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ABSTRACT 

 

 

Bayesian predictive methods have a number of advantages over traditional statistical 

methods.  For one, Bayesian methods allow one to aggregate information from multiple sources 

(theoretical models, experimental data, and expert opinions).  In addition, a Bayesian prediction 

can be updated dynamically as new data becomes available.  Lastly, Bayesian methods are 

compatible with decision analytic methods such as value of information calculations.  Hence, 

when using a Bayesian approach, there is no guesswork in optimal (profit maximizing) design of 

experiments. 

Bayesian methods do however have one primary drawback over traditional statistical 

methods and that is that they tend to be more mathematically complex.  As a result, especially in 

complex problems, Bayesian methods see much less use than traditional statistical methods.  One 

example of this is in the prediction of functions. 

From a mathematical perspective, a function is simply a list of numbers, or in other 

words a vector.  Thus, when predicting a function, one is really just assigning a multivariate 

probability distribution.  What makes this problem fundamentally difficult, however, is that 

functions are generally defined over a continuous space.  Thus, when predicting a function, one 

must define an uncountably infinite dimensional probability distribution. 

Because of the high dimensionality, the general problem of Bayesian prediction of 

functions is very far from feasible.  However, certain families of these probability distributions 

can be treated.  In this work, functional probability distributions which satisfy a certain condition 

on their dependence structure (a chainlike dependence structure) will be considered.  In the first 

chapter, Bayesian updating of these probability distributions will be discussed.  In particular, we 

will show that the updated marginal distributions for any prediction which satisfies the condition 
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on the dependence structure can be calculated numerically using particle filtered Markov chains.  

In addition, analytic solutions for the updated marginals will be given for two families of 

functional probability distributions.  In the remaining chapters, these results will be applied to 

real world problems in manufacturing and marketing.  In chapters 2 and 3, stability limit 

prediction in high speed machining will be considered while in chapter 4 the focus will be on 

demand curve prediction. 
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CHAPTER 1 

MATHEMATICAL DEVELOPMENT 

Bayesian predictive methods have a number of advantages over traditional statistical 

methods.  For one, Bayesian methods allow one to aggregate information from multiple sources 

(theoretical models, experimental data, and expert opinions).  In addition, a Bayesian prediction 

can be updated dynamically as new data becomes available.  Lastly, Bayesian methods are 

compatible with decision analytic methods such as value of information calculations.  Hence, 

when using a Bayesian approach, there is no guesswork in optimal (profit maximizing) design of 

experiments. 

Bayesian methods do however have one primary drawback over traditional statistical 

methods and that is that they tend to be more mathematically complex.  As a result, especially in 

complex problems, Bayesian methods see much less use than traditional statistical methods.  One 

example of this is in the prediction of functions. 

From a mathematical perspective, a function is simply a list of numbers, or in other 

words a vector.  Thus, when predicting a function, one is really just assigning a multivariate 

probability distribution.  What makes this problem fundamentally difficult, however, is that 

functions are generally defined over a continuous space.  Thus, when predicting a function, one 

must define an uncountably infinite dimensional probability distribution. 

Because of the high dimensionality, the general problem of Bayesian prediction of 

functions is very far from feasible.  However, certain families of these probability distributions 

can be treated.  In this work, functional probability distributions which satisfy a certain condition 

on their dependence structure (a chainlike dependence structure) will be considered.  In the first 

chapter, Bayesian updating of these probability distributions will be discussed.  In particular, we 
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will show that the updated marginal distributions for any prediction which satisfies the condition 

on the dependence structure can be calculated numerically using particle filtered Markov chains.  

In addition, analytic solutions for the updated marginals will be given for two families of 

functional probability distributions.  In the remaining chapters, these results will be applied to 

real world problems in manufacturing and marketing.  In chapters 2 and 3, stability limit 

prediction in high speed machining will be considered while in chapter 4 the focus will be on 

demand curve prediction. 

 

1.1 MODEL ASSUMPTIONS 

The model used throughout this paper will be assumed to satisfy the following: 

Assumption I – Locality Property.  Given 𝑋𝑖  and 𝑋𝑘 , 𝑋𝑗  is irrelevant to 𝑋𝑕  and 𝑋𝑙  for all 𝑕 < 𝑖 <

𝑗 < 𝑘 < 𝑙 

𝑃 𝑋𝑗  𝑋𝑕 , 𝑋𝑖 , 𝑋𝑘 , 𝑋𝑙 = 𝑃 𝑋𝑗  𝑋𝑖 , 𝑋𝑘    ∀ 𝑕 < 𝑖 < 𝑗 < 𝑘 < 𝑙         

Assumption II – Separable Measurement.  All information relevant to the prediction of function 

can be separated into information directly relevant to the stability limit prediction at a single 

spindle speed. 

These assumptions can be illustrated using an influence diagram (Fig. 1.1).  Here, 𝑋𝑖  

denotes the dependent variable depth when the independent variable is equal to 𝑡𝑖  and 𝐼𝑖  denotes 

the information directly relevant to 𝑋𝑖 , and 𝐼 denotes the set of all 𝐼𝑖 .  Thus, the prediction for the 

axial 𝑋 𝑡𝑖  distribution 𝑃 𝑋𝑖  𝐼 .   
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1.2  EXPRESSING 𝑃 𝑋𝑖  𝐼  IN TERMS OF EXPECTATIONS OF MARKOV CHAINS 

The prediction for 𝑋 𝑡𝑖  conditioned on all relevant information  𝑃 𝑋𝑖 𝐼  can be calculated by 

first applying Bayes’ rule (Eq. 1.1).  For brevity, normalization will be neglected throughout this 

chapter. 

𝑃 𝑋𝑖  𝐼 = 𝑃 𝐼 𝑋𝑖 𝑃 𝑋𝑖         (1.1) 

Noting the dependence structure of Figure 1.1, this can be decomposed as  

𝑃 𝑋𝑖  𝐼 = 𝑃 𝐼𝑖  𝑋𝑖 𝑃 𝐼𝐿 𝑋𝑖 𝑃 𝐼𝑅 𝑋𝑖 𝑃 𝑋𝑖 . 

By again applying Bayes’ rule and rearranging, 𝑃 𝐼𝐿 𝑋𝑖  and 𝑃 𝐼𝑅 𝑋𝑖  can be expressed as 

𝑃 𝐼𝐿 𝑋𝑖 =
𝑃 𝑋𝑖  𝐼𝐿 

𝑃 𝑋𝑖 
             (1.2) 

𝑃 𝐼𝑅 𝑋𝑖 =
𝑃 𝑋𝑖 𝐼𝑅 

𝑃 𝑋𝑖 
.          (1.3) 

Inserting Eq. 1.2 and 1.3 into Eq. 1.1 and simplifying, 𝑃 𝑋𝑖 𝐼  is given by 

𝑃 𝑋𝑖  𝐼1 , 𝐼2 , … , 𝐼𝑚  =
𝑃 𝐼𝑖 𝑋𝑖 𝑃 𝑋𝑖  𝐼𝐿 𝑃 𝑋𝑖 𝐼𝑅 

𝑃 𝑋𝑖 
.       (1.4)              

Information Relevant to the Prediction 𝐼 

Theoretical Prediction 

𝑋𝑗
𝐵  𝑋𝑖+1  

𝐼𝑖+1 

 

𝐼𝑖+2 

 

𝑋𝑖+2  …. 

𝐼𝑚  

 

𝑋𝑚  𝑋𝑖−2  𝑋𝑖−1  

 

𝑋𝑖  

 

…. 𝑋1  

𝐼𝑖−2 

 

𝐼𝑖−1 

 

𝐼1 

 

𝐼𝑖 

 

𝐼𝑅  𝐼𝐿  

Figure 1.1: Influence diagram depicting the dependence structure assumed throughout this work. 
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Applying the law of total probability, 𝑃 𝑋𝑖 𝐼𝐿  and 𝑃 𝑋𝑖  𝐼𝑅  can be expanded as 

𝑃 𝑋𝑖 𝐼𝐿 =  𝑃 𝑋1, 𝑋2, . . , 𝑋𝑖 𝐼𝐿  𝑑𝑋𝑗

𝑖−1

𝑗 =1ℝ𝑖−1

          (1.5)              

𝑃 𝑋𝑖  𝐼𝑅 =  𝑃 𝑋𝑖+1, 𝑋𝑖+2, . . , 𝑋𝑚  𝐼𝑅  𝑑𝑋𝑘

𝑚

𝑘=𝑖+1ℝ𝑚 −𝑖−1

    (1.6)      

By again noticing the dependence structure of Fig. 1.1, these expressions can be simplified to 

𝑃 𝑋𝑖  𝐼𝐿 =   𝑃 𝑋1   𝑃 𝑋𝑗+1 𝑋𝑗  𝑃 𝐼𝑗  𝑋𝑗 𝑑𝑋𝑗

𝑖−1

𝑗 =1

  

ℝ𝑖−1

      (1.7) 

𝑃 𝑋𝑖  𝐼𝑅 =   𝑃 𝑋𝑚    𝑃 𝑋𝑘−1 𝑋𝑘 𝑃 𝐼𝑘  𝑋𝑘 𝑑𝑋𝑘

𝑚

𝑘=𝑖+1

  

ℝ𝑚 −𝑖−1

     (1.8). 

At this point, it is useful to introduce some alternate notation: 

𝑉𝑖 𝑥𝑖 ≡ log 𝑃 𝐼𝑖  𝑋𝑖 = 𝑥𝑖  ∀𝑖 

𝜑1 𝑥1 ≡ 𝑃 𝑋1 = 𝑥1  

𝜑𝑖 𝑥𝑖 ≡ 𝑃 𝑋𝑖 = 𝑥𝑖 𝐼𝐿  ∀𝑖 

𝜑 𝑚  𝑥𝑚  ≡ 𝑃 𝑋𝑚 = 𝑥𝑚   

𝜑 𝑖 𝑥𝑖 ≡ 𝑃 𝑋𝑖 = 𝑥𝑖 𝐼𝑅  ∀𝑖. 

Using this notation, 𝑃 𝑋𝑖 𝐼  can now be expressed as 

𝑃 𝑋𝑖 = 𝑥𝑖 𝐼 = 𝑒𝑉𝑖 𝑥𝑖 
𝜑𝑖 𝑥𝑖 𝜑 𝑖 𝑥𝑖 

𝑃 𝑋𝑖 
              (1.9) 

𝜑𝑖 𝑥𝑖 =   exp   𝑉𝑗 ′ 𝑥𝑗 ′ 

𝑖−1

𝑗 ′=1

  𝜑1 𝑥1  𝑃 𝑋𝑗 +1 𝑋𝑗 𝑑𝑋𝑗

𝑖−1

𝑗 =1

          (1.10)      

ℝ𝑖−1

 

𝜑 𝑖 𝑥𝑖 =   exp   𝑉𝑘 ′ 𝑥𝑘 ′ 

𝑚

𝑘 ′=𝑖+1

  𝜑 𝑚  𝑥𝑚  𝑃 𝑋𝑘−1 𝑋𝑘 𝑑𝑋𝑘

𝑚

𝑘=𝑖+1

  

ℝ𝑚 −𝑖−1

   (1.11) 
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From these equations, it follows that 𝜑𝑖 𝑋𝑖  and 𝜑 𝑖 𝑋𝑖  can each be expressed as the 

expectation of a markov chain.  In particular, suppose one defines Markov chains 

 𝑌𝑡  𝑡 ∈ 1,2, … , 𝑚  and  𝑌 𝑡  𝑡 ∈ 𝑚, 𝑚 − 1, … ,1  (reversed indexing denotes m is the initial state 

and 1 as the final state) such that the transition probabilities are given by   

𝑃 𝑌𝑡+1 𝑌𝑡 = 𝑃 𝑋𝑡+1 𝑋𝑡    1 ≤ 𝑡 < 𝑚        (1.12) 

𝑃 𝑌 𝑡−1 𝑌 𝑡 = 𝑃 𝑋𝑡−1 𝑋𝑡    1 < 𝑡 ≤ 𝑚.                (1.13) 

Then  𝜑𝑖 𝑋𝑖  and 𝜑 𝑖 𝑋𝑖  can be rewritten as an expectation of the processes 𝑌𝑡  and 𝑌 𝑡  

respectively (Eq. 1.14- 1.15).   

𝜑𝑖 𝑥𝑖 = 𝔼𝑌𝑡   𝜑1 𝑌1 exp   𝑉𝑗  𝑌𝑗  

𝑖−1

𝑗 =1

  𝑌𝑖 = 𝑥𝑖         (1.14) 

𝜑 𝑖 𝑥𝑖 = 𝔼𝑌 𝑡   𝜑 𝑚 𝑌 𝑚 exp   𝑉𝑘 𝑌 𝑘 

𝑚

𝑘=𝑖+1

  𝑌 𝑖 = 𝑥𝑖         1.15 . 

Here, the expectation is understood to be taken over all instances of the process.  In other 

words, 𝜑𝑖 𝑥𝑖  (or 𝜑 𝑖 𝑥𝑖 ) can be found by generating a large number of instances of 𝑌𝑡  (or 𝑌 𝑡), 

calculating exp  𝑉𝑘 𝑌 𝑘 
𝑚
𝑘=𝑖+1   for each instance, and then summing over all instances which 

satisfy 𝑌𝑖 = 𝑥𝑖  (or 𝑌 𝑖 = 𝑥𝑖). 

While the iterated integral representation of Eq. 1.10-1.11 cannot be extended to the 

continuous case (as this would require a continuum of iterated integrals), the Markov chain 

representation (Eq. 1.14-1.15) holds when a continuum of 𝑋𝑖 ′𝑠 are considered.  However, a slight 

change of notation is required: 

𝑋𝑖 → 𝑋 𝑡𝑖  

 𝑌𝑡  𝑡 ∈ 1,2, … , 𝑚 →  𝑌𝑡 𝑡1 ≤ 𝑡 ≤ 𝑡𝑚   

 𝑌 𝑡 𝑡 ∈ 𝑚, 𝑚 − 1, … ,1 →  𝑌 𝑡 𝑡𝑚 ≥ 𝑡 ≥ 𝑡1  
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𝜑𝑖 𝑥𝑖 → 𝜑 𝑡𝑖 , 𝑥   

𝜑 𝑖 𝑥𝑖 → 𝜑  𝑡𝑖 , 𝑥   

𝑉𝑖 𝑥𝑖 → 𝑉 𝑡𝑖 , 𝑥  

In the continuous case, Equations 1.14-1.15 then take the form 

𝜑 𝑡, 𝑥 = 𝔼𝑌𝑡   𝜑 𝑡, 𝑌𝑡1
 exp   𝑉 𝜏, 𝑌𝜏 

𝑡

𝑡1

𝑑𝜏  𝑌𝑡 = 𝑥    (1.16) 

𝜑  𝑡, 𝑥 = 𝔼𝑌 𝑡   𝜑  𝑡, 𝑌 𝑡𝑚  exp   𝑉 𝜏, 𝑌 𝜏 
𝑡

𝑡𝑚

𝑑𝜏  𝑌 𝑡 = 𝑥    (1.17) 

 

1.3  ANALYTIC SOLUTIONS FOR 𝜑 𝑡, 𝑥  AND 𝜑  𝑡, 𝑥  FOR ITŌ PROCESSES 

The advantages of expressing 𝜑 𝑡, 𝑥  and 𝜑  𝑡, 𝑥   as expectations of Markov chains are 

at least twofold.  First, regardless of the transition probabilities, the expectations can be 

approximated using either Markov chain Monte Carlo methods or particle filtered Markov 

chains.  Secondly, for certain classes of transition probabilities, equations (1.16) and (1.17) have 

known analytic solutions.   

One such example is when the transition probabilities are defined such that 𝑌𝑡  and 𝑌 𝑡  are 

Itō processes (Fig. 1.2).  Itō processes are essentially the continuous version of random walks 

(Fig 1.2) and if and only if  𝑌𝑡 𝑡1 ≤ 𝑡 ≤ 𝑡𝑚   is an Itō process, it can be expressed in the form 

𝑌𝑡 = 𝑌𝑡1
+  𝜇 𝜏, 𝑌𝜏 

𝑡

𝑡1

𝑑𝜏 +  𝜎 𝜏, 𝑌𝜏 
𝑡

𝑡1

𝑑𝐵𝜏 .       (1.18) 

From equations (1.12-1.13), it follows that for  𝑌𝑡  𝑡1 ≤ 𝑡 ≤ 𝑡𝑚  defined by Eq. (1.18), 

 𝑌 𝑡 𝑡𝑚 ≥ 𝑡 ≥ 𝑡1  must take the form  

𝑌 𝑡 = 𝑌 𝑡𝑚 −  𝜇 𝜏, 𝑌 𝜏 
𝑡

𝑡𝑚

𝑑𝜏 +  𝜎 𝜏, 𝑌 𝜏 
𝑡

𝑡𝑚

𝑑𝐵𝜏 .   (1.19) 
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Figure 1.2: Discretized representation of an Itō process (random walk). At each step, the process moves one step 

in the +x direction with probability p1, doesn’t move at all with probability p2, or moves one step in the –x direction 

with probability p3=1- p1- p2.  The drift and diffusion fields are determined by the choice for p1, p2 and p3.  I would 

like to thank Ali Abbas for allowing me to use this figure. 

 

In these equation, 𝐵𝑡  denotes a standard Brownian motion (or wiener process) and an integral 

with respect to 𝐵𝑡  is understood in the stochastic sense (as an Itō integral).  The field 𝜇 𝑡, 𝑥  is 

referred to as the drift field and is formally related to 𝑌𝑡  by the expression  

𝜇 𝑡, 𝑥 = lim
𝜀↓0

 
𝔼𝑥  𝑌𝑡+𝜀 − 𝑌𝑡 |𝑌𝑡 = 𝑥 

𝜀
 . (1.20) 
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Informally, 𝜇 𝑡, 𝑥  can be thought of as the expected slope of 𝑋 𝑡  given that 𝑋 𝑡 = 𝑥.  

The field   𝜎 𝑡, 𝑥  is referred to as the diffusion field and is formally related to 𝑌𝑡  by the 

expression 

𝜎 𝑡, 𝑥 =  lim
𝜀↓0

 
𝔼𝑥   𝑌𝑡+𝜀 − 𝑌𝑡 2|𝑌𝑡 = 𝑥 

𝜀2
 .        (1.21) 

Informally, 𝜎 𝑡, 𝑥  can be thought of as the standard deviation of the slope of 𝑋 𝑡  given 

that 𝑋 𝑡 = 𝑥.  Thus, when 𝜎 𝑡, 𝑥 = 0, there is no uncertainty in the slope of 𝑋 𝑡  and when 

𝜎 𝑡, 𝑥  is large there is a lot of uncertainty in the slope of 𝑋 𝑡 . 

When the transition probabilities are defined such that 𝑌𝑡  is an Itō process, the 

expectations in Eq. 1.18 and Eq. 1.19 can be evaluated analytically by applying the Feynman-

Kac formula. The Feynman-Kac formula states that for an Itō process defined by drift field 

𝜇 𝑡, 𝑥  and diffusion field 𝜎 𝑡, 𝑥 , 𝜑 𝑡, 𝑥  as defined by Eq. 1.16 is given by the solution to the 

initial value problem 

 
𝜕

𝜕𝑡
 𝜑 𝑡, 𝑥 =  

1

2
𝜎 𝑡, 𝑥 2  

𝜕

𝜕𝑥
 

2

+ 𝜇 𝑡, 𝑥 
𝜕

𝜕𝑥
+ 𝑉 𝑡, 𝑥  𝜑 𝑡, 𝑥        (1.22) 

𝜑 𝑡1, 𝑥 ≡ 𝑃 𝑋 𝑡1 = 𝑥 . 

Similarly, 𝜑  𝑡, 𝑥  as defined by Eq. 1.17 is given by the solution to the initial value 

problem: 

 −
𝜕

𝜕𝑡
 𝜑  𝑡, 𝑥 =  

1

2
𝜎 𝑡, 𝑥 2  

𝜕

𝜕𝑥
 

2

− 𝜇 𝑡, 𝑥 
𝜕

𝜕𝑥
+ 𝑉 𝑡, 𝑥  𝜑  𝑡, 𝑥       (1.23) 

𝜑  𝑡𝑚 , 𝑥 ≡ 𝑃 𝑋 𝑡𝑚  = 𝑥 . 
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1.4  ANALYTIC SOLUTIONS FOR 𝜑 𝑡, 𝑥  AND 𝜑  𝑡, 𝑥  FOR RELATIVISTIC ITŌ 

PROCESSES 

 Another example yielding analytic solutions is when the transition probabilities are 

defined such that 𝑌𝑡  and 𝑌 𝑡  are given by what will be referred to as relativistic Itō processes.   

Relativistic Itō processes differ from regular Itō processes in that a relativistic Itō process 𝑌𝑡  

satisfies the constraint 

 
𝑌𝑡+𝛿 − 𝑌𝑡

𝛿
 < 𝑐   ∀𝛿 . 

In other words, the slope of all sample paths of a relativistic Itō process are bounded by 

some fixed 𝑐. Thus, when predicting a function 𝑋 𝑡  which is known to satisfy some constraint 

on the slope, such as monotoncity, a relativistic Itō process can be used to enforce this constraint 

while a standard Itō process cannot.   

Formally, the construction of a relativistic Itō process differs from the construction of a 

standard Itō process in how distances and angles in the  𝑡, 𝑥  plane are treated.  For a standard Itō 

process, the plane is treated as a Euclidean (classical) space-time as for a relativistic Itō process, 

the plane is treated as Minkowskian (relativistic) space-time. For the purposes of taking the 

expectation of the process, the difference between the two is that for a Minkowskian space-time, 

the Laplacian operator must be changed to the D’Alembertian operator: 

 
𝜕

𝜕𝑥
 

2

→  
𝜕

𝜕𝑥
 

2

−  
1

𝑐

𝜕

𝜕𝑡
 

2

. 

Thus, when the transition probabilities are defined such that 𝑌𝑡  and 𝑌 𝑡  are given by relativistic Itō 

processes, Eq. 1.18 and 1.19 are given by the initial value problems 
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𝜕

𝜕𝑡
 𝜑 𝑡, 𝑥 =  

1

2
𝜎 𝑡, 𝑥 2   

𝜕

𝜕𝑥
 

2

−  
1

𝑐

𝜕

𝜕𝑡
 

2

 + 𝜇 𝑡, 𝑥 
𝜕

𝜕𝑥
+ 𝑉 𝑡, 𝑥  𝜑 𝑡, 𝑥        (1.24) 

𝜑 𝑡1, 𝑥 ≡ 𝑃 𝑋 𝑡1 = 𝑥 . 

 

 −
𝜕

𝜕𝑡
 𝜑  𝑡, 𝑥 =  

1

2
𝜎 𝑡, 𝑥 2   

𝜕

𝜕𝑥
 

2

−  
1

𝑐

𝜕

𝜕𝑡
 

2

 − 𝜇 𝑡, 𝑥 
𝜕

𝜕𝑥
+ 𝑉 𝑡, 𝑥  𝜑  𝑡, 𝑥       (1.25) 

𝜑  𝑡𝑚 , 𝑥 ≡ 𝑃 𝑋 𝑡𝑚  = 𝑥 . 

 

1.5 REVIEW OF MATHEMATICAL DEVELOPMENT 

 To review, for any problem satisfying assumptions I and II, the prediction for 𝑋𝑖   (or 

𝑋 𝑡𝑖  in the continuous case) conditioned on all relevant information 𝑃 𝑋𝑖  𝐼  (𝑃 𝑋 𝑡𝑖  𝐼 ) is 

given by equation 1.9 where the terms 𝜑𝑖 𝑥𝑖  and 𝜑 𝑖 𝑥𝑖  (𝜑 𝑡, 𝑥  and 𝜑  𝑡, 𝑥 ) can each be 

written as the expectation of a Markov process (Eq. 1.14-1.15 (1.16-1.17)).  Regardless of the 

specific choice of transition probabilities, these expectations can be approximated using Markov 

chain Monte Carlo methods or particle filtered Markov chains.  In addition, when that the 

transition probabilities are defined such that the resultant Markov processes are Itō processes or 

relativistic Itō processes, the expectations can be evaluated analytically as solutions to initial 

value problems (Eq. 1.22-1.25). 
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CHAPTER 2 

OPTIMAL EXPERIMENTATION FOR SELECTING STABLE MILLING 

PARAMETERS: A BAYESIAN APPROACH 

In the remaining chapters, the focus will shift from mathematical development of the 

Bayesian model to how the model can be applied to real world problems.  In this chapter, the 

problem of stability limit prediction in high speed machining will be introduced.  Primarily, this 

chapter will be concerned with illustrating the advantages of Bayesian prediction of functions 

and how one could actually go about applying the methods in a relatively simple setting.  In 

particular, this chapter will first cover how a simple experiment (performing a test cut and 

manually inspecting it to determine whether the test cut was stable or unstable) can be used to 

update one’s prediction of the stability limit.  Next, the concept of value of information will be 

introduced and how it can used to determine an optimal sequence of experiments to perform will 

be discussed.  Lastly, a simulated case study is presented. 

 

2.1  INTRODUCTION 

Both physically and economically motivated uncertainties are often present in manufacturing 

decision situations. To deal with these uncertainties, predictive models can be used. Most 

methods for predicting functions are statistically based, including regressions and curve fits. 

However, these methods may be inadequate for the prediction of complex functions, such as 

those that arise in machining dynamics, since there is no rigorous method of aggregating 

information from multiple sources (experimental data, simulation data, and theoretical 

predictions) and they do not quantify the value of information gathering activities. 
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Although Bayesian methods for predicting functions can be mathematically complex, they 

have two major advantages over other approaches. First, any information known (or learned 

through experiment) about the function can be incorporated. This makes these methods more 

versatile than statistical methods, which are most compatible with simple sets of observables. 

Second, Bayesian methods enable information to be valued based on its influence on profit, 

which makes it possible to systematically choose an information gathering scheme that 

maximizes profit.  

Since Bayesian methods have not been widely applied in manufacturing, the focus of this 

work is to explore their use in this field. To aid in the explanation, stability limit prediction is 

examined. In Section 2.2, general Bayesian probability assignment is discussed. In Section 2.3, 

Brownian distributions are introduced.  In Section 2.4, a case study involving stability limit 

prediction is presented.  In this case study, the stability limit is modeled using Brownian 

distributions.  These predictions are then used to approximate an optimal experimental design.  

Section 2.5 introduces the basics of building complex correlative structures from an underlying 

dynamical model. 

 

2.2  BAYESIAN PREDICTION OF FUNCTIONS 

These methods are fundamentally different from curve-fitting methods in that they treat a set 

of predictions rather than a single prediction. Methods which use a single curve as a prediction 

only answer a single question about an unknown function g(x): 

Given an arbitrary knowledge state, what is the most likely g(x)? 

In contrast, Bayesian methods assign a probability to every function. In other words, for any 

g(x) the following question can be answered: 
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Given an arbitrary knowledge state, how likely is it that an arbitrary function = g(x)? 

The advantage of this approach is that arbitrary information regarding the function of interest 

can be incorporated into the predictive model. For example, abstract functional assumptions that 

can’t be handled by statistical methods, such as monotonicity, differentiability class, or 

periodicity, can be incorporated. In addition, multiple informative statements can be aggregated 

in a mathematically rigorous manner.  

Mathematically, probability assignment over a functional space is equivalent to assigning a 

multivariate distribution over infinite dimensions. This assignment can be simplified by 

assigning a distribution only over the set of all measurable quantities. The most general set of 

measurable quantities is the set of all functionals, i.e., any operator which takes a function as an 

input and produces a scalar, such as a definite integral. However, in most situations, this can be 

expressed in terms of a finite number of dimensions. The set of all observables is denoted 𝑂   and 

individual observable is denoted as Oi. 

Probability density functional (pdf) 𝑓𝑂   𝑔 𝑥   

For an indexed set of n observables 𝑂   and any values of oi, 1<i<n, the probability density 

functional answers the question: 

What is the probability that {O1,O2,…On} = {o1,o2,…on}? 

 

Marginal probability distribution 𝑓𝑂𝑗
 𝑜𝑗   

The marginal probability distribution answers the question: 

Given no information about any other observables, what is the probability that observable J = j? 

In terms of the pdf, it is given by: 

𝑓𝑂𝑗
 𝑜𝑗 =  𝑓𝑂   𝑔 𝑥  

𝑅𝑛−1
 𝑑𝑜𝑖𝑖≤𝑛,𝑖≠𝑗    (2.1) 
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Marginal distributions of multiple observables are defined similarly. 

Conditional distributions 𝑓𝑂1…𝑂𝑚 |𝑂𝑚 +1…𝑂𝑛
 𝑜1, . . 𝑜𝑚   

A conditional probability distribution answers the question (note that the Oi can be indexed 

arbitrarily): 

Given that {O1,O2,…,Om} = {o1,o2…om}, what is the probability that {Om+1,Om+2,…,On} = 

{om+1,om+2…on}? 

Mathematically, the conditional probability distribution is given by the pdf divided by a marginal 

distribution: 

𝑓𝑂1…𝑂𝑚 |𝑂𝑚 +1…𝑂𝑛
 𝑜1, . . 𝑜𝑚  =

𝑓
𝑂    

 𝑔 𝑥  

𝑓𝑂𝑚 +1,…,𝑂𝑛  𝑜𝑚 +1 
  (2.2) 

 

2.3  BROWNIAN DISTRIBUTIONS 

Suppose that the set of observables is chosen as the values of g(x) for all values of x. 

Furthermore, assume that the value of g(x) for an arbitrary x depends only on the value of g in a 

small neighborhood of x. In terms of the conditional probabilities, this is given by: 

for any x1< x2< x3< x4< x5 

𝑓𝑔(𝑥3)|𝑔(𝑥2),𝑔(𝑥4) = 𝑓𝑔(𝑥3) 𝑔 𝑥1 ,𝑔(𝑥2 ,𝑔 𝑥4 ,𝑔(𝑥5)          (2.3) 

With these assumptions, g(x) can instead be represented in terms of its derivative with respect to 

x, ġ(x,g) [2.1]. The advantage of this representation is that by Eq. (2.3) all ġ(x,g) are independent 

of each other. If it is assumed that ġ(x,g) are generated from distributions in the exponential 

family, the pdf can be written in terms of a definite integral. If ġ(x,g) is assumed to be normally 

distributed for every {x,g}, the probability density functional takes the form: 

𝑓𝑔(𝑥) 𝑔(𝑥) = 𝑒𝑥𝑝 − 𝑘 𝑥, 𝑔  𝑔  𝑥, 𝑔 − 𝜇 𝑥, 𝑔  
2

      +      𝑐 𝑥, 𝑔 
∞

−∞

𝑑𝑥   (2.4) 
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where 𝑘 𝑥, 𝑔  is the diffusion field, 𝜇 𝑥, 𝑔  is the drift field, and 𝑐 𝑥, 𝑔  is the creation and 

killing field. 

Distributions which take this form are referred to as Brownian distributions. Brownian 

distributions are ideal for predicting and updating when little is known about the function in 

question. Provided that any information gained through experiment can be expressed in terms of 

g or its slope at each point, any distribution updated from a Brownian distribution will also be a 

Brownian distribution. If the experiment measures g directly, the creation and killing field is 

updated. If an experiment measures ġ, the drift field is updated. The diffusion field may be 

updated in either situation and can be thought of as a measure of uncertainty at {g,x}. 

 

2.4  STABILITY LIMIT PREDICTION USING BROWNIAN DISTRIBUTIONS 

To illustrate how Bayesian methods can be used in a manufacturing application, consider the 

prediction of the speed-dependent stability limit in milling. The stability limit has a particularly 

complex structure, since it generally has multiple non-differentiable points (Fig. 2.1). For the 

numerical example provided here, the true stability limit is generated using the algorithm 

described in [2.2]. The input parameters used for the algorithm are summarized in Table A.1 of 

Appendix A. 

Spindle speed 

Axial 

depth 

Unstable 

(chatter) 

Stable 

Figure 2.1: Example stability lobe diagram. 
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For this study, a Brownian distribution is used to describe the initial knowledge state (Table 

A.2 gives the parameter fields). In addition, it is assumed that the stability limit is known to 

occur below an axial depth gmax known a priori. While this may be an unrealistic assumption in 

practice, the bound provides an intuitive link between the imposed constraint and c(x,g). 

Here, new knowledge is gathered using only simple stability testing. In stability testing, a 

machinist selects an axial depth-spindle speed combination, performs a test cut, and examines 

the cut to determine whether the parameters provided stable or unstable operation. For this 

numerical evaluation, the “testing” is simulated by comparing the selected test 

parameters 𝑥𝑖
𝑡 , 𝑔𝑖

𝑡  to the predefined/reference stability limit (via the stability lobe diagram 

generated using the parameters listed in Table A.1). 

The knowledge gained from a simple stability test can be expressed as an inequality 

constraint on g(x).  If a test is stable, the stability limit must occur above that point; see Eq. 

(2.5a).  If a test is unstable, the stability limit must occur below that point; see Eq. (2.5b).  

𝑔 𝑥𝑖
𝑡  < 𝑔𝑖

𝑡  𝑖𝑓 𝑡𝑒𝑠𝑡 𝑖 𝑠𝑡𝑎𝑏𝑙𝑒   (2.5a) 

𝑔 𝑥𝑖
𝑡 > 𝑔𝑖

𝑡  𝑖𝑓 𝑡𝑒𝑠𝑡 𝑖 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒  (2.5b) 

Since simple stability testing updates knowledge of g(x) directly, the probability density 

functional for any updated knowledge state can be expressed by updating the creation and killing 

field. The constraints of Eqs. (2.5a) and (2.5b) can be imposed by “killing” all g(x) which do not 

satisfy these constraints. For an arbitrary number of simple stability tests, the updated creation 

and killing field is given by Eq. (2.6). 
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𝑐𝑢𝑝  𝑥, 𝑔 =

 
 
 

 
 

∞ 𝑓𝑜𝑟 𝑔 < 0
∞ 𝑓𝑜𝑟 𝑔 > 𝑔𝑚𝑎𝑥

∞ 𝑓𝑜𝑟 𝑔 𝑥𝑖
𝑡  < 𝑔𝑖

𝑡  𝑖𝑓 𝑡𝑒𝑠𝑡 𝑖 𝑠𝑡𝑎𝑏𝑙𝑒

∞ 𝑓𝑜𝑟 𝑔 𝑥𝑖
𝑡 > 𝑔𝑖

𝑡 , 𝑖𝑓 𝑡𝑒𝑠𝑡 𝑖 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  (2.6) 

In order to gauge how performing an experiment will affect profit, the decisions that are 

affected by knowledge of the stability limit should be considered.  In this study, the decision 

situation consists of selecting an axial depth-spindle speed combination {xop, gop} at which to mill 

away a cube of material (see Table A.3 in Appendix A for additional parameters). Profit for 

stable operation, P(xop,gop), is calculated using the approach provided in [2.3]. Profit when the 

operating parameters are unstable is assumed to be zero here, although the effects of chatter can 

generally be removed by additional finishing operations in practice.  

For a fixed knowledge state, the probability of stability for an arbitrary spindle speed-axial 

depth combination 𝑃𝑠𝑡𝑎𝑏  𝑥𝑜𝑝 , 𝑔𝑜𝑝  can be expressed in terms of a marginal distribution; see Eq. 

(2.7). 

𝑃𝑠𝑡𝑎𝑏  𝑥𝑜𝑝 , 𝑔𝑜𝑝 =  𝑓𝑔𝑜𝑝
 𝜀 𝑑

∞

𝑥𝑜𝑝
𝜀   (2.7) 

For an arbitrary test history, defined in Eq. (2.8), the expected profit of a production run, 

𝑃𝑒𝑥𝑝  𝑥𝑜𝑝 , 𝑔𝑜𝑝  , can be calculated using the probability tree shown in Fig. 2.2. The resultant 

expression for 𝑃𝑒𝑥𝑝  𝑥𝑜𝑝 , 𝑔𝑜𝑝    is given in Eq. (2.9).   

 

𝑇𝑖 ≔  𝑥𝑖
𝑡 , 𝑔𝑖

𝑡 , 𝑅𝑖
𝑡     1 < 𝑖 < # 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠                                   (2.8) 

 

𝑃𝑒𝑥𝑝  𝑥𝑜𝑝 , 𝑔𝑜𝑝 ; 𝑇 = 𝑃𝑠𝑡𝑎𝑏  𝑥𝑜𝑝 , 𝑔𝑜𝑝 ; 𝑇 𝑃 𝑥𝑜𝑝 , 𝑔𝑜𝑝             (2.9) 

 

𝑤𝑕𝑒𝑟𝑒 𝑅𝑖
𝑡  𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡𝑕𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑒𝑠𝑡 𝑖 
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Assuming that the operating conditions are chosen to maximize the expected profit, the value 

of performing the production run given an arbitrary test history, 𝑉𝑇 𝑇 , is defined using Eq. 

(2.10). 

𝑉𝑇 𝑇 : = sup
𝑥𝑜𝑝 ,𝑔𝑜𝑝

 𝑃𝑒𝑥𝑝  𝑥𝑜𝑝 , 𝑔𝑜𝑝 ; 𝑇                                    (2.10) 

For a stability test at an arbitrary {x
t
,g

t
}, the probability of each outcome (Eq. (2.7)), as well 

as the expected value of each outcome (Eqs. (2.9) and (2.10)) can be calculated before actually 

knowing the outcome of the test.  Using the probability tree shown in Fig. 2.3, the expected 

value of the production run after the experiment’s result may be calculated.  Subtracting the 

value of the production run prior to the result of the experiment being known yields 𝑉𝐸 𝑥𝑡 , 𝑔𝑡 , 

the expected value gained from performing that experiment; see Eq. (2.11). 

𝑉𝐸 𝑥𝑡 , 𝑔𝑡 =  1 − 𝑃𝑠𝑡𝑎𝑏  𝑥𝑡 , 𝑔𝑡 ; 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙   𝑉𝑇 𝑇𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒                           

                                         + 𝑃𝑠𝑡𝑎𝑏  𝑥𝑡 , 𝑔𝑡 ; 𝑇 𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑉𝑇 𝑇𝑠𝑡𝑎𝑏𝑙𝑒  − 𝑉𝑇 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙     (2.11)                           

where 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙   is the current knowledge state,𝑇𝑠𝑡𝑎𝑏𝑙𝑒  denotes 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙  augmented with an 

additional row vector  𝑥𝑡 , 𝑔𝑡 , 𝑠𝑡𝑎𝑏𝑙𝑒   , and 𝑇𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒  denotes 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙  augmented with an 

additional row vector  𝑥𝑡 , 𝑔𝑡 , 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒   . 

1 − 𝑃𝑠𝑡𝑎𝑏  𝑥𝑜𝑝 , 𝑔𝑜𝑝 ; 𝑇  

𝑃𝑠𝑡𝑎𝑏  𝑥𝑜𝑝 , 𝑔𝑜𝑝 ; 𝑇  

 𝑥𝑜𝑝 , 𝑔𝑜𝑝          

𝑠𝑡𝑎𝑏𝑙𝑒       

𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒       

Value of 

outcome 

0 

Outcome Probability of 

outcome 

𝑃 𝑥𝑜𝑝 , 𝑔𝑜𝑝   

Figure 2.2: Probability tree for calculating the 

expected profit of a production run 𝐏𝐞𝐱𝐩 𝐱𝐨𝐩, 𝐠𝐨𝐩; 𝐓 . 
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Using larger probability trees, the value gained through an arbitrary number of experiments 

can be calculated.  As a result, it is possible to assign a value to any arbitrary sequence of 

experiments, which can then be maximized to determine the optimal testing policy.   

Since stability tests can be chosen sequentially (i.e., the results of the first test is known when 

choosing the testing parameters for the second test), the number of test parameters grows 

exponentially with the number of tests in the sequence (because the parameters for the second 

test depend on the result of the first test). To reduce the computational complexity of this 

optimization, a greedy heuristic was used. In particular, test i was chosen by maximizing 

𝑉𝐸 𝑥𝑖
𝑡 , 𝑔𝑖

𝑡  (the tests are treated independently, instead of together as a sequence).  Using this 

heuristic, a sequence of twelve experiments were chosen and tested against the reference stability 

lobe diagram.  Figure 2.4 shows the progression of 𝑃𝑠𝑡𝑎𝑏  𝑥, 𝑔; 𝑇  (the probability that {x,g} is 

stable), as the results of a sequence of experiments are incorporated into the prediction. 

 𝑥𝑡 , 𝑔𝑡         

𝑠𝑡𝑎𝑏𝑙𝑒       

𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒       

Probability of 

outcome 

𝑉𝑇 𝑇𝑠𝑡𝑎𝑏𝑙𝑒   

Outcome Value of 

outcome 

𝑃𝑠𝑡𝑎𝑏  𝑥𝑡 , 𝑔𝑡 ; 𝑇 𝑖𝑛𝑖𝑡𝑖𝑎𝑙   

1 − 𝑃𝑠𝑡𝑎𝑏  𝑥𝑡 , 𝑔𝑡 ; 𝑇 𝑖𝑛𝑖𝑡𝑖𝑎𝑙   𝑉𝑇 𝑇𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒   

Figure 2.3: Probability tree for calculating the value 

of performing an experiment, 𝐕𝐄 𝐱
𝐭, 𝐠𝐭 . 
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Figure 2.4: Progression of Pstab  x, g; T  as experimental data is gathered.  The top panel shows the prediction prior 

to any testing. From top to bottom, the remaining panels show the updated predictions after 4, 8, and 12 tests, 

respectively. 
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2.5  BUILDING GENERAL DISTRIBUTIONS BY TRANSFORMING A SET OF 

OBSERVABLES 

While Brownian distributions offer the advantage of simplicity, in many cases it is 

advantageous to describe the function of interest using an underlying model. For milling 

dynamics, the stability limit can be inferred from knowledge of the frequency response function 

(FRF) as reflected at the tool point and a cutting force model, which relates the force to 

prescribed chip area [2.4]. As a result, the stability prediction problem can be treated using the 

FRF and force model as the set of observables. Since the relevant information can be expressed 

in terms of a limited number of parameters (cutting force model coefficients; and modal stiffness, 

damping, and natural frequency values for the tool point FRF), a distribution of possible stability 

limits can be obtained by transforming a distribution assigned over these parameters, instead of 

assigning the distribution in terms of the stability limit directly. 

The advantage of this treatment is two-fold. First, a complex correlative structure is implied 

directly from the underlying dynamical model. Second, experiments which measure the inputs 

(such as using a dynamometer to establish the force model or an impact test to identify the tool 

point FRF) can be incorporated into optimal experimental design. This provides an important 

alternative to simple stability testing, since a single FRF measurement, for example, enables 

much more accurate predictions to be made (see Fig. 2.5). 
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Figure 2.5: Contour plot of the probability of stability calculated assuming uncertain force model coefficients [2.3]. 

 

While the Brownian correlative structure works best when little is known about the function 

of interest, a correlative structure built from an underlying model enables predictions to be made 

when relationships governing the underlying dynamics are known. Current work is still 

explorative, but future work will include developing a rigorous framework for an arbitrary 

underlying model. One goal, in particular, is to incorporate an underlying dynamical model 

which is itself probabilistic, instead of a deterministic model with probabilistic inputs. 

 

2.6  CONCLUSION 

As efficiency and productivity demands on the manufacturing industry increase, the need for 

a systematic approach to information gathering is growing. Due to the inherent complexity 

involved in many manufacturing decision problems, a general treatment of optimized 

experimentation for an arbitrary pay-off and knowledge state is typically beyond the scope of 

traditional statistical methods. However, Bayesian methods are a natural candidate for this task. 

Not only can they treat arbitrarily complex mathematical objects, including spaces of functions, 

but they can also associate a value with each knowledge state. As a result, information gathering 

can be optimized in a manner similar to production planning or process control. 
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Since Bayesian methods have not previously been widely applied in manufacturing decision 

making, the primary motivation for this work was to explore possibility of using Bayesian 

methods to predict functions arising from the complex dynamics involved in milling. First, 

Brownian distributions were used to explore how Bayesian methods could be used in cases 

where little is known about the function of interest. Second, the process of incorporating 

underlying dynamical models into Bayesian prediction was explored. While these methods are 

still in their infancy, they offer sufficient analysis capability for a systematic treatment of the 

prediction of complex milling dynamics. 
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CHAPTER 3 

A SEQUENTIAL GREEDY SEARCH ALGORITHM WITH BAYESIAN UPDATING 

FOR TESTING IN HIGH SPEED MILLING OPERATIONS 

In this chapter, the problem of stability limit prediction will again be considered.  While 

the previous chapter used stability limit prediction primarily as a tool to illustrate how Bayesian 

methods can be used, in this chapter the problem is considered much more seriously through a 

realistic case study.  As a result, a good portion of this chapter will be devoted to describing the 

particular tooling setup, how the tests were physically performed, and practical considerations.  

Results will then be presented for a number of simulated and real world testing scenarios.  

Finally these results and the overall effectiveness of the model will be critiqued. 

 

3.1  INTRODUCTION 

In the past several decades, high-speed machining has become a staple in discrete part 

production. Improved high-speed machining technology has made increased spindle speeds and 

axial depths of cut possible. The availability of these new parameter choices is due in large part 

to the increased stability at tooth passing frequencies which are substantial integer fractions of 

the dominant system natural frequency. However, regenerative chatter can still occur. Early work 

in describing chatter as a self-excited vibration was completed by Tobias, Arnold, Tlusty, and 

Merrit [3.1-3.8] and more recently Altintas and Budak [3.9-3.10], for example.  

Although methods are available for predicting the spindle speed-dependent stability limit, the 

requirement for knowledge of the tool point frequency response function (for each tool-holder-

spindle-machine combination) can impose a significant obstacle in some production facilities. 

The purpose of this study is to characterize the uncertainty about the stability limit using a 
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probability distribution, rather than a deterministic boundary. The characterization is based on 

using initial belief about the stability limit, and updating belief using Bayesian analysis through 

limited experiments. This work builds on recent efforts for applying decision analysis to milling 

[3.11-3.12]. Concepts in Bayesian inference are provided in the following section. 

 

3.2 BAYESIAN INFERENCE 

Regardless of a model’s rigor, uncertainty due to factors that are unknown or not included 

and imperfect knowledge of the input data always exists. This uncertainty may be reduced by 

experimentation. However, this experimentation may be costly and is not, in general, a realistic 

substitute for the model. Therefore, a predictive model should address theoretical considerations, 

incorporate uncertainty, and update uncertainty as new information is made available (from 

experiments, for example). In this work, the stability limit for milling is treated as the unknown 

quantity with inherent uncertainty. 

Bayesian inference models, which form a normative and rational method for updating belief, 

are applied here. In the case of the frequency-domain stability algorithm [3.9] used in this work, 

a single (deterministic) prediction for the stability limit is made. A Bayesian model, on the other 

hand, assigns a probability distribution over the set of all possible stability limits and updates this 

probability distribution with new information (experimental results). 

Let the prior distribution about an uncertain event, A, at a state of information, &, be {A|&}, 

the likelihood of obtaining an experimental result B given that event A occurred be {B|A,&}, and 

the probability of receiving experimental result B (without knowing A has occurred) be {B|&}. 

Bayes’ rule determines the posterior belief about event A after observing the experiment results, 

{A|B,&} as show in Eq. 3.1. Using Bayes’ rule, information gained through experimentation can 
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be incorporated with the prior prediction about the stability limit to obtain a posterior 

distribution. 

 
  

 &

,&&
,&

B

ABA
BA     (3.1) 

An important requirement for applying Bayes’ rule in this case is selecting the initial belief 

(prior distribution) for the stability limit. In general, this initial prediction: 1) can be constructed 

from any combination of theoretical considerations, previous experimental results, and expert 

opinions; and 2) should be chosen to be as informative as possible regarding experimenter’s 

belief. In this work, a worst case scenario is considered where inference of the stability limit 

must be completed without knowledge of machining dynamics. However, the general 

understanding that it is more likely to obtain an unstable result at increased axial depths of cut is 

applied. 

Bayesian inference models offer several advantages. When using a Bayesian inference 

model, experiments can be chosen such that the expected value added by performing the 

experiment is maximized. This enables the best selection of experiments to be performed. 

Although the mathematics is complicated, the basic idea is presented as follows. Prior to 

performing a test, the following information is known: 1) the probability of each outcome of a 

test (this can be determined from the prior distribution); and 2) the updated prediction given each 

possible test outcome. For example, in the case of stability limit prediction, prior to performing a 

test it can be determined how likely it is that the test will give a stable result versus an unstable 

result, as well as what parameters should be selected given a stable versus unstable result (this 

provides the value of performing a cut given a stable versus unstable result.) Using this 

reasoning, the expected value added by performing a stability test at a given spindle speed-axial 

depth combination can be determined. It can then be decided whether to perform the stability test 
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using the spindle speed-axial depth combination which maximizes the value added; note that this 

is the most profitable experiment to perform. 

 

3.3  BAYESIAN INFERENCE CASE STUDY 

To illustrate how the Bayesian inference model can be applied to milling, a case study is 

presented. Two scenarios are considered: 1) in simulated stability testing, the result of a test is 

determined by comparing the test point to a reference stability limit generated using the Altintas 

and Budak [3.9] algorithm; and 2) stability is determined through experiments on a high-speed 

machining center (Mikron UCP 600 Vario). While the second scenario is more realistic, the 

disadvantage is that, since the true stability limit is unknown, the model performance is difficult 

to quantify. Therefore, the first scenario is provided to qualitatively examine the model’s 

capability. In both cases, the same tool and workpiece combination are used. See Table 3.1.  

Prior to performing the stability tests, the force model coefficients and the tool point 

frequency response function (FRF) were measured. The force model coefficients for the 6061-T6 

workpiece material-tool combination were calculated using a linear regression to the mean 

values of X (feed) and Y direction cutting forces measured at a range of feed per tooth values 

[3.13-3.14]. The tool point FRF was also measured using impact testing; see Fig. 3.1. 
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Figure 3.1: Tool point FRF for experiments.  I would like to thank Raúl Zapata for allowing me to use this 

figure. 

 

For the simulated testing scenario, the following conditions were applied. First, a large 

spindle speed domain was selected (5000 rpm to 30000 rpm); this domain was limited to the tool 

manufacturer’s recommendations for the actual testing (4000 rpm to 7250 rpm). In addition, a 

symmetric, single degree-of-freedom FRF was used. The stiffness was 20 MN/m, the viscous 

damping coefficient was 0.05, and the natural frequency was 2667 Hz. The additional parameters 

used to generate the reference stability limit (shown in Fig. 3.2) are summarized in Table 3.1.  
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Table 3.1: Parameters used to determine the reference stability limit for the simulated testing scenario. 

Parameter Value Units 

Radial depth 6.35 mm 

Feed per tooth 0.15 mm/tooth 

Tool radius 6.35 mm 

Number of teeth 4 teeth 

Helix angle  30 deg 

Tangential coefficient 613 N/mm2 

Normal coefficient 149 N/mm2 

Tangential edge coefficient 7.0 N/mm 

Normal edge coefficient 6.0 N/mm 

 

 

 

Figure 3.2: Reference stability limit for simulated testing scenario.  I would like to thank Raúl Zapata for allowing 

me to use this figure. 
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Figure 3.3: Tool path for pocket milling.  I would like to thank Raúl Zapata for allowing me to use this figure. 

 

Because the sequence of tests to be performed is dependent on the machining cost, the 

feature being machined must be specified. In both scenarios, a pocket with dimensions of 100 

mm in the X direction, 150 mm in the Y direction, and 25 mm deep was used. The tool path is 

shown in Fig. 3.3. 

3.3.1  Cost Estimation and Stability Limit 

In order to perform the updating procedure, the following is required: 1) the cost of 

performing the desired operation for selected operating conditions; and 2) the stability condition 

must be determined from experimental data. These issues are addressed in the following sections. 

The cost model for deterministic setups used here selects experiments that maximize 

expected profit (because revenue was considered constant, minimizing the expected cost is 

equivalent). The cost function for this exercise does not include the effects of tool wear; it was 

neglected for the 6061-T6 workpiece/TiCN-coated carbide tool combination. The simplified 

cost, C, (Eq. 3.2) is based on the machining cost per minute (rm = $2) and machining time (tm, 

which depends on the part path geometry and machining parameters).  
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mmtrC      (3.2) 

Due to the nature of the part path, for any selected spindle speed the cost function is stepped; see 

Fig. 3.4. These steps occur at an integer fraction of the pocket depth. As the maximum permitted 

axial depth increases, the number of steps required to complete the pocket decreases until the 

permissible axial depth equals or exceeds the pocket depth, where only a single pass is required 

to produce the desired pocket. 

 

Figure 3.4: Cost of machining at axial depth-spindle speed combinations given that the resultant cut is stable.  I 

would like to thank Raúl Zapata for allowing me to use this figure. 

 

Stability analysis for the simulated testing scenario was straightforward. A set of stability 

lobes was calculated and the test point was compared to the stability boundary for the 

“unknown” system behavior. If the test point was located at a spindle speed axial depth 

combination that appeared below the boundary, the test was stable. Otherwise, the test was 

considered unstable.  

For experiments, however, stability identification is more involved. Considering the 

machined surface, stable milling behavior results in a repeatable surface with small feed marks 
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which depend on the feed per tooth value. The self-excited vibrations which occur during 

unstable cutting modulate the cutting forces and resulting vibrations due to fluctuations in chip 

thickness. These vibrations occur at or near the one of the system’s natural frequencies and result 

in a rough surface. The exact boundary between stable and unstable machining based on the 

surface finish is somewhat subjective. 

The frequency content of the milling signal can also be used to identify chatter [3.14]. For 

stable cutting, only forced vibrations are present. Content is expected only at the tooth passing 

frequency and its harmonics in this case. In the unstable case, both forced and self-excited 

vibrations occur. Although the self-excited vibrations occur near a system natural frequency, the 

magnitude at which this spurious frequency content is identified as chatter is also subjective. 

Additionally, if the chatter frequency is near a tooth passing frequency, interaction between the 

two can occur. In order to make the best decisions on stable versus unstable behavior, both the 

appearance of the cut surface and the frequency content of the cutting force data were used. 

3.3.2  Modeling Uncertainty in Stability Limits 

In this section, the inference model and Bayesian updating of the model from stability testing 

is presented. In addition, the experimental setup used for the case study is described.  

In the absence of other information, a simple model is to assume that, given knowledge of the 

stability limit at a spindle speed s and axial depth b, the uncertainty about the stability limit 

increases as the distance from the operating point increases; see Fig. 3.5. At a slightly higher (or 

lower) spindle speed than the known point, the axial depth of the stability limit will be: 

 at a slightly higher axial depth with probability p1; 

 at the same axial depth with probability p2; or 

 at a slightly lower axial depth, with probability p3 = 1 -p2 - p1. 
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A three-outcome explanation is used to explain this model, but, in principle, any number of 

outcomes can be imposed to obtain a higher resolution and the propagation of uncertainty 

depends on the decision maker’s beliefs. While this assumption does not directly imply the actual 

location of the stability limit, it does imply something about its structure: knowledge of the 

stability limit at one spindle updates the prediction of the stability limit at nearby spindle speeds, 

i.e., knowledge can be propagated from one spindle speed to another. Although the details have 

been omitted for brevity, the updated prediction at any spindle speed for the selected propagation 

model can be calculated by solving a system of parabolic partial differential equations [3.15-

3.16]. The extent to which the prediction at nearby spindle speeds is updated can be controlled 

by changing p1 and p2. In addition, it was assumed that for all spindle speeds, the stability limit 

occurs between 0 mm and the maximal axial depth defined by the flute length (14 mm). With 

these two assumptions, the initial probability distribution (i.e., the prior) is defined as shown in 

Fig. 3.6.  

 

Figure 3.5: Discretized representation of the initial stability model. Knowledge of the stability limit at one spindle 

speed updates the prediction at nearby spindle speeds. As the distance from the known point is increased, the extent 

to which the prediction is updated decreases.  I would like to thank Ali Abbas for allowing me to use this figure. 
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Figure 3.6: Initial prediction for the stability limit. Color denotes the probability that an axial depth-spindle speed 

combination will result in an unstable cut (0 – not likely, 1 – very likely). 

 

3.3.3  Updating the Prediction from Experiments 

Once the initial prediction is made, it can be updated whenever new information is observed, 

such as through experimentation. For the case study, experimentation was performed by selecting 

a particular spindle speed-axial depth combination, performing a test cut, and identifying stable 

or unstable behavior. For both stable and unstable results, the information gained from this 

experiment was expressed as an inequality. For a test at axial depth B and spindle speed S, a 

stable cut implies that the axial depth of the stability limit at spindle speed S must be greater than 

B, while an unstable cut implies that the axial depth of the stability limit at spindle speed S must 

be less than B. 

Applying Bayes’ rule, updating the prediction of the stability limit at the tested spindle speed 

was fairly straightforward. See Fig. 3.7, which shows probability density functions before and 

after updating. This knowledge was propagated to other spindle speeds to determine the updated 



36 
 

predictions there as well. Figure 3.8 shows the results of a sample update for stable and unstable 

cases. 

 

Figure 3.7: Updating the prediction at the tested spindle speed. The likelihood function is constant where the 

inequality constraint is satisfied and zero where it is violated. The updated distribution is therefore given by 

truncating and normalizing the prior distribution as a PDF. 
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Figure 3.8: Updates for a single stability test for stable and unstable results within the probability of instability CDF 

field. The test point is denoted with an X. 

 

3.3.4  Experimental Setup for Case Study 

Stability testing was performed using a three-component force dynamometer as a rigid base 

for the 6061-T6 aluminum test piece and a compliant tooling system, realized using a long collet 

holder and stub length carbide tool as shown in Fig. 3.9. 
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Figure 3.9: Tool and holder combination used in the experiments; the workpiece is mounted on the dynamometer. I 

would like to thank Raúl Zapata for allowing me to use this figure. 

 

The workpiece geometry is shown in Fig. 3.10. In preparation for the test cuts, the top of the 

part was faced and a 14 mm deep slot was made with the test tool. The side of the slot that was to 

be machined during the subsequent test cut was finished machined with passes 1 mm deep 

axially and 0.1 mm deep radially. Both the slot and the (post-test) clean-up passes were 

performed at 7250 rpm with a feed per tooth of 0.15 mm/tooth. 

 

Figure 3.10. Schematic of the workpiece with the wall of the test cut surface highlighted.  I would like to thank Raúl 

Zapata for allowing me to use this figure. 
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Stability of a selected point was determined experimentally by completing 50% radial 

immersion (6.35 mm radial depth) down milling cuts at the selected axial depth of cut and 

spindle speed. The highlighted surface in Fig. 3.10 is the sidewall of the test cut. The surface 

texture of the machined wall was used in combination with the frequency content of the force 

data obtained from the dynamometer in order to determine if chatter (unstable behavior) existed. 

After the first test, the surface was prepared using a cleaning pass and the testing process was 

repeated for a new spindle speed-axial depth of cut combination. For the given geometry, this 

enabled up to 14 test cuts on each block. The updating scheme was implemented over a series of 

up to 14 test cuts, where the test cuts were selected according to the programmed algorithm and 

the stable/unstable test results were determined as described previously. The spindle speed and 

axial depth parameters were selected by the updating algorithm as it searched for points with 

maximum value of experimentation within the selected domain. 

 

3.3.5  Value of Information and Experiment Design 

Bayesian inference combined with decision analysis models enables a dollar value to be 

place on the information gained from an experiment prior to performing it. To illustrate this 

point, consider a simple situation where only three spindle speed-axial depth combinations are 

available (A, B, and C). Suppose it is initially predicted that A is definitely stable, while B and C 

each have a 50% chance of being stable. In addition, suppose that the cost of machining 

(assuming the cut is stable) is $100 using A, $50 using B, and $30 using C and that only stable 

operating points will be used (in other words, the cost of performing an unstable cut is very 

large). 
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Prior to performing the stability test, only A can be chosen as the operating point and, 

therefore, if no testing is performed the cost of machining will be $100. However, suppose the 

option of performing a single stability test at either A, B, or C was given; how can the proper test 

be selected? Because it is already known that a test at A will have a stable result, no test should 

be completed at A because no new information will be obtained. However, if it was possible to 

test at B, there is a 50% chance that the result is unstable, in which case the choice will still be A 

and the cost will be $100. On the other hand, there is also a 50% chance that the test will be 

stable, in which case B will be selected and the cost will only be $50. Thus, the expected cost of 

machining given the result of a test at B is $75. The value gained by testing at B (defined as the 

cost prior to testing minus the expected cost after testing) is therefore $25. Similarly, the value 

gained by testing at C can also be calculated. There is a 50% chance that the result will be 

unstable, in which case machining will be completed at A and the cost will be $100. There is also 

a 50% chance that the test will be stable and then machining will be completed at C and the cost 

is only $30. Thus, the expected cost given the result of a test at C is $65 and the value gained by 

testing at C is $35. Now (assuming the goal is to maximize profit), the question of which test to 

perform has a straightforward answer: choose the test which adds the most value. For this 

example, testing would be completed at C.  

This example was simplistic. However, the implications are powerful: when using a Bayesian 

inference model, it is possible to calculate the expected value that will be gained from 

performing any experiment. In other words, by using a Bayesian inference model, the guesswork 

that is normally involved in experimental design is eliminated. It is only necessary to perform the 

sequence of tests which adds the most value.  



41 
 

From a practical point of view, however, this still leaves the question of how to determine 

which sequence of experiments is optimal (adds the most value). In the previous example, simply 

calculating the value of each possibility and comparing them (optimization by exhaustive 

enumeration) was computationally simple. However, in more complicated situations, 

computational complexity can become a significant issue.  

In the case study, the computational complexity is particularly problematic since sequences 

of experiments are being optimized as opposed to a single experiment. The reason for this is that 

the number of decision variables increases exponentially with the number of experiments in the 

sequence. For example, when optimizing a sequence of two stability tests, three sets of decision 

variables are required (as opposed to one for a single test). The reason is that the value of the 

second test depends on the result of the first test. Therefore, the optimal parameter combination 

to use in the second test if the result of the first test is stable will, in general, be different from the 

optimal parameter combination to use in the second test if the result of the first test is unstable. 

Consequently, to truly optimize the two-test sequence, simultaneously optimization over all three 

sets of parameters (parameter combination for the first test, parameter combination for the 

second test if the first test result is stable, and the parameter combination for the second test if 

the first test result is unstable) must be completed. 

In the case study, the calculation of the optimal sequence of experiments (via exhaustive 

enumeration) is made computationally feasible by using a greedy heuristic. In this case, each test 

is treated separately, rather than optimizing the sequence of tests as a whole. In terms of a two-

test sequence, this means that, instead of simultaneously optimizing over all three parameter sets, 

the parameters for the first test are optimized first by assuming that no tests will be performed 

afterward. Then, after this test is performed and the result is known, the second test is optimized. 
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With this heuristic, the computational complexity increases only linearly with the number of 

tests. 

Overall, while this greedy heuristic makes the optimization computationally feasible, the 

behavior of the sequence of experiments may deviate from the behavior expected from the truly 

optimal sequence of experiments. It is likely that with an intelligent optimization algorithm the 

computational complexity problem could be alleviated without a sacrifice in performance. 

However, this particular optimization problem has a number of properties which make it 

challenging (the probability of stability is not convex or continuous everywhere and is expressed 

in terms of a Fourier series). Therefore, the greedy heuristic is a reasonable choice for providing 

a baseline application of Bayesian methods.  

 

3.3.6  Results of Simulated Testing Scenario 

Using the methods described in the previous sections, a sequence of 13 stability tests was 

generated. The result of each test was determined by comparing the test point to the reference 

stability limit. The parameters for each test, as well and the results of the test, are provided in 

Table 3.2. The updated prediction after all of the tests were performed is shown in Fig. 3.11 (the 

prior distribution is shown in Fig. 3.6). To gain some insight into how the performance is 

affected by the input parameters, two additional test sequences were generated. In the first case, 

the maximum spindle speed was reduced from 30000 rpm to 25000 rpm; see Fig. 3.12. In the 

second case, the stiffness of the system (an input parameter for the FRF) was changed from 20 

MN/m to 30 MN/m; see Fig. 13. The CDFs are shown in Figs. 11 through 13 where the color 

scale indicates probability of instability (0 indicates definite stability). In each case, the reference 

stability lobe is shown superimposed for comparison.  
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Table 3.2. Sequence of tests performed in simulated testing scenario and their results. 

Test number Spindle speed (rpm) Axial depth (mm) Stability condition 

1 30000 0.42 stable 

2 30000 2.82 stable 

3 30000 5.04 stable 

*4 30000 6.30 stable 

5 27100 8.34 unstable  

6 25000 8.34 unstable  

7 28600 8.34 unstable  

8 26200 8.34 unstable  

9 29200 8.34 unstable  

10 27900 8.34 unstable  

11 21200 12.54 unstable  

12 20000 12.54 stable 

13 20300 12.54 stable 

*Due to a numerical error, point 4 was recommended as a test point twice. The error resulted from expressing the 

probability of stability in terms of a Fourier series (Gibbs phenomenon [3.17]). 

 

From these results, a number of insights can be drawn regarding the capability of the model. 

First, because the greedy heuristic was used, there is a bias towards selecting a test point 

relatively close to the point which has the least cost of all points previously determined as stable 

and the performance in identifying a local maximum is very good. However, as the tests tend to 

cluster around a local maximum, the performance in moving from one stability peak to another is 

poor (this degrades the performance in the increased stiffness case). In contrast, for the true 

optimal sequence of experiments, a better balance between exploratory tests (tests which serve 
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the purpose of determining viable places to look for the global maximum in future tests) and tests 

which attempt to achieve the global maximum would be expected. This would likely lead to 

improved performance because more of the domain would be explored.  

Second, it is seen that the performance of the model is somewhat dependent on the axial 

depth-spindle speed domain. The more centered the reference stability limit is in terms of 

maximum axial depth, the better the model performs (this results from the prior distribution 

choice). Simply put, the better the initial prediction, the better the inference model will perform. 

 

Figure 3.11: Final CDF for the first numerical test set. Reference stability lobes are superimposed in white. 
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Figure 3.12: Final CDF for the reduced maximum spindle speed numerical test set. 

Third, it is seen that the sequence of experiments performed is fundamentally tied to the cost 

function. This occurs in this case due to the stepped nature of the cost function. Comparing the 

sequence of tests performed to the cost function at these points, an interesting pattern is 

observed: every test is selected at a step in the cost function. 

 

Figure 3.13: Final CDF for the numerical tests with increased tool stiffness (20 MN/m to 30 MN/m). 
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Overall, although the performance is somewhat dependent on the particular input parameters 

(reference stability limit and test domain), in many cases the cost achieved using the inference 

model is not significantly greater than the true minimal achievable cost. It is also important to 

note that the limitations of the model are in no way related to the underlying methodology of 

Bayesian inference, but rather result from the choice of assumptions. Specifically, the 

assumption of no prior knowledge of machining dynamics and the heuristic optimization 

algorithm caused the most difficulty. 

 

3.3.7  Results of Experimental Testing Scenario 

To provide a realistic application of the inference model, the same methods were again 

applied to a sequence of 13 milling tests. The parameters of each test, as well as the result of the 

test, are shown in Table 3.3. The updated prediction after all of the tests were performed and the 

location of these tests are shown in Fig. 3.14.  
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Table 3.3: Experimental test points and results.  

Test number Spindle speed (rpm) Axial depth (mm) Stability result 

1 7250 0.51 Stable 

2 7250 2.80 Stable 

3 7250 5.04 Stable 

4 7250 6.27 Stable 

 *5 7250 8.34 Stable 

6 7250 12.54 Unstable 

7 6977 12.54 Unstable 

8 6743 12.54 Unstable 

9 7120 12.54 Unstable 

10 6509 12.54 Unstable 

11 6275 12.54 Unstable 

12 6860 12.54 Unstable 

13 6626 12.54 Unstable 

*Point 5 was recommended as a test point twice due to Gibbs phenomenon [3.17].  
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Figure 3.14: CDF representation of probability of instability (top) and the points tested (bottom). The final test point 

is indicated by a square. 

 

Because the true location of the stability limit is unknown, it is impossible to determine how 

the cost obtained using the inference model compares with the true minimal cost. Based on the 

final prediction, it is probable that there is a peak at a lower spindle speed which the model did 

not locate. If this is the case, then there could be stable operating parameters which require only 

two (axial) tool passes rather than the three passes provided by the inference model. Overall, the 

insights from the experimental testing scenario are essentially the same as from the simulated 
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testing scenario: the performance of the model is acceptable, but could be improved by an 

improved prior and a non-heuristic optimization scheme.  

 

3.4  CONCLUSION 

The goal of this work was to apply a Bayesian inference model to stability prediction for 

high-speed machining. The motivation for implementing a Bayesian inference model was: 1) a 

Bayesian inference model enables a prediction which considers both theory and experimental 

results; and 2) when using a Bayesian inference model, experiments can be chosen such that the 

expected value added by performing the experiment is maximized. In other words, Bayesian 

inference models remove the guesswork that is normally involved when designing experiments.   

For the study presented here, a worst case situation was assumed where no prior knowledge 

of machining dynamics was available. Only stability testing was considered and the optimal 

experimentation policy was generated heuristically. The results obtained provide a lower bound 

on what can be achieved using Bayesian inference models. Even so, the model performed fairly 

well. Although the performance was somewhat dependent on the input parameters, in the 

majority of simulated (numerical) testing scenarios the difference between the cost of machining 

the pocket at the parameters determined by the inference model and the true minimal cost of 

machining the pocket was negligible. This is most likely true for the experimental testing 

scenario as well judging from the cost function and the unstable experimental results.  
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CHAPTER 4 

DEMAND CURVE PREDICTION VIA PROBABILITY ASSIGNMENT OVER A 

FUNCTIONAL SPACE 

 

In this chapter, the methods derived in the first chapter will be applied to the problem of 

demand curve prediction.  The motivation for doing this is at least two-fold.  First, it illustrates 

that these methods are versatile and applicable to more than one field.  In addition, the problem 

of demand curve prediction is particularly interesting in that demand curves are generally 

assumed to satisfy certain regularity conditions and this must be reflected in the prediction.  In 

particular, it will be assumed that the demand curve satisfies 1.) demand for a good decreases 

monotonically with price, 2.) demand for a good goes to zero as price goes to infinity, and 3.) 

demand for a good goes to infinity as price goes to zero.  Thus, when making a prediction for a 

demand curve, one must choose a probability distribution which assigns a nonzero probability to 

any function which satisfies these conditions and a probability of zero to any function which 

does not.  To accomplish this, a coordinate transformation is first applied which greatly 

simplifies the constraints.  The remaining constraint is then enforced through the choice of 

transition probabilities. 

 

4.1 INTRODUCTION  

Currently, the majority of demand curve predictions are based on curve fits.  While these may be 

adequate when making simple decisions, there are a number of issues that make them somewhat 

impractical in real world decision making.  For one, they only output a single curve prediction.  

As a result, they are not compatible with rigorous decision making in the presence of uncertainty.  

In addition, with curve fits it is impossible to construct a predictive model for demand curves 

that is both globally regular (meets the monotonicity constraints of demand curves) and locally 
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flexible [4.1] (given enough observations of an arbitrary “true” demand curve meeting the global 

constraints, the prediction will converge to the true curve).  In this work, we present an 

alternative method of demand curve prediction which is fundamentally different from curve 

fitting.  In particular, a probability distribution is assigned over the space of all functions that 

satisfy the regularity conditions.  First, a hyperbolic coordinate transformation is used to impose 

the regularity conditions is introduced.  Then, the problem of assigning a probability distribution 

over the space of functions and its update with information is discussed.   

 

4.2 THE HYPERBOLIC COORDINATE TRANSFORMATION 

For a price P>0 and demand Q>0, consider the hyperbolic coordinate transformation given by: 

𝑢 =
1

2
 log 𝑃 − log 𝑄 . 

𝑣 =
1

2
 log 𝑃 + log 𝑄 . 

The inverse transformation is given by: 

𝑃 = 𝑒𝑣+𝑢 . 

𝑄 = 𝑒𝑣−𝑢 . 

 This transformation maps the first quadrant to the entire R
2
 plane.  In particular, the point 

 𝑃 = 0, 𝑄 = ∞  is mapped to the line 𝑢 = −∞, the point  𝑃 = ∞, 𝑄 = 0  is mapped to the line 

𝑢 = ∞, the 𝑃 axis and 𝑄 axis are mapped to the line 𝑣 = −∞, and the lines 𝑃 = ∞ and 𝑄 = ∞ are 

mapped to the line 𝑣 = ∞ (Figure 4.1). 



54 
 

 

The advantage of using hyperbolic coordinates is that the regularity conditions imposed on 

the demand system can be expressed nicely in 𝑢-𝑣 coordinates [4.2].  Any function 𝑄(𝑃) that is 

monotonically decreasing, and has the positive real values as both a domain and range can be 

expressed as a function 𝑣(𝑢) which satisfies 

dom 𝑣 𝑢 = ℝ. 

 
𝑑𝑣

𝑑𝑢
 < 1.              (4.1) 

 In addition, 𝑢-𝑣 coordinates have nice interpretations in terms of economic variables.  

For one, the total revenue 𝑅 generated (the product 𝑃 ∗ 𝑄 in 𝑃-𝑄 coordinates) is given by 

𝑅 = 𝑒2𝑣 . 

 As a result, maximizing the revenue for a given demand curve is equivalent to finding the 

maximum 𝑣 of that curve.  Furthermore, the elasticity 𝐸, given in 𝑃-𝑄 space by 

𝐸 = −
𝑃

𝑄

𝑑𝑄

𝑑𝑃
= −

𝑑 ln 𝑄

𝑑 ln 𝑃
, 

is given in 𝑢-𝑣 space by 

𝐸 =
 1 −

𝑑𝑣
𝑑𝑢 

 1 +
𝑑𝑣
𝑑𝑢 

.           (4.2) 

 

P 

  Q 

  

  

u 

v 

  

  

 

 

Figure 4.1: Mapping of the hyperbolic coordinate transformation 
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 Therefore, lines of constant slope in the 𝑢-𝑣 plane are equivalent to lines of constant 

elasticity and horizontal lines are equivalent to lines of unit elasticity. 

 

4.3 CONSTRUCTING A PROBABILITY DISTRIBUTION ON THE HYPERBOLIC 

PLANE 

In order to construct a probability distribution over the space of functions, a discrete random 

walk model can be used.  In particular, the following two assumptions are made: 

 

Assumption 4.1 When predicting the behavior of the demand curve at any price P0, only 

information regarding the curve in an infinitesimal neighborhood of Po needs to be considered.   

 

Assumption 4.2 Knowledge of the second or higher derivatives is irrelevant when predicting the 

demand curve. 

 

 Now, suppose that it is known that the demand curve goes through the point {𝑃1, 𝑄1} and one 

is interested in calculating the probability that the demand curves travels through the point 

{𝑃1 + ∆𝑃, 𝑄1 − ∆𝑄} for some 0 < ∆𝑃 and 0 < ∆𝑄 < 𝑄1.  Because of assumptions 1 and 2, this 

conditional probability can be calculated using a lattice walk model.  In 𝑃 -𝑄  space, these 

conditional probabilities are difficult to evaluate since the transition probabilities MUST depend 

explicitly on P and Q, and these dependencies are necessarily singular near the axes (Figure 4.2).   



56 
 

 

 

  

 However, in 𝑢-𝑣 space these dependencies are already accounted for.   Because of this and 

assumptions 4.1 and 4.2, the transition probabilities are independent and identically distributed.  

If equation (4.1) (resulting from the monotonicity in P-Q space) was not imposed, these 

transition probabilities would converge to a Wiener process and the resultant conditional 

probabilities would be normally distributed [4.3].  With the requirement of equation (4.1), 

however, the conditional probabilities must be of compact support and therefore cannot be 

normally distributed.  Instead, the conditional probabilities are given by a Lorentz invariant 

distribution [4.4].  The lattice walk and the resultant conditional probability distribution are 

shown in Figure 4.3.  After transforming back into 𝑃-𝑄 space, by using these conditional 

probabilities and assumptions 1 and 2, the probability that the demand curve goes through any 

point {𝑃, 𝑄} can be calculated. 

𝑄 

𝑃 

{𝑃1, 𝑄1} 

? ? ? ? 

Figure 4.2: Evaluating a random lattice walk in 𝑷-𝑸 space is difficult due to the boundaries on the axes.  In 𝒖-𝒗 space, this 

is not an issue since the 𝑷-𝑸 axes are mapped out of the plane (to the line v=-∞). 
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4.4 USING THE PROBABILITY MODEL 

To make an initial prediction of the demand curve, one needs to define which points of the 

demand curve are already known, as well as assigning values to the 𝜇 and 𝑘 parameters.  In the 

general case, they can take different values at each {𝑢, 𝑣} coordinate, so initial parameter fields, 

𝜇0 𝑢, 𝑣 and 𝑘0 𝑢, 𝑣  need to be chosen.  In terms of the 𝑃-𝑄 coordinate system, assigning these 

parameter fields is equivalent to answering the following question for every {P0 , Q0}: 

Given that the demand curve travels through {P0 , Q0}, what is the expectation and variance of 

the  slope of the demand curve at this point? 

Or using equation (4.2) 

{𝑢1 , 𝑣1} 

p1 

p2 

𝑣1 𝑣1 +  𝑢2 − 𝑢1  𝑣1

−  𝑢2 − 𝑢1  

𝑣1

+ 𝜇 𝑢2 − 𝑢1  

𝒇𝒗 𝒖𝟐  𝒗 𝒖𝟏 =𝒗𝟏
  𝐯𝟐  

𝑘 𝑢2

− 𝑢1  

1-p1-p2 

= 𝐸𝑥𝑝

 
 
 
 
 

  𝑢2 − 𝑢1 2 −  
 1 − 𝜇  𝑣2 − 𝑣1 

1 − 𝜇  
𝑢2 − 𝑢1

 𝑣2 − 𝑣1 2 
 

2

𝑘 

 
 
 
 
 

− 1 

 

 

Figure 4.3:  On the left, the random lattice walk is shown.  As the number of steps increases to infinity, the distribution 

converges to a two parameter Lorentz-invariant distribution (shown on the right) where the two parameters (mean 𝛍 and scale 

/ spread parameter 𝒌) are determined from the transition probabilities p1 and p2. 
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Given that the demand curve travels through {P0 , Q0}, what is the expectation and variance of 

the elasticity of the demand curve at this point? 

 

 For example, suppose someone is interested in predicting the demand curve for some 

type of product X.  Using historical sales data, they believe that the demand curve travels 

through the points {𝑃, 𝑄}={$29, 3960 units}, {$60, 2040 units} , {$200, 810 units}  and {$400, 

240 units}.   In addition, they define the 𝜇0 and 𝑘0 fields as constant between any two known 

points (Table 4.1).  In particular, they choose the 𝜇0 field as the average elasticity between two 

known points, and a 𝑘0 field that decreases near the axes (less uncertainty/spread near axes).   

Using these assumptions, the resultant prediction for the demand curve of product X is as shown 

in Figure 4.4.  The price which maximizes expected revenue generated by selling product X can 

then be calculated from this prediction, which in this case is $200.  In addition, these predictions 

can be used to place a value on information gathering activities.  For example, suppose that the 

demand 𝑄𝑡𝑒𝑠𝑡  for product X at price 𝑃𝑡𝑒𝑠𝑡  can be estimated in a small test market.  Since the 

expected revenue generated prior to the test, the probability of each possible outcome of the test 

(the demand curve prediction at 𝑃𝑡𝑒𝑠𝑡 ) and the expected revenue generated with each outcome 

can all be calculated prior to performing the test, the expected value gained from a market test at 

any 𝑃𝑡𝑒𝑠𝑡  can be calculated.  𝑃𝑡𝑒𝑠𝑡  can then be chosen to maximize this value. 
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Table 4.1: Parameter fields for predicting the demand curve of product X. 

Region: Drift Field 𝝁𝟎 𝒖, 𝒗 : Diffusion Field 𝒌𝟎 𝒖, 𝒗 : 

$0< 𝑃 <$29 0.310* 0.03 

$29< 𝑃 <$60 0.0460 0.05 

$60< 𝑃 <$200 0.132 0.1 

$200< 𝑃 <$400 -0.274 0.05 

𝑃 >$400 -0.263* 0.03 

     *-Values chosen arbitrarily such that 𝑃 ∗ 𝑄 goes to 0 as 𝑃 or 𝑄 goes to 0. 

 

 

Figure 4.4: Demand curve prediction for product X. 
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4.5 CONCLUSION 

In conclusion, the predictive model presented here has a number of advantages over traditional 

demand curve predictions which utilize statistical curve fits.  Fundamentally, it differs from 

curve fitting since a probability is assigned over a full space of functions instead of assuming a 

strict functional form for the demand curve.  As a result, these methods result in predictions that 

are both globally regular and locally flexible, which is impossible with traditional curve fitting.  

In addition, since this predictive model is compatible with rational decision making, it can be 

used to determine not only optimal pricing strategies, but also optimal information gathering 

strategies.  Overall, although these methods are somewhat more complex mathematically than 

curve fits, they also provide stronger functionality which is often preferred when making real 

world decisions involving real dollars. 
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APPENDIX A 

PARAMETERS FOR NUMERICAL TEST CASES IN CHAPTER 2 
 

 
Table A.1: Parameters used to generate the reference stability limit. 

 

Description Value Units 

Tangential cutting coefficient 2500 N/mm2 

Radial cutting coefficient 750 N/mm2 

Tool stiffness 5x106 N/m 

Damping ratio 0.05 - 

Tool natural frequency 2.4 kHz 

 

 

 

Table A.2: Parameters defining the Brownian distribution prior to experimentation. 
 

Description Parameter name Value 

Upper bound on stability limit 𝑔𝑚𝑎𝑥  1.2 mm 

Diffusion field 𝑘 𝑥, 𝑔  0.00005 

Drift field 𝜇 𝑥, 𝑔  0 

Creation and killing field 𝑐 𝑥, 𝑔  𝑐𝑢𝑝  𝑥, 𝑔 =  
∞ 𝑓𝑜𝑟 𝑔 < 0, 𝑔 > 𝑔𝑚𝑎𝑥  

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

 

 

 

Table A.3: Parameters for profit calculations. 

 

Description Value Units 

Width of work piece 500 Mm 

Radial depth 5 Mm 

Tool diameter 10 Mm 

Tool change time 4 Sec 

Number of teeth 4 - 

Machining cost per unit time 1 $/min 

Cost of tool 114 $ 
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Table A4: Inputs for FRF based stability limit prediction. 

Parameter Value Units 

Stiffness 1.6x107 N/m 

Damping ratio 0.05 - 

Natural frequency 2400 Hz 

Number of teeth 4 - 

Radial immersion 50% - 

Tangential cutting 

coefficient 
30001000 N/mm2 

Radial cutting 

coefficient 
900300 N/mm2 

 


