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Abstract 

 

 

The growing dependence of society on enormous quantities of information 

stored electronically has led to a corresponding rise in errors in this 

information. The stored data can be critically important, necessitating new 

ways of correcting anomalous records. Current cleaning techniques are 

very domain-specific and hard to extend, hindering their use in some 

areas. This work proposes an extensible framework for data cleaning, 

allowing users to customize the cleaning to their specific requirements. It 

defines categories of common cleaning operations, allowing more robust 

support for user-implemented cleaning functions in these categories. The 

experimental results show that the proposed data cleaning framework is an 

effective approach to cleaning data for arbitrary domains. 
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Chapter 1 

 

Introduction 

 

 

Since the dawn of recorded history, humans have produced data. With the 

advent of the information era, the flow of knowledge plays an ever more 

critical role in the economy, and enormous quantities of data are produced 

on a daily basis. However, the process of recording and storing such vast 

amounts of data often leads to inconsistencies in formats and adherence to 

constraints, due to factors such as multiple data sources and entry errors. 

These errors and inconsistencies can cause problems ranging from minor 

to business-critical [1]. The existence of such “dirty” data necessitates a 

change in the way we manage our data. To this end, the concept of data 

cleaning, alternatively known as data cleansing or scrubbing, has emerged 

to describe a broad range of methods to discover and eliminate dirty data.  

There is no comprehensive definition of data cleaning, because 

data cleaning targets errors in data and the definition of what constitutes 

an error is highly domain specific [2]. No set of operations is sufficient to 

eliminate dirty data for all possible domains. In general, data cleaning 

involves the purging of errors and resolution of inconsistencies, followed 

by transformation into a uniform format before use [3]. The exact type of 

cleaning varies depending on system implementation, but major categories 
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include parsing, data transformation, integrity constraint enforcement and 

statistical methods [4]. 

With such large volumes of data, manual data cleaning is 

extremely costly and inefficient. Millions of dollars are spent by 

organizations every year simply to detect errors. Manually processing data 

by hand is time consuming, and is itself prone to errors. The need for tools 

that minimize human involvement in the data cleansing process are 

necessary and are the only practical and cost effective way to achieve a 

reasonable quality level in large data sets [5]. As a result, many data 

cleansing solutions have been developed using highly domain-specific 

heuristics. These solutions, while powerful, suffer from being too 

dependent on a particular environment and are complicated, greatly 

hindering their reuse and extension into other domains [2]. 

The Data Cleaning Framework proposed in this thesis is a new 

way of solving the extensibility problem faced when trying to clean data 

from arbitrary domains. The Data Cleaning Framework is designed with 

extensibility as the central idea, and it enables users to customize data 

cleaning operations to meet their needs, rather than trying to adapt to the 

rules set forth by the system. This thesis provides the following 

contributions: 

 Identifying the obstacles in data cleaning and the 

limitations of current approaches. 

 Generalizing data cleaning operations into major categories 

that are applicable to most data sets. 

 Building a framework using those operation categories to 

enable users to create custom data cleaning operations and 

extend existing operations. 
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The remainder of the thesis is organized as follows. Chapter 2 

examines the major challenges in data cleaning and formally defines the 

problem. Chapter 3 explains the intuition behind the conceptual model for 

the framework and details the major operation types. Chapter 4 describes 

the system architecture for the Data Cleaning Framework. Chapter 5 

evaluates the framework against two scenarios using real-world data and 

Chapter 6 describes related work in the field. Finally, Chapter 7 ties all of 

the work together and concludes the thesis. 
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Chapter 2 

 

Problem Definition 

 

 
In order to formally define the problem this thesis tries to solve, we must 

first examine the concept of “dirty” data, and the common error types that 

result in dirty data. We must also consider current approaches to the data 

cleaning problem. 

 

2.1  Error Types 

 

Data cleaning is a broad field with no comprehensive listing of 

error types. However, a description of the most frequently encountered 

types of errors follows [2, 6, 7, 8]. 

 

Lexical error: Differences between the structure of the data items and the 

specified format. For example, a relation has n attributes when it should 

have m attributes, so the structure of the data does not conform to the 

format. Given the following relations R and I, where R contains a lexical 

error, I is the ideal schema we want to produce, and ai denotes the attribute 

with index i in the relation: 

R(a1,..., an)    I(a1,..., am) 
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We define a lexical error as n ≠ m, meaning that the number of attributes 

in R differs from the number of attributes in I. This means that the number 

of attributes in R is either more or less than the number of attributes in I. 

 

Domain format errors: Errors where the given value for an attribute does 

not conform to the expected domain format. For example, a value is 

required to be exactly n characters long but instead is m characters long. 

Given the following relation R, where R contains a domain format error at 

attribute ai, and D is the domain of valid formats for a given attribute: 

R(a1,…, ai,..., an)  where ai ∉ D  

We define a domain format error as ai ∉ D, meaning that the value stored 

in ai does not belong to a valid format for that particular attribute. 

 

Inconsistencies: Non-uniform use of values, units and abbreviations. 

Inconsistencies occur if different units are used to record a measurement 

and are problematic if the values are assumed to be uniform. Given the 

following relation R, where R contains an inconsistency at attribute ai, and 

U denotes a uniform set of the representations for a given attribute: 

R(a1,…, ai,..., an)  where ai ∉ U  

We define an inconsistency as ai ∉ U, meaning that the value stored in ai 

does not have a uniform representation associated with that particular 

attribute. U is a uniform set where all members are recorded with the same 

representation. 

 

Integrity constraint violations: Relations that do not satisfy one or more 

real-world restrictions on the set of valid instances. For example, a value is 

negative even though this would be impossible for real-world data. Given 

the following relation R, where R contains an integrity constraint violation 
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at attribute ai, and ci is a rule representing a real-world constraint for that 

attribute value: 

R(a1,…, ai,…, an) where ai does not satisfy ci  

We define an integrity constraint violation as ai does not satisfy the rule ci, 

meaning that the value stored in ai does not satisfy a real-world constraint 

for that attribute. 

 

Contradictions: Values in a relation or between relations that violate 

some kind of dependency between the values. Contradictions are a special 

case of integrity constraint violations where the constraint being violated 

is directly derived from other attributes in the relation. For example, 

conflicting values for age and date of birth. Given the following relation R, 

where attributes ai and aj in R contradict each other on some dependency d: 

R(a1,…, ai,..., aj,…, an) where aj ≠ d(ai)  

We define a contradiction as aj ≠ d(ai), meaning that the value of aj does 

not match the value derived from ai using some dependency d. 

 

Missing values: Omissions of values that should exist after performing 

data collection, but are not represented. Given the following relation R, 

where attribute ai has a missing value: 

R(a1,…, ai,..., an)  where ai = ∅  

We define a missing value as ai = ∅, meaning that aj does not have a set 

value even though it is expected to. 
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2.2  Current Approaches 

 

In the context of detecting and correcting dirty data, there exist four 

major approaches. Almost all data cleaning solutions available use at least 

one of these approaches. The four methods are described below [2, 3, 9]. 

 

Parsing: Used to detect syntax errors. A parser for a grammar decides for 

a given string whether it is an element of the language defined by the 

grammar. In data cleaning, the strings are usually attribute values from a 

domain. The grammar used for parsing is based on the domain format. 

Strings which do not correspond to the domain format are syntax errors 

and have to be corrected.  

 

Data Transformation: Maps data from its given format into the format 

expected by the application. The transformations can affect the schema of 

the relations as well as their values. Schema transformation may be used 

to map data into a new schema better fitting the needs of the intended 

application. Input data which do not conform to the new schema can be 

corrected during the transformation.  Standardization and normalization 

are transformations with the intention of removing irregularities in data.  

 

Integrity Constraint Enforcement: Ensures the satisfaction of integrity 

constraints on a collection of data. The two different approaches are 

integrity constraint checking and integrity constraint maintenance. 

Integrity constraint checking rejects transactions that, if applied, would 

violate some integrity constraint. Integrity constraint maintenance uses a 

set of integrity constraints to perform modifications on the data collection 

so that the collection is corrected of integrity constraint violations. 
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Statistical Methods: Detection and elimination of complex errors often 

involve relationships between multiple attributes which do not violate 

integrity constraints. Outliers are one example of such an error. By 

analyzing the data using the values such as mean, standard deviation, and 

range, unexpected values may be discovered indicating potential invalid 

relations. The correction of such errors is often impossible because the 

true values are unknown. Possible solutions include statistical methods 

like setting the values to the average or other statistical value.  

 

2.3  Problem Statement 

 

Collections of real-world data encompass an infinite set of 

domains. Since all data, no matter which domain it comes from, has the 

potential to be dirty, it is neither feasible nor possible to design a system 

with a set of data cleaning operations applicable to all domains.  

Cleaning can be done through parsing, data transformation, 

integrity constraint enforcement, and statistical methods. However, none 

of the methods by itself is comprehensive enough to completely clean a set 

of data with an arbitrary number of error types. Current data cleaning 

systems focus specifically on using just a few of approaches, and do so by 

being highly specific to the problem domain. This makes expansion of 

application to other domains difficult, as the user does not have an easy 

way to make modifications to the system functionality. 

We make the observation that if a single cleaning method is 

limited, multiple methods can be used to cover deficiencies in a particular 

method. As a result, a concept for an extensible data cleaning framework 

came about. Recognizing the need for users to be able to customize their 
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data cleaning experience to match any particular domain, extensibility is 

the main focus of the Data Cleaning Framework described in this thesis. 

The main problems that the Data Cleaning Framework addresses: 

 Enabling users to combine parsing, data transformation, integrity 

constraint enforcement, and statistical methods for data cleaning in 

a single system. 

 Allowing users to write new data cleaning functions that can 

extend the base functionality of the framework to meet their 

particular cleaning needs. 

 Providing a visual interface to let users construct a sequence of 

commands to perform data cleaning, as well as previewing the 

effects of their changes to the database. 

The notion of customizability will be a key focus in the conceptual 

model and architecture of the Data Cleaning Framework. Providing an 

extensible general data cleaning framework is essential to the creation of a 

cleaning solution suitable for all data domains, and therefore, it is the main 

problem this thesis attempts to address. 
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Chapter 3 

 

Conceptual Model 

 

 

The key feature of the Data Cleaning Framework is its extensibility. In 

order to go beyond the limitations of a particular domain, we will 

generalize the problem of data cleaning into categories upon which we 

will build our framework. We propose four main categories of cleaning 

operations. These categories are the integrity check, mapping, merging, 

and statistical operations. We will describe how these four categories of 

operations will cover the error types described previously. 

 

3.1  Integrity Check (INTEG) 

 

The integrity check operator performs data cleaning on a single 

attribute. It takes an attribute as input, performs some transformation on 

that attribute, and then outputs it. This operator is useful when any 

changes to an attribute do not depend on other attributes. Mapping can 

theoretically be used to perform integrity checking as it is a one-to-one 

operation; however, it is useful to define integrity checking as a separate 

operation because it is more intuitive to think of integrity checking as 

correcting errors in the values for an attribute rather than mapping a set of 

corrected values back to the attribute. We represent an integrity check 
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operation using the symbol φ. An integrity check of relation R on attribute 

ai using the function f is defined as follows: 

φ(R(a1,…, ai,..., an), i, f)  where f(ai) = { ai’}  

= R(a1,…, ai’,…, an)   

The parameters to the integrity check operation are the relation R, 

the attribute a to be modified, represented by its index i, and the user-

defined transformation function f. The integrity check operator applies the 

function f to attribute ai. The function f takes an attribute ai and applies 

some transformation on it, producing a corrected attribute ai’ as output, 

and updating ai with it. 

Consider Figure 3.1. From the data, it is clear that the Age attribute 

should not contain negative values. In this case, the most likely course of 

action would be to convert the negative age into a positive value. This 

cleaning operation requires no information stored in other relations, as 

such, the operation falls into the integrity check category. 

 

Name Age 

Alice 17 

Bob -42 

Charles 25 
 

Figure 3.1 Integrity Check Operation 

 

In the Data Cleaning Framework, the integrity check operation is 

represented by the INTEG operator. INTEG utilizes the input column 

from the source table. For every record, the transformation given by the 

parameter name will be applied to said list of attributes. Any changes to an 

attribute’s value will overwrite the initial value. The output columns and 

Name Age 

Alice 17 

Bob 42 

Charles 25 



12 

 

destination tables are unnecessary because changes to data are written 

back into the original attribute column in the same table. 

In terms of SQL, the INTEG operator would correspond to a 

SELECT on the input column from the source table to fetch the relevant 

data into a ResultSet object. There would then be an UPDATE operation 

on the input column for each record in the ResultSet, with the new, 

updated value corresponding to the result returned by applying the user-

implemented function on the attribute value for that record. 

 

INTEG input_column 

SOURCE source_table 

PARAM parameter_name [parameter_arg1] [parameter_arg2] ... 

 

Example: INTEG age SOURCE person PARAM positive; 

 

Corresponding SQL: 

ResultSet ← SELECT input_column FROM source_table  

for each record r in ResultSеt 

 x ← f(r) // f() is user-defined function 

 UPDATE source_table SET r.input_column = x 

 

Figure 3.2 INTEG Syntax 

 

3.2 Mapping (MAP) 

 

The mapping operator is a one-to-many operation. Mapping takes a 

single attribute as input, performs some transformation on the input, and 

produces one or more attributes based on the input. This operator is useful 

when one attribute directly affects one or more other attributes during 

cleaning. We represent a mapping operation using the symbol ω. A 

mapping on a relation R of an attribute ai to attributes aj,...,ak is as follows: 

ω(R(a1,..., ai,..., an), i, [j,...,k], f)  where f(ai) = {aj,...,ak} 
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= R(a1,…, ai,,…, aj,…, ak,…, an) 

The parameters to the mapping operation are the relation R, the 

attribute ai to be mapped and a list of attributes aj,...,ak that will store the 

results of the mapping, all represented by their indices, and the user-

defined transformation function f. The mapping operator applies the 

function f on attribute ai. The function f takes an attribute ai and applies 

some transformation on it, producing attributes aj,...,ak as output, and 

adding them to relation R. 

Consider Figure 3.3. Originally, only the Name attribute exists. 

However, if we require both a first name and a last name for each person, 

then we can split the first and last names, and create the corresponding 

attributes First Name and Last Name. This operation requires using data 

stored in one attribute as input, and outputs the results of the 

transformation to multiple attributes, so it would be a mapping. 

 

Name 

Alice Anders 

Bob Benson 

Charles Calhoun 
 

Figure 3.3 Mapping Operation 

 

In the Data Cleaning Framework, the mapping operation is 

represented by the MAP operator. MAP uses input columns from the 

source tables. Its outputs are the output columns in the destination tables. 

For every record, the function given by the parameter name is applied to 

said attribute. The outputs of the transformation are stored as the 

appropriate attribute of the corresponding record in the destination tables 

if destination tables are listed, otherwise output columns will be saved to 

First Name Last Name 

Alice Anders 

Bob Benson 

Charles Calhoun 
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the source table. If output columns will be stored in multiple destination 

tables, the column name must be qualified by the name of the table. 

In terms of SQL, the MAP operator would correspond to a 

SELECT on the input column qualified by the name of the source table to 

fetch the relevant data into a ResultSet object. If the output columns do not 

exist, there is an ADD COLUMN query to create the columns the 

transformed data will be stored in. Finally, there is an UPDATE operation 

on the output columns for each record in the ResultSet, with the new value 

corresponding to the result returned by applying the user-implemented 

function on the attribute value for that record. 

MAP input_column 

TO output_ column1 [, output_ column2] ...  

SOURCE source_table1 [, source_table2] ...  

[DEST] [destination_table1] [, destination_table2] ... 

PARAM parameter_name [parameter_arg1] [parameter_arg2] ... 

 

Example: MAP name TO first, last SOURCE person PARAM split; 

 

Corresponding SQL: 

ResultSet ← SELECT input_column FROM source_table  

for each destination_table d 

 for each output_column o 

  ALTER TABLE d ADD COLUMN o 

for each record r in ResultSеt 

 [x1,..,xn] ← f(r) // f() is user-defined function 

 for each destination_table d 

  UPDATE d SET r.oi = xi 

 

Figure 3.4 MAP Syntax 

 

3.3 Merging (MERGE) 

 

The mapping operator is a many-to-one operation. It takes multiple 

attributes as input, performs a transformation on the input, and produces 

one attribute based on the input. This operator is useful when multiple 
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attributes directly affect a single attribute during a cleaning operation. We 

represent a merging operation with the symbol µ. A merging on a relation 

R of attributes ai,…,aj to an attribute ak is defined as follows: 

µ(R(a1,..., ai,...,aj,..., an), [i,..., j], k, f)  where f(ai,...,aj) = {ak} 

= R(a1,…, ak,…, an,) 

The parameters to the merging operation are the relation R, a list of 

attributes ai,...,aj to be merged and the attribute ak that will store the results 

of the merge, all represented by their indices, and the user-defined 

transformation function f. The merging operator applies the function f to 

attributes ai,…,aj. The function f takes multiple attributes ai,...,aj and 

applies some transformation on them, producing a single attribute ak as 

output, and adds it to relation R.  

Consider Figure 3.5. The original data contains the fields Q1-Q4 

Profit. However, if we need an Annual Profit attribute, we can combine 

the data for Q1-Q4 profit to produce that attribute. We perform an addition 

on the Q1-Q4 profit attributes to generate the Annual Profit attribute. This 

operation requires using data stored in multiple attributes as input, and 

outputs the results of the transformation to a single attribute, so it can be 

categorized as a merging operation.  

 

Company Q1 Q2 Q3 Q4 

Able 100 80 20 30 

Baker 25 135 200 210 

Charlie 60 65 55 70 
 

Figure 3.5 Merging Operation 

 

In the Data Cleaning Framework, the merging operation is 

represented by the MERGE operator. MERGE uses the input columns 

Company Annual Profit 

Able 230 

Baker 570 

Charlie 250 
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from the source tables. Its output is the output column in the destination 

tables. For every record, the transformation given by the parameter name 

will be applied to the input columns. The output of the transformation is 

stored as the output attribute of the corresponding record in the destination 

table if destination tables are listed; otherwise the output column is saved 

to the source table. If input columns originate from multiple source tables, 

the column name must be qualified by the name of its table. 

In terms of SQL, the MERGE operator would correspond to a 

SELECT on the input columns qualified by the name of the source tables 

they are from to fetch the relevant data into a ResultSet object. If the 

output column does not exist, there is an ADD COLUMN query to create 

the column the transformed data will be stored in. Finally, there is an 

UPDATE operation on the output columns for each record in the 

ResultSet, with the new value equal to the result returned by applying the 

user-implemented function on all specified attribute values for that record. 

 

MERGE input_column1 [, input_ column2] ...  

TO output_ column1  

SOURCE source_table1 [, source_table2] ...  

[DEST] [destination_table1] [, destination_table2] ... 

PARAM parameter_name [parameter_arg1] [parameter_arg2] ... 

 

Example: MERGE q1_profit, q2_profit, q3_profit, q4_profit 

TO annual_profit SOURCE q1-q4 DEST annual PARAM add; 

 

Corresponding SQL: 

ResultSet ← SELECT input_column1 [, input_ column2] ... 

  FROM source_table1 [, source_table2] ... 

for each destination_table d 

 ALTER TABLE d ADD COLUMN output_column 

for each record r in ResultSеt 

 x ← f(r)  // f() is user-defined function 

 for each destination_table d 

  UPDATE d SET r.output_column = x 

Figure 3.6 MERGE Syntax 



17 

 

3.4 Statistics (STAT) 

 

The statistics operator performs data analysis and statistical 

inference. STAT uses an input attribute, along with the specified 

dependency attributes of that attribute. For every record, it calculates some 

statistic on the input attribute using a subset of relations where the 

attribute values specified as dependencies in these relations match the 

corresponding values of the input relation. We represent a statistical 

operation with the symbol δ. Let Rx.ai denote the ith attribute of relation Rx. 

A statistics operation on attribute ai of a relation Rx with dependencies 

aj,…,ak is defined as follows: 

δ(Rx(a1,..., ai,...,aj,..., ak,…, an), i ,[ j,…, k], f)   

where  (∑      
 
   ) = z  such that                           

= (Rx.ai, z) 

The parameters to the statistics operation are the relation Rx, the 

attribute ai that the statistical measure will be computed upon, and a list of 

dependencies aj,...,ak, for which the statistical measure on ai depends on, 

all represented by their indices. The final parameter is the user-defined 

transformation function f. Note that in the notation, Σ does not denote 

summation, but rather an aggregation over the relations. The statistics 

operator applies the user-function f on the subset of relations which satisfy 

the dependencies for the input attribute for a particular record. The user-

function f performs a statistical aggregation on ai over all relations in the 

satisfying subset and then stores that value into a mapping of the attribute 

ai for a relation Rx to its inferred value z based on the dependencies aj,...,ak. 

This mapping can be accessed by successive operations to modify data. 
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Consider Figure 3.7. We have a missing value in the table for zip 

code. However, we can use the information available, such as the existing 

city to zip code pairings to infer a value. We can use a statistical function 

such as the frequency, to infer a value that will minimize the chance of an 

anomaly being introduced. Once we have calculated the frequency, we can 

store this value so that a future operation, such as an integrity check, can 

access this result. These types of operations leverage statistical methods, 

so they fall under the statistics category. 

 

City Zip 

Urbana 61801 

Champaign 61820 

Urbana 
 Urbana 61801 

 

Figure 3.7 Statistical Operation 

 

In the Data Cleaning Framework, the statistics operation is 

represented by the STAT operator. STAT uses the input column from the 

source table, along with the specified dependency attributes of that 

attribute from the destination table. For every record, the operation given 

by the parameter name will be applied as an aggregation upon the subset 

of records satisfying the specified dependencies on the input record. Its 

output stores a mapping of an attribute for a particular record and the 

statistical measure calculated on the subset of records satisfying the 

dependencies of that attribute. These statistical measures are computed 

programmatically on the input attribute for each record, based on the 

dependencies for that particular record. 

City Zip 

Urbana 61801 

Champaign 61820 

Urbana 61801 

Urbana 61801 
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In terms of SQL, the STAT operator would correspond to a 

SELECT on the input column and dependency columns from the source 

and destination tables, where the values of the dependency columns match 

between the source and destination tables. These records are grouped as 

subsets into ResultSet objects based on the dependency columns. 

Following is a user-implemented aggregation operation on the input 

columns in each ResultSet. The results of the aggregation are stored as a 

mapping of an attribute for a particular record to the statistical measure 

computed on that attribute based on the dependencies listed. The results 

can later be used by any of the other operation types to modify the data. 

 

STAT input_column 

SOURCE source_table1  

[DEST] [destination_table] [, destination_table2] ... 

DEPEND dependency_column1 [, dependency_column2] ... 

PARAM parameter_name [parameter_arg1] [parameter_arg2] ... 

 

Example: STAT zip_code SOURCE address DEPEND city  

 PARAM maxFreq; 

 

Corresponding SQL:  

ResultSet ← SELECT input_column 

  FROM source_table, destination_table ... 

  WHERE source_table.dependency_column1 =  

  destination_table.dependency_column1 ... 

  GROUP BY dependency_column1 ... 

for each record r in ResultSet 

 (r.input_column, x) ← f(ResultSеt)  

 

// f() is user-defined function which returns a mapping of 

an attribute to the statistical measure computed by f() on 

that attribute using the specified dependencies. The 

mapping is stored automatically and can be accessed by 

successive cleaning operations 

Figure 3.8 STAT Syntax 
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3.5 Application 

 

The integrity check, mapping, merging, and statistical operators 

form the core of the Data Cleaning Framework, and provide the means 

with which to clean errors. We will show algebraically how the four 

operator types can handle the error types listed in the taxonomy. Each 

error type is matched with an operator that can handle them. 

 

Lexical error – A mapping/merging operation can be used to change the 

structure of data to fit schema. Mapping/merging operations modify the 

schema of the data by creating or combining attributes to fix lexical errors: 

ω(R(a1,..., ai,..., an), i, [j,...,k], f)  where f(ai) = {aj,...,ak} 

= R(a1,…, ai,,…, aj,…, ak,…, an) 

The mapping operator applies the function f to map the attribute ai to 

attributes aj,...,ak in order to extract the missing attributes that were 

previously combined as a single attribute and fix the lexical error. 

µ(R(a1,..., ai,...,aj,..., an), [i,..., j], k, f)  where f(ai,...,aj) = {ak} 

= R(a1,…, ak,…, an,) 

The merging operator applies the function f to attributes ai,…,aj in order to 

combine extraneous attributes into an attribute ak and fix the lexical error. 

 

Domain format error – An integrity check operation can be used to clean 

the error by forcing format constraints upon values. Correcting domain 

format errors is a one-to-one operation, so we can use the integrity check: 

φ(R(a1,…, ai,..., an), i, f)  where f(ai) = { ai’} and ai’ ∈ D  

= R(a1,…, ai’,…, an)  where ai’ ∈ D 

The integrity check operator applies the user-defined function f on 

attribute ai, which has a domain format error, and the transformation 
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performed by f produces ai’, where ai’ is constrained within the boundaries 

of the format domain D.  

 

Inconsistencies – An integrity check operation can be used to clean the 

error by converting values into the required units. Inconsistencies do not 

need additional information from other attributes in order to be corrected, 

so integrity check is suitable: 

φ(R(a1,..., ai,..., an), i, f)  where f(ai) = { ai’} and ai’ ∈ U 

= R(a1,…, ai’,…, an)  where ai’ ∈ U 

The integrity check operator applies the user-defined function f on 

attribute ai, which has inconsistent representation, and the transformation 

performed by f converts ai into ai’, where ai’ belongs to U, where U is a 

uniform set where all members are recorded with the same representation. 

 

Integrity constraint violations – An integrity check operation can be 

used to clean the error by transforming invalid attribute values to valid 

ones. Correcting domain format errors does not require additional 

information, so it is one-to-one, and we can use the integrity check: 

φ(R(a1,…, ai,..., an), i, f)  where f(ai) = { ai’} and ai’ satisfies ci  

= R(a1,…, ai’,…, an)  where ai’ satisfies ci  

The integrity check operator applies the user-defined function f on 

attribute ai, which violates an integrity constraint ci. The transformation 

performed by f produces ai’, where ai’ satisfies a real-world constraint ci. 

 

Contradictions – A mapping/merging operation can be used to fix 

contradictory values by deriving them again from other attributes. 

Contradictions require dependencies between attributes, so operators 

which operate on multiple attributes, such as mapping/merging are needed: 
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ω(R(a1,..., ai,,…, aj,…, ak,…, an), i, [j,...,k], f)  where f(ai) = {aj’,...,ak’} 

= R(a1,…, ai,,…, aj’,…, ak’,…, an) 

The mapping operator applies the user-defined function f to ai in order to 

derive correct values for aj,…, ak that do not contradict ai. 

µ(R(a1,..., ai, ..., aj ,..., ak,..., an), [i,..., j], k, f) where f(ai,...,aj) = {ak’} 

= R(a1,..., ai, ..., aj ,..., ak’,..., an)  

The merging operator applies the user-defined function f to attributes 

ai,…,aj to derive a correct value for ak, which does not contradict ai,…,aj.  

 

Missing values – A statistics operation can be combined with a data 

modifying operator to fill in a missing value by inferring a likely value 

using information about existing values. For example, a missing zip code 

in an address can be inferred if we know the city, by finding the most 

frequently paired zip code for that particular city. The statistics operator is 

first used to infer a value by considering the dependencies of the missing 

value for a specific record, then performing statistical aggregation on other 

records whose attributes match on the dependencies. It stores the mapping 

of an attribute of a particular record with its inferred value. This mapping 

is automatically stored and can be accessed by data modification operators 

such as an integrity check to fill in the missing value.  

δ(Rx(a1,..., ai,...,aj,..., ak,…, an), i ,[ j,…, k], f)   

where  (∑      
 
   ) = z  such that                           

= (Rx.ai, z) 

φ(Rx(a1,…, ai,..., an), i, f)  where ai = ∅ and f(ai) = { ai’} and ai’ = z 

= R(a1,…, ai’,…, an)   

The statistics operator applies the user-function f on the subset of 

relations which satisfy the dependencies for the input attribute for a 

particular record. The user-function f performs a statistical aggregation on 
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ai over all relations in the satisfying subset and then stores that value into a 

mapping of the attribute ai for a relation Rx to its inferred value z based on 

the dependencies aj,...,ak. Following is an integrity check operation, which 

is automatically passed the attribute/value mappings by the system. The 

integrity check fills missing values for an attribute in a particular record 

with the value computed by the statistics operator based on other records 

matching the dependencies on that attribute. 

 

3.6 Composition 

 

A data cleaning program using the Data Cleaning Framework is 

defined as one or more commands run in sequence. Several commands 

may be composed into a data cleaning program by running them in 

sequence to handle multiple error types. Successive commands operate on 

the state of the database resulting from the previous command. We will 

show mathematically and by example, how a series of operations can be 

composed into a data cleaning program. 

We will use the example data shown in Figure 3.9 to demonstrate 

how the Data Cleaning Framework and its operators function. Suppose we 

have a series of cleaning tasks we wish to perform on this data. We want 

to split the “Name” field into “First Name” and “Last Name”. We also 

want to infer a value for the missing “Zip” entry, and then finally to fill in 

the missing value using that information. We can accomplish this by 

performing the sequence of commands shown in Figure 3.10. 
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Name City Zip 

Alice Anders Urbana 61801 

Bob Benson Champaign 61820 

Charles Calhoun Urbana 
 Daniel Dillinger Urbana 61801 

Figure 3.9 Person Table 

 

MAP name TO firstName, lastName SOURCE person PARAM split;  

STAT zip SOURCE person DEPEND city PARAM maxFreq; 

INTEG zip SOURCE person PARAM fillEmpty; 

Figure 3.10 Example Cleaning Operations 

 

The first operation is a MAP operation, which takes a single 

attribute as input, performs some transformation on the input, and 

produces one or more attributes based on the input. For this operation, the 

“Name” attribute from the “Person” table is being mapped to the “First 

Name” and “Last Name” attributes using the parameter “Split”. 

Parameters specify the user-defined function which performs the 

transformation on the data, in this case, splitting. Users can define their 

own transformation functions to use for data cleaning. We will show an 

example of the mathematical representation for MAP on the first record: 

ω(R(Alice Anders, Urbana, 61801), 1, split)  

where split(“Alice Anders”) = {“Alice”, “Anders”} 

= R(Alice, Anders, Urbana, 61801) 

 In this mapping operation, the first attribute is being mapped, and 

the transformation function being applied is the “Split” function, so i = 1 

and f = split. The “Split” function splits “Alice Anders” into “Alice”, 

“Anders”, and the resulting record becomes R(Alice, Anders, Urbana, 

61801). The MAP operation is applied to all records in the table, and the 
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results are shown in Figure 3.11. The MERGE operation is logically the 

reverse of the MAP operation, so its specification is similar and not shown. 

 

First Name Last Name City Zip 

Alice Anders Urbana 61801 

Bob Benson Champaign 61820 

Charles Calhoun Urbana 
 Daniel Dillinger Urbana 61801 

Figure 3.11 Person Table after MAP 

 

Next is the STAT operation, which for every record, calculates 

some statistic on an attribute using a subset of relations where the attribute 

values specified as dependencies in these relations match the 

corresponding values of the input record. Each operation operates on the 

state of the data resulting from the previous operation, so the STAT 

operation would operate on Figure 3.11. For this operation, a record is 

missing the “Zip” attribute. The “Zip” values for this record will be 

inferred by computing some statistical aggregation over all records which 

match the dependency attribute “City” for that particular record, in this 

case the most frequent value of “Zip” corresponding to the “City” value. 

Since the record with a missing “Zip” value has “City = Urbana”, the 

system will only use other records satisfying “City = Urbana” to infer the 

missing value, and will not use records with “City = Champaign”. We 

show an example of the algebraic notation for STAT on the third record: 

δ(Rx(Charles, Calhoun, Urbana, ∅), 4 ,[3], maxFreq)  

where a3 = “City” a4 = “Zip”                  and Rx.city = “Urbana”  

and        (∑       
 
   ) = 61801     

= (Rx.zip, 61801)  



26 

 

In this statistics operation, the attribute we want to infer, “Zip”, is 

the fourth attribute; its dependencies are “City”, the third attribute. The 

transformation function being applied is the “maxFreq” function, so i = 4 

and f = maxFreq. The system selects a subset of records satisfying the 

dependency, or records with “City = Urbana”. This is passed to the 

“maxFreq” function which computes the value of “Zip” most frequently 

paired with “City = Urbana”. The STAT operation is applied to all records 

in the table, and it computes and saves a mapping of attributes for a 

particular record to the statistical measures computed on that attribute 

based on the dependencies listed. The internal representation of such a 

mapping is shown in Figure 3.12. This mapping is accessible by any 

successive operation to be used in data cleaning. 

 

Attribute Inferred Value 

R1.zip 61801 

R2.zip 61820 

R3.zip 61801 

R4.zip 61801 

Figure 3.12 Mapping Produced by STAT 

 

STAT is unique in that it stores the result of its calculations and 

automatically passes this information so that successive operators can use 

it to perform cleaning. Because operations are modular, the STAT 

operation does not need to modify data itself, but instead can pass what it 

computes to data-modifying operators such as INTEG. This chaining of 

operators reduces the amount of code duplication, because STAT can rely 

on the data-modifying operations to apply the results of its computation. 

Therefore, if a user wishes to alter data using the results of the STAT 
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operation, they must follow the STAT operation with a data-modifying 

operation, lest the result be overwritten by another STAT operation. 

The final operation is an INTEG operation, which takes an 

attribute as input, performs some transformation on that attribute, and then 

outputs it. The INTEG operation is a data-modifying operation, so it can 

be used to apply the results computed by the preceding STAT operation 

and use them to fill missing values. In this operation, the “Zip” attribute in 

the Person table is being cleaned using the “fillEmpty” user-defined 

function. We will show an example of the mathematical representation for 

INTEG on the third record: 

φ(R(Charles, Calhoun, Urbana, ∅), 4, fillEmpty)   

where fillEmpty(ai, 61801) = ai’ and ai’ = 61801 

= R(Charles, Calhoun, Urbana, 61801) 

In this integrity check operation, the fourth attribute is being 

cleaned, and the transformation function being applied is the “fillEmpty” 

function, so i = 4 and f = fillEmpty. The “fillEmpty” function is 

automatically passed the mapping derived from the previous STAT 

operation, and it fills in missing values of a specific attribute in a record 

with the corresponding value defined in the mapping. The INTEG 

operation is applied to all records, and the results are shown in Figure 3.13.  

 

First Name Last Name City Zip 

Alice Anders Urbana 61801 

Bob Benson Champaign 61820 

Charles Calhoun Urbana 61801 

Daniel Dillinger Urbana 61801 
Figure 3.13 Person Table after INTEG 
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The data was successfully cleaned after applying a sequence of 

operations which compose a data cleaning program. Any transformation 

that can be performed using the system falls into one of the four categories 

of data cleaning operations. The operations overlap in their coverage of 

data errors, so some errors may be cleaned using different operators than 

the ones listed. Together, these four types of operations can be chained to 

create a data cleaning program to clean the error types described.   
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Chapter 4 

 

System Architecture 

 

 

The Data Cleaning Framework consists of three components. These are 

the Command Parser, the Execution Engine, and the User Interface. The 

Command Parser and the Execution Engine contain all of the logic to 

perform the data cleaning, while the User Interface allows users to specify 

the cleaning operations and see the changes made.  

To use the Data Cleaning Framework, a user builds a sequence of 

cleaning commands to be run on the database. When the user executes this 

sequence, the Command Parser extracts the necessary information from 

the command, such as the inputs and outputs of the operation. It passes 

this information to the Execution Engine, which decides the type of 

operator, and the parameters involved in the cleaning. The Execution 

Engine applies the user-specified transformation on the data in accordance 

to the operator type. Finally, the User Interface allows the user to view the 

end results of the cleaning commands. 

The system was programmed with the Java language on a Linux 

system. Java was chosen because of its portability across systems, and its 

library of supported functions. It was evaluated on a MySQL database and 

requires the use of JDBC drivers to connect and interact with the database.  
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4.1 Command Parser 

 

The Command Parser is the first component of the system run 

when executing a command. It is responsible for extracting the key 

arguments contained in each command, and separating this information 

into parts that will later be used by the Execution Engine. The Data 

Cleaning Framework uses a unique SQL-like syntax for each command. 

Figure 4.1 shows the structure of this syntax. Any field listed in square 

brackets may be optional depending on the type of operator used. 

OPERATOR input_column1 [, input_column2] ...  

[TO] [output_ column1] [, output_column2] ...  

SOURCE source_table1 [, source_table2] ...  

[DEST] [destination_table1] [, destination_table2] ... 

[DEPEND] [dependency_column1] [, dependency_column2] ... 

PARAM parameter_name [parameter_arg1] [parameter_arg2] ... 

Figure 4.1 Operation Syntax 

 

The syntax used by the Data Cleaning Framework can be divided 

into seven sections. These are the operator, input columns, output columns, 

source tables, destination tables, dependency columns, and parameters. 

The OPERATOR keyword refers to any of the four supported 

cleaning operators. These consist of INTEG (integrity check), MAP 

(mapping), MERGE (merging), and STAT (statistics). The OPERATOR 

keyword identifies the operation category, and its general effect. 

The input columns are between the OPERATOR and TO (or 

SOURCE) keywords. These are the list of columns that will be read from 

during the cleaning operation. The specified columns are what the user-

specified transformation will operate on. There must be at least one 

column specified for a command to operate on. 

 



31 

 

input_ column1 [, input_ column2] ... 

Figure 4.2 Input Columns 

 

The output columns lie between the TO and SOURCE keywords. 

These are the list of columns that will be written to during the cleaning 

operation. The specified columns indicate where the results of the user-

specified transformation will be stored to.  

[TO] [output_ column1] [, output_ column2] ... 

Figure 4.3 Output Columns 

 

The source tables fall between the SOURCE and DEST (or 

PARAM) keywords. The list of tables specifies where the input columns 

are located. This list tells the system which tables the columns to be used 

as input for the cleaning operation will be found in. There must be at least 

one table specified for a command to operate on. 

SOURCE source_table1 [, source_table2] ... 

Figure 4.4 Source Tables 

 

The destination tables are between the DEST and PARAM (or 

DEPEND) keywords. The list of tables is where the output columns will 

be stored. This list tells the system which tables the columns that will store 

the outputs for the cleaning operation will be located in.  

[DEST] [destination_table1] [, destination_table2] ... 

Figure 4.5 Destination Tables 

 

The dependency columns are between the DEPEND and PARAM 

keywords. The list of columns indicates which attributes that the input 
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column depends on. This list tells the system how to select a subset of 

records in order to calculate some statistical measure for a column.  

[DEPEND] [dependency_column1] [, dependency_column2] ... 

Figure 4.6 Dependency Columns 

 

After the PARAM keyword is the name of the user-specified 

function to be applied. Immediately following the name is the list of 

arguments for the user-specified transformation. Any arguments following 

the PARAM keyword are used solely by the user-implemented function. 

As such, there is no set format on the parameters being passed. A user-

defined function could require no arguments or several arguments, 

depending on exactly what computation is being performed and what 

additional information is required. However, each cleaning command 

requires that a function be specified, regardless of arguments.  

PARAM parameter_name [parameter_arg1] [parameter_arg2] ... 

// number of arguments vary by function 

Example: // no argument, add all attributes 

 PARAM add    

 // single argument, round to 2 decimal places 

 PARAM round 2  

Figure 4.7 Parameter Arguments 

 

4.2 Execution Engine 

 

The Execution Engine is responsible for running user-specified 

transformation functions to perform the data cleaning. The information 

necessary for the cleaning transformation is extracted from the command 

by the Command Parser, and passed to the Execution Engine. It uses this 

information to determine the operator category and the type of 
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transformation function.  It then runs the user-implemented code to 

perform the corresponding transformation on the relevant data. 

 The Execution Engine functions by taking the input columns and 

source tables, and creating an SQL SELECT query used to fetch the 

relevant data to be cleaned. The data from the query is stored as a 

ResultSet object, which can be accessed by the user-specified cleaning 

function. The cleaning function reads from the ResultSet object and 

performs some computation on the data. The process for obtaining the 

input data is the same all four operator types. The new values are stored to 

the output columns and destination tables specified, and the change is 

reflected in the database. 

The engine is not limited to a set of predetermined cleaning 

transformations on the data. It gives the user the flexibility of integrating 

additional functionality through user-implemented transformation 

functions. Figure 4.8 shows an example of how a user might choose to 

implement a new cleaning transformation. The basic code template with 

which to implement a transformation has two parts.  

 

 

Figure 4.8 Example User-implemented Function 

 

The first part is the argument section. This contains the set of 

relevant input data and output attributes, as well as the destination table 
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where the results of the user-specified function will be stored. It also 

includes an object containing any results stored by a previous operation, 

such as statistics calculated and stored for later use in inferring missing 

values. This information is automatically passed to the user-defined 

function, and can be accessed as necessary by the user-defined function. 

The second part is the functionality section. This is where the core 

functionality of the user-implemented transformation function is located. 

Here, the user implements exactly the operations they want to perform 

upon the data. Implementation is straightforward, since the users need 

focus solely on the actions needed to clean a single record while the 

Execution Engine applies the user function to the relevant records in the 

database. This abstracts away the need to manually get information about 

the schema format, and then iterate through all of the records. 

The Execution Engine provides a separation of concerns when 

implementing new data cleaning transformations. By categorizing all 

commands as INTEG, MAP, MERGE, or STAT, the engine knows 

exactly how to apply the user-defined function to the data. This makes 

code for user-implemented functionality much shorter, because it only 

needs to deal with single records, while the Execution Engine does the rest. 

 

4.3 User Interface 

 

The user interface, shown in Figure 4.9, is the component of the 

system that a user will most frequently interact with. It is designed to help 

make the steps involved in data cleaning as intuitive as possible. The 

graphical user interface can be used to view the contents of the database, 

create a sequence of cleaning commands, and execute or preview the 
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effects of the commands on the database. The user interface consists of 

three main areas, or panels. 

 

Figure 4.9 Data Cleaning Framework User Interface 

 

The topmost area in the application is the Database View panel, 

shown in Figure 4.10. Once users have established a connection to the 
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database, they can choose to select a table within that database from the 

drop-down list, and view the current contents of the table. This provides 

users with a clear picture of the data they are operating upon, and gives 

them a guide with which to write the necessary cleaning commands. 

 

 

Figure 4.10 Database View Panel 

 

 Under the Database View panel is the Cleaning Operations panel, 

seen in Figure 4.11. This panel gives users the ability to load a previously 

created list of commands from a flat file, or build a new list. The upper 

pane shows the current contents of the command list, while the bottom 

pane is where users can type new commands to add. Each command in the 

list may be reordered or removed to suit the situation. During execution of 

the command list, each command is processed sequentially. This means 

that the results of each command are already written to the database by the 

time the successive command is run. Each command operates on the state 

of the database resulting from the previous command. 
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Figure 4.11 Cleaning Operations Panel 

  

The lowermost panel is the Execution Console panel, shown in 

Figure 4.12. It allows execution and preview of the data cleaning 

commands. The text area outputs messages and results generated by the 

cleaning during run time. Cleaning may be performed in preview mode, in 

which case a new window opens, showing a preview of the contents of 

any table in the database after cleaning completes. This does not modify 

any data, and is a convenient way for users to understand exactly what 

their commands will do. The cleaning commands can then be run with 

permanent effects, updating the database with the results of the cleaning. 

 

 

Figure 4.12 Execution Console Panel 

  

The Command Parser, the Execution Engine, and the User 

Interface combine to form the Data Cleaning Framework. They are 

designed to minimize the learning curve of extending and customizing the 

system. These parts constitute the functionality required for the system to 

be able to be tailored to users’ data cleaning needs. 
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Chapter 5 

 

System Evaluation 

 

 

To evaluate how the Data Cleaning Framework can be used to perform 

data cleaning, we will examine two scenarios involving real-world data. 

For each set of data, we build a sequence of cleaning commands and then 

apply these commands on the data, with a before and after comparison of 

the tables to see the end results of the data cleaning. The goal of these tests 

is to demonstrate how the system and the operator types defined can be 

applied in a real-world situation.  

 The Data Cleaning Framework will also be compared to a baseline, 

in order to evaluate the utility gained by using such a framework. The 

baseline represents a system where each individual cleaning operation is 

implemented without utilizing the functionality provided by the Data 

Cleaning Framework. The baseline uses the same basic code for each 

cleaning function, but it does not take advantage of the abstractions 

provided by the framework, such as the automatic fetching and iteration 

through records, and the functions provided to modify record values. The 

main metric for this comparison is an estimate of the amount of code 

necessary to implement the specified functionality. A comparison matrix 

is used to match the Data Cleaning Framework system against the baseline 

system for each cleaning command performed in the scenarios.  
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5.1 Soccer Matches Database 

 

Suppose you are a fan of association football (soccer). You often 

debate with your friends about the best team in the world. Recently, you 

discovered a resource that may be able to help settle these disputes. This 

source of information is the World Football Elo Rankings. The World 

Football Elo Ratings are based on the rating system used to rank chess 

players and are used to rate national teams. The World Football Elo 

Rankings database contains data on thousands of soccer matches. Figure 

5.1 shows a selection of records from the table. 

 

Figure 5.1 Original Matches Table (First 15 Records) 

 

Date 
Home 
Team 

Away 
Team 

Home 
Score 

Away 
Score Competition Location 

Home 
Rank 

Away 
Rank 

Rank 
Diff 

1940-
04-02 Croatia Switzerland 4 0 Friendly Croatia 8 18 -10 

1940-
04-21 Switzerland Croatia 0 

 
Friendly Switzerland 18 8 10 

05/02/ 
1940 Hungary Croatia 1 0 Friendly Hungary 8 9 -1 

1940-
12-08 Croatia Hungary 1 1 Friendly Croatia 9 8 1 

1941-
06-15 Germany Croatia 5 1 Friendly Germany 8 9 -1 

1941-
09-07 Slovakia   Croatia 1 1 Friendly Slovakia 27 10 17 

1941-
09-28 

Croatia  
Slovakia 

 
5 2 Friendly Croatia 9 27 -18 

1942-
01-18 Germany Croatia 2 0 Friendly Germany 8 11 -3 

1942-
04-05 Italy Croatia 4 0 Friendly Italy 2 13 -11 

1942-
04-11 Croatia Bulgaria 6 0 Friendly Croatia 11 44 -3 

1942-
06-07 Slovakia Croatia 1.1 2 Friendly Slovakia 33 9 2 

1942-
06-14 Hungary Croatia 1 1 Friendly Hungary -13 9 4 

1942-
09-06 Croatia Slovakia 6 1 Friendly Croatia 9 33 -24 

1942-
10-11 Romania Croatia 2 2 Friendly Romania 39 9 30 

1942-
11-01 Germany Croatia 5 1 Friendly Germany 7 11 -4 
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There are several errors and anomalies in the data due to the time 

period some of these records are from. The discrepancies are highlighted 

in red above. To resolve these issues, you decide to clean the data under 

the following requirements corresponding to the indicated error type: 

 Ensure all matches have a home team and an away team listed by 

splitting team entries containing both teams (Lexical error). 

 Change all home scores to integer values by truncating 

unnecessary digits (Domain format error). 

 Convert all date values to yyyy-mm-dd format from other date 

formats (Inconsistency). 

 Ensure all home rankings are non-negative by changing negative 

values to positive (Integrity constraint violation). 

 Correct errors for the rank difference between teams by deriving 

from the home and away ranking (Contradiction). 

 Fill missing away scores to minimize change to statistical 

measures by using the most common value (Missing value). 

Figure 5.2 shows the sequence of actions taken to clean the data. 

The four categories of operations are used with different parameters in 

order to correct each type of error. For missing values, the output of the 

STAT operations is used as inputs to fill empty values during the next 

round of cleaning. The final cleaned matches table is shown in Figure 5.3. 

 

// Split entry into home and away team 

MAP homeTeam TO homeTeam, awayTeam SOURCE soccer  

PARAM split;  

// Convert all values to integers 

INTEG homeScore SOURCE soccer PARAM toInt; 

// Change date values to yyyy-mm-dd format 

INTEG date SOURCE soccer PARAM ymd;  

// Make all values positive 
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INTEG homeRank SOURCE soccer PARAM positive;   

// Rederive difference from home and away rankings 

MERGE homeRank, awayRank TO rankDiff SOURCE soccer  

PARAM sub; 

// Infer most common value using attribute dependencies  

STAT awayScore SOURCE soccer DEPEND awayTeam PARAM maxFreq; 

// Use inferred values to fill missing values 

INTEG awayScore SOURCE soccer PARAM fillEmpty; 

 

Figure 5.2 Data Cleaning Sequence of Actions 

 

Figure 5.3 Cleaned Matches Table (First 15 Records) 

 

Data cleaning operations can be combined by running them in 

sequence. Each operation cleaned one type of error, and successive 

operations operate on the table after the error handled by the previous 

operation is cleaned. Figure 5.3 shows that the Data Cleaning Framework 

Date 
Home 
Team 

Away 
Team 

Home 
Score 

Away 
Score Competition Location 

Home 
Rank 

Away 
Rank 

Rank 
Diff 

1940-
04-02 Croatia Switzerland 4 0 Friendly Croatia 8 18 -10 

1940-
04-21 Switzerland Croatia 0 1 Friendly Switzerland 18 8 10 

1940-
05-02 Hungary Croatia 1 0 Friendly Hungary 8 9 -1 

1940-
12-08 Croatia Hungary 1 1 Friendly Croatia 9 8 1 

1941-
06-15 Germany Croatia 5 1 Friendly Germany 8 9 -1 

1941-
09-07 Slovakia Croatia 1 1 Friendly Slovakia 27 10 17 

1941-
09-28 Croatia Slovakia 5 2 Friendly Croatia 9 27 -18 

1942-
01-18 Germany Croatia 2 0 Friendly Germany 8 11 -3 

1942-
04-05 Italy Croatia 4 0 Friendly Italy 2 13 -11 

1942-
04-11 Croatia Bulgaria 6 0 Friendly Croatia 11 44 -33 

1942-
06-07 Slovakia Croatia 1 2 Friendly Slovakia 33 9 24 

1942-
06-14 Hungary Croatia 1 1 Friendly Hungary 13 9 4 

1942-
09-06 Croatia Slovakia 6 1 Friendly Croatia 9 33 -24 

1942-
10-11 Romania Croatia 2 2 Friendly Romania 39 9 30 

1942-
11-01 Germany Croatia 5 1 Friendly Germany 7 11 -4 
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was successful in accomplishing the requirements for correcting all errors. 

The matrix in Figure 5.4 compares the amount of work required to 

implement each of the operations necessary to clean the data. We observe 

that the Data Cleaning Framework is able to perform the required cleaning 

operations through user extension of the system, with a minimal amount of 

programming. In contrast, implementing the cleaning functions in the 

baseline system took many times the effort. Example comparison code 

from the MAP operation is shown in Appendix A. 

 

Operation Data Cleaning Framework Baseline (No Framework) 

Map team field to create 

home and away teams 

Lines of Code: ~5 

 

Lines of Code: ~80 

 

Integrity check home 

scores to be integer values 

Lines of Code: ~10 

 

Lines of Code: ~50 

 

Integrity check date values 

to be yyyy-mm-dd format 

Lines of Code: ~20 

 

Lines of Code: ~60 

 

Integrity check home 

rankings to be positive 

Lines of Code: ~5 

 

Lines of Code: ~45 

 

Merge home/away ranking 

to derive rank difference 

Lines of Code: ~10 

 

Lines of Code: ~85 

 

Statistics to find most 

frequent score to fill 

missing values 

Lines of Code: ~25 

 

Lines of Code: ~60 

Figure 5.4 Comparison of Soccer Matches Scenario 

 

5.2 Historical Weather Database 

 

Suppose you are a meteorologist from CERN who has come to 

Urbana to visit relatives. You have some free time and decide to 
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investigate meteorological trends in Urbana to see if there is any evidence 

of climate change in the region. The National Climatic Data Center stores 

historical weather measurements for Urbana over many decades. From 

here, you obtain data with which you wish to compare temperature trends 

for a particular month over the years. Figures 5.5-5.8 show the data tables 

as they originally appeared. 

 

Month Day Location High Temp Low Temp 

10 1 61801 64.4 39.2 

10 2 61801 64.4 35.6 

10 3 61801 73.4 42.8 

10 4 61801 69.1 42.1 

10 5 61801 80.1 42.1 

10 6 61801 82.4 48.2 

10 7 61801 68 57 

10 8 61801 69.8 53.6 

10 9 61801 75 43 

10 10 61801 79 45 

Figure 5.5 October 2008 Table (First 10 Records) 

 

Month Day Location High Temp Low Temp Windspeed Precipitation 

10 1 61801 60.1 42.1 4.9 0.54 

10 2 61801 60.1 46 9.9 0.38 

10 3 61801 55.4 48.2 9.7 0 

10 4 61801 63 39 5.2 0 

10 5 61801 68 39 2.2 0 

10 6 61801 66.9 45 7.1 0.11 

10 7 61801 63 39.9 8.8 0.19 

10 8 61801 53.6 44.6 4.7 0 

10 9 61801 52 46 4.8 2.15 

10 10 61801 55.9 32 4.5 0 

Figure 5.6 October 2009 Table (First 10 Records) 



44 

 

Month Day Years Location High Temp Change Low Temp Change 

10 4 2005-2006 61801 1.66 6.23 

10 4 2006-2007 61801 2.77 1.12 

10 4 2007-2008 61801 -0.9 -0.34 

10 5 2005-2006 61801 2.9 -2.89 

10 5 2006-2007 61801 -3.33 -3 

10 5 2007-2008 61801 5.37 3.76 

10 6 2005-2006 61801 -3.09 4.25 

10 6 2006-2007 61801 -1.4 1.43 

10 6 2007-2008 61801 -8.8 -5.5 

10 7 2005-2006 61801 -5.11 -2 

10 7 2006-2007 61801 3.48 -1.46 

10 7 2007-2008 61801 6.83 4.09 

10 8 2005-2006 61801 6.34 5.51 

10 8 2006-2007 61801 -0.11 2.77 

10 8 2007-2008 61801 -2.56 -1.24 

Figure 5.7 Historical Temperature Change (15 Records) 

 

Month Day High Temp Change Low Temp Change 

10 1 -4.3 2.9 

10 2 -4.3 10.4 

10 3 -180 5.4 

10 4 -6.1 -3.1 

10 5 -12.1 -3.1 

10 6 -15.5 

 10 7 -5 -17.1 

10 8 -16.2 

 10 9 -23 3 

10 10 -23.1111 -13 

Figure 5.8 Original October 08-09 Table (First 10 Records) 
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The data contains multiple types of errors, highlighted in red in 

Figure 5.8. To fix the tables, you decide to clean the data under the 

following requirements corresponding to the listed error type: 

 Copy the location attribute over to the new table, which does not 

have a location column (Lexical error). 

 Correct errors in high temperature difference by deriving from the 

high temperatures of the month between years (Contradiction). 

 Round the high temperature change values with extra digits to one 

decimal place (Inconsistency). 

 Fill missing temperature change values, minimizing overall change 

to statistical measures by using the average value over the same 

day in years past (Missing value).  

Figure 5.9 shows the sequence of actions taken to clean the data. 

The four categories of operations are used with multiple parameters in 

order to enact the corrections necessary. In the case of missing values, the 

output of the STAT operations is used as inputs to fill empty values during 

the next round of cleaning. The result of cleaning is shown in Figure 5.10. 

// Copy the location attribute 

MAP oct08.location TO october0809.location SOURCE oct08  

DEST october0809 PARAM copy; 

// Rederive temperature change from existing data 

MERGE oct09.highTemp, oct08.highTemp  

TO october0809.highChange SOURCE oct08, oct09  

DEST october0809 PARAM sub; 

// Round values to specified precision 

INTEG highChange SOURCE october0809 PARAM round 1; 

// Infer average value based on attribute dependencies 

STAT lowChange SOURCE october0809 DEST annualDiff  

DEPEND month, day PARAM avg; 

// Use inferred values to fill missing values 

INTEG lowChange SOURCE october0809 PARAM fillEmpty; 

 

Figure 5.9 Data Cleaning Sequence of Actions 
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Month Day Location High Temp Change Low Temp Change 

10 1 61801 -4.3 2.9 

10 2 61801 -4.3 10.4 

10 3 61801 -18 5.4 

10 4 61801 -6.1 -3.1 

10 5 61801 -12.1 -3.1 

10 6 61801 -15.5 0.1 

10 7 61801 -5 -17.1 

10 8 61801 -16.2 2.3 

10 9 61801 -23 3 

10 10 61801 -23.1 -13 

Figure 5.10 Cleaned October 08-09 Table (First 10 Records) 

 

Figure 5.10 shows that the Data Cleaning Framework was 

successful in correcting all error types through the series of data cleaning 

operations. Each operation cleaned one type of error, and although no 

single operation cleaned all types of errors, the combination of all 

operations met the cleaning requirements. The matrix in Figure 5.11 

shows the difference in programming each of the operations necessary to 

clean the data. Utilizing the functionality provided by the Data Cleaning 

Framework allows users of the system to minimize the number of lines of 

code needed. Without this support, implementing the same operations in 

the baseline system takes several times the amount of code. Example 

comparison code from the STAT operation is shown in Appendix B. 

 

Operation Data Cleaning Framework Baseline (No Framework) 

Map to copy location 

attribute to another table 

Lines of Code: ~ 5 

 

Lines of Code: ~75 

 

Integrity check high 

temperatures to round 

Lines of Code: ~ 15 

 

Lines of Code: ~50 
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values to two decimals 

Merge low temperatures 

from separate tables to 

derive temperature  change 

Lines of Code: ~ 10 

 

Lines of Code: ~85 

 

Statistics to find average 

low temperature change to 

fill missing values 

Lines of Code: ~ 15 

 

Lines of Code: ~50 

 

Figure 5.11 Comparison of Historical Weather Scenario 

 

5.3 Analysis 

 

The Data Cleaning Framework is built on the principle that there is 

no set of cleaning functions suitable for any arbitrary data. Therefore, it 

provides support for user-specified functions by allowing the user to 

utilize abstractions supplied by the framework and focus solely on the core 

functionality for their transformation. This not only cuts down the amount 

of code necessary to implement a new cleaning function, but also makes 

the process much simpler, as the number of concerns for the user is 

reduced. We see from the results that this extensibility allows users to 

implement functions capable of cleaning any of the mentioned error types. 

In comparison, the baseline requires that users first implement the 

functionality for fetching the relevant data to be modified. Next, the user 

must get information about the schema of the retrieved data themselves. 

They then must use this information to set up the iteration through the 

records. It is only after this point that the core functionality can be created, 

and users specify the cleaning transformation. In the code for the 

functionality, users must manually implement the necessary methods to 

actually modify the data and then save the changes to the database. 
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It is important to note that the Data Cleaning Framework provides 

additional capabilities beyond simply reducing the amount of 

programming necessary. This includes a graphical user interface that can 

be used to view tables and construct a sequence of data cleaning 

commands to run. The user interface can also give a preview of changes 

made to table contents, letting users to see in advance what effects their 

cleaning actions will have on the database. This helps to prevent new 

errors from being introduced when unintended cleaning operations are run. 

From the experimental results, we conclude that users can utilize 

the Data Cleaning Framework’s support for the four categories of cleaning 

operations to implement functions to clean most common error types. 

While users pay an upfront cost of implementing their cleaning function 

using the functionality provided by Data Cleaning Framework, this cost is 

small compared to the amount of work necessary to implement a cleaning 

function from scratch. The extensibility of the Data Cleaning Framework 

proves to be an integral asset when performing data cleaning. 
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Chapter 6 

 

Related Work 

 

 

The concept of data cleaning is an area of much continuing research. 

Many methods have been developed to tackle the problem of identifying 

and cleaning dirty data. We briefly describe the following systems for 

performing data cleaning. 

 ARKTOS is a framework used for modeling and executing the 

Extraction-Transformation-Load process in data warehouse creation. Data 

cleaning is a key part of the ETL process, consisting of single steps that 

extract relevant data from the sources, transform it to the target format, 

clean it, and then load it into the data warehouse. These steps are cleaning 

operations called activities. Each activity is linked to input and output 

relations, where the functionality of an activity is described by an SQL 

statement. Each statement is associated with a particular error type and a 

policy which determines what actions to take when an error is found [10]. 

IntelliClean is a rule based approach to data cleaning that monitors 

the database without direct user execution. IntelliClean uses four types of 

cleaning rules to specify cleaning actions to be taken after certain 

conditions are met. Duplicate identification rules specify how tuples are 

classified as duplicates, and merge/purge rules specify how these 

duplicates will be handled. Update rules define how data is to be modified 
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to satisfy a particular constraint, and alert rules specify trigger conditions 

that cause the user to be notified [11]. 

The Data Cleaning Framework focuses on the concept of user 

extensibility, but it is just one of the myriad approaches towards a solution, 

in a field where there is no absolute answer. The ARKTOS and 

IntelliClean systems demonstrate alternative ways of dealing with the 

problem of data cleaning.   
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Chapter 7 

 

Conclusion 

 

 

The huge quantities of data created and stored in the information era 

inevitably leads to the introduction of data errors and anomalies. With the 

speed with which information is transmitted, never before has accurate 

data been so critical for business. Cleaning this “dirty” data has proved to 

be a major problem in industry, with no consensus on the exact nature of 

the solution. This thesis proposes an extensible system for data cleaning, 

the Data Cleaning Framework.  

 We observed that due to the broad and diverse nature of the data 

that needs to be cleaned, there exists no comprehensive set of operations 

suitable for any arbitrary domain. The Data Cleaning Framework was 

created with extensibility foremost as a result. By grouping data cleaning 

operations into types, we are able to provide a set of tools and support for 

users in implementing new cleaning functions. This allows users to focus 

on creating the core functionality while minimizing the amount of time 

and programming spent. Evaluating the Data Cleaning Framework on real-

world data demonstrated the flexibility of this user-customizable approach. 

 There is no one-size-fits-all approach to data cleaning. Therefore, 

we believe that the future of data cleaning will be dominated by extensible 

systems. These systems will allow users to impose their requirements on 
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how data should be cleaned, rather than working around the limitations of 

the system. The Data Cleaning Framework is a system which attempts to 

accomplish this, and we have established that extensibility for data 

cleaning is an approach worth pursuing.  
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Appendix A 

 

 
The example code in this section only includes the key functionality of 

each operation, in order to provide an estimate for the amount of 

programming needed for a user-implemented function. The amount of 

code needed to implement a function varies by user, so estimates may be 

rough in some cases. 

 

Example MAP Function  

(Using Data Cleaning Framework)  

 

1 private void split(ResultSet rs, int currRow, String[] modAttrs, 
   String table, String[] paramCons, Object prevResults) throws  

   SQLException { 
2  String value = rs.getString(1); 
3  String[] split = value.split(paramCons[0]); 
4  update(split, currRow, modAttrs, table); 
5 } 
 

 

Example MAP Function  

(Without Data Cleaning Framework)  

 

 // User-defined transformation function to split attributes 

1  protected void split(ResultSet rs, String[] modAttrs, String table, 

   String[] paramCons, Object prevResults) { 

2  try { 

3   ResultSetMetaData rsmd = rs.getMetaData(); 

   // Get information on new columns to add 

4   numCols = rsmd.getColumnCount(); 

5   colType = rsmd.getColumnTypeName(1); 

6   schemaSize = rsmd.getColumnDisplaySize(1); 

7   Statement st = null; 
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   // Allow queries to modify database contents and structure 

8   st = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE, 

     ResultSet.CONCUR_UPDATABLE); 

   // Add column of specified name, data type, size 

9   for (int i = 0; i < modAttrs.length; i++) { 

10    String attrTable = table; 

    // Check if attribute belongs in table 

11    String[] tb = modAttrs[i].split("\\."); 

12    if (tb.length == 2) { 

13     attrTable = tb[0]; 

14    } 

15    if (attrTable.equalsIgnoreCase(table)) { 

     // Add new columns to table 

16     String exe = "ALTER IGNORE TABLE " + table + "  

               ADD " + modAttrs[i] + " " + colType + "(" + schemaSize + ")"; 

17     st.executeUpdate(exe); 

18    } 

19   } 

20  } catch (Exception e) { 

21   System.err.println("Exception: " + e.getMessage()); 

22  } 

23  try { 

24   while (rs.next()) { 

25    String value = rs.getString(1); 

26    int currRow; 

27    currRow = rs.getRow(); 

28    String[] split = value.split(paramCons[0]); 

    // Update each output column with new data value 

29    for (int i = 0; i < modAttrs.length; i++) { 

30      try { 

31       Statement st = null; 

32       ResultSet updateResult = null; 

33       st = con.createStatement(  

  ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE); 

     // Use primary keys to enable modification of data 

34   String exe = primaryKeys + ", " + modAttrs + " from " + table + ";"; 

35               updateResult = st.executeQuery(exe); 

      // Set position index to row being modified 

36       updateResult.absolute(currRow); 

    // Make modification to data, propagate changes to database 

37     updateResult.updateString(modAttrs[i], split[i]); 

38       updateResult.updateRow(); 

39      } catch (Exception e) { 

40      System.err.println("Exception: " +  

      e.getMessage()); 

41      } 

42     } 

43    } 

44   } 

45  } catch (SQLException e) { 
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46   e.printStackTrace(); 

47  } 

48 }  

49 protected void mapOperation(String[] origAttrs, String[] modAttrs, 

   String[] fromTables, String[] toTables, String[] params) 

   throws SQLException { 

 // Check if more than one table is needed 

50  if (toTables == null) { 

51   for (int j = 0; j < fromTables.length; j++) { 

    // Create query to select input data 

52    String query = formatQuery(origAttrs, fromTables[j]); 

    // Get primary keys of table to allow table modification 

53    getTableKeys(fromTables[j]); 

54    this. mapInputs (query, origAttrs[0], modAttrs, 

      fromTables[j], null, params); 

55   } 

56  } else { 

57   String query = formatQuery(origAttrs, fromTables); 

58   for (int j = 0; j < toTables.length; j++) {    

59    getTableKeys(toTables[j]); 

60    this. mapInputs (query, origAttrs[0], modAttrs, 

61      fromTables[0], toTables[j], params); 

62   } 

63  } 

64 } 

 // Fetches necessary input data from columns specified in command 

65 protected ResultSet mapInputs(String query, String origAttr, 

   String[] modAttrs, String fromTableName, String toTableName, 

   String[] params) { 

66  try { 

   // Execute query to fetch data 

67   st = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE, 

     ResultSet.CONCUR_UPDATABLE); 

68   rs = st.executeQuery(query); 

 

69   String[] paramCons = new String[params.length - 1]; 

70   for (int i = 1; i < params.length; i++) { 

71    paramCons[i - 1] = params[i]; 

72   } 

   // Apply parameters to cleaning operation 

73   String paramType = params[0].toUpperCase(); 

74   applyConditions(rs, origAttr, modAttrs, fromTableName, 

toTableName, paramType, paramCons); 

75  } catch (Exception e) { 

76   System.err.println("Exception: " + e.getMessage()); 

77  } 

 // Pass fetched input data to user function 

78  return rs; 

79 } 
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Appendix B 

 

 
Example STAT Function  

(Using Data Cleaning Framework)  

 

1 protected void average(ResultSet rs, String key, String[] paramCons) { 
2  double total = 0; 
3  double numRows = 0;   
4  while (rs.next()) { 
5   double value = rs.getDouble(1); 
6   total += value; 
7   numRows++; 
8  } 
9  double avg; 
10  if (numRows != 0) { 
11   avg = (total / numRows); 

   // Map attribute to computed value 
12   updateMapping(key, avg);  
13  }  
 

 

Example STAT Function  

(Without Data Cleaning Framework)  

 

 // User-defined function to infer value from average 

1 protected void average(ResultSet rs, String key, String[] paramCons) { 
2  double total = 0; 
3  double numRows = 0; 
4  while (rs.next()) { 
5   double value = rs.getDouble(1); 
6   total += value; 
7   numRows++; 
8  } 
9  double avg; 
10  if (numRows != 0) { 
11   avg = (total / numRows); 
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   // Map attribute to computed value 
12   updateMapping(key, avg);   

13  }  
 // Iterates through records to get subsets matching dependencies 
14 public void statOn(String[] origAttrs, String[] modAttrs, 
   String[] fromTables, String[] toTables, String[] depends, 
   String[] params) throws SQLException { 
   // Create query to select entire set of relevant data 
15   String query = formatQuery(origAttrs, fromTables, depends); 
16   ResultSet all = this.getResultSet(query); 
17   ResultSetMetaData allmd = all.getMetaData(); 
18   int numCols = allmd.getColumnCount(); 
19   String[][] values = new String[depends.length][numCols - 1]; 

   // Create mapping of attributes to inferred value 
20   Global.statMapping = new Hashtable<String, String>(); 
21   while (all.next()) { 
22    for (int i = 0; i < values[0].length; i++) { 
23     values[i][i] = all.getString(depends[i]); 
24    } 
    // Create query to filter results on matching dependencies 
25    String subquery = buildFilter(origAttrs, fromTables, dest,  

26    depends, values); 
27    String key = getKeys(depends, values, ""); 
28    this.executeOperation(subquery, key, "", null, null, params); 
29   } 
30 } 
 // Fetches necessary input data from columns specified in command 
31 protected ResultSet executeOperation(String query, String key, String value,  

 String origAttr, String fromTableName, String[] params) { 
32  try { 
   // Allow queries to modify database contents and structure 
33   st = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE, 
     ResultSet.CONCUR_UPDATABLE); 
34   rs = st.executeQuery(query); 
35   if (params != null) { 
36    String[] paramCons = new String[params.length - 1]; 
37    for (int i = 1; i < params.length; i++) { 
38     paramCons[i - 1] = params[i]; 
39    } 
40    String paramType = params[0].toUpperCase(); 
41    applyConditions(rs, key, value, origAttr, fromTableName,  

42    paramType, paramCons); 
43   } 
44  } catch (Exception e) { 
45   System.err.println("Exception: " + e.getMessage()); 
46  } 

 // Pass fetched input data to user function 
47  return rs; 
48 } 


