrapping

In the COADA protocol, we divide time into equal-sized periods ∆. The length of the period ∆

depends on node’s speed. For example, for the network formed by cellular phones of pedestrians,

∆ is longer than that of the network formed by mobile phones of drivers. This is intuitive since

when nodes move faster, the coalition size changes faster and thus ∆ should be smaller. Since when

n moves closer to the PoI, the coalition size might get bigger, n needs to update its coalition size

every period ∆. So, ∆ specifies how frequently n needs to sample the coalition size.

35



When the mobile user starts her file download, node n is moving towards the PoI, n sets a

deadline for the file download and switches both cellular and P2P channels on. Initially, n has a

default cellular download timer T (with T < ∆) and when T expires, n requests a check-block of

the file from the content server via the cellular channel. At the same time, n exchanges downloaded

data with other peers within n’s P2P one-hop communication range.

To avoid wrong prediction of its coalition size function, the node n first samples several coalition

sizes, one sample per period ∆, and put these coalition sizes into the list of coalition sizes. Then,

for each period ∆, n performs 4 following actions: (1) predicts the future coalition size function

using the list of coalition sizes, (2) downloads data from cellular channel when T expires, (3) tunes

the download timer T to meet the file download deadline, and (4) exchanges data via the P2P

channel. Next, we present in detail these actions of n.

4.3.3 Predicting coalition size function

As shown in Section 3.5 and Section 3.6, in our network the coalition size follows an exponential

function with respect to the distance d from the node’s current location to the PoI as follows:

y(d) = a1 · e
−c1·d + b1 (4.1)

In Equation 4.1, a1 > 0, b1 > 0, c1 > 0 and y(d) decreases when d increases. Let t0 be the time at

which the node n starts downloading the file content from the content server via the cellular channel.

Let d0 be the distance from the location of n to the PoI at time t0. Since the node n is moving

towards the PoI, the distance d is the decreasing function of time. Here, we use d(t) to denote the

distance from the location of n to the PoI at time t after the time t0 (i.e., t > t0). Assuming that

the movement speed of n is v (i.e., v > 0), for a time t > t0, we have: d(t) = d0 − v · (t− t0), here

d(t) > 0, so we have:

d(t) = d0 + v · t0 − v · t (4.2)

By replacing d in Equation 4.1 with d(t) in Equation 4.2, we have: y(d(t)) = a1 ·e
−c1·(d0+v·t0−v·t)+

b1. Or, y(d(t)) = (a1 · e
−c1·(d0+v·t0)) · e(c1·v)·t + b1. Let g(t) = y(d(t)) = a · eλ·t + b. Then, we have:

a = (a1 · e
−c1·(d0+v·t0)), λ = (c1 · v), and b = b1.

The intuition of the above analysis is as follows. Since the file download deadline is TD, the file

downloading period is [t0, TD]. At time t, where t0 < t < TD, the node n is downloading the file
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and n is also moving towards the PoI. We see that the distance d decreases if the time t increases

since when t increases, n moves closer to the PoI (i.e., d decreases). Therefore, while y(d) is a

decreasing function with respect to d, g(t) is an increasing function with respect to t. Intuitively,

when the node n gets closer to the PoI, there are more other mobile nodes moving towards the

same PoI, so the coalition size increases. As a result, we have g(t) = a · eλ·t + b, in which g(t) > 0,

and λ > 0, a, b are coefficients. The next step is to obtain the coefficients a, b, λ for the function

g(t) of the mobile node n.

For each period ∆, the node n obtains a new (current) coalition size and puts this new coalition

size into n’s list of coalition sizes. To obtain the coalition size, n broadcasts a membership message,

and nodes in n’s coalition respond to this membership message. n can obtain the coalition size

based on the responsive messages. Then, n fits the list of coalition sizes to an exponential function

in the form of a · eλ·t + b to obtain coefficients a, b, λ of g(t). Since nodes choose different routes

to the destination, coalition sizes observed by nodes may be different. However, notice that at a

specific time t, nodes in the same coalition will observe the same coalition size. Node n will use

its predicted exponential-coalition-size function g(t) to estimate the amount of data node n can

obtain from the P2P channel (to be shown in Section 4.3.5).

4.3.4 Downloading from cellular channel

The node n has a cellular download timer T . When this timer T expires, n requests new data from

the server. Upon receiving the request from n, the server creates a check-block2 and sends it to n

[73]. Since Online Codes is applied at the server side and the number of message blocks B is large,

the server will not create duplicate check-blocks with high probability (the detailed analysis can

be found in [73]). Therefore, any check-block returned by the server is useful for n (and its peers

if n sends the downloaded blocks to them) to decode the original file.

4.3.5 Tuning cellular download timer

Given the predicted coalition size function g(t), the next step is to calculate the data availability

in P2P channel (i.e., Bp in Table 4.1) and tune the cellular download timer T adaptively. In our

protocol, when the two nodes n1, n2 first meet at time t, they exchange all new check-blocks via

the P2P channel. For the node n2, the blocks of n1 are new if the blocks are not carried by n2 at

2A check-block is an encoded block from the original blocks (see Section 4.2.2).
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time t. After that, when they stay in one coalition, n1 and n2 only exchange check-blocks, which

are newly downloaded during the last period ∆. Then, Bp is estimated as follows.

Since n only knows its current cellular download timer T , n assumes all nodes in n’s current

coalition have the similar cellular download timer T . The reason for the similar timers T is as

follows: intuitively, nodes in one coalition carry the same set of check-blocks and observe similar

coalition size, so their cellular download timers should be similar or at least close.

For a future time tk > TC , the coalition size g(tk) = a · eλ·tk + b can be predicted by using the

function g(t) of n. Further, the number of check-blocks a node in G(tk) can download via the

cellular channel for the period [tk, tk + ∆] is ⌊∆
T
⌋. The total number of check-blocks downloaded

via the cellular channel by all nodes in G(tk), including n, for the period [tk, tk +∆] is g(tk) · ⌊
∆
T
⌋.

Notice that this calculation holds since the server will not create duplicate check-blocks with high

probability by using Online Codes as presented in [73]. As a result, all new check-blocks downloaded

by other nodes in G(tk) are useful for n to decode the original file. The number of periods ∆ between

the current time TC and the file download deadline TD is σ = ⌊TD−TC

∆ ⌋. So, we have:

Bp =

σ
∑

i=0

g(TC + i ·∆)⌊
∆

T
⌋ (4.3)

Let M be the number of check-blocks carried by node n since the download starts until the

current time TC . Therefore, M + Bp is the number of check-blocks n can potentially obtain by

the file download deadline TD, using the unchanged cellular download timer T for the duration

[TC , TD]. To make the protocol adaptive, n updates the cellular download timer T as follows:

1. If M + Bp < F , then Bc = F − (M + Bp). The number of check-blocks that n needs to

download from the cellular channel for each period ∆ is ⌈Bc

σ
⌉. As a result, the new cellular

download timer is T = ⌊σ·∆
Bc

⌋. If T > ∆, then n sets T = ∆.

2. If M + Bp > F , then that means n can potentially download all needed check-blocks from

the P2P channel to decode the original file. However, n conservatively sets T = T + ⌊T2 ⌋ to

prepare for a sudden change of coalition pattern in the future. If T > ∆, then n sets T = ∆.

Given the new value of the cellular download timer T obtained by these above steps, the node n

uses the new T to download check-blocks via the cellular channel from the next ∆ onward.
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4.3.6 Exchanging data via P2P communication

Since the neighbor list may change over time, node n uses timestamp to avoid duplicate data

exchange with its neighbors as follows. Any time n receives a block from the content server or the

peer, if the block is new to n, n marks the block with n’s current time. Any time n wants to send

a block to n1 via the P2P channel, n sends the oldest block b that n has not sent to n1, based on

the timestamp of b marked by n. Upon sending b to n1, n records the timestamp of b as the oldest

time n sends a block to n1. As a result, n can use the timestamp to avoid duplicate data exchange.

4.3.7 Protocol summary and discussion

In summary, the COADA protocol divides time into equal-sized period ∆. A mobile node n

periodically (for each period ∆) samples the coalition size and adds it into the list of coalition sizes.

Then, n fits the list of coalition sizes to an exponential function in the form of g(t) = aeλt+b. Then,

n uses g(t) function to predict the future coalition sizes for the duration [TC , TD] and calculates

the number of check-blocks (i.e., Bp) n can potentially obtain from the P2P channel during this

duration [TC , TD]. Next, n calculates the number of check-blocks (i.e., Bc) n needs to download

from the cellular channel and tunes the cellular download timer T accordingly to meet the file

download deadline. When n gets closer to the PoI, the coalition size list represents the coalition

pattern of the network better. As a result, the prediction of coalition size function g(t) becomes

more accurate and thus the cellular download timer is estimated more accurately.

When n receives F check-blocks, n can decode the original file. Since by using Online Codes,

the server does not create duplicate check-blocks with high probability, all the check-blocks that

n receives from the P2P channel is useful to decode the file. Notice that since the fitting function

of the coalition size is an exponential function, which is more expressive than a linear function,

we believe our scheme works even better for other scenarios (with different street configurations

and node densities) where the coalition size distribution exhibits a linearly increasing function.

Finally, COADA is not limited to the combination of cellular and Wifi/Bluetooth communications.

We believe that COADA is applicable for other communication combinations such as cellular and

ZigBee.
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Figure 4.2: Simulation area to evaluate COADA

4.4 Evaluation

4.4.1 Settings

Parameter Description
Number of nodes [75,100,150,200]
Street seg. length (v1, v2) Pedestrian:100, Car:500 (m)
Destination (i.e., PoI) v100
Download deadline 1200 (s)
Start locations v6, v15, v24, v33, v42, v51
File length [5000,10000,15000,20000](block)
Block size 2KB
Cellular download rate 2 (Mbps) [74]
P2P transmission range Pedestrian:10, Car:75 (m)
Node speed Pedestrian:[1.0,2.0], Car:[8.0,10.0] (m/s)
∆ Pedestrian:50(s), Car: 40(s)

Table 4.2: Simulation settings for COADA’s evaluation

We write our own simulator in C++ to evaluate our protocol. Nodes in our simulation move in

a Manhattan street area with 100 intersections as shown in Figure 4.2, in which V100 represents

the destination of the node movement (i.e., the PoI). Table 4.2 shows the details of simulation

settings. For the cellular channel, we use 1xEV-DO (Evolution-Data Only) with a peak data rate

of 2.4Mbps and implement the Proportional Fair Scheduler of the cellular network as presented

in [74]. Initially, node n is placed at one of intersections v6, v15, v24, v33, v42, v51, at random. The

reason we start nodes at these intersections is to give them the similar distance from v100. Then,

n moves towards the destination v100. To avoid the wrong coalition size sampling, initially n has
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Figure 4.3: Variation of file size and its impact on % of file download from cellular network. Adaptive
protocol is COADA.

the initial coalition size 1 and after the first 100(s), n starts sampling the coalition size. n starts

to predict the coalition size function at 200(s). At each intersection, n selects the next intersection

towards v100 by following the probabilistic model of route selection presented in Section 3.6.

In our simulation, we have two different types of dynamic coalition P2P networks named Pedes-

trian and Car networks. The former is used to evaluate the performance of our protocol for the

pedestrian network with a smaller transmission range and a slower speed. This type of network

corresponds to the scenario where football fans are walking towards the football stadium to attend

a football match, where they download the video of match preview via the cellular channel and ex-

change data via the Bluetooth channel with transmission range = 10 (m). Meanwhile, nodes in Car

network have a longer transmission range and a faster speed, which corresponds to the scenarios

where shoppers drive towards the shopping malls and download videos of product preview via the

cellular channel and exchange downloaded data via the Wifi channel. For the Car network, we use

75 (m) for the transmission range since the transmission range in practice is much shorter than the

theoretical range (i.e., 250 m) due to the fading of the Wifi channel and the obstacles on streets.

The deadline of the file download is set to 1200 (s) since a node n is about to arrive at v100 with

this deadline, which is set based on the movement speed and the distance from the initial location

of n towards v100 in Table 4.2. Notice that different mobile nodes have different movement speeds.

However, they download the same file in our simulation. We run the experiments 10 times and plot

the average of the two metrics: (1) the percentage of downloaded blocks via the cellular link, and

(2) the peer-to-peer message overhead. These two metrics are chosen to evaluate the performance

of COADA since we want to reduce the expense from cellular download and save the node energy.
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4.4.2 Evaluation result

4.4.2.1 Comparison of COADA with Non-adaptive Protocol

We first describe the non-adaptive protocol and then compare the performance of COADA protocol

with the non-adaptive protocol.

Non-adaptive protocol: The non-adaptive protocol is described as follows. A mobile node

uses the cellular channel to download random message blocks from the content server and at the

same time uses the P2P channel to exchange downloaded message blocks. Here, no networking

coding is used to encode the file at the content server and no coalition pattern of the network

is considered. Notice that the non-adaptive protocol is the current state of the art protocol,

which is used to combine cellular and P2P channel to improve data download on the cell phones.

Previous works in combining ad hoc and cellular interfaces to improve content distribution fall

into this non-adaptive category, which does not take the exponential coalition size into account

[75, 8, 50, 76, 77, 51, 78, 79, 80].

Comparison result: Figures 4.3, 4.4, and 4.5 compare the performance of COADA with the

42



above non-adaptive protocol. In our simulation, using the COADA protocol, all nodes meet the file

download deadline. These figures show that the adaptive protocol outperforms the non-adaptive

protocol in both Pedestrian and Car networks. Particularly, COADA reduces the cellular download

from 20% to 25% compared to the non-adaptive scheme. In Figure 4.3, when the file size increases,

COADA works better for Car network since when the network is more dynamic, nodes may meet

more peers, create coalitions, and have a higher chance to obtain more missing check-blocks. Figure

4.4 shows that when the number of nodes in the network increases, both COADA and non-adaptive

protocol perform better since the nodes have more peers to exchange data. Again, COADA works

better for the Car network due to the increases of network dynamics. Figure 4.5 shows that com-

pared to the non-adaptive protocol, the use of timestamp in peer to peer data exchange significantly

saves the message overhead of COADA. Notice that the y-axis of this figure is in log-scale.

In conclusion, our COADA protocol reduces the cellular download and reduces message overhead

significantly.

4.4.2.2 Fitting Error

Figure 4.6 shows that when the nodes get closer from the destination, COADA can predict the

exponential coalition function g(t) more accurately. In this figure the average normalized error is

calculated as follows.

The analysis in this paragraph is for a mobile node n. Let Y denote the set of all predicted

coalition size functions g(t) of n for the entire simulation. Notice that for each ∆ period, we have

one predicted function g(t) for a mobile node n. For the ith ∆ period, let gi(t) be the exponential

coalition function predicted for the ith ∆ period. So, we have Y = {gi(t)}, which is the set of

all these g(t) functions obtained since the starting time of the download t0 until the file download

deadline TD. At the time of file download deadline TD, the obtained function g(t) should be the

most accurate coalition size function since in our simulation the node is very close to or stays at

PoI at the file download deadline. Let α be the last ∆ period before the file download deadline

TD. Let gα(t) be the predicted function obtained during the period α, we have gα(t) ∈ Y . For one

function gi(t) ∈ Y , we calculate the sum of absolute difference, Ei, between gi(t) and gα(t). Let

Emax denote the maximum value of Ei for all functions gi(t) ∈ Y , or Emax = argmaxi(Ei). Then,

we normalize Ei (i.e., Ei =
Ei

Emax
), hence 0 ≤ Ei ≤ 1 for all functions gi(t) ∈ Y . As a result, for

each node n we have a set of normalized sum errors of all functions gi(t) ∈ Y .
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The plot in Figure 4.6 is obtained by averaging the normalized sum errors Ei of all 1000 nodes

in the simulation (for Pedestrian network or Car network). In Figure 4.6, the average normalized

error decreases when time is closer to the file download deadline or node is closer to the PoI. That

means, the coalition size function is predicted more accurately when node is closer to the PoI since

the node obtains more “knowledge” about the coalition pattern of the network. In other words,

mobile nodes obtain a more accurate exponential coalition size function when they get closer to

the PoI.

4.5 Related Work

There have been previous projects, which combined cellular and peer-to-peer channels to improve

downloading bandwidth of mobile users [8, 78, 16, 50, 75, 51]. These approaches are not adaptive

to the network condition to reduce the download load on cellular channel, which is one of the most

critical issues in mobile networking today, since the deployment of cellular infrastructure is costly.

Our approach is novel since (1) we capture the change of coalition sizes from the sparse areas to

the dense areas of the network, and (2) we predict the P2P data availability on the fly so that we

can adapt the download plan efficiently to reduce the load on cellular infrastructure.

Network Coding becomes more and more popular in both wired and wireless P2P content dis-

tribution networks [73, 81, 82, 83]. Due to the random nature of check-blocks, network coding

simplifies the protocol design and improves the performance significantly under network dynam-

ics. In this chapter, we use Online Codes at the content server, which provides low redundant

check-blocks and simplifies the estimation of data availability in the P2P channel.

Previous studies in urban planing and traffic modeling have shown that human movement de-

pends on various socioeconomic factors such as weather [84], religious affiliation [85], and social
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characteristics [86]. Recent measurement studies in [31, 54] show that people do not always choose

the shortest distance route to the destinations. This motivates us to study the probabilistic model

of route selection and use it to model the coalition pattern of dynamic coalition P2P network in

Mobius modeling tool.

4.6 Conclusion

We exploit the transition of coalition size when the nodes move from the sparse areas to the dense

areas of the dynamic coalition P2P network to design an adaptive content distribution protocol

named COADA. Particularly, COADA blends cellular and P2P communications of the mobile

devices and leverages the exponential-coalition-size function to improve file content download. The

simulation results show that COADA considerably outperforms non-adaptive protocol and adapts

well to network dynamics.
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CHAPTER 5

ISHARE: INTRA-COALITION DATA SHARING PROTOCOL

5.1 Introduction

As presented in Chapter 3, the movement of mobile nodes in the dynamic coalition P2P network

exhibits the Schelling behavior. As shown in Figure 5.1 , while mobile nodes move towards the

same Point of Interest they form coalitions.

In this chapter, we present the iShare protocol that provides fairness in data sharing among

mobile nodes of the same coalition. For example, in Figure 5.1, nodes in the coalition C2 can use

iShare protocol to download data via the cellular interface and exchange downloaded data via the

P2P interface in an efficient and fair fashion. Similarly, nodes in the coalition C3 also can use

iShare protocol to expedite their data downloading process. iShare protocol was presented in our

previous paper [10].

The Chapter is organized as follows. We first present the system model in Section 5.2. We then

present the design of the iShare protocol in Section 5.3. In Section 5.4, we evaluate iShare protocol

and compare it with other alternative protocols by mean of simulation in Network Simulator 2.

Finally, we present the related work in Section 5.5 and conclude the paper in Section 5.6.

Figure 5.1: Dynamic Coalition P2P Network for one Point of Interest (Revisit)
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Figure 5.2: Nodes in the same coalition use iShare protocol for their downloads

5.2 System Model

We focus on a dynamic coalition P2P network, in which mobile nodes form coalition when they

are moving towards the PoI as shown in Figure 5.1. We consider the scenario where mobile users

download a file from the content server via the cellular interface of their cell phones. We assume

that the file is similar to the Bittorrent file, which has a unique file id and consists of multiple

equal-sized segments. Each segment also has a unique segment id to distinguish it from other

segments of the same file.

Figure 5.2 shows the scenario where co-located mobile users (or mobile nodes in the same coali-

tion) download the same file. We assume that each mobile node has two communication links:

cellular link and P2P link (e.g., Wifi). In Figure 5.2, users 1,2,3 download file 1 from server 1 via

their cellular links (likewise, users 4,5,6 download file 2 from server 2). Co-located nodes download

the same file and form a mesh structure, in which each mesh member may download different

segments of the file in parallel and exchange downloaded segments via P2P links. For example,

node n1 may download segment 3, node n2 may download segment 5, and they exchange segment

1. In this paper, the terms P2P link, ad hoc link, and Wifi connection are used interchangeably.

5.3 iShare: Intra-coalition Data Sharing Protocol

5.3.1 Overview of iShare

Figure 5.3 shows the protocol state machine of an iShare node n. When the user starts his file

download, his wireless device n stays in state 1 and n downloads the list of segment ids of the desired

file from the cellular link. Then, n moves to state 2 and downloads one random data segment from
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the cellular link again. After that, n stays in states 2,3,6 and continuously downloads its missing

segments via the cellular link, one random missing segment at a time. At the same time, n attends

an ad hoc mesh formed by nodes in the same coalition , advertises its available segments, requests

missing segments, and receives segments from nodes in the same coalition via the ad hoc link (states

3,4,5). For a fair collaboration with other nodes, n applies the “tit-for-tat” incentive mechanism

to send segments to neighbors via the unicast ad hoc link (state 7). Whenever a missing segment

is obtained by either link, n switches to state 3 and updates the system status. When the desired

file is obtained entirely, n switches to the completed state.

5.3.2 Bootstrapping iShare

This section focuses on states 1,2,3 in Figure 5.3. When a mobile user starts requesting a file, his

device (i.e., the iShare node n) is in the New state. n first obtains the metadata of the file such

as file id and the list of segment ids from the content server and downloads a random segment s

of the file via the cellular link. Receiving s, n stays in state 3, where n puts s into its memory

and updates its currently missing/available segments. The next question is whether n turns its ad

hoc interface on to find iShare neighbors since n needs to save energy. There are two solutions.

First, we can use a server from the infrastructure to track the location of nodes using GPS or Wifi

access points [87] and return the closest iShare neighbor n1 to n if n1 is downloading the same

content as n (by asking the file server). If n1 is inside n’s ad hoc range, they can collaborate via

the ad hoc connection. This method is feasible because mobile devices today are equipped GPS

devices and localization using Wifi access points can be applicable for indoor environment. For

the second approach, after n starts its download, n can periodically check the neighborhood for

iShare neighbors who are downloading the same content. This method is energy-consuming. In the
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future, mobile phones can use GPS IIF for an accurate localization both indoor and outdoor [88].

5.3.3 Ad hoc data exchange

After downloading the first segment from the cellular link, the iShare node n starts using both

cellular and P2P links. This section focuses on states 3,4,5 in Figure 5.3.

5.3.3.1 Content advertisement and request

For an iShare node n, the ad hoc channel is used to advertise its available segments and request its

missing segments. Particularly, n periodically broadcasts a HELLO message, which is in bit vector

format as shown in Figure 5.4. In this figure, the index of the bit, starting from 1 to 16, is the

segment id ; for example, the 12th index denotes the 12th segment. The HELLO message represents

the latest downloaded segments of n. Notice that the length of a HELLO message is the number

of segments of the file. The HELLO message can be used as both segment advertisement and

segment request, where 1 represents one downloaded segment and 0 represents a missing segment

in n’s memory. Thus, the HELLO message efficiently reduces ad hoc network contention.

5.3.3.2 Mesh structure and data exchange

When the node n keeps its ad hoc interface on, n attends an ad hoc mesh formed by nodes in n’s

coalition . The mesh has following characteristics. First, the mesh structure is formed automatically

since the co-located nodes in the same coalition are within the ad hoc communication range. This

incurs little construction/maintenance cost since nodes only need to keep the one-hop neighbor

list 1. Second, any two one-hop mesh neighbors can exchange data whenever they are within the

communication range. This one-hop communication adapts the network dynamics and fits the

tit-for-tat incentive mechanism very well (See Section 5.3.5).

1HELLO message is the overhead of data advertisement, not the mesh structure.
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Figure 5.5: Aggregated HELLO message format

5.3.4 Downloading data from cellular link

The iShare nodes exchange downloaded data via ad hoc connections. At the same time, they

continuously download segments from the cellular link. This section presents how iShare nodes

download segments from cellular link and focuses on states 2,3,6 in Figure 5.3.

To reduce the download from the cellular link, iShare nodes utilize HELLO messages to download

the best segments. In particular, node n decides to download its missing segment s if s is the least

available segment in n’s neighborhood. To do so, n aggregates all the latest HELLO messages

received from its one-hop neighbors to create an aggregated HELLO message as shown in Figure

5.5. In this figure, each square can be a byte instead of a bit like the HELLO message. Notice that

for each neighbor n1 of n, n only keeps the latest HELLO message received from n1 for the most

updated available segments of n1. In Figure 5.5, a square represents a segment s with the number

of available copies of s in n’s neighborhood. Node n downloads a missing segment whose number

of copies is least founded in the aggregated HELLO message. If there exist more than one missing

segments with equal number of available copies, n downloads one at random. For example, if n’s

sent HELLO message is in Figure 5.4 and n’s aggregated HELLO message is in Figure 5.5, then n

may download segment 3 from the cellular link since segment 3 is missing at n and n’s neighbors.

Whenever n finishes downloading a segment s, n is in the state 3 in Figure 5.3. Here, n inserts s

into its memory and continues downloading its missing segments from the cellular link.

The random segment selection presented above parallelizes the download among mesh members.

Particularly, mesh members concurrently download different segments and exchange these segments

via ad hoc connections as shown in Figure 5.2. The aggregated HELLO message thus minimizes

redundant downloads from the content server and reduces the load on the cellular link.

5.3.5 Tit-for-tat incentive mechanism

The mesh ad hoc structure efficiently parallelizes the download and reduces the load on the content

server. However, for an efficient iShare protocol, we need to design an incentive mechanism to

motivate the collaboration of nodes in the same coalition . Particularly, we focus on states 3 and

7 in Figure 5.3.
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5.3.5.1 Tit-for-tat period

For two iShare nodes n1 and n2, tit-for-tat means if n1 gives c segments (needed by n2) to n2 then

n2 will give c segments (needed by n1) to n1. Applying tit-for-tat, iShare nodes divide time into

equal-sized periods, called tit-for-tat period (TTP ). The TTP is then used as follows. Given two

one-hop mesh neighbors n1 and n2, n1 uses the current TTP to receive segments from n2 so that n1

can send n1’s segments back to n2 in the next TTP . Also, n1 sends segments to n2 in the current

TTP so that n2 can send segments to n1 in the next TTP . Notice that the length of a TTP is

longer than that of the HELLO message broadcast period since nodes need to update available

segments to perform tit-for-tat.

During a TTP , a node n counts the number of segments received from its neighbors. Given

two neighbors n1 and n2, during a TTP , if n2 sends 15 segments (needed by n1) to n1, then n1

has counter c2 = 15, corresponding to n2. At the end of the TTP , n1 is at the state 7, if n1

has more than 15 segments that n2 needs (known from n2’s HELLO message), n1 only sends 15

random segments to n2 via unicast ad hoc connection. If n1 has less than 15 segments needed by

n2, n1 sends them all to n2. Here, the unicast connection is used to obtain the fair collaboration

between neighbors and ensure a reliable ad hoc data exchange. In the next section, we present how

to bootstrap and adapt the tit-for-tat under network dynamics.

5.3.5.2 Applying tit-for-tat

The tit-for-tat mechanism presented above encourages nodes in the same coalition to collaborate.

However, it may not work effectively if the node neighborhood changes frequently , since a new

pair of one-hop neighbors needs to start tit-for-tat from scratch. Thus, we present two techniques

to bootstrap and adapt the tit-for-tat under network dynamics.

First, we turn on the promiscuous mode of the Wifi interface so that the iShare node n can

potentially overhear messages, which are destined to n’s neighbors in the same coalition by the

above unicast communication of the tit-for-tat. By doing so, n opportunistically receives more

data from the ad hoc channel. Of course, when the network is dense or congested, the overheard

messages might be dropped and n misses the chance. Second, during a TTP , n broadcasts in the

ad hoc channel a small number of its segments whose available copies are least in n’s neighborhood.

Using the promiscuous mode and broadcast mechanism, iShare nodes in the same coalition

improve the “tit” step of the tit-for-tat so that they exchange more segments in the “tat” step.
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These two techniques allow the new neighbors to exchange data effectively under network dynamics,

without restarting the tit-for-tat from scratch. These techniques also enable new nodes to join the

coalition smoothly since they are given several segments for free. However, to exchange data with

the old nodes effectively, new nodes need to download new segments via the cellular link. Otherwise,

they become “iShare selfish nodes” and their downloading times might be longer as shown in Figure

5.8(a).

5.3.6 Completed state

When n finishes downloading the entire file, n switches to the completed state. Here, there are two

options. If the iShare node n is rational, n leaves the mesh ad hoc network and stops all ad hoc

communications. If the iShare node n is collaborative, n may stay for a certain period to support

other downloading nodes.

5.4 Evaluation

5.4.1 Settings

We evaluate the performance of iShare where cellular nodes in the same coalition download a file

via cellular link and at the same time they exchange downloaded data via the Wifi interface. We use

Network Simulator 2 (NS2) to simulate cellular cells and mobile nodes with the settings in Table

5.1. Here, the segment size is 4KB since from our simulation we observe that smaller segment

incurs longer HELLO message while bigger segment causes more ad hoc collision. A node has

two interfaces: cellular link and IEEE 802.11b ad hoc link. We use RTS/CTS for unicast ad hoc

communication. For the cellular technology, we use 1xEV-DO (Evolution-Data Only) with a peak

data rate of 2.4Mbps. We implement the Proportional Fair Scheduler of the cellular network [74]

in NS2.

We evaluate two metrics: “average downloading time” and “average number of downloaded

segments”. The former is the average (AVG) period for an iShare node to finish downloading a

file. The latter is the average number of segments a non-iShare node (or background node) can

download via only the cellular unicast link for a given period. In our context, the background node

is the node which downloads the content from the cellular link but it does not use iShare protocol.
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Field Value/Unit
Segment size 4KB
File size [1000...6000] segments
Node ad hoc transmission range 125(m)
Base station radius 750(m)
Mobility model Random Way Point
Node speed (Mobility-NS2) [1,3,5,7,11] (m/s)
Pause time (Mobility-NS2) 5 (seconds)

Table 5.1: Simulation settings for iShare’s evaluation

In this section, we use the terms “coalition” and “group” interchangeably. Also, we use “iShare

node” to denote the mobile nodes, which participate in a coalition and use iShare to download file

content.

In our plots, broadcast channel means the base station broadcasts the file to all downloading

nodes with a fixed rate of 208.4 Kbps and the broadcast channel takes 25% of cell bandwidth.

Cellular unicast channel means downloading nodes only use cellular unicast link (without ad hoc

link) to download. In our simulation, we set the HELLO broadcast period 2 seconds and TTP 7

seconds. The number of broadcast (tit) segments is 1% of the file size. The default configurations

of our plots are: one coalition with 15 iShare nodes, node speed is 5 (m/s), 30 background nodes,

file size is 3000 4KB-segments. Node transmission range is 125 (m) since in reality the transmission

range of Wifi interface is much less than its theoretical range (e.g., 250 m). We run each simulation

10 times and plot the mean. More detail of the experiment results can be found in our technical

report [89].

5.4.2 Single downloading coalition

Here, the base station is at O and nodes are generated at random in the square S as shown in

Figure 5.6(a).

5.4.2.1 Impact of file size and network dynamics

Figure 5.6(b) shows that the average downloading time linearly increases when the file size increases.

iShare outperforms both broadcast and unicast channels since ad hoc connection accelerates the

downloads of iShare nodes. Figure 5.6(c) shows when node speed varies, iShare remains quite

stable (even slightly better for more dynamic networks as nodes can exchange more data with

more neighbors) and always better than broadcast channel. This confirms the robustness of the
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mesh structure created by iShare to network dynamics.

5.4.2.2 Performance of iShare selfish nodes

In this simulation, we have 15 iShare nodes and we vary the number of iShare selfish nodes from

1 to 15. In our context, iShare selfish nodes download data via unicast cellular links and at the

same time only overhears (due to tit-for-tat) data from Wifi channel without sharing their data.

Figure 5.8(a) shows that when more iShare selfish nodes exist, their downloading time increases

noticeably. Meanwhile, the downloading time of iShare nodes only increases slightly due to the

higher load on the cell tower resulting from higher number of selfish nodes in the cellular cell. In

other words, iShare selfish nodes suffer from their own existences or iShare limits the selfishness.

5.4.2.3 Tree-based protocol vs. iShare

We compare the performance of iShare and a tree-based protocol of cooperative downloading nodes

[8], which is implemented as follows. Downloading nodes elect the proxies whose distances to the

base station are shortest (implying the best cellular channel downloading rate). These proxies

download segments from the base station and broadcast the segments to tree members, which
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Figure 5.8: Performance of selfish nodes, comparison of iShare and tree-based protocols, and performance
of a spanning coalition

replay the segments through the tree of ad hoc nodes. We make sure the tree is always connected.

Here, iShare and the tree-based protocol both use the same simulation settings. Figure 5.8(b) shows

that iShare protocol consistently outperforms the tree-based protocol. In this figure, k denotes

number of concurrent proxies of the tree. When k = 1, the tree-based protocol performs much

worse than cellular broadcast channel. When k increases, the tree of k roots performs noticeably

better, although always worse than iShare.

5.4.2.4 Spanning Coalition

Here, we first create a group (or coalition) g1 of 10 iShare nodes within the square S1 in Figure

5.7. Then, we create a group g2 of 20 iShare nodes within two squares S1 and S2 spanning two

adjacent cells. We call g2 a spanning group, which has a significant number of low-downloading-

rate nodes (nodes are close and at the edge the cell). Nodes in g1 and g2 download segments from

their current base stations and exchange segments via the ad hoc channel. Here, node speed is 7

m/s and each cell has 30 background users. Figure 5.8(c) shows that g2 consistently outperforms
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g1 and broadcast channel. This result has several implications. First, iShare provides an efficient

method to reduce downloading time, especially for low-data-rate nodes at the boundary of the cell.

Second, iShare nodes can continuously obtain data via the ad hoc channel during their cellular

handoff periods. Finally, iShare offers the multi-homing download for a spanning group, where

group members download content from different/adjacent base stations and exchange segments via

ad hoc connections to improve downloading throughput.

5.4.3 Multiple downloading coalitions

We use the settings in Table 5.1 and Figure 5.6(a). We have 3 groups (or coalitions) within S, each

group has 10 nodes and downloads a different file. Thus, there is no ad hoc inter-group communi-

cation. We assume cell bandwidth for the broadcast channel is 25%, 15%, 12.5% corresponding to

1, 2, 3 simultaneous groups; or 25%, 30%, 37.5% aggregated bandwidth for the broadcast channel.

Here, the file size is 3000 segments, node speed is 5 (m/s), number of background users is 30.

Figure 5.9 shows that the downloading time of iShare nodes increases when more groups exists

since iShare nodes suffer from a higher contention in the ad hoc channel. Moreover, due to the

promiscuous mode, iShare nodes receive redundant messages from nodes in other groups, which

may collide with the desired overheard messages from nodes in the same group. As a result, the

performance of tit-for-tat degrades. However, iShare performs consistently better than broadcast

channel. Figure 5.9 also shows background nodes download more data (the right y-axis) from cel-

lular link if mobile nodes use iShare protocol (i.e., bg w/ iShare). This result suggests the use of

multiple channels for multiple ad hoc groups in the same cellular cell.
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5.5 Related Work

There have been previous works on the combination of cellular and ad hoc networks to improve

downloading bandwidth of mobile users [76, 77, 16, 79, 8, 80, 90, 91, 78]. These approaches put

new functionalities on the cellular telephony infrastructure such as a new scheduler, membership

management, credit verification; and thus require a high cost of deployment. In particular, these

approaches select the high-data-rate nodes such as proxies or super nodes to connect to the base

station. They next construct and maintain trees rooted at proxies. Then, the packets are sent from

the base station to the proxies and forwarded to the receivers, assuming that nodes are collaborative.

Under network dynamics, maintaining these trees incurs high overhead. If the proxies leave the cell,

the trees need to be reorganized. In contrast, iShare requires no changes in the cellular telephony

infrastructure since network functionalities are performed by ad hoc nodes.

Another possibility to provide content to simultaneous users is using the cellular broadcast/multicast

channel [92, 93, 94, 95, 96]. However, multicast/broadcast services [93, 94] are to support content

to a large number of users simultaneously; thus, the number of multicast/broadcast channels is usu-

ally limited [94]. Meanwhile, in reality, people can instantly form small-scaled groups to exchange

content; broadcast/multicast services thus become inefficient. Moreover, multicast/broadcast ser-

vices have no feedback channel, the data is delivered with no guarantee. There also exists work

combining cellular unicast with ad hoc links to improve the downloading bandwidth of multicast

users by creating a tree rooted at a proxy to relay packets [97]. However, this approach suffers a

high cost of tree maintenance under network dynamics.

Previous studies on wireless networks presented numerous incentives mechanisms to motivate

the collaboration of mobile users such as market sharing, credit accounting, and rewarding [98, 99,

100, 101, 102]. However, these mechanisms add significant complexity to the system and applying

them requires changes in the business policy of service providers. Moreover, due to the scarcity of

battery, there is no immediate incentive for a user to turn on his ad hoc channel just for forwarding

others’ data. Our tit-for-tat mechanism is simple yet practical because they reflect the rationale of

human beings: co-located mobile users are willing to collaborate if they share the mutual content

interest.
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5.6 Conclusion

We have developed an efficient sharing protocol (iShare) that combines different wireless interfaces

on mobile nodes in the same coalition to improve content dissemination services. The results

from simulation in NS2 show that iShare significantly outperforms alternative schemes based on

cellular broadcast channels, cellular unicast channels, or tree-based protocols. Furthermore, the

results confirmed that “tit-for-tat” mechanism succeeds in countering selfishness user behavior,

adapting very well to network dynamics, and improving performance of nodes in the same coalition.

Finally, the obtained results showed the multi-homing download feature for coalitions spanning over

adjacent cellular cells.
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CHAPTER 6

DENTA: DENSITY-AWARE DATA DISSEMINATION

PROTOCOL

6.1 Introduction

As presented in Chapter 3, the movement of mobile nodes in the dynamic coalition P2P network

exhibits the Schelling behavior. As shown in Figure 6.1 , while mobile nodes move towards the

same Point of Interest they form coalitions. At the closer distance from the PoI, there are more

nodes moving towards the PoI and thus the coalition size increases. Meanwhile, at the further

distance from the PoI there are less mobile nodes moving towards the PoI and thus the coalition

size decreases.

In other words, there exists a transition in network density, in which at the surrounding area

of the PoI, the node density increases significantly while at the further distance, the node density

decreases gradually. In this chapter, we exploit this transition of network density to improve data

dissemination. Particularly, we present a protocol named DENTA, which stands for DENsity-

aware daTa disseminAtion protocol, to disseminate data messages from the Wifi Access Points at

the Point of Interest to the coming mobile nodes. DENTA differs from COADA and iShare since

we focus on the combination of Wifi infrastucture-based connectivity and Wifi ad hoc connectivity,

rather than the combination of cellular connectivity and ad hoc connectivity. DENTA protocol

Figure 6.1: Dynamic Coalition P2P Network for one Point of Interest (Revisit)
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was presented in our previous paper [11].

The Chapter is organized as follows. In Section 6.2, we present the system model. Then, we

present the design of DENTA in Section 6.3. In Section 6.4 we evaluate the performance of DENTA.

Finally, we present the related work in Section 6.5 and conclude the Chapter in Section 6.6.

6.2 System Model

6.2.1 Network model

We focus on a dynamic coalition P2P network where each Point of Interest (PoI) has a wireless base

station and a server to serve requests from the mobile nodes, which are moving towards the PoI.

The base station periodically broadcasts messages from the server to the surrounding area of the

PoI. For example, the wireless base station at the shops can broadcast product reviews to coming

customers. Also, the wireless base station at the outdoor concert can broadcast concert schedule

to coming audiences. We assume that all wireless devices communicate via a common channel

using IEEE 802.11 or Bluetooth. All mobile nodes have the same transmission range and distance

between the two nodes within the transmission range can be estimated by various techniques [103]

or using GPS. Each mobile node n can communicate with the server via the base station in

the infrastructure mode and with other nodes in the same coalition via the ad hoc (or peer to

peer) mode. In other words, mobile nodes moving towards the shop can exchange the product

reviews via the ad hoc connectivity. Similarly, mobile nodes moving towards the outdoor concert

can exchange the concert information via the ad hoc connectivity. Each PoI is characterized by

its content interest. For example, the shop has the product information while the concert has the

music/song information. At one time, we assume that a mobile node n moves towards only one

PoI and has one content interest. although n may change its content interest and start moving

towards the PoI of that interest at any time. The mobile node n has a limited amount of cache

(memory) to store messages.

6.2.2 Data model

In this chapter, we consider messages including text, images, short video clips created by the PoIs.

For example, messages can be advertisements and discount in commercial applications, or lecture

announcements in the campus life scenario. The broadcast frequency of messages depends on their
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popularity, which is determined by the PoIs. For example, for a hot sale with big discount, the shop

will advertise/broadcast more frequently than other sales. Without loss of generality, we assume

the popularity of messages follows a Zipf like distribution:

f(r; θ;N) =
1
rθ

∑N
i=1

1
iθ

(6.1)

In Equation 6.1, N is the total number of messages created by one PoI and r is the rank of a

message. When θ is equal to one, the Zipf like distribution becomes the classic Zipf distribution.

We also assume the query/request of nodes follows the above Zipf like distribution since in reality

people usually request information from more popular items [104].

6.3 DENTA: Density-aware Data Dissemination Protocol

Name Description
n Mobile node

d(n1, n2) Distance between mobile node n1 and mobile node n2

m Data message
q Query for data message
Tm Broadcast timer of message m
TX Wireless transmission range of node n
β Time-To-Live (TTL) value of message m
Γ Message Reachability Zone
Bp Estimated # of check-blocks n may obtain from P2P channel during period [TC , TD]
Bc Estimated # of check-blocks n downloads from server during period [TC , TD]

Table 6.1: Notations used for design of DENTA
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6.3.1 Design objectives and overview of DENTA

Our design objective is to design a data dissemination protocol that (i) allows a PoI to efficiently

spread its advertisements, sales, and other information to as many coming nodes of its interest

as possible, and (ii) allows coming nodes to query for their interested information as soon as they

comes closer to the PoI. In particular, the data dissemination scheme should maximize data access of

nodes following Schelling behavior, especially for ones in close proximity of the PoI. This is intuitive

because when the mobile users arrive closer to a PoI, they expect to have a more timely access

to the data of their targeted PoI. Moreover, the scheme should reduce redundant transmissions to

save node energy, avoid broadcast storms, and minimize transmission collisions. Notice that Table

6.1 shows the notations used for DENTA protocol.

Figure 6.2 shows the overview of our network in which a square represents a PoI and circles

represent mobile nodes. The dotted circles denote wireless broadcast (transmission) ranges. In

our network, a mobile node moves toward its targeted PoI (e.g. nodes n7 and n8) and after it

arrives at its targeted PoI, it stays (nodes n3, n4, n6), and then leaves (nodes n9, n10). To cover the

high density of nodes surrounding a PoI, we use a push model where the PoI creates a Message

Reachability Zone Γ by assigning each message m a Time-To-Live (β) value. This β specifies how

many forwarding actions nodes in Message Reachability Zone perform on m. On receiving m, a

node n computes a broadcast timer for m. Later, when m’s timer expires and n did not hear any

nodes broadcasting m, n re-broadcasts m. The timer is used to avoid broadcast storms and it is re-

estimated whenever n overhears m being sent by other nodes. Outside Γ, due to the sparse network,

mobile nodes follow a pull model by sending queries to their neighbors in the same coalition to save

network bandwidth and energy. In the following sections, we present in detail design of DENTA.
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6.3.2 Message reachability zone Γ

According to the first property of Schelling behavior in Section 3.2, density of similar nodes in the

proximity of a PoI increases significantly. Thus, we use a push model to disseminate messages to

this dense area. Particularly, the Wifi base station at the PoI periodically broadcasts messages and

assigns a β value for each message m. Receiving m, nodes in proximity of the PoI cooperatively

rebroadcast m to create a Message Reachability Zone. To be precise, “a Message Reachability

Zone (Γ) of a PoI is an area covered by broadcasts of mobile nodes arriving and staying at the

PoI.” According to this definition, the size of a Γ is not fixed. Instead, it depends on β values of

the messages, transmission ranges and speeds of relaying nodes (including Arriving and Staying

nodes in Section 6.3.3). Particularly, if m has a larger β or relaying nodes have larger transmission

ranges, the size of Γ is bigger. In contrast, if the relaying nodes have higher speed, the size of the

Γ is smaller. Notice that n only rebroadcasts m if m’s β is positive and anytime m is broadcast or

overheard, its β decreases by 1. Figure 6.3 shows a Γ with the solid curve boundary.

The above push model expedites messages for nodes inside the Γ. In the next section, we present

how mobile nodes in the entire network cooperatively disseminate messages.

6.3.3 Mobile node states

Figure 6.4 shows a state machine where each circle is a state of a mobile node n in our network. In

following sections, we discuss characteristics, the transitions, and corresponding protocols of mobile

nodes at each state.

6.3.3.1 New node

A mobile node n is in the New state if n is outside the Γ of its targeted PoI. For example, in Figure

6.3, nodes n7, n8 are in New state since they are outside the Γ. A node n can detect the existence

of the Γ by overhearing messages broadcast by nodes at the boundary of the Γ.

The main communication mode of New nodes is ad hoc because they can not directly reach
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base stations. Whenever a New node n has a query q, n follows a pull model by broadcasting q

to its neighbors in the same coalition and waiting for the answer from them. If n participates in

a big coalition, q may be relayed by nodes in this coalition to nodes inside the Γ. Thus, q can

be answered by nodes inside the Γ or the PoI (see Section 6.3.4). The pull model is used because

according to Schelling behavior, outside the proximity of the PoI, the density of similar nodes is

very low. The pull model thus can save node energy, network bandwidth, and reduce interference.

A New node n has two transitions: 1 and 2. The former occurs when n switches to a new interest

and starts moving towards the new PoI. The latter occurs when n enters the Γ of its current PoI

and changes state to Arriving.

6.3.3.2 Arriving node

At Arriving state, a mobile node is inside the Γ. For instance, node n1 in Figure 6.3 is an Arriving

node. The role of Arriving nodes is to rebroadcast and relay messages to create the Γ. All Arriving

nodes receive a rich set of information via broadcasts of similar neighborhoods. To help New nodes

detect the boundary of Γ, in its broadcast messages, the Arriving node n adds a flag to mark its

Arriving state. Using this flag, New nodes can distinguish the broadcast messages from other

query/response messages and thus can detect the boundary of Γ.

Communication among Arriving nodes is ad hoc. Whenever an Arriving node n has a query q,

n broadcasts q to its similar one-hop neighbors, which in turn can relay q to the PoI. Eventually,

PoI will answer q if no nodes inside Γ can answer. This means all queries of Arriving nodes have

a very high chance to be answered. From Arriving state, n can switch to New or Staying state

(transitions 3 and 4 in Figure 6.4). Switching to New state means the mobile node changes interest

while switching to Staying state means the mobile node enters the transmission range of the base

station of its targeted PoI.

6.3.3.3 Staying node

At Staying state, a node n is inside the transmission range of the PoI’s base station, its queries will

be answered instantly by its local cache or the PoI. For example, node n3 in Figure 6.3 is a Staying

node. A Staying node has two communication modes: infrastructure and ad hoc. The former is

used to communicate with the PoI and other Staying nodes while the latter is for communication

with Arriving nodes. Staying nodes can relay queries of Arriving or New nodes to the PoI and
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responses/answers from the PoI back to these nodes. Staying nodes also take part in creating Γ by

rebroadcasting messages. Similar to Arriving nodes, Staying nodes learn a rich set of information

from the base station via periodic broadcasts. In Figure 6.4, a Staying node can switch to Leaving

state by transition 6. This occurs when a node changes interest or leaves the network.

6.3.3.4 Leaving node

When a Staying node switches interest or leaves the network (e.g. node n9 in Figure 6.3), its

state becomes Leaving. In the first case, a Leaving node of one interest becomes a New node of

another interest. If n switches from the Staying state to the Leaving state, it resets all β values

of messages in its cache. At the same time, it stops relaying queries/responses for nodes of its old

interest. However, a Leaving node n can answer queries (via ad hoc mode) for coming nodes of its

old interest.

6.3.4 Limiting query scope and cache management

When a mobile node n1 has a query q for a message m, n1 broadcasts q to its one hop neighbors.

Whenever a node n2 receives q, if n1 and n2 are in different coalitions, n2 will not forward q. Thus,

the query flooding is limited within the coalition of n1. To avoid query broadcast storms, node n2

only forwards the query q from n1 once if n2 and n1 are in the same coalition.

Due to its limited cache size, when a node n receives message m, n keeps most popular messages

in its cache and discards the overflowed messages.

6.3.5 Improving data accessibility

To improve the efficiency DENTA, we use two following techniques: broadcast storm avoidance

and context-switching.

6.3.5.1 Broadcast storm avoidance

When receiving a message m, the mobile node n assigns m a broadcast timer Tm. n re-estimates

Tm whenever n overhears m from nodes in the same coalition.

Broadcast Timer Estimation: When an Arriving or Staying node n receives a message m
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n1 n2 n3

Figure 6.5: n1 is broadcaster, n2, n3 are receivers. Most distant node, n3, will be next broadcaster

from a node s, Tm is estimated by n as follows:

Tm =
TX

d(s, n)
(6.2)

In Equation 6.2, TX is n’s transmission range. The distance d(s, n) between s and n can be

estimated by various techniques [103] or using the GPS.

In Equation 6.2, if n1 is the sender of m and n2, n3 are receivers, and if d(n1, n2) < d(n1, n3),

n3 will assign a shorter broadcast timer to m. Then, n3 will broadcast m prior to n2, resulting in

a larger region covered by m in the network. Figure 6.5 shows an example where n1 is the original

broadcaster of m. n3 will be the next broadcaster because it is farther from n1 than n2.

Overhearing Mechanism: Besides broadcast timer, we use the overhearing mechanism to

avoid broadcast storms, reduce transmission collisions and interference. In particular, whenever a

node n3 overhears or receives a messagem, n3 re-estimates Tm and decreases the value ofm’s β by 1.

Notice that m has a β value as presented in Section 6.3.2. By re-estimating Tm, n3 can minimize

redundant broadcasts, save node energy, and reduce transmission collisions. By decreasing the

value of β, node n can delete m after a certain period of save memory for other messages.

6.3.5.2 Context-switching

Essentially, when leaving the old PoI, a node n can be a New node of another interest or n leaves

the network. At the moment, n has a rich set of information about its old PoI, which can be used

to improve query hit for coming nodes to n’s old PoI. Let us consider the first case, n switches

from its old interest PoI1 to its new interest PoI2. When n gets closer to PoI2, n learns more

about PoI2 through its queries. Thus, n’s cache content changes gradually, with more and more

messages of PoI2 replacing messages of PoI1. This is where the context-switching occurs. In our

scheme, when n switches interest to PoI2, although n stops broadcasting messages of PoI1 in its

cache, n still answers queries from coming nodes to PoI1 whenever its cache has the answers. The
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context-switching therefore depends on n’s query for PoI2 and n’s cache replacement policy. The

longer n keeps data of PoI1, the better n can support coming nodes to PoI1. For instance, in

Figure 6.3, PoI1 is the square, when n9 is leaving PoI1 for PoI2, it meets n7. If n7 has a query q

for a message m of PoI1 and n9 receives q, n9 can answer if m still exists in n9’s cache. Likewise,

n9 may learn about its new interest PoI2 from nodes leaving PoI2 before n9 enters the Γ of PoI2.

Notice that in context-switching, leaving nodes and coming nodes are considered to share partially

mutual interest. Similarly, if nodes leave the network, they also can help coming nodes to improve

data accessibility.

6.4 Evaluation

We implement a Java-based simulation in middleware layer to evaluate the performance of DENTA.

In this section, we first describe simulation settings and how we simulate the Schelling behavior.

Then, we rely on the Schelling behavior to evaluate our data dissemination scheme.

6.4.1 Simulating Schelling behavior

Table 6.2 presents the settings we use to simulate Schelling behavior. We implement a mobility

model operating on a Manhattan grid model where PoIs are at the intersections of streets. A mobile

node n in our simulation works as follows. Initially, n obtains a position, a speed, and a PoI, all

at random. Then, n starts moving along with streets and towards its PoI. During its movement, n

also can switch interest with probability p (in our simulation p=0.05 means 50 nodes out of 1000

nodes change interests per second). When arriving at its PoI, n stays for a random period from 10

to 50 seconds (notice that if this period is longer, nodes cluster more at PoI and our scheme works

better). After staying at the PoI, n changes interest to a new PoI, and repeats the entire process.

In this chapter, we study the steady state of our simulation. We expect that if we use settings in

Table 6.2, at steady state, the simulation results in Schelling behavior. To obtain the steady state

in our simulation, we let the entire simulation runs for 3000 steps. After that, the simulation is

considered in the steady state.

Figure 6.6 shows node distribution in steady state. Each shape in this figure denotes one interest,

a big shape represents a PoI and a small shape is one mobile node. When a node changes to a

new interest, its shape changes accordingly. Figure 6.7 shows node distribution of one particular
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Field Value/Unit
Number of nodes 1000
Number of PoIs 6
Node speed random [1.0,2.0](m/s)
Area of simulation 1000x1000(m2)
Node and PoI tran. range (TX) [50,75,100](m)
Staying period at a PoI random [10,..,50](s)
Probability of changing interest (p) random [0.01,0.08]

Table 6.2: Network settings for DENTA’s evaluation
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Figure 6.6: Schelling behavior exists in steady state. Big shapes are PoIs and small shapes are mobile
users

interest. These two figures confirm that at steady state the Schelling behavior exists because (1)

closer to a PoI, the density of nodes interested in this PoI increases and (2) similar nodes can group

into clusters1 due to their close proximities on the ways towards their mutual targeted PoIs. Figure

6.7 also shows that density of similar nodes gets maximized at the PoI and decreases gradually at

farther distance.

Figure 6.8 shows that when a node n is closer to its PoI, its group size (or coalition size) increases.

This confirms the first property of Schelling behavior. At farther distances, group size varies from 5

to 20. This confirms that mobile nodes can group into small clusters on the ways to their targeted

PoIs; thus, the second property of Schelling behavior holds. Given the Schelling behavior, we

simulate our data dissemination scheme with the settings in Table 6.3. Then, we use the metrics

defined in Table 6.4 to evaluate our presented data dissemination scheme.

1In this section, we use “group”, “cluster”, and “coalition” interchangeably.
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Figure 6.7: Schelling behavior for one interest
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Figure 6.8: Distance to the PoI and group size. Each plus sign (+) represents a mobile node
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(b) For nodes outside the Γ
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Figure 6.9: Message Reachability Zone and Context-switching improve “Total Hit” significantly

Field Value/Unit
Number of messages created by a PoI 500
Number of messages in one broadcast of PoI 50,75,100
Node memory size M (all nodes are equal) 50,75,100
β 1,2,3,4
θ [0.6,..,1.0]

Table 6.3: Data settings for DENTA’s evaluation

6.4.2 Evaluation of data dissemination

In our simulation, we vary θ (see Equation 6.1), node transmission range TX, node memory size M ,

number of messages in one broadcast of a PoI, β, and p to evaluate our proposed data dissemination

scheme. Notice that we only consider messages created by the PoIs.

6.4.2.1 Γ and Context-switching

In Figure 6.9, the Message Reachability Zone (Γ) and context-switching improve the “Total Hit”.

Particularly, Figure 6.9(a) shows that nodes inside the Γ have a better “Local Hit” than that in

Figure 6.9(b) because they are more informed by the similar neighborhoods. Meanwhile, “Local
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Name Description/Unit(%)
Local Hit (L1) Query answered by local memory
Similar Nodes Hit (S1) Query answered by similar nodes in the neigh-

borhoods
Leaving Nodes Hit (L2) Query answered by leaving nodes during their

context-switchings
Server Hit (S2) is contributed by (i) “Staying” nodes, who di-

rectly access the PoI and (ii) “Arriving” and
“New” nodes through multi-hop relays

Total Hit L1 + S1 + L2 + S2

Query Miss 100 - Query Hit

Table 6.4: Definitions of metrics for DENTA’s evaluation

Hit + Similar Nodes Hit + Leaving Nodes Hit” of nodes outside the Γ is slightly less than that

of nodes inside the Γ. This is because inside the Γ, nodes have similar cache content as they

tend to store most popular messages. Thus, when a node fails to answer a request, it is likely its

neighboring nodes will fail. In contrast, nodes outside the Γ have more diverse cache content; thus

leaving nodes can contribute more to the query hit of coming nodes. In Figure 6.9(a), the two

curves “Local Hit + Similar Nodes Hit + Leaving Nodes Hit” and “Local Hit + Similar Nodes

Hit” look similar. This implies the context-switching is not very effective for nodes inside the Γ

because they can obtain information from their neighbors or the PoIs.

Figures 6.9(a) and 6.9(b) show the “Total Hit” of nodes inside the Γ increases up to 100% while

that of nodes outside the Γ is 64%. This is because nodes inside the Γ can get answers from

the dense neighborhoods and the PoIs. Meanwhile, communication of nodes outside the Γ is ad

hoc in sparse areas. This also explains when TX increases, the “Total Hit” of nodes inside the

Γ varies slightly. Similarly, due to the sparse network, when TX increases the “Total Hit” of

nodes outside the Γ doesn’t change significantly. However, for the average query hit of the entire

network in Figure 6.9(c), the “Total Hit” increases about 15% (to ∼ 87%). This is because when

TX increases, the Γ becomes larger and thus more nodes are inside the Γ, which improves average

query hit ratio. In conclusion, for nodes inside the Γ, our scheme is robust with respect to TX.

The context-switching concept contributes more for nodes outside the Γ and for smaller TX.

6.4.2.2 Impact of Distance and Changing Interest

Figure 6.10(a) (with TX=75,M=75,β=2) shows that at further distance to PoIs, query miss in-

creases. This is expected because when a node n comes closer to its PoI, n observes higher data
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Figure 6.10: Sensitivity of DENTA’s performance

availability provided by similar nodes in its neighborhood. Thus, n should have higher query hit

ratio.

Figure 6.10(b) (with TX=75,M=75,θ = 0.8,β=2) shows when the probability of changing in-

terest increases, query hit ratio of nodes inside the Γ is stable due to the rich set of information

within the Γ. Meanwhile, the query hit ratio of nodes outside the Γ decreases gradually due to the

sparse network density. This confirms the robustness of our scheme to p for nodes inside the Γ.

6.4.2.3 Impact of θ and Node Memory Size

Figure 6.10(c) shows that inside the Γ, increasing node memory size (M) does not improve the

query hit much due to the high availability of data within this area. In contrast, outside the Γ,

increasing M improves query hit considerably, from 5% to 10%. Figure 6.10(c) also presents impact

of θ on data accessibility. In particular, when θ increases to 1, the broadcasts of PoIs and queries

of nodes follow a “more” Zipf distribution (Equation 6.1). Thus, they have a better “match” and

provide a higher query hit ratio. Again, impact of θ on nodes inside the Γ is less significant than

that on nodes outside the Γ because nodes inside the Γ are well informed by their neighborhoods.
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Figure 6.11: Comparison of Query Hit Delay between DENTA and Query-postponed scheme.

Meanwhile, nodes outside the Γ communicate in ad hoc mode with limited memories. This result

together with results in Sections 6.4.2.1 and 6.4.2.2 confirms that inside the Γ, our presented scheme

is robust to TX, θ, p and M .

6.4.2.4 Query Hit Delay and Context-switching

To further evaluate context-switching concept and automatic grouping of mobile nodes, we define

the “Query Hit Delay” metric of our scheme for a node n as follows:

QueryHitDelay(n) = t2 − t1 (6.3)

In Equation 6.3, t1 is the time at which n switches to a new interest (and thus n starts moving

towards the corresponding PoI). t2 is the time when n’s first query for the new interest gets a

hit. Figure 6.11 (with TX=75,M=75,θ = 0.8,β=2) compares our scheme with a query-postponed

scheme where node n holds queries since n switches to a new interest until n arrives at the new

PoI. At the PoI, n obtains 100% of query hit. In our simulation, “Query Hit Delay” metric of

query-postponed scheme can be estimated using distance from n’s current position to its new PoI,

and the speed of n. Figure 6.11 shows that our scheme obtains shorter delay (less than 170 (s))

for about 78% of nodes. Meanwhile, the query-postponed scheme has a sudden change at 170 (s)

since many nodes arrive at their new PoIs after 170 (s). Particularly, in 170(s) a node can travel

from 170(m) to 340(m) and it gets into transmission range of the new PoIs because a few PoI pairs

in our simulation are 400(m) and one pair is 300(m) apart. This concludes that our dissemination

scheme obtains better access time for all nodes, regardless their distances to their targeted PoIs.
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Figure 6.12: β sensitivity and number of nodes inside the Message Reachability Zone

6.4.2.5 β sensitivity and Message Overhead

In Figure 6.12, when β increases, the “Total Hit” of nodes inside the Γ is stable. In contrast,

“Total Hit” of nodes outside the Γ decreases because when β increases, the radius of the Γ also

increases (i.e. radius of Γ∼TX · (β+1) ). Meanwhile, the node density is independent of the Γ and

decreases at further distance to the PoI. Thus, for a large Γ, the node density at its edge is much

lower than that of a small Γ, resulting in lower query hit of nodes outside this large Γ. However,

for the entire network, the average (AV G) query hit is stable (∼82%) because larger β provides

more nodes inside the Γ (∼52% of nodes when β = 4). These nodes have better data accessibility

to their targeted PoIs. This makes the AV G query hit for the entire network stable.

To further evaluate our scheme (TX=75,M=75,θ=0.8), we compare it with two other schemes:

PureF looding and LimitedF looding. These two schemes also rely on Schelling behavior of the

network but they have different data dissemination strategies. PureF looding simply floods mes-

sages to the network. Queries are answered by node n itself and nodes within n’s transmission

range. LimitedF looding uses β to limit flooding. However, it does not have broadcast timers

and context-switching concepts. Similar to PureF looding, queries are answered by node n and

nodes within n’s transmission range. All other simulation settings of three schemes are exactly the

same. Figure 6.13 presents the average (AV G) query hit ratio over the entire networks and average

number of messages broadcast (overhead) by one node during the simulation. Particularly, our

schemes improves the query hit ratio more than 20% because mobile nodes collaboratively relay

and answer queries. Our scheme also outperforms PureF looding and LimitedF looding in terms

of average message overhead. In particular, when β increases up to 4, each mobile nodes in our

scheme sends less than 200 messages while the overhead of LimitedF looding and PureF looding
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Figure 6.13: DENTA improves significantly average query hit ratio while minimizing message overhead

are about 600 and 10000, respectively. In conclusion, our proposed scheme improves significantly

average query hit ratio while minimizing message overhead.

6.5 Related Work

There have been numerous studies on data dissemination in mobile P2P networks [1, 2, 4, 105,

5, 3, 6, 7]. In this section, we present representative data dissemination schemes to highlight the

difference between our proposed data dissemination scheme and the existing works.

The first approach is broadcast-based data dissemination [105, 3, 12, 5, 6], which tries to adapt

the dynamic and unstable nature of wireless networks. The broadcast, therefore, is the intuitive

way to disseminate messages. However, blind broadcast causes broadcast storms and hurts network

bandwidth. To avoid this, numerous methods have been proposed [106, 107, 108], in which nodes

broadcast messages and tune broadcast rate adaptively according to network condition. Although

the broadcast is controlled, these schemes may still create broadcast storms in dense networks.

The second approach is for intermittently connected wireless networks [15, 18]. These schemes

leverage the store-carry-forward paradigm to improve data delivery. They essentially work for

sparse networks but may not work for denser networks where the quality of dissemination is ex-

pected. For example, deadline or coverage of data delivery may not be guaranteed with these

schemes.

The third approach is topic-based (interest-based) data dissemination [1, 109, 18], where co-

located mobile users only exchange information if they share mutual interest on some topic. How-

ever, these schemes are only for ad hoc networks and don’t exploit the big picture of the entire

network where network density changes according to distance to PoIs as shown in Schelling behav-
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ior. Understanding the big picture of the network and the grouping behavior of users is the key to

design an efficient data dissemination scheme.

Finally, geocasting is also a related data dissemination technique, where the broadcast is deter-

mined by the physical location of mobile nodes [110, 111]. Whereas our scheme uses the similar

interests to expedite data dissemination.

6.6 Conclusion

In this chapter, we present an efficient and lightweight data dissemination scheme, which exploits

Schelling behavior to provide timely data accessibility, especially for nodes inside the Message

Reachability Zone (Γ). Relying on the first property of Schelling’s model, we design a push model

by allowing nodes inside the Γ to collaboratively rebroadcast messages. In order to avoid broadcast

storms, save node energy and reduce transmission collisions, we assign each message m a broadcast

timer and apply overhearing mechanism to re-estimate this timer. To exploit the second property,

we apply a pull model, in which nodes outside the Γ broadcast queries to their similar neighbors and

queries/responses are automatically limited within the similar nodes, with no group management

protocol requirement. To further improve data accessibility, leaving and coming nodes collaborate

to answer queries. Our simulation results show that the proposed data dissemination scheme

improves data accessibility significantly while minimizing network overhead.
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CHAPTER 7

UIM: A JOINT WIFI/BLUETOOTH SCANNING SYSTEM FOR

CHARACTERIZING REPETITIVE BEHAVIOR OF PEOPLE

MOVEMENT

7.1 Introduction

It is believed that people movement exhibits a high degree of repetition, in which people usually

visit regular places and make regular social contacts for their daily activities [49]. The repetitive

behavior of people movement can be found in numerous scenarios such as university campuses,

working places, etc. Particularly, in the university campuses, students have classes in certain

weekdays and professors have fixed meeting schedules. Similiarly, workers perform their daily

routines during the day time at their organizations before coming back home every evening. In this

part of the thesis, we focus on the design of efficient content distribution protocols, which exploit

the repetitive pattern of people movement to improve content distribution in mobile P2P networks.

Understanding the correct movement of mobile users is crucial to the design of efficient data

dissemination protocols and to the network resource planning for Infrastructure-based wireless net-

works, Mobile Ad hoc Networks (MANET), and Delay Tolerant Networks (DTN). As a result,

collecting the real movement trace of mobile users has drawn significant attention and effort from

research community. However, obtaining an accurate human movement trace has remained chal-

lenging due to the lack of (1) the portable device that the experiment participants can carry for a

prolonged experiment period, (2) a light-weight, power-efficient scanning protocol that can capture

the movement trace and conserve the battery, (3) a device that can be programmed and debugged

to capture both location information and social contacts.

In this chapter, we first present a new methodology of collecting people movement by using the

cellular phone. Then, we apply our methodology to implement a scanning system named UIM1

that collects MAC addresses of Wifi access points and Bluetooth-enabled devices in the proximity

of the experiment phones. The UIM system is deployed on 123 Google Android phones carried by

1UIM stands for University of Illinois Movement
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students, staff, and faculties in the University of Illinois campus from March to August 2010. The

collected Wifi MACs are used to infer locations while the collected Blueooth MACs are used to

infer social contact. To the best of our knowledge, the UIM scanning system is the first to collect

both social contact and location information in one people movement trace. The UIM system was

presented in our previous paper [44]. In summary, this Chapter has the following contributions:

1. We present a novel methodology to collect both social contact and location information of

the people movement by using cellular phones.

2. We present the detailed design and implementation of the UIM scanning system, which

collects both MAC addresses of Wifi access point and Bluetooth devices in the proximity of

the experiment phone. We discuss the design decision on how to conserve phone battery and

how the system components interact with each other to obtain the performance reliability.

3. We characterize the contact patterns, regularity of contacts, and regularity of location visits

found in the joint Wifi/Bluetooth trace collected by the UIM system. We find that people

movement exhibits a high degree of regularity. These regular patterns will be used in Chapter

8 and in Chapter 9 to predict people movement and design a new content distribution scheme.

In this chapter, we first present a new methodology of collecting the movement trace on the

Google Android phone and the design of the UIM system in Section 7.2. Then, we present the

detail of our collected data set in Section 7.3 and the sensitivity analysis of scanning frequency on

the collected data in Section 7.4. In Section 7.5, we characterize the repetitive pattern of people

movement found in the collected joint Wifi/Bluetooth trace. Finally, we present the related work

in Section 7.6 and conclude the Chapter in Section 7.7.

Notice that, we present other measurement results derived from our collected data set in the

appendix Chapter B. We also present the Hybrid Epidemic routing protocol, which is evaluted

over the real collected Wifi and Bluetooth traces in the appendix Chapter C.

7.2 UIM: Joint Bluetooth/Wifi Scanning System

In this section, we introduce a new methodology of collecting people movement trace. Then, we

present the implementation of the UIM system and discuss the UIM system design decision.
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7.2.1 New methodology of collecting people movement trace

In designing a movement trace scanning system, we must ensure: (1) the experiment devices must be

always carried by the experiment participants when they are moving, and (2) the experiment devices

must have a long enough battery life for the prolonged experiment period. Except the Reality data

set [112], which was collected by cell phones, all previous works [113, 114, 115, 116, 117, 118]

used either iMote device or PMTR platform-based device to collect the movement trace of people.

Due to the limited battery of the iMote device and PMTR platform-based device, these above

collected traces included no more than 20 days of movement trace. We thus believe using the

cellular phones to collect people movement is the most suitable solution since: (1) people always

carry their cellular phones with them, and (2) people recharge the phone for their uses when

needed. However, deploying a movement trace scanning system on cellular phone is challenging

since the scanning system must be transparent to the cellular users and robust to the energy-limited

environment of the cellular phone. In this section, we present the methodology of collecting people

movement trace by using mobile phone. Particularly, we present the objectives that the movement

trace scanning system on the cell phone must obtain:

1. The scanning system should ensure that user movement is scanned accurately in which both

location information and social contact information of people movement are collected. These

two pieces of imformation are important since they can be used to infer the movement pattern

of the user (location) and the social interaction among people

2. The scanning system should conserve battery usage for a prolonged experiment period. Nor-

mally, the user uses the cell phone for phone calls and message exchange. So, if the system

scans the movement trace so frequently and that makes the user charge the phone so fre-

quently, she will not use the experiment phone (and not carry it with her) and thus no trace

is collected. Currently, an iPhone or a Google Android phone can only last for about 10 hours

if the Wifi interface is on. Therefore, designing the scanning system in an energy-efficient

manner so that the phone can both scan movement trace and satisfy other usages of the user

becomes critical.

3. The scanning system should incur no interference to the other applications running on the

experiment phone. Currently, the user can install and run different apps on the phone. If we

want the user to use the experiment phone as her daily phone (and thus she will carry the
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Figure 7.1: UIM System Architecture

phone, recharge it, and we have a good collected movement trace), the scanning system must:

(1) start it by itself when the phone starts, (2) run in the background and does not display

any messages on the GUI interface to interrupt the user (transparent), (3) keep running even

if other applications halt or crash (robust).

In the next section, we apply this methodology to design and implement a new movement trace

scanning system on Google Android phones.

7.2.2 UIM system: design and implementation

As shown in Figure 7.1, UIM has two main components: the database server and the Google An-

droid phone. The former hosts a relational database management system, which accepts and stores

the scanning status updates from the experiment phones. The latter has three subcomponents:

the Status Reporter, the Bluetooth scanner, and the Wifi scanner. The Bluetooth scanner collects

the Bluetooth MAC addresses of Bluetooth-enabled devices in the experiment phone’s proximity

while the Wifi scanner collects the MAC addresses of Wifi Access Points in the proximity of the

experiment phones. The collected movement trace, including ad hoc trace and Wifi trace, is stored

at the local disk of the phone. The Status Reporter updates the scanning status of the phone

(e.g., how the scanning works, how many trace files have been created) to the server via the HTTP

connection when the Wifi connectivity is available. Due to the battery constraint, Status Reporter

is set as an optional feature of UIM. We find that Status Reporter works smoothly if enabled. In

the next sections, we present in detailed the design and implementation of Bluetooth scanner and

Wifi scanner.
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7.2.2.1 Bluetooth scanner

The Bluetooth scanner periodically (e.g., every 60 seconds) scans the Bluetooth-enabled devices

in the phone’s proximity 2. The scanned results include the MAC addresses of the Bluetooth-

enabled devices and the corresponding scanning time stamps. In this chapter, we use δB to denote

the scanning period of the Bluetooth scanner (e.g., δB = 60(s)) and “ad hoc MAC” to denote

the scanned MAC addresses of the scanned devices. Notice that the ad hoc MAC can be an

experiment phone or a scanned device, which is not in the set of experiment phones. So, we use

“external ad hoc MAC” to denote a scanned device, which is not in the set of experiment phones.

The trace collected by the Bluetooth scanner is called the “ad hoc trace” or “BT trace”. We set

the Bluetooth scanning period δB = 60(s) to conserve the phone battery. Notice that UIM makes

the experiment phones discoverable in the Bluetooth channel so that an experiment phone can scan

other experiment phones in its proximity.

The Bluetooth scanner is shown in Figure 7.2 with three sub components: booter, Bluetooth in-

quirer, and Bluetooth receiver. We implement Bluetooth scanner as a background service, anytime

the phone restarts, the phone operating system will trigger the booter, which starts the Bluetooth

inquirer and Bluetooth receiver. With the booter, UIM obtains the robustness and reliability to

run for a prolonged experiment since anytime the phone restarts, the scanner can start its scanning

work automatically. The inquirer and receiver work in an asynchronous fashion in which the in-

quirer uses a request timer to periodically (i.e., every 60(s)) generate a Bluetooth scanning request

and send to the system. After sending the request, the inquirer makes the phone discoverable by

other experiment phones, goes to sleep, and wakes up for the next request when the timer expires.

To conserve battery, we configure the inquirer so that it only generates scanning request from

7AM of a day to 1AM of the next day. During the period [1AM,7AM] of a particular day, the

inquirer sleeps. As a result, we can collect most of people movement while saving phone battery.

The receiver, on the other hand, is only triggered to work whenever a Bluetooth scanned result is

2In this Chapter we use “participant”, “phone”, “user”, and “experiment phone” interchangeably.
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returned from the phone operating system. Upon receiving the scanned result, the receiver writes

the result to the log file with the timestamp and then goes to sleep. Moreover, whenever the phone

user triggers the Bluetooth scanning from the phone’s GUI, the phone operating system performs

a Bluetooth scan and returns result to the Bluetooth receiver. As a result, the Bluetooth receiver

opportunistically receives Bluetooth scanned results even when the inquirer does not trigger the

Bluetooth scan. With this design methodology, the Bluetooth scanner obtains robustness and

conserve phone battery.

7.2.2.2 Wifi scanner

The Wifi scanner periodically (e.g., every 30 minutes) scans the Wifi access points in the phone’s

proximity. The scanned results include the MAC addresses of the Wifi access points and the

corresponding scanning time stamps. In this chapter, we use δW to denote the scanning period of

the Wifi scanner (e.g., δW = 30(minutes)) and “Wifi MAC” to denote the scanned MAC addresses

of the Wifi access points. The trace collected by the Wifi scanner is called the “Wifi trace”. There

are two reasons we set δW = 30(min). First, in the campus environment, people usually do not

move too far and stay in the offices or buildings for a long time period (e.g., a class session is usually

50 minutes). Second, performing Wifi scan on the cell phone is energy-consuming. Notice that

UIM does not scan for absolute positions of experiment phones using GPS since (1) GPS scanning

is highly energy-consuming and (2) people in university campus usually stay indoor and the phones

usually obtain inaccurate coordinates when it is indoor.

The Wifi scanner is shown in Figure 7.3 with three components: booter, Wifi inquirer, and

Wifi receiver. The design of Wifi scanner is similar to the Bluetooth scanner in which the Wifi

inquirer and Wifi receiver are decoupled. The Wifi scanner automatically boots itself and starts

Wifi scanning when the phone boots. The Wifi inquirer periodically (and automatically) triggers

the Wifi scan request so that the Wifi receiver starts the scan in response. If the phone user uses
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the Wifi connectivity, the Android OS will issue a Wifi scan. In this case, our Wifi receiver can

opportunistically receive more Wifi scanned results. However, since the Wifi scan is highly energy

consuming, the period between two consecutive inquires of our Wifi inquirer is set to 30 minutes

(or the Wifi scan period is 30 minutes).

There are two reasons the Wifi scanning period is set to 30(min). First, in the campus envi-

ronment, people usually stay in the offices or buildings for a long time period (e.g., a class session

is usually 50 minutes). Second, performing Wifi scan on the cell phone is energy-consuming. The

scanned results of the Wifi scanner include the MAC addresses of the Wifi access points and the

corresponding scanning time stamps. In this chapter, we use “Wifi MAC” to denote the scanned

MAC addresses of the Wifi access points. The trace collected by the Wifi scanner is called the

“Wifi trace”.

7.2.3 Discussion of UIM design decision

UIM system achieves the design objectives in Section 7.2.1 as follows. For the first objective, UIM

provides more accurate movement trace than previously collected traces [113, 112, 114, 115, 116,

117, 118]. Particularly, the Bluetooth scanner of UIM scans every 60 (s), which is the highest

scanning frequency compared to previous works in the University Campus category as presented in

Table 7.3. So, UIM can obtain more Bluetooth MACs. Moreover, since UIM has the Wifi scanner,

the Wifi MACs obtained by the Wifi scanner can be used to represent location (see Section 8.3) infer

the movement patterns of the participants. For the second objective, since we tune the scanning

frequency of Bluetooth and Wifi scanners carefully, the phones can be used by participants as daily

cell phones for about 2 days before running out of battery. Moreover, since most of our participants

put their cell phone simcards into our experiment phones, participants recharge the phones and

keep the phones on. Furthermore, we configure our scanners to run from 06:00 to 23:59 everyday,

instead of running the entire day. After 23:59, the scanners pause to conserve battery and wake up

at the 06:00 the following day. Using this scanning configuration, we obtain most of the movement

activity of the phone carriers and save the battery for the phone usage. For the third objective,

we implement the UIM system so that UIM runs as a background process of the phone and is

transparent to the phone user. We carefully implement and configure UIM so that it does not

interfere with other services and applications of the phone users. Moreover, anytime the user turns

on the phone, the scanners start and scan the devices in proximity periodically. This ensures that
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UIM remains robust to the usage of the phone and can starts running itself whenever the phone is

on.

Another possibility to improve our scanners is to use the motion sensor equipped with the

experiment phones to detect the movement of participants and activate the scan only when people

is moving. This requires an accurate motion detection technique [119], which is not the focus of

this thesis. On the other hand, if the movement detection is not accurate enough, we may have

false positives that result in unnecessary scans and consumes more phone energy.

7.3 Collected Data Set

Overall Characteristics
Name of Data Set D1 D2 D3

Number of Internal Devices (participants) 28 79 16
Experiment Period 03/01-03/20 04/08-05/15 05/24-08/16
Number of Days 19 38 85
Bluetooth Scanning Period (sec, δB) 60 60 60
Wifi Scanning Period (min, δW ) 30 20 30
Number of External Scanned BT MACs 8508 17080 7360
Number of Scanned Wifi AP MACs 7004 29324 6822

Participant Information
Number of CS faculties 2 2 0
Number of CS staff 1 1 0
Number of CS grads 14 30 12
Number of CS undergrads 8 43 1
Number of ECE grads 2 2 2
Number of ABE grad 1 1 1

Table 7.1: Overall characteristics of UIM trace

Table 7.1 shows the overall statistics of the UIM trace. Basically, from March 2010 to August

2010, we have conducted three rounds of experiment with 102 unique participants in total. The

total number of participations is 123; however, some participants participated in more than one

round of experiment. Notice that in Table 7.2 and Table 7.3, the numbers of UIM trace are taken

only from the data set D1 in Table 7.1.

The participants include faculties, staff, grads, and undergrads as shown in Table 7.1. The CS

faculties, staff, grads usually work inside our department building named Siebel Center. Meanwhile,

CS undergrads may take classes in different buildings throughout the university campus. ECE and
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ABE (e.g., Department of Agricultural and Biological Engineering) grads stay in different buildings

from Siebel Center. In this table, for two phones p1 and p2, we say that p1 and p2 have an “internal

contact” if p1 sees p2 in its Bluetooth scanned results or vice versa. For a phone p and an external

ad hoc MAC address e, we say that p and e have an “external contact” if p sees e in its Bluetooth

scanned results.

PMTR[118] Intel[114] Cam. City[116] Infocom[115] UIM
Environment Workplace Corp. City Conf. UIUC
Duration (day) 19 3 10 3 19
# of Devices 49 8 36 41 28
δB(second) 1 120 600 120 60
Ad hoc Trace Yes Yes Yes Yes Yes
Location Trace No No No No Yes
Device Type PMTR iMote iMote iMote Phone
# of In- contact 11895 1091 8545 22459 30385
# of Ex- device N/A 92 3586 197 8508
# of Ex- contact N/A 1173 10469 5791 82091

Table 7.2: Comparison of UIM trace with other traces collected in City, Workplace, Corporation

Cam. U.[114] MIT[112] Toron.[117] UCSD[120] Dart.[121] UIM
Environment University Campus
Duration (day) 5 246 16 77 114 19
# of Devices 12 97 23 273 6648 28
δB(second) 120 300 120 N/A N/A 60
Ad hoc Trace Yes Yes Yes No No Yes
Location Trace No CellID No AP AP AP
Device Type iMote Phone PDA PDA Laptop Phone
# of In- contact 4229 54667 2802 195364 4058284 30385
# of Ex- device 159 N/A N/A N/A N/A 8508
# of Ex- contact 2507 N/A N/A N/A N/A 82091

Table 7.3: Comparison of UIM trace with traces collected in other University campuses

Table 7.2 and Table 7.3 compare the overall characteristics of UIM trace and other previously

collected Bluetooth/Wifi traces. To the best of our knowledge, we are the first to collect the

social contact and location information in a comprehensive movement trace. Moreover, UIM trace

falls into the University Campus category trace and has the highest scanning frequency of the

Bluetooth scanner compared to other traces collected in University campuses. Thus, we obtain
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more detailed and accurate social contacts of people movement (see Section B.2). For all traces,

only MIT/Reality [112] can provide the location information by inferring the cellular base station

ID associated with the experiment phones. However, the cellular base station transmission range

varies from meters (e.g., 500 (m)) to kilometers (e.g., 30 (km)) and thus can not be used to represent

the fine granularity of the physical location. With the UIM system, we collect the MAC addresses

of the Wifi access points in the proximity of the phone and use the Wifi MACs to infer the physical

location. This inferred location information provides a finer granularity than that of cellular base

station ID.

Since we have three data sets D1,D2,D3, in our later sections in this thesis, we will refer to the

specific data set in our analysis and protocol evaluation.

7.4 Sensitivity Analysis of Scanning Frequency

This section present the sensitivity analysis of scanning frequency on the collected data set. Our

goal is to understand the tradeoff between scanning frequency (or energy consumption for the

scan) and the amount of collected data. To this end, we first have two participants carrying two

experiment phones for a week, in which we set the scanning frequency of Blueotooth scanner to

20 seconds and frequency of Wifi scanner to 5 (minutes). Let DB and DW denote the collected

Bluetooth and Wifi data from these two participants, respectively. Notice that as of October

2010, the highest scanning frequency of the Bluetooth scanner is 12 seconds due to the hardware

constraint of the Google Android phones. Then, we use DB and DW to create data sets for lower

scanning frequency as follows. For example, we can create a Bluetooth data set DB1 with the

scan frequency of 40 seconds by taking every other Bluetooth scanned record of the data set DB.

Similar technique can be applied for Wifi data set.

Figure 7.4 shows the impact of scanning frequency on Bluetooth collected data set. In order to

obtaint this figure, for each user, we create the Bluetooth data sets for the scanning frequencies of

20(s), 60(s), 120(s), and 300(s). Then, we use the scan frequency 300(s) as the base line. For each

frequency, we count the number of unique BT scanned devices for each day and take the ratio of

this number over the corresponding number obtained by the scan frequency 300(s) of the same day.

The figure shows that with the highest frequency of 20(s), the BT scanner can obtain up to 4 times

the number of scanned devices compared to the base line. With our current scanning frequency of

60(s) (used for data in this thesis), we obtain 2 times the number of scanned devices compared to
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Figure 7.4: Impact of Scanning Frequency on Bluetooth Collected Data Set
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Figure 7.5: Impact of Scanning Frequency on Wifi Collected Data Set

the base line.

Figure 7.5 shows the impact of scanning frequency on Wifi collected data set. In order to obtaint

this figure, for each user, we create the Wifi data sets for the scanning frequencies of 5(m),15(m),

30(m),60(m), and 120(m). Then, we use the collected data with the scan frequency 120(m) as the

base line. For each frequency, we count the number of unique Wifi scanned MACs for each day

and take the ratio of this number over the corresponding number obtained by the scan frequency

120(m) of the same day. The figure shows that with the highest frequency of 5(m), the Wifi scanner

can obtain up to 14 times the number of scanned devices compared to the base line. With our

current scanning frequency of 60(s) (used for data in this thesis), we obtain 2.5 times the number

of scanned devices compared to the base line.

The analysis shows a clear tradeoff between the scanning frequency and the amount of collected

data. With a higher scanning frequency, it is obvious that we obtain more detailed movement
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Figure 7.6: Contact number decreases/increases at weekend

trace. However, we need to configure the experiment phones so that the participants can use the

phones as their daily phones and thus they recharge the phones for the prolonged experiment.

From our real deployment of the experiment, we learned that participation of the experiment

participants is the most crucial factor in collecting movement trace. On the other hand, by setting

current scanning frequencies, we can keep the experiment phones up for about 2 days to motivate

participants to use the phones as their daily phones. We believe under the battery constraint of

the current Google Android phone, our design and configuration of UIM system provides a robust

and practical solution to obtain people movement trace.

7.5 Regularity of People Movement Found in Joint Wifi/Bluetooth Trace

We select a set of 50 phones from three data sets D1,D2,D3 in Table 7.1. Let D be the set of 50

selected phones. In this set D, a participant collects from 19 days to 50 days of joint Wifi/Bluetooth

trace. In this section, we first study different contact patterns and then present the regularity of

contacts found in the Bluetooth trace. Finally, we present regularity of location visit found in the

Wifi trace.

7.5.1 Classifying contact pattern

From our analysis on the collected Bluetooth trace, we find that there are four different types

of contact patterns as shown in Figures 7.6 and 7.7. In order to obtain these figures, for each

experiment phone p, we calculate the average number of unique BTMACs scanned by the Bluetooth

scanner of p for a particular day of week such as Monday, Tuesday, ..., Sunday.
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Figure 7.7: Contact number grows high in midweek or stays in a small range

The first contact pattern in Figure 7.6(a) shows that people belong to this class usually have

a considerably higher number of contacts during the weekdays and then the number of contacts

drops significantly during the weekend. This is the most common contact pattern found in our

data set since most people perform the casual routines at work for the weekdays. Then, they take

a break during the weekend and stay at home or meet less number of people during the weekend.

In constrast, some people may have a totally opposite contact pattern where they meet many more

people during the weekends than that of weekdays as shown in Figure Figure 7.6(b).

The third type of contact patterns exists for people who have busiest schedule in the middle of

the week as shown in Figure 7.7(a). The contact pattern in this figure looks similar to the bell

shape and people with this pattern usually meet many people at midweek only. The last type of

contact patterns is the most steady pattern as shown in Figure 7.7(b). People belong to this contact

pattern meet a similar number of other people for all days, regardless of weekdays or weekends.

These people may be very active and travel a lot, even during the weekend.

7.5.2 Regularity of social contact

In this section, we study the regularity of social contacts between experiment phones and the

collected Bluetooth devices. We define a contact as follows: for an experiment phone p, if a

Bluetooth MAC u is found in one scan of p, then p and u have a contact. Notice that in

this definition of contact, we do not consider the duration of contact.

So, given the Bluetooth trace collected by a phone p in the set D of 50 experiment phones, we

first find the set Up of all unique Bluetooth MAC u scanned by the Bluetooth scanner of p. Then,

we divide a day time into time slots of size τ . For example, with τ = 6(hours), we have following
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Figure 7.8: Regularity of Social Contact of 50 participants

time slots ([00:00:06:00), [06:00:12:00), [12:00:18:00), [18:00:24:00]).

For each phone p, let Dp be the number of days in which p collected the Bluetooth trace. For a

scanned Bluetooth MAC u ∈ Up, let Dup be the number of days p and u have contacts, in which

these contacts happen at the same time slot of these days. For example, p and u may have contact

at every weekday at 8AM. In our context, a contact between the phone p and a scanned

Bluetooth MAC u ∈ Up is the “regular contact” of p if Dup ≥ Dp · ǫc. Here, ǫc is the

threshold or the support value. This definition borrows the notion of “regular pattern” in Frequent

Pattern Mining [122]. In other words, a contact is considered a regular contact if the phone p and

the Bluetooth MAC u meet at the same time slot for at least Dp · ǫc days during the experiment

period of Dp days. In order to evaluate the regularity of social contact, we vary the size of time

slot τ and the value of threshold (or support value) ǫc.

In Figure 7.8(a) we fix the time slot τ = 6(hours) and vary the value of ǫc from 0.4 to 0.7. We

find that when ǫc increases the number of participants with smaller number of regular contacts

increases. For ǫc = 0.5 we have 45 participants with at least 1 regular contacts.

In Figure 7.8(b) we fix the ǫc = 0.6 and vary the value of τ from 2(hours) to 8(hours). We find

that when τ increases the number of participants with more regular contacts increases since we

require less strict movement from the participants in the regularity evaluation. When τ varies from

2(hours) to 8(hours), from 35 to 45 participants have at least 1 regular contact.

In conclusion, our evaluation shows that people make regular contacts for their daily activities.
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7.5.3 Regularity of location visit

7.5.3.1 Definition of location

The collected set of Wifi access point MACs includes not only the Wifi MACs associated with

buildings in the University of Illinois campus but also ones at the residential homes/apartments

where the experiment participants stay. So, the overall scanned Wifi MACs give us the Wifi access

point map of the university campus and the surrounding areas where the students and faculties

live.

Our Wifi scanner obtains a list of Wifi MACs in the proximity of the experiment phone every

30 minutes. In reality, the Wifi access point usually stays inside its associated physical location

and can be used as the “landmark” of the physical location. Since our phone can obtain the Wifi

MACs, we basically obtain the landmarks of the locations, or the locations themselves [87]. So, in

our context a “location” is a list of Wifi MACs scanned by the Wifi scanner.

7.5.3.2 Obtaining locations from Wifi MACs

There are several important aspects we need to consider to define the location from the scanned

Wifi MACs. First, the Wifi transmission range of the phone is from 100 to 200 (meters). That

means, anytime the phone scans, the list of surrounding Wifi MACs within the transmission range

will be captured by our phone, not only the Wifi access point of the building where the phone

stays inside. Second, an on-campus building/location usually has a set of Wifi access points. Thus,

each scan of our phone will return a list of Wifi MACs. As a result, we define a location in our

data set as a unique set of Wifi MACs. From all previous studies [112, 114, 115, 116, 118], only

the Reality Mining data set offered some notion of location of the participants by providing the

Cellular ID of the cellular base station which was associated with the phone [112]. However, since

the cellular base station transmission range varied from several hundred meters (e.g., 500 m) to

kilometers (e.g., 30 km), the Reality Mining trace did not provide a fine grain of physical locations

as obtained by our Wifi scanner.

In order to obtain location, we apply the UIM Clustering algorithm presented in Section 8.3 for

the Wifi trace of the set D of 50 selected phones.
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Figure 7.9: Regularity of Location Visit of 50 participants

7.5.3.3 Regular location

In this section we seek the answer for the question: how regular is the location visit pattern in people

daily movement? To this end, we divide a day time into time slots of size τ . For example, with

τ = 6(hours), we have following time slots ([00:00:06:00), [06:00:12:00), [12:00:18:00), [18:00:24:00]).

For each phone p, let Dp be the number of days in which p collected Wifi trace, and Lp be set of

locations the phone p visits during the experiment period. Notice that Lp is obtained by applying

the UIM Clustering algorithm in Chapter 8.3.

For a location l ∈ Lp, let Dlp be the number of days p visits location l, in which these visits

happen at the same time slot of these days. For example, p may visit location l at every weekday

at 2PM. In our context, for a phone p, a location l ∈ Lp is the “regular location” of p if

Dlp ≥ Dp · ǫl. This definition borrows the notion of “regular pattern” in Frequent Pattern Mining

[122]. In other words, a location l is considered a regular location if the phone p visits l at the same

time slot for at least Dp · ǫl days during the experiment period of Dp days. In order to evaluate the

regularity of social contact, we vary the size of time slot τ and the value of threshold (or support

value) ǫl.

In Figure 7.9(a) we fix the time slot τ = 6(hours) and vary the value of ǫl from 0.4 to 0.7. We

find that when ǫl increases the number of participants with smaller number of regular locations

increases. Also, we find that most people have 2 regular locations, which may be their homes and

work locations. Except ǫl = 0.7, other values of ǫl show that all participants have at least 1 regular

location.

In Figure 7.9(b) we fix the ǫl = 0.6 and vary the value of τ from 2(hours) to 8(hours). We find
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that when τ increases the number of participants with more regular locations increases since we

require less strict movement from the participants in the regularity evaluation. When τ = 2(hours),

most participants have from 1 to 2 regular locations.

In conclusion, our evaluation shows that people visit regular locations for their daily activities.

7.6 Related Work

There have been several efforts in collecting the human movement trace.

The first type of movement traces was collected by GPS-enabled devices carried by experiment

participants [31, 123] in which the geographical coordinates of the experiment devices were obtained

together with the timestamp. However, these devices could not collect the accurate geographical

traces when they were indoor, which resulted in the wrong movement pattern. More importantly,

the collected geographical locations can not be used to infer the connectivity between two geo-

graphically closed nodes since there might be obstacles between them. Meanwhile, connectivity is

a crucial and fundamental characteristic used to evaluate the performance of protocols for wireless

networks.

The second type of movement traces was collected from WLAN environments where the associa-

tion between the laptop/PDA and the Wifi access points was captured with the corresponding time

stamps [121, 124]. The information collected from these traces included the Wifi MAC addresses

of the laptops and the MAC addresses of their associated Wifi access points. Since the laptop had

a good battery capacity and laptop users usually charged their laptops when using the wireless

network, the collected traces from WLAN provided a rich set of continuous data. Also, since the

laptops were popular in corporate environments and university campuses, the trace collection ex-

periment was easily scaled up to the entire corporate [125] or campus [124] environments. This

offered a comprehensive set of wireless usage and detailed associations of the laptop devices and

the Wifi access points [126]. Previous work used these WLAN traces to infer the location of the

experiment devices, derived various mobility models [124, 127], and used these derived mobility

models to validate performance of network protocols for MANETs and DTNs. However, there was

a fundamental weakness of these trace collection methods. The reason was that the collected trace

did not always represent the real movement of people and this might result in the wrongly derived

mobility models. Obviously, the laptop user did not always turn on the laptop and did not carry

it with her all the time. Moreover, a normal laptop user usually turned on her laptop and left
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it on her office desk when she was doing other things (e.g., had lunch with friends, had meetings

with colleagues, or went to exercise at the gym). Therefore, the location information inferred from

the WLAN trace may not be the needed fine granularity. So, the collected associations of laptops

and the Wifi access points could be used to understand the wireless usage rather than the real

movement of people.

The third type of movement traces was collected by using portable (experiment) devices such

as PDA, iMote, cell phone. These portable devices were assigned to participants so that they

would carry the devices all the time when they were walking. The collected information included

the Bluetooth ad hoc contacts between the experiment devices and external Bluetooth-enabled

devices, or among experiment devices only. The collected data had the list of scanned Bluetooth

MAC addresses with the corresponding time stamps [113, 112, 114, 115, 116, 117, 118, 128]. Due to

the limitation of battery and the hardware capability of the experiment devices, only the Bluetooth

ad hoc contacts were collected. Moreover, the scale of these experiments is much smaller in the

number of participants and shorter in the experiment duration than those of WLAN experiments.

It is clear that this method of trace collection captured more realistic movement trace since with

high probability, the experiment devices were carried by the participants. However, this method

of the movement trace collection did not collect the location information of the people movement,

a critical factor to understand the movement behavior of people. Except [112], all previous works

[113, 114, 115, 116, 117, 118] did not capture the location information of the movement. For [112],

the location was inferred from the cellular ID associated with the experiment phone. However,

since the transmission range of the cellular base station was ranging from several hundred meters

(e.g., 500 m) to kilometers (e.g., 30 km), the location information inferred from the cellular ID

did not provide the needed fine granularity. From our observation, the Wifi MAC address of the

Wifi access point could be used to represent the location [87] since a Wifi access point usually is

associated with a physical building or geographical location. Hence, this motivates us in designing

a trace collection methods and implement the UIM scanning system to obtain both Bluetooth ad

hoc contacts and Wifi MAC addresses of Wifi access points.

7.7 Conclusion

We present a new methodology of collecting people movement trace by using the cellular phones.

We then apply the methodology to implement the UIM scanning system, which collects both social
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contact and location information. To the best of our knowledge, the UIM system is the first system

to collect both location and social contact information in one people movement trace.

By studying the regularity of people movement found in the trace collected by the UIM system,

we find that although the contact patterns of people can be classified into 4 distinct classes, their

daily movements exhibit regular patterns in which people: (1) visit regular locations and (2) have

contacts with a regular set of people. This result motivates us to construct a predictive model of

people movement in Chapter 8 and leverage this predictive model for a new content distribution

protocol in Chapter 9.
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CHAPTER 8

JYOTISH: A NOVEL METHOD FOR CONSTRUCTING

PREDICTIVE MODEL OF PEOPLE MOVEMENT FROM

JOINT WIFI/BLUETOOTH TRACE

8.1 Introduction

The ability to correctly predict the movement of people is crucial to the design of efficient data

dissemination protocols and to the network resource planning for Infrastructure-based wireless net-

works, Mobile Ad hoc Networks (MANET), and Delay Tolerant Networks (DTN). While predicting

the movement of a person, we are seeking answers to three fundamental questions: (1) where will

the person stay at a future time? (location), (2) How long will she stay at the location? (stay

duration), and (3) Who will she meet at a future time? (people/social contact). Providing answers

to these questions altogether is challenging due to the dynamic nature of people movement and

the lack of a large-scale people movement trace to construct a predictive model, which can predict

people movement with a high precision.

In Chapter 7, we designed and implemented the UIM scanning system to collect both MAC

addresses of Wifi access point and Bluetooth ad hoc contacts. The UIM system was deployed

to Google phones carried by 123 experiment participants in University of Illinois campus from

March to August 2010. Then, collected MAC addresses of Wifi access point were used to infer

location and collected MAC addresses of Bluetooth devices were used to infer social contact. The

characterization study in Section 7.5 shows that people movement in University of Illinois campus

exhibits a relatively high regular pattern. In this chapter, we propose a novel method named

Jyotish 1 that exploits the regularity of people movement found in the joint Wifi/Bluetooth data

set to construct a predictive model to predict the location, stay duration, and contact. In summary,

this Chapter has following contributions:

1. To the best of our knowledge, Jyotish is the first method, which constructs a predictive model

of people movement from the joint Wifi/Bluetooth trace.

1In Sanskrit, Jyotish (Ji-o-tish) is the person who predicts future events.
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2. Also, to the best of our knowledge the constructed predictive model is the first to predict

future location, stay duration at the location, and contact altogether.

3. We present an efficient clustering algorithm to cluster Wifi access point information into

locations by exploiting the regularity of people movement. Our algorithm overcomes the Wifi

signal fluctuation in previous work [129, 130] and provides a finer grain of location than that

derived from cellular base station [131].

4. We evaluate the constructed predictive model over the real Wifi/Bluetooth trace collected by

50 experiment participants in University of Illinois campus from March to August 2010.

This Chapter is organized as follows. We first present the joint Wifi/Bluetooth trace collected

by UIM system and the overview of the predictive model in Section 8.2. Then, we present a

clustering algorithm to cluster Wifi access points in the Wifi trace into locations in Section 8.3.

These locations will be assigned to records in Bluetooth trace in Section 8.4. Then, the Bluetooth

trace with assigned locations is used to construct location predictor, duration predictor, and contact

predictor in Section 8.5. We evaluate our predictors in Section 8.6. Finally, we present related work

in Section 8.7 and conclude the Chapter in Section 8.8.

8.2 Overview of UIM Trace and Jyotish Method

8.2.1 UIM collected trace

We deployed the UIM scanning system [44] on Google phones carried by 123 participants from

March to August 2010 in University of Illinois campus, with three rounds: from beginning of

March to end of March, from beginning of April to mid of May, and from end of May to mid of

August. Many participants participated from one month to two months of experiment.

UIM system has a Wifi scanner and a Bluetooth scanner. The former periodically (i.e., every

30 minutes) captures MAC addresses of Wifi access points while the latter periodically (i.e., every

60 seconds) captures MAC addresses of Bluetooth-enabled devices in proximity of the experiment

phones. The above scanning frequencies are set to conserve the phone battery since: (1) most

participants use the experiment phones as their daily phones, and (2) the Wifi scanner consumes

much more power than the Bluetooth scanner. These scanning frequencies conserve the phone
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battery for 2 days (including other usages of participants) and make it acceptable for the partici-

pants to carry the phones for the prolonged experiment. The traces collected by scanners are called

“Wifi trace” and “Bluetooth trace” respectively. Henceforth, we use the terms Bluetooth and BT

interchangeably.

Scan Time Wifi MACs
03/08/10 09:20 a1, a3
03/08/10 09:50 a1, a5
03/08/10 10:20 a6
03/08/10 13:50 a4, a7, a9
03/14/10 08:20 a1, a3

Table 8.1: Example of Wifi trace W

In order to clarify the presentation of this chapter, we use Relational Algebra [132] to represent

and manipulate collected data set. So, we use the terms “set”, “table” and “relation” interchange-

ably, “record” and “tuple” interchangeably. Also, we use “person” and “phone” interchangeably,

“stay duration” and “duration” interchangeably. For an experiment phone p, let D be the entire

collected data set, so D = W ∪B, in which W is the relation representing the collected Wifi trace

and B is the relation representing the collected Bluetooth trace. Tables 8.1 and 8.2 show examples

of W and B. W has multiple Wifi tuples: W = {w1, w2, w3, ..., w|W |}. Each tuple wi ∈ W is in

the format of wi =< ti, Ai >, where Ai a set of Wifi MACs returned from one Wifi scan and ti is

the scan time of that Wifi scan. So, we have Ai = {a1, a2, ..., aj , ...}, in which aj is the jth Wifi

MAC scanned by the Wifi scanner of p during the entire experiment period. In Table 8.1, each row

is one tuple wi. Let WA be the set of all Wifi MACs scanned by the Wifi scanner for the entire

experiment period of one experiment phone. For the Table 8.1, WA = {a1, a3, a4, a5, a6, a7, a9}.

Scan Time BT MACs
03/08/10 09:20 u1, u3

03/08/10 09:21 u1, u3

03/08/10 09:22 u1

03/08/10 13:50 u4, u9

03/14/10 08:14 u1, u3, u8

Table 8.2: Example of BT trace B
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Similarly, the relation B has multiple BT tuples: B = {b1, b2, b3, ..., b|B|}. Each tuple bi ∈ B is in

the format of bi =< ti, Ui >, where Ui a set of BT MACs returned from one BT scan and ti is the

scan time of that BT scan. So, we have Ui = {u1, u2, ..., uj , ...}, in which uj is the jth BT MAC

scanned by the BT scanner of p during the entire experiment period. Let BA be the set of all BT

MACs scanned by the BT scanner for the entire experiment period of one experiment phone. For

the Table 8.2, BA = {u1, u3, u4, u8, u9}. Notice that since the Wifi scanner and BT scanner run

concurrently, the scan times of tuples of W and B overlap.

8.2.1.1 Contact definition

We say the experiment phone p has a contact with a device pj whose BT MAC is uj if uj appears in

one tuple of p’s BT trace B. This contact definition can also be found in previous papers [114, 115].

We assume that when p and pj have a contact, the user of p and the user of pj have a social contact.

Henceforth, we use the term “social contact” and “contact” interchangeably.

8.2.2 Jyotish overview

Figure 8.1 shows steps of the Jyotish method to construct the predictive model from the joint

Wifi/Bluetooth trace D. In the first and the second steps, we cluster Wifi records in W into

locations (see Section 8.3). Then, in step 3 and 4, we construct a Naive Bayesian classifier to assign

locations for records in BT trace B (see Section 8.4). In step 5 and 6, the BT trace with assigned

location is used as the input to construct location predictor, stay duration predictor, and contact

predictor (see Section 8.5). Henceforth, we use “stay duration” and “duration” interchangeably.

8.3 Clustering Wifi Records into Locations

This section presents an algorithm called “UIM Clustering” to cluster Wifi records into clusters.

This section focuses on step 1 and 2 in Figure 8.1.

8.3.1 UIM clustering algorithm overview

There are several challenges in obtaining locations from Wifi records of W . First, since the Wifi

signal fluctuates, although the phone stays in one fixed position, it may obtain different results for
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Figure 8.1: Overview of Jyotish

different Wifi scans. Previous works [129, 130] used the signal strength to cluster Wifi MACs into

locations and suffered from the Wifi signal fluctuation. Second, if the phone is in the middle of two

adjacent buildings, the Wifi scanned result might be partially overlapped with the scanned results

obtained when the phone stays inside either of the buildings. Fortunately, the movement pattern

of people is relatively regular since they tend to stay more frequently at their regular places. So, if

two Wifi MACs a1, a3 appear together more frequently than two Wifi MACs a1, a5 in the Wifi trace

W , then it is likely that a1, a3 stay close in a physical building. That means, it is better to group a1

and a3 into the same location than a1 and a5. So, we exploit the regularity of people movement to

cluster Wifi MACs into locations. Moreover, our approach provides a finer grain of location than

that derived from cellular base station [131] since the transmission range of Wifi access points is

much shorter than that of the cellular base station.

Name Description
∆ Set of good records of W , ∆ ⊂ W
γAi

Binary bit vector of Ai, |γAi
| = |WA|

γ Set of binary vectors: γAi
∈ γ where Ai ∈ ∆

Gθ Similarity graph: Gθ =< Vθ, Eθ >
CC Candidate Cluster Set obtained from Gθ

γS
Ci

Signature vector of cluster Ci ∈ CC

CF Final Cluster Set obtained from CC

θ Similarity threshold

Table 8.3: Major notations used by UIM Clustering Algorithm
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Figure 8.2: Execution of UIM Clustering algorithm

In our algorithm, for each record (or tuple) wi =< ti, Ai >, we do not use the scan time ti and only

use Ai. Thus, in this section, we use Ai to represent the record wi. In other sections, we use wi to

represent the record ith of W . We first define location as a unique set of Wifi MACs, which appear

frequently together in the records of W . In Table 8.1, the pair a1, a3 appears twice together while

a1, a5 appears once. So, we say a1, a3 appear together more frequently in W than a1, a5.

Figure 8.2 shows the execution block diagram of the UIM Clustering algorithm. In step 1, given

the records in W , we obtain the sub set of good records WG ⊂ W (see Section 8.3.2). In step 2,

we measure the similarity between all pairs of records of WG and construct a similarity graph GS ,

in which each vertex of GS is a record of WG. In step 3, we apply the Star Clustering algorithm

[133] to cluster vertexes into a set CC of candidate clusters. Finally, candidate clusters are merged

based on their similarity measures to obtain the set CF of final clusters. Each cluster in CF can be

used to represent one location. Table 8.3 represents major notations used by the UIM Clustering

algorithm.

8.3.2 Obtaining good set ∆ of Wifi records

This section focuses on the Step 1 in Figure 8.2. First, we define a good record as a record that

consists of Wifi MACs appearing frequently together in the records of W . We determine if a record

Ai ∈ W is a good record as follows: for each pair of Wifi MACs (aj, ak) ∈ Ai, we calculate the

support value sj,k, which represents how frequently the pair (aj , ak) appears together in the same

records of W :

sj,k =
c(aj , ak)

min{c(aj), c(ak)}
(8.1)

In Equation 8.1, c(aj) is the number of records Ai ∈ W in which aj ∈ Ai. c(aj , ak) is the number

of records Ai ∈ W in which aj ∈ Ai, ak ∈ Ai. Intuitively, sj,k is similar to the notion of support

value of Frequent Item Set in Data Mining literature. For the denominator of Equation 8.1, we

have min of c(aj) and c(ak) since we are interested in the Wifi MAC which appears in less number

of records and the association of this Wifi MAC with the other one in the pair. This min value

represents the coexistence of the two Wifi MACs in the records of W . We have sj,k ∈ [0, 1] and
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the greater value of sj,k means the two Wifi MACs appear together in the same records of W more

frequently.

Let |Ai| be the number of Wifi MACs of the record Ai. For each Ai ∈ W , we have
(

|Ai|
2

)

pairs of

Wifi MACs and
(|Ai|

2

)

support values, which constitutes a distribution. Let λA and ξA be the mean

and standard deviation of this distribution. If Ai has only one Wifi MAC, then λA = 1, ξA = 0.

Intuitively, we prefer a greater value of λA since it means Ai contains Wifi access points that often

appear together in the records of W . We prefer a smaller value of ξA since it means the support

values stay in a small range. So, for Ai, we calculate the ratio ξA
λA

to: (1) select good record whose

Wifi MACs appear together frequently in the same records of W , and (2) remove the bad records

consisting of wifi MACs, which do not frequently appear together in records of W . Let FW be the

set of ratios ξA
λA

of all records of W . We then sort FW increasingly and create the set ∆ of good

records from W using FW as follows. Let ∆A be the set of all Wifi MACs in the records of ∆. We

scan FW from the beginning and for a record Ai ∈ F , Ai is added to ∆ if adding Wifi MACs of Ai

to ∆A increases the size of ∆A. We stop adding records from F to ∆ when |∆A| = |WA|. Since the

added records into ∆ has a small value of ξA
λA

, we reduce the size of ∆ and remove most of noise

data in W .

8.3.3 Constructing similarity graph Gθ

This section focuses on the Step 2 in Figure 8.2. Given the good set ∆, we convert Ai ∈ ∆ into

a binary bit vector γAi
as follows. If the Wifi MAC aj ∈ Ai, then the jth bit of the vector γAi

is

set to 1, γAi
[j] = 1; otherwise, γAi

[j] = 0. Figure 8.3 shows an example of the binary bit vector.

Notice that |γAi
| = |WA|.

Let γ be the set of binary vectors obtained from all records Ai ∈ ∆. Then, we use the Tanimoto

coefficient [134] (the cosine similarity for binary vectors) to calculate the similarity measure Tp,q

between a pair of vectors γp ∈ γ, γq ∈ γ:

Tp,q =
γp · γq

||γp||
2 + ||γq||

2 − γp · γq
(8.2)

Next, we construct the similarity graphGθ =< Vθ, Eθ >, in which each vector γp ∈ γ is considered

a vertex vp ∈ Vθ. For a pair of vertexes vp, vq ∈ Vθ, the edge (vp, vq) exists (i.e., (vp, vq) ∈ Eθ) if

Tp,q ≥ θ. θ is a threshold that determines the topology of Gθ and has important impacts on the

clustering result (see Section 8.3.6).
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Figure 8.3: Bit vector γAi
, with Ai = {a1, a2, a4, a10}

8.3.4 Obtaining candidate cluster set CC

This section focuses on Step 3 in Figure 8.2. Particularly, we apply the Star Clustering algorithm

[133] to cluster vertexes of Gθ into clusters since Star Cluster does not require a pre-defined number

of clusters like others such as k-means and hierarchical clustering. Star Clustering thus fits very

well to our context since we do not know in advance the number of locations from the Wifi trace W .

Applying Star Clustering algorithm, we first sort the vertexes decreasingly according to their node

degrees. Then, we scan the sorted list of vertexes, for each vertex vp if vp is not in any clusters, vp

is considered as the center of a new cluster. For each neighbor vq of vp, if vq does not belong to

any clusters, vq is included in the cluster centered at vp. The process continues until all vertexes

belong to clusters. We denote this set of clusters the candidate cluster set CC .

8.3.5 Obtaining final cluster set CF

This section focuses on the Step 4 in Figure 8.2. For a cluster Ci ∈ CC , Ci consists of a set of

vertexes, each vertex is a binary vector representing a record w ∈ ∆. Let γSCi
be the signature

vector of the cluster Ci. γ
S
Ci

is obtained by applying the OR bitwise operation over all the binary

vectors of Ci. Intuitively, the signature vector γSCi
represents the set of Wifi MACs, which belong

to the cluster Ci. Thus, the signature vector γSCi
can be used to uniquely distinguish clusters in

CC . Then, we use the signature vectors to merge cluster C1 ∈ CC into cluster C2 ∈ CC if C1 is a

sub cluster of C2. Formally, C1 is merged into C2 if γSC2
= (γSC1

OR γSC2
). So, we have the final set

of clusters CF , in which each cluster Cj ∈ CF can be used to represent one particular location.

Given the final cluster set CF , we classify all Wifi records Ai ∈ W into clusters in CF as

follows. Each record Ai ∈ W is classified to the best matched cluster Ci ∈ CF based on the

similarity measure between γAi
and γSCi

calculated by Equation 8.2. The output of this step is

the relation F of all Wifi tuples in W with assigned locations as shown in Table 8.4. Formally,

F = {wi =< ti, Ai, Li >: wi =< ti, Ai >∈ W}, where Li is the location assigned by the UIM

Clustering algorithm to wi.
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Scan Time Wifi MACs Loc
03/08/10 09:20 a1, a3 L1

03/08/10 09:50 a1, a5 L1

03/08/10 10:20 a6 L5

03/08/10 13:50 a4, a7, a9 L8

03/14/10 08:20 a1, a3 L1

Table 8.4: Example of relation F .
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Figure 8.4: θ = 0.1 gives most correct locations

8.3.6 Setting similarity threshold θ

In this section, we empirically set the value of θ as follows. We first select 4 different participants

and create for each of them a development set WD, which consists of 64 Wifi records scanned in

two different days. Then, we ask the participants to manually label the location for their Wifi

records (e.g., Long’s home, Quang’s home, Klara’s office, etc.). For each value of θ ∈ [0.05, 0.9], we

perform following steps. For each pair of records (A1, A2) ∈ WD, we check cluster ids of A1 and

A2 in F and compare these cluster ids with the labeled locations in WD. A location assignment

made by UIM Clustering algorithm is correct if: (1) A1 and A2 have the same labeled location

in WD and they are assigned into the same cluster in F , or (2) A1 and A2 have different labeled

locations in WD and they are assigned into different clusters in F . Figure 8.4 shows the percentage

of correct classification the clustering algorithm makes when θ varies from 0.05 to 0.5. The best

value of all people is 0.1, in which the correct prediction for all 4 people is greater than 96%. When

θ = 0.05, clusters are merged into big cluster; or nearby locations are merged into one location,

it may incur “too big locations” and result in incorrect location assignment. In contrast, when θ

increases (e.g., 0.1 < θ ≤ 0.9), two Wifi records of the same physical location may be assigned into

different clusters. In other words, when θ increases, the accuracy of location assignment decreases

since with a higher value of θ the node degree of the graph is smaller and the graph is sparser,
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(a) With θ1, A1 is processed before A2 (b) With θ2, A2 is processed before A1

Figure 8.5: Location assignment for θ1 < θ2. A3, A4 are manually marked the same location by user.

which results in more number of “smaller” clusters. For example, with θ = 0.1, we have more

number of accurate location assignments than that of θ = 0.5.

From Figure 8.4, we also observe that for two values of θ1 < θ2 and the difference between θ1 and

θ2 is small, the location assignment of θ1 may not be always better than that of θ2. This is true for

User 3 and User 4 in Figure 8.4 with θ1 = 0.2 and θ2 = 0.3. This result is explained in Figure 8.5 as

follows. In this figure, A1 and A2 are selected as cluster centers by the Star Clustering Algorithm

in the clustering process since they have a higher node degree. Also, A3 and A4 are in the same

physical location as manually marked by the experiment participants. For θ1 in Figure 8.5(a), A1

will be processed prior to A2 by the Star Clustering Algorithm since A2 has a higher node degree.

In this case, A3 belongs to the cluster centered at A1 and A4 belongs to cluster centered at A2. This

results in a wrong location assignment. In constrast, for θ2 > θ1 in Figure 8.5(b), the node degree

of A1 and A2 changes and that makes A2 be processed by the Star Clustering Algorithm prior to

A1. In this case, A3 and A4 belong to the same cluster and this is a true location assignment when

compared to user manually marked data. So, if the difference between θ2 > θ1 is small, θ2 may

result in a better location assingment. However, if the difference between θ2 > θ1 is big, θ2 results

in a worse location assignment. This is confirmed in Figure 8.4 where θ = 0.2 gets a better location

assigment than that of θ = 0.5.

Essentially, the value of θ for one person should be set by analyzing his own movement trace

since people have different movement habits and they visit different locations, which have different

densities of wireless access points. For our evaluation in Section 8.6, we use θ = 0.1 to evaluate the

predictors since: (1) we can not ask all 123 participants to mark their locations manually for each

wifi scan in the data set, and (2) θ = 0.1 gives very high location assigments for 4 people above.
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Name Description
µ # of unique BT MACs collected by all phones
F Relation of Wifi tuples with assigned locations
M Relation of BT tuples created by F , B and α
C BT trace with assigned locations
α Time window (in second)
βmin Threshold to assign “Unknown” location
ν Type of day, ν ∈ {weekend, weekday}
τ Time slot

Table 8.5: Major notations used by Predictive Model

8.4 Assigning Locations for Bluetooth Records

Although tuples of F are assigned locations, they do not provide needed granularity since the Wifi

scanner scans each every 30 minutes. During this period, the phone may move to different locations.

Meanwhile, our BT scanner scans every minute. Our goal is to assign locations from tuples of F to

tuples of B and thus obtain the finer granularity of people movement. The first step towards this

goal is to map tuples of F and tuples of B using a time window α. This section focuses on step 3

and 4 in Figure 8.1. Table 8.5 presents the major notations used in following sections.

8.4.1 Mapping between Wifi records and BT records using time window α

For a tuple wk =< tk, Ak, Lk >∈ F , we know that the person p stays at the location Lk at time tk.

We observe that during the time window [tk−α, tk+α], if α is short enough, the person usually stays

at the location Lk. Therefore, we can assign the location Lk to all BT records bi =< ti, Ui >∈ B,

in which tk − α ≤ ti ≤ tk + α.

Let M be the relation of all BT tuples bi ∈ B, which are assigned locations Lk by using the

time window α and the tuple wk =< tk, Ak, Lk >∈ F . Formally, M = {bi
′ =< ti, Ui, Lk >: bi =<

ti, Ui >∈ B,wk =< tk, Ak, Lk >∈ F, tk − α ≤ ti ≤ tk + α, 1 ≤ i ≤ |B|, 1 ≤ k ≤ |F |}. Table 8.6

shows an example of the relation M , which is created through the mapping between relation B and

relation F using the time window α. We will present a separate section on how to set the value of

α in Section 8.4.3.
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Scan Time BT MACs Loc
03/08/10 09:20 u1, u3 L1

03/08/10 09:21 u1, u3 L1

03/08/10 13:50 u4, u9 L8

03/14/10 08:14 u1, u3, u8 L1

Table 8.6: Example of relation M .

8.4.2 Assigning locations for Bluetooth records

We construct a Naive Bayesian classifier NB to predict the locations of all BT records in B.

Basically, we use the relation M to train the Naive Bayesian classifier NB and then use NB to

assign locations to all records bi ∈ B.

8.4.2.1 Training Naive Bayesian classifier NB

For a BT record bi ∈ B, the probability that bi belongs to a location Lk is calculated by using the

Bayesian Theorem as follows:

P (Lk|bi) =
P (bi|Lk)P (Lk)

P (bi)
(8.3)

Then, bi belongs to the location Lbi calculated as follows:

Lbi = argmax
k

P (bi|Lk)P (Lk)

P (bi)
(8.4)

Since P (bi) is the same for all locations Lk, we calculate f(Lk) = P (bi|Lk)P (Lk). To calculate

P (bi|Lk), we assume that for u1 ∈ bi
2 and u2 ∈ bi, u1 and u2 are conditionally independent,

or u1 and u2 appear conditionally independent in the proximity of the experiment phone when

they are scanned (and bi is created) by the BT scanner. This assumption usually holds in reality

since people (with their Bluetooth-enable devices) appear at locations independently. Let f(Lk) =

Πuj∈biP (uj |Lk)P (Lk), we have:

Lbi = argmax
k

f(Lk) (8.5)

The relation M is used to calculate f(Lk) in Equation 8.5 as follows. P (Lk) =
c(Lk)
|M | , where |M |

is the size of M and c(Lk) is the number of tuples bi
′ =< ti, Ui, Li >∈ M , in which Li = Lk. For

P (uj |Lk), we have:

2The correct notation should be u1 ∈ Ui and bi =< ti, Ui >. However, to shorten the notation, we use u1 ∈ bi in
this section.
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P (uj |Lk) =
c(uj)

c(Lk)
(8.6)

In Equation 8.6, c(uj) is the number of records bi
′ =< ti, Ui, Li >∈ M , in which Li = Lk and

uj ∈ Ui. Applying Equation 8.5 and Equation 8.6 for all records of M , we have the trained classifier

NB .

8.4.2.2 Applying additive smoothing technique

In section 8.4.1, since we only use a small time window α to create M , M does not cover all BT

MACs in B. Thus, applying the trained classifier NB for a record bi ∈ B, the value c(uj) in

Equation 8.6 might be 0 if uj does not belong to any tuples of M . Thus, c(uj) cancels out the

value of P (ul|Lk) of BT MACs ul ∈ bi (i.e., j 6= l) in Equation 8.5. To avoid this, we apply the

Additive Smoothing technique [135] for the Equation 8.6 as follows:

P (uj |Lk) =
c(uj) + 1

c(Lk) + µ
(8.7)

In Equation 8.7, µ is the number of unique BT MACs collected by all participants for the entire

experiment period. Adding µ to the denominator of Equation 8.7 means we take into account

all possible BT MACs in calculating the probability of the BT MAC uj . With Equation 8.7,

P (uj |Lk) 6= 0 for all uj and we have:

f(Lk) = Πuj∈bi

c(uj) + 1

c(Lk) + µ
P (Lk) (8.8)

So, we have a new trained classifier N ′
B by applying Equation 8.5 and Equation 8.8 for all tuples

of M .

8.4.2.3 “Unknown” location

Applying N ′
B to assign locations to BT records bi ∈ B, we encounter records bi whose value of

f(Lbi) calculated by Equation 8.4 is extremely small. These records bi are scanned in the middle

of two consecutive Wifi scans (the period between two Wifi scans is 30 minutes) when the phone

carrier moves to another location, which is not captured by the Wifi scanner. Therefore, assigning

any known location from the Wifi trace to bi results in a wrong assignment. To avoid this, we
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Figure 8.6: Time window α = 60(s) gives most correct locations

define a new location named “Unknown” location and assign the “Unknown” location to bi.

The next question is “How small the value of f(Lbi) is” so that the record bi is assigned to

“Unknown” location. To answer this question, we use Equation 8.8 to calculate f(Lbi
′) for all

records bi
′ ∈ M . Let βmin = minbi

′∈Mf(Lbi). We then use βmin as the threshold value to assign

“Unknown” location to a BT record bi ∈ B. The intuition is as follows. We assume that records

in M are “good records” whose locations are assigned correctly by the time window α. So, the

minimum value of f(Lbi
′) of all records bi

′ ∈ M represents the cutoff value for all records whose

locations are assigned correctly. For a record bi ∈ B, we have:

Lbi =







argmaxi f(Lk) if f(Lbi) ≥ βmin

“Unknown” otherwise
(8.9)

Equation 8.9 means bi will be assigned Lbi location only if f(Lbi) ≥ βmin. Otherwise, bi will be

assigned the “Unknown” location. Although this approach seems to be conservative in assigning

correct locations to BT records, it does provide good result in our evaluation of the predictive

model in Section 8.6. Let C be the relation consisting of all records in B, which are assigned

locations. Then, we sort C increasingly according to the scan times of its tuples and use C as the

input to construct our predictors in Section 8.5.

8.4.3 Setting time window α

As we presented in Section 8.4.1, the value of α decides the mapping between Wifi records and BT

records and the size of relation M , which is used to train the Naive Bayesian classifier NB . In this

section, we use the same technique in Section 8.3.6 to empirically set value for α.
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Particularly, we select 4 participants and for each of them, we create a set BD of BT records of

two days and ask the participants to manually label locations for records in his BD. For two days,

each BD has 960 records. For each pair of records (b1, b2) ∈ BD, we check locations of b1 and b2 in

C assigned by our Naive Bayesian classifier and compare these locations with the labeled locations

in BD. Figure 8.6 shows that when α = 60(s), the relation C outputted by the Naive Bayesian

classifier obtains the best location assignment, in which the correct prediction for all 4 people is

greater than 95%. With α = 30(s), the relation M consists of too few records to train a good

Naive Bayesian classifier. Meanwhile, α > 60(s) is too large a time window, which incurs noisy

data in the relation M since BT records may be assigned wrong locations if they fall into this big

time window. The trained classifier NB then performs worse than that with α = 60(s). So, we use

α = 60(s) to evaluate the performance of our predictive model in Section 8.6.

8.5 Constructing Location Predictor, Duration Predictor, and Contact

Predictor

Given the relation C, we construct the location predictor, duration predictor, and contact predictor.

This section focuses on step 5 and step 6 in Figure 8.1. To construct our predictors, we use two

parameters: type of day and time slot. Let ν be the “type of day” and τ be the “time slot”.

Particularly, we classify days into two types: weekend and weekday, so ν ∈ {weekday,weekend},

and divide time of a day into time slot of size 1, 2, 4, etc. hours. The motivation for the use of

these two parameters is that people may visit different places and contact different people for the

weekday and weekend. For each record r ∈ C, we map r’s scan time into type of day ν and time

slot τ . Table 8.7 shows an example of the relation C in which its tuples are mapped into type

of day and time slot of size 2 hours. The relation C in this new format is used to construct our

predictors.

For a person p, the input query for p’s movement prediction is a record X in the format of

X = {ν1, τ1}, in which ν1 represents the type of day and τ1 represents the time slot. The output

will be location the p stays at, the duration p stays at the location, and contacts p has for the type

of day ν1 and during time slot τ1.
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ν τ Scan Time Loc BT MACs
weekday 08-10 03/08/10 09:20 L1 u1, u3

weekday 08-10 03/08/10 09:21 L1 u1, u3

weekday 08-10 03/08/10 09:22 L1 u1, u8

weekday 12-14 03/08/10 13:50 L8 u4, u9

weekend 08-10 03/14/10 08:12 L8 u4, u12

weekday 08-10 03/15/10 09:47 L1 u1

weekend 14-16 03/20/10 15:23 L3 u15

Table 8.7: Example of Bluetooth trace with assigned location C

8.5.1 Location predictor

We use the Naive Bayesian classifier to predict the location of the person as follows.

LX = argmax
i

{P (ν = ν1, τ = τ1|Li)P (Li)} (8.10)

The Equation 8.10 outputs the most likely location LX for the input query X. Moreover, the

Equation 8.10 can be easily customized to return the top-k of the most likely locations for the input

query X. In this case, LX is the set of top-k most likely locations and we have a top-k location

predictor.

In Equation 8.10, we do not assume the conditional independence between ν = ν1 and τ = τ1

since in reality a person may visit different locations in the weekdays and weekend for the same

time slot. For example, in the time slot from 9AM to 11AM, the person may stay in the office in

her workplace for the weekdays but she may be at home at the weekend.

8.5.2 Duration predictor

The duration predictor is constructed based on the location predictor. If the location predictor

returns the top-k locations, the duration predictor will return the predicted stay duration for each

of k locations.

We first define the “stay session at the location Lk” is the continuous time period that the person

stays at Lk. In our context, since the BT scanner obtains BT records every minute, the “stay

session at the location Lk in minute” is the size of the relation Φ of consecutive tuples in relation

C such that for two consecutive tuples r1, r2 ∈ Φ, the difference of scan times between r1 and r2 is

exactly 1 minute. Let |Φ| denote the session length of one stay session of Lk.

We first use location predictor to obtain the location Lk for the input query X = (ν1, τ1). Then,
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we create a sub relation C ′ = σν=ν1,τ=τ1,Loc=Lk
(C) where σ is the selection operator over the

relation C [132]. Then, we calculate the session lengths for Lk from the relation C ′ using the above

session definition. Let Γk be the set of all stay session lengths for the location Lk obtained from

set C ′, Γk = {Φ1,Φ2,Φ3, ...,Φ|Γk |}, Γk forms a distribution of session lengths. Let λk and ξk denote

the mean and standard deviation of this distribution. For example, the location L1 in Table 8.7

has Γ1 = {3, 1}, here |Φ1| = 3 and |Φ2| = 1 (Φ1 consists of the first three records). The output of

the duration predictor includes λk, and ξk for each location Lk.

On one hand, the duration predictor can predict how long the person stays at one location. On the

other hand, since our location is inferred from the collected Wifi access point trace, the duration

predictor essentially predicts the potential wireless connection opportunity. Thus, the duration

predictor can be used as the fundamental building block for the design of network protocols in

mobile wireless networks.

8.5.3 Contact predictor

In order to construct the contact predictor, we assume that each BT MAC scanned by the BT

scanner is associated with a distinct person. As a result, each scanned BT MAC in a record of the

BT trace represents a contact. We apply the Bayesian classifier to find the most likely contact the

person p will have for the input X = {ν1, τ1} as follows:

UX = argmax
j

{P (ν = ν1, τ = τ1|uj)P (uj)} (8.11)

The Equation 8.11 outputs the most likely contact UX for the input query X. The Equation

8.11 can be easily customized to return the top-k of the most likely contacts for the input query X.

In this case, UX is the set of top-k most likely contacts and we have a top-k contact predictor. The

contact predictor predicts the future contacts, which is crucial for the design of routing protocols

and content distribution protocols in MANET and DTN.

In Equation 8.11, we do not assume the conditional independence between ν = ν1 and τ = τ1

since in reality a person may meet different set of people in the weekdays and weekend for the same

time slot. For example, in the time slot from 2PM to 4PM, the person may meet friends in class

for the weekdays but she may meet his family members at the weekend.
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Figure 8.7: Correctness of Location predictor, Stay duration predictor, and Contact predictor

8.6 Evaluation

8.6.1 Evaluation settings

From March to August 2010, we had 50 joint Wifi/Bluetooth trace collected by 50 experiment

participants in University of Illinois campus. Each trace is from 20 to 50 days. Let Di be the

Wifi/Bluetooth trace of the ith participant in 50 participants: Di = Wi ∪Bi, where Wi is the Wifi

trace and Bi is the BT trace. For ith participant, we first apply the UIM Clustering Algorithm

over Wi to obtain locations. Then, we apply steps in Section 8.4 to assign locations to records in

Bi. For the user ith, let Ci be the Bluetooth trace with assigned location. We divide the relation

Ci into two distinct sub set called training set Ψi and testing set Ωi, in which Ψi ∩ Ωi = ∅. The

training set Ψi has 80% of records in Ci and Ωi has 200 records randomly picked from the set

Ci \Ψi. We use Ψi to train three predictors (i.e., location, stay duration, and contact) and use Ωi

to evaluate these predictors. Each record r ∈ Ωi is converted into the format of X = {ν1, τ1} and

used as the input for our predictors. We set θ = 0.1, α = 60(s), and time slot to 2 hours in the

following plots. We run the experiment 20 times (i.e., each time a new set Ωi is created at random)
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and plot the average with the 95% confident interval.

8.6.2 Correctness of predictors

8.6.2.1 Location predictor

Let Li
p be the location predictor of the ith experiment participant. For each record r ∈ Ωi, we use

Li
p to predict the location of r using technique in Section 8.5.1. Let Lr be the location of r ∈ Ωi.

Notice that we only evaluate the correctness of Li
p for record r whose Lr is not “Unknown”. Since

the predictor Li
p can output the top-k most likely locations, let Lpred be the set of predicted

locations outputted by Li
p so |Lpred| = k. Li

p makes a correct prediction if Lr ⊆ Lpred.

Figure 8.7(a) shows the correctness of Li
p for 50 users with k from 1 to 3. When k increases, the

set Lpred has more elements, thus the prediction is more likely to be correct, which is confirmed in

this figure. Particularly, when k = 2, about 80% of nodes have more than 70% correct predictions.

When k = 3, about 85% of nodes have more than 80% correct predictions. This shows that the

location predictor provides an accurate location prediction.

8.6.2.2 Duration predictor

Let Λi
p be the duration predictor of the ith experiment participant. Let λpred and ξpred be the

mean and standard deviation values return by Λi
p for the input query X = {ν1, τ1}. Then, we use

the definition in Section 8.5.2 to find the stay session that contains r in Ci. Notice that r should

belong to an unique session since r has its own scan time and location. Let Λr be the length of the

stay duration session that contains r in Ci.

Since stay duration may vary significantly, predicting stay duration becomes challenging. Thus,

we evaluate the correctness of Λi
p as follows: if λpred − ξpred ≤ Λr ≤ λpred + ξpred, then Λi

p

makes a correct prediction. Here, we use the top-1 location predictor whose returned location

is not “Unknown”. Figure 8.7(b) shows that the duration predictor performs considerably well.

Particularly, 80% of nodes obtain about 60% correct prediction and 40% of nodes have about 80%

correct prediction. Since the stay duration of people at one location is difficult to predict, we

believe this result confirms that the duration predictor can provide an relatively accurate duration

prediction.
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Figure 8.8: Sensitivity of θ on location

8.6.2.3 Contact predictor

Let P i
p be the contact predictor of the ith experiment participant. For each record r ∈ Ωi, let

Ppred be the set of top-k contact returned by P i
p, so |Ppred| = k. We evaluate P i

p as follows. First,

let Pr be the set of contacts appearing in Ci in the same day of type ν1 and during the same time

slot τ1 of r. Second, the predictor P i
p makes a correct prediction if Ppred ∩ Pr 6= ∅. The intuition

is that P i
p predicts that in the day of type ν1 and during the time slot of τ1, Ppred is the set of

contacts, in which the person p will have at least one.

Figure 8.7(c) shows that P i
p performs better when k increases from 1 to 7. With k=7, about

80% of participants can obtain more than 70% correct prediction and about 60% of participants

obtains more than 80% correct prediction.

In conclusion, the evaluation shows that location predictor, stay duration predictor, and contact

predictor provide a considerably high prediction accuracy.

8.6.3 Sensitivity of similarity threshold θ on location

To understand the sensitivity of θ, we use the same set of 4 people in Section 8.3.6. Then, we vary

θ in the range of [0.05, 0.9] and count the number of unique locations each of the four above people

visited during their entire experiment periods. Figure 8.8(a) shows that the number of clusters

increases nearly linearly when θ increases from 0.05 to 0.9. This result is expected since for greater

value of θ, the graph Gθ is sparser, so the cluster size is smaller and the number of cluster increases.

In order to known how many locations a participant may visit during the experiment period,

for each participant ith, we count the number of unique locations the ith visits for her entire
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Figure 8.9: Impact of time slot size on performance of Prective Model

experiment period. Then, we sort the list of participants decreasingly according to their number

of visited locations. Notice that for this plot, we have θ = 0.1 for all participants. Figure 8.8(b)

shows that the number of unique locations the participants visited during the experiment period

can be fitted by an exponential function y = aebx in Matlab, where a = 135.2, b = −0.05023. This

result is important since it gives a concrete model for the number of locations for mobile nodes,

which can be used for simulation purpose in mobile networking research. Particularly, instead of

taking a random number as the number of locations for a mobile node in simulations, researchers

might take a number following an exponential function as shown in Figure 8.8(b).

8.6.4 Impact of time slot size on predictors

We vary the size of time slot τ and evaluate the performance of our predictors.

8.6.4.1 Location predictor

Figure 8.9(a) shows that when the time slot τ varies the performance of location predictor changes

slightly. This confirms that the location predictor is robust to the variation of time slot τ . The

reason the location predictor stays robust to the variation of τ is that people in university campus

do not move very frequently and people usually stay at one location for a long period. Thus, the

impact of τ becomes less significant. Notice that for this figure, we use the top-3 location predictor.
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8.6.4.2 Contact predictor

Figure 8.9(b) shows that when the time slot τ increases in size, the contact predictor performs

better. For this figure, we use top-3 contact predictor. Particularly, when τ = 8 hours, about 80%

of nodes have 80% correct contact prediction. Meanwhile, with τ = 1 hour, only 40% of nodes have

80% correct contact prediction. This is expected since for a bigger time slot τ , we have a bigger

subset Ppred and a bigger set Pr (as discussed in Section 8.6.2.3), then the prediction is more likely

to be correct.

8.7 Related Work

It is believed that people movement exhibits a high degree of repetition, in which people usually

visit regular places for their daily activities [49]. As a result, there have been several efforts using

past data to construct models to predict people movement.

The first class of prediction methods focused on predicting location of people movement [136,

137, 138, 139, 140, 127, 141], which essentially only answered the first question above. In particular,

a large number of previous papers used the association trace between the laptop/PDA and the Wifi

access points (i.e., WLAN trace) to derive and evaluate their location predictors [140, 127, 142,

143]. However, there was a fundamental weakness of using WLAN trace in constructing location

predictor. The reason was that the laptop user did not always turn on the laptop and did not carry

it with her all the time. Moreover, a normal laptop user usually turned on her laptop and left it on

her office desk when she was doing other things (e.g., had lunch with friends, had meetings with

colleagues, or went to exercise at the gym). So, the collected associations of laptops and the Wifi

access points could be used to understand the wireless usage rather than to predict the location

of people. Other previous projects used cellular data trace to construct the location predictor

[138, 137, 139, 131], in which the location was inferred from the cellular ID of the cellular base

station. However, since the transmission range of the cellular base station was ranging from several

hundred meters (e.g., 500 m) to kilometers (e.g., 30 km), the location predictor derived by this

inferred location might not provide needed fine granularity and accuracy.

The second class of prediction methods answer the first two questions above by providing predic-

tions for only the stay duration [144] or both location and stay duration at the location [126]. The

stay duration of commuters is predicted so that the source of media content will be chosen from all
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candidate commuters traveling the same train of the subway line [144]. However, the stay duration

was calculated based on the assumption that commuters check-in the subway line at the same sta-

tion and at the same time will stay in the same train. This assumption might not be true in reality

[144]. In their paper, Lee and Hou modeled user mobility by a semi-Markov process and devised

a timed location prediction algorithm that predicted the future access point (i.e., location in the

paper’s context) of the user and the association duration [126]. Since the model was constructed

and evaluated by WLAN trace, it suffered from the same fundamental weaknesses as discussed in

the previous paragraph. However, this paper has been the only method so far which could provide

predictions for both location and stay duration.

The aforementioned works only answered the first two questions about location and stay duration

of people movement since they lacked of ad hoc contact traces, which could be used to infer social

contacts and answer the third question. Recently, there have been several projects collecting ad

hoc contact traces using portable experiment devices such as iMote, cellphone, PDA [113, 114, 115,

116, 117, 118]. Due to the limitation of battery and the hardware capability of the experiment

devices, only the Bluetooth ad hoc contacts were collected by these projects. Moreover, the scale

of these experiments is much smaller in the number of participants and shorter in the experiment

duration than those of WLAN experiments in [140, 127]. More importantly, these collected traces

did not have the location information and thus could not be used to answer the first two questions

about location and stay duration.

In this chapter, we present the Jyotish method to construct a predictive model of people move-

ment from the joint Wifi/Bluetooth trace to predict the future of location, stay duration, and

contact of people movement.

8.8 Conclusion

The Jyotish method provides an efficient solution to construct a predictive model of people move-

ment from the joint Wifi/Bluetooth trace. The evaluation over the real Wifi/Bluetooth trace

collected by 50 participants shows that the constructed predictive model predicts location, stay

duration, and contact with a considerably high accuracy.

To the best of our knowledge, the Jyotish method is the first method to derive a predictive model

from a real joint Wifi/Bluetooth trace. The constructed model is also the first to provide prediction

of location, stay duration, and contact altogether. Since future knowledge of people movement is
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fundamental for numerous domains such as computer network, HCI, social science, urban planing,

environmental science, etc., we thus believe Jyotish method and the constructed predictive model

are widely applicable.
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CHAPTER 9

COMFA: EXPLOITING REGULARITY OF PEOPLE

MOVEMENT FOR DATA FORWARDING IN

COMMUNITY-BASED DELAY TOLERANT NETWORKS

9.1 Introduction

It is well known that the daily movement of people exhibits a high degree of repetition in which

people usually stay at regular places for their daily activities [145]. It is also believed that people

usually belong to certain social communities [146], where they have social relationships and social

contact with other community members. Therefore, exploiting the regular movement patterns of

people within the same community to improve content distribution has drawn significantly attention

from research community [147, 148, 149].

In Chapter 7, we presented the UIM scanning system to collect the joint Wifi/Bluetooth trace.

In Chapter 8, we exploit the regular movement patterns found in the collected Wifi/Bluetooth trace

to construct a predictive model of people movement, including location predictor, stay duration

predictor, and contact predictor. In this chapter, we leverage the contact predictor in the design of

a new content distribution named COMFA 1. COMFA exploits the regularity of encounter pattern

(or contact pattern) of people within the same community to maximize message delivery probability

while preserving message delivery deadline. Particularly, COMFA divides the time dimension of

social contacts into a more detailed level of type of day and time slot to capture the regularity

of encounter pattern. Then, COMFA uses the contact predictor in Chapter 8 to calculate the

contact probability between a pair of community members to construct the routing table. The

routing table is then used to estimate the message delivery probability and select the message

forwarder in the routing process. We evaluate and compare COMFA with Prophet routing [47]

and Epidemic routing [17] protocols over the real movement trace of 100 mobile nodes collected

by 9 participants in the same research group in University of Illinois from March 01 to March 20,

2010. The evaluation results show that COMFA considerably outperforms other alternatives by

1COMFA stands for COMmunity-based data ForwArding protocol.
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improving the delivery time and reducing message overhead.

This Chapter is organized as follows. We first present the Community-based Delay Tolerant

Network in Section 9.2. Then, we present the design of COMFA in Section 9.3. In Section 9.4,

we compare the performance of COMFA with Epidemic routing and Prophet routing protocols.

Finally, we present the related work in Section 9.5 and conclude the Chapter in Section 9.6.

9.2 Community-based Delay Tolerant Network

According to Palla et al., most real networks contain parts in which the nodes are more highly

connected to each other than to the rest of the network, and these sets of nodes are usually called

communities [150]. In this chapter, we focus on the community formed by nodes that have the

social relationship and stay in the same geographical area since the co-location of mobile nodes is

crucial for peer-to-peer data forwarding. This type of community exists virtually everywhere in the

real world. For example, students in the department of Computer Science can form a community

called “CS Student Community”, professors in the department of Computer Science can form a

community called “CS Professor Community”, and researchers in the same research group can form

a small community as well.

Since the members of the community stay in the same geographical area, they have more frequent

physical contact/interaction with each other. As presented in Section 7.5, people exhibit a high

degree of regularity in their daily movements. Thus, these contacts among community members are

also regular. Since the topology of the network formed by mobile nodes carried by the community

members depends fully on the regular movement pattern of community members, the wireless

connectivity between a pair of mobile nodes is intermittenly connected and also regular. In our

context, the network formed by these mobile nodes is called Community-based Delay Tolerant

Networks.

In this chapter, we consider present a routing solution of the message m between two community

members s and r, in which s is the sender and r is the receiver of m. We exploit the regularity of

contacts among community members to expedite message forwarding in the network. Henceforth,

we use the terms “community member”, “mobile node”, “node”, “person”, “Bluetooth MAC”, “BT

MAC” interchangeably.
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9.3 COMFA: Community-based Data Forwarding Protocol

This section presents the design of COMFA protocol. First, we present the system model and

design objective of the protocol. Second, we present how to bootstrap COMFA and update contact

counter Cn. Third, we present how to use the contact predictor to construct the routing table.

Finally, we present how the message is forwarded among mobile nodes in the network.

Name Description
m Message transmitted in the network
s Mobile node, the sender of m
r Mobile node, the receiver of m
n Mobile node in the network
Dm Delivery deadline of the message m
Tm Time at which n delivers m to r
Pn

t Probability that n delivers m to r during [t,Dm]
Rn Routing table of n
ρ Time slot size (i.e., ρ ∈ [1, 2, 3, 4, ..., 24])
ν Type of day
mν Type of day when m is routed from s to r
τ Time duration (i.e., of a time slot)
pcui

Contact probability between n and node ui

Un Set of mobile nodes n has met so far
Cn Contact counter, Cn = |Un|

Table 9.1: Notations used for design of COMFA

9.3.1 System model and design objective

9.3.1.1 System model

We consider a network formed by the Peer-to-Peer connectivity among mobile devices carried by the

members of the same community. Each node in the network has a mandatory P2P communication

interface such as Wifi, Bluetooth, etc. Node mobility is regular and nodes have regular contacts.

The data message forwarded among mobile nodes in this network in the format of text message or

short video clips.
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9.3.1.2 Design objective and protocol overview

Table 9.1 shows the notations used by the COMFA protocol. For a message m, when m is sent

out by the the sender s, s sets the delivery deadline Dm. Our objective is to route the message m

from s to r by the delivery deadline Dm. We formulate the COMFA protocol as the optimization

problem, which maximizes the delivery probability of the message m from s to r and meets the

delivery deadline Dm:

max Pn
t

s.t. Tm ≤ Dm (9.1)

COMFA obtains the objective function for the constraint of Equation 9.1 as follows. Let Cn be

the number of unique mobile nodes the node n has met so far. At the time t in the routing process,

assuming that m is carried by a mobile n1 and n1 meets n2, if P
n2

t > Pn1
t, then n1 transmits m

to n2, which will carry and forward m towards r. n2 will then find a node with better delivery

probability to transmit m towards r. If Pn2
t = Pn1

t, the value of Cn is used to break tie and

select the better forwarder. That means, if the delivery probabilities are equal, the node with a

greater number of unique contacts will be chosen as the next message forwarder since it has a higher

probability to reach the receiver r. Our COMFA protocol keeps only a single copy of the message m

among all the nodes in the network during the routing process to reduce message overhead. Since

all the nodes in the network perform the same way, we are maximizing the delivery probability of

m by the delivery deadline Dm. Constraint of Equation 9.1 is satisfied because Tm is taken into

account in the calculation of Pn
t. For a mobile node n, we have 0 ≤ Pn

t ≤ 1, which is derived from

the routing table Rn of n. The routing table Rn is constructed by using the contact predictor [46].

Since the mobile nodes are within a community, it is likely that the receiver r has regular contacts

with members in the same community. These regular contacts will help in forwarding m to r. In

the following sections, we present the detail of COMFA protocol.

9.3.2 Bootstrapping COMFA

This section presents how the protocol COMFA bootstraps. We focus on the scenario where the

mobile user carries his mobile phone during his daily activities. The phone runs the Bluetooth

scanner that captures the Bluetooth MAC addresses of Bluetooth-enabled devices in the proximity

of the phone. In other words, the phone captures the social contacts between this mobile user
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and his friends. The Bluetooth scanner stores the collected MAC addresses in the memory of

the phone. Since the mobile user has regular movement pattern and meets regular set of people

in his community, the phone captures the regular social contacts between this mobile user and

his friends. After several weeks, the phone captures enough the regular social contact patterns

of this mobile user and then it starts using contact predictor to construct the first routing table

for message forwarding. Notice that after the first routing table is constructed, the Bluetooth

scanner continues to run and collects more social contacts. The routing table will be updated

periodically later by using the newly collected social contacts since the mobile user continues his

regular movement behavior. For example, the routing table can be updated every week. As a

result, the more amount of collected social contact the Bluetooth scanner has, the more accurate

the routing table is.

9.3.3 Updating number of unique contacts Cn

Besides the routing table, mobile node n needs to keep the number of unique contacts Cn that n

has so far. In order to update Cn, n keeps a set Un of known contacts, anytime n encounters a

new node n1, n adds to Un. We have Cn = |Un|. Basically, Cn represents the total number of

unique contacts n has had so far. Cn can be used as an indicator of future contacts since in reality

a person who has made many contacts in the past would likely make many contacts in the future.

Cn is similar to the node degree of the social graph used by the previous works to select the best

message forwarder [147, 148, 149].

9.3.4 Constructing routing table

With COMFA protocol, each node n has a routing table Rn, which is used to forward the message

m during the routing process. Rn is basically a table with multiple columns and rows, which is

similar to a relation in the relational algebra. To clarify the presentation in the following sections,

we use Relational Algebra [132] to represent and manipulate the routing table Rn. Henceforth, we

use the terms routing table and relation interchangeably.

We exploit the regularity of people movement and the contacts among community members to

construct the routing table Rn by classifying time into type of day and time slot. Particularly,

we use the contact predictor to calculate the probability that n has contact with one particular

person for a type of day and during a time slot. The probability will be used to select the best
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message forwarder during the routing process. The intuition of classifying time into type of day

and time slot is that people usually follow their scheduled routines for the daily activities and thus

a person may meet the regular set of people for a specific time period in a particular day. Also,

the movement behavior of people may be different for the weekday and weekend.

ν τ u1 u2 u3 u4

weekday (08:00,09:00] 0.4 0.2 0.1 0
weekday (09:00,10:00] 0.1 0 0.6 0
weekday (10:00,11:00] 0 0 0.5 0.6
weekday (12:00,13:00] 0 0 0.8 0

... ... ... ... ... ...
weekend (08:00,09:00] 0 0.8 0 0
weekend (09:00,10:00] 0 0 0.2 0.7

... ... ... ... ... ...

Table 9.2: Example of routing table (or relation) Rn for time slot size ρ = 1 hour.

Let Un = {ui : 1 ≤ i ≤ |Un|} be the set of all people the node n has met so far, Rn is a relation

of |Un|+2 attributes (or the routing table Rn has |Un|+2 columns). The relation Rn has multiple

tuples (or the routing table Rn has multiple routing entries). Table 9.2 shows an example of a

relation (or routing table) Rn. Each tuple represents an entry in the routing table, in which the

first two values of the tuple are the type of day ν and time slot τ . The last |Un| values of a tuple

are the contact probabilities between n and the corresponding mobile node for that type of day and

during that time slot. In this table, for the type of day weekday and during the time slot (8, 9] the

node n meets the person u1 with the contact probability of 0.4. One tuple in this relation (or one

row in the table) is < weekday, (08 : 00, 09 : 00], 0.4, 0.2, 0, 0 >. Let Pn
p be the contact predictor

of the mobile node n, which is constructed in Chapter 8. In this section, we leverage the contact

predictor to construct the routing table Rn.

First, we create the set of queries χ = {X1,X2, ...,Xk, ...,X|χ|} in which Xk = {νk, τk}, νk ∈ Υ =

{weekday,weekend}, and τk ∈ Σ. The set Σ is constructed based on value of the time slot size ρ.

For example, if ρ = 1, then a day has 24 slots and Σ = {(00 : 00, 01 : 00], (01 : 00, 02 : 00], ..., (23 :

00, 24 : 00]}; if ρ = 2, then a day has 12 slots and Σ = {(00 : 00, 02 : 00], (02 : 00, 04 : 00], ..., (22 :

00, 24 : 00]}, and so on.

Then, the set of queries χ is used as input for the contact predictor Pn
p. For each query

Xk ∈ χ, Pn
p returns a tuple ek =< νk, τk, p

c
u1
, pcu2

, ..., pcuj
, ..., pcu|Un|

>, in which pcuj
is the
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contact probability between n and uj for the type of day νk and during the time slot τk. Here,

1 ≤ j ≤ |Un| and 0 ≤ pcuj
≤ 1. Notice that, we use the contact predictor to proactively calculate

the contact probability between n and other nodes in the community (that n has met so far). This

approach will reduce the forwarding delay of the message since the probability is available in the

routing table for selecting the best message forwarder.

The set of all returned |χ| tuples from Pn
p forms the relation Rn = {e1, e2, ..., e|Rn|}. The relation

Rn has |χ| = |Υ| · |Σ| tuples, in which |Υ| = 2 and |Σ| depends on ρ. For example, with ρ = 1, Rn

has 48 tuples.

9.3.4.1 Extensible routing table

When time goes on, n may encounter new mobile nodes in n’s community. Therefore, Rn should

be an extensible routing table that can grow when more mobile nodes are added into the set Un.

In other words, the table Rn should have more columns when n meets new community members.

9.3.4.2 Finer grain routing table

Classifying time into type of day and time slot does capture the regularity of people movement.

However, there are cases where people move in a more strictly repeated schedule. For example,

a student may always attend a class from 10AM to 11AM every Tuesday, a professor may always

give a lecture from 3PM to 4PM every Friday. For these cases, we can classify time into a finer

granularity, for example time can be classified into day of week such as Monday, Tuesday, etc.

(rather than type of day {weekday,weekend}), and time slot of size ρ. With this finer grain time

classification, we have a finer grain routing table with more routing entries. For example, for ρ = 1,

we have 7 · 24 = 168 entries in the routing table Rn. However, there are two important tradeoffs.

First, this finer classification requires more collected data (or a longer training time) to calculate a

more accurate contact probability to construct the routing table. Second, this finer classification

works better only for people whose movements are strictly repeated; as a result, for people with a

more relaxed movement patterns, a finer classification may result in a worse routing decision.
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9.3.5 Message forwarding decision

Given the routing table (or the relation) Rn of the mobile node n, Rn is used to route the message

m from the sender s to the receiver r. This section presents how the node n1 decides whether it

should transmit m to another node n2 when n1 and n2 encounter. Notice that since n1, n2, r are

in the same community, they encounter each other with high probability. However, as we present

later in this section, with the use of Cn in the forwarding process, COMFA works even if n1 and

n2 have not met the receiver r before.

At time t, assuming that m is carried by a node n1. When node n1 meets another node n2, n1

needs to decide whether n1 will transmit the message m to n2 so that m is forwarded to r in an

efficient fashion. Notice that only one copy of the message m is kept among mobile nodes in the

network during the routing process. So, if n2 is a better forwarder for m, n1 will transmit m to n2

and then n1 does not carry m anymore.

As presented in Equation 9.1, during the routing process we prefer the node, which provides a

higher delivery probability of the message m to the receiver r. Therefore, at time t when n1 meets

n2, n1 calculates its delivery probability Pn1
t, which is the probability n1 delivers m to r during the

time period [t,Dm]. Similarly, n2 calculates its delivery probability Pn2
t. The two nodes n1 and

n2 then compare their delivery probabilities. If Pn1
t < Pn2

t, m is transmitted from n1 to n2 and

then n2 becomes the only carrier of m in the network from that time. If Pn1
t = Pn2

t, Cn1
and Cn2

are compared and the node with a greater size of Cn will be the next forwarder. The intuition is as

follows. When the two nodes n1 and n2 have equal delivery probabilities of m, the next forwarder

is the one that has met more nodes in the past since that node will likely meet more nodes in the

future (including the receiver), and thus deliver m with a higher probability. The next question is

how to calculate Pn
t for a mobile node n.

Pn
t is calculated using the relation Rn in a totally decentralized fashion as follows. When m is

sent at the sender s, s obtains the type of day mν ∈ {weekday,weekend} and attaches mν with

m. At time t, mν is retrieved by n and n creates a relation E by performing a selection operation

over Rn as follows:

E = σϕ={ν=mν ,τ∈Σ′}Rn (9.2)

In Equation 9.2, ϕ is the condition of the selection operation over Rn, which basically filters out

irrelevant tuples. In particular, relation E consists of only the tuples of Rn that have the type of

day mν and the time slot in the set Σ′, which is created as follows. For a time slot τi, let τ
s
i be the
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starting time of τi and τ ei be the ending time of τ . For example, if τi = (08 : 00, 10 : 00], then we

have τ si = 08 : 01 and τ ei = 10 : 00. For the duration [t,Dm], we have Σ′ = {τi : τ
s
i ≥ t, τ ei ≤ Dm}.

For example, in Table 9.2, if mν = weekday, t = 08 : 00, and Dm = 11 : 00, then the relation E

consists of the first three tuples as shown in Table 9.3.

ν τ u1 u2 u3 u4

weekday (08:00-09:00] 0.4 0.2 0.1 0
weekday (09:00-10:00] 0.1 0 0.6 0
weekday (10:00-11:00] 0 0 0.5 0.6

Table 9.3: Relation E with mν = weekday, t = 08 : 00, and Dm = 11 : 00.

Given the relation E with all tuples for the type of day mν and for all time slots during the

period [t,Dm], we then create a relation S by performing a projection over E as follows:

S = πui=r(E) (9.3)

In Equation 9.3, we obtain the relation S by extracting the attribute ui = r from the relation E.

In other words, the table S has only one column, which consists of the contact probabilities between

n and receiver r obtained by projecting the column of receiver r in relation E. For example, in

Table 9.2, if mν = weekday, t = 08 : 00, Dm = 11 : 00, and r = u3, then S = {0.1, 0.6, 0.5} as

shown in Table 9.4. Since S has only one column, we use the term “set S”, “relation S”, and “table

S” interchangeably in this section. Formally, we have S = {p1, p2, p3, ..., p|S|}, where 0 ≤ pj ≤ 1,

1 ≤ j ≤ |S|. pj represents the contact probability between n and r during the time slot jth and

pj = 0 means n and r have no contact during the jth time slot.

u3 = r
0.1
0.6
0.5

Table 9.4: Relation S with mν = weekday, t = 08 : 00, Dm = 11 : 00, and r = u3.

Notice that the order of elements in S corresponds to the order of the time slots in the relation

E. That is, p1 is the contact probability between n and r during the first time slot after time t,
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and p|S| is the contact probability between n and r during the last time slot before Dm. The set

S is then used to calculate Pn
t, the probability that n delivers m at r during the period [t,Dm] as

follows:

Pn
t =

|S|
∑

i=1

pdi (9.4)

In Equation 9.4, pdi is the delivery probability that n successfully delivers m to r at the time slot

ith. pdi is calculated based on contact probability in the set S as follows. We observe that node

n only delivers m to r at the time slot ith if n fails to deliver m to r in the first (i− 1) time slots

and n successfully delivers m to r at time slot ith. This happens only if n and r have no contacts

during the first (i− 1) time slots and n and r have contact in the ith time slot. So, we have:

pdi = {
i−1
∏

j=1

(1− pj)} · pi (9.5)

The Equation 9.5 is used to calculate the delivery probability for each time slot i, and then Pn
t is

calculated accordingly in Equation 9.4.

9.3.5.1 Update overnight message

During the routing process, if n finds that the value of mν extracted from the message m is different

from the type of day of the current time, then node n replaces the value of mν with the current

type of day and attaches the new value of mν with m before forwarding m to another node. This

step is needed if the message m is routed overnight from weekday to weekend and via versa.

9.3.5.2 Discussion

When two nodes n1 and n2 have contact at time t, Pn1
t and Pn2

t are calculated by Equation

9.4 and compared, the node with the greater value of delivery probability is chosen as the next

forwarder of m. If the two delivery probabilities are equal, Cn will be used to select the better

message forwarder. Doing this, we obtain the objective function of the optimization problem in

Equation 9.1 by maximizing the delivery probability of m in the routing process. Notice that the

routing decision is made in a totally distributed manner since Pn
t is calculated using the local

routing table Rn of the node n and does not rely on information from other nodes. Also, since the
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set E is created based on the message delivery deadline Dm, calculation of Pn
t takes into account

the message delivery deadline Dm to satisfy the constraint of Equation 9.1. Therefore, we believe

COMFA provides a robust and efficient routing solution for community-based DTNs.

9.4 Evaluation

9.4.1 Settings

We select a set ∆ of 9 Bluetooth traces collected by 9 participants in the same research group in

the department of Computer Science, University of Illinois from March 1, 2010 to March 19, 2010.

These 9 traces are extracted from the data set D1 in Table 7.1. The set ∆ gives us 500 unique BT

MACs. From this set of 500 Bluetooth MACs, we select a subset D ⊂ ∆ of 100 Bluetooth MACs,

where each BT MAC b ∈ D encounters at least 3 out of 9 participants in the set ∆ during the

experiment period from March 01, 2010 to Mach 19, 2010. Since the participants in ∆ come from

the same research group, D represents contacts of a realistic community.

Scan Time Set of Scan Bluetooth MACs
03/09/10 09:15 u1, u3

03/09/10 09:16 u1, u3

03/09/10 09:17 u1

... ...
03/09/10 13:50 u4, u9

... ...
03/14/10 08:14 u1, u3, u8

Table 9.5: Example of Bluetooth trace B collected by one experiment phone

Table 9.5 shows an example of a Bluetooth trace B collected by our UIM system. Here, each row

in the table is the result of one Bluetooth scan. The set D is created by projecting the column

“Set of Scan Bluetooth MACs” from B. B is also used to infer contacts among mobile nodes in

D to construct the routing table as discussed in Section 9.3. The scan time is converted to the

corresponding type of day and time slot.

We then use D to evaluate the performance of COMFA forwarding and compare its performance

with two other protocols: Epidemic routing [17] and Prophet routing [47]. Epidemic routing is

basically a flooding-based scheme which floods the message from the current forwarder to any new
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Figure 9.1: Comparison of Average Successful Delivery Ratio

encountered nodes, which have not carried the message. This protocol provides a high delivery

probability; however, it incurs a high message overhead. Meanwhile, Prophet uses the summarized

contact probability between pairs of nodes for the entire time period rather than classifying time

into type of day and time slot like what COMFA does. Then, the forwarding decision of Prophet is

made based on this long-term summarized contact probability. Since the calculated probability is

not for type of day and time slot, it does not capture the detailed contact information and it may

not exploit fully the regularity of people movement in forwarding message.

To compare the performance of COMFA with Epidemic and Prophet protocols, we create a set

Γ = {(si, ri) : 1 ≤ i ≤ 100}, in which si is the sender, ri is the receiver, and |Γ| = 100. For a pair of

(si, ri), we first select si ∈ ∆ at random (notice that we have |∆| = 9). Then, we select a random day

d ∈ [03/01, 03/19] during the experiment period, let Dd
si be set of BT records collected by si during

the day d, so si exists in all records of Dd
si . Notice that records of Dd

si are sorted increasingly

according to the scan time (similar to the Table 9.5). Let R be the set BT MACs extracted from

the last 30 records in Dd
si , formally R = {ui : ui ∈ bj, bj ∈ Dd

si , |D
d
si | − 30 ≤ j ≤ |Dd

si |}, in

which bj is a record in the Bluetooth trace as shown in Table 9.5. Finally, the receiver ri is selected

at random from the set R.

There are two motivations to select the receiver ri as above. First, as presented in a survey of

300 computer science faculty members and students [118], the forwarding delay that people can

tolerate is from one to several hours, depending on the delay-tolerant networking applications and

services [118]. We also observe that since the set D consists of BT MACs collected by participants

in the same research group, nodes in D usually have contacts during the office hour period from

8AM to 6PM. So, by selecting ri from the last 30 records of Dd
si , we basically set the deadline

for the message transmission at the end of the office hour (i.e., around 6PM) and thus the delivery
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Figure 9.2: Comparison of Average Delivery Time for Delivered Messages

deadline is in the range of 8 to 10 hours. We believe this delivery deadline is reasonable in reality.

Second, ri is selected based on the set of Dd
si means that applying Epidemic routing, si always can

deliver the message m to ri. Due to the construction of our testing set Γ, we expect that Epidemic

routing will have 100% delivery ratio and a shortest delivery time since it floods the network with

the message. We then use Epidemic routing as the base line in our performance comparison. In

order to compare the performance of COMFA with Epidemic and Prophet routing protocols, we

use three metrics Average Successful Delivery Ratio, Average Delivery Time, and Average Message

Overhead.

9.4.2 Results

Figure 9.1 shows that Epidemic routing outperforms UIM routing and Prophet routing in terms

of Average Message Delivery Ratio since Epidemic routing is essentially a flooding-based routing

protocol. In Epidemic routing, a node n1 which did not receive the messagem will take a copy of the

messagem once n1 has a contact with n which is carryingm. Since the receiver is chosen in the same

day of the sender, epidemic routing will always can deliver the message to the receiver. Meanwhile,

UIM obtains 89% of successful delivery since it exploits the regularity of people movement forward

the message, which is not exploited by Prophet. This figure also shows that Prophet only obtains

78% successful delivery.

Figure 9.2 shows that Epidemic routing obtains the shortest delivery time of 2.26 hours. Cor-

respondingly, COMFA obtains 2.42 hours and Prophet obtains 2.75 hours. Notice that this figure

is only for delivered messages. In other words, 89% of messages delivered by COMFA and 78% of

messages delivered Prophet are taken into calculation for this plot.

Figure 9.3 shows that while COMFA needs 2.2 messages, Prophet needs 2.65 messages to send
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Figure 9.3: Comparison of Average Message Overhead

one message m from the sender to the receiver (or to confirm that m misses the deadline), Epidemic

needs 21.5 messages to send one message m successfully. So, Epidemic incurs 10 times of message

overhead. For this plot, all messages are taken into consideration even if the transmission misses

the delivery deadline.

In conclusion, the comparison shows that COMFA outperforms Prophet in all metrics: Aver-

age Delivery Ratio, Average Delivery Time, and Average Message Overhead. Moreover, COMFA

outperforms Epidemic in Message Overhead metric.

9.5 Related Work

There have been two major approaches 2 to improve message forwarding of routing protocols in

DTN research, including: (1) learning the past contact patterns resulted from regular patterns of

people movement to predict future contacts, and (2) leveraging the social contacts among members

within the same community.

For the first approach, the regular patterns from the previous contact history of mobile nodes

was extracted and learned to predict the future contacts for data forwarding [47, 151, 152, 153, 154,

155, 156, 157, 158]. The selected forwarder was the one who was likely to deliver the message or

bring the message closer to the receiver. The best forwarder of the message is selected based on the

contact probability between node pairs. However, the contact probability calculated by previous

works [47, 151, 152, 153, 154] essentially represented the summarized contact between a node pair,

which was similar to the contact summary oracle in the seminal DTN routing paper [159]. By

using the summarized contact information, previous works did not fully leverage the regularity of

2Besides other major approaches
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people movement for message forwarding [160]. This is because people usually follow their daily

schedules and thus they might repeatedly meet each other during a certain time period of a day,

rather than everyday. For example, if the summarized contact probability between a node n1 and

a node n2 is very low, n1 is not selected as the message forwarder for n2. However, in reality n1

might have contacts with n2 only during a certain time period τ of a day. As a result, although

n2’s summarized contact probability with n1 is low, the contact probability of n1 and n2 during

the period τ might be still higher than those of other nodes during this period τ . In this case, n2

should be considered as the potential message forwarder of n1 for the period τ .

The second approach in DTN forwarding was to leverage the social relationships, social contacts,

and centrality of people within the same community to expedite data forwarding among community

members [147, 148, 149, 161, 162, 163]. Since in reality the members of the same community have a

rich set of contacts during their daily activities, the forwarding performed by community members

can be expedited by this set of contacts. In these previous works, the community was viewed as a

graph of vertexes, which were community members. The edge between a vertex pair exists if the

two corresponding community members have social relationship. Each vertex has a centrality (i.e.,

node degree), which measures the popularity of a member in his community. The node with the

highest centrality is selected as the best message forwarder. Similar to the summarized contact

probability in the first approach, centrality essentially is a compression of the time-related contact

information. In other words, regardless how often a pair of community members were in contact,

there exists only one edge between them. As a result, like the first approach, the second approach

did not fully exploit the regular movement patterns of community members for data forwarding.

It is clear that the summarized contact probability and centrality of mobile nodes did not exploit

fully contact information in data forwarding. In this chapter, we calculate the detailed contact

probability and explore the regularity of contact pattern among community members to expedite

data forwarding in DTN.

9.6 Conclusion

COMFA exploits the regular movement patterns of people within the same community to forward

data messages. Moreover, COMFA provides a distributed solution to calculate and utilize detailed

contact probability for different types of day and time slots. We evaluate and compare COMFA

with Epidemic and Prophet routing protocols over the real Bluetooth contact trace and results
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show that COMFA outperforms other alternatives and efficiently deliver the data messages by

the delivery deadline. People make regular social contacts in their daily activities. By exploiting

regular movement patterns in data forwarding, COMFA is widely applicable.
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CHAPTER 10

CONCLUDING REMARKS

10.1 Conclusion

In this thesis, we present a framework to characterize and leverage people movement for content

distribution in mobile P2P networks. Particularly, we study the Schelling behavior and repetitive

behavior of people movement.

We first observe that the grouping behavior of people, who share the mutual content interest and

move towards the same Point of Interest, exists naturally in numerous real-world scenarios. We also

observe that the grouping behavior of people movement is similar to the segregation behavior (or

Schelling behavior) presented by Thomas Schelling, a Nobel prize winner in economics. We then

characterize and validate the Schelling behavior by simulating the people movement on three real

Google maps and by modeling people movement using the Mobius modeling tool. The validation

study shows that by following the Schelling behavior, mobile nodes create a dynamic coalition P2P

network, in which the size of coalitions formed by co-located mobile nodes increases at the closer

distance from the Point of Interest. More importantly, the study shows that the coalition pattern

follows an exponential function with respect to the distance from the Point of Interest. We then

exploit the characteristics of Schelling behavior in the design of three content distribution protocols:

COADA, iShare, and DENTA. We evaluate and compare our protocols with other state-of-the-art

content distribution solutions. The evaluation results show that our protocols outperform other

alternatives and provide improvements of content distribution in mobile P2P networks.

In the second part of thesis, we study the repetitive movement behavior of people and leverage the

regularity of people movement for improvements of content distribution. We present a new method

to collect people movement trace on the cellular phones. Applying this method, we implement

the UIM scanning system to collect Wifi trace and Bluetooth trace. The UIM system then is

deployed on 123 Google Android phones carried by faculties and students at the University of
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Illinois campus from March 2010 to August 2010. The collected joint Wifi/Bluetooth trace is then

used to characterize people movement and the characterization study confirms that people exhibit

a high degree of regularity in their daily movements. We then propose the Jyotish method to

construct a predictive model of people movement from the joint Wifi/Bluetooth trace. Using the

Jyotish method over our collected joint Wifi/Bluetooth trace, we construct a predictive model to

predict location, stay duration at the location, and social contact of people movement. Finally,

we leverage the constructed predictive model to design the COMFA content distribution protocol

for the Community-based Delay Tolerant Networks. We evaluate and compare the performance

of COMFA with Epidemic routing and Prophet routing over the real movement trace collected

by the UIM system. Evaluation resutls show that COMFA outperforms the other alternatives

considerably.

10.2 Future Work

In this thesis, we has explored the improvements of content distribution for the dynamic coalition

P2P networks of a single Point of Interest. Meanwhile, in its general form, the dynamic coalition

P2P network includes multiple Points of Interest as shown in Figure 3.2. In the future, new content

distribution protocols for the general dynamic coalition P2P networks should be considered. Also,

current protocols (i.e., COADA, iShare, DENTA) are only designed for mobile nodes , which have

a single content interest at one time. New content distribution protocols are needed for mobile

nodes with multiple content interests. The combination of multiple content interests and multiple

Points of Interest are also potential to be explored.

Currently, the UIM system consists of two scanners capturing Bluetooth and Wifi MACs of de-

vices in proximity of the experiment phones. The scanning frequency is fixed to 60(s) for Bluetooth

scanner and 30(minute) for Wifi scanner. In the future an adaptive scheme might be deployed to

optimize scanning frequency and conserve phone battery. One possibility is to use motion sensor to

detect the movement and activity of mobile users and then decide the scanning action accordingly.

Our current design of COMFA protocol takes into account only the social contact in P2P data

forwarding. Since UIM data set provides a richer set of context information including location, stay

duration, and social contact, a new content distribution protocol that leverage all these information

will be useful.

The data set collected by our UIM system provides a rich set of Wifi and Bluetooth traces.
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We believe the collected data set can be extensitvely used for future research. For example, Wifi

trace can be used for localization using Wifi access points and Bluetooth MACs. A hybrid content

distribution protocol using cellular, Wifi access point, and P2P (Bluetooth) connectivity can be

designed and evaluated using our data set. Furthermore, the collected Bluetooth trace offers a

novel opportunity to study a social network created by the ad hoc contacts found in the collected

Bluetooth trace. Finally, a comparative study to highlight the similarities and differences between

collected WLAN traces [121, 124] and our joint Wifi/Bluetooth trace will be useful for future

research in mobile wireless networking.
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APPENDIX A

RELATIONAL ALGEBRA

In this chapter, we present the main operations of Relational Algebra, which are used in the thesis.

Other operations and notations that are not used in this thesis, will not be presented.

A.1 Terminology

1. Set - a mathematical definition for a collection of objects which contains no duplicates.

For example, S = {Monday, Tuesday,Wednesday, Thursday, Friday} is a set of weekdays.

Here, elements of S do not duplicate.

2. Domain - a set of atomic values. For example, a domain can be “Weekday” whose values are

elements of the set S in the above example.

3. Attribute - a real world role played by a named domain. For example, we can give the name

“weekday” to the domain “Weekday”.

4. Tuple - a collection of attributes which describe some real world entity. For example, <

Monday, 10AM > is a tuple, which consists of two attributes Monday and 10AM . The first

is the day and the second is time.

5. Relation - a set of tuples. Table A.1 shows an example of the relation R, in which attributes

are “Name” and “Location”. Each row in this table is a tuple of the relation R.

Name Location
Student 1 Urbana
Student 2 Urbana
Student 3 Champaign
Student 4 Urbana
Student 5 Champaign

Table A.1: Example of relation R

139



A.2 Retrieval Operators

We only present two main operators used in the thesis: selection and projection. The input of

these operators is a relation Rin and the output is a relation Rout.

1. Selection: Rout = σϕRin, where ϕ is a propositional formula that consists of atoms as allowed

in the normal selection and the logical operators
∧

(and),
∨

(or) and ¬ (negation). This

selection operator selects all those tuples in Rin for which ϕ holds. Table A.2 shows an

example of the selection operator over the relation R in Table A.1.

Name Location
Student 1 Urbana
Student 2 Urbana
Student 4 Urbana

Table A.2: Output of selection operator Rout = σϕ(R) with ϕ = (“Location′′ = “Urbana′′)

2. Projection: Rout = πa1,a2,..,an(Rin), where a1, a2, .., an are attribute names. The output

relation Rout consists of projected attributes a1, a2, .., an and Rout has the same number of

tuples as Rin. Table A.3 shows the example of the output of the projection operator, which

takes the attribute “Name” from the relation R in Table A.1.

Name
Student 1
Student 2
Student 3
Student 4
Student 5

Table A.3: Output of projection operator Rout = π“Name′′(R)
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APPENDIX B

MEASUREMENT RESULTS FROM JOINT

WIFI/BLUETOOTH TRACE COLLECTED BY UIM SYSTEM

This chapter is organized as follows. We first present the overall characteristics of the joint

Wifi/Bluetooth trace collected by the UIM scanning system in Section B.1. Then, we present

the analysis of ad hoc contact distribution in Section B.2. In Section B.3 we discuss the ad hoc

graphs formed by collected Bluetooth contacts in the collected trace. Finally, we present the

analysis on location visit in Section B.4.

B.1 Overall Characteristics of Collected Joint Wifi/Bluetooth Traces

B.1.1 Number of scanned devices

Result in this section is obtained from the data set D1 in Table 7.1. Figure B.1(a) shows the total

number of unique scanned devices each phone obtains for the entire experiment period. We see

that the numbers are considerably different among phones. This is because some participants move

much more than others. Also, some locations may have more Bluetooth-enabled devices than other

locations. Figure B.1(b) shows the total number of unique scanned devices (both ad hoc MAC and

Wifi MAC) over 19 days of experiment. During our experiment, there are two weekends (03/07

and 03/14). These two days have slightly less number of scanned devices than other days. The first

day of experiment (03/01) has the least number of scanned devices since we assigned the phones to

participants in the late afternoon. Interestingly, in many days during the experiment period, the

number of scanned Wifi MACs is more than that of ad hoc MACs. This is because our experiment

participants are moving within the University campus and residential areas, which have buildings

equipped with Wifi Access Points.
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Figure B.1: Number of unique scanned devices in UIM collected trace

B.1.2 Device characteristics

B.1.2.1 Device manufacturer

Result in this section is obtained from the data set D1 in Table 7.1. Figure B.2 shows the char-

acteristics of the Bluetooth-enabled devices collected in UIM trace, in which Figure B.2(a) show

the manufacturers of devices collected in Cambridge City trace [116] and Figure B.2(b) shows the

manufacturers of devices collected by our UIM system. Similar to technique used in [116], we use

the database of Organizationally Unique Identifiers (OUI) maintained by the IEEE to map MAC

address prefixes in the data set to their manufacturers1. Figure B.2(a) shows that almost all devices

belong to three manufacturers with Nokia (44%), Samsung (16%), Sony (20%). However, Figure

B.2(b) shows that Samsung becomes the most popular manufacturer with 24.2% while Nokia and

Sony decrease significantly to 9.97% and 3.48%. Meanwhile, Apple is the second most popular with

14.6%, it might because iPhone was not released in 2006 when Cambridge City trace was collected.

Figure B.2(b) also shows that 15.5% of devices belong to Other category. We have checked devices

and many of them are Android OS devices.

B.1.2.2 Device type

Figure B.3(a) shows types of Bluetooth-enabled devices collected by the UIM system. We see that

only 63% of devices are phones, the rest includes computer, headset, GPS, etc. Previous traces

[113, 114, 115, 116, 117, 118] did not capture the type of the scanned devices and thus all scanned

devices were considered the mobile devices. As a result, previous content distribution protocols

1http://standards.ieee.org/regauth/oui/
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Figure B.2: Device Characteristics

relying on these collected traces did not distinguish between the phones and the other Bluetooth-

enabled devices in data dissemination process [114, 115, 116, 118]. Obviously, for the forwarding of

the data message, if the selected forwarder is a mobile node, the forwarder has a higher probability

to meet other nodes and thus the message has a higher probability to reach the destination. In

contrast, if the forwarder is a computer, the forwarding process might be less efficient since the

computer (even the laptop computer) may not be carried with the user as much as the phone. To

the best of our knowledge, we are the first to collect the type of the devices. This information is

useful for the design of a data dissemination protocol, which takes into account the device type in

selecting the next forwarder of the data message.

B.1.3 Instant cluster size

Result in this section is obtained from the data set D1 in Table 7.1. We define the instant cluster

C as follows. If two ad hoc MAC u1 and u2 appear in one ad hoc scan of the phone p, then

(p,M1,M2) are in the same instant cluster C. As a result, all ad hoc MACs in one ad hoc scan of

the phone p are in the same instant cluster C. For two instant clusters C1 and C2, if C1 ∩C2 6= ∅,

then C3 = C1 ∪ C2 is an instant cluster. So, the definition of instant cluster is transitive.

In order to obtain the instant cluster, we use the ad hoc trace of the data set D1. For a recorded

time stamp t in the ad hoc trace, we consider a time window [t − 45(s), t + 45(s)] and aggregate

all ad hoc scanned results of all experiment phones within this time window into an aggregated
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Figure B.3: Device type and Instant Cluster Size Distrubution

record r. Then, we find the instant clusters within each aggregated record r, and for all records r.

The 90-second time window is reasonable since we assume that the cluster size remains unchanged

during this time window. Figure B.3(b) shows that about 90% of clusters in our data set have

sizes less than 6, which is a small cluster size. Since we already aggregate scanned data for 90 (s)

when calculating the cluster size, the cluster size of 6 implies that there are not many big clusters

in the network. Therefore, protocols in multicasting, content distribution, and congestion control

in DTNs context [164] may need to take this cluster size distribution into consideration.

This result has several insights. The cluster size depends on scanning frequency of the Bluetooth

scanner, number of experiment phones, and the phone’s Bluetooth hardware capability. More

importantly, in university campus, grads and faculties usually stay in their research offices. Mean-

while, the Bluetooth scanner can only scan Bluetooth-enabled devices in the range of 10 meters,

hence there might not be big clusters. For undergrads, their class sessions can give big clusters

of nodes with high probability. However, the scanning range of an experiment phone is about

10 meters while we have a limited number of undergrad participants in the same class session,

we may not be able to capture these clusters. Another possibility is there might not be many

Bluetooth-enabled devices in the class sessions. However, other trace collection methods face the

same challenges.
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Figure B.4: Contact Definition

B.2 Contact Analysis

Contact duration and inter-contact duration are two important metrics used to design data for-

warding protocols for DTNs. In this section, we analyze the contact duration and inter-contact

duration to provide more insights about these two metrics, which have not been provided in the pre-

vious studies [112, 114, 115, 116, 118]. Notice that the terms “contact duration” and “inter-contact

duration” are the same as the terms “contact time” and “inter-contact time” used in previous stud-

ies. We use these two new terms in this chapter since we believe the word “duration” represents

properly the meaning of time period while the word “time” does not. Notice that the result in this

section is obtained from the data set D1 in Table 7.1.

B.2.1 Contact definition

In our context, a phone p and an ad hoc MAC u are said to have a contact if u exists in the

Bluetooth scanned result of p. Let TC denote the contact duration between a phone p and an ad

hoc MAC u. TC could be calculated by using the scanning period δB . For example, let N be the

number of p’s consecutive scans where u appears in the scanned results, TC = N × δB . However,

due to the hardware limitation of the Bluetooth driver at the phone and the unreliable wireless

communication channel, it is possible that p does not receive u in its scanned result even when u

is inside the Bluetooth sensing range of p. Therefore, in previous works [112, 114, 115, 116, 118],

people accepted the missing scans in contact definition as follows: for p and u, although p does not

see u in its scanned result for a certain number of scans, p and u are still considered in contact if

the number of missing scans is acceptable. Figure B.4 shows an example of contact definition. Let

Si denote the scanned result of p at time ti. u1 and u2 are two ad hoc MACs scanned by the phone

p. If the accepted number of missing scan for this figure is 1, from ti to ti+4, p and u1 have one

contact with the duration of 4δB while p and u2 have two contacts with the durations of 2δB and

δB respectively.

The accepted number of missing scans depends on the trace collection procedures. For example,
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Figure B.5: Contact Sensitivity

in [114, 115, 116], the number of missing scans is one (with δB = 120(s)); however, in [118], this

number is 60 (with δB = 1(s)). To generalize this, we define ∆B as the accepted number of missing

scans in the definition of contact. The contact duration TC then depends on δB and ∆B. Notice

that ∆B defines the boundary between the two consecutive contacts of a node pair.

B.2.2 Impact of δB on contact duration

Figure B.5(a) shows the sensitivity of contact duration when we vary value of δB . To obtain this

plot, we have 6 students carry phones for 1 week, we set δB = 15(s) for the Bluetooth scanner.

Notice that the lower bound (hardware limitation) of Bluetooth scan frequency for Google phone is

12 (s) [165]. We have tried the Bluetooth scan every 10 (s) and most of the time the scanned results

are empty. Thus, we set δB = 15(s). Let D1
′ denote the data set obtained from these 6 phones with

δB = 15(s). Each element in D1
′ is the results obtained by one scan of any phone in the set of 6

phones. Since δB = 15(s), we can derive D2
′ data set from D1

′ using pseudo δ′B ∈ [15, 30, 45, 60] as

follows: if δ′B = 30(s), D2
′ is the set of odd or even scans in D1

′. With δ′B = 45(s), we take ith scan
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from D1
′ and put into D2

′, and skip the (i+1)th and (i+2)th scans. Figure B.5(a) is obtained from

these D2
′ sets of corresponding pseudo δ′B and ∆B = 0. Notice that this figure is in log-log scale.

The figure shows that with different values of δ′B , we obtain different curves. More importantly,

although the curves look similar in shape, the difference between them is significant, ranging from

15% to 20%. That means, the Bluetooth scanning period δB has important impacts on calculating

contact duration. This has not been investigated in previous studies [112, 114, 115, 116].

Figure B.5(a) also shows that a large amount of contacts (from 35% to 55%) are short contacts

(less than 15(s)). Previous studies [112, 114, 115, 116] have not studied the short contact dis-

tribution due to their low scanning frequency (see Table 7.2). Except one study in a workplace

environment [118], we are the first to study the distribution of short contact in university campus.

B.2.3 Impact of ∆B on contact duration

Besides δB , ∆B has an important role in defining the contact duration TC . This section studies

the impacts of ∆B on inter-contact duration and total number of contacts. Notice that the plots

in this section are obtained from entire data set D with δB = 60(s).

As defined in previous studies [114, 115, 116], inter-contact duration is the time duration between

the two consecutive contacts of a given node pair. It is well-known from the previous studies that

the inter-contact duration follows the power law [112, 114, 115, 116, 118, 166]. Figure B.5(b) shows

that overall the inter-contact duration follows the power law and about 60%-80% of inter-contact

duration is less than 1 hour. That means, if a pair of nodes meets at time t, this pair will meet

again within one hour after time t with high probability. This figure also shows that when ∆B

varies from 0 to 3, the inter-contact duration varies up to 15%, although the shapes of the curves

are similar. So, the value of ∆B has a clear impact on the inter-contact duration distribution.

Figure B.5(c) shows that when ∆B varies, the number of external contacts and internal contacts

in the data set D1 changes significantly 2. For the greater value of ∆B , the definition of contact

is more “robust” to missing scans and thus the contact lasts longer; thus, we have less number of

contacts. For example, when ∆B increases from 0 to 1, the number of external contacts decreases

more than 30% from about 80000 to about 50000, while that of internal contacts decreases more

than 60% from about 30000 to 10000. Similarly, when ∆B increases from 1 to 2, the number of

external contacts decreases 20% and that of the internal contacts decreases 30%.

2Definitions of internal and external contact can be found in [44].
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Figure B.6: Node Degree of Connectivity Graph

In conclusion, definition of contact depends on δB and ∆B. So, when using (inter-) contact

duration distribution reported in previous studies [114, 115, 116], the readers should carefully

consider corresponding values of δB and ∆B since they have significant impacts on (inter-) contact

duration distribution.

B.3 Mining Ad hoc Graph

We investigate the connectivity graph and contact graph formed by the ad hoc trace of the data

set D1 in Table 7.1.

B.3.1 Connectivity graph

In our context, the connectivity graph G =< V,E > is an undirected graph, which is defined as

follows. V is the set of nodes, including experiment phones and external ad hoc MACs. For a pair

of nodes v1, v2 ∈ V , if v1 is a phone and v2 appears in one scanned result of v1, then the edge

(v1, v2) ∈ E. Notice that, if v1 is a phone and v2, v3 exist in one scanned result of v1, then in our

context, (v1, v2) ∈ E, (v1, v3) ∈ E, but (v2, v3) /∈ E. This definition determines the node degree
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distribution of G in the following discussion.

Figure B.6 shows that the node degree3 distribution of the connectivity graph G follows the

Zipf distribution with a heavy-tailed cut-off at the node degree greater than 28. We also find that

node degree mean of G is 3.26. Next, we plot the node rank in terms of node degree in Figure

B.6(b). This figure shows that for the node rank greater than 28, the node degree follows the Zipf

distribution. We then focus on the first 28 nodes in Figure B.6(c), which shows that the node

degree linearly decreases with respect to the node rank. These 28 nodes are experiment phones,

which have a much higher node degree according to the definition of our connectivity graph. We

conclude that the node degree distribution of G exhibits an Exponential-Zipf distribution.

To further examine the structure of the graph G, we calculate the local clustering coefficient

(CC) [167] for all nodes in V . As shown in Figure B.7, more than 80% of nodes has CC = 0, these

nodes are all leaf nodes which have only one neighbor (i.e., the experiment phone). Since 80% of

nodes have CC = 0, the global CC of the graph is 0.157.

Moreover, we create a connectivity graph G1 =< V1, E1 > of experiment phones and calculate

the CC for G1. Here, V1 is the set of experiment phones and |V1| = 28. Also, for a pair of nodes

v1, v2 ∈ V1, if v2 appears in one scanned result of v1, then the edge (v1, v2) ∈ E1. Figure B.7 shows

that 60% of experiment phones have the local CC greater than 0.8, thus the global CC of G1 is

0.814, which indicates that the graph formed by phones is highly clustered.

From our analysis, G is a connected graph with 9015 nodes and graph diameter is 4. The low

mean of node degree (e.g., 3.26) results from the ad hoc MACs, which are the leaf nodes in the

graph with only edges to the experiment phones. From Figure B.6(b) we see that the first 50

nodes have degree greater than 25, these nodes form the hubs of G and reduce the graph diameter.

Meanwhile, we have only 28 phones, that means the external ad hoc MACs also are hubs in G.

3Number of direct neighbors of a node

149



This is further confirmed in Figure B.7 where the local CC of many phones in G1 is less than 1,

which means there exist cases where the two phones are not connected by a direct edge in G1. For

these cases, the external ad hoc MACs, which are hubs, connect these phones to make G connected

and reduce the graph diameter. Besides, although the global CC of the graph G is 0.157, it is

considerably greater than the global CC of a random graph with |V | = 9015 and mean node degree

3.26 (which is 3.26/9015 = 0.00036). So, we conclude that G exhibits a small-world network in

structure.

This finding has several implications. First, it is well-known that the social network is a small-

world network in structure, since the connectivity graph represents the social relationship among

nodes in the graph, the finding is an expected result. Second, since the connectivity graph is a

small-world network, there are hubs in the network, which can be exploited to expedite message

forwarding in the network. This further confirms the recent social-based forwarding protocols in

DTN research [147, 161, 149].

B.3.2 Contact graph

In our context, the contact graph GC =< VC , EC > is a “weighted” version of the connectivity

graph G. GC can be obtained from G as follows. For an edge (v1, v2) ∈ E, we have a weighted

edge (v1, v2)w ∈ EC , where the weight is the number of contacts between v1 and v2 in the ad hoc

trace. Notice that the definition of contact can be found in Section B.2.1 or from previous studies

[44, 114, 115, 116, 117].

For a vertex v1 ∈ VC , the weighted degree of v1 is the sum of weights of edges, which are adjacent

to v1 in GC . The graph GC is a connected graph with 9015 nodes. The graph diameter is 4 and

the mean of node weighted degree is 9.86. Figure B.8(a) shows that the node weighted degree

follows a Zipf distribution with a heavy-tailed cut-off. This is confirmed in Figure B.8(b) where

we plot the rank of nodes in terms of node weighted degree. In this figure, starting from rank

35th, node weighted degree follows very well the Zipf distribution. We then focus on the top 35

node rank in Figure B.8(c), which shows that the node weighted degree linearly decreases with

respect to node rank. Therefore, we conclude that the weighted node degree distribution exhibits

an Exponential-Zipf distribution.
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Figure B.8: Node Weighted Degree of Contact Graph

B.4 Characterizing Location Visit

The result in this section is taken from the data set D1 in Table 7.1. We apply the UIM Clustering

algorithm from Section 8.3 to obtain locations for the below analysis.

B.4.1 Location visit duration

In our context, we consider a phone p has a “location visit” with a location L if L appears once

in the location trace of p. Notice that the definition of “visit” between a phone and a location is

similar to the definition of contact between a phone and an ad hoc MAC. We first calculate the

“location visit duration”, which is the duration the phone stays at a particular location. Similar to

the contact definition, the definition of location visit depends on Wifi scanning frequency δW and

the accepted number of missing scans ∆W . In Figure B.9, we have δW = 30(min), ∆W = 0, and

we use the entire data set D. Figure B.9(a) shows that about 60% of location visits is less than 1

hour and the longest location visit is 10 hours. Since we have δW = 30(min), the result from this

figure relies on the following assumption: for two consecutive Wifi scans, if p scans the same set

of Wifi MACs, that means p stays at the same location during the last 30 (min). This might not
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Figure B.9: Location Visit Analysis

be true if the phone carriers move to another location and then come back to L within the last 30

(min). However, this is the common limitation of existing trace collection methods since we only

can obtain the “discrete” rather than “continuous” scanned result. The result in Figure B.9 also

results from our scan configuration since UIM scanners stop scanning at night to conserve phone

battery.

B.4.2 Location inter-visit duration

For a pair of phone p and location L, the inter-visit duration is the time duration between the two

consecutive visits of p at L. Figure B.9(b) shows the inter-visit duration distribution of our data

set. This result differs from the figure obtained from the association time between a laptop and

its Wifi access point 4, which was a heavy-tailed distribution as presented in previous study [127].

From this figure we see that the longest inter-visit duration is one week and for a pair of phone p

and location L, if p visit L at time t, it is unlikely that p will return to L after one hour.

B.4.3 Location popularity

In our context, the location L1 is more popular than the location L2 if there are more

Bluetooth MACs scanned by phones at L1 than at L2.

Notice that our Wifi scanner scans the Wifi MACs (e.g., the location) every 30 minutes while

the Bluetooth scanner scans every 60 (s). To obtain the popularity of locations in data set D1, we

combine the Bluetooth trace and Wifi trace using the scan time as follows. If at time t the phone

p appears at the location L in the data set D1 (e.g., p scans the Wifi APs of L), we look into

4A Wifi access point was a physical location in previous study.

152



 1

 10

 100

 1000

 1  10  100  1000
N

um
be

r 
of

 U
ni

qu
e 

 D
ev

ic
es

 a
t t

he
 L

oc
at

io
n

Location Rank

Number of Unique Devices

Figure B.10: Location Popularity

all ad hoc MACs scanned by p in the Bluetooth trace during the period [t − 5(min),t + 5(min)],

aggregate these ad hoc MACs, and assign them as scanned ad hoc MACs at the location L. After

repeating this for the entire data set D1 and for all locations from 170 locations, we then aggregate

all ad hoc MACs of the same location L into a unique set, which represents the set of ad hoc

MACs scanned at L by all experiment phones for the entire experiment period. Figure B.10 shows

the location popularity in terms of number of scanned ad hoc MACs at the locations (Notice that

the figure is in log-log scale). This figure shows that location popularity exhibits a heavy-tailed

distribution. Particularly, when location rank is greater than 10, the location popularity follows a

Zipf distribution.
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APPENDIX C

HYBRID EPIDEMIC DATA DISSEMINATION

C.1 Design of Hybrid Epidemic Protocol

As shown in Figure B.1(b), in many days during our experiment period, the number of scanned

Wifi MACs is more than that of ad hoc MACs. Also, in the data set D1 in Table 7.1, our 28

phones collected 7004 Wifi access points and 8508 Bluetooth-enabled devices during the experiment

period. So, we believe a data dissemination protocol, which uses both Wifi access points and ad

hoc contacts to forward data messages, becomes applicable in reality. This motivates us to design a

new data dissemination protocol named Hybrid Epidemic Data Dissemination protocol (or Hybrid

Epidemic protocol for short), which combines both Wifi access points and ad hoc contacts in data

dissemination.

Figure C.1 shows the network model of the Hybrid Epidemic protocol with two main components:

Wifi access points and mobile nodes. We assume that the Wifi access points are connected via

the WLAN or Internet connection (e.g., AP1 and AP2 are connected and can exchange data via

the WLAN backbone or Internet connection). Besides, the mobile nodes can communicate in

infrastructured-based and ad hoc modes. The ad hoc connectivity can be either Bluetooth or Wifi.

Figure C.1 also shows how the Hybrid Epidemic protocol works. Particularly, when the sender

P1 sends a message m to the receiver P5, P1 uploads m to the Wifi access point AP1
1 whenever

P1 is within the transmission range of AP1. At the same time P1 and other nodes in the network

perform the epidemic procedure to forward m toward the destination. For example, P1 sends the

message m to P2 when two mobile nodes are in contact. Again, P2 forwards m to P3 when P2 and

P3 are in contact, and so forth. After P1 uploads m to the Wifi access point AP1, AP1 broadcasts

m to other Wifi access points in the network. Upon receiving m from AP1, AP2 advertises m

to its surrounding area and thus if P4 is in AP2’s range, P4 can download m from AP2 via the

1We assume that the Wifi access point has the storage to cache data message.
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infrastructured connectivity. After that, P4 can use ad hoc contacts to expedite the forwarding of

m toward the receiver P5 when P4 and P5 are in contact. The receiver P5 can receive m from Wifi

access points or ad hoc contact.

We use the “forwarding delay” metric to evaluate Hybrid Epidemic protocol. For a pair of

sender/receiver (s/r), the forwarding delay is the time period since s starts sending m toward

r, until r receives m. We are seeking the answer for the question: how much forwarding delay

improvement the Hybrid Epidemic protocol can achieve. To obtain the answer, we compare Hybrid

Epidemic protocol to the Epidemic protocol [17], which only uses ad hoc contacts to forward data

messages (no Wifi access points are used in Epidemic protocol). The Epidemic protocol has been

the fundamental data dissemination protocol in DTN research [144]. In Figure C.1, if the Epidemic

protocol is used to forward data message m from P1 to P5, the forwarding path is P1, P2, P3, P5.

Notice that although Epidemic protocol incurs a high network overhead, it does achieve a high

delivery ratio and a nearly optimal forwarding delay [168] since Epidemic protocol exploits all

possible ad hoc paths from the sender to the receiver.

Since we are only interested in the forwarding delay rather than other metrics (e.g., network

overhead), we have left following design issues for our future work. First, we do not limit the

number of copies of m in the network (e.g., mobile node P1 makes a copy of m and forwards to

P2). That means, the message m is “flooded” to the entire network by the ad hoc contact and Wifi

access points2. Second, how long the Wifi access points cache the data messages is not the focus

of this paper. Figure B.10 shows that the location popularity follows a heavy-tailed distribution.

That means, it is possible that the Wifi access points at the more popular locations can cache data

message for a longer period so that mobile nodes have a higher probability to obtain the message.

Third, figure 7.9 shows that people movement is regular and they visit same locations for their daily

activities. Our protocol does not exploit this movement regularity in data dissemination yet. The

2This is the nature of epidemic data dissemination.
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Hybrid Epidemic protocol follows the trend of combining infostations and ad hoc connectivity to

improve data delivery in previous works [169][2], which were evaluated by mean of simulation. Our

main contribution in this paper is to evaluate and compare the performance of Hybrid Epidemic

and Epidemic protocols on the real movement trace obtained by UIM.

C.2 Evaluation Setting

As presented in a survey of 300 computer science faculty members and students [118], the forward-

ing delay that people can tolerate is from one to several hours, depending on the delay-tolerant

networking applications and services [118]. Therefore, we evaluate the performance of Hybrid

Epidemic protocol for a day-long period. Particularly, we compare the performance of Epidemic

protocol and Hybrid Epidemic protocol using the ad hoc trace and Wifi trace collected by 8 phones

carried by grad students in the same research group for two different days extracted from the data

set D1 in Table 7.1. Let D4 and D5 denote the collected traces for these two days.

Since the participants come from the same research group, D4,D5 provide richer sets of contacts

among 8 phones as well as a richer overlapping set of external ad hoc MACs. This is important for

the Epidemic protocol in order to improve the forwarding delay of the message since the performance

of this protocol depends fully on ad hoc contact. If D4 and D5 are traces collected by a random set

of participants, the data set may not have a good overlapping set of ad hoc MACs, which makes

the data forwarding unreachable or incurs an unacceptable long forwarding delay. Our formation of

D4 and D5 also represents the realistic scenario since 8 participants from the same research group

are from the same “community”, thus they may share mutual content interest and share mutual

contacts. Notice that D4 has 186 unique Bluetooth MACs while D5 has 209 unique Bluetooth

MACs.

Using the data sets D4 and D5, the Hybrid Epidemic protocol works as follows: for each data

set, at time t1 a phone P1 starts sending message m to a receiver P2. After time t1, P1 can forward

m to P4 if P1 sees P4 in its Bluetooth trace. At time t2 ≥ t1, P1 uploads m to the Wifi access points

AP1 if P1 sees AP1 in its Wifi trace at that time. After the time t2, another phone P3 can download

m from the Wifi access point AP3 if P3 sees AP3 in its Wifi trace. Notice that P3 also uses the ad

hoc contacts in its Bluetooth trace to forward m. In many cases P3 may receive m from its ad hoc

contacts before P3 encounters a Wifi access point. The the limitation of our Wifi scanner is that

UIM scan Wifi access points every 30 minutes and can not capture the “continuous” Wifi trace.
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Figure C.2: Performance of Hybrid Epidemic protocol

However, it is also the limitation of any Wifi scanners due to the battery consumption constraint.

More importantly, if we have a more frequently scanned Wifi trace (e.g., δW < 30(minutes)), the

performance of Hybrid Epidemic protocol may only improve since P3 can download m from its Wifi

access point at a earlier time after P1 uploads m to the Wifi access points. Here, P2 can receive m

from Wifi access point or ad hoc contact.

C.3 Performance Evaluation

We select 50 random pairs of (sender, receiver) from D4, and 50 random pairs of (sender, receiver)

from D5 and apply Epidemic protocol and Hybrid Epidemic protocol on the two data sets to

forward the message from the sender to the receiver. Figure C.2 shows that Hybrid Epidemic

protocol achieves much shorter average forwarding delay than Epidemic protocol (e.g., 3500 (s) and

5500 (s) for day 1 and day 2, respectively). This is because Hybrid Epidemic protocol combines

both ad hoc contact and Wifi access points to improve the forwarding of the data messages. In

our experiment, when Hybrid Epidemic protocol scheme is used to forward messages, the messages

always reach the destination. However, for Epidemic protocol, 10% and 17% of messages can not

reach the destination, for day 1 and day 2 respectively. Notice that in Figure C.2, the forwarding

delay for a pair (sender,receiver) is only taken for the average delay calculation if the message is

received at the receiver.
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