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Abstract

Regulatory Compliance in current industries has become a mandatory requirement of every day business.

Many of regulations and policies set standard of conduct by insiders, who, by definition, have been entrusted

with authorized access to the system. Therefore, existing security measures that aim at protecting the sys-

tem from unauthorized access from outside are ineffective in providing sufficient protection and compliance

solutions.

In considering the compliance solution for current industries, it is vital that the cost of compliant is justifiable

for companies. That is, if the costs such as system migration and operational cost outweigh the business

value and societal benefits brought on by compliance, there is no rationale for the companies to actively

install compliance solutions.

This thesis reviews and extends transaction log on WORM (TLOW) architecture [4], a practical compliance

solution that supports long-term immutability for relational tuples. Given that majority of enterprise in-

formation systems are supported by RDBMS, TLOW allows for smooth transition to the compliant system

minimizing the cost and user resistance in its adoption. This thesis aims to solidify the TLOW architecture

by internalizing the Audit Helper (AH) module, allowing for securer and more efficient operations by the

module.
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Chapter 1

Introduction

1.1 Background

Regulatory Compliance in current industries is no longer just a “recent phenomenon” but a mandatory

requirement in every day business. Advances in information technology in the past decade has had a profound

impact on industrial enterprises’ internal infrastructure and their business, by making it easier than ever

to process, share, and store increasing amount of information. Such expansion of scale and capability of

information systems and its management have naturally driven the need for security measures to ensure

that its impact is contained. Security and risk managements of systems from unauthorized accesses and

malicious attacks from outside entities, including hackers, corporate spies or even natural disasters, have

been an integral part of its evolution. However, concerns for insider attacks have been relatively recently

brought into headlights following a number of major corporate and accounting scandals, for example, those

involving Enron and WorldCom. A lot of existing security measures such as access control and intrusion

detection are often ineffective against insider attacks because by definition, insider is someone who has been

entrusted with authorized access to the network, and also may have knowledge of the network architecture

[2]. This implies that defense against insider attacks is partly of administrative issues, requiring policies

and regulations to set the guidelines of what is socially acceptable use of the systems privileges the insiders

have. As a result, US Alone has seen more than 10,000 state and federal regulations mandating secure

management of business records [1, p. 358]. These regulations cover wide varieties of industries, and some

of the well known ones include:

• Sarbanes-Oxley Act (SOX)

Enacted in 2002, SOX requires financial and accounting transparency from all publicly listed companies,

subject to independent audits.

• Health Insurance Portability and Accountability Act (HIPAA)

Enacted in 1996, and governs fair health insurance coverage and a national standard for electronic
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health and/or medical data storage and transactions.

• SEC (Securities and Exchange Commission) Rule 17a-4

Requires brokerage and trading companies dealing with financial securities (e.g. bonds, stocks) to

provide data retention, indexing and accessibility for their business records and transactions.

• Gramm-Leach Bliley Act

Enacted in 1999 and requires financial institutions to have protection policy for data integrity and

security.

These regulations govern different industries and enforce different rules, but commonly impose heavy finan-

cial penalties or criminal charges on companies that fail to comply. For example, in 2005, Deloitte & Touche

was fined $50 million when the firm failed to detect accounting fraud at Adelphia Communications Corp.,

which is the largest penalty the SEC had ever levied against an accounting firm [11].

In their pure form, these industrial regulations are almost always technology-free, meaning that there are

no specific technological implications in implementing them. However, the fundamental requirements of a

compliant information system features can be generalized as follows:

1. Tamper-proof (long term) data retention

Secure and trust-worthy storage of data in such a way that it is not subject to both outsider and insider

attacks. Retention period differs between regulations and data, and willful destruction or tampering

can result in criminal charges.

2. Auditable trail of data

Recording any access and changes (legitimate or otherwise) to the stored information.

Tamper proofing may be partially achieved by stringent auditing of accesses/changes, which will act

as a deterrent for any tampering attempts. Sanitization of the audit record/logs is also an important

requirement for protecting privacy of users, as these records are likely to be viewed by third party

auditors.

3. Querying of data across versions

Ability to search and query the retained data is of vital operation for auditors. In enabling this

functionality, it is important to ensure that it cannot be abused in a way that allows adversaries to

hide or alter the historic view of the data (e.g. index manipulation).
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4. Secure deletion with support for litigation holds

Guaranteed deletion beyond recovery is required for some regulations, after the predefined retention

period is expired. However, if a piece of data is subpoenaed in court, it must be retained regardless of

the expiration.

These requirements are derived from the common data management and provability obligations underlying

many of the aforementioned regulations. For more detailed list, please refer to [3].

1.2 Write-Once-Read-Many Storage Servers

Perhaps the most prevalent technology currently available for business organizations’ compliance solution is

the Write-Once-Read-Many (WORM) storage devices. However, WORM is not a new technology that was

developed solely for compliance solutions. WORM devices were developed in the late 1970s mainly for the

archival purposes. WORM technology allows data to be written to the device once and are intentionally not

rewritable to prevent accidental deletion of data, allowing data retention in general, which in turn provides

a suitable foundation for compliance solutions.

The common CD-R and DVD-R are technically WORM storage media, but in the context of regulatory com-

pliance, the WORM server refers to a specialized storage system that provides data retention that is immune

to deletion or modification even by a superuser of the system. Most of currently available WORM storage

servers, as marketed by many vendors including IBM and HP [5, 6], support immutable data retention at

file level, making it not directly applicable for the majority of enterprises that have their systems backed

up by databases. It is possible that such WORM servers be used as-is to provide compliance solutions,

by utilizing them as a backup storage to which the snapshot of the organizations database are dumped at

regular basis. However, this is inefficient use of storage space and the time to make a copy of the database

snapshot, because both increase exponentially as the size of the database increases. Because of these costs,

it is only feasible to create and store database snapshots at relatively regular time interval, say daily or

weekly, and this opens up the window of time when a transaction commits data to the database but not yet

copied to the WORM server, during which the data could be tampered with. A naive solution to this, as

discussed in [8], is to either store each tuple and subsequent versions of it in a separate file on WORM, or to

store new version of database snapshot after each transaction commits. However, the transaction overhead

of these solutions will be too expensive to warrant normal database operations, let alone tamper proofing

the data. Also, unless the database is locked while the database snapshot is copied, thus suspending the
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normal usage, an adversary could still tamper with the data.

It is clear that WORM server cannot provide compliance solution by naively adopting it as it is or as a

replacement for the database storage server. It is vital that the solution is practically applicable in the

real industry settings, taking into account that from the organization’s point of view, spending funds to

become compliant should be justified by added business values. Naive solutions as above where operational

costs more than offset the benefit of achieving compliance would only increase organization’s resistance and

deferment to adopting the compliance solution. Researchers have proposed compliant DBMS with tuple-

immutability leveraging on the capabilities of WORM servers [8, 4], introducing more viable compliance

solutions.

1.3 Contributions

This work is an extension of the Transaction Log on WORM (TLOW), the compliant relational database

architecture introduced in [4]. The main contribution of this thesis is in improving the security and efficiency

of term-immutable data retention and audit process of transactional history in TLOW. More specifically, this

work focuses on the integration of the Audit Helper (AH) module into the DBMS kernel to take advantage

of the reliability and security provided by the DBMS, and hence minimizing the vulnerability of isolated

AH module and its interaction with the DBMS. An underlying assumption is that commercially available

databases are secure; this assumption is based on the fact that DBMS is a tried-and-true technology where

security of data stored is one of the fundamental requirement. Another supporting argument is that the

commercial DBMS’ source code is rarely available to public, and this provides some level of protection from

hackers.

As part of integrating AH module into DBMS kernel, the following contributions are made:

• Examine threats of compromised external AH.

• Justify the changes to the DBMS kernel by analyzing the benefits of kernel-AH module.

• Discuss design goals of Kernel-AH, including improving security, reliability, performance and ease of

use.

• Provide experimental results of Kernel-AH against TPC-C benchmark, and compare the performance

and efficiency of the new system.
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The rest of this thesis is organized as follows: Chapter 2 discusses the Transaction Log on WORM

(TLOW) architecture which this thesis aims to improve, and in Chapter 3 the motivations for this thesis

including threats of current TLOW architecture are outlined. Chapter 4 evaluates the implementation and

experimentation of the new improvements proposed, followed by the conclusion in Chapter 5.
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Chapter 2

Transaction Log on WORM Architecture

This work extends on a previous work by Hasan et al. called TLOW, which is a compliant relational DBMS

architecture. TLOW leverages on the WORM storage server’s tamperproof guarantee at file level to support

term-immutable tuples, drawing out a more feasible compliance solution for most of the enterprises in the

industry.

Cost of compliance is one of the biggest obstacle for companies becoming compliant with policies and reg-

ulations in the respective industries, and is often more severely encountered by smaller companies. In an

EIU survey, more than 40 percent of IT managers in the US and Asia Pacific and 35 percent of EMEA

respondents cited budgetary constraints as one of the biggest obstacles in achieving compliance objectives

[7]. Therefore it is important that the compliance solution is easily adoptable and inexpensive, such that it

ultimately adds business value to justify the cost incurred in the process, such as the cost of system migration

and training. The benefit of making compliance easily achievable by small or large corporates translates to

social benefit. Given that the relational database is still the mainstream technology of choice for supporting

information systems, TLOW introduces a compliant relational DBMS architecture that is a step further in

the direction of practical compliance solution for the real industry.

2.1 Threat Model

2.1.1 Threat Parameters

TLOW describes two parameters for its main threat model, as shown in figure 2.1. These parameters

represent the time windows of attack by adversaries, in that minimizing them will decrease the chances of

attack.

The regret interval refers to the minimum time that can be assumed between a successful commit of a

tuple and when an adversary tries to tamper with it. For example, daily backup of database snapshots in

WORM, which is a common practice in the industry, has a regret interval of a day. Email compliance under

6



Figure 2.1: Threat Parameters

SEC enforces zero regret interval, meaning that the email must be archived on WORM server before it is

forwarded to the recipient. The query validation interval is the time between when a user issues a query and

when the auditor validates the query result. This interval represents the period during which an adversary

may tamper with the data and then revert the modifications. The result of this is that the affect of the

tampering can persist and possibly propagate in the database without the trace of the original tampering

being detected by an audit process. For example, an adversary could double the net income just in time for

an annual report generation, and revert the changes after the report is filed. This type of tamper-untamper

attack is called “State Reversion Attack”. Because the auditing process for a company is often disruptive

to its normal day-to-day operations including system and data usage, in reality many industries mandate a

relatively infrequent, say yearly, audits. This opens up the vulnerability towards the state reversion attack.

TLOW counters this problem by adopting probabilistic detection of state reversion attack by more frequent

and faster internal audits. The Audit Helper (AH) module of TLOW is responsible for this task, which is

discussed further later in this thesis.

2.1.2 Regret-Based Threat Model

TLOW focuses on regret-based threat model for transaction-time databases [4]. This threat model reflects

the malicious activities that regulations such as SOX and SEC Rule 17a-4 are intended to prevent, and it

assumes that the procedures and systems external to database are not compromised, including DBMS. That

is, when the data is initially written to the database it is correct and authoritative, as it is assumed that

the data is generated and captured according to strict internal policies and processed by secure software.
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This rules out the possibility of the adversary abusing the policy or attacking the software; while these are

all valid attack scenarios, database normally has no control outside of itself, and therefore it makes sense to

limit the threat model and doing so does not affect the correctness of the TLOW architecture.

Regret-based threats are concerned with insider attacks, where authorized users possibly with super user

access tries to tamper with the history of stored data, by update, insert or delete record with past datetime

stamp. For example, a mal-intentioned financial executive might bribe the DBA to delete records for lia-

bilities and change or insert new backdated records inflating the company’s income and cash flow so that

the balance sheets only show favorable performance, deceiving shareholders and investors. This example is

similar to the Enron scandal in 2001 [10].

Given that the external system is assumed to be “healthy”, i.e. not hacked, an adversary can forge his-

tory by changing the database file or log files, using text editor or a separate, non-compliant DBMS. Or

with a super user access, the adversary can also read or write any internal files through DBMS within the

limits allowed by the DBMS and the server hosting it. TLOW architecture makes the following premises for

possible attack scenarios:

• DBMS and storage server prevent tampering attempts on the transaction log while DBMS is up. That

is, only the DBMS is able to write to the transaction log while DBMS is up and running (transaction

integrity).

• Adversary cannot tamper with data while it resides in the DBMS page cache, such that when a new

transaction arrives at the DBMS, the DBMS correctly executes it.

• DBMS has nonzero regret interval.

• There are only negligible delays in communication between the DBMS and storage servers and in

performing simple writes to storage, such as the appending of a new blog to a log.

• Auditor has a trustworthy source of information regarding the time of each crash or shutdown and

system reboot at the WORM server time, occurred since the last audit.

• WORM storage server operates properly, including the anti-tampering provisions of WORM server

clock.

• DBMS and WROM storage server clocks are roughly synchronized, with limit of within r/2 time unit

difference at all times, where r is the length of the regret interval.
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History forgery is certainly not the only possible form of attack that a compliant system is concerned with.

Regulatory compliance is a complex issue with administrational requirements such as policies and code of

conduct, as well as system requirements that extends the conventional definition of a secure system. For

TLOW architecture to be fully compliant, above assumptions must be supported by the means of other

security controls and techniques, for example access control, database backup and crash recovery, which are

normally expected features of any commercial DBMS.

2.2 Architecture

Figure 2.2: TLOW Architecture

TLOW architecture employs transaction-time database, where every insertion, modification or deletion of

records inserts a new version of tuple into the database with updated start time (or equivalently, end time)

timestamp that marks the transaction commit time of the action involving the tuple. For deletion, a special

end-of-life tuple is inserted as a “flag”, marking it as deleted. TLOW utilizes transaction-time databases in

order to retain all versions of tuples, using historic versions of tuples to verify if a modification was made by

legitimate system-database interactions or by data tampering attempts. The transaction-time DBMS can be

provided by a software layer encapsulating an ordinary DBMS, and is compatible with legacy applications

that only interacts with the most recent tuple versions through transparent query modifications, performed

by transaction-time software layer. This adaptable solution for transaction-time database is consistent with

low cost of compliance imposed by TLOW architecture.

The name TLOW, transaction log on WORM, is quite self-explanatory of its overall architecture; TLOW

stores the current database instance on ordinary storage, and the transaction log L and the snapshot of the
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database contents as of the last audit on WORM storage, as shown in figure 2.2. The DBMS engine must

perform transaction log flush to WORM and new log file creation every r/2 time unit in order to detect

clock tampering attacks on DBMS.

Auditing process then uses the data that are stored in WORM, which provides the necessary assurance

regarding the integrity of the data and thus trustworthy auditing given that WORM is used as trusted

computing base in the overall TLOW architecture.

2.2.1 Audit Process

TLOW uses cryptographically strong incremental hash function H to support more efficient audit process.

The hash function H has following characteristics:

• H operates on a set {a1, ..., an}, that is, duplicate elements are ignored and the order of elements does

not affect the result of hash.

• As an additive hash function, it is simple to compute H({a1, ..., an}) given H({a1, ..., an−1}) and an.

Intuitively, this is equivalent to H({a1, ..., an}) = H({a1, ..., an−1}) + H({an}).

• H is preimage resistant such that given h, it is hard to find ({a1, ..., an}) such that h = H({a1, ..., an})

(i.e. H is one-way function), and given one set {a1, ..., an}, it is hard to find a different set {a′1, ..., a′n}

("= {a1, ..., an}) that computes to the same h, i.e. H({a1, ..., an}) = H({a′1, ..., a′n}).

The audit process by TLOW is shown in figure 2.3. An auditor stores a snapshot of database state and

its cryptographic hash to the WORM Storage server at the end of each audit. These are signed by the

auditor to guarantee the authenticity and integrity of data. Then during the next audit process, the auditor

checks for the signature and then generates hashes from the transaction log L and the current database

snapshot. Because the hash function H is additive (incremental), if this audit is to succeed, the sum of

the hash of previous database snapshot stored in WORM and the generated hashes of L’s new tuple entries

should be identical to the hash of the current database snapshot. TLOW identifies this property as the tuple

completeness condition, represented with the following notation:

H(Dc) = H(Do) ∪H(L)

where Dc refers to the current database snapshot, Do the old (previous) database snapshot after the last

audit.

Intuitively, this means that the auditing cost is dependent on the size of current database snapshot Dc and

the transaction log L which is only limited by the size of the DBMS and disk on which the L is stored,
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Figure 2.3: TLOW Audit Process

potentially making the audit process too inefficient. Given that this auditing process needs to take place

while the ordinary business and operations are put on hold, slow auditing process is prohibitively costly for

the organizations. TLOW employs several techniques to speed up the auditing process; The Audit Helper is

an automated real-time auditor introduced by TLOW, which will discussed in the following section. Another

audit performance optimization TLOW uses is to effectively reduce the size of database. This cost is due

to the need to compute H(Dc) at every audit. Because TLOW uses transaction-time database, the size of

the database, and thus the time cost of scanning the database, steadily grows over time. By migrating old

versions of tuples to WORM and using time-split B+ tree, both audit processing and normal transaction

processing can be optimized without losing the ability to retain historic data.

It should be noted that the tuple completeness checking is not the only part of the auditing process. For

example, the auditor must make sure that the index files are not tampered with, which may be modified or

deleted to enable other data tampering attempts to be hidden in the database. Detailed description of other

audit tasks are explained in [4].

2.3 Audit Helper

Audit Helper (AH) in fact serves two purposes within TLOW architecture as described above. Its primary

function is to perform real-time incremental auditing, allowing the time cost of audit process to be spread

out during the normal database operations between audits rather than incurring the total cost at once,

during every audit. This is achieved by the AH module reading new entries in L as soon as it is written, and
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computing the hash of new tuples found in the log and outputting the result to a file H on WORM. This is

the same tasks performed by auditors during the audit process, only difference is that AH is automating the

process in real-time. There is a time restriction that the hash needs to reach WORM within r/2 time units,

in order to thwart the adversary’s attempts to tamper with data. Also, in order to assure the authenticity

of AH and prevent the adversary from tampering AH to breach the security of TLOW, AH signs its H with

a key that the auditor knows, but adversary cannot obtain.

During audit time, the auditor cross checks L and H, both sanity checking and to make sure that each entry

in H has corresponding legitimate COMMIT record (i.e. not backdated entry by the adversary) in L, and

it is within r/2 time units of each other. If these checks pass, auditor needs to compute the hash of current

database snapshot and test if that equals the sum of the L hash and the hash of previous database snapshot.

On the other hand, if either the sanity check fails or a non-trustworthy entry is found in L, for example,

untimely COMMIT timestamp, then the auditor has to manually carry out the audit process disregarding

AH and H.

AH also provides probabilistic detection of the state reversion attack. While perfect detection is possi-

ble with a technique called hash-page-on-read [Mitra?], authors of TLOW reason that the cost of perfect

detection is likely to offset the benefit gained; this is acceptable given that the state reversion attack is by

no means the most prevalent form of data tampering. Another point is that state reversion attack usually

requires at least some duration of time for the tampered data to persist in the database, in order to be

effective. A quick tamper-untamper attack could generate evident anomaly that is easier to detect than a

longer tamper-untamper attack, which could generate a more trend-like changes in the record. Obviously,

if a state reversal attack succeeds within the timeframe of subsequent audits, it will not be detected by the

tuple completeness check and its effect will go undetected. By having the AH perform real-time incremental

auditing, the timeframe for the attack is dramatically reduced to subsequent transactions, with upper limit

of r/2 time units.

There is clearly a tradeoff between perfect detection and the cost of doing so, which should be left for policy

makers to define the priority of, as the policy and regulation define compliance.

Current implementation of AH in TLOW architecture is as a stand alone module that is not programatically

integrated into the overall architecture. AH can be hosted on the DBMS server or on its own server, with

the restriction that the host server clock must be synchronized with WORM server clock within r/2 time

units. While this separation may provide system portability and modularity between the normal DBMS
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operations and audit operations, compliance and audit support are the main focus of TLOW architecture;

this suggests that prioritizing security and trustworthy of audit support is more important than preserving

the side effect of implementation design. These observations are the basis of the design decision to integrate

the AH module fully into the DBMS kernel (kernel-AH), and the next section discusses in further detail the

motivations and expected benefits of the kernel-AH.
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Chapter 3

Motivation for Kernel-AH

This section lays the groundwork for Kernel-AH, discussing motivations for porting AH module into DBMS

kernel, design goals and the tradeoff between expected benefits and costs.

The underlying assumption of this thesis is that the commercial DBMS has built-in security measures,

for both the system and its data, that are assurable - at least to a certain level that enables the “clients”

of the DBMS to entrust data storage and management. Porting AH module into the DBMS kernel allows

AH to leverage on this accepted security guarantees, and to therefore improve the overall security of TLOW

architecture.

The isolation of AH module from DBMS in the current implementation of TLOW is the main area of focus

through which to achieve architectural enhancement. Given that the commercial DBMS is securer than

an external plug-in module, communication within the DBMS should be more protected compared to that

between the DBMS and the plug-in where the communication link is outside the control either parts. The

goal is to manage all modules within a single system in its entirety.

Another assumption is that it is very unlikely that the source code of the commercial system to be available

to public, adding to the security of the system from external hackers trying to exploit certain features or

possible bugs to attack it or the stored data.

3.1 Threats of Tampered AH (TAH)

[4] outlines how TAH may allow backdated tuple insertion. An adversary first tampers with the current in-

stance of database to include a pre-configured backdated tuple t′, and then replaces the AH with a tampered

AH (TAH). TAH is modified so that when the DBMS commits a transaction T while the TAH is running,

TAH hashes the new tuples in T , say tT , plus t′ and outputs it to H. Then the original AH may be restored

to carry out auditing as usual. Because the sum of hashes in H equals H(Dc), the auditor will not detect
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the false data t. This shows that if the database and TAH reflect the same data tampering in a coordinated

manner, masking the falsely inserted tuple is possible. Backdated modification or deletion is considerably

more difficult, which invloves removing the hash of original tuple t and adding the hash of backdated tuple

t′ and write to H after the transaction T commits:

H(tT − t + t′)⇒ H

Note that because the hash function is strictly one-way, above computation is assumed to be impossible.

Adversary can also attack TLOW by disrupting the AH functionalities, increasing the query validation in-

terval and effectively allowing more time to plant a state reversion attack. This is because without AH’s

frequent audits, tuple completeness check cannot be done to detect state reversion attack that is underway.

A possible attack scenario is that the adversary may replace AH with TAH which adds arbitrary values to

H(Dc) so that H no longer mirrors the state of database and obscure what the “correct” state of the database

is. This particular attack will be deteced in the next internal audit through the tuple completeness check,

but if the adversary’s goal is to simply disrupt the system, in the similar way was the DOS attack, then the

attack succeeds, as forensic analysis must take place to determine the health of the system

Researchers of TLOW suggest that these attacks can be thwarted by requiring AH to digitally sign its

H using a key that the adversary cannot easily obtain, with inexpensive TPM to safely maintain a key seed

that is known to the auditor to generate the hash key for auditing. Then AH can use a cryptographic hash

function hk with key k, to compute the hash hk(i) where i is the new tuple found in the log, and appends

this to H. Also, apart from keyed tuple hashes, AH needs to be able to prove itself as a legitimate copy to

the auditors, for example using a certified code.

These cryptographic techniques and access controls are industry standards and therefore provide viable so-

lutions for protecting AH, but such supplemental security measures add to the complexity of the overall

architecture and the cost of system management. We believe the same benefits of TLOW architecture can

be achieved with kernel-AH, where AH functionalities are hosted and performed as a part of DBMS ker-

nel operations rather than a stand-alone module. The following section describes design goals guiding the

implementation of kernel-AH, focusing on preserving both DBMS and AH functionalities while minimizing

disruption to the kernel.
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3.2 Design Goals

3.2.1 Security

Major threats to AH and consequently to TLOW architecture are explained in the previous section. Using

the existing security software and hardware components can provide AH the same level of security guarantee

that is asserted by TLOW, albeit not bulletproof; for example, TPM attack is possible [?]. Based on

this consideration, the biggest damage the adversary can cause is nullifying AH module, by attacking the

correctness of audit and disabling frequent internal audits.

Kernel-AH has benefit of escalating threats and attacks to AH to be handled by the DBMS, which is trusted

to have securer protection. For example, any attacks to replace or kill the kernel-AH must go through the

security walls of DBMS. This is considerably more difficult given that any form of attack is likely to require

rebooting the DBMS which is very detectable either by an audit or by system users.

An important consideration in implementing and supporting AH functionality in the kernel is that it must

not introduce new security holes in the DBMS so that the trustworthiness of DBMS is not compromised.

Additionally, the DBMS users should be able to configure and use kernel-AH through a narrow API that

allows access to full functionality of AH while limiting possible abuse of the system. Given that AH is

originally designed to be an automatic internal audit processor that does not require much user control, such

implementation is logically possible.

A side-effect of kernel-AH is that there is no need to separately authenticate AH to auditor with cryptographic

hash function to write to H or TPM to manage keys, and having less sensitive information to manage

generally means less threats that can be exploited by adversaries.

3.2.2 Reliability

The first and foremost reliability concern follows from the security of modifying the database kernel. The

kernel modification must ensure that security of DBMS is not affected, as well as that the existing DBMS

functionalities are unchanged, such that the DBMS remains reliable. Note, however, that the purpose of

Audit Helper is to additionally store audit information based on the data stored in the database, without

changing the new or existing data. With AH only carrying out “read-only” operations within the database

kernel, there is no conflict between kernel and AH operations and therefore kernel-AH implementation with

no database function change is possible.

The original implementation of AH allows transparency between AH and DBMS in regards to crashes in

either modules, that both AH and DBMS can withstand and perform as normally when the other module
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crashes and restarts. This is consistent with having minimal effect to the normal DBMS functionalities and

the kernel-AH implementation should maintain this property.

3.2.3 Performance

One of the biggest motivation behind kernel-AH is in improving the efficiency of AH operations. In the

current TLOW implementation, AH scans transaction log L to locate and re-parse a new tuple record before

it hashes the tuple to write H. In effect, AH continuously polls the database log file(s) in a predefined time

interval to detect new tuples in log entries. Better efficiency can be expected from kernel-AH by removing

this costly scanning and re-parsing of log entries, as the kernel-AH module can have direct access to the

tuple objects after the tuple is written to both the data store and to the transaction log by the DBMS kernel.

Another aspect of performance is latency. In the current implementation, by having the AH as a separate

operation from the normal database transaction processing, AH does not interfere with the database reads

and writes and thus there is no impact on the transaction latency of DBMS. Ideally, the kernel-AH should

maintain this property in order to lessen user resistance because system users are likely to relate the visible

behaviors of the system, and their direct experiences, to system usability. This is heavily dependent on

the implementation of kernel-AH, but an observation is that because AH operations are never in conflict

with database operations, similar performance may be achievable with kernel-AH by multithreaded DBMS

processes. With a single-threaded implementation, kernel-AH is likely to have higher run time overhead

compared to the original implementation.

3.2.4 Easier Compliance

The ultimate goal of incorporating AH module into DBMS kernel is to fully support TLOW architecture

in a single system. This simplifies configuration and management of the system, compared to separately

installing and looking after multiple modules to provide full functionality of the system.

AH plays relatively auxiliary role in providing regulatory compliance in the overall TLOW architecture.

The two main functionalities that AH perform, which are improving the speed of the audits and providing

probabilistic detection of state reversion attacks, are either already provided by basic TLOW design, or can

be replaced with an alternative technique. For the audits, the auditor can perform tuple completeness check

on the entire L since the last audit without the help of AH which results in a considerably longer audits, and

for the detection of state reversion attacks, hash-page-on-read technique can be used for complete detection

at the cost of transaction performance overhead. However, these incur prohibitively expensive costs to the

organizations both in terms of time and resources, for example having to suspend the normal business usage
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of the database for audits. Arguably, this type of business cost determines how practical it is to adopt the

compliance system such as TLOW. This shows that promoting better protection and integration of AH in

the TLOW architecture has significant business value as well as the systematic benefits describe above. This

is very important as regulatory compliance is more relevant to administrative decision than technical one.
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Chapter 4

Empirical Evaluation

Kernel-AH has been implemented as a proof of concept system on Berkeley DB version 4.7.25, following the

design goals described in the previous section. The main implementation task was to reorganize, but not to

extend the TLOW architecture. That is, the implementation of the TLOW with kernel-AH is based on the

original TLOW system, without any changes to the functionalities supported.

This section describes some of the the implementation decisions, analyses the performance of kernel-AH and

possible future improvements.

4.1 Implementation

There are some notable implementation decisions in porting AH into the DBMS kernel. Following the secu-

rity considerations above, users of the DBMS are provided with narrow API that allows them to configure

kernel-AH in a restricted way. Specifically, the extent of user interaction required for kernel-AH is limited

to setting or removing the compliance log (H) directory through DB ENV.set compliance dir function to

activate or deactivate the AH module within the DBMS kernel, respectively. These additional configura-

tion functions are provided in a consistent fashion as the existing DMBS-provided ones, such as setting the

database file directory and log directory, with the goal of supporting seamless API. Without the compliance

log directory set (i.e. set to NULL), DBMS operates as per normal.

The actual AH functionalities, which are hashing of new tuples and writing to H, are performed follow-

ing the normal transaction log (L) writes after each transaction commits. The current implementation

executes these operations serially. Further performance gain may be possible through multithreaded imple-

mentation, but proving that AH can be ported into the DBMS kernel with the least disruption was deemed

to be of higher priority.

The difference between the external AH and kernel-AH is the time of their operation. External AH hashes
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Figure 4.1: TPC-C Benchmark Results

newly inserted tuples in bulk when it detects a new log file and flushes the results to H file on WORM

every r/2 seconds. On the other hand, kernel-AH processes individual tuple as soon as it is written to the

transaction log file L.

4.2 Experimentation

Test environment for kernel-AH is consistent with that of TLOW evaluation [4]. The Shore implementation

of TPC-C benchmark was used to evaluate the performance of TLOW with kernel-AH. The DBMS was

hosted in a machine with a Pentium dual core 2.8 GHz processor, 512KB L2 cache, 4GB RAM, and a 1TB

hard disk. WORM server was simulated by a Pentium 2.8 GHz single core processor, 512KB L2 cache, with

a portion of its local disks exported as an NFS volume. The DBMS mounted the WORM volume over NFS,

and stored the logs there. Audit Helper’s output, H, is also stored in the simulated WORM server.

TPC-C performance was measured with regret intervals r of 30 seconds for TLOW with and without external

AH (TLOW-AH), and TLOW with kernel-AH (TLOW-KAH). The resulting TPC-C run times are shown

in figure 4.1.

Overall, TLOW-KAH adds 21% overhead on average, with lower overhead for larger transaction test sets.
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Given the simpleness of current kernel-AH implementation where new tuples in the transaction log L entries

are hashed and written to H sequentially, this performance result is arguably the upper bound of kernel-AH

performance. In contrast, TLOW and TLOW-AH share latency within 3% of each other because the external

AH of TLOW-AH operates concurrently with the normal database operations. Possible improvements for

TLOW-KAH performance through more sophisticated implementation is discussed in the next section.

It should be noted that audit processing was not a part of TLOW-KAH experimentation, as there are

no changes to the format or information written to the H file or the process of auditing itself. TLOW-KAH

in fact generates larger H file due to its higher frequency of hash calculation after every transaction commit,

compared to bulk hashing of new tuples in regular interval by TLOW-AH. Supposing that the incremental

hashing function H used in audit process has no logical limit of the number of elements in the set on which

it operates, larger H file should not affect audit time too grievously.

4.3 Future Work

As the TPC-C benchmark result shows, the performance of TLOW with kernel-AH is considerably slower

than the original implementation of external AH module in TLOW-AH architecture. This is an expected

behavior given that TLOW-KAH serially writes to H compared to the external AH module that writes

to it in parallel to other DBMS operations. This suggests that current implementation of kernel-AH can

benefit from parallelizing its process through multi-threaded implementation, significantly improving its per-

formance. Because the incremental hash function H for auditing process safely ignores the order of elements

in calculating the hash, synchronization of H writes in transaction order is not vital in its multithreaded

implementation. However, keeping the information of correct transaction order may provide additional audit

function for DBMS activities.

Another possible enhancement for TLOW-KAH is to allow new tuple hashes to be internally buffered before

it is written to the H file, so that less number of I/O is required. This requires more intricate design to

handle rollback and recovery scenarios to ensure the buffered hash sums are not lost in the event of possible

DBMS crashes. Assuming than the hash sums will be calculated for the log entries that have been committed

and flushed to the transaction log L, if DBMS crashes after the L is written but with intermediate hash

sum still buffered in memory, H and L will no longer mirror the same state unless the buffered hash set is
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recovered. Note that because information in H depends on L, such recovery actions will have no interference

with that of L or DBMS itself.
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Chapter 5

Conclusion

This thesis reviewed the TLOW architecture, that supports long-term immutability for relational tuples,

providing a realistically feasible compliance solution for enterprise systems that are backed by RDBMS. The

AH module of TLOW is a vital component that allows for the practicality of the solution. AH speeds up the

periodic audit process that many of the current industrial regulations mandate, thus minimizing the system

downtime and the business cost incurred by the downtime.

This thesis presented an extension to the current TLOW with AH architecture, that provides a better

protection of the AH functionalities. The original AH is implemented as a stand-alone module that is external

to the database kernel, requiring a separate security measures to protect the module and its interaction with

the DBMS. For example, an adversary may destroy the AH module completely and remove its functionality

from TLOW architecture, or may replace the module with a tampered AH that will hide a backdated tuple

insertion in the database by reflecting the same modification in the hash generation. In order to prevent these

attack scenarios, extra authentication steps to verify the version of AH module to the auditor using a key

that only the auditor knows. What results is a disjoint system that requires more effort in its maintenance

and operation, as well as their associated costs. The TLOW-KAH introduced in this thesis aims to improve

these drawbacks by porting the AH module into the database kernel, whose functionality can be turned

on or off by database users through a simple API. By supporting complete features of TLOW in a single

DBMS module, it eliminates the need for any additional security measures or system maintenance, as the

AH module can benefit from the protection provided by the DBMS itself.

The current implementation of TLOW-KAH serially handles AH operations following every transaction

commit log writes, which inevitably adds to the operational latency compared to TLOW-AH, on average

21% across 10k to 100k transactions measurements, as shown in the experimental results. Given that AH

functionality is never in conflict with normal database operations, it is expected that it can be implemented

in a multithreaded processes which will lessen the latency considerably. Given the simpleness of current

implementation, the 21% overhead is arguably the upper bound of kernel-AH performance.

Overall, TLOW-KAH implementation has proven that AH module can be incorporated into the database
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kernel without affecting the normal DBMS operations, albeit notable transaction overhead due to naive

implementation. While DBMS kernel change is often disputed in researches and/or system enhancements,

a wholly complete single system has operational advantages which TLOW-KAH seeks to benefit from. It

is believed that a more sophisticated implementation of TLOW-KAH should allow such advantages fully

realized without performance depreciation.
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