

Copyright 2010 Randy Siran Gu

DATA CLEANING FRAMEWORK:

AN EXTENSIBLE APPROACH TO DATA CLEANING

BY

RANDY SIRAN GU

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Adviser:

Associate Professor Kevin Chang

ii

Abstract

The growing dependence of society on enormous quantities of information

stored electronically has led to a corresponding rise in errors in this

information. The stored data can be critically important, necessitating new

ways of correcting anomalous records. Current cleaning techniques are

very domain-specific and hard to extend, hindering their use in some

areas. This work proposes an extensible framework for data cleaning,

allowing users to customize the cleaning to their specific requirements. It

defines categories of common cleaning operations, allowing more robust

support for user-implemented cleaning functions in these categories. The

experimental results show that the proposed data cleaning framework is an

effective approach to cleaning data for arbitrary domains.

iii

To my family …

iv

Acknowledgements

This endeavor would not have been possible without the assistance

of many people. I would like to thank the Department of Computer

Science and the University of Illinois at Urbana-Champaign for providing

my university education and teaching me the skills to succeed.

 Most importantly, I would like to thank my family, for always

being there to lend their support, and for being my motivation in making it

through my five years at the university.

v

Table of Contents

Chapter 1 Introduction ... 1

Chapter 2 Problem Definition... 4

2.1 Error Types .. 4

2.2 Current Approaches ... 7

2.3 Problem Statement .. 8

Chapter 3 Conceptual Model .. 10

3.1 Integrity Check (INTEG) .. 10

3.2 Mapping (MAP) .. 12

3.3 Merging (MERGE) .. 14

3.4 Statistics (STAT) ... 17

3.5 Application .. 20

3.6 Composition .. 23

Chapter 4 System Architecture .. 29

4.1 Command Parser ... 30

4.2 Execution Engine .. 32

4.3 User Interface .. 34

Chapter 5 System Evaluation ... 38

5.1 Soccer Matches Database .. 39

5.2 Historical Weather Database ... 42

5.3 Analysis ... 47

Chapter 6 Related Work ... 49

Chapter 7 Conclusion .. 51

References .. 53

Appendix A .. 55

Appendix B .. 58

1

Chapter 1

Introduction

Since the dawn of recorded history, humans have produced data. With the

advent of the information era, the flow of knowledge plays an ever more

critical role in the economy, and enormous quantities of data are produced

on a daily basis. However, the process of recording and storing such vast

amounts of data often leads to inconsistencies in formats and adherence to

constraints, due to factors such as multiple data sources and entry errors.

These errors and inconsistencies can cause problems ranging from minor

to business-critical [1]. The existence of such “dirty” data necessitates a

change in the way we manage our data. To this end, the concept of data

cleaning, alternatively known as data cleansing or scrubbing, has emerged

to describe a broad range of methods to discover and eliminate dirty data.

There is no comprehensive definition of data cleaning, because

data cleaning targets errors in data and the definition of what constitutes

an error is highly domain specific [2]. No set of operations is sufficient to

eliminate dirty data for all possible domains. In general, data cleaning

involves the purging of errors and resolution of inconsistencies, followed

by transformation into a uniform format before use [3]. The exact type of

cleaning varies depending on system implementation, but major categories

2

include parsing, data transformation, integrity constraint enforcement and

statistical methods [4].

With such large volumes of data, manual data cleaning is

extremely costly and inefficient. Millions of dollars are spent by

organizations every year simply to detect errors. Manually processing data

by hand is time consuming, and is itself prone to errors. The need for tools

that minimize human involvement in the data cleansing process are

necessary and are the only practical and cost effective way to achieve a

reasonable quality level in large data sets [5]. As a result, many data

cleansing solutions have been developed using highly domain-specific

heuristics. These solutions, while powerful, suffer from being too

dependent on a particular environment and are complicated, greatly

hindering their reuse and extension into other domains [2].

The Data Cleaning Framework proposed in this thesis is a new

way of solving the extensibility problem faced when trying to clean data

from arbitrary domains. The Data Cleaning Framework is designed with

extensibility as the central idea, and it enables users to customize data

cleaning operations to meet their needs, rather than trying to adapt to the

rules set forth by the system. This thesis provides the following

contributions:

 Identifying the obstacles in data cleaning and the

limitations of current approaches.

 Generalizing data cleaning operations into major categories

that are applicable to most data sets.

 Building a framework using those operation categories to

enable users to create custom data cleaning operations and

extend existing operations.

3

The remainder of the thesis is organized as follows. Chapter 2

examines the major challenges in data cleaning and formally defines the

problem. Chapter 3 explains the intuition behind the conceptual model for

the framework and details the major operation types. Chapter 4 describes

the system architecture for the Data Cleaning Framework. Chapter 5

evaluates the framework against two scenarios using real-world data and

Chapter 6 describes related work in the field. Finally, Chapter 7 ties all of

the work together and concludes the thesis.

4

Chapter 2

Problem Definition

In order to formally define the problem this thesis tries to solve, we must

first examine the concept of “dirty” data, and the common error types that

result in dirty data. We must also consider current approaches to the data

cleaning problem.

2.1 Error Types

Data cleaning is a broad field with no comprehensive listing of

error types. However, a description of the most frequently encountered

types of errors follows [2, 6, 7, 8].

Lexical error: Differences between the structure of the data items and the

specified format. For example, a relation has n attributes when it should

have m attributes, so the structure of the data does not conform to the

format. Given the following relations R and I, where R contains a lexical

error, I is the ideal schema we want to produce, and ai denotes the attribute

with index i in the relation:

R(a1,..., an) I(a1,..., am)

5

We define a lexical error as n ≠ m, meaning that the number of attributes

in R differs from the number of attributes in I. This means that the number

of attributes in R is either more or less than the number of attributes in I.

Domain format errors: Errors where the given value for an attribute does

not conform to the expected domain format. For example, a value is

required to be exactly n characters long but instead is m characters long.

Given the following relation R, where R contains a domain format error at

attribute ai, and D is the domain of valid formats for a given attribute:

R(a1,…, ai,..., an) where ai ∉ D

We define a domain format error as ai ∉ D, meaning that the value stored

in ai does not belong to a valid format for that particular attribute.

Inconsistencies: Non-uniform use of values, units and abbreviations.

Inconsistencies occur if different units are used to record a measurement

and are problematic if the values are assumed to be uniform. Given the

following relation R, where R contains an inconsistency at attribute ai, and

U denotes a uniform set of the representations for a given attribute:

R(a1,…, ai,..., an) where ai ∉ U

We define an inconsistency as ai ∉ U, meaning that the value stored in ai

does not have a uniform representation associated with that particular

attribute. U is a uniform set where all members are recorded with the same

representation.

Integrity constraint violations: Relations that do not satisfy one or more

real-world restrictions on the set of valid instances. For example, a value is

negative even though this would be impossible for real-world data. Given

the following relation R, where R contains an integrity constraint violation

6

at attribute ai, and ci is a rule representing a real-world constraint for that

attribute value:

R(a1,…, ai,…, an) where ai does not satisfy ci

We define an integrity constraint violation as ai does not satisfy the rule ci,

meaning that the value stored in ai does not satisfy a real-world constraint

for that attribute.

Contradictions: Values in a relation or between relations that violate

some kind of dependency between the values. Contradictions are a special

case of integrity constraint violations where the constraint being violated

is directly derived from other attributes in the relation. For example,

conflicting values for age and date of birth. Given the following relation R,

where attributes ai and aj in R contradict each other on some dependency d:

R(a1,…, ai,..., aj,…, an) where aj ≠ d(ai)

We define a contradiction as aj ≠ d(ai), meaning that the value of aj does

not match the value derived from ai using some dependency d.

Missing values: Omissions of values that should exist after performing

data collection, but are not represented. Given the following relation R,

where attribute ai has a missing value:

R(a1,…, ai,..., an) where ai = ∅

We define a missing value as ai = ∅, meaning that aj does not have a set

value even though it is expected to.

7

2.2 Current Approaches

In the context of detecting and correcting dirty data, there exist four

major approaches. Almost all data cleaning solutions available use at least

one of these approaches. The four methods are described below [2, 3, 9].

Parsing: Used to detect syntax errors. A parser for a grammar decides for

a given string whether it is an element of the language defined by the

grammar. In data cleaning, the strings are usually attribute values from a

domain. The grammar used for parsing is based on the domain format.

Strings which do not correspond to the domain format are syntax errors

and have to be corrected.

Data Transformation: Maps data from its given format into the format

expected by the application. The transformations can affect the schema of

the relations as well as their values. Schema transformation may be used

to map data into a new schema better fitting the needs of the intended

application. Input data which do not conform to the new schema can be

corrected during the transformation. Standardization and normalization

are transformations with the intention of removing irregularities in data.

Integrity Constraint Enforcement: Ensures the satisfaction of integrity

constraints on a collection of data. The two different approaches are

integrity constraint checking and integrity constraint maintenance.

Integrity constraint checking rejects transactions that, if applied, would

violate some integrity constraint. Integrity constraint maintenance uses a

set of integrity constraints to perform modifications on the data collection

so that the collection is corrected of integrity constraint violations.

8

Statistical Methods: Detection and elimination of complex errors often

involve relationships between multiple attributes which do not violate

integrity constraints. Outliers are one example of such an error. By

analyzing the data using the values such as mean, standard deviation, and

range, unexpected values may be discovered indicating potential invalid

relations. The correction of such errors is often impossible because the

true values are unknown. Possible solutions include statistical methods

like setting the values to the average or other statistical value.

2.3 Problem Statement

Collections of real-world data encompass an infinite set of

domains. Since all data, no matter which domain it comes from, has the

potential to be dirty, it is neither feasible nor possible to design a system

with a set of data cleaning operations applicable to all domains.

Cleaning can be done through parsing, data transformation,

integrity constraint enforcement, and statistical methods. However, none

of the methods by itself is comprehensive enough to completely clean a set

of data with an arbitrary number of error types. Current data cleaning

systems focus specifically on using just a few of approaches, and do so by

being highly specific to the problem domain. This makes expansion of

application to other domains difficult, as the user does not have an easy

way to make modifications to the system functionality.

We make the observation that if a single cleaning method is

limited, multiple methods can be used to cover deficiencies in a particular

method. As a result, a concept for an extensible data cleaning framework

came about. Recognizing the need for users to be able to customize their

9

data cleaning experience to match any particular domain, extensibility is

the main focus of the Data Cleaning Framework described in this thesis.

The main problems that the Data Cleaning Framework addresses:

 Enabling users to combine parsing, data transformation, integrity

constraint enforcement, and statistical methods for data cleaning in

a single system.

 Allowing users to write new data cleaning functions that can

extend the base functionality of the framework to meet their

particular cleaning needs.

 Providing a visual interface to let users construct a sequence of

commands to perform data cleaning, as well as previewing the

effects of their changes to the database.

The notion of customizability will be a key focus in the conceptual

model and architecture of the Data Cleaning Framework. Providing an

extensible general data cleaning framework is essential to the creation of a

cleaning solution suitable for all data domains, and therefore, it is the main

problem this thesis attempts to address.

10

Chapter 3

Conceptual Model

The key feature of the Data Cleaning Framework is its extensibility. In

order to go beyond the limitations of a particular domain, we will

generalize the problem of data cleaning into categories upon which we

will build our framework. We propose four main categories of cleaning

operations. These categories are the integrity check, mapping, merging,

and statistical operations. We will describe how these four categories of

operations will cover the error types described previously.

3.1 Integrity Check (INTEG)

The integrity check operator performs data cleaning on a single

attribute. It takes an attribute as input, performs some transformation on

that attribute, and then outputs it. This operator is useful when any

changes to an attribute do not depend on other attributes. Mapping can

theoretically be used to perform integrity checking as it is a one-to-one

operation; however, it is useful to define integrity checking as a separate

operation because it is more intuitive to think of integrity checking as

correcting errors in the values for an attribute rather than mapping a set of

corrected values back to the attribute. We represent an integrity check

11

operation using the symbol φ. An integrity check of relation R on attribute

ai using the function f is defined as follows:

φ(R(a1,…, ai,..., an), i, f) where f(ai) = { ai’}

= R(a1,…, ai’,…, an)

The parameters to the integrity check operation are the relation R,

the attribute a to be modified, represented by its index i, and the user-

defined transformation function f. The integrity check operator applies the

function f to attribute ai. The function f takes an attribute ai and applies

some transformation on it, producing a corrected attribute ai’ as output,

and updating ai with it.

Consider Figure 3.1. From the data, it is clear that the Age attribute

should not contain negative values. In this case, the most likely course of

action would be to convert the negative age into a positive value. This

cleaning operation requires no information stored in other relations, as

such, the operation falls into the integrity check category.

Name Age

Alice 17

Bob -42

Charles 25

Figure 3.1 Integrity Check Operation

In the Data Cleaning Framework, the integrity check operation is

represented by the INTEG operator. INTEG utilizes the input column

from the source table. For every record, the transformation given by the

parameter name will be applied to said list of attributes. Any changes to an

attribute’s value will overwrite the initial value. The output columns and

Name Age

Alice 17

Bob 42

Charles 25

12

destination tables are unnecessary because changes to data are written

back into the original attribute column in the same table.

In terms of SQL, the INTEG operator would correspond to a

SELECT on the input column from the source table to fetch the relevant

data into a ResultSet object. There would then be an UPDATE operation

on the input column for each record in the ResultSet, with the new,

updated value corresponding to the result returned by applying the user-

implemented function on the attribute value for that record.

INTEG input_column

SOURCE source_table

PARAM parameter_name [parameter_arg1] [parameter_arg2] ...

Example: INTEG age SOURCE person PARAM positive;

Corresponding SQL:

ResultSet ← SELECT input_column FROM source_table

for each record r in ResultSеt

 x ← f(r) // f() is user-defined function

 UPDATE source_table SET r.input_column = x

Figure 3.2 INTEG Syntax

3.2 Mapping (MAP)

The mapping operator is a one-to-many operation. Mapping takes a

single attribute as input, performs some transformation on the input, and

produces one or more attributes based on the input. This operator is useful

when one attribute directly affects one or more other attributes during

cleaning. We represent a mapping operation using the symbol ω. A

mapping on a relation R of an attribute ai to attributes aj,...,ak is as follows:

ω(R(a1,..., ai,..., an), i, [j,...,k], f) where f(ai) = {aj,...,ak}

13

= R(a1,…, ai,,…, aj,…, ak,…, an)

The parameters to the mapping operation are the relation R, the

attribute ai to be mapped and a list of attributes aj,...,ak that will store the

results of the mapping, all represented by their indices, and the user-

defined transformation function f. The mapping operator applies the

function f on attribute ai. The function f takes an attribute ai and applies

some transformation on it, producing attributes aj,...,ak as output, and

adding them to relation R.

Consider Figure 3.3. Originally, only the Name attribute exists.

However, if we require both a first name and a last name for each person,

then we can split the first and last names, and create the corresponding

attributes First Name and Last Name. This operation requires using data

stored in one attribute as input, and outputs the results of the

transformation to multiple attributes, so it would be a mapping.

Name

Alice Anders

Bob Benson

Charles Calhoun

Figure 3.3 Mapping Operation

In the Data Cleaning Framework, the mapping operation is

represented by the MAP operator. MAP uses input columns from the

source tables. Its outputs are the output columns in the destination tables.

For every record, the function given by the parameter name is applied to

said attribute. The outputs of the transformation are stored as the

appropriate attribute of the corresponding record in the destination tables

if destination tables are listed, otherwise output columns will be saved to

First Name Last Name

Alice Anders

Bob Benson

Charles Calhoun

14

the source table. If output columns will be stored in multiple destination

tables, the column name must be qualified by the name of the table.

In terms of SQL, the MAP operator would correspond to a

SELECT on the input column qualified by the name of the source table to

fetch the relevant data into a ResultSet object. If the output columns do not

exist, there is an ADD COLUMN query to create the columns the

transformed data will be stored in. Finally, there is an UPDATE operation

on the output columns for each record in the ResultSet, with the new value

corresponding to the result returned by applying the user-implemented

function on the attribute value for that record.

MAP input_column

TO output_ column1 [, output_ column2] ...

SOURCE source_table1 [, source_table2] ...

[DEST] [destination_table1] [, destination_table2] ...

PARAM parameter_name [parameter_arg1] [parameter_arg2] ...

Example: MAP name TO first, last SOURCE person PARAM split;

Corresponding SQL:

ResultSet ← SELECT input_column FROM source_table

for each destination_table d

 for each output_column o

 ALTER TABLE d ADD COLUMN o

for each record r in ResultSеt

 [x1,..,xn] ← f(r) // f() is user-defined function

 for each destination_table d

 UPDATE d SET r.oi = xi

Figure 3.4 MAP Syntax

3.3 Merging (MERGE)

The mapping operator is a many-to-one operation. It takes multiple

attributes as input, performs a transformation on the input, and produces

one attribute based on the input. This operator is useful when multiple

15

attributes directly affect a single attribute during a cleaning operation. We

represent a merging operation with the symbol µ. A merging on a relation

R of attributes ai,…,aj to an attribute ak is defined as follows:

µ(R(a1,..., ai,...,aj,..., an), [i,..., j], k, f) where f(ai,...,aj) = {ak}

= R(a1,…, ak,…, an,)

The parameters to the merging operation are the relation R, a list of

attributes ai,...,aj to be merged and the attribute ak that will store the results

of the merge, all represented by their indices, and the user-defined

transformation function f. The merging operator applies the function f to

attributes ai,…,aj. The function f takes multiple attributes ai,...,aj and

applies some transformation on them, producing a single attribute ak as

output, and adds it to relation R.

Consider Figure 3.5. The original data contains the fields Q1-Q4

Profit. However, if we need an Annual Profit attribute, we can combine

the data for Q1-Q4 profit to produce that attribute. We perform an addition

on the Q1-Q4 profit attributes to generate the Annual Profit attribute. This

operation requires using data stored in multiple attributes as input, and

outputs the results of the transformation to a single attribute, so it can be

categorized as a merging operation.

Company Q1 Q2 Q3 Q4

Able 100 80 20 30

Baker 25 135 200 210

Charlie 60 65 55 70

Figure 3.5 Merging Operation

In the Data Cleaning Framework, the merging operation is

represented by the MERGE operator. MERGE uses the input columns

Company Annual Profit

Able 230

Baker 570

Charlie 250

16

from the source tables. Its output is the output column in the destination

tables. For every record, the transformation given by the parameter name

will be applied to the input columns. The output of the transformation is

stored as the output attribute of the corresponding record in the destination

table if destination tables are listed; otherwise the output column is saved

to the source table. If input columns originate from multiple source tables,

the column name must be qualified by the name of its table.

In terms of SQL, the MERGE operator would correspond to a

SELECT on the input columns qualified by the name of the source tables

they are from to fetch the relevant data into a ResultSet object. If the

output column does not exist, there is an ADD COLUMN query to create

the column the transformed data will be stored in. Finally, there is an

UPDATE operation on the output columns for each record in the

ResultSet, with the new value equal to the result returned by applying the

user-implemented function on all specified attribute values for that record.

MERGE input_column1 [, input_ column2] ...

TO output_ column1

SOURCE source_table1 [, source_table2] ...

[DEST] [destination_table1] [, destination_table2] ...

PARAM parameter_name [parameter_arg1] [parameter_arg2] ...

Example: MERGE q1_profit, q2_profit, q3_profit, q4_profit

TO annual_profit SOURCE q1-q4 DEST annual PARAM add;

Corresponding SQL:

ResultSet ← SELECT input_column1 [, input_ column2] ...

 FROM source_table1 [, source_table2] ...

for each destination_table d

 ALTER TABLE d ADD COLUMN output_column

for each record r in ResultSеt

 x ← f(r) // f() is user-defined function

 for each destination_table d

 UPDATE d SET r.output_column = x

Figure 3.6 MERGE Syntax

17

3.4 Statistics (STAT)

The statistics operator performs data analysis and statistical

inference. STAT uses an input attribute, along with the specified

dependency attributes of that attribute. For every record, it calculates some

statistic on the input attribute using a subset of relations where the

attribute values specified as dependencies in these relations match the

corresponding values of the input relation. We represent a statistical

operation with the symbol δ. Let Rx.ai denote the ith attribute of relation Rx.

A statistics operation on attribute ai of a relation Rx with dependencies

aj,…,ak is defined as follows:

δ(Rx(a1,..., ai,...,aj,..., ak,…, an), i ,[j,…, k], f)

where (∑

) = z such that

= (Rx.ai, z)

The parameters to the statistics operation are the relation Rx, the

attribute ai that the statistical measure will be computed upon, and a list of

dependencies aj,...,ak, for which the statistical measure on ai depends on,

all represented by their indices. The final parameter is the user-defined

transformation function f. Note that in the notation, Σ does not denote

summation, but rather an aggregation over the relations. The statistics

operator applies the user-function f on the subset of relations which satisfy

the dependencies for the input attribute for a particular record. The user-

function f performs a statistical aggregation on ai over all relations in the

satisfying subset and then stores that value into a mapping of the attribute

ai for a relation Rx to its inferred value z based on the dependencies aj,...,ak.

This mapping can be accessed by successive operations to modify data.

18

Consider Figure 3.7. We have a missing value in the table for zip

code. However, we can use the information available, such as the existing

city to zip code pairings to infer a value. We can use a statistical function

such as the frequency, to infer a value that will minimize the chance of an

anomaly being introduced. Once we have calculated the frequency, we can

store this value so that a future operation, such as an integrity check, can

access this result. These types of operations leverage statistical methods,

so they fall under the statistics category.

City Zip

Urbana 61801

Champaign 61820

Urbana
 Urbana 61801

Figure 3.7 Statistical Operation

In the Data Cleaning Framework, the statistics operation is

represented by the STAT operator. STAT uses the input column from the

source table, along with the specified dependency attributes of that

attribute from the destination table. For every record, the operation given

by the parameter name will be applied as an aggregation upon the subset

of records satisfying the specified dependencies on the input record. Its

output stores a mapping of an attribute for a particular record and the

statistical measure calculated on the subset of records satisfying the

dependencies of that attribute. These statistical measures are computed

programmatically on the input attribute for each record, based on the

dependencies for that particular record.

City Zip

Urbana 61801

Champaign 61820

Urbana 61801

Urbana 61801

19

In terms of SQL, the STAT operator would correspond to a

SELECT on the input column and dependency columns from the source

and destination tables, where the values of the dependency columns match

between the source and destination tables. These records are grouped as

subsets into ResultSet objects based on the dependency columns.

Following is a user-implemented aggregation operation on the input

columns in each ResultSet. The results of the aggregation are stored as a

mapping of an attribute for a particular record to the statistical measure

computed on that attribute based on the dependencies listed. The results

can later be used by any of the other operation types to modify the data.

STAT input_column

SOURCE source_table1

[DEST] [destination_table] [, destination_table2] ...

DEPEND dependency_column1 [, dependency_column2] ...

PARAM parameter_name [parameter_arg1] [parameter_arg2] ...

Example: STAT zip_code SOURCE address DEPEND city

 PARAM maxFreq;

Corresponding SQL:

ResultSet ← SELECT input_column

 FROM source_table, destination_table ...

 WHERE source_table.dependency_column1 =

 destination_table.dependency_column1 ...

 GROUP BY dependency_column1 ...

for each record r in ResultSet

 (r.input_column, x) ← f(ResultSеt)

// f() is user-defined function which returns a mapping of

an attribute to the statistical measure computed by f() on

that attribute using the specified dependencies. The

mapping is stored automatically and can be accessed by

successive cleaning operations

Figure 3.8 STAT Syntax

20

3.5 Application

The integrity check, mapping, merging, and statistical operators

form the core of the Data Cleaning Framework, and provide the means

with which to clean errors. We will show algebraically how the four

operator types can handle the error types listed in the taxonomy. Each

error type is matched with an operator that can handle them.

Lexical error – A mapping/merging operation can be used to change the

structure of data to fit schema. Mapping/merging operations modify the

schema of the data by creating or combining attributes to fix lexical errors:

ω(R(a1,..., ai,..., an), i, [j,...,k], f) where f(ai) = {aj,...,ak}

= R(a1,…, ai,,…, aj,…, ak,…, an)

The mapping operator applies the function f to map the attribute ai to

attributes aj,...,ak in order to extract the missing attributes that were

previously combined as a single attribute and fix the lexical error.

µ(R(a1,..., ai,...,aj,..., an), [i,..., j], k, f) where f(ai,...,aj) = {ak}

= R(a1,…, ak,…, an,)

The merging operator applies the function f to attributes ai,…,aj in order to

combine extraneous attributes into an attribute ak and fix the lexical error.

Domain format error – An integrity check operation can be used to clean

the error by forcing format constraints upon values. Correcting domain

format errors is a one-to-one operation, so we can use the integrity check:

φ(R(a1,…, ai,..., an), i, f) where f(ai) = { ai’} and ai’ ∈ D

= R(a1,…, ai’,…, an) where ai’ ∈ D

The integrity check operator applies the user-defined function f on

attribute ai, which has a domain format error, and the transformation

21

performed by f produces ai’, where ai’ is constrained within the boundaries

of the format domain D.

Inconsistencies – An integrity check operation can be used to clean the

error by converting values into the required units. Inconsistencies do not

need additional information from other attributes in order to be corrected,

so integrity check is suitable:

φ(R(a1,..., ai,..., an), i, f) where f(ai) = { ai’} and ai’ ∈ U

= R(a1,…, ai’,…, an) where ai’ ∈ U

The integrity check operator applies the user-defined function f on

attribute ai, which has inconsistent representation, and the transformation

performed by f converts ai into ai’, where ai’ belongs to U, where U is a

uniform set where all members are recorded with the same representation.

Integrity constraint violations – An integrity check operation can be

used to clean the error by transforming invalid attribute values to valid

ones. Correcting domain format errors does not require additional

information, so it is one-to-one, and we can use the integrity check:

φ(R(a1,…, ai,..., an), i, f) where f(ai) = { ai’} and ai’ satisfies ci

= R(a1,…, ai’,…, an) where ai’ satisfies ci

The integrity check operator applies the user-defined function f on

attribute ai, which violates an integrity constraint ci. The transformation

performed by f produces ai’, where ai’ satisfies a real-world constraint ci.

Contradictions – A mapping/merging operation can be used to fix

contradictory values by deriving them again from other attributes.

Contradictions require dependencies between attributes, so operators

which operate on multiple attributes, such as mapping/merging are needed:

22

ω(R(a1,..., ai,,…, aj,…, ak,…, an), i, [j,...,k], f) where f(ai) = {aj’,...,ak’}

= R(a1,…, ai,,…, aj’,…, ak’,…, an)

The mapping operator applies the user-defined function f to ai in order to

derive correct values for aj,…, ak that do not contradict ai.

µ(R(a1,..., ai, ..., aj ,..., ak,..., an), [i,..., j], k, f) where f(ai,...,aj) = {ak’}

= R(a1,..., ai, ..., aj ,..., ak’,..., an)

The merging operator applies the user-defined function f to attributes

ai,…,aj to derive a correct value for ak, which does not contradict ai,…,aj.

Missing values – A statistics operation can be combined with a data

modifying operator to fill in a missing value by inferring a likely value

using information about existing values. For example, a missing zip code

in an address can be inferred if we know the city, by finding the most

frequently paired zip code for that particular city. The statistics operator is

first used to infer a value by considering the dependencies of the missing

value for a specific record, then performing statistical aggregation on other

records whose attributes match on the dependencies. It stores the mapping

of an attribute of a particular record with its inferred value. This mapping

is automatically stored and can be accessed by data modification operators

such as an integrity check to fill in the missing value.

δ(Rx(a1,..., ai,...,aj,..., ak,…, an), i ,[j,…, k], f)

where (∑

) = z such that

= (Rx.ai, z)

φ(Rx(a1,…, ai,..., an), i, f) where ai = ∅ and f(ai) = { ai’} and ai’ = z

= R(a1,…, ai’,…, an)

The statistics operator applies the user-function f on the subset of

relations which satisfy the dependencies for the input attribute for a

particular record. The user-function f performs a statistical aggregation on

23

ai over all relations in the satisfying subset and then stores that value into a

mapping of the attribute ai for a relation Rx to its inferred value z based on

the dependencies aj,...,ak. Following is an integrity check operation, which

is automatically passed the attribute/value mappings by the system. The

integrity check fills missing values for an attribute in a particular record

with the value computed by the statistics operator based on other records

matching the dependencies on that attribute.

3.6 Composition

A data cleaning program using the Data Cleaning Framework is

defined as one or more commands run in sequence. Several commands

may be composed into a data cleaning program by running them in

sequence to handle multiple error types. Successive commands operate on

the state of the database resulting from the previous command. We will

show mathematically and by example, how a series of operations can be

composed into a data cleaning program.

We will use the example data shown in Figure 3.9 to demonstrate

how the Data Cleaning Framework and its operators function. Suppose we

have a series of cleaning tasks we wish to perform on this data. We want

to split the “Name” field into “First Name” and “Last Name”. We also

want to infer a value for the missing “Zip” entry, and then finally to fill in

the missing value using that information. We can accomplish this by

performing the sequence of commands shown in Figure 3.10.

24

Name City Zip

Alice Anders Urbana 61801

Bob Benson Champaign 61820

Charles Calhoun Urbana
 Daniel Dillinger Urbana 61801

Figure 3.9 Person Table

MAP name TO firstName, lastName SOURCE person PARAM split;

STAT zip SOURCE person DEPEND city PARAM maxFreq;

INTEG zip SOURCE person PARAM fillEmpty;

Figure 3.10 Example Cleaning Operations

The first operation is a MAP operation, which takes a single

attribute as input, performs some transformation on the input, and

produces one or more attributes based on the input. For this operation, the

“Name” attribute from the “Person” table is being mapped to the “First

Name” and “Last Name” attributes using the parameter “Split”.

Parameters specify the user-defined function which performs the

transformation on the data, in this case, splitting. Users can define their

own transformation functions to use for data cleaning. We will show an

example of the mathematical representation for MAP on the first record:

ω(R(Alice Anders, Urbana, 61801), 1, split)

where split(“Alice Anders”) = {“Alice”, “Anders”}

= R(Alice, Anders, Urbana, 61801)

 In this mapping operation, the first attribute is being mapped, and

the transformation function being applied is the “Split” function, so i = 1

and f = split. The “Split” function splits “Alice Anders” into “Alice”,

“Anders”, and the resulting record becomes R(Alice, Anders, Urbana,

61801). The MAP operation is applied to all records in the table, and the

25

results are shown in Figure 3.11. The MERGE operation is logically the

reverse of the MAP operation, so its specification is similar and not shown.

First Name Last Name City Zip

Alice Anders Urbana 61801

Bob Benson Champaign 61820

Charles Calhoun Urbana
 Daniel Dillinger Urbana 61801

Figure 3.11 Person Table after MAP

Next is the STAT operation, which for every record, calculates

some statistic on an attribute using a subset of relations where the attribute

values specified as dependencies in these relations match the

corresponding values of the input record. Each operation operates on the

state of the data resulting from the previous operation, so the STAT

operation would operate on Figure 3.11. For this operation, a record is

missing the “Zip” attribute. The “Zip” values for this record will be

inferred by computing some statistical aggregation over all records which

match the dependency attribute “City” for that particular record, in this

case the most frequent value of “Zip” corresponding to the “City” value.

Since the record with a missing “Zip” value has “City = Urbana”, the

system will only use other records satisfying “City = Urbana” to infer the

missing value, and will not use records with “City = Champaign”. We

show an example of the algebraic notation for STAT on the third record:

δ(Rx(Charles, Calhoun, Urbana, ∅), 4 ,[3], maxFreq)

where a3 = “City” a4 = “Zip” and Rx.city = “Urbana”

and (∑

) = 61801

= (Rx.zip, 61801)

26

In this statistics operation, the attribute we want to infer, “Zip”, is

the fourth attribute; its dependencies are “City”, the third attribute. The

transformation function being applied is the “maxFreq” function, so i = 4

and f = maxFreq. The system selects a subset of records satisfying the

dependency, or records with “City = Urbana”. This is passed to the

“maxFreq” function which computes the value of “Zip” most frequently

paired with “City = Urbana”. The STAT operation is applied to all records

in the table, and it computes and saves a mapping of attributes for a

particular record to the statistical measures computed on that attribute

based on the dependencies listed. The internal representation of such a

mapping is shown in Figure 3.12. This mapping is accessible by any

successive operation to be used in data cleaning.

Attribute Inferred Value

R1.zip 61801

R2.zip 61820

R3.zip 61801

R4.zip 61801

Figure 3.12 Mapping Produced by STAT

STAT is unique in that it stores the result of its calculations and

automatically passes this information so that successive operators can use

it to perform cleaning. Because operations are modular, the STAT

operation does not need to modify data itself, but instead can pass what it

computes to data-modifying operators such as INTEG. This chaining of

operators reduces the amount of code duplication, because STAT can rely

on the data-modifying operations to apply the results of its computation.

Therefore, if a user wishes to alter data using the results of the STAT

27

operation, they must follow the STAT operation with a data-modifying

operation, lest the result be overwritten by another STAT operation.

The final operation is an INTEG operation, which takes an

attribute as input, performs some transformation on that attribute, and then

outputs it. The INTEG operation is a data-modifying operation, so it can

be used to apply the results computed by the preceding STAT operation

and use them to fill missing values. In this operation, the “Zip” attribute in

the Person table is being cleaned using the “fillEmpty” user-defined

function. We will show an example of the mathematical representation for

INTEG on the third record:

φ(R(Charles, Calhoun, Urbana, ∅), 4, fillEmpty)

where fillEmpty(ai, 61801) = ai’ and ai’ = 61801

= R(Charles, Calhoun, Urbana, 61801)

In this integrity check operation, the fourth attribute is being

cleaned, and the transformation function being applied is the “fillEmpty”

function, so i = 4 and f = fillEmpty. The “fillEmpty” function is

automatically passed the mapping derived from the previous STAT

operation, and it fills in missing values of a specific attribute in a record

with the corresponding value defined in the mapping. The INTEG

operation is applied to all records, and the results are shown in Figure 3.13.

First Name Last Name City Zip

Alice Anders Urbana 61801

Bob Benson Champaign 61820

Charles Calhoun Urbana 61801

Daniel Dillinger Urbana 61801
Figure 3.13 Person Table after INTEG

28

The data was successfully cleaned after applying a sequence of

operations which compose a data cleaning program. Any transformation

that can be performed using the system falls into one of the four categories

of data cleaning operations. The operations overlap in their coverage of

data errors, so some errors may be cleaned using different operators than

the ones listed. Together, these four types of operations can be chained to

create a data cleaning program to clean the error types described.

29

Chapter 4

System Architecture

The Data Cleaning Framework consists of three components. These are

the Command Parser, the Execution Engine, and the User Interface. The

Command Parser and the Execution Engine contain all of the logic to

perform the data cleaning, while the User Interface allows users to specify

the cleaning operations and see the changes made.

To use the Data Cleaning Framework, a user builds a sequence of

cleaning commands to be run on the database. When the user executes this

sequence, the Command Parser extracts the necessary information from

the command, such as the inputs and outputs of the operation. It passes

this information to the Execution Engine, which decides the type of

operator, and the parameters involved in the cleaning. The Execution

Engine applies the user-specified transformation on the data in accordance

to the operator type. Finally, the User Interface allows the user to view the

end results of the cleaning commands.

The system was programmed with the Java language on a Linux

system. Java was chosen because of its portability across systems, and its

library of supported functions. It was evaluated on a MySQL database and

requires the use of JDBC drivers to connect and interact with the database.

30

4.1 Command Parser

The Command Parser is the first component of the system run

when executing a command. It is responsible for extracting the key

arguments contained in each command, and separating this information

into parts that will later be used by the Execution Engine. The Data

Cleaning Framework uses a unique SQL-like syntax for each command.

Figure 4.1 shows the structure of this syntax. Any field listed in square

brackets may be optional depending on the type of operator used.

OPERATOR input_column1 [, input_column2] ...

[TO] [output_ column1] [, output_column2] ...

SOURCE source_table1 [, source_table2] ...

[DEST] [destination_table1] [, destination_table2] ...

[DEPEND] [dependency_column1] [, dependency_column2] ...

PARAM parameter_name [parameter_arg1] [parameter_arg2] ...

Figure 4.1 Operation Syntax

The syntax used by the Data Cleaning Framework can be divided

into seven sections. These are the operator, input columns, output columns,

source tables, destination tables, dependency columns, and parameters.

The OPERATOR keyword refers to any of the four supported

cleaning operators. These consist of INTEG (integrity check), MAP

(mapping), MERGE (merging), and STAT (statistics). The OPERATOR

keyword identifies the operation category, and its general effect.

The input columns are between the OPERATOR and TO (or

SOURCE) keywords. These are the list of columns that will be read from

during the cleaning operation. The specified columns are what the user-

specified transformation will operate on. There must be at least one

column specified for a command to operate on.

31

input_ column1 [, input_ column2] ...

Figure 4.2 Input Columns

The output columns lie between the TO and SOURCE keywords.

These are the list of columns that will be written to during the cleaning

operation. The specified columns indicate where the results of the user-

specified transformation will be stored to.

[TO] [output_ column1] [, output_ column2] ...

Figure 4.3 Output Columns

The source tables fall between the SOURCE and DEST (or

PARAM) keywords. The list of tables specifies where the input columns

are located. This list tells the system which tables the columns to be used

as input for the cleaning operation will be found in. There must be at least

one table specified for a command to operate on.

SOURCE source_table1 [, source_table2] ...

Figure 4.4 Source Tables

The destination tables are between the DEST and PARAM (or

DEPEND) keywords. The list of tables is where the output columns will

be stored. This list tells the system which tables the columns that will store

the outputs for the cleaning operation will be located in.

[DEST] [destination_table1] [, destination_table2] ...

Figure 4.5 Destination Tables

The dependency columns are between the DEPEND and PARAM

keywords. The list of columns indicates which attributes that the input

32

column depends on. This list tells the system how to select a subset of

records in order to calculate some statistical measure for a column.

[DEPEND] [dependency_column1] [, dependency_column2] ...

Figure 4.6 Dependency Columns

After the PARAM keyword is the name of the user-specified

function to be applied. Immediately following the name is the list of

arguments for the user-specified transformation. Any arguments following

the PARAM keyword are used solely by the user-implemented function.

As such, there is no set format on the parameters being passed. A user-

defined function could require no arguments or several arguments,

depending on exactly what computation is being performed and what

additional information is required. However, each cleaning command

requires that a function be specified, regardless of arguments.

PARAM parameter_name [parameter_arg1] [parameter_arg2] ...

// number of arguments vary by function

Example: // no argument, add all attributes

 PARAM add

 // single argument, round to 2 decimal places

 PARAM round 2

Figure 4.7 Parameter Arguments

4.2 Execution Engine

The Execution Engine is responsible for running user-specified

transformation functions to perform the data cleaning. The information

necessary for the cleaning transformation is extracted from the command

by the Command Parser, and passed to the Execution Engine. It uses this

information to determine the operator category and the type of

33

transformation function. It then runs the user-implemented code to

perform the corresponding transformation on the relevant data.

 The Execution Engine functions by taking the input columns and

source tables, and creating an SQL SELECT query used to fetch the

relevant data to be cleaned. The data from the query is stored as a

ResultSet object, which can be accessed by the user-specified cleaning

function. The cleaning function reads from the ResultSet object and

performs some computation on the data. The process for obtaining the

input data is the same all four operator types. The new values are stored to

the output columns and destination tables specified, and the change is

reflected in the database.

The engine is not limited to a set of predetermined cleaning

transformations on the data. It gives the user the flexibility of integrating

additional functionality through user-implemented transformation

functions. Figure 4.8 shows an example of how a user might choose to

implement a new cleaning transformation. The basic code template with

which to implement a transformation has two parts.

Figure 4.8 Example User-implemented Function

The first part is the argument section. This contains the set of

relevant input data and output attributes, as well as the destination table

34

where the results of the user-specified function will be stored. It also

includes an object containing any results stored by a previous operation,

such as statistics calculated and stored for later use in inferring missing

values. This information is automatically passed to the user-defined

function, and can be accessed as necessary by the user-defined function.

The second part is the functionality section. This is where the core

functionality of the user-implemented transformation function is located.

Here, the user implements exactly the operations they want to perform

upon the data. Implementation is straightforward, since the users need

focus solely on the actions needed to clean a single record while the

Execution Engine applies the user function to the relevant records in the

database. This abstracts away the need to manually get information about

the schema format, and then iterate through all of the records.

The Execution Engine provides a separation of concerns when

implementing new data cleaning transformations. By categorizing all

commands as INTEG, MAP, MERGE, or STAT, the engine knows

exactly how to apply the user-defined function to the data. This makes

code for user-implemented functionality much shorter, because it only

needs to deal with single records, while the Execution Engine does the rest.

4.3 User Interface

The user interface, shown in Figure 4.9, is the component of the

system that a user will most frequently interact with. It is designed to help

make the steps involved in data cleaning as intuitive as possible. The

graphical user interface can be used to view the contents of the database,

create a sequence of cleaning commands, and execute or preview the

35

effects of the commands on the database. The user interface consists of

three main areas, or panels.

Figure 4.9 Data Cleaning Framework User Interface

The topmost area in the application is the Database View panel,

shown in Figure 4.10. Once users have established a connection to the

36

database, they can choose to select a table within that database from the

drop-down list, and view the current contents of the table. This provides

users with a clear picture of the data they are operating upon, and gives

them a guide with which to write the necessary cleaning commands.

Figure 4.10 Database View Panel

 Under the Database View panel is the Cleaning Operations panel,

seen in Figure 4.11. This panel gives users the ability to load a previously

created list of commands from a flat file, or build a new list. The upper

pane shows the current contents of the command list, while the bottom

pane is where users can type new commands to add. Each command in the

list may be reordered or removed to suit the situation. During execution of

the command list, each command is processed sequentially. This means

that the results of each command are already written to the database by the

time the successive command is run. Each command operates on the state

of the database resulting from the previous command.

37

Figure 4.11 Cleaning Operations Panel

The lowermost panel is the Execution Console panel, shown in

Figure 4.12. It allows execution and preview of the data cleaning

commands. The text area outputs messages and results generated by the

cleaning during run time. Cleaning may be performed in preview mode, in

which case a new window opens, showing a preview of the contents of

any table in the database after cleaning completes. This does not modify

any data, and is a convenient way for users to understand exactly what

their commands will do. The cleaning commands can then be run with

permanent effects, updating the database with the results of the cleaning.

Figure 4.12 Execution Console Panel

The Command Parser, the Execution Engine, and the User

Interface combine to form the Data Cleaning Framework. They are

designed to minimize the learning curve of extending and customizing the

system. These parts constitute the functionality required for the system to

be able to be tailored to users’ data cleaning needs.

38

Chapter 5

System Evaluation

To evaluate how the Data Cleaning Framework can be used to perform

data cleaning, we will examine two scenarios involving real-world data.

For each set of data, we build a sequence of cleaning commands and then

apply these commands on the data, with a before and after comparison of

the tables to see the end results of the data cleaning. The goal of these tests

is to demonstrate how the system and the operator types defined can be

applied in a real-world situation.

 The Data Cleaning Framework will also be compared to a baseline,

in order to evaluate the utility gained by using such a framework. The

baseline represents a system where each individual cleaning operation is

implemented without utilizing the functionality provided by the Data

Cleaning Framework. The baseline uses the same basic code for each

cleaning function, but it does not take advantage of the abstractions

provided by the framework, such as the automatic fetching and iteration

through records, and the functions provided to modify record values. The

main metric for this comparison is an estimate of the amount of code

necessary to implement the specified functionality. A comparison matrix

is used to match the Data Cleaning Framework system against the baseline

system for each cleaning command performed in the scenarios.

39

5.1 Soccer Matches Database

Suppose you are a fan of association football (soccer). You often

debate with your friends about the best team in the world. Recently, you

discovered a resource that may be able to help settle these disputes. This

source of information is the World Football Elo Rankings. The World

Football Elo Ratings are based on the rating system used to rank chess

players and are used to rate national teams. The World Football Elo

Rankings database contains data on thousands of soccer matches. Figure

5.1 shows a selection of records from the table.

Figure 5.1 Original Matches Table (First 15 Records)

Date
Home
Team

Away
Team

Home
Score

Away
Score Competition Location

Home
Rank

Away
Rank

Rank
Diff

1940-
04-02 Croatia Switzerland 4 0 Friendly Croatia 8 18 -10

1940-
04-21 Switzerland Croatia 0

Friendly Switzerland 18 8 10

05/02/
1940 Hungary Croatia 1 0 Friendly Hungary 8 9 -1

1940-
12-08 Croatia Hungary 1 1 Friendly Croatia 9 8 1

1941-
06-15 Germany Croatia 5 1 Friendly Germany 8 9 -1

1941-
09-07 Slovakia Croatia 1 1 Friendly Slovakia 27 10 17

1941-
09-28

Croatia
Slovakia

5 2 Friendly Croatia 9 27 -18

1942-
01-18 Germany Croatia 2 0 Friendly Germany 8 11 -3

1942-
04-05 Italy Croatia 4 0 Friendly Italy 2 13 -11

1942-
04-11 Croatia Bulgaria 6 0 Friendly Croatia 11 44 -3

1942-
06-07 Slovakia Croatia 1.1 2 Friendly Slovakia 33 9 2

1942-
06-14 Hungary Croatia 1 1 Friendly Hungary -13 9 4

1942-
09-06 Croatia Slovakia 6 1 Friendly Croatia 9 33 -24

1942-
10-11 Romania Croatia 2 2 Friendly Romania 39 9 30

1942-
11-01 Germany Croatia 5 1 Friendly Germany 7 11 -4

40

There are several errors and anomalies in the data due to the time

period some of these records are from. The discrepancies are highlighted

in red above. To resolve these issues, you decide to clean the data under

the following requirements corresponding to the indicated error type:

 Ensure all matches have a home team and an away team listed by

splitting team entries containing both teams (Lexical error).

 Change all home scores to integer values by truncating

unnecessary digits (Domain format error).

 Convert all date values to yyyy-mm-dd format from other date

formats (Inconsistency).

 Ensure all home rankings are non-negative by changing negative

values to positive (Integrity constraint violation).

 Correct errors for the rank difference between teams by deriving

from the home and away ranking (Contradiction).

 Fill missing away scores to minimize change to statistical

measures by using the most common value (Missing value).

Figure 5.2 shows the sequence of actions taken to clean the data.

The four categories of operations are used with different parameters in

order to correct each type of error. For missing values, the output of the

STAT operations is used as inputs to fill empty values during the next

round of cleaning. The final cleaned matches table is shown in Figure 5.3.

// Split entry into home and away team

MAP homeTeam TO homeTeam, awayTeam SOURCE soccer

PARAM split;

// Convert all values to integers

INTEG homeScore SOURCE soccer PARAM toInt;

// Change date values to yyyy-mm-dd format

INTEG date SOURCE soccer PARAM ymd;

// Make all values positive

41

INTEG homeRank SOURCE soccer PARAM positive;

// Rederive difference from home and away rankings

MERGE homeRank, awayRank TO rankDiff SOURCE soccer

PARAM sub;

// Infer most common value using attribute dependencies

STAT awayScore SOURCE soccer DEPEND awayTeam PARAM maxFreq;

// Use inferred values to fill missing values

INTEG awayScore SOURCE soccer PARAM fillEmpty;

Figure 5.2 Data Cleaning Sequence of Actions

Figure 5.3 Cleaned Matches Table (First 15 Records)

Data cleaning operations can be combined by running them in

sequence. Each operation cleaned one type of error, and successive

operations operate on the table after the error handled by the previous

operation is cleaned. Figure 5.3 shows that the Data Cleaning Framework

Date
Home
Team

Away
Team

Home
Score

Away
Score Competition Location

Home
Rank

Away
Rank

Rank
Diff

1940-
04-02 Croatia Switzerland 4 0 Friendly Croatia 8 18 -10

1940-
04-21 Switzerland Croatia 0 1 Friendly Switzerland 18 8 10

1940-
05-02 Hungary Croatia 1 0 Friendly Hungary 8 9 -1

1940-
12-08 Croatia Hungary 1 1 Friendly Croatia 9 8 1

1941-
06-15 Germany Croatia 5 1 Friendly Germany 8 9 -1

1941-
09-07 Slovakia Croatia 1 1 Friendly Slovakia 27 10 17

1941-
09-28 Croatia Slovakia 5 2 Friendly Croatia 9 27 -18

1942-
01-18 Germany Croatia 2 0 Friendly Germany 8 11 -3

1942-
04-05 Italy Croatia 4 0 Friendly Italy 2 13 -11

1942-
04-11 Croatia Bulgaria 6 0 Friendly Croatia 11 44 -33

1942-
06-07 Slovakia Croatia 1 2 Friendly Slovakia 33 9 24

1942-
06-14 Hungary Croatia 1 1 Friendly Hungary 13 9 4

1942-
09-06 Croatia Slovakia 6 1 Friendly Croatia 9 33 -24

1942-
10-11 Romania Croatia 2 2 Friendly Romania 39 9 30

1942-
11-01 Germany Croatia 5 1 Friendly Germany 7 11 -4

42

was successful in accomplishing the requirements for correcting all errors.

The matrix in Figure 5.4 compares the amount of work required to

implement each of the operations necessary to clean the data. We observe

that the Data Cleaning Framework is able to perform the required cleaning

operations through user extension of the system, with a minimal amount of

programming. In contrast, implementing the cleaning functions in the

baseline system took many times the effort. Example comparison code

from the MAP operation is shown in Appendix A.

Operation Data Cleaning Framework Baseline (No Framework)

Map team field to create

home and away teams

Lines of Code: ~5

Lines of Code: ~80

Integrity check home

scores to be integer values

Lines of Code: ~10

Lines of Code: ~50

Integrity check date values

to be yyyy-mm-dd format

Lines of Code: ~20

Lines of Code: ~60

Integrity check home

rankings to be positive

Lines of Code: ~5

Lines of Code: ~45

Merge home/away ranking

to derive rank difference

Lines of Code: ~10

Lines of Code: ~85

Statistics to find most

frequent score to fill

missing values

Lines of Code: ~25

Lines of Code: ~60

Figure 5.4 Comparison of Soccer Matches Scenario

5.2 Historical Weather Database

Suppose you are a meteorologist from CERN who has come to

Urbana to visit relatives. You have some free time and decide to

43

investigate meteorological trends in Urbana to see if there is any evidence

of climate change in the region. The National Climatic Data Center stores

historical weather measurements for Urbana over many decades. From

here, you obtain data with which you wish to compare temperature trends

for a particular month over the years. Figures 5.5-5.8 show the data tables

as they originally appeared.

Month Day Location High Temp Low Temp

10 1 61801 64.4 39.2

10 2 61801 64.4 35.6

10 3 61801 73.4 42.8

10 4 61801 69.1 42.1

10 5 61801 80.1 42.1

10 6 61801 82.4 48.2

10 7 61801 68 57

10 8 61801 69.8 53.6

10 9 61801 75 43

10 10 61801 79 45

Figure 5.5 October 2008 Table (First 10 Records)

Month Day Location High Temp Low Temp Windspeed Precipitation

10 1 61801 60.1 42.1 4.9 0.54

10 2 61801 60.1 46 9.9 0.38

10 3 61801 55.4 48.2 9.7 0

10 4 61801 63 39 5.2 0

10 5 61801 68 39 2.2 0

10 6 61801 66.9 45 7.1 0.11

10 7 61801 63 39.9 8.8 0.19

10 8 61801 53.6 44.6 4.7 0

10 9 61801 52 46 4.8 2.15

10 10 61801 55.9 32 4.5 0

Figure 5.6 October 2009 Table (First 10 Records)

44

Month Day Years Location High Temp Change Low Temp Change

10 4 2005-2006 61801 1.66 6.23

10 4 2006-2007 61801 2.77 1.12

10 4 2007-2008 61801 -0.9 -0.34

10 5 2005-2006 61801 2.9 -2.89

10 5 2006-2007 61801 -3.33 -3

10 5 2007-2008 61801 5.37 3.76

10 6 2005-2006 61801 -3.09 4.25

10 6 2006-2007 61801 -1.4 1.43

10 6 2007-2008 61801 -8.8 -5.5

10 7 2005-2006 61801 -5.11 -2

10 7 2006-2007 61801 3.48 -1.46

10 7 2007-2008 61801 6.83 4.09

10 8 2005-2006 61801 6.34 5.51

10 8 2006-2007 61801 -0.11 2.77

10 8 2007-2008 61801 -2.56 -1.24

Figure 5.7 Historical Temperature Change (15 Records)

Month Day High Temp Change Low Temp Change

10 1 -4.3 2.9

10 2 -4.3 10.4

10 3 -180 5.4

10 4 -6.1 -3.1

10 5 -12.1 -3.1

10 6 -15.5

 10 7 -5 -17.1

10 8 -16.2

 10 9 -23 3

10 10 -23.1111 -13

Figure 5.8 Original October 08-09 Table (First 10 Records)

45

The data contains multiple types of errors, highlighted in red in

Figure 5.8. To fix the tables, you decide to clean the data under the

following requirements corresponding to the listed error type:

 Copy the location attribute over to the new table, which does not

have a location column (Lexical error).

 Correct errors in high temperature difference by deriving from the

high temperatures of the month between years (Contradiction).

 Round the high temperature change values with extra digits to one

decimal place (Inconsistency).

 Fill missing temperature change values, minimizing overall change

to statistical measures by using the average value over the same

day in years past (Missing value).

Figure 5.9 shows the sequence of actions taken to clean the data.

The four categories of operations are used with multiple parameters in

order to enact the corrections necessary. In the case of missing values, the

output of the STAT operations is used as inputs to fill empty values during

the next round of cleaning. The result of cleaning is shown in Figure 5.10.

// Copy the location attribute

MAP oct08.location TO october0809.location SOURCE oct08

DEST october0809 PARAM copy;

// Rederive temperature change from existing data

MERGE oct09.highTemp, oct08.highTemp

TO october0809.highChange SOURCE oct08, oct09

DEST october0809 PARAM sub;

// Round values to specified precision

INTEG highChange SOURCE october0809 PARAM round 1;

// Infer average value based on attribute dependencies

STAT lowChange SOURCE october0809 DEST annualDiff

DEPEND month, day PARAM avg;

// Use inferred values to fill missing values

INTEG lowChange SOURCE october0809 PARAM fillEmpty;

Figure 5.9 Data Cleaning Sequence of Actions

46

Month Day Location High Temp Change Low Temp Change

10 1 61801 -4.3 2.9

10 2 61801 -4.3 10.4

10 3 61801 -18 5.4

10 4 61801 -6.1 -3.1

10 5 61801 -12.1 -3.1

10 6 61801 -15.5 0.1

10 7 61801 -5 -17.1

10 8 61801 -16.2 2.3

10 9 61801 -23 3

10 10 61801 -23.1 -13

Figure 5.10 Cleaned October 08-09 Table (First 10 Records)

Figure 5.10 shows that the Data Cleaning Framework was

successful in correcting all error types through the series of data cleaning

operations. Each operation cleaned one type of error, and although no

single operation cleaned all types of errors, the combination of all

operations met the cleaning requirements. The matrix in Figure 5.11

shows the difference in programming each of the operations necessary to

clean the data. Utilizing the functionality provided by the Data Cleaning

Framework allows users of the system to minimize the number of lines of

code needed. Without this support, implementing the same operations in

the baseline system takes several times the amount of code. Example

comparison code from the STAT operation is shown in Appendix B.

Operation Data Cleaning Framework Baseline (No Framework)

Map to copy location

attribute to another table

Lines of Code: ~ 5

Lines of Code: ~75

Integrity check high

temperatures to round

Lines of Code: ~ 15

Lines of Code: ~50

47

values to two decimals

Merge low temperatures

from separate tables to

derive temperature change

Lines of Code: ~ 10

Lines of Code: ~85

Statistics to find average

low temperature change to

fill missing values

Lines of Code: ~ 15

Lines of Code: ~50

Figure 5.11 Comparison of Historical Weather Scenario

5.3 Analysis

The Data Cleaning Framework is built on the principle that there is

no set of cleaning functions suitable for any arbitrary data. Therefore, it

provides support for user-specified functions by allowing the user to

utilize abstractions supplied by the framework and focus solely on the core

functionality for their transformation. This not only cuts down the amount

of code necessary to implement a new cleaning function, but also makes

the process much simpler, as the number of concerns for the user is

reduced. We see from the results that this extensibility allows users to

implement functions capable of cleaning any of the mentioned error types.

In comparison, the baseline requires that users first implement the

functionality for fetching the relevant data to be modified. Next, the user

must get information about the schema of the retrieved data themselves.

They then must use this information to set up the iteration through the

records. It is only after this point that the core functionality can be created,

and users specify the cleaning transformation. In the code for the

functionality, users must manually implement the necessary methods to

actually modify the data and then save the changes to the database.

48

It is important to note that the Data Cleaning Framework provides

additional capabilities beyond simply reducing the amount of

programming necessary. This includes a graphical user interface that can

be used to view tables and construct a sequence of data cleaning

commands to run. The user interface can also give a preview of changes

made to table contents, letting users to see in advance what effects their

cleaning actions will have on the database. This helps to prevent new

errors from being introduced when unintended cleaning operations are run.

From the experimental results, we conclude that users can utilize

the Data Cleaning Framework’s support for the four categories of cleaning

operations to implement functions to clean most common error types.

While users pay an upfront cost of implementing their cleaning function

using the functionality provided by Data Cleaning Framework, this cost is

small compared to the amount of work necessary to implement a cleaning

function from scratch. The extensibility of the Data Cleaning Framework

proves to be an integral asset when performing data cleaning.

49

Chapter 6

Related Work

The concept of data cleaning is an area of much continuing research.

Many methods have been developed to tackle the problem of identifying

and cleaning dirty data. We briefly describe the following systems for

performing data cleaning.

 ARKTOS is a framework used for modeling and executing the

Extraction-Transformation-Load process in data warehouse creation. Data

cleaning is a key part of the ETL process, consisting of single steps that

extract relevant data from the sources, transform it to the target format,

clean it, and then load it into the data warehouse. These steps are cleaning

operations called activities. Each activity is linked to input and output

relations, where the functionality of an activity is described by an SQL

statement. Each statement is associated with a particular error type and a

policy which determines what actions to take when an error is found [10].

IntelliClean is a rule based approach to data cleaning that monitors

the database without direct user execution. IntelliClean uses four types of

cleaning rules to specify cleaning actions to be taken after certain

conditions are met. Duplicate identification rules specify how tuples are

classified as duplicates, and merge/purge rules specify how these

duplicates will be handled. Update rules define how data is to be modified

50

to satisfy a particular constraint, and alert rules specify trigger conditions

that cause the user to be notified [11].

The Data Cleaning Framework focuses on the concept of user

extensibility, but it is just one of the myriad approaches towards a solution,

in a field where there is no absolute answer. The ARKTOS and

IntelliClean systems demonstrate alternative ways of dealing with the

problem of data cleaning.

51

Chapter 7

Conclusion

The huge quantities of data created and stored in the information era

inevitably leads to the introduction of data errors and anomalies. With the

speed with which information is transmitted, never before has accurate

data been so critical for business. Cleaning this “dirty” data has proved to

be a major problem in industry, with no consensus on the exact nature of

the solution. This thesis proposes an extensible system for data cleaning,

the Data Cleaning Framework.

 We observed that due to the broad and diverse nature of the data

that needs to be cleaned, there exists no comprehensive set of operations

suitable for any arbitrary domain. The Data Cleaning Framework was

created with extensibility foremost as a result. By grouping data cleaning

operations into types, we are able to provide a set of tools and support for

users in implementing new cleaning functions. This allows users to focus

on creating the core functionality while minimizing the amount of time

and programming spent. Evaluating the Data Cleaning Framework on real-

world data demonstrated the flexibility of this user-customizable approach.

 There is no one-size-fits-all approach to data cleaning. Therefore,

we believe that the future of data cleaning will be dominated by extensible

systems. These systems will allow users to impose their requirements on

52

how data should be cleaned, rather than working around the limitations of

the system. The Data Cleaning Framework is a system which attempts to

accomplish this, and we have established that extensibility for data

cleaning is an approach worth pursuing.

53

References

[1] T. Redman. The Impact of Poor Data Quality on the Typical

Enterprise. In Communications of the ACM, Vol. 41, No. 2, 1998,

79-82.

[2] H. Muller, J. Freytag. Problems, Methods, and Challenges in

Comprehensive Data Cleansing. In Technical Report HUB-IB-164,

Humboldt University, Berlin, 2003.

[3] E. Rahm, H.H. Do. Data Cleaning: Problems and current

approaches. In IEEE Bulletin of the Technical Committee on Data

Engineering, 2000, 24, 4.

[4] W.L. Low, M.L. Lee, T.W. Ling. A knowledge-based approach for

duplicate elimination in data cleaning. In Information Systems, Vol.

26, 2001, 585-606.

[5] J.I. Maletic, A. Marcus. Data Cleansing: Beyond Integrity Analysis.

In Proceedings of the Conference on Information Quality, October

2000.

[6] P. Oliveira, F. Rodrigues, P. Henriques, H. Galhardas. A

Taxonomy of Data Quality Problems. In Proc. of 2nd Int.

Workshop on Data and Information Quality (DIQ), Porto, Portugal,

2005.

[7] H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita.

Declarative data cleaning: Language, model and algorithms. In

Proc. of 27th Int. Conf. on Very Large Databases (VLDB), 371-

381. Rome, Italy, 2001.

[8] M.L. Lee, H. Lu, T.W. Ling, Y.T. Ko. Cleansing Data for Mining

and Warehousing. In Proc. of 10th Int. Conf. on Database and

Expert Systems Applications (DEXA), 751–760. 1999.

54

[9] I. Ahmed, A. Aziz. Dynamic Approach for Data Scrubbing Process.

In International Journal on Computer Science and Engineering,

Vol. 02, No. 02, 2010, 416-423.

[10] P. Vassiliadis, Z. Vagena, S. Skiadopoulos, N. Karayannidis, T.

Sellis. ARKTOS: towards the modeling, design, control and

execution of ETL processes. In Information Systems, Vol. 26, 2001,

537-561.

[11] M.L. Lee, T.W. Ling, W.L. Low. IntelliClean: A knowledge-based

intelligent data cleaner. In Proc. of 6th Int. Conf. on Knowledge

Discovery and Data Mining (KDD), 290–294, 2000.

55

Appendix A

The example code in this section only includes the key functionality of

each operation, in order to provide an estimate for the amount of

programming needed for a user-implemented function. The amount of

code needed to implement a function varies by user, so estimates may be

rough in some cases.

Example MAP Function

(Using Data Cleaning Framework)

1 private void split(ResultSet rs, int currRow, String[] modAttrs,
 String table, String[] paramCons, Object prevResults) throws

 SQLException {
2 String value = rs.getString(1);
3 String[] split = value.split(paramCons[0]);
4 update(split, currRow, modAttrs, table);
5 }

Example MAP Function

(Without Data Cleaning Framework)

 // User-defined transformation function to split attributes

1 protected void split(ResultSet rs, String[] modAttrs, String table,

 String[] paramCons, Object prevResults) {

2 try {

3 ResultSetMetaData rsmd = rs.getMetaData();

 // Get information on new columns to add

4 numCols = rsmd.getColumnCount();

5 colType = rsmd.getColumnTypeName(1);

6 schemaSize = rsmd.getColumnDisplaySize(1);

7 Statement st = null;

56

 // Allow queries to modify database contents and structure

8 st = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_UPDATABLE);

 // Add column of specified name, data type, size

9 for (int i = 0; i < modAttrs.length; i++) {

10 String attrTable = table;

 // Check if attribute belongs in table

11 String[] tb = modAttrs[i].split("\\.");

12 if (tb.length == 2) {

13 attrTable = tb[0];

14 }

15 if (attrTable.equalsIgnoreCase(table)) {

 // Add new columns to table

16 String exe = "ALTER IGNORE TABLE " + table + "

 ADD " + modAttrs[i] + " " + colType + "(" + schemaSize + ")";

17 st.executeUpdate(exe);

18 }

19 }

20 } catch (Exception e) {

21 System.err.println("Exception: " + e.getMessage());

22 }

23 try {

24 while (rs.next()) {

25 String value = rs.getString(1);

26 int currRow;

27 currRow = rs.getRow();

28 String[] split = value.split(paramCons[0]);

 // Update each output column with new data value

29 for (int i = 0; i < modAttrs.length; i++) {

30 try {

31 Statement st = null;

32 ResultSet updateResult = null;

33 st = con.createStatement(

 ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

 // Use primary keys to enable modification of data

34 String exe = primaryKeys + ", " + modAttrs + " from " + table + ";";

35 updateResult = st.executeQuery(exe);

 // Set position index to row being modified

36 updateResult.absolute(currRow);

 // Make modification to data, propagate changes to database

37 updateResult.updateString(modAttrs[i], split[i]);

38 updateResult.updateRow();

39 } catch (Exception e) {

40 System.err.println("Exception: " +

 e.getMessage());

41 }

42 }

43 }

44 }

45 } catch (SQLException e) {

57

46 e.printStackTrace();

47 }

48 }

49 protected void mapOperation(String[] origAttrs, String[] modAttrs,

 String[] fromTables, String[] toTables, String[] params)

 throws SQLException {

 // Check if more than one table is needed

50 if (toTables == null) {

51 for (int j = 0; j < fromTables.length; j++) {

 // Create query to select input data

52 String query = formatQuery(origAttrs, fromTables[j]);

 // Get primary keys of table to allow table modification

53 getTableKeys(fromTables[j]);

54 this. mapInputs (query, origAttrs[0], modAttrs,

 fromTables[j], null, params);

55 }

56 } else {

57 String query = formatQuery(origAttrs, fromTables);

58 for (int j = 0; j < toTables.length; j++) {

59 getTableKeys(toTables[j]);

60 this. mapInputs (query, origAttrs[0], modAttrs,

61 fromTables[0], toTables[j], params);

62 }

63 }

64 }

 // Fetches necessary input data from columns specified in command

65 protected ResultSet mapInputs(String query, String origAttr,

 String[] modAttrs, String fromTableName, String toTableName,

 String[] params) {

66 try {

 // Execute query to fetch data

67 st = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_UPDATABLE);

68 rs = st.executeQuery(query);

69 String[] paramCons = new String[params.length - 1];

70 for (int i = 1; i < params.length; i++) {

71 paramCons[i - 1] = params[i];

72 }

 // Apply parameters to cleaning operation

73 String paramType = params[0].toUpperCase();

74 applyConditions(rs, origAttr, modAttrs, fromTableName,

toTableName, paramType, paramCons);

75 } catch (Exception e) {

76 System.err.println("Exception: " + e.getMessage());

77 }

 // Pass fetched input data to user function

78 return rs;

79 }

58

Appendix B

Example STAT Function

(Using Data Cleaning Framework)

1 protected void average(ResultSet rs, String key, String[] paramCons) {
2 double total = 0;
3 double numRows = 0;
4 while (rs.next()) {
5 double value = rs.getDouble(1);
6 total += value;
7 numRows++;
8 }
9 double avg;
10 if (numRows != 0) {
11 avg = (total / numRows);

 // Map attribute to computed value
12 updateMapping(key, avg);
13 }

Example STAT Function

(Without Data Cleaning Framework)

 // User-defined function to infer value from average

1 protected void average(ResultSet rs, String key, String[] paramCons) {
2 double total = 0;
3 double numRows = 0;
4 while (rs.next()) {
5 double value = rs.getDouble(1);
6 total += value;
7 numRows++;
8 }
9 double avg;
10 if (numRows != 0) {
11 avg = (total / numRows);

59

 // Map attribute to computed value
12 updateMapping(key, avg);

13 }
 // Iterates through records to get subsets matching dependencies
14 public void statOn(String[] origAttrs, String[] modAttrs,
 String[] fromTables, String[] toTables, String[] depends,
 String[] params) throws SQLException {
 // Create query to select entire set of relevant data
15 String query = formatQuery(origAttrs, fromTables, depends);
16 ResultSet all = this.getResultSet(query);
17 ResultSetMetaData allmd = all.getMetaData();
18 int numCols = allmd.getColumnCount();
19 String[][] values = new String[depends.length][numCols - 1];

 // Create mapping of attributes to inferred value
20 Global.statMapping = new Hashtable<String, String>();
21 while (all.next()) {
22 for (int i = 0; i < values[0].length; i++) {
23 values[i][i] = all.getString(depends[i]);
24 }
 // Create query to filter results on matching dependencies
25 String subquery = buildFilter(origAttrs, fromTables, dest,

26 depends, values);
27 String key = getKeys(depends, values, "");
28 this.executeOperation(subquery, key, "", null, null, params);
29 }
30 }
 // Fetches necessary input data from columns specified in command
31 protected ResultSet executeOperation(String query, String key, String value,

 String origAttr, String fromTableName, String[] params) {
32 try {
 // Allow queries to modify database contents and structure
33 st = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
34 rs = st.executeQuery(query);
35 if (params != null) {
36 String[] paramCons = new String[params.length - 1];
37 for (int i = 1; i < params.length; i++) {
38 paramCons[i - 1] = params[i];
39 }
40 String paramType = params[0].toUpperCase();
41 applyConditions(rs, key, value, origAttr, fromTableName,

42 paramType, paramCons);
43 }
44 } catch (Exception e) {
45 System.err.println("Exception: " + e.getMessage());
46 }

 // Pass fetched input data to user function
47 return rs;
48 }

