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Abstract

Chapter 1 is concerned with confidence interval construction for the mean of a long-range dependent time

series. It is well known that the moving block bootstrap method produces an inconsistent estimator of the

distribution of the normalized sample mean when its limiting distribution is not normal. The subsampling

method of Hall, Lahiri and Jing (1998) produces a consistent estimator but involves consistent estimation of

the variance of the normalized sample mean using one seemingly arbitrary tuning parameter. By adopting a

self-normalization idea, we modify the subsampling procedure of Hall et al.(1998) and the resulting procedure

does not require consistent variance estimation. The modified subsampling procedure only involves the

choice of the subsampling widow width, which can be addressed by using some existing data driven selection

methods. Simulations studies are conducted to compare the finite sample performances.

The behavior of cluster analysis under different distance measures is explored in Chapter 2, using some of the

most common models in educational testing for data generation. Theoretical results on clustering accuracy

are given for distance measures used in minimum diameter partitioning and hierarchical agglomerative cluster

analysis with complete linkage for data from unidimensional item response models, restricted latent class

models for cognitive diagnosis, and the linear factor analysis model. An aim is to identify distance measures

that work well for a variety of models, explore how much knowledge of the underlying model is needed

to construct a distance measure that leads to a consistent solution, and provide theoretical justifications

for using them. Clustering consistency is defined on the space of the latent trait, and consistency and

inconsistency results are given for competing distance measures.

We study response times in computerized adaptive testing in Chapter 3. We propose a semi-parametric

model for response times that arises in educational assessment data. Algorithms for item selection that use

the response time information are proposed and studied for their efficiency and how well they distribute

item exposure.
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Chapter 1

On the Modified Subsampling Method
for Long-Range Dependent Data

1.1 Introduction

Assume the data (X1, · · · , Xn) represents a realization from a strictly stationary process {Xt}t∈Z, with mean

µ and autocovariance function γX(k) = cov(Xt, Xt+k), k ∈ Z. The process {Xt} is said to be long-range

dependent (LRD) if γX(k) satisfies:

γX(k) = k−αL(k), k →∞, (1.1)

where 0 < α < 1 and L is slowly varying at infinity, that is limx→∞ L(λx)/L(x) = 1, for any λ > 1. (See

Bingham, Goldie and Teugels (1987)). Alternatively the strength of dependence can be described in terms

of the local behavior of the integrable spectral density function {f(λ), |λ| ≤ π} around the origin, i.e.,

f(λ) ∼ Cd|λ|−2d, as λ→ 0, (1.2)

where d = 1/2− α/2 ∈ (0, 1/2), Cd > 0, and the symbol “∼” means that the ratio of the terms on the two

sides converges to one. The long memory phenomenon has been found for times series in various fields [see

Beran (1994)]. The study of LRD time series has become a rapidly developing subject and it has diverse

applications. In theoretical research, two major categories of LRD processes: transformed Gaussian LRD

processes and linear LRD processes have been discussed intensively; See for example Davydov (1970), Taqqu

(1975, 1979) and Dobrushin and Major (1979) for the early works on these processes.

Inference of the mean µ is often the first and an important step in the analysis of stationary time series.

When the data is weakly dependent, the moving block bootstrap approach developed by Künsch (1989) and

Liu and Singh (1992) provides consistent nonparametric estimate for the distribution of the sample mean.

When the time series is LRD, Lahiri (1993) showed that the block bootstrap method fails to provide a

consistent estimator for the class of transformed-Gaussian LRD process, whose normalized sample mean can

have a non-normal limiting distribution. To remedy this problem, Hall, Jing and Lahiri (1998) developed

1



a block based sampling window procedure (i.e., subsampling; Politis and Romano (1994)) and proved its

consistency for the transformed Gaussian LRD processes. Nordman and Lahiri (2005) further extended the

theoretical validity of the subsampling method to linear LRD processes.

In Hall et al. (1998) [also see Nordman and Lahiri (2005)], the procedure involves consistent estimation

of asymptotic variance of the normalized sampling mean, which depends on several unknown parameters.

A nonparametric method was used and a tuning parameter needs to be selected. No sound guidance seems

provided as to the choice of this particular tuning parameter. In this paper, we propose to extend the

self-normalization idea in Lobato (2001) to this setting. We first form a self-normalized statistic, whose

asymptotic distribution is free of the asymptotic variance of the sample mean, then apply the subsampling

method. One advantage of our approach is that we do not need to consistently estimate the variance of

sample mean and therefore we reduce the number of the tuning parameters involved in the subsampling

procedure. The only tuning parameter in our modified scheme is the subsampling window width, the choice

of which can be addressed using the existing techniques; see e.g., Politis, Romano and Wolf (1999, Chapter

9). We do not address the consistency of the data driven subsampling widow width but will investigate its

finite sample performance in Section 1.3.2.

The rest of the chapter is organized as follows. Sections 2.1 and 2.2 detail some theoretical results of

transformed Gaussian processes and linear processes, respectively. Section 2.3 reviews Hall et al. (1998)’s

subsampling method and then proposes our modified subsampling window procedure. In Section 3, we report

several simulation studies on the coverage accuracies as well as the interval widths of our modified subsam-

pling procedure for the LRD Gaussian and linear process mean and compare them with the subsampling

method of Hall et al. (1998). Section 4 concludes the paper.

1.2 Methodology

1.2.1 Transformed Gaussian LRD Processes

Let {Zt, t ∈ Z} be a strictly stationary Gaussian process with EZ1 = 0, EZ2
1 = 1 and γZ(k) = cov(Z1, Z1+k), k ∈

Z. The stationary transformed Gaussian process {Xt}t∈Z is defined as Xt = G(Zt) , where G : R → R is a

Borel measurable function that satisfies E{G(Z1)2} < ∞. In order to make this case distinct from that of

the linear LRD process considered in Section 1.2.2 below, we suppose that G is not an affine function. Let

µ = EX1 be the parameter of interest and let X̄n = n−1
∑n
i=1Xi denote the sample mean. To construct

a confidence interval for µ, it is natural to consider the asymptotic behavior of (X̄n − µ). To this end, we

2



introduce the kth Hermite polynomial Hk(x), which is defined by

Hk(x) = (−1)k exp(x2/2)(dk/dxk)(exp(−x2/2)), x ∈ R. (1.3)

Denote by hk = E[G(Z)Hk(Z)] the Hermite coefficients. Then the Hermite rank q of G(·) is defined as

q = inf{k ≥ 1 : hk 6= 0}. The asymptotic distribution of X̄n − µ depends on q and the autocovariance

function γX(k), which is assumed to be slowly varying at infinity, i.e., it satisfies (1.1). The following

theorem by Taqqu (1975, 1979), Dobrushin and Major (1979) characterizes the asymptotic distribution of

X̄n − µ:

Theorem 1.2.1. Assume that γZ admits the representation at (1.1) and that G has Hermite rank q, where

0 < α < q−1. Then,

n(X̄n − µ)/dn
d→Wq, as n→∞, (1.4)

where dn = {n2−qαLq(n)}1/2 and “
d→ ” denotes convergence in distribution. The limiting distribution Wq

is defined in terms of a multiple Wiener-Ito integral with respect to the random spectral measure W of the

Gaussian white-noise process as

Wq =
Cq
Aq/2

∫
exp{i(x1 + · · ·+ xq)} − 1

i(x1 + · · ·+ xq)

q∏
k=1

|xk|α/2dW (x1) · · · dW (xq), (1.5)

where A = 2Γ(α) cos(απ/2) and Cq = E{Hq(Z1)G(Z1)}/q!.

Note that Wq has a normal distribution with mean zero and variance 2C2
1/{(1−α)(2−α)} when q = 1, and

Wq has a non-normal distribution when q ≥ 2.

1.2.2 Linear LRD Processes

Another widely used class of processes that allows for long-range dependence is the so-called linear processes.

Let {εt, t ∈ Z} be a sequence of stationary innovations with zero mean and finite second moment, and

{ak, k ∈ Z} be a sequence satisfying
∑
k∈Z a

2
k <∞. Let

Xt = µ+

∞∑
k=−∞

at−kεk. (1.6)

Then the autocovariance function of Xt also admits the representation as in (1.1) for certain {ak}. In

practice, it is usually not plausible that Xt should depend on future values of εt. The summation in (3.13)
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is therefore often restricted to k ≥ 0. That is, we assume the casuality of Xt:

Xt = µ+

∞∑
k=0

at−kεk. (1.7)

The well-known fractional autoregressive integrated moving average (FARIMA) model [c.f Adenstedt (1974),

Granger and Joyeux (1980), and Hosking (1981)] has the representation (1.7).

Under suitable regularity conditions, Davydov (1970) showed that

n(X̄n − µ)/dn
d→ Z, as n→∞, (1.8)

where Z is a standard normal random variable. For linear LRD processes, the correct scaling dn =

{n2−αL(n)}1/2 also depends on the unknown quantities α and L(n).

1.2.3 Subsampling and a Modified Version

To construct a confidence interval for µ, a standard approach is to resort to asymptotic distribution and

use the corresponding critical values. As seen from the results in the above discussions, the asymptotic dis-

tribution of the studentized sample mean can admit a complicated form and/or involve unknown nuisance

parameters, the estimation of which is nontrivial. One way out is to use resampling methods, such as the

moving block bootstrap. However, for transformed Gaussian processes, Lahiri (1993) showed the inconsis-

tency for the moving block bootstrap when Wq is nonnormal. As a remedy, Hall et al. (1998) proposed to

use the so-called subsampling window method (SW). Specifically, let Tn = n(X̄n − µ)/dn be the normalized

sample mean and denote its corresponding cumulative distribution function by

Jn(x) = P (Tn ≤ x), x ∈ R.

The subsampling method consists of the following steps:

Step 1 Partition the time series into N = n − b + 1 consecutive overlapping blocks of length b, Bk =

{Xk, · · · , Xk+b−1}, k = 1, · · · , N. Each data block Bk, k = 1, · · · , N is treated as a scaled-down

replicate of the original data {X1, · · · , Xn}.

Step 2 For each block Bk, we calculate the subsampled version of Tn and denote it as

Tb,k =

∑k+b−1
i=k Xi − bX̄n

db
, k = 1, · · · , N.
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Step 3 The subsampling estimator of Jn(x) is formed as

Ĵn,b(x) =
1

N

N∑
k=1

1(Tb,k ≤ x).

where 1(·) stands for the indication function.

Note that the scaling parameters dn and db depend on the unknown quantities α and L(·). To implement the

above procedure, Hall et al.(1998) proposed to obtain consistent estimates of dn and db, denoted by d̂n and

d̂b respectively, by a nonparametric approach. Specifically, let m1n,m2n ∈ [1, n] denote integers such that for

some θ ∈ (0, 1), m1n = n(1+θ)/2 and m2n = nθ. Define d̃2m = (n−m+ 1)−1
∑n−m+1
i=1 (

∑i+m−1
j=i Xj −mX̄n)2,

for m ∈ [1, n]. Then d̂2n = d̃4m1n
/d̃2m2n

. Similarly, d̂2b is calculated analogously based on each subsample. Let

T̂n = n(X̄n − µ)/d̂n and T̂b,k = (
∑k+b−1
i=k Xi − bX̄n)/d̂b. The subsampling estimator of J1,n(x) = P (T̂n ≤ x)

is given by

Ĵ1,n,b(x) =
1

N

N∑
k=1

1(T̂b,k ≤ x).

In practice, the empirical coverage can be sensitive to the choice of θ, but no guidance seems available

about the choice of θ. In this article, we propose a modified subsampling window procedure that does

not involve consistent estimates of dn and db. Instead of using a consistent estimator of the scale as the

studentizer [Hall et al. 1998], we use an inconsistent estimator, which does not involve any tuning parameter.

It is worth noting that the idea of using inconsistent studentizer in the subsampling method has been justified

in Theorem 11.3.1. of Politis et al. (1999) under some general conditions.

The key ingredient of our proposal is to extend the self-normalization method in Lobato (2001) to the

confidence interval construction for µ. The self-normalization idea has been used in Lobato (2001) and

Shao (2009, 2010) to construct confidence intervals for quantities associated with a weakly dependent time

series. The extension to the LRD time series seems new. For the sake of readership, we illustrate the

self-normalization idea in the short-range dependence case. Let {Yt, t = 1, · · · , n} be a weakly dependent

stationary process with mean µY and denote by Ȳn = n−1
∑n
t=1 Yt the sample mean. Under some regularity

conditions, we have

1√
n

bnrc∑
t=1

(Yt − µY )⇒ σB(r), for some σ > 0,

where bnrc denotes the integer part of nr and “ ⇒ ” stands for the weak convergence in D[0, 1]. Here

D[0, 1] deontes the space of functions on [0, 1] which are right continuous and have left-hand limits, endowed

with the Skorohod topology [Billingsley (1968)], B(·) stands for Brownian motion. Then by the continuous
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mapping theorem,

√
n(Ȳn − µY )√

n−2
∑n
t=1 {

∑t
j=1 (Yj − Ȳn)}2

d→ B(1)√∫ 1

0
{B(r)− rB(1)}2dr

≡ U0. (1.9)

The limiting distribution U0 is non-standard, but its critical values have been tabulated by Lobato (2001)

via simulations. As mentioned in Shao (2010), the self-normalization method is a special case of the so-

called fixed-b approach [Kiefer and Vogelsang (2005)], since the normalizer n−2
∑n
t=1 (

∑t
j=1 Yj − tȲn)2 is

the lag-window estimator of the long run variance σ2 when K(·) is taken to be the Bartlett Kernel and

the bandwidth is equal to the sample size (i.e., b = 1). It was brought to our attention by a referee that

McElroy and Politis (2009) have extended the fixed-b approach to the long memory case. Their results show

that the fixed-b limiting distribution of the studentized sample mean depends on the kernel, the magnitude

of memory, and the taper. However, in contrast to the paper at hand, they do not consider a subsampling

distribution estimator and also do not provide a practical method for forming confidence intervals.

To extend the self-normalization idea to the long memory case, the key tool we need is the functional

central limit theorem. For the transformed Gaussian processes, it has been proved by Taqqu (1975). Un-

der certain assumptions [cf. Theorems 2.1 and 4.1 of Taqqu (1975)], we have that by reduction principle

1
dn

∑bnrc
j=1 (Xj − µ) and

hq
q!dn

∑bnrc
i=1 Hq(Xi) converge to the same limiting process Eq(r), i.e.,

∑bnrc
j=1 (Xj − µ)

dn
⇒ Eq(r), r ∈ [0, 1]. (1.10)

Note that Eq(r) is the fractional Brownian motion process when q = 1 and that Eq(1) has the same

distribution as Wq. When q = 2, Eq(r) is the so-called non-Gaussian Rosenblatt process.

Let Si,j =
∑j
t=iXt, and 0 if i > j. By (1.10) and the continuous mapping theorem, we have

Kn =

√
n(X̄n − µ)√

n−2
∑n
t=1 (S1,t − tX̄n)2

d→ Eq(1)√∫ 1

0
{Eq(r)− rEq(1)}2dr

=: Mq. (1.11)

In general, the limiting distribution Mq is unknown, so we cannot directly use (1.11) to construct a confi-

dence interval for µ. Instead, we propose to utilize the subsampling approach to approximate the sampling

distribution of Kn. Let Fn(x) = P (Kn ≤ x), x ∈ R and F̂n(x) be its subsampling based estimator. For

the ith block Bi, i = 1, 2, ...N , we calculate the within block mean X̄i,b = b−1
∑i+b−1
j=i Xj and define the
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subsampling counterpart of Kn as

Kb,i =

√
b(X̄i,b − X̄n)√

b−2
∑i+b−1
j=i {Si,j − (j − i+ 1)X̄i,b}2

, i = 1, · · · , N. (1.12)

Then the subsampling estimator of Fn is given by

F̂n(x) =
1

N

N∑
i=1

1{Kb,i ≤ x}. (1.13)

Let Vn = n−3/2{
∑n
j=1 (S1,j − jX̄n)2}1/2 and t̂β,n be the bNβcth order statistic of Kb,k, 1 ≤ k ≤ N . The

two-sided lower and upper 100(1−β)% confidence bounds for µ are constructed as Lβ/2,n = X̄n−Vnt̂1−β/2,n

and U1−β/2,n = X̄n − Vnt̂β/2,n respectively.

For linear processes (1.7), the following functional central limit theorem has been established under

appropriate moment and weakly dependent conditions on {εt} [see Wu and Shao (2006) and the references

therein]: ∑bnrc
j=1 (Xj − µ)

dn
⇒ σBd(r), r ∈ [0, 1], (1.14)

where Bd(·) is the fractional Brownian motion and σ is a constant. By the continuous mapping theorem,

the distribution of Kn in (1.11) now becomes

Kn
d→ Bd(1)√∫ 1

0
{Bd(r)− rBd(1)}2dr

≡ Ud, d ∈ (0, 1/2). (1.15)

The limiting distribution Ud depends on the unknown long memory parameter d. We shall also use the

modified subsampling method to approximate the sampling distribution of Kn.

Nordman et al. (2007) developed a blockwise empirical likelihood method (EL) to construct a confidence

interval for the mean of the linear LRD process. The EL method also requires a consistent estimation of

long memory parameter d. Consequently, both the EL and SW methods require two tuning parameters:

subsampling width or block size b and a user-dependent parameter related to variance estimation or es-

timation of d. By contrast, our method only involves the choice of the subsampling width. In practice,

given a long memory time series, it is hard to judge if the series is from a LRD linear process or from a

transformed Gaussian process. Thus it seems desirable that our method does not rely on the assumption of

linear processes.

It would be interesting to provide a consistency result for the modified subsampling method proposed

here, but the proofs seem very nontrivial for either transformed Gaussian processes or linear processes. In

7



the case of Gaussian processes, it is actually possible to mimic the argument presented in Hall et al. (1998)

to show that the modified subsampling scheme is consistent. However, as pointed out by a referee, the

completely regularity assumption assumed for the LRD Gaussian processes, can not hold, as a completely

regular Gaussian process can not have a pole in the spectral density. For linear processes, Nordman and

Lahiri (2005) proved the consistency of the subsampling window method by Hall et al. (1998). It can be

expected that our modified subsampling window method is consistent for linear processes. But a rigorous

proof of the consistency seems difficult and is left for future research. Instead, we investigate the finite

sample performance through simulations.

1.3 Simulation Studies

To evaluate the performance of the modified subsampling method, we divide our simulation studies into

two parts according to the data generating processes: transformed Gaussian processes and linear processes.

To generate the data Xn ≡ {X1, · · · , Xn} that is a realization of a transformed Gaussian process with self

similarity parameter α, (or Hurst parameter H = 1/2(2− α)) and Hermite rank q, we follow the procedure

described in Hall et al. (1998). Let Zn0 = {Z10, · · · , Zn0} be size n iid standard normal random variables,

and R = (rij) be the correlation matrix with (i, j)th entry defined as

rij =
1

2
{(|j − i|+ 1)2H + ||j − i| − 1|2H − 2|j − i|2H}, i, j = 1, · · · , n (1.16)

for 1
2 < H < 1. Then Zn ≡ {Z1, · · · , Zn} = UTZn0 is a LRD process with α = 2 − 2H ∈ (0, 1) (cf.

Beran (1994), p.50), where U is obtained by the Cholesky decomposition, i.e., R = UTU . We then take

Xi = Hq(Zi), i = 1, · · · , N to get the transformed Gaussian process with Hermite rank q.

To generate data Xn ≡ {X1, · · · , Xn} that is a realization of a LRD linear process, we consider the

commonly used FARIMA model and let X̃n ≡ {X̃1, · · · , X̃n} represent an FARIMA(0, d, 0) process, where

d = 1/2(1− α) ∈ (0, 1/2). Then the series Xn is generated via

Xt = ϕXt−1 + X̃t + ϑX̃t−1, t = 1, · · · , n (1.17)

by combining one of the following ARMA filters, α values and innovation distributions:

• ϕ = 0.7,ϑ = −0.3 (Filter1);ϕ = −0.7,ϑ = 0.3 (Filter2);ϕ = ϑ = 0 (Filter3);

• d = 0.45, 0.25, 0.05 (i.e., α = 0.1, 0.5, 0.9).
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• {εt} as standard normal; χ2
1 − 1; or t3.

The experimental design and the results are described next.

1.3.1 Modified subsampling vs. subsampling window method for both

transformed Gaussian and linear processes

To facilitate a comparison between our modified subsampling method and the subsampling window method,

we report coverage probabilities of 90% two-sided confidence intervals as well as the average lengths of the

confidence intervals for both the transformed Gaussian processes and linear processes. For the transformed

Gaussian processes, we use block sizes b = Cn1/2, C ∈ {0.5, 1, 3, 6}, n ∈ {400, 1000}, q ∈ {1, 2, 3}, H ∈

{0.95, 0.75, 0.55} and θ = 0.8. The subsampling widths b are overall shorter than those considered in Hall

et al. (1998), where the coverage probabilities are significantly lower with large C values (e.g., 6,9) than

with small C values. Tables 1 and 2 provide the empirical coverage probabilities of the 90% two-sided

confidence intervals for transformed Gaussian processes, with the average lengths of the confidence intervals

over 1, 000 simulation runs for each configuration reported in parenthesis. For linear LRD series, Tables 3,

4 and 5 correspond to FARIMA series with normal, χ2 − 1 and t3 innovations with block sizes b = Cn1/2,

C ∈ {0.5, 1, 2}, n ∈ {400, 1000}, q ∈ {1, 2, 3}, filter ∈ 1, 2, 3, H ∈ {0.95, 0.75, 0.55} and θ = 0.8.

We summarize the major findings as follows:

1. Overall our method (MSW) is comparable to Hall et al (1998)’s method (SW) in terms of coverage

accuracies. It can be seen that MSW method yields lower empirical coverage probabilities but shorter

confidence intervals than SW. With big block sizes (e.g., C = 3 or 6) and strong degree of dependence

(e.g., α = 0.1), both SW and MSW experience severe under-coverage. It is not surprising because

the data-driven optimal block selection study (see Tables 6 and 7) shows that the optimal bandwidths

never exceed
√
n, where n denotes the sample size.

2. For linear LRD processes, both SW and MSW perform similarly across the different types of innovations

with the same sample sizes and block sizes. Generally, the coverage accuracy improves as the sample

size increases or the strength of dependence decreases (i.e., when α increases), although we see that in

a few cases the coverage can get worse, e.g. with more severe overcoverage. This could be attributed

to the randomness in our simulation based on 1000 replications.

Figures 1(a) - 1(d) compare the empirical coverage probabilities between SW and MSW methods for both

transformed Gaussian and linear processes with various innovations across a range of b. For the transformed

Gaussian process, we simulate a size n = 400, H = 0.75 and q = 1 sequence and subsampling window sizes
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vary from 3 to 40. For linear process, we generate a size n = 400, H = 0.75, q = 1 sequence and pass through

Filter 2 and subsampling window sizes vary from 3 to 40. We report both the coverage probability and the

average lengths of the confidence interval. As seen from Figures 1(a)-1(d), the coverage probabilities of

both SW and MSW methods decrease when the block size increases. The widths of the confidence intervals

also decrease when block size increases. MSW method tends to have lower coverage probabilities than SW

method, but has shorter confidence interval widths.

1.3.2 Data driven block size selection method

As shown in Tables 1-5, the coverage probabilities of SW and MSW heavily depend on the choice of the

block size b, so the selection of the block size b is a crucial issue. Here we employ a data driven block

size selection procedure proposed in Bickel and Sakov (2008) for the m out of n bootstrap, which is closely

related to the subsampling method. The use of Bickel and Sakov’s automatic bandwidth selection in the

subsampling context seems unexplored before. Note that there are other available methods, such as those in

Politis, Romano and Wolf (1999) and Götze and Račkauskas (2001). The procedure consists of the following

steps:

Step 1 Consider a sequence of b’s of the form

bj = [gjn], for j = 1, 2, · · · , J, 0 < g < 1, (1.18)

where [α] denotes the smallest integer larger than α.

Step 2 For each bj , find F̂bj ,n, where F̂b,n is the subsampling based distribution estimator for a given subsam-

pling width b.

Step 3 Let ρ(F,G) = supx |F (x)−G(x)|, and set

j0 = argminj=1,··· ,J−1 ρ
(
F̂bj ,n, F̂bj+1,n

)
. (1.19)

Then the optimal block size is bj0 . If the difference is minimized for a few values of bj , then pick the

largest among them.

For the transformed Gaussian processes, we use sample sizes n ∈ {400, 1000}, q ∈ {1, 2, 3}, H ∈

{0.95, 0.75, 0.55} and θ = 0.8. The data driven block size selection parameter g in equation (1.18) is set to

be 0.75. Table 6 provides the empirical coverage probabilities of the 90% two-sided confidence intervals for
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transformed Gaussian processes, with the average lengths of the confidence intervals over 1, 000 simulation

runs for each configuration reported in parenthesis. Also listed in parenthesis are the mean and the median

(optimal) block sizes over 1, 000 simulation runs for each parameter combination. For linear LRD series,

Table 7 corresponds to FARIMA series with a standard normal innovation with sample sizes n ∈ {400, 1000},

q ∈ {1, 2, 3}, Filter1, 2, 3, H ∈ {0.95, 0.75, 0.55} and θ = 0.8.

We summarize several findings from the simulation results in Tables 6 and 7: 1. For both transformed

Gaussian processes and linear processes with a normal innovation, MSW produces narrower confidence

intervals and less empirical coverage (except at n = 1000, linear process with normal innovation and filter

1) than SW does; 2. In the case of transformed Gaussian processes, when data are strongly dependent,

i.e., α = 0.1, the coverage probabilities for SW is closer to the nominal coverage 90% than MSW when

q = 1, 2. However, with moderate or low degree of long range dependence (α = 0.5 or α = 0.9), MSW in

general achieves the empirical coverage probabilities that are closer to the 90% nominal level. In the case of

the linear LRD processes with normal innovation, SW outperforms MSW in terms of coverage probabilities

for the second filter. Except for that, the performance for SW and MSW are comparable in terms of the

coverage; 3. When n = 1000, the average mean and median optimal block sizes corresponding to MSW are

in general shorter than that for SW. We also tried g = 0.6 and qualitatively similar results have been found.

1.4 Conclusions

In summary, we propose a modified subsampling method to construct a confidence interval for the mean of

a LRD time series. Compared to the existing subsampling window method of Hall et al. (1998), our method

eliminates the need to consistently estimate the variance of the sample mean, which involves one rather

arbitrary tuning parameter θ. Through simulations we find that our method is comparable to subsampling

window method in terms of coverage accuracies. Hall et al. (1998)’s subsampling window method tends to

have higher empirical coverage probabilities than ours, but often our modified subsampling method yields

the coverage probabilities that are closer to the nominal level. In addition, our modified subsampling method

delivers shorter confidence intervals.

1.4.1 Simulation results
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Table 1.1: Empirical coverage probabilities for transformed Gaussian processes using the subsampling win-
dow (SW) method with θ = 0.8 and the modified subsampling window (MSW) method. Sample sizes
n = 400, 1000, long range dependence parameters α = 0.1, 0.5, 0.9, block sizes b = Cn1/2 with constants
C = 0.5, 1. Entry in the parenthesis () represents the average length of the intervals. The results are based
on M = 1000 replications. The nominal coverage is 90%.

b = 0.5n1/2 b = n1/2

n q method α = 0.1 α = 0.5 α = 0.9 α = 0.1 α = 0.5 α = 0.9

400

1

SW 78.8 91.4 92.8 79.5 91.5 93.6
( 3 ) ( 1.4 ) ( 0.4 ) ( 3.3 ) ( 1.5 ) ( 0.5 )

MSW 69.8 86.2 89.9 65 84.3 88
( 2.1 ) ( 0.9 ) ( 0.3 ) ( 1.9 ) ( 0.9 ) ( 0.3 )

2

SW 88.3 95.7 92.5 84.7 95.1 93.9
( 5.6 ) ( 1.1 ) ( 0.7 ) ( 5.5 ) ( 1 ) ( 0.6 )

MSW 80.5 92.2 87.7 74.8 89.7 86.1
( 3.9 ) ( 0.7 ) ( 0.4 ) ( 3.4 ) ( 0.6 ) ( 0.3 )

3

SW 91.5 96.2 91.7 89.3 95.1 91.7
( 8.8 ) ( 1.1 ) ( 0.8 ) ( 8.4 ) ( 1.1 ) ( 0.8 )

MSW 88.9 92 83.5 82.5 88.3 81.3
( 6 ) ( 0.7 ) ( 0.5 ) ( 5.1 ) ( 0.6 ) ( 0.5 )

1000

1

SW 86 94.8 96 85.1 94.3 95
( 4.1 ) ( 1.5 ) ( 0.4 ) ( 3.8 ) ( 1.5 ) ( 0.4 )

MSW 74.1 88.2 90.8 69.8 86.6 88.5
( 2.2 ) ( 0.8 ) ( 0.2 ) ( 1.9 ) ( 0.7 ) ( 0.2 )

2

SW 90.8 97.2 97.3 88.2 96.1 96.6
( 7.1 ) ( 0.9 ) ( 0.5 ) ( 6.2 ) ( 0.8 ) ( 0.4 )

MSW 79.4 93.9 92.2 72.5 91.5 90.1
( 3.7 ) ( 0.5 ) ( 0.3 ) ( 3.1 ) ( 0.4 ) ( 0.2 )

3

SW 94.7 97.5 96.1 92.4 96.7 94.9
( 10 ) ( 0.9 ) ( 0.7 ) ( 8.8 ) ( 0.8 ) ( 0.6 )

MSW 89.7 93.8 88.3 84 89.6 84.6
( 5 ) ( 0.5 ) ( 0.3 ) ( 4.2 ) ( 0.4 ) ( 0.3 )
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Table 1.2: Empirical coverage probabilities for transformed Gaussian processes using the subsampling win-
dow (SW) method with θ = 0.8 and the modified subsampling window (MSW) method. Sample sizes
n = 400, 1000, long range dependence parameters α = 0.1, 0.5, 0.9, block sizes b = Cn1/2 with C = 3, 6.
Entry in the parenthesis () represents the average length of the intervals. The results are based on M = 1000
replications. The nominal coverage is 90%.

b = 3n1/2 b = 6n1/2

n q method α = 0.1 α = 0.5 α = 0.9 α = 0.1 α = 0.5 α = 0.9

400

1

SW 68 84.3 87.6 54.6 71 78.8
( 2.5 ) ( 1.3 ) ( 0.4 ) ( 1.8 ) ( 1 ) ( 0.3 )

MSW 56.5 75.6 83.6 45.4 66.1 74.2
( 1.6 ) ( 0.8 ) ( 0.3 ) ( 1.1 ) ( 0.6 ) ( 0.2 )

2

SW 72.1 88.3 86.5 59.6 76.1 77
( 4 ) ( 0.8 ) ( 0.4 ) ( 2.6 ) ( 0.6 ) ( 0.4 )

MSW 63.2 81.7 79.7 51 69.7 70.9
( 2.6 ) ( 0.5 ) ( 0.3 ) ( 1.8 ) ( 0.4 ) ( 0.2 )

3

SW 78.4 89.8 83.5 66.7 77.7 73.7
( 5.9 ) ( 0.9 ) ( 0.7 ) ( 3.9 ) ( 0.7 ) ( 0.6 )

MSW 70.6 82.1 74.7 66.7 71.9 67
( 3.8 ) ( 0.6 ) ( 0.5 ) ( 3.9 ) ( 0.5 ) ( 0.4 )

1000

1

SW 71 88 89.5 59.6 80.5 82.8
( 2.6 ) ( 1.1 ) ( 0.3 ) ( 2 ) ( 0.9 ) ( 0.2 )

MSW 59.4 79.6 85.8 50.5 73.3 78.4
( 1.6 ) ( 0.7 ) ( 0.2 ) ( 1.3 ) ( 0.6 ) ( 0.2 )

2

SW 77.6 91.3 91.9 64.6 85.3 84.6
( 4.2 ) ( 0.5 ) ( 0.3 ) ( 2.9 ) ( 0.4 ) ( 0.2 )

MSW 64.8 87.1 87.4 56.3 81.7 81.1
( 2.5 ) ( 0.3 ) ( 0.2 ) ( 1.9 ) ( 0.3 ) ( 0.2 )

3

SW 82.3 91.5 87.9 72.9 85.1 81.8
( 5.9 ) ( 0.6 ) ( 0.5 ) ( 4 ) ( 0.5 ) ( 0.4 )

MSW 74.6 83.8 81.1 66.8 79.1 77
( 3.4 ) ( 0.4 ) ( 0.3 ) ( 2.6 ) ( 0.3 ) ( 0.3 )
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Table 1.6: Empirical coverage probabilities, average interval widths for transformed Gaussian processes using the
subsampling window (SW) method with θ = 0.8 and the modified subsampling window (MSW) method, with sample
sizes n = 400, 1000, long range dependence parameters α = 0.1, 0.5, 0.9. Data driven optimal bandwidth selection
with g = 0.75 is employed. Entry in the parenthesis () represents the average length of the intervals. Entries in the
square bracket [, ] list the average mean optimal block size and average median optimal block size, respectively. The
results are based on M = 1000 replications. The nominal coverage is 90%.

n = 400 n = 1000

n transform method α = 0.1 α = 0.5 α = 0.9 α = 0.1 α = 0.5 α = 0.9

1

MSW
72.1 88.3 91 75.9 89.3 91.2
(2.3 ) (1.0 ) ( 0.3 ) ( 2.2 ) ( 0.8 ) ( 0.2)
[6.8,6] [7.0,6] [8.0,6] [7.3, 6] [7.5,6] [9.3,6]

SW
83.7 93.9 96.5 85.5 94.5 95.7
(3.8 ) ( 1.8) ( 0.6 ) (3.9 ) ( 1.4 ) ( 0.4)
[8.9,4] [8.6,6] [8.4,6] [16.3,14] [16.2,14] [15.8,14]

2

MSW
82.8 91.8 86.6 83.7 94.1 89.7
(4.6 ) ( 0.8 ) ( 0.5 ) ( 4.2 ) ( 0.5 ) ( 0.3)
[7.3,6] [9.4,6] [11.2,8] [8.2,6] [13.9,11] [17.8,14]

SW
94 97.5 96.4 89.1 96.9 96

(8.4 ) ( 2.4 ) ( 1.4 ) ( 6.8 ) ( 1.1 ) ( 0.6)
[7.0,4] [8.3,6] [9.9,6] [16.7,14] [17.3,18] [18.4,18]

3

MSW
92.4 93.8 86.5 92.5 93.4 90.5
(7.0 ) ( 0.8 ) ( 0.5 ) ( 5.8 ) ( 0.5 ) ( 0.3 )
[7,6] [8.4,6] [8.9,8] [8.1,6] [9.9,6] [10.2,8]

SW
95.5 97.9 96.1 94.7 96.9 97

(13.6) ( 1.9 ) ( 1.3 ) ( 9.9 ) ( 0.9 ) ( 0.7 )
[6.7,4] [8.2,6] [9.9,6] [16.3,14] [16.2,14] [15.8,14]

Table 1.7: Empirical coverage probabilities and average interval widths for linear processes using the subsampling
window (SW) method with θ = 0.8 and the modified subsampling window (MSW) method, with a standard normal
innovation, filters: ϕ = 0.7,ϑ = −0.3 (Filter1);ϕ = −0.7,ϑ = 0.3 (Filter2);ϕ = ϑ = 0 (Filter3); with sample sizes
n = 400, 1000, long range dependence parameters α = 0.1, 0.5, 0.9. Data driven optimal bandwidth selection with
g = 0.75 is employed. Entry in the parenthesis () represents the average length of the intervals. Entries in the square
bracket [, ] list the average mean optimal block size and average median optimal block size, respectively. The results
are based on M = 1000 replications. The nominal coverage is 90%.

n = 400 n = 1000

n Filter method α = 0.1 α = 0.5 α = 0.9 α = 0.1 α = 0.5 α = 0.9

1

MSW
96.1 96.9 98.8 96.3 97.2 98.8

( 16.5 ) ( 4.2 ) ( 1.2 ) ( 16.3 ) ( 3.4 ) ( 0.8 )
[6.8,6] [6.5,6] [6.5,6] [7.6,6] [6.7,6] [7,6]

SW
97.3 98.1 99.2 95.9 97 98.1

( 27.6 ) ( 7.5 ) ( 2.5 ) ( 22.7 ) ( 5.1 ) ( 1.4 )
[5.6,4] [7.3,4] [7.6,4] [17.6,18] [17.6,18] [16.8,18]

2

MSW
79.4 81.3 83.8 83 81.3 85.8

( 2.4 ) ( 0.6 ) ( 0.2 ) ( 2.5 ) ( 0.5 ) ( 0.1 )
[7.3,6] [7.8,6] [9,8] [9.8,6] [9.1,6] [10.1,8]

SW
90.3 91.5 91.8 91.9 94.2 94

( 5.7 ) ( 1.3 ) ( 0.3 ) ( 5 ) ( 1.1 ) ( 0.3 )
[10.1,6] [8.3,6] [8.6,6] [15.3,14] [14.1,14] [15.2,14]

3

MSW
84.4 87 89.4 97.2 88.2 90.1

( 3.8 ) ( 1 ) ( 0.3 ) ( 3.4 ) ( 0.8 ) ( 0.2 )
[6.7,6] [7,6] [7.9,6] [6.9,6] [7.4,6] [9.2,6]

SW
91.2 93.4 95.1 97 95.7 96.8

( 6.8 ) ( 1.9 ) ( 0.6 ) ( 5.1 ) ( 1.4 ) ( 0.4 )
[10.7,6] [9.9,6] [8.1,6] [15.5,14] [15.6,14] [15.7,14]
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(c)
Linear process with χ2 innovation
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(b)
Linear process with Gaussian innovation
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(d)
Linear process with t3 innovation
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Figure 1.1: Coverage probabilities and average widths of the confidence intervals at the 90% nominal level.
Sample size = 400, θ = 0.8, block sizes vary from 3 to 40 and Hurst parameter=0.75. For linear processes,
the filters are (0.7,-0.3). The results are based on M = 3000 replications. (a) Gaussian process with Hermite
rank =1. (b) Linear process with Gaussian innovation. (c) Linear process with χ2

1−1 innovation. (d) Linear
process with t3 innovation.
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Chapter 2

Clustering Analysis of Data Arising
from Psychometric Latent Variable
Models

2.1 Introduction

2.1.1 Latent Variable Models

We consider several models that are used in educational measurement, and how hierarchical agglomerative

cluster analysis (HACA) and minimum diameter partitioning (MDP) behave when applied to data arising

from these models. In particular, our analysis focuses on models from item response theory (IRT), linear

factor analysis (LFA), and structured latent class models for cognitive diagnosis (CDM). When these models

are used in educational testing, one typically assumes to know which underlying psychological constructs

are responsible for the dependence in the data, and latent variables are used to represent them. Though

HACA is a widely used technique in exploratory psychometric problems, it is typically not used in the

measurement or classification phase of a testing endeavor. Latent variable models and HACA are seen as

distinct approaches, and little has been done to explore their relationship. Our aim is to determine when

HACA and MDP can provide consistent groupings of the subject variables in latent variable models, and

see how much information about the underlying structure the distance measure must be supplied in order

to expect useful partitions.

In general, suppose that responses to J variables are obtained on N subjects, and let Ynj be the response

of the nth subject on the jth variable. Latent variable models most often assume conditional independence

of the J responses, given the vector-valued or scalar-valued latent variable θn. Responses of distinct subjects

are assumed to be statistically independent. The conditional probability density function for the nth case

is given by

f(yn | θn;β) =

J∏
j=1

fj(ynj | θn;βj),

where fj is the density function for the jth variable, and depends on θn and item-specific parameter βj .

The value of a latent variable model is to reduce the complexity of the J-dimensional random vector Y by

explaining all of the dependence in its components by a latent variable θ that has a much smaller dimension.
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The marginal distribution is obtained by integrating over the distribution of θ,

f(yn | β) =

∫
f(yn | θn;β)dG(θ),

where the distribution of θ may be either Lebesgue-dominated or dominated by counting measure. The par-

ticular latent variable models we study are reviewed chapter-by-chapter, along with theory and simulations

for each case.

2.1.2 Hierarchical Agglomerative Cluster Analysis and Minimum Distance

Partitioning

Hierarchical agglomerative clustering is a fast and popular method for arranging objects into homogeneous

groups. HACA begins by defining a matrix of distances for all pairs of distinct observations, say dnn′ =√∑J
j=1(ynj − yn′j)2, in the case of Euclidean distance. Each object begins as its own cluster. A hierarchy

of clusters is then formed by sequentially combining the two clusters at each stage that have the minimum

distance between them. How one defines the distance between two clusters is what distinguishes different

methods of HACA. In this research our aim is to investigate the tightness of clusters, and we use complete

linkage HACA, which strives for compact clusters. Consider clusters Cm and Cm′ , where m 6= m′. Complete

linkage defines the distance between cluster Cm and Cm′ , d
∗
mm′ , as the maximum distance between two

points, one taken from cluster Cm and the other from Cm′ ,

d∗mm′ = max
n∈Cm,n′∈Cm′

dnn′ .

This definition of inter-cluster distance implies that every data point in the combined cluster would not be

farther than d∗mm′ away from every other data point in the cluster. Complete linkage clustering tends to

produce clusters for which the largest diameter of all clusters remains as small as possible, when proceeding

in such a sequential hierarchical manner. Complete linkage HACA provides a simple clustering approach

that strives to keep all clusters compact, and tends to keep the diameter of the largest cluster in check as

it proceeds to combine all of the initial N clusters into a single cluster. To arrive at a useful solution, one

must decide where to end the process and cut the tree-like hierarchical structure of clusters and take the M

clusters that exist at that stage.

Minimum diameter partitioning is a more direct way of controlling the maximum diameter across all

clusters. Suppose we intend to partition the N objects into M clusters, and let πM = {C1, C2, ..., CM} be a

feasible partition. A feasible partition must include clusters that are nonempty, disjoint, and whose union
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includes all N objects. Let ΠM denote the set of all feasible partitions. Define the diameter of the mth

cluster by dm = maxn∈Cmn′∈Cm dnn′ . The largest of them will be denoted by dmax = max1≤m≤M dm. Let

π∗M ∈ ΠM be a minimum diameter partition, a feasible partition for which dmax = d∗max is minimized over

all feasible partitions.

There are close relationships between MDP and complete link HACA. The complete link HACA solution

combines clusters to result in the minimum increase in the maximum diameter at each step. However, it

does not necessarily reach a global optimum (Brusco and Stahl, 2005). Hansen and Delattre (1978), show

that the complete link HACA solution can be quite far from an MDP. However, complete link HACA groups

objects in the same spirit, and is quite easy to conduct, whereas solving for the MDP is an exponential

computing problem. In our analysis, theory for the MDP is derived, and is derived for complete link HACA

in some cases, though HACA is used for all simulations.

2.1.3 Cluster Analysis and Latent Variable Models

The quality of a partition of the subjects, when a latent variable model underlies their responses, is deter-

mined by how similar the values of θ are within clusters. When θ takes real values many clusters might

be needed to achieve within-cluster homogeneity. In the case of latent class models, when θ can take only

finitely many values, there is a correct number of clusters that corresponds to the number of values θ can

take with positive probability. In either case, distance measures on the parameter space of θ can be defined

that correspond to the distance measures in the space of the data, that were used in the formation of the

clusters. Suppose that θ is a K-dimensional vector, and define the distance between the latent trait values

of the nth and n′th subjects by,

ωnn′ =

√√√√ K∑
k=1

(θnk − θn′k)2, (2.1)

which corresponds to dnn′ . Similarly, the distance between two clusters in the latent variable space is ω∗mm′ =

maxn∈Cm,n′∈Cm′ ωnn′ , which corresponds to d∗mm′ . Also, for any partition we let ωm = maxn∈Cmn′∈Cm ωnn′ ,

be the diameter of the mth cluster, and ωmax be the maximum of these. Denote ωmax by ω∗max for a partition

which is a MDP. Note that the MDP is determined on the distance measures formed from the data Y rather

than the latent variables θ. Nevertheless, for any partition formed from applying HACA or MDP to the

data, we can consider the tightness of the clusters measured by distances between θ values for the subjects

in the clusters.

The theory and simulations of the following sections concern the tightness of clusters in the space of θ.

When cluster analysis is applied to data that can be effectively modeled with latent variables, one must
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consider what the clusters are saying about the homogeneity of the latent traits of subjects within the same

cluster. The ability of a clustering procedure to achieve tight groups may depend very critically on how one

forms the distance measure dnn′ . There may be cases when Euclidean measure between the item response

vectors yn and yn′ may be effective and cases when it leads to poor results. We consider alternative versions

of dnn′ that are found by taking Euclidean distance between summaries of the data that use some, but not

complete, knowledge of the underlying model. For example, in the next section in which unidimensional

item response models are analyzed, we study the behavior of clusters obtained by forming dnn′ from the

difference in proportion correct values on the J items. This recognizes the unidimensionality of the latent

trait to arrive at an efficient summary score, but does not use any further information about the underlying

model. In all the models we consider, comparisons between simple Euclidean distance and distance measures

that utilize partial knowledge of the latent variable model are compared.

2.2 Cluster Analysis and Item Response Models

Educational tests are often divided into subtests for which a linear ordering of abilities is desired. In such

cases, latent variable models in which θ is scalar-valued are useful, and are appropriate if the dependence in

the item responses can be explained by conditioning on a single latent trait. In particular, in the common

case in which items are scores as right or wrong (Ynj ∈ {0, 1}), IRT has become the dominant methodology.

In item response models, the likelihood of a subject’s vector of scores can be written as

P [yn | θn] =

J∏
j=1

Pj(θn)ynj (1− Pj(θn))1−ynj ,

where Pj is a function called the item characteristic curve that assigns the probability of a correct response

to the jth item as a function of the latent ability θ. In the most general models, Pj is only assumed to

be a monotone increasing function with a range in some subinterval of (0,1). A popular special case is

the two-parameter logistic model in which Pj(θ) = 1/[1 + exp(−β1j(θ − β0j))]. Parameter β1j is the log

odds-ratio for the latent covariate θ, and β0j is a difficulty parameter that indicates the value of θ at which

the item is most informative.

2.2.1 Consistency Results

When clustering data that arise from a unidimensional item response model, one would expect distances

between total scores or proportion correct scores to work well. When a unidimensional IRT models holds,

the sum-score Sn =
∑J
j=1 Ynj has a strictly increasing expected value as a function of θn, provided all of the
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item characteristic curves are strictly increasing. In the important special case of the Rasch model (Rasch,

1960), Sn is a sufficient statistic for θn, but can be quite useful even when the Rasch model, which is much

like the two-parameter logistic model described above but with a constant discrimination parameter, does

not hold. When a unidimensional IRT model is suspected, the distance between proportion correct scores is

dUn,n′ =
1

J
| Sn − Sn′ |=

1

J
|
J∑
j=1

(Ynj − Yn′j)|. (2.2)

It will be shown that the unidimensional distance measure in (2.2) yields a consistent clustering result, for

a particular definition of consistent clustering given below. This distance measure is studied and compared

with Euclidean distance between item response vectors Y n and Y n′ , for the purpose of clustering. Whether

performing HACA with complete linkage, or studying the consistency results of MDP, Euclidean distance

with binary data yields equivalent results to Hamming Distance. The Hamming distance, scaled by the

reciprocal of test length, between the response vectors of two subjects can be expressed as

dHn,n′ =
1

J

J∑
j=1

|Ynj − Yn′j |. (2.3)

Later we will show that clustering IRT data with Hamming distance is not likely to give consistent results.

In order to define consistent clustering with data arising from continuous latent variable models, we need

to recall how the diameter of a cluster is defined in the space of θ. In the previous section, we defined the

diameter of cluster Cm by ωm = maxn∈Cmn′∈Cm ωnn′ , where ωnn′ is defined in (2.1). In the unidimensional

case ωnn′ reduces to |θn − θn′ |. The maximum of these across all M clusters is ωmax, with value ω∗max

corresponding to an MDP solution.

Given this, we can consider how diameters shrink as N , J , and M all increase, to arrive at a definition of

consistent clustering. Note that for continuous latent variables, the number of clusters M should approach

infinity as N does, otherwise these diameters can never approach 0 with probability 1, under any possible

method. To avoid trivial solutions, we require that the ratio of subjects to clusters, N/M , must also go to

infinity. Thus consistent clustering means that ωmax has 0 as its limit, even though the clusters are growing

in membership. Implicit in this definition is that we have a sequence of datasets that are increasing in N

and J as we add subjects and items, and we think of M growing as a function of N and J .

Definition 2.2.1 (Consistent clustering ). Let N , J , and M be the number of subjects, items and clusters,

respectively. Suppose πM is a sequence of feasible partitions indexed by M , which is a function of J and N .

If ωmax → 0 in probability when N → ∞, J → ∞, M → ∞, and N
M → ∞, then we call πM a consistent
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sequence of partitions.

Next we state a theorem and conditions for consistent sequences of partitions under MDP.

Theorem 2.2.1. Assume that responses arise from a unidimensional IRT model in which responses are

conditionally independent given θ. Suppose that N, J,M →∞, J
M →∞, N

M →∞ and N2 exp
[
− J
Mα

]
→ 0,

for some α ∈ (0, 1). Further assume that the support of θ is bounded, and that the slopes of all item

characteristic curves are uniformly bounded above 0 in a compact set that contains the support of θ. Then

when using distance measure dU , any sequence of MDP solutions results in consistent clustering.

The proof is given in the appendix. The assumption that θ has a bounded support is used to avoid tedious

work with the tails where observations become sparse. However, it is common in IRT to assume θ has a

standard normal distribution, and we could imagine truncating it at 10,000 or more, beyond which we would

never observe a value with any likelihood in our finitely populated world. The assumption of a uniform lower

bound on the slopes of item characteristic curves makes sense over a distribution with a support contained

in a closed and bounded interval of real numbers. For example, it would follow in a two-parameter logistic

model when slope parameters are bounded above 0 and difficulty paramors can be contained in a bounded

interval. Concerning rates N, J and M, many possibilities exist. For example, we could let J = log(N)3 and

M = log(N). Then we’d have convergence at a rate of at least 1/M0.5, corresponding to α = 1/2.

The theory has shown that recognizing the unidimensionality underlying the data can lead to consistent

clustering. Ignoring this and using Hamming distance, or equivalently Euclidean distance, breaks down

when data arise from the unidimensional IRT model. To demonstrate this, it suffices to show that for some

θn, θn′ and θn∗,

E[dHnn′ | θn = θn′ ] > E[dHnn∗ | θn 6= θn∗],

where E[dHn,n′ ] =
∑J
j=1 Pj(θn)[1− Pj(θn′)] +

∑J
j=1 Pj(θn′)[1− Pj(θn)]. Assume that for all j, Pj(θn) =

Pj(θn′) = 0.9 and Pj(θn∗) = 1. So

E[dHn,n′ | θn = θn′ ] = 0.18,

and

E[dHn,n∗ | θn = θn∗] = 0.1.

This means that for Hamming distance, there can be a tendency to cluster data with differing θ’s more than

with similar θ’s, which leads to inconsistent clustering.
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2.2.2 Simulation

The simulation design for the performance of complete linkage cluster analysis utilized 100 independent

replications in a design that varied test length and the number of clusters. For all simulations we set the

sample size at N = 1000, and studied test lengths of J = 20and100 and grouped into M = 10, 40, and 80

clusters. The latent variable θ was drawn from a standard normal distribution, and items parameters of a

two-parameter logistic model were drawn from distributions, β0 ∼ N(0, 1) and β1 ∼ U [1, 2.5].

Results on the distributions of cluster diameters are given in Table 3.1, and Table 3.2 summarizes the root-

mean square distance between θ values within the same cluster. By taking advantage of the unidimensionality

of the model through forming the sum-scores Sn, we see that cluster diameters are uniformly much smaller

than when this information is ignored and Euclidean distance is used. The same is true for root mean

square distance of points within a common cluster as seen in Table 3.2. This indicates that knowledge of the

underlying dimensionality, even without knowing specific item parameters, can be quite useful to incorporate

when forming tight clusters. Note that improvements are generally seen when increasing the test length from

20 to 100, though increasing the number of clusters from 40 to 80 did not have a substantial impact.

2.3 Cluster Analysis and Latent Class Models

Cognitive diagnosis models (CDMs) are latent class models with constraints that represent a theory for how

exam items are answered. They utilize assumptions made by experts concerning the attributes or skills that

are required for each item and how these are combined to generate responses. The appeal of CDMs is that

they promise to pinpoint the precise skills or abilities a subject has or has not mastered, which cannot be

achieved by a single score. The relationship between the latent skills or attributes to the probability of a

correct response is often dictated by whether the skills or attributes operate in a compensatory, disjunctive,

or conjunctive fashion.

Specialized latent class models for cognitive diagnosis are derived under assumptions on which attributes

are needed for which items, and how the attributes are utilized to construct a response. Let θ be a K-

dimensional vector for which the kth entry θk, indicates whether or not a subject possesses the kth attribute

or skill, for k = 1, 2, · · · ,K. An attribute might refer to a clearly defined skill in some applications, or a more

abstract psychological construct in another. All CDMs that we consider require a J ×K matrix Q, referred

to as a Q-matrix (Tatsuoka, 1985), with (j, k) entry qjk denoting whether or not the jth item requires the

kth attribute. The vector θ can take 2K distinct values. These values index the 2K latent classes in such

models.
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An example of a conjunctive model is the DINA (Deterministic Input, Noisy Output “AND” gate) model

(Junker and Sijtsma, 2001). The DINA model extends the work of Macready and Dayton (1977), which

considers a two-class version of it for assessing mastery of a skill. The item response function of the DINA

model is,

P (Ynj = 1|θn) = β
(1−ηnj)
0j (1− β1j)ηnj , (2.4)

where β0j = P (Ynj = 1|ηnj = 0), β1j = P (Yij = 0|ηnj = 1), and ηnj is the ideal response which connects

the attribute pattern possessed by a subject and the elements of Q in the following way,

ηnj =

K∏
k=1

θ
qjk
nk . (2.5)

The variable ηnj indicates whether the subject possesses all the attributes needed for answering the particular

item. Parameters β0j and β1j allow for stochastic deviations from the ideal responses, but should be

somewhat close to 0. Otherwise, the validity of the conjunctive assumption would be drawn into question.

The DINA model is characterized by its strong conjunctive feature that the probability of answering an

item correctly will severely drop if any required attribute is missing. Estimation can be done with the EM

algorithm (Haertel, 1989), or by use of Markov chain Monte Carlo (de la Torre and Douglas, 2004; Tatsuoka,

2002).

The NIDA (Noisy Input, Deterministic Output ”And” gate) model, introduced in Maris (1999), and

named in Junker and Sijtsma (2001), considers item responses as arising from a sequence of subtasks, and

departures from ideal response patterns happen if a single misstep is taken along the path of solving a

problem. Let ηnjk indicate whether the nth subject correctly applied the kth attribute in completing the

jth item. This leads to the parameters β0k = P (ηnjk = 1 | θnk = 0, qjk = 1), and β1k = P (ηnjk = 0 | θnk =

1, qjk = 1). An item response Ynj is 1 if all ηnjk’s are equal to 1. By assuming the ηnjk’s are independent

conditional on θn, the item response function is

P (Ynj = 1 | θn) =

K∏
k=1

P (ηnjk = 1 | θnk) =

K∏
k=1

[
β
(1−θnk)qjk
0k (1− β1k)θnkqjk

]
.

The NIDA model is quite restrictive because parameters at the subtask level are constant across all of the

items. A generalization of this that loosens that restriction is a reduced version of the Reparameterized

Unified Model (Hartz et al., 2005).

Whereas conjunctive models require the intersection of a set of attributes or successful implementations

of these attributes, disjunctive models essentially replace “and” with “or”. As an example, Templin and
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Henson (2006), introduced the DINO (Deterministic Input, Noisy Output “Or” gate) model. The item

response function of the DINO model is expressed as

P (Ynj = 1|θn) = β
(1−ηnj)
0j (1− β1j)ηnj ,

where ηnj = 1−
∏K
k=1(1− θnk)qjk and indicates whether at least one of the attributes corresponding to the

item is possessed.

All of the models discussed above and many more can be represented in a log-linear model framework

developed by Henson et al. (2009). Our analysis considers whether simple distance measures on the data can

be used to obtain clusters that correspond to the 2K values that θ can take in these models, or if specialized

distance measures that require more knowledge of the underlying structure are needed. In particular, we are

interested in comparing clustering results obtained from Euclidean distance between yn and yn′ and cluster

solutions based on a summary score vector that assumes knowledge of the Q-matrix.

Let W n = (Wn1,Wn2, ...,WnK)′ be a vector of summed scores for items that measure each of the

K attributes. The kth component is Wnk =
∑J
j=1 Ynjqjk. Because each item may require more than one

attribute, an item may contribute to more than one component of W n. An alternative to Euclidean distance

is to first summarize the data into these summed scores, and then compute dnn′ as the Euclidean distance

between W n and W n′ . This is similar to the summed-score approach in the previous section on IRT, but

uses K different summed scores, one for each attribute. Chiu et al. (2009), studied the properties of HACA

with distances obtained from W , and the theoretical results of that work are summarized below, along

with results indicating that consistent clustering cannot be obtained from Euclidean distance. However,

simulation results show little difference.

2.3.1 Consistency Results

CDMs are restricted latent class models, and consistency results for clustering must utilize the same number

of clusters as there are distinct latent classes, which is 2K for the models we consider. In order to use

data to distinguish between latent classes, some conditions on the Q-matrix must be satisfied. Call η(θ) =

(η1, η2, · · · , ηJ)′ an ideal vector for the J items where ηj =
∏K
k=1 θ

qjk
k , and let ek be a K × 1 vector with the

kth entry being 1 and all other entries 0. A matrix Q is complete if it can identify all possible attribute

patterns; that is, η(θ) = η(θ∗) implies θ = θ∗.

Completeness refers to the ability of an exam to determine attribute patterns from one another, in a

purely algebraic sense. Next we consider two lemmas that are needed for the main consistency theorem to

follow. The first concerns necessary and sufficient conditions for Q be complete. Completeness is generally
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needed for the identifiability of a model, which must be satisfied for correct classification. The first lemma

implies that an exam must include some items that measure each attribute alone, among its many items, if

identifiability of attribute patterns is to be achieved. Proofs of the lemmas and theorem are in Chiu et al.

(2009).

Lemma 2.3.1. A J ×K matrix Q is complete if and only if it includes rows e1, e2, · · · , eK , among its J

rows.

A complete Q-matrix is required for the expected value of the sum-score vector W to distinguish between

attribute patterns. Let T (θ) = E[W | θ]. Then we see by the next lemma that a complete Q-matrix is all

that is required for T (θ) to discriminate between latent classes in the DINA model.

Lemma 2.3.2. Assume that all item responses are generated according to the DINA model and 0 ≤ β0j <

1− β1j ≤ 1 for j = 1, 2, ..., J . Also, assume that Q is complete. For attribute patterns θ and θ∗, if θ 6= θ∗,

then T(θ) 6= T(θ∗).

The following lemma is the basis for the proof of the consistency theorem, and essentially says that

consistent clustering will take place if the data from a mixture model are replaced with their expected

values. This means that observed distances are near their expected values, which is what takes place when

the number of items J becomes large.

Lemma 2.3.3. Let V be a random vector in K-dimensional space, with a mixture probability density function

f(v) =
∑M
m=1 fm(v)ζm, where ζm denotes the population proportion for the mth latent class, and fm is a

probability density function in K-dimensional Euclidean space with expected value µm. Assume that for some

positive number δ, minm 6=m′ ‖µm − µm′‖ > δ. Consider data v1,v2, · · · ,vN , and let v
(m)
n denote that the

nth observation arose from the mth component of the mixture density f . There exists a small enough ε > 0

such that if maxi=1,2,··· ,N ‖v(m)
i − µm‖ < ε for all i = 1, · · · , N , then the hierarchical agglomerative cluster

analysis solution with complete linkage will place objects in clusters corresponding exactly with their latent

class membership when the algorithm is cut at M clusters.

The proof of the following theorem essentially amounts to showing that if J is sufficiently large, then

W n/J will be sufficiently close to its expected value for all n so the the result of the previous lemma will

directly apply. Note that clustering based on W and W /J yield identical results when doing either HACA

with complete link or MDP. Before stating the theorem, we define an exact cluster solution for data arising

from a mixture model as one for which clusters correspond precisely with the components of the mixture.

Theorem 2.3.1. Assume that responses arise from a cognitive diagnosis model in which responses are

conditionally independent given a K-dimensional vector with binary components θ, and each of the 2K values
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of θ are sampled with a probability greater than 0. Also, define E[W /J |θ(m)] = µm for m = 1, 2, · · · , 2K ,

and assume that for some positive number δ, minm 6=m′ ‖µm−µm′‖ > δ. Provided Ne−J → 0 as J →∞, the

hierarchical agglomerative cluster analysis solution with complete linkage using Euclidean distances between

W /J as input will be exact with probability converging to 1. Further, if Ne−J is summable, the solution is

inexact only finitely often with probability 1.

Chiu et al. (2009), showed that this theorem holds for the DINA model. Though the focus was on HACA,

the theorem also holds when HACA is replaced by MDP. In fact, it is more directly proven in that case.

Though W leads to a consistent theory for the DINA model, it may not be a good statistic on which to base

clusters when data arise from the NIDA model, for example. Other statistics need to be explored. Even in

the case of the DINA model, in which the theory for consistent clustering has been developed, W appears

to produce no better clusters than Euclidean distance between Y vectors, which amounts to the square

root of Hamming Distance. This is somewhat surprising because W uses information in the Q-matrix, and

Euclidean distances between response vectors make no use of the underlying model structure.

Despite its strong performance in simulations to be displayed below, it can be shown that a theory

for consistency using Hamming distance is unlikely to be proven, because it lacks a fundamental property

required for consistent clustering. It is critical that E[dnn′ ] is minimized when θn = θn′ , but this is not

always the case under the DINA model. To show that clustering with Hamming distance breaks down when

data arise from the DINA model, consider the following example. To prove that Hamming distance leads to

inconsistent clustering, we must show that for some θn, θn′ , and θn∗ ,

E[dHnn′ |θn = θn′ ] > E[dHnn∗ |θn 6= θn∗ ],

where d refers to either Euclidean distance or Hamming distance, which give identical results. Assume

that the number of attributes is K = 2, so we have 4 latent classes corresponding to the attribute patters,

θ1 = (0, 0), θ2 = (1, 0), θ3 = (0, 1), θ4 = (1, 1). Let the Q matrix include all possible entries in equal
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proportions, that require at least one attribute,

Q =



1 0

0 1

1 1

1 0

0 1

1 1

...



.

Let θn = θn′ = (0, 1) and θn∗ = (0, 0). Also assume that β0j = β0 and β1j = β1, for 1 ≤ j ≤ J . Then

E[dHn,n′ ] =
4

3
β0(1− β0) +

2

3
β1(1− β1). (2.6)

E[dHn,n∗ ] =
4

3
β0(1− β0) +

1

3
β1β0 +

1

3
(1− β1)(1− β0). (2.7)

When β1 > 0.5 and 1−β1 > β0, (2.6) > (2.7). This means there would be a tendency to cluster data arising

from different latent classes, rather than clustering subjects that have identical attribute patterns. Though

this example suggests that Hamming distance may not lead to consistent clustering for some cognitive

diagnosis models, it happens to perform well in simulation with realistic parameter values.

2.3.2 Simulations

In all simulations, the number of attributes was K = 3, and the 8 possible attribute patterns were drawn with

equal probability. Test lengths were J = 20 and J = 100. The Q matrix when J = 100 was 5 replications
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of Q for J = 20, which was,

Q =



1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

1 0 0

0 1 0

0 0 1

1 1 0

1 0 0

0 1 1

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

1 1 1

1 1 1



. (2.8)

The item responses were generated generated from the DINA model in (2.4) with β0 parameters drawn from a

uniform distribution U [0, 0.3], and β1 parameters drawn from a uniform distribution U [0, 0.15]. Hierarchical

clustering with complete linkage was performed using both W and the raw data as summaries. In the tables

these are referred to as Q-matrix and Euclidean distance, respectively. The number of clusters was fixed to

be 8.

Results on the distributions of cluster diameters are given in Table 3.3, and Table 3.4 summarizes the

root-mean square distance between θ values within the same cluster. We see that when test length is small,

i.e., when J = 20, there are mixed results. The analysis of cluster diameters summarized in Table 3.3 appears

to slightly favor distances based on W , though root mean squared distances within all pairs within clusters

slightly favors Euclidean distance. However, when the test length is 100, Euclidean distance, or equivalently

Hamming distance, appears to result in tighter clusters. These results indicate that while no consistency
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theorem for Euclidean distance is likely to be proven, it may be more practical in many situations. Also,

it is quite possible that there are more efficient ways to summarize the data than with W , which surely

depend on what the underlying cognitive diagnosis model is. Further research could yield distance measures

that outperform Euclidean distance, which does not take into account any knowledge of the model.

2.4 Cluster Analysis and the Linear Factor Analysis Model

The large set of statistical methods which encompass factor analysis, are among the most frequently used

techniques in psychometrics. The level of a psychological construct may be thought of as a latent variable

over the population that is being sampled. In factor analysis these latent variables are usually called factors,

because they are used in factor analysis models as the key elements in explaining the relationships among

a set of observable variables. In an influential paper by Spearman (1904), factor analysis was first used to

model children’s examination scores in an effort to explore a theory that there might be one general ability

that accounts for performance on several exams of different academic subjects.

Spearman’s model easily generalizes to the linear factor analysis model with K factors. In this model we

can express Ynj by

Ynj = βj1θn1 + βj2θn2 + · · ·βjKθnk + enj = β′jθn + enj . (2.9)

By forming the matrix of factor loadings β with βj in its jth row, the entire random vector of responses is

Y n = βθn + en.

In the orthogonal linear factor model, it is assumed that the covariance of θ is the K ×K identity matrix,

and θ is uncorrelated with e. The residual vector e is usually assumed to have a diagonal covariance matrix

Ψ, with diagonal entries that represent the proportion of the variation of each variable not explained by the

K factors. This results in the covariance matrix,

var(Y ) = ββ′ + Ψ.

Equivalent models can be represented by taking orthogonal or oblique rotations of θ, which result in the

same covariance matrix for Y , but different factor loadings and possibly intercorrelated components of the

factor θ.

In this section, we study the behavior of cluster analysis when applied to data arising from the linear

factor analysis model. Three different distance measures are compared. The first is simply the Euclidean
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distance between Y n and Y n′ . The second is to replace Y with its first K principal components, and

form distances based on Euclidean distances between these K components. This utilizes some knowledge

of the underlying model, including the number of factors K. Also, if the error variance is small, the

coefficients for these components will be very similar to β. Finally, distances obtained from W are used

based on replacing the data with K sum scores, like in the cognitive diagnosis section. When all loadings

are nonnegative, and if we had knowledge of which of them are nonzero, it makes sense to consider the

vector W n = (Wn1,Wn2, ...,WnK)′ in which Wnk =
∑J
j=1 YnjI[βjk > 0]. The first distance measure makes

no assumptions about the underlying model, whereas the final two use a considerable amount of knowledge

about the model.

2.4.1 Consistency Results

A theorem is given below for MDP based on Euclidean distances between values of the sum-scores W . This

is the same statistic as was used in Theorem 2 in the case of cognitive diagnosis. However, note that the

unidimensional proportion correct statistics of Theorem 1 also amounts to the special case where K = 1,

and the method of proof for Theorem 3 below is quite similar to the of Theorem 1. The differences are

that it takes place in higher dimensions and with continuous unbounded random variables. Using W for

clustering essentially amounts to knowing the basic structure of the factor pattern, but without knowing the

exact values of the factor loadings.

Unlike we have seen in previous chapters, it appears that some consistency result is possible for clustering

based on Euclidean distance between the raw data vectors. In the linear factor analysis model, the expected

distances are minimized when latent variable values are the same, which is the basic requirement for con-

sistency. However, a rigorous proof has so far been elusive. Next we present the theorem for consistency of

clusters based on W , and the proof may be found in the appendix.

Theorem 2.4.1. Assume that responses arise from a linear factor analysis model in which responses are

conditionally independent given θ. We assume that θ is multivariate normal with mean 0 and covariance

equal to the K ×K identity matrix and that the jth variable Yj is scaled to have mean 0 and variance 1 for

j = 1, 2, ..., J . Assume that factor loadings are nonnegative, and all factors are asymptotically represented

according to mink
∑J
j=1 βjk > CJ for some C > 0. Then any sequence of MDP solutions using clusters

based on Euclidean distances between sum-scores W will be consistent, provided that Q′β is full rank, and

N , J , and M satisfy N → ∞, J → ∞, M → ∞, and for some α ∈ (0, 1),
√
logN
Mα → 0,

√
J logN
Mα → ∞ and

N2 Mα
√
J logN

exp
[
−J logN

M2α

]
→ 0.
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2.4.2 Simulations

In all simulations the number of factors was K = 3, and the number of variables was varied between J = 20

and 100. The sample size was fixed at N = 1000, and we recorded results for M = 10, 40 and 80 clusters.

In the simulation model θ ∼ N(0, I3×3), all errors terms en,j ’s were independent, and ψj = var(ej) were

drawn from a uniform distribution U [0, 0.3]. Nonnegative factor loadings β were generated so that the

overall variance of Yj would be 1, which implies
∑3
k=1 β

2
jk = 1− ψj . The nonzero loadings were determined

according to the same Q- matrix defined in (2.8), replicating this matrix as needed to adjust for different

test lengths. The nonzero loadings were then generated by drawing random uniform variates, and placing

the squared loadings in the same proportions as them, but scaled to satisfy the constraint that they must

sum to 1− ψj .

Table 3.5 listed the distribution of cluster diameters under four different distance measures and Table

3.6 summarized the root-mean square distances between θ values within the same cluster. As expected

clusters formed by randomly assigning points into one cluster yielded the worst clustering results among all

the distance measures However, documenting these results serves as a baseline to measure the efficiency of

the other techniques. In general, improvements were observed when either the test length increased or when

the number of clusters increased. Clustering based on distance between summed scores on each dimension

of the factor pattern, the first three principal components and Euclidean distance performed similarly for

the same test length and number of clusters, though Euclidean distances and distances between principal

components appeared to slight outperform the Q-matrix based sum-score approach, despite the consistency

theorem for this approach.

2.5 Discussion

The aim of this paper has been to explore the behavior of HACA and MDP when applied to several models

that are used in educational testing and educational measurement. In each case, some distances measures

were used that took advantage of some knowledge of the underlying models, and Euclidean distance between

response vectors was also used. In the case of IRT, it was clearly advantageous to make use of a unidi-

mensionality assumption, and the theory supported this as well as simulations. For latent class models for

cognitive diagnosis, a theory was developed for a particular sum-score vector, upon which distances may be

based to yield consistent solutions. However, simulations appeared to prefer Euclidean distance, even though

a counterexample was given indicating that consistency may not be possible. Several distance measures were

used to cluster data arising from the linear factor analysis model, though Euclidean distance and distance
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between principal components using the same number of components as factors, appeared to work best. A

consistency theorem for MDP based on Euclidean distance seems likely, and remains to be proven. Consis-

tency was shown for a sum-score approach, similar to the one considered for cognitive diagnosis, though the

corresponding procedure performed poorly in simulations.

The motivation for this research was to study two views of multivariate data analysis that are often

distinct, clustering and latent variable modeling. The results for IRT and factor analysis could have been

expected. Because clusters tend to be finite and continuous variables can take on any real numbered values,

many clusters are obviously needed before they can be homogeneous in the latent variable space. In the case

of IRT, proceeding with Hamming distance or Euclidean distance can give very poor results when examined

from the space of the latent variable, and some knowledge of the model is very useful. However, when the

true model is a linear factor analysis model, simulations indicate that Euclidean distance can result in very

homogeneous clusters. The most natural analysis was to study the behavior of clustering when data arise

from latent class models, such as those used in cognitive diagnosis. Here the question becomes whether

clustering with a carefully chosen distance measure can return the correct latent classes, without actually

fitting a latent class model. Results are encouraging, but more work into summary statistics that capture

the critical features of these models is needed.
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2.5.1 Simulation results

Table 2.1: Summary statistics of cluster diameters on the latent trait scale are given for clusters formed
based on distance between proportion correct (unidimensional) and Euclidean distance with different test
lengths and numbers of clusters. The results are based on 100 replications, with standard deviations across
replications reported in parentheses.

test length=20 test length=100

clusters distance minimum maximum median minimum maximum median

10

unidimensional 1.33 2.65 1.86 0.76 1.99 1.05
( 0.24 ) ( 0.33 ) (0.13 ) ( 0.07 ) ( 0.34 ) ( 0.07 )

Euclidean 1.36 3.82 2.31 0.88 3.24 1.34
( 0.34 ) ( 0.42 ) ( 0.25 ) ( 0.18 ) ( 0.33 ) ( 0.09 )

40

unidimensional 0.00 2.36 0.55 0.22 1.30 0.65
( 0.00 ) ( 0.29 ) ( 0.39 ) ( 0.17 ) ( 0.26 ) ( 0.02 )

Euclidean 0.34 3.35 1.50 0.23 3.02 0.86
( 0.21 ) ( 0.38 ) ( 0.13 ) ( 0.14 ) ( 0.32 ) ( 0.05 )

80

unidimensional 0.00 2.32 0.00 0.01 1.14 0.52
( 0.00 ) ( 0.30 ) ( 0.0 ) ( 0.03 ) ( 0.37 ) ( 0.1 )

Euclidean 0.04 3.08 1.15 0.04 2.88 0.66
( 0.07 ) ( 0.37 ) ( 0.1 ) ( 0.06 ) ( 0.34 ) ( 0.04 )

Table 2.2: The root mean squared distances between pairs of θ values within a cluster are given for clusters
formed from distance between proportion correct (unidimensional) and Euclidean distance with different test
lengths and numbers of clusters. Standard deviations across 100 simulation runs are reported in parentheses.

clusters distance test length=20 test length=100

10

unidimensional 0.52 0.31
( 0.03 ) ( 0.01 )

Euclidean 0.84 0.68
( 0.05 ) ( 0.05 )

40

unidimensional 0.49 0.23
( 0.02 ) ( 0.01 )

Euclidean 0.76 0.67
( 0.05 ) ( 0.04 )

80

unidimensional 0.48 0.23
( 0.02 ) ( 0.01 )

Euclidean 0.72 0.65
( 0.05 ) ( 0.05 )
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Table 2.3: Cluster diameters on the latent variable scale are given for clusters based on distance between W
(Q-matrix) and Euclidean distance for different test lengths. The number of clusters is always 8, which in
the number of latent classes in the model. The results are based on 100 replications, and standard deviations
of the statistics are across replications are given in parentheses.

test length=20 test length=100

distance minimum maximum median minimum maximum median

Euclidean 0.37 1.73 1.33 0.00 0.63 0.00
( 0.52 ) ( 0.03 ) ( 0.15 ) ( 0.0 ) ( 0.5 ) ( 0.0 )

Q-matrix 0.08 1.73 1.16 0.00 1.24 0.05
( 0.27 ) ( 0.03 ) ( 0.15 ) ( 0.00 ) ( 0.21 ) ( 0.15 )

Table 2.4: The square root of the average squared distance between θ values within the same cluster are
given for clusters based on distance between W (Q-matrix) and Euclidean distance for different test lengths.
The number of clusters is always 8, which in the number of latent classes in the model. The results are based
on 100 replications, and standard deviations of the statistics are across replications are given in parentheses.

distance test length=20 test length=100

Euclidean 0.6 0.04
( 0.08 ) ( 0.03 )

Q-matrix 0.84 0.24
( 0.07 ) ( 0.11 )
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Table 2.5: Summary statistics of cluster diameters on the latent trait scale are given for clusters formed
based on W (Q-matrix), the first three principal components, and Euclidean distance with different test
lengths and numbers of clusters. As a baseline, results for randomly formed clusters are also given. The
results are based on 100 replications, with standard deviations across replications reported in parentheses.

test length=20 test length=100

clusters measure minimum maximum median minimum maximum median

10

Euclidean 2.64 4.76 3.94 2.42 4.62 3.74
( 0.41 ) ( 0.20 ) (0.07 ) ( 0.38 ) ( 0.10 ) ( 0.06 )

Q-matrix 2.71 5.71 4.53 2.33 5.57 4.44
( 0.48 ) ( 0.21 ) ( 0.10 ) ( 0.00 ) ( 0.17 ) ( 0.06 )

PCA 2.56 4.77 3.86 2.39 4.57 3.76
( 0.43 ) ( 0.16 ) ( 0.07 ) ( 0.34 ) ( 0.11 ) ( 0.06 )

random 3.95 7.13 5.92 3.89 7.09 5.92
(1.22) ( 0.47) ( 0.23) ( 1.20 ) ( 0.41 ) ( 0.23 )

40

Euclidean 0.24 2.97 2.13 0.21 2.64 1.93
( 0.43 ) ( 0.18 ) (0.08 ) ( 0.41 ) ( 0.12 ) ( 0.07 )

Q-matrix 0.28 3.44 2.43 0.41 3.15 2.27
( 0.46 ) ( 0.20 ) ( 0.10 ) ( 0.43 ) ( 0.13 ) ( 0.08 )

PCA 0.25 2.88 2.06 0.15 2.59 1.91
( 0.42 ) ( 0.15 ) ( 0.08 ) ( 0.40 ) ( 0.11 ) ( 0.06 )

random 0.51 6.76 4.83 3.89 7.09 5.92
( 0.87 ) ( 0.37 ) ( 0.17 ) ( 0.74 ) ( 0.40 ) ( 0.14 )

80

Euclidean 0.01 2.35 1.64 0 1.91 1.31
( 0.08 ) ( 0.17 ) (0.06 ) ( 0 ) ( 0.09 ) ( 0.04 )

Q-matrix 0.00 2.60 1.66 0 2.26 1.51
( 0.00 ) ( 0.17 ) ( 0.06 ) ( 0 ) ( 0.10 ) ( 0.04 )

PCA 0.00 2.23 1.44 0 1.83 1.26
( 0.00 ) ( 0.15 ) ( 0.05 ) ( 0 ) ( 0.08 ) ( 0.04 )

random 0.03 6.64 4.24 0 6.56 4.24
( 0.18 ) ( 0.48 ) ( 0.12 ) ( 0 ) ( 0.36 ) ( 0.14 )
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Table 2.6: The square root of the average squared distance between pairs of θ values within a cluster are given
for clusters formed based on W (Q-matrix), the first three principal components, and Euclidean distance
with different test lengths and numbers of clusters. As a baseline, results for randomly formed clusters are
also given. The results are based on 100 replications, with standard deviations across replications reported
in parentheses.

clusters measure test length=20 test length=100

10

Euclidean 1.62 1.60
( 0.06 ) ( 0.06 )

Q-matrix 1.77 1.75
( 0.07 ) ( 0.07 )

PCA 1.61 1.58
( 0.06 ) ( 0.05 )

random 2.45 2.45
( 0.03 ) ( 0.03 )

40

Euclidean 1.08 1.01
( 0.03 ) ( 0.03 )

Q-matrix 1.19 1.13
( 0.04 ) ( 0.04 )

PCA 1.06 1.00
( 0.03 ) ( 0.03 )

random 2.45 2.45
( 0.03 ) ( 0.04 )

80

Euclidean 0.87 0.76
( 0.03 ) ( 0.10 )

Q-matrix 0.93 0.86
( 0.04 ) ( 0.10 )

PCA 0.83 0.75
( 0.03 ) ( 0.09 )

random 2.44 2.45
( 0.04 ) ( 0.04 )
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Chapter 3

Response Times in Computerized
adaptive testing

3.1 Introduction

Computerized adaptive testing (CAT) is a method of administering a test that adapts to the examinee’s θ

level (trait level). A CAT test differs from the paper-pencil test format in that in CAT, different examinees

with different ability levels are tested with different sets of items. In a paper-pencil test, all examinees receive

the same set of items. The purpose of CAT is to estimate each examinee’s θ precisely, and to select test

items sequentially from an item pool based on the current performance of a test taker. In other words, the

test is tailored to the test taker’s θ level, so that the more able examinees can avoid being given too many

easy items, whereas less able examinees can avoid being exposed to too many difficult items. The major

advantage of CAT is that it provides more precise θ estimates with relatively fewer items than that would be

required in the conventional tests. Examples of large scale CATs include the Graduate Record Examination

(GRE), the Graduate Management Admission Test (GMAT), the National Council of State Boards Nursing

(NCLEX), and the Armed Services Vocational Aptitude Battery (ASVAB). The most important aspect in

CAT is the item selection procedure. Heuristically, when the test taker answers an item correctly, the next

item selected for him or her should be more difficult. If the answer is incorrect, the next item should be

easier. To equate scores from different sets of exams, item response theory (IRT) models are utilized. IRT

is widely used to estimate both the characteristics of the test items and the ability level of the test takers.

Such analyses are based on the examinees responses to the test items.

When a test is administered in a computerized mode, the capability of recording the amount of time a

test taker has spent on each item provides us with additional information about the test-taking experience

of individuals as well as the characteristics of items. Recently, there has been rapid development on how

to utilize response times on test items as an additional source of information in estimating the abilities of

the test takers when the test is delivered in a computerized fashion. We propose semiparametric models

for response times, and algorithms for item selection that use response time information. Such models can

assist in controlling the amount of time required for a CAT, and in the appropriate circumstances can also
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be used in estimation of ability.

The rest of the chapter is organized as follows. Section 3.2 reviews the classical IRT theory and several

prominent models in the psychometrical response time literature. We propose a proportional hazard model

for response times in section 3.3 and follow a simulation study in Section 3.3.2. We extend the response time

application in computerized adaptive testing in Section 3.4, where we propose a new item selection strategy

and compare it with classical method. We also discuss an important issue in CAT, item exposure rate, and

study how it may be controlled. A simulation study is conducted in Section 3.4.5. Conclusions and all the

simulation results are listed in Section 3.5.

3.2 Review of IRT and some Response Time Models

3.2.1 Item Response Theory

Item response theory (IRT) has been a dominant methodology in educational testing for decades, and is

also widely used in psychology, marketing research and surveys of quality of life in medicine. In the case

of unidimensional IRT models, we assume that item responses are statistically independent if we condition

on a 1-dimensional latent trait. This trait represents the true value of the psychological construct is being

measured. Furthermore, it is usually assumed that expected scores on the items are monotonically related to

this trait. There are many ways to investigate the adequacy of a single latent trait, and a standard method

related to factor analysis is the examination of the tetrachoric correlation matrix. Even if small departures

from unidimensionality are identified, the practical use of an assessment is often to construct a linear ordering

of subjects, making the unidimensional IRT model desirable. Among its desirable properties are that items

can be parameterized to describe their difficulty and the information they supply at different levels of the

latent trait, and they may be used in different combinations with different populations of subjects and still

be used to construct scores on a common scale.

An example of a common parametric IRT model is the two-parameter logistic model. The item response

function of this model is given below. Here we show the probability that the response of the nth subject to

the jth variable is correct, given θn, the level of the latent trait of the nth subject.

Pj(θn) = P (Ynj = 1|θn) =
eaj(θn−bj)

1 + eaj(θn−bj)
(3.1)

In this model, the a parameters are log odds-ratios, and reflect the extent that changes in θ result in changes

in the odds of a correct response. The b parameters describe at what level of θ the probability of a correct
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response is 0.5, so it can be thought of as a location or difficulty parameter.

3.2.2 Current Models for Response Times

We briefly review several response time models in the test theory literature. Verhelst, Verstraalen, and

Jansen (1997) present a model that is based on the assumption of a generalized extreme-value distribution

of a latent response variable given the time spent on the item and a gamma distribution for the time. For

the probability of a response on item j and person n,

Pj(θn, τn) = [1 + exp(θn − ln τn − bj)−πj ], (3.2)

where bj is the difficulty parameter for item j, θn is the ability parameters for the nth person, τn is the speed

parameter for the person n, and πj is an item-dependent shape parameter. For π = 1, the model reduces

to a Rasch (1980) type model with ξj = θn − ln τn replacing the traditional ability parameter. The model

in (3.2) incorporates a speed-accuracy tradeoff. If a person decides to increase the speed τn, parameter ξn

decreases. Roskam (1987) proposed a similar model,

Pj(θn) = [1 + exp(θn + ln tnj − bj)−1], (3.3)

The model assumes a speed-accuracy tradeoff directly between the ability of the test taker and the time

spent on a test item; less time on an item results in a higher speed and lower accuracy.

Under the assumption that the more capable person tends to answer the questions faster, i.e., a higher ability

θn implies a shorter response time on the item, Thissen (1983) introduced the following model,

lnTnj = µ+ τn + βj − ρ(ajθn − bj) + εnj , (3.4)

where εnj ∼ N(0, σ2). Parameters τn and βj can be interpreted as the speed of the examinee and the

amount of time required by the item, respectively. µ is a general level parameter and aj , θn, and bj are the

item discrimination, ability, and item difficulty parameters, respectively. The term ρ(ajθn − bj) represents

a regression of a two-parameter response model on the logtime with ρ being the regression parameter.

Rouder, Sun, Speckman, Lu, and Zhou (2003) propose a model based on a Weibull distribution. The Weibull

distribution is widely used to model the waiting time for a system failure. In this model, the reaction time
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distribution for person n on item j has the density

f(tnj) =
πn(tnj − ψn)πn−1

σπnn
exp

{
−
[
tnj − ψn
σn

]πn}
, tnj > ψn, (3.5)

where ψn, σn and πn are the shift, scale and shape parameters, respectively. The model in (3.5) does not

assume the relationship between the ability of the examinee and the characteristics of the items.

Van der Linden (2007) proposes a hierarchical framework of modeling with two different levels, one for the

individual test taker and one for the population of test takers. Each level includes two components: one

to model speed and the other to model accuracy. At the level of the individual test taker, the framework

models the test taker’s responses to items (correct or incorrect) and the time he or she spent on each item.

Both component models have separate parameters for the item and person effects. At the second level, the

framework has a model for the population of test takers that explains how the speed and accuracy of the test

takers tend to be related. Van der Linden’s (2007) model is based on the following assumptions. The first

assumption is that a test taker operates at a fixed level of speed, therefore the examinee operates at a fixed

level of accuracy. This stationarity assumption is is a standard assumption in IRT. The next assumption

is that responses and response times are conditionally independent given the levels of ability and speed at

which the test taker operates, which is analogous to the local independence assumption in IRT. The items

are indexed by j = 1, · · · , J , and the examinees by n = 1, · · · , N . For the nth test taker, his or her responses

and response times are denoted by Yn = (Y1n, · · · , YJn)′, and Tn = (T1n, · · · , TJn)′. At the first level, two

models for the responses and times are specified separately. Each response variable is assumed to follow a

three-parameter logistic (3PL) model:

Pj(θn) = cj + (1− cj)
exp[aj(θn − bj)]

1 + exp[aj(θn − bj)]
. (3.6)

A lognormal model is chosen for the response times:

Tnj ∼ f(tnj ; τn, αj , βj) ≡
αj

tnj
√

2π
exp

{
−1

2
[αj(ln tnj − (βj − τn))]

2

}
, (3.7)

where τn, βj and αj are the speed parameter for examinee n, the time intensity and discriminating power

of item j, respectively.

At the second level, denote by ξn = (θn, τn), ψj = (aj , bj , cj , αj , βj) the person parameter for the nth person

and item parameter for the jth item, respectively. ξn is assumed to be randomly drawn from a multivariate
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normal distributor; that is,

ξn ∼ f(ξn;µp,Σp) ≡
|Σ−1p |1/2

2π
exp

[
−1

2
(ξn − µp)TΣ−1p (ξn − µp)

]
, (3.8)

with mean vector

µp = (µθ, µτ ),

and covariance matrix

Σp =

 σ2
θ σ0τ

σ0τ σ2
τ

 .

Analogous to (3.30), the parameter vector ψj is assumed to also follow a multivariate normal distribution

ψj ∼ f(ψj ;µJ ,ΣJ) ≡
|Σ−1J |

2π

5/2

exp

[
−1

2
(ψj − µJ)TΣ−1J (ψj − µJ)

]
, (3.9)

with mean vector

µJ = (µa, µb, µc, µα, µβ),

and covariance matrix

ΣJ =



σ2
a σab σac σaα σaβ

σba σ2
b σbc σbα σbβ

σca σcb σ2
c σcα σcβ

σaα σαb σαc σ2
α σαβ

σβa σβb σβc σβα σ2
β


.

Combining (3.28), (3.29), (3.30) and (3.9), the author arrives at the final model:

f(µ, t, ξ, ψ) =

N∏
n=1

J∏
j=1

f(µn, tn, ξn, ψj)f(ξn, µp,Σp)f(ψj , µJ ,ΣJ). (3.10)

3.3 Proportional Hazards Model for Response Times

Survival analysis is a branch of statistics which concerns the analysis time-to-event data. In educational

testing, the event is often the time required for an examinee to answer a specific question. All of the

parametric models mentioned above can be generalized to regression models in which some parameter of

the distribution depends on θ usually through some linear function, that is then nonlinearly linked to the

parameter of interest. The standard approach in biostatistics to make such models more flexible is to combine
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the parametric regression term with a non-parametrically defined baseline hazard function, and express the

hazard function as

h(t | θ) = h0(t)eγθ. (3.11)

The hazard function is the instantaneous rate at which response times occur, and is comprised of a non-

parametrically specified nonnegative baseline hazard function h0 and a term that depends on the covariate,

which is the latent trait θ in the IRT case. This model, known as the Cox proportional hazards model (Cox,

1972), is widely used for inference about the parameter γ, and sometimes estimating the entire conditional

survival curves is of interest. Another commonly used measure in survival analysis is the survival function

S(t|θ), which captures the probability that an event will survive beyond a specified time. S(t|θ) relates to

h(t | θ) in (3.11) through:

S(t|θ) = exp[−H(t | θ)],

where H(t | θ) =
∫ t
s=0

h(s|θ)ds is the cumulative hazard function. Given S(t|θ), the probability density

function f(t | θ) is readily available as f(t | θ) = −dS(t|θ)dt . By (3.11), for the jth item, we model the hazard

function of tnj , the response time required for test taker n to answer the jth item by

hj(tnj |θn) = h0j(tnj)e
γjθn . (3.12)

We need to stress that, the above models and the model for responses that we shall introduce later all rely

on the assumption of the local independence (LI). Specifically, we postulate the following assumptions

hold:

• Independence between responses given θ . Mathematically, this assumption is defined as

f(yn1, · · · , ynG|θn) =

G∏
g=1

f(yng|θn), (3.13)

for θn ∈ R, 1 ≤ n ≤ N and each possible subset of items of size G ≤ J , where f(yn1, · · · , ynG|θn) and

f(yng|θn) denote the probability functions of the responses on the subset of items and the individual

items in it, respectively.

• Independence between response times given θ . This assumption is defined as

f(tn1, · · · , tnG|θn) =

G∏
g=1

f(tng|θn), (3.14)
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where f(tn1, · · · , tnG|θn) and f(tng|θn) are the densities of the response times on the subset of items

and the individual items in it, respectively.

• Independence between responses and response times given θ. That is

f(yn1, · · · , ynG1
; tn1, · · · , tnG2

|θn) =

G1∏
g1=1

f(yng1 | θn)

G2∏
g1=1

f(tng2 | θn), (3.15)

for θ ∈ R, 1 ≤ n ≤ N and each possible subset of items of size G1, G2 ≤ J .

Partial Likelihood

The goal of our investigation is to accurately estimate θ as well as the parametric and semiparametric terms

of the response time model of (3.12). Note that in CAT, every test taker is given different items, based on

his or her adaptively estimated θ level. So the random sampling of θ from a common distribution can not be

assumed. Consequently, the usual marginal likelihood approaches used in latent variable modeling must be

modified. Furthermore, because of the infinite-dimensional parameter h0, the ordinary likelihood function is

untractable, and we must use the so-called partial likelihood proposed by Cox (1975), to estimate γ and

to supplement the IRT likelihood for θ.

For the jth item, suppose that there are no ties between the event times. Let t(1j) < t(2j) < · · · < t(Nj)

denote the ordered event times and θ(i) be the latent trait associated with the individual whose response

time is t(ij). Define the risk set R(t(pj)) at time t(pj), 1 ≤ p ≤ N as the set of all individuals who have not

answered the question yet, i.e., R(t(pj)) = {t((p+1)j), · · · , t(Nj)}. Based on the hazard function as specified

in (3.12), the partial likelihood function for the jth item given θ is specified as:

L(γj |θ) =

N∏
n=1

exp[γjθ(n)]∑
t(pj)∈R(t(pj))

exp[γjθ(p)]

=

N∏
n=1

exp[γjθ(n)]∑N
p≥j exp[γjθ(p)]

(3.16)

The partial likelihood for the vector γ = (γ1, · · · , γJ)′ is then defined as

L(γ|θ) =

J∏
j=1

L(γj |θ). (3.17)
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The log of the partial likelihood is LL(γj |θ) = ln[L(γj |θ)], and write LL(γj |θ) as

LL(γj |θ) =

N∑
n=1

γjθ(n) − ln[

N∑
p≥j

exp(γjθ(p))]. (3.18)

Taking derivatives with respect to γ we find the score to be U(γj |θ) = ∂LL(γj |θ)/∂γj . Then

U(γj |θ) =

N∑
n=1

θ(n) −
∑N
p≥j θ(p) exp[γjθ(p)]∑N
p≥j exp[γjθ(p)]

. (3.19)

Taking derivatives again and changing sign we find the observed information to be

I(γj |θ) =

∑N
p≥j θ

2
p exp[γjθ(p)]∑N

p≥j exp[γjθ(p)]
−

[∑N
p≥j θ(p) exp[γjθ(p)]∑N
p≥j exp[γjθ(p)]

]2
. (3.20)

3.3.1 Parameter Estimation

Suppose the items are indexed by j = 1, · · · , J, and the examinees by n = 1, · · · , N . For the nth test taker,

his or her responses and response times are denoted by Yn = (Y1n, · · · , YJn)′, and Tn = (T1n, · · · , TJn)′,

respectively. We model the jth item’s hazard function by (3.12) and specify the partial likelihood function

by (3.16). We assume a two-parameter IRT (2PL) model for the response variable Yn:

Pj(θn) =
exp[aj(θn − bj)]

1 + exp[aj(θn − bj)]
. (3.21)

Then the likelihood function for the nth subject can be specified as:

IRT(θn) =

J∏
j=1

Pj(θn)ynj (1− Pj(θn))1−ynj . (3.22)

To estimate the parameters γ = (γ1, · · · , γJ)′, note that in CAT it would generally be the case that different

examinees take different items, and the items they take are closely associated with their ability level θ.

That means, some on-the-shelf method for marginal likelihood estimation or a frailty model procedure will

not work. So in our investigation, MCMC is used to take advantage of the previously calibrated items

parameters as well as an additional source of information about the latent covariate in the model, which is

theta. The algorithm below, immediately generalizes to the CAT situation, in which different people take

different items.
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Markov Chain Monte Carlo

To explore the posterior distribution of the parameters in the models (3.18) and (3.22), we use a Bayesian

MCMC method (Metropolis-Hastings). Here we assume a CAT setting in which item parameters are previ-

ously calibrated and are taken as known. Our concern is utilizing the response time information to estimate

paramters of the response time distributions and also obtain more information for the estimation of θ. We

assume the response time variables are independent (Local independence) given the person parameter θ.

Metropolis-Hastings

We describe the Metropolis-Hastings algorithm in the following steps:

Step 1: Denote the initial values for γ and θ by γ̂0 ≡ (γ̂01, · · · , γ̂0J)′ and θ̂0 ≡ (θ̂01, · · · , θ̂0N )′, respectively. θ̂0

is the maximum likelihood estimator (MLE) by maximizing the likelihood function in (3.22). Denote

by σ2
θ the sample variance of θ̂0, and σ2

γ the sample variance of γ̂0. Conditioning on θ̂0, γ̂0 is obtained

by maximizing the partial likelihood function defined in (3.18). Set the iteration counter iter = 1.

Step 2: At rth step, Denote the previous positions θ(r−1) ≡ (θ
(r−1)
1 , · · · , θ(r−1)N )′ and γ(r−1) ≡ (γ

(r−1)
1 , · · · , γ(r−1)J )′.

We first sample the person parameters θ. For the nth person, draw θ∗n from a normal distribution

N(θr−1n , σ2
θ) and denote θ∗ ≡ (θ

(r−1)
1 , · · · , θ∗n, · · · , θ

(r−1)
N )′. The acceptance probability for θ∗n is defined

as:

α(θ(r−1)n , θ∗n) ≡ min

{
1,

IRT(θ∗n)L(γ(r−1)|θ∗)π(θ∗n)

IRT(θ
(r−1)
j )L(γ(r−1)|θ(r−1))π(θ

(r−1)
n )

}
, 1 ≤ n ≤ N, (3.23)

where π(θ∗n) = 1√
2π

exp
(θ∗n)

2

2 , and π(θ
(r−1)
n ) = 1√

2π
exp

(θ(r−1)
n )2

2 . IRT(·) and L(·) are defined in (3.22)

and (3.17) respectively. Generate a uniform [0, 1] quantity u. If u ≤ α(θ
(r−1)
n , θ∗n), the move is accepted

and θrn = θ∗n. If u > α(θ
(r−1)
n , θ∗n), the move is not accepted, and θrn = θ

(r−1)
n .

After obtaining the person parameters θr, we then draw item parameters γr. Analogous to the previous

steps, for jth item, draw γ∗j from a normal distribution N(γr−1j , σ2
γ). The acceptance probability for

γ∗j is defined as:

α(γ
(r−1)
j , γ∗j ) ≡ min

{
1,

L(γ∗j |θ
r)

L(γ
(r−1)
j |θr)

}
, 1 ≤ j ≤ J, (3.24)

where L(·) is defined in (3.16). Generate a uniform (0, 1) quantity u. If u ≤ α(γ
(r−1)
j , γ∗j ), the move is

accepted and γrj = γ∗j . If u > α(γ
(r−1)
j , γ∗j ), the move is not accepted, and γrj = γ

(r−1)
j .

step 3: Change the iteration counter from r to r + 1 and return to step 1 until iter = M , where M is a

pre-specified number.
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A burn-in period of the initial K iterations is often required to allow the chain to reach equilibrium.

Finally, we obtain two Markov chains for the person and the item parameters, which are denoted by

θmc ≡ (θ(K+1), · · · ,θM )′ and γmc ≡ (γ(K+1), · · · ,γM )′, respectively. Define the posterior sample means

for γ and θ as γ̄ ≡ γ̄mc = 1
M−K

∑M
t=K+1 γ

t and θ̄ ≡ θ̄mc = 1
M−K

∑M
t=K+1 θ

t.

Nonparametric Estimation of the Baseline Hazard

Having obtained the regression coefficients γ̂, we now consider the estimation of the baseline hazard {h0j , 1 ≤

j ≤ J} defined in (3.12), or equivalently the cumulative baseline hazard rate H0j(t) =
∫
h0j(u)du. For the

jth item, in order to estimate h0j , we express the complete profile likelihood as

L(γj , h0j(t)) =

N∏
n=1

f(tnj | θn) =

N∏
n=1

−dS(tnj | θn)

dtnj

=

N∏
n=1

−d exp(−H(tnj | θn))

dtnj
=

N∏
n=1

h(tnj | θn)S(tnj | θn)

=

N∏
n=1

h0j(tnj) exp(γjθn) exp[−H0j(tnj) exp(γjθn)].

Fix γj by its estimator γ̂j and consider maximizing the above likelihood as a function of h0j(t) only. The

function to be maximized can be written as

L(h0j(t) | γ̂j) =

[
N∏
n=1

h0j(tnj) exp(γ̂jθ(n))

]
exp

[
−

N∏
n=1

H0j(Tj) exp(γ̂jθn)

]
. (3.25)

Note that (3.25) is maximized when h0(t) = 0 except for times at which the events occurs. So H0(Tj) =∑
ti≤Tj h0j(ti), and (3.25) is maximized when

ĥ0j(ti) =
1∑N

p≥j exp[γ̂jθ(p)]
.

So

Ĥ0j(t) =
∑
ti≤t

1∑N
p≥j exp[γ̂jθ(p)]

, (3.26)

or

Ŝ0j(t) = exp[−Ĥ0j(t)].

This is the Breslow estimator of the baseline cumulative hazard function suggested by Breslow (1972). In

the survival analysis literature, there are other types of nonparametric estimators of the survival function
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for example the Kaplan-Meier estimator.

3.3.2 Simulation Studies

The simulation design for the performance of estimation of latent traits utilized 25 independent replications

in a design that varied test length J and the number of test takers N . For all simulations we set the

sample size at J = 100, 400, and studied test lengths of J = 20, 100. The latent variable θ was drawn from

N(0, 1), the standard normal distribution; items parameters of a two-parameter logistic model were drawn

from distributions, β1 ∼ N(0, 1) and β0 ∼ U [1, 2.5]. An exponential baseline hazard function h(·) = λ with

various item parameters λ was chosen to generate response times. λs were drawn from a uniform distribution

λ ∼ U [0.25, 1.5]. The log hazard ratios γs in (3.12) were drawn from U [0.5, 1.5]. To implement the Bayesian

MCMC algorithm, chains of length 4000 with an initial burn-in period = 1000 were chosen.

3.4 A New CAT Item Selection Strategy: Maximum Item

Information per Time Unit

3.4.1 Computerized Adaptive Testing

Computerized adaptive testing (CAT) is a desirable format for testing because it can tailor items to the

ability of the examinee to more quickly obtain an accurate estimate of the examinee’s ability. A predominant

estimator of ability is the maximum likelihood estimator θ̂mle, which is the value of θ that maximizes the

conditional likelihood function of the responses. Under smoothness conditions on the item response functions,

θ̂mle is asymptotically N(θ0, I
−1(θ0)), where θ0 is the true value of θ and I(θ0) is the Fisher information at

θ0. The function I(θ) is a useful measure of the precision with which the J items can serve to measure θ, as

a function of θ. Denote s(θ) the score function, the first derivative of the log-likelihood, then

I(θ) = E[s2(θ)] = −E[
ds(θ)

dθ
] =

J∑
j=1

IJ(θ),

where Ij(θ) is known as the item information function.

The general form of an item information function is given by

Ij(θ) =
[P ′j(θ)]

2

Pj(θ)Qj(θ)
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where Pj denotes the item response function of the jth item and Qj = 1− Pj . In the case of a 3-PL model,

Ij(θ) = a2j
Qj
Pj

[
Pj − cj
1− cj

]2
.

Because the variance of θ̂mle is inversely related to the Fisher information, it motivates the procedure of

selecting items to maximize Fisher information at the current ability estimate. Specifically, index the bank

of all possible items by j = 1, 2, ..., J , and suppose that m items have been administered, Yj1 , Yj2 , ..., Yjm .

Let Sm = {j1, j2, ..., jm} denote the indices for these items, and let Rm = {1, 2, ..., N} ∩ S̄m denote the

remaining items. We wish to find the “best” item to give next. Let θ̂mlem denote the current ability estimate.

The maximum information criterion (MIC) selects the item which has highest information at θ̂mlem . In

other words,

jm+1 = max
l
{Il(θ̂mlem ) : l ∈ Rm}. (3.27)

Chang and Ying (1996) provide an alternative to the MIC by defining information in a different way. Note

that test information I(θ) is a measure of local information around the true value θ0. The usefulness of

maximizing I(θ̂mlem ) is questionable early in the sequence when θ̂mlem may be quite far from θ0 for small

m. To address this they propose a more global definition of information. Let Y1, Y2, ..., YN be responses

to the items of a test, and let L(θ) denote the likelihood function. If our aim is to distinguish a value θ0

from another value θ∗, the likelihood ratio L(θ0)/L(θ∗) should provide useful information. In fact, Neyman-

Pearson theory tells us that the likelihood ratio method is optimal for testing θ = θ0 versus θ = θ∗. With

this notion in mind, we define Kullback-Leibler item information as follows

Kj(θ | θ0) = Eθ0

[
log

Lj(θ0)

Lj(θ)

]

where Lj(θ) = Pj(θ)
yjQj(θ)

1−yj is the factor that the jth item response contributes to the conditional

likelihood function.

This leads to the calculation

Kj(θ | θ0) = Pj(θ0)

[
log

Pj(θ0)

Pj(θ)

]
+Qj(θ0)

[
log

Qj(θ0)

Qj(θ)

]
.

For the entire test the Kullback-Leibler test information is defined by

K(θ | θ0) = Eθ0

[
log

L(θ0)

L(θ)

]
.
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By conditional independence,

K(θ | θ0) =

N∑
j=1

Kj(θ | θ0).

The function K(·) is global as opposed to I(·) in that for a fixed θ0, K is a function of θ and I is a

fixed number. Chang and Ying proposed incorporating K(·) into CAT as follows. Using the notation above

and a current estimate θ̂m, usually θ̂mlem when it exists, select item m+ 1 according to global information

criterion (GIC)

jm+1 = max
l

{∫ θ̂m+δm

θ̂m−δm
Kl(θ | θ̂m)dθ : l ∈ Rm

}
.

The sequence δm should go to 0, and is set equal to c/
√
m. Here c should be large enough so that the

interval (θ̂m−δm, θ̂m+δm) has a high probability of containing δ0. If δm is very small, the GIC is essentially

equivalent to the MIC. However, if δm is defined as above, the GIC is global in that it is largely influenced

by the tails of Kl(θ | θ̂m).

Simulation studies revealed that this method outperformed MIC early in the sequence, indicating it

would be a better choice for short adaptive tests. Also, because it would not always select the item with

the highest discrimination parameter at every difficulty level, it takes some steps towards addressing item

exposure. However, neither the MIC nor the GIC adequately address balancing item exposure, and have no

features for satisfying test constraints. Next we consider a parametric model for response times, and propose

a modification of the MIC that can be used to more effectively accrue information.

3.4.2 A Lognormal Model for Response Times

The items are indexed by j = 1, · · · , J , and the examinees by n = 1, · · · , N . For the nth test taker, his or

her responses and response times are denoted by Yn = (Y1n, · · · , YJn)′, and Tn = (T1n, · · · , TJn)′. Assume

the item responses follow a 3-PL IRT model. The probability that the response of the nth subject to the

jth variable is correct, given θn ∈ (−∞,∞), the level of the latent trait of the nth subject can be expressed

as

Pj(θn) = P (Ynj = 1|θn) = cj + (1− cj)
eaj(θn−bj)

1 + eaj(θn−bj)
, (3.28)
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where cj is the guessing parameter for the jth item. A lognormal model proposed by van der Linden is used

to model the response time tnj of the nth person on the jth item:

Tnj ∼ f(tnj ; τn, αj , βj) ≡
αj

tnj
√

2π
exp

{
−1

2
[αj(ln tnj − (βj − τn))]

2

}
, (3.29)

where τn, βj and αj are the speed parameter for examinee n, the time intensity and discriminating power

of item j, respectively.

At the second level, denote by ξn = (θn, τn), ψj = (aj , bj , cj , αj , βj) the person parameter for the nth person

and item parameter for the jth item, respectively. ξn is assumed to be randomly drawn from a multivariate

normal distribution,

ξn ∼ f(ξn;µp,Σp) ≡
|Σ−1p |1/2

2π
exp

[
−1

2
(ξn − µp)TΣ−1p (ξn − µp)

]
, (3.30)

with mean vector

µp = (µθ, µτ ),

and covariance matrix

Σp =

 σ2
θ σ0τ

σ0τ σ2
τ

 .

3.4.3 Item Information per Time Unit

In Section 3.4.1, we reviewed a widely used item selection strategy known as the maximum information

criterion (MIC) to select an item that has the highest information I(θ̂mle). However, MIC does not take

into consideration the time required to answer an item. Such information is useful in that often a highly

informative item can be quite time consuming, so it has less practical value compared to an equally or

somewhat less informative item that requires less time to complete. Specifically, instead of maximizing raw

item information Il(θ̂
mle
m ) in (3.27), we propose to maximize “item information per time unit”(MICT).

Specifically, we choose the next item based on

jm+1 = max
l

{
Il(θ̂

mle
m )

E[Tl|τ̂mlem ]
: l ∈ Rm

}
, (3.31)

where Tl is the time required for the l item and τ̂mlem is the maximum likelihood estimator of current the

speed parameter τ . Under the lognormal model in (3.29), the expected time to answer the lth item can be
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expressed as

E[Tl|τ̂mlem ] = exp

(
βl − τ̂mlem +

1

2α2
l

)
, l ∈ Rm

and for the nth person,

τ̂n =

∑
j∈Rm αj(βj − log tnj)∑

j∈Rm αj
.

3.4.4 Control of Item Exposure Rate

One of the drawbacks to the item information based CAT is that only a small fraction of items that possess

high item information are selected. So the MIC and MICT could lead to extremely skewed item exposure

rates, i.e., some items could be constantly selected in a CAT whereas others may never be used. Having too

few items being used is not cost-effective and can lead to serious test security problems when the relatively

small set of items being used becomes compromised to the public. To remedy this, Chang, et. all., (2001)

proposed an a-stratified with b blocking method (ASB) for item selection in CAT. The ASB method can be

described in the following steps:

1. Arrange the item back according to b values, and then divide the item bank into M equal-length blocks.

So the first blocks contains items with the smallest b values, and the Mth block with the highest b

values.

2. Further partition each of the M blocks into K strata according to their a values. Thus, in the mth

block, the first stratum contains items with the smallest a values, and the Kth stratum with the

highest a values.

3. For k = 1, · · · ,K, recombine the kth stratum items across M blocks into a single stratum. So there

are now K strata.

4. Divide the test into K stages.

5. In the kth stage, select items using Difficulty Matching (DM) procedure, i.e., items are chosen from

the kth stratum based on the closeness of b values to the current estimate of θ for an examinee.

6. Repeat Step 5 for k = 1, 2, · · · ,K.

The method ASB DM can be adjusted for time, which we refer to as a-stratification with b blocking and

time weighting (ASB TWDM), by a simple adjustment to the fifth step in the algorithm above. Instead of

matching θ to the nearest b, we minimize the product of the absolute difference between θ and b and the

expected time to answer the item, given the person’s current estimate of the speed parameter.
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3.4.5 Simulation Studies

Comparison between MICT and MIC

We wish to simulate a J = 1000-item bank with the item parameters a, b, c, α and β defined in (3.28) and

(3.29). Assume a ∼ uniform[1, 2.5], c ∼ beta(2, 10), and α ∼ uniform[2, 4]. The item difficulty parameter b

and time intensity parameter β are assumed to follow a bivariate normal distribution:

(bj , βj) ≡ ψj ∼
|Σ−11 |1/2

2π
exp

[
−1

2
(ψj − µ1)TΣ−11 (ψj − µ1)

]
, (3.32)

with mean vector µ1 = (0, 0), and covariance matrix

Σ1 =

 1 0.25

0.25 0.25

 ,

or

Σ1 =

 1 0

0 0.25

 .

N = 1000 person parameters θn and τn are generated from a bivariate normal distribution:

(θn, τn) ≡ ξn ∼
|Σ−12 |1/2

2π
exp

[
−1

2
(ξn − µ2)TΣ−12 (ξn − µ2)

]
, (3.33)

with mean vector µ2 = (0, 0), and covariance matrix

Σ2 =

 1 0.5

0.5 1

 ,

or

Σ2 =

 1 0

0 1

 .

Each examinee is administered 5 randomly chosen items from the item bank to acquire the initial ability

and speed estimates. Then a CAT with MIC and MICT are implemented. Two scenarios are considered.

The first scenario is a fixed length exam with 50 items ( 55 items in total) chosen either by MIC or MICT.

For each method, mean squared errors (MSEs) for θ and τ , the average time to complete the 55 items and

item exposure rates are calculated. The other scenario is concerned with a fixed Fisher information exam

and for each examinee, the exam stops until he/she achieves Fisher information= 40.
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Item Exposure Control Study

A fixed test length of 55 items was used. The lognormal model in (3.29) was used to simulate the response

times for the examinees. We simulated a 500-item bank with item parameters a ∼ uniform[1, 2.5], c ∼

beta(2, 10), and α ∼ uniform[2, 4]. The item difficulty parameter b and time intensity parameter β are

assumed to follow a bivariate normal distribution defined in (3.32). A total of 1000 θ and τ values are

generated from (3.33). The 3-PL model was used to simulate item responses for each examinee. The

lognormal model in (3.29) was used to simulate the response times for the examinees.

We compared the maximum likelihood estimates for θ and τ for both CAT with ASB item exposure control

and CAT without item exposure control. We also compared a χ2 statistic proposed by Chang and Ying

(1999), to measure the skewness of the exposure rate distribution,

χ2 =

n∑
i=1

(eri − L/n)2

L/n
, (3.34)

where

eri is the observed exposure rate for the jth item,

L = 55 is the test length, and n = 500 is the number of the items in the item bank.

For the ABS item exposure control, the item bank is stratified into 5 strata according to the method

described in Section (3.4.4). The initial estimates of θ and τ are acquired by randomly selecting 5 items

each from 1 different stratum. The remaining items were selected according to Step 5 above, i.e., within the

ktratum, an item that has the closest b value to the current estimated θ is selected:

jm+1 = max
l

{
1

|θmle
m − bl|

: l ∈ Rm

}
,

where Rm is the set of the remaining items in the kth strata that haven’t been administered. Similarly, for

the ABS TWDM method, the next item is select to maximize

jm+1 = max
l

{
1

E[Tl|τ̂mlem ]|θmle
m − bl|

: l ∈ Rm

}
.
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3.5 Conclusions

Tables (3.1) and (3.4) listed the means and standard deviations for the estimation of γ with J = 20, N = 100

and J = 40, N = 400, respectively. Both sample sizes resulted in highly accurate estimates. As expected,

the standard deviations of the MIMC chains reduced by a half with J = 40 and N = 400, compared to when

J = 20 and N = 100. Figures (3.1) and (3.4) plot the latent trait estimates θ̂ v.s. the true θ. It appears that

both IRT and IRT+proportional hazard functions estimated θ very well in that, in both cases the scatter

plots hug the 45 degree lines very well. From Tables (3.2) and (3.5), the estimation errors (RMSE) for θ

are reduced when both the proportional hazard functions and the IRT models are incorporated into the

likelihood function. Table (3.3) tabulated the integrated absolute differences between the baseline hazard

functions and their Breslow estimators with a sample size of J = 20, N = 100. Figure (3.2) shows the

baseline hazard function estimate for a particular item. The Breslow estimator appears to reconstruct the

baseline cumulative hazard functions well except at the right boundaries. The Markov chains in Figure (3.3)

and (3.5) appear to have reached equilibrium, and have small autocorrelations beyond the first couple lags.

Table 3.6 compared between MIC and MICT with N=100 and the length of the item bank J = 500.

Several covariance structures for the person parameters θ and τ and the item parameters b and β are

considered. Two CAT exam scenarios are simulated: fixed length test and viable length test. Mean Squared

Errors (MSE) for θ and τ estimations as well as the average time to complete the test are listed. Both MIC

and MICT estimated θ and τ very well with small MSEs in both fixed length and viable length tests. As

expected, MIC’s estimation is sightly better than MICT’s due to the design of the maximization paradigm.

MICT substantially reduced the average time examinees take to complete a test. It is very desirable because

it shows that with the information of response times, we can better control the duration of the exams.

Table (3.7) listed the MSE for θ and β, the average time to complete a test, and χ2 statistic when a

stratification with b blocking (ASB) exposure control is incorporated into the CAT item selection procedure.

Without the exposure control, both MIC and MICT yielded very skewed exposure rate distribution with

very high χ2 values. When ASB was in place, the values for χ2 are reduced considerably for both difficulty

matching (DM) and time weighted difficulty matching (TWDM) item selection procedures. DM can be

viewed as the counter part of MIC whereas TWDM can be viewed as the counter part of MICT. Furthermore,

as expected, when response time information was taken into account, the average time for examinees to

complete a test is reduced. it is observed for both TWDM and MICT. Figure (3.5) showed that TWDM ASB

and DM ASB have more evenly distributed item exposure rates than that of MIC and MICT.
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3.5.1 Simulation Results

Table 3.1: Means and standard deviations for γ with J = 20, N = 100. The results are based on 25
replications, each replication has a MCMC chain of length 4000.

γ 0.81 0.76 1.05 0.56 0.97 0.98 1.31 0.87 1.05 0.67
γ̂ 0.83 0.78 1.09 0.61 0.83 1.01 1.34 0.87 1.09 0.72
sd 0.14 0.14 0.16 0.13 0.15 0.16 0.18 0.15 0.16 0.14

γ 1.12 1.38 0.78 0.9 1.26 1.17 0.7 0.86 0.86 1.19
γ̂ 1.22 1.3 0.84 0.92 1.29 1.21 0.75 0.78 0.75 1.2
sd 0.17 0.18 0.14 0.15 0.18 0.17 0.14 0.14 0.14 0.17

Table 3.2: The rooted mean square errors (RMSE) for the θ estimates from IRT and IRT+response times,
with J = 20, N = 100. The results are based on 25 replications.

IRT IRT+Response

RMSE 0.38 0.23

Table 3.3: Integrated absolute difference between the baseline cumulative hazard function H0(t) and the
Breslow estimator:

∫
|H0(t)− Ĥ0(t)|dt, with J = 20, N = 100. The results are based on 25 replications.

Item 1 2 3 4 5 6 7 8 9 10
Diff 1.39 1.2 1.46 1.15 1.54 1.55 1.41 1.86 1.27 0.89

Item 11 12 13 14 15 16 17 18 19 20
Diff 1.31 2.19 1.76 1.46 1.3 1.6 1.85 2.27 1.95 1.46

Table 3.4: Means and standard deviations for γ with J = 50, N = 400. The results are based on 25
replications, each replication has a MCMC chain of length 4000.

γ 0.31 0.26 0.55 0.06 0.47 0.48 0.81 0.37 0.55 0.17
γ̂ 0.31 0.26 0.57 0.05 0.48 0.5 0.82 0.38 0.55 0.19
sd 0.05 0.05 0.06 0.05 0.06 0.06 0.07 0.06 0.06 0.05

γ 0.62 0.88 0.28 0.4 0.76 0.67 0.2 0.36 0.36 0.69
γ̂ 0.62 0.89 0.29 0.41 0.81 0.68 0.2 0.33 0.37 0.7
sd 0.06 0.07 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.06

γ 0.54 0.71 0.54 0.75 0.42 0.17 0.77 0.88 0.55 0.28
γ̂ 0.54 0.71 0.54 0.77 0.43 0.19 0.77 0.89 0.58 0.29
sd 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.07 0.06 0.05

γ 0.49 0.93 0.35 0.95 0.7 0.89 0.18 0.63 0.99 0.13
γ̂ 0.49 0.95 0.35 0.96 0.67 0.9 0.18 0.64 0.99 0.14
sd 0.06 0.07 0.06 0.07 0.06 0.07 0.05 0.06 0.07 0.05

γ 0.33 0.87 0.78 0.83 0.6 0.49 0.78 0.88 0.21 0.31
γ̂ 0.33 0.91 0.78 0.82 0.61 0.5 0.8 0.89 0.21 0.29
sd 0.06 0.07 0.06 0.07 0.06 0.06 0.07 0.07 0.05 0.05

Table 3.5: The rooted mean square errors (RMSE) for the θ estimates from IRT and IRT+response times,
with J = 50, N = 500. The results are based on 25 replications.

IRT IRT+Response

RMSE 0.25 0.17
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Figure 3.1: θ v.s. estimated θ from both IRT and IRT+response times, with J = 20, N = 100. The results
are based on 25 replications.
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Figure 3.2: Baseline Hazard function v.s. estimated baseline hazard function for selected items, with J = 20,
N = 100.
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Figure 3.3: Selected MCMC chains for θ and γ J = 20, N = 100. Each chain has length = 4000 with an
burn-in period =1000.
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Figure 3.4: θ v.s. estimated θ from both IRT and IRT+response times, with J = 50, N = 400. The results
are based on 25 replications.
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Figure 3.5: Selected MCMC chains for θ and γ with J = 50, N = 400. Each chain has length = 4000 with
an burn-in period =1000.

Table 3.6: Comparison between MIC and MICT. Simulations were based on a 500-item bank, 1000 examinees.
cov(θ, τ) = 0 cov(θ, τ) = 0.5

Method Fixed Length Fixed Fisher Info Fixed Length Fixed Fisher Info

cov(b, β) = 0

MSE(θ)
MICT 0.044 0.034 0.052 0.047
MIC 0.025 0.044 0.026 0.036

MSE (τ)
MICT 0.002 0.002 0.002 0.002
MIC 0.002 0.003 0.002 0.003

Time to complete
MICT 71.636 83.867 75.728 83.127
MIC 114.965 102.432 114.443 98.671

cov(b, β)=0.5

MSE (θ)
MICT 0.040 0.034 0.028 0.033
MIC 0.024 0.034 0.025 0.035

MSE (τ)
MICT 0.002 0.002 0.002 0.002
MIC 0.002 0.003 0.002 0.003

Time to complete
MICT 71.292 88.350 69.167 93.682
MIC 111.752 103.580 100.850 104.112
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Table 3.7: Exposure control study. We implemented a-stratification with b blocking (ASB) with Difficulty
Matching (DM) and Time Weighted Difficulty Matching (TWDM). Simulation was based on a 500-item
bank, 1000 examinees.

Statistic TWDM ASB DM ASB MICT MIC

cov(θ, τ) = 0,
cov(b, β) = 0

MSE(θ) 0.036 0.045 0.028 0.024
MSE(τ) 0.002 0.002 0.002 0.002

Time to Complete 100.156 115.226 74.885 116.346
χ2 9.722 3.881 128.395 93.526

cov(θ, τ) = 0,
cov(b, β) = 0.5

MSE(θ) 0.036 0.036 0.028 0.025
MSE(τ) 0.002 0.002 0.002 0.002

Time to Complete 102.563 117.228 77.716 116.817
χ2 9.006 3.533 125.455 93.346

cov(θ, τ) = 0.5,
cov(b, β) = 0

MSE(θ) 0.038 0.036 0.028 0.024
MSE(τ) 0.002 0.002 0.002 0.002

Time to Complete 89.294 103.67 68.181 103.332
χ2 9.065 2.252 126.771 93.751

cov(θ, τ) = 0.5,
cov(b, β) = 0.5

MSE(θ) 0.042 0.040 0.033 0.026
MSE(τ) 0.002 0.002 0.002 0.002

Time to Complete 86.725 97.713 66.879 99.945
χ2 9.373 4.526 123.571 95.827
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Figure 3.6: Exposure Rate Comparison with a simulated item bank J = 500 and N = 1000 simulated
examinees. fixed length tests with length L = 55 are conducted for both MICT and MIC. (a) cov(θ, τ) =
0, cov(b, β) = 0. (b) cov(θ, τ) = 0, cov(b, β) = 0.5. (c) cov(θ, τ) = 0.5, cov(b, β) = 0. (d) cov(θ, τ) =
0.5, cov(b, β) = 0.5.
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Appendix A

Proof of Theorems in Cluster Analysis

A.1 Proof of Theorem 2.2.1

The proof proceeds by constructing a sequence of partitions such that the maximum diameter of the solution

with M clusters in the space of the latent trait, ωmax,M , converges to 0 in probability as M goes to infinity,

and then we show that this implies ω∗max,M , the maximum of the cluster diameters under MDP with M

clusters, must do the same.

Construct the intervals [0, 1/M), [1/M, 2/M), ..., [M−2M , M−1M ), [M−1M , 1]. For a partition ΠM , let the cluster

Cm include all subjects such that the proportion correct 1
J

∑J
j=1 Ynj falls in the mth of these intervals. If

any of these clusters are empty, we redefine πM by subdividing nonempty clusters to arrive at a total of M

nonempty clusters. Now suppose that for some number α ∈ (0, 1), we have

| θn − θn′ |>
1

Mα
.

Then we show that the probability that they, or any other pair satisfying this inequality, fall in the same

cluster goes to 0, indicating that ωmax,M is less than 1/Mα, which converges to 0 as M goes to infinity..

Without loss of generality, assume θn > θn′ . Then define the expected value of dUn,n′ by

| Pn − Pn′ | =
1

J
|
∑

Pj(θn)−
∑

Pj(θn′) |

=
1

J

∑
Pj(θn)− 1

J

∑
Pj(θn′)

≥ C|θn − θ′n| ≥
C

Mα
. (A.1)

The inequality in (A.1) is due to the Mean Value Theorem and the assumption that there is a uniform lower

bound on slopes of item characteristic curves over the support of θ, denoted by C.

Denote the observed proportion correct for the nth subject as P̂n ≡ 1
J

∑
j Ynj . Then the probability that
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subjects n and n′ are placed into the same cluster can be bounded above by

P

[
| P̂n − P̂n′ |<

1

M

]
= P

[
− 1

M
< P̂n − P̂n′ <

1

M

]
≤ P

[
0 < P̂n − P̂n′ <

1

M

]
+ P

[
0 < P̂n′ − P̂n <

1

M

]
≤ P

[
0 < P̂n − P̂n′ <

1

M

]
+ P

[
P̂n′ − P̂n > 0

]
= I1 + I2.

Then applying Hoeffding’s Inequality and (A.1),

I2 = P
[
(P̂n′ − P̂n)− (Pn′ − Pn) > (Pn − Pn′)

]
≤ exp

[
−| Pn − Pn

′ |2

2J

]
≤ exp

[
−2C2J

M2α

]
.

Also by using Hoeffding’s inequality, we can bound I1.

I1 ≤ P

[
(P̂n − Pn) + (Pn − Pn′) + (Pn′ − P̂n′) <

1

M

]
= P

[
(P̂n − Pn) + (Pn′ − P̂n′) <

1

M
− (Pn − Pn′)

]
(A.2)

For big enough M (A.11) is less than

< P

[
(P̂n − Pn) + (Pn′ − P̂n′) < −

C

2Mα

]
< P

[
(P̂n − Pn) >

C

4Mα

]
+ P

[
(P̂n′ − Pn′) >

C

4Mα

]
≤ 2 exp

[
− C2J

16M2α

]
.

Then the probability that there is any pair with θ values farther than 1/Mα that fall into the same cluster

is bounded by

N(N − 1) exp

[
− DJ

M2α

]
, (A.3)
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for some positive constant D. Then (A.3) goes to 0 under the assumptions of theorem 2.2.1.

The method of proof given above shows that any sequence of partitions with dUmax,M ≤ 1/M results in

ωmax,M converging to 0 at a

A.2 Proof of Theorem 2.4.1

The proof proceeds much like the proof of Theorem 1. It is shown that a sequence of partitions of a given

maximum diameter can be constructed with a probability converging to 1. Furthermore, it is shown that

any partition having such a maximum diameter will result in the maximum diameter in the latent variable

space converging to 0 with probability 1. Because we have constructed one such partition, we know the

MDP must also satisfy this property.

Let W n = (Wn1, · · · ,WnK)′ be a 1 × K vector of summed scores for the nth examinee and define

V n = 1√
J
Q′J×KY n to be a rescaled version of W n. Under the model assumptions and when conditioning

on θn,

V n | θn ∼ N
(

1√
J
Q′βθn,Σ

)
,

for some covariance matrix Σ. Because θn is a latent random variable with mean 0, the unconditional mean

of V n is 0.

In order to determine how many clusters might be needed, we first wish to find a sequence Cn, such that

for each k,

P [max
n
|Vnk| > CN ]→ 0, (A.4)

where Vnk = 1√
J

∑J
j=1 qjkYnj .

P [max
n
|Vnk| > CN ] ≤ NP [|Vnk| > CN ]

≤ NP [Z > CN/
√

2] = NΦ[−CN/
√

2],

where Φ(·) is the normal cumulative distribution function. Note that for t ≥ 3, Φ(−t) ∼ 1√
2π

1
t e
−t2/2. So

when CN =
√

logN , (A.4) is satisfied.

For each coordinate k, Construct the intervals [−CN ,−CN+2CN/M), [−CN+2CN/M,CN+4CN/M), ..., [CN−

4CN/M,CN − 2CN/M), [CN − 2CN/M,CN ] of width Ln = 2CN
M . For a partition ΠM , let the cluster Cm

include all subjects whose V falls in the mth of the cubicles formed by taking the Cartesian product of these
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intervals over the K dimensions of V . If any of these clusters are empty, we redefine ΠM by subdividing

nonempty clusters to arrive at a total of M nonempty clusters. Thus ΠM will include all of the data with

probability going to 1. Now we must show that any partition with equal or smaller diameters will only

include points that are near one another in the latent variable space, with probability converging to 1.

Note that, the maximum distance of any two points within a cluster is less than the diagonal
√
KLn =

2
√
KCN
M . Now suppose that for some number α ∈ (0, 1), we have

ωnn′ = ||θn − θn′ || >
2
√
KCN
Mα

. (A.5)

Let Unn′ = (Unn′1, · · · , Unn′K)′ = [V n − V n′ ] and define the Euclidean distance between two V s as

dVnn′ =

√√√√ K∑
k=1

U2
nn′k.

Because E[V n] = 1√
J
Q′βθn, E[Unn′ ] = 1√

J
Q′β[θ−θn′ ]. Assume thatQ′β is full rank such that E[Unn′ ] =

0 if and only if θ = θn′ . For consistency, we must show that when θn and θn′ are at least 2
√
KCN
Mα apart, it

implies that there is little chance the two subjects will be clustered together. Specifically,

P

[
dVnn′ <

2
√
KCN
M

]
→ 0, (A.6)

and for a stronger version we multiply the probability above by N(N − 1) to show it holds for all pairs

simultaneously.

Observe that
√
K | θnk∗ − θn′k∗ |>

2
√
K logN

Mα
,

where k∗ = maxk |θnk − θn′k|. Without loss of generality, we assume that θnk∗ > θn′k∗ and

θnk∗ − θn′k∗ >
2
√

logN

Mα
. (A.7)

Note that Unn′k∗ ∼ N(µk∗ , ψ̃
2
k∗), where

µk∗ =
1√
J

J∑
j=1

qjk∗(θnk∗ − θn′k∗)βjk∗ >
2
√

logN

Mα
√
J

J∑
j=1

qjk∗βjk∗ ,
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and

ψ̃k∗ =
2

J

J∑
j=1

qjk∗ψj .

Then

P

[
dV nn′ <

2
√
KCN
M

]
< P

[
Unn′k∗ <

2
√
KCN
M

]

< P

Z <

2
√
KCN
M − 2

√
logN

Mα
√
J

∑J
j=1 qjk∗βjk∗

2
J

∑J
j=1 qjk∗ψj


J→∞−→ P

Z >

2
√
logN

Mα
√
J

∑J
j=1 qjk∗βjk∗

2
J

∑J
j=1 qjk∗ψj

 ≡ P [Z > t], (A.8)

where

t =

2
√
logN

Mα
√
J

∑J
j=1 qjk∗βjk∗

2
J

∑J
j=1 qjk∗ψj

∼ O
(√

J logN

Mα

)
.

Then the probability that there is any pair with θ values farther than 2
√
KCN
Mα that fall into the same

cluster is bounded by

N(N − 1)P [Z > t] . (A.9)

By once again bounding the tail of a normal probability, we see that the probability there is any pair of sub-

jects with θ values differing by at least 2
√
KCN
Mα placed in the same cluster is of orderO

(
N2 Mα
√
J logN

exp
[
−J logN

M2α

])
.

By the assumptions of the Theorem, this converges to 0, implying consistency in the latent variable space

for any partition with a maximum diameter less than 2
√
K logN
M . Furthermore, by construction we know

such paritions exist with probability converging to 1, so consistency must also hold for a sequence of MDP

solutions.

P

[
d2nn′ <

4KC2
N

M2

]
= P

[
d2nn′ −Ed2nn′ <

4KC2
N

M2
−Ed2nn′

]
≤ P

[
Ed2nn′ − d2nn′ > Jλmin

2KC2
N

M2α
− 4KC2

N

M2

]
≤ P

[
| d2nn′ −Ed2nn′ |> Jλmin

2KC2
N

M2α
− 4KC2

N

M2

]
≤ var[d2

nn′ ]

(Jλmin
2KC2

N

M2α −
4KC2

N

M2 )2
(A.10)

The inequality in (A.10) is due to Chebyshev’s inequality. Then we analysis the variance of d2nn′ , Note
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that Unn′k ∼ N(µk, σ̃
2
k), where

µk =
1√
J

J∑
j=1

qjk(θnk − θn′k)βjk ∼ O(
√
J),

and

σ̃2
k =

2

J

J∑
j=1

q2jkσ
2
j ∼ O(1).

Note that σ2
j = var[enj], where enj is defined in (2.9). So

var[d2
nn′ ] = var[

K∑
k=1

U2
nn′k] =

K∑
k=1

var[U2
nn′k]

=

K∑
k=1

2σ̃4
k + 4µ2

kσ̃
2
k ∼ O(J).

P

[
dWnn′ <

2
√
KCn
M

]
≤ P

[
max
k
|Unn′k| <

2
√
KCn
M

]

the maximum distance of any two points is less than the diagonal

P

[
| P̂n − P̂n′ |<

1

M

]
=

n(n− 1)

2
P

[
| P̂1 − P̂2 |<

1

M

]
=

n(n− 1)

2
P

[
| (P̂1 − P1)− (P1 − P2) + (P2 − P̂2) |< 1

M

]
< n(n− 1)P

[
(P̂1 − P1) + (P2 − P̂2) < − β∗1

Mα

]
≤ 2n(n− 1)P

[
P̂1 − P1 >

β∗1
2Mα

]
≤ 2n(n− 1)e

2β∗1J
M → 0. (A.11)

The last inequality in (A.11) is obtained by Hoeffding’s Inequality. Based on (??) and (A.11), we see

that the probability of two subjects whose latent traits are far apart to be clustered into one cluster goes to

zero provided N, J,M → ∞, J
M → ∞, N

M → ∞ and N2e−
2J
M → 0. Therefore, the unidimensional distance

measure in (2.2) yields consistent clustering result.
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