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Abstract 

 This study evaluated the impact of High Pressure Processing (HPP) on pork 

quality, shelf life, palatability, and further processed products.  Pork carcasses (n=6) were 

split into sides with only one side receiving HPP treatment.  Data was analyzed as a 

paired t test.   

 Carcass sides were evaluated for pH decline.  Treatment caused a small, but 

immediate decrease in pH.  Carcass pH at 24 h was higher (P < 0.05) for treated sides.  

Glycolytic potential analysis determined that treated Longissimus muscle had more         

(P < 0.05) glucose and less (P < 0.05) lactate suggesting that postmortem metabolism 

was partially inhibited.  Longissimus, Psoas major, Triceps brachii, and 

semimembranosous muscles were evaluated for pH objective color; subjective color and 

firmness; drip loss; cook loss and Warner-Bratzler shear force analysis. Ultimate pH (48 

h) was higher (P < 0.05) for all treated muscles except the Psoas mjor.  In general, 

treatment effect was not consistent across muscles. Minolta L*, a*, and b* values were 

different for treated Longissimus chops.  Drip loss % and cook loss % were improved (P 

< 0.05) for treated Longissimus chops.  Treatment inhibited the rate of lipid oxidation.  

TBARS for ground pork samples were less (P < 0.05) for treated samples at storage day 7 

and trending         (P < 0.10) at storage day 21.  Warner-Bratzler shear force values were 

less for treated samples at aging day 0 (P < 0.05).  At aging day 7 and 14, treated samples 

approached significance (P < 0.07) with chops from both days requiring less force than 

controls.  Western blot analysis determined protein degradation % for troponin t was less 

for treated samples at aging days 7, 14, and 21.  Intramuscular collagen content of 

Longissimus chops was not different.  Trained sensory analysis determined treated 
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samples were more (P < 0.05) tender, while juiciness and off flavor were not different      

(P >0.05).   Salt soluble protein analysis determined that treated samples yielded less     

(P < 0.05) soluble protein. Texture profile analysis of restructured ham product indicated 

that treated samples received lesser (P < 0.05) values for hardness, fracturability, 

springiness, gumminess and chewiness.  Additionally, treated ham samples had less       

(P < 0.05) binding strength.  Muscle structure of treated samples sustained damage and 

disorganization to the muscle fibers indicating HPP is physically destructive. 

 Results indicate HPP positively impacts postmortem metabolism, lipid oxidation, 

and pork palatability.  However, HPP did cause undesirable changes to meat color, salt 

soluble protein extractability, and textural properties of restructured ham product.      
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CHAPTER 1 

 

REVIEW OF LITERATURE 

 

High pressure processing in the food industry 

 

 High pressure processing has become increasingly utilized in food production 

settings because of its ability to decrease microbial loads without the use of heat.  The 

elimination of a thermal processing step allows for preservation of product appearance 

and flavor (Swientek, 1992).  In 1990, a Japanese company launched a line of fruit jams 

that had been sterilized using high pressure only (Mozhaev et al., 1994).  Additionally, 

several other countries such as France, Mexico, Spain, and the U.S. have instituted the 

use of high pressure processing in commercial settings on products ranging from fruit 

juices to protein-based products (de Lamballerie-Anton M. et al., 2002).  It is speculated 

that high pressure processing will never completely replace thermal sterilization, but 

currently offers a feasible alternative to certain kinds of foods (Mertens, 1995).  

Like other segments of the food business, the meat industry utilizes high pressure 

processing for its ability to reduce microbial loads (Hayman et al., 2004).  A 

commercially available Spanish style sliced ham subjected to high pressure has extended 

shelf life of several weeks (de Lamballerie-Anton M. et al., 2002).  Beyond extending 

shelf life, high pressure processing has been shown to have an effect on a host of other 

meat properties.  The changes in functional properties of meat brought on by high 

pressure will be reviewed further in later sections. 

 High pressure in the food industry is typically used in the range of 200 to 800 

MPa (de Lamballerie-Anton M. et al., 2002).  Food products that are subjected to high 

pressure processing are generally vacuum packaged and put in a pressurized container.  
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Water is commonly used to fill the pressurization vessel as a pressure medium.  After 

reaching a desired level, pressure remains constant for a set amount of time. In addition 

to time and temperature, other factors such as decompression time and pressurization 

liquid temperature vary by product.  More recently, production facilities have found other 

uses for high pressure such as freezing and thawing of foods. 

Basic chemical and thermal principles of high pressure processing  

 The changes in food macromolecules brought on by high pressure processing are 

explained by Le Chatelier‟s principle, which states that an increase/decrease in pressure 

results in a decrease/increase in volume.  In the case of foods, a decrease in volume is due 

to changes in molecular conformation, intramolecular interactions and chemical reactions 

(Hoover et al., 1989; de Lamballerie-Anton M. et al., 2002).  Many authors have 

concluded that high pressure affects the varying types of intramolecular bonds 

differently.  It is typically regarded that weaker energy bonds such ionic and hydrophobic 

are broken down by high pressure.  Ionic bonds are modified due to electrostriction 

whereas hydrophobic bonds are altered due to volume changes of water molecules near 

hydrophobic groups.  Covalent bonds do not compress well and therefore remain 

unchanged when subjected to high pressure.  Hydrogen bonds undergo a very small 

decrease in volume when subjected to pressure which results in a stabilizing affect (Van 

Eldik et al., 1989; Mozhaev et al., 1994; Cheftel and Culioli, 1997).  The thermal 

properties of foods are also influenced by the use of pressure.   The use of high pressure 

on foods is considered adiabatic compression; a process by which volume is reduced 

without heat flow.  Despite the lack of heat energy, the temperature of foods still 

increases when subjected to high pressure.  Compositionally, water represents the main 
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ingredient of most foods and therefore exhibits adiabatic temperature changes 

comparable to water (Ting et al., 2002).  Barbosa-Cánovas and Rodríguez (2005) 

reported the temperature increase of water per 100 MPa pressure increase varies from 2-

5º C at pressures above 200 MPa.  However, it has also been shown that temperature 

increase of fats and oils due to pressurization is three times higher than that of water 

(Ting et al., 2002).  Because foods are comprised of fats and water, the compression 

temperature of fat containing foods is higher than water, but not as high as oil (Ting et al., 

2002).  Understanding compression temperature increases in foods, particularly those that 

undergo very high levels of pressure, is very important due to the numerous effects 

temperature has on chemical and physical components of food. 

The effect of high pressure on proteins 

 Proteins are integral in a food‟s flavor, appearance, storage and processing 

characteristics (Messens et al., 1997).  High pressure processing alters protein by 

denaturation, aggregation, or gelation (Messens et al., 1997).  Most proteins are 

denatured at pressures over 400 MPa (Tauscher, 1995).  At pressurization of less than 

150 MPa, studies have shown oligomeric proteins are broken into their subunits 

(Tauscher, 1995; Messens et al., 1997).  Many authors agree that between 100-200 MPa 

monomeric proteins denature, unfold and aggregate (Gross and Jaenicke, 1994; Mozhaev 

et al., 1994; Tauscher, 1995).  Proteins denatured by pressure appear to maintain a 

secondary-structure type due to the formation of hydrogen bonds that are promoted by 

high pressure (Mozhaev et al., 1996).  Hydrophobic interactions are typically decreased 

by high pressure explaining the lack of tertiary structure (Mozhaev et al., 1996).  It is also 

important to note that proteins subjected to high pressure do not denature in predictable 
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patterns varying by protein and pressure level (Cheftel and Culioli, 1997).  The effect of 

pressure on proteins is important to understand because of the implications to the aging 

and further processing characteristics of meat, which will be reviewed in later sections.     

The effect of high pressure on pre-rigor meat pH and postmortem metabolism 

 Previous studies indicate that pressurization of pre-rigor meat results in a rapid pH 

decline.  Macfarlane (1973) determined that pH decline for pressure treated (100-150 

MPa, @ 35°C, 4 min) pre-rigor ox muscles occurred faster than controls.  Pressurized 

ovine muscle also had a large drop in pH after pressurization, but ultimate pH was higher 

than controls in all muscles tested except for the Longissiumus.   Horgan (1981) found 

that rabbit muscle pressurized at 150 MPa at 35°C for 10 min experienced a large pH 

drop and a lower ultimate pH, especially in muscle comprised of predominantly white 

fibers.   

 It has also been shown that temperature plays a role in pH decline of pressurized 

meat.  Sheep muscle that was tempered to 15° and 30°C then subjected to 150 MPa for 5 

min experienced a considerable drop in pH, particularly for those samples tempered at 

30°C (Macfarlane et al., 1982).  The same study determined that samples tempered to 

0°C and then pressurized did not undergo a large decrease in pH nor did pH differ greatly 

from controls during post pressurization storage (Macfarlane et al., 1982).  These results 

suggest that glycolysis can be either accelerated or inhibited depending on temperature at 

the time of pressurization.  These findings are of particular importance to future research.  

It is well documented in several documents that pork quality and some palatability issues 

are related to low ultimate pH.  The ability to prevent large pH declines with the use of 

HPP would provide for pH ranges most ideal to pork quality and palatability traits.   
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 Macfarlane (1973) believes the large drop in pH that is caused by pressurization 

at 25-35°C, is a result of the completion of glycolysis.  The drop in pH by pressurization 

is attributed to the activity of phosphorylase, phosphorylase kinase, and phosporylase 

phospatase; enzymes important in glycogen degradation (Horgan; Kuypers, 1983).  In 

muscle samples tempered to 35°C and then pressurized at a 100 MPa; calcium is released 

and utilized by the pressure sensitive phosphorylase kinase (Horgan and Kuypers, 1983).  

Phoshorlyase kinase is relatively unaffected whereas phorphorylase phosphotase activity 

is decreased ultimately leading to greater glycogen breakdown and decrease in pH 

(Horgan and Kuypers, 1983).  In a similar study using pre-rigor beef muscle, Elkhalifa et 

al. (1984), determined that differences in glycogen levels, lactic acid levels, and lactate 

dehydrogenase activity supported the finding of previous authors that high pressure 

accelerated the rate of glycolysis. 

The effect of high pressure on meat color 

 The color of fresh meat is one the most important evaluation parameters 

consumers use when purchasing.   Post-rigor minced beef samples were reported to 

develop a gray color after being pressurized at 150 MPa for 20 min with a pressurization 

liquid at 50°C (Carlez et al., 1993).   The same study determined that pressurization up to 

150 MPa for 10 min with a pressurization liquid at 20°C did not cause differences in L*, 

a*, and b* values between treated and control samples (Carlez et al., 1993).  However, 

when pressure was greater than 150 MPa L* values increased (appearing lighter) and a* 

decreased (less red) (Carlez et al., 1993).  Carlez et al. (1995) found results similar to 

their earlier research, but further concluded that pressure at or above 200 MPa causes a 
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„whitening‟ effect to the meat.  The same research also determined total myoglobin 

content was less for samples pressurized in a range of 200-300 MPa (Carlez et al., 1995). 

 More recently Jung et al. (2003) determined that high pressure has an effect on 

metmyoglobin production.  At pressures up to 300 MPa, with a pressurization liquid of 

10°C, the production of metmyoglobin was decreased leading to an increase in a* value 

(Jung et al., 2003).  The authors do not agree on the effect of pressure on a* value, but 

both concur that the discoloration of meat at higher pressure >200 MPa (Carlez et al. 

1995) and >325 MPa (Jung et al., 2003) are the result of denaturation to myofibrillar and 

sarcoplasmic proteins, particularly myoglobin. 

The effect of high pressure of lipid oxidation in meat 

 The oxidative stability of fresh meat is important to ensure that consumers get a 

product of the highest sensory quality.  The use of high pressure in meat has shown to 

accelerate lipid oxidation particularly with pressures at or above 300 MPa (Cheah and 

Ledward, 1996; Cheftel and Culioli, 1997; Ma et al., 2007).  Beltran et al. (2003) did not 

concur determining that lipid oxidation in poultry was not induced at 500 MPa.   

Research using pork determined that when lipids with a water activity at or above 

0.55 are subjected to high pressure, there is a stabilizing effect to lipids due in part to the 

destruction of peroxides (Cheah and Ledward, 1995).  In a subsequent study, the same 

authors concluded that addition of pressurized muscle to pressurized fat leads to greater 

lipid oxidation, suggesting that muscle tissue contains proxidants (Cheah and Ledward, 

1996).  Cheah and Ledward (1996) also determined that minced pork subjected to 800 

MPa for 20 min at 20°C resulted in higher thiobarbituric acid reactive substance values, 

but minced pork samples pressurized at 300 MPa or less did not have an increased rate of 
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lipid oxidation.  Research using beef and poultry (chicken) found that lipid oxidation 

rates were five times higher at pressures above 400 MPa; samples tempered to higher 

temperatures (50°, 60°, 70°C) and then pressurized, had higher TBARS in beef only and 

suggested poultry was more stable at higher pressure (Ma et al., 2007). 

It is suggested that high pressure causes lipid oxidation by denaturation of 

myoglobin which in turn releases iron; a proxidant (Cheftel and Culioli, 1997).  Cheah 

and Ledward, (1996) support this claim in a previous study in which samples were 

washed to remove haemoproteins before pressurization and ultimately had less lipid 

oxidation than the non-washed samples.  Cheftel and Culioli, (1997) refute the argument 

by pointing out that although less, washed samples still had undesirable levels of lipid 

oxidation, and therefore iron from haemoproteins is not likely to be the catalysis of 

oxidative rancidity.  Other research suggests that pressure-induced oxidation is related to 

the extent of cell membrane damage; greater damage to the cell membrane results in 

more rancidity (Beltran et al., 2003). 

The effect of high pressure on Warner-Bratzler shear force values of pre-rigor meat 

  Several studies have been conducted to determine the effect of high pressure on 

tenderness as it relates to Warner-Bratzler shear force values.  Results from studies of 

shear force evaluations in post rigor pressurized meat are conflicting as to whether or not 

treatment improves tenderness (Ratcliff et al., 1977; Bouton et al., 1980; Locker and 

Wild, 1984; Robertson et al., 1984; Beilken et al., 1990; Jung et al., 2000b).  de 

Lamballerie-Anton et al. (2002) argues that increased tenderness post-rigor meat is not 

caused by of high pressure but is a result of the increased lysosomal enzyme activity 
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caused by high pressure.  For the present research, it is most appropriate to review work 

in which high pressure treatment was conducted on pre-rigor meat. 

 Pre-rigor beef muscles subjected to 103 MPa at 30-35°C for 2-4 min had Warner-

Bratzler shear force values for some muscles that were more than 50% less than post-

rigor control samples (Macfarlane, 1973).   Kennick et al, (1980) subjected pre-rigor beef 

and lamb muscles to 103.5 MPa at 35°C for 2 min and determined that shear force values 

were highly significant for all muscles in both species after a week of storage time.  In an 

experiment similar to the studies published in 1973 and 1980, Riffero and Holmes (1983) 

also saw an improvement in tenderness for pre-rigor beef.  Because of the impracticality 

of hot boning in most commercial meat systems, very little to no research has been 

conducted on pre-rigor meat since the mid 1980s.  Furthermore there is little to no 

information regarding the effect of pre-rigor high pressure treatment on improving pork 

tenderness.  The potential of HPP to produce consistently tender pork without additives 

or mechanical alteration would be a well sought after product by today‟s consumers.  

The effect of high pressure on enzymatic aging 

 Meat is believed to be tenderized by the proteolysis of myofibrillar proteins by µ-

calpain (Koohmaraie, 1996).  Additionally, cathespsins, particularly B and L, also play a 

role in postmortem aging of meat (Ouali, 1990).  Homma et al. (1995) determined that 

calpain activity in pre-rigor rabbit meat at 100 MPa was more readily able to bind its 

substrate.  However, as pressures reached 200 MPa, calpain activity was one-fifth of the 

control and at 300 MPa was almost inactivated (Homma et al., 1995).  Very similar 

research with pre-rigor rabbit meat concluded that pressure up to 150 MPa caused 

hydrolyzing activity in proteasomes, which dropped off at 200 MPa (Otsuka et al., 1998).  
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In research using pre-rigor beef muscles, Koohmaraie et al, (1984) determined that 

calpain activity was decreased at pressures near 100 MPa.  It was also noted by Homma 

et al, ( 1995) that calpastatin, an inhibitor of calpains, was decreased with pressure; 40% 

of the initial level at 100 MPa.  Cheftel and Culioli (1997) argue that the effect of 

pressure on calpain and calpastatin is too inconclusive to determine because many of the 

factors that influence proteolysis also occur during pressurization i.e. release of calcium 

and lysosomal enzymes.  Thus, it is difficult to accurately evaluate proteolytic activity 

post pressurization.  

 In regard to the effect of high pressure on cathepsin activity, Homma et al. (1994) 

determined that cathepsins B, D, and L were more active with increasing pressure to 400 

MPa but dropped off at 500 MPa.  Cathepsin H and amino peptidase B did not differ 

from control at 100 MPa and activity of both decreased as pressure increased (Homma et 

al., 1994).  More recent research reached similar conclusions determining that activities 

of cathepsin D and acid phosphatase increased as pressure increased (Jung et al., 2000a).  

The increased activity of lysosomal enzymes is believed to result from the breakdown of 

lysosomal membranes during pressurization (Homma et al., 1994; Jung et al., 2000a).    

Jung et al, (2000a) confirmed this through electron microscopy that indicated the 

membrane integrity of lysosomes from pressurized meat is altered. 

The effect of high pressure on connective tissue 

 The presence of connective tissue in meat contributes to what is often referred to 

as background toughness.  Increases in tenderness from high pressure treatment are 

believed to be the result of changes to myofibrillar protein and research has been done to 

determine if there is any affect to stromal proteins.  Pressurization of lamb epimysial 
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tissue indicated that shrinkage, isometric tension, and transition heat measurements were 

not different from non pressurized samples suggesting that pressure was not any more 

useful than heat alone in tenderizing connective tissue (Bouton et al., 1978).    Ratcliff et 

al. (1977) reported that connective tissue was the only contributor to overall toughness 

because myofibrillar toughness had been eliminated by high pressure.  Beilken et al. 

(1990) reported that Warner-Bratzler shear force values of beef muscles pressurized at 

temperatures between 40-80°C indicated that treatment had no effect on background 

toughness other than to raise the temperature at which heat alone produced a decrease in 

toughness.  In research involving mature dairy cows, high pressure treatment ranging 

from 100 to 400 MPa did not provide significant differences in eltrophoretic pattern, 

thermal solubility, or differential scanning calorimetry (DSC) for isolated intramuscular 

collagen (Suzuki et al., 1993) .  Work has also been conducted examining the 

ultrastructure of connective tissue.  Scanning electronmicrographs indicate that 

deformation of the honeycomb like structure of endomysium was increased at higher 

pressures; at 400 MPa, the mesh structure of endomysium was expanded (Ueno et al., 

1999).  The effect of high pressure on connective tissue has been investigated in a very 

small number of studies.  The use of high pressure to alter intramuscular connective 

tissue is somewhat inconclusive and is an area in need of further research. 

The effect of high pressure on meat sensory characteristics 

 A small number of studies have used sensory panels to evaluate the parameter of 

tenderness and juiciness.  Macfarlane (1973) conducted a taste panel on bovine and ovine 

samples that were subjected to high pressure while in a pre-rigor state .  For both species, 

panelists concluded that treatment improved tenderness and despite being less juicy, 
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pressurized samples were found to be more acceptable (Macfarlane, 1973).   Taste panel 

assessment of high pressure treated beef muscle determined that tenderness scores for 

treated samples were significantly different while juiciness values were not (Riffero; 

Holmes, 1983).   

 In regards to specific meat flavor, Japanese researchers investigated the impact of 

high pressure on serum and umami (Suzuki et al., 1994).  The serum flavor is attributed 

to reducing sugars, amino acids and peptides.  As meat ages, the serum flavor increases 

due to the breakdown of sugars, amino acids and peptides.  Suzuki et al, (1994) refers to 

the amount of peptides and amino acids as phenol reagent positive materials.  High 

pressure treatment 100-400 MPa of beef muscles revealed that levels of phenol reagent 

positive material was only numerically higher at each level of treatment.   However, the 

authors concluded that the breakdown of muscle protein, as estimated by phenol reagent 

positive material, was accelerated by pressurization (Suzuki et al., 1994).  When 

evaluating umami, the content of inosinic acid was compared between treated and non-

treated samples.  No significant differences led the authors to conclude that because 

inosinic acid is not reduced by pressurization, treatment does not reduce the umami flavor 

in meat (Suzuki et al., 1994). 

 Sensory evaluation studies of processed meats are few, but as of the present time, 

it does not appear sensory characteristics are compromised by high pressure treatment.  

Sensory research using high pressure treated cooked sausages determined that panelists 

preferred treated sausages because they were better appearing, more juicy, and had better 

taste (Mor-Mur and Yuste, 2003).  Rubio et al. (2007) concluded that sensory attributes 

of Spanish style dried beef were not adversely affected by high pressure treatment. 
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The effect of pressure on myofibrillar protein solubility 

 Myofibrillar proteins such as actin and myosin are important in meat processing.  

The effect of high pressure on the solubility of myofibrillar proteins helps to better 

understand many potential changes to the properties of both fresh and processed meat.  

Macfarlane (1974) reported that lamb muscle homogenates in saline solution subjected to 

150 MPa yielded higher amounts of soluble myofibrillar protein.   In a subsequent study, 

it was confirmed that high pressure increased protein solubility but was dependent on 

temperature, salt concentration and pH (Macfarlane and McKenzie, 1976).  In particular, 

protein solubility was increased in samples pressurized at 0°C instead of 30°C 

(Macfarlane and McKenzie, 1976).  In research using rabbit meat, it was determined that 

myofibrillar solubility was greater with increasing pressure reaching 2, 2.3, and 2.6 times 

that of the control at 150, 200, and 300MPa (Suzuki et al., 1991).  SDS-PAGE from the 

same research indicated that thin filament protein such M-protein, actin and tropomyosin 

decreased as pressure increased (Suzuki et al., 1991). 

 The effect of high pressure on processed meats 

 Beef patties made with varying salt levels (0, 0-5, 1, and 3%) were subjected up to 

150 MPa.  Increase in binding strength was dependant on pH, pressure level, and NaCl 

concentration.  At 150 MPa, binding strength was increased at all NaCl levels 

(Macfarlane et al., 1984).  The raw materials for Frankfurters were subjected to 150 and 

300 MPa with varying salt levels (1.5 and 2.5%) were evaluated for emulsion stability 

and texture profile analysis (Crehan et al., 2000).  Emulsion stability was increased at 

lower pressure and lower salt level but a decrease in emulsion stability was seen at 300 

MPa (Crehan et al., 2000).   Texture profile analysis indicated that hardness, 
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cohesiveness, gumminess, and chewiness were improved at 150 MPa and 1.5% NaCl, but 

a decrease in textural properties was seen at 300 MPa (Crehan et al., 2000).  Poultry 

sausages subjected to 500 MPa were more cohesive and less firm than controls (Mor-Mur 

and Yuste, 2003).  In very similar research, Yuste et al. (1999) found that pressurization 

of poultry sausages made them less springy and firm but more cohesive.  Cheftel and 

Culioli (1997) hypothesize that high pressure disrupts protein functionality and impacts 

myosin heavy chains resulting in textural changes.  In general, the affect of high pressure 

on processed meats varies greatly by pressure level, pressurization liquid temperature, 

and NaCl inclusion level. 

The effect of high pressure on muscle structure 

 The effect of high pressure on muscle has been studied by examining changes that 

occur to the ultrastructure of muscle (Macfarlane and Morton, 1978; Kennick et al., 1980; 

Macfarlane et al., 1981; Suzuki et al., 1991; Jung et al., 2000c).  It has been shown that 

changes to the ultrastructure of meat are dependent on postmortem condition, pressure 

level, pressure time, and temperature during pressurization.  Macfarlane and Morton 

(1978) investigated the effect of 100 MPa on pre and post rigor sheep muscles concluding 

that electron microscopy revealed ultrastructural changes in both postmortem conditions.  

Pressurized post rigor muscle was removed of the M-band in the central region of the A-

band as well as loss of integrity to the I-band; treated pre rigor muscle was extensively 

disrupted with contraction band formation, distortion of the sarcolemma, and 

disaggregation of compounds of thin filaments (Macfarlane and Morton, 1978).   Kennick 

et al. (1980) found similar results concluding electron micrographs showed extensive 

convolution and fraying of beef supraspinatus fibers after muscle had been pressurized.  
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In follow up research to work done in 1978, Macfarlane (1981) found similar results in 

pressurized beef muscle, but found that I-band disorganization was even more extensive 

after muscles had been cooked for 1 h at 80°C. 

Research conducted on pressurized isolated myofibrils also suggested high 

pressure profoundly affects ultrastructure of muscle.  Suzuki et al, (1991) found that as 

pressure increased (100, 150, 200, 300 MPa), the ultrastructure of rabbit muscle 

underwent greater changes.  At 100 MPa, loss of M-line structure and confusion of I-

filament structure was visible. At 200 MPa, micrograph images indicated structural loss 

of the sarcomere, disappearance of Z-lines, and I and A-filament disorganization; by 300 

MPa, a mass of material was seen on each side of where the M-line had previously been 

(Suzuki et al., 1991).   

More recent research by Jung et al. (2000c) did not completely concur with 

previous research; indicating that electron micrographs did not show ultrastructural 

differences to beef muscle at pressures of 130 MPa at 10°C.  However, at 325 MPa, the 

authors saw modification to the ultrastructure including disorganization of filaments, loss 

of I-band integrity, strengthening of costameres, aggregation of filaments, and gap 

formation between filaments; the same effects were seen at 520 MPa.   As previously 

noted in prior sections, the same holds true for research regarding muscle ultrastructure; 

very few investigations on pre-rigor meat, particularly pork, have been conducted in the 

last 20 years.  

In summary, the use of HPP has shown its ability to alter a host of meat 

properties.  Over the last 30 years, HPP technology has advanced to the point that it can 

be used in ways that have not been previously researched.  Previous work has indicated 
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that HPP has the ability to make desirable changes to meat properties.  HPP induced 

stoppage of postmortem metabolism could potentially eliminate large pH declines that 

cause several pork quality defects.  The ability to eliminate quality issues would allow for 

more consistent, consumer pleasing pork products.  Additionally, it is also evident that 

HPP has can tenderize meat when treatment occurs during the pre-rigor state.  Therefore, 

one must speculate that HPP has the potential to produce pork that is not only high in 

quality but also tender.  With this in mind it would be of considerable value to investigate 

the potential use of HPP in the pork industry.   

Objectives 

With a need to understand the implications of high pressuring processing on the 

pork packing and processing industry, the objectives of this study were: 

1.  To understand the effect of high pressure on postmortem metabolism. 

2. Evaluate the effect of high pressure on pork quality and shelf life. 

3. To examine the ability of high pressure to improve pork palatability. 

4. To investigate the effect of high pressure on pork value added products. 
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CHAPTER 2 

THE EFFECTS OF HIGH PRESSURE PROCESSING ON PORK QUALITY, 

SHELF LIFE, PALATABILITY, AND FURTHER PROCESSED PRODUCTS 

 

Introduction 

 High pressure processing (HPP) has been used on a variety of foods since the 

early 1990‟s.  HPP has gained popularity because of its ability to significantly reduce 

foodborne illness causing pathogens (Shigehisa et al., 1991; Carlez et al., 1993; Hayman 

et al., 2004).  Additionally, HPP is considered a non-thermal process, which allows 

product appearance and flavor to be preserved (Swientek, 1992).  The meat industry has 

turned to HPP as a tool to help prevent food pathogens particularly in ready to eat deli 

meat type products.   However, very little research particularly in the last 20 years, has 

investigated the effects of high pressure on other meat characteristics such as postmortem 

metabolism, lean color, shelf life, mechanical tenderness, sensory attributes, and integrity 

of value added products.   Recent advancements in high pressure systems technology has 

created the ability to conduct experiments using conditions that have not been previously 

reported. 

 Research has been published regarding the effect of HPP on meat systems.  

Studies investigating pH decline has suggested that HPP causes an immediate drop in pH 

(Macfarlane, 1973; Horgan, 1981; Macfarlane et al., 1982).  The pH drop is believed to 

be a result of expediting glycolysis by altering enzymes important in glycogen 

degradation (Horgan and Kuypers, 1983; Elkhalifa et al., 1984). 
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 Meat color is one of the most important traits when it comes to willingness of 

consumers to buy.  In some research, the use of HPP has decreased meat color score 

(Carlez et al., 1993; Jung et al., 2003).  Evaluations of myoglobin content of meat 

concluded that pressure treated samples had significantly less than controls (Carlez et al., 

1995).   It generally regarded that pressure levels greater than 200 MPa result in the 

denaturation of sarcoplasmic and myofibrillar proteins resulting in meat color changes 

(Carlez et al., 1995; Jung et al., 2003).  

 The oxidative stability of lipids associated with meat is also affected by HPP.  

Research has been somewhat inconclusive, but generally lipid oxidation rate is increased 

at pressures above 300 MPa (Cheah and Ledward, 1996; Cheftel and Culioli, 1997).  This 

has serious implications to shelf life and sensory attributes of meat.  It is suggested that 

the increase in lipid oxidation is caused by proxidants (iron) released when myoglobin is 

denatured or can also be attributed to extensive, pressure induced cell membrane damage 

(Cheftel and Culioli, 1997; Beltran et al., 2003). 

 In regard to tenderness, studies have been conducted to investigate the effect of 

HPP on Warner-Bratzler shear force values, enzymatic aging, and connective tissue.   

Research subjecting post-rigor meat to high pressure processing has had varied results in 

regards to mechanical tenderness (Ratcliff et al., 1977; Robertson et al., 1984; Beilken et 

al., 1990; Jung et al., 2000b).  Studies conducted on pressurized pre-rigor meat have 

typically seen lower Warner-Bratzler shear force values for treated versus controls 

(Macfarlane, 1973; Kennick et al., 1980; Riffero and Holmes, 1983).    Enzymatic aging 

studies have found that activity of calpains, calpastatin, and cathepsins are increased, 

decreased, or both depending on pressure level (Koohmaraie et al., 1984; Homma et al., 
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1994; Homma et al., 1995; Jung et al., 2000a).  In general, HPP on enzymatic aging is not 

well understood and few concurring conclusions have been made.  Studies investigating 

connective tissue have generally concluded that HPP does not decrease the amount of 

connective tissue level (Bouton et al., 1978; Suzuki et al., 1993).  However, scanning 

electron micrographs have suggested that HPP alters the mesh structure of endomysium 

(Ueno et al., 1999). 

 Like many other meat parameters subjected to HPP, the effect on binding strength 

and textural properties of value added products are varied.  Binding strength was 

increased in beef patties formulated with various salt concentrations (Macfarlane et al., 

1984).  However, the textural properties of pork and poultry sausage products were found 

to be positively and negatively affected by HPP (Yuste et al., 1999; Crehan et al., 2000; 

Mor-Mur and Yuste, 2003).  The changes caused by HPP to value added products may be 

caused by the changes in myofibrillar proteins, which are integral to the binding of 

processing meats.  Authors have agreed that myofibrillar protein solubility was increased 

when subjected to HPP (Macfarlane, 1974; Suzuki et al., 1991) 

 The effect of HPP on muscle structure has been shown to cause dramatic changes.  

Scanning electron micrographs of muscle structure consistently show disruptions of the 

thin filaments, loss of I-band integrity, and destruction of the sarcomere (Macfarlane and 

Morton, 1978; Suzuki et al., 1991; Jung et al., 2000c). 

 In general, research regarding HPP has been highly variable in terms of species, 

post mortem condition, and pressurization chamber settings (time, pressurization liquid 

temp, pressure level).  Previous research has not investigated the use of HPP on early 
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post mortem (20 min) whole pork sides.  The current research is to examine the effect of 

HPP on the pork industry from harvest to value added processing.  

  

Materials and Methods 

Animals and Treatments 

 

 Pigs (n=6) weighing approximately 95 kg were selected at random immediately 

after being humanely slaughtered.  Pigs went through normal harvest procedures of 

exsanguination, dehairing, and evisceration.  After carcasses were split, identification was 

maintained on each side in a manner so that eventual samples could be analyzed as paired 

data.  To determine if treatment caused immediate changes in pH, a measurement was 

taken immediately prior to and after treatment.  Pre and post treatment pH measurements 

were taken from the center section of the loin using a MPI pH Meter (Model C033, Meat 

Probes, Inc., USA).  

One side from each carcass was selected randomly and subjected to High 

hydrostatic pressure treatment of 215 MPa for 15 seconds with a pressurization liquid 

(water) at approximately 33.3ºC.  The non-pressure treated side served as a control.  

Treated and controlled sides entered the chill cooler together approximately 45 min 

postmortem.   At 24 h postmortem, pH was determined at the ventral side of the center 

section of the loin.  Carcasses were then transported via refrigerated truck to the 

University of Illinois meat laboratory and held overnight.  Carcasses were maintained at a 

temperature of 4ºC during transportation and holding.   
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Carcass Fabrication 
 At 48 h postmortem, sides were fabricated into bone in loins (NAMP #410); pork 

shoulder, picnic boneless (NAMP #405A); pork shoulder, Boston Butt, boneless (NAMP 

#406A); and pork leg, TBS, 3-way, Boneless (NAMP #402G).  Bellies were not utilized 

in the study.   

 Bone-in loins were cut between the 10
th

 and 11
th

 ribs.  The posterior section of the 

longissimus muscle and the entire Psoas major were removed for use in subjective and 

objective quality evaluations.  The Semimembranosous and Triceps brachii were also 

removed from their respective primal cuts for subjective and objective quality 

evaluations.   Remaining boneless ham sections were used for restructured ham 

formulation, while remaining boneless shoulder sections were used for TBARS analysis. 

Quality Measurements 

 Subjective and objective quality evaluations for the longissimus and 

Semimembranosous were made on a cut surface of the anterior end; posterior end for the 

Psoas major, and the distal end for the Triceps Brachii.  Ultimate pH was determined for 

each muscle using a MPI pH Meter (Model C033, Meat Probes, Inc., USA).   After a 

bloom time of 20 min, Minolta L*, a* and b* were collected using a Minolta CR-300 

utilizing a D65 light source and a 0º observer (Minolta Camera Company, Osaka, Japan).  

Subjective scores for color (NPPC, 1999) and firmness (NPPC, 1991) were also collected 

at this time.   

 Chops were taken from the longissimus for drip loss %, proximate composition, 

Warner-Bratzler shear force, protein degradation analysis, texture analysis, degree of 

doneness analysis, and sensory panel analysis.  These chops were collected serially 

starting at the anterior end of the Longissimus muscle.  Chops were collected for water 
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holding capacity, proximate analysis, and Warner-Bratzler shear force serially from the 

anterior end of the Semimembranosous, posterior end of the Psoas major, and distal end 

of the Triceps Brachii, respectively.  Chops for water holding capacity and protein 

degradation analysis measured 1.0 cm thick, while chops cut for all other analyses 

measured 2.54 cm thick.  Chops from the Longissimus for Warner-Bratzler shear force 

analysis and protein degradation were aged for 0, 7, 14, and 21 days at 4˚ C and then 

stored at -20˚ C.  Aging days reflects time post fabrication, and therefore „0 d‟ is actually 

48 h postmortem.   Warner-Bratzler shear force chops taken from the Psoas major, 

Semimembranosous, and Triceps Brachii were aged 14 days and then stored at -20˚ C.  

Longissimus chops used in the degree of doneness study were aged 14 days and then 

stored at -20˚ C. 

Proximate Analysis 

 Moisture and lipid content were determined for each muscle using the procedures 

described by Novakoski et al. (1989).  Chops were trimmed of external fat and 

connective tissue and homogenized using a Cusinart Food Processor (Model DLC 5-TX, 

Cuisinart, Stamford, CT).  Moisture content was determined by oven drying the samples 

at 110ºC for 48 h.  Lipid content was determined by extraction using a mixture of 

chloroform and methanol.   

Drip Loss % 

 Chops from each muscle were weighed, placed in a Whirl-pak bag, and suspended 

for 24 h at 4º C.  Each chop was then reweighed and reported on a percent loss basis. 
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Glycolytic Potential 

Glycolytic potential was conducted following a modified procedure outlined by 

Miller et al. (2000).  Duplicate 3 g sample of ground longissimus tissue was homogenized 

in 15 ml of 0.6 N perchloric acid for 1.5 min using a homogenizer (Brinkman 

homogenizer, PT 10/35, Brinkman Istruments, Westbury, NY).  For the 

amyloglucosidase digestion, 200 µL of homogenate was pipetted into 1.5 mL 

microcentrifuge tubes and 1 mL of amyloglucosidase solution was added along with 20 

µL 5.4 N potassium hydroxide.  Samples were incubated at 37° C for 3 hours inverting 

every 20 min to mix.  After incubation, samples were cooled on ice for 10 min and then 

100 µL of cold 3 N perchloric acid was added.  Samples were centrifuged at 4°C at 7000 

x g for 5 min.  A blank solution to be used for the standard curve was made using 200 

µL, 0.6 N perchloric acid, and 20 µL5.4 N potassium hydroxide. 

 To determine lactate level, lactate assay solution was formulated using mM 

glycine buffer, 2.5 mM NAD, and 16.7 units/moL lactate dehydrogenase (catalog 

numbers G5418, N1511, and L3916, Sigma-Aldrich, Inc., St. Louis, MO).  A lactate 

standard curve using L-lactate ([5.0 mM/L], YSI Inc., Yellow Springs, OH) was prepared 

and plated in duplicate on a 96 deep well plate.  Amyloglucosidase digested samples (20 

µL) were plated with lactate assay solution (180 µl) bringing the total volume for each 

well to 200 µL.  Samples were incubated at 37° C for 15 minutes before being read at 340 

nm on a Synergy HT plate reader (Bio-Tek Instruments, Inc., Winooski, VT).   

Glycogen levels were determined using the Glucose (HK) Assay kit (GAHK20, 

Sigma –Aldrich Inc., St. Louis, MO).  The kit included glucose reagent and a 1 mg/mL 

glucose standard.  A standard curve of seven concentrations was prepared using the 
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glucose standard and 0.6 N perchloric acid.  Amyloglucosidase digested samples (20 µL) 

were plated in duplicate into a 96 well plate with glucose reagent (180 µL) bringing the 

total volume of each well to 200 µL.  The glycogen standard standard curve was also 

plated in duplicate.  Samples were incubated at 37° C for 15 minutes and then read at 340 

nm using a Synergy HT plate reader. 

 

Thiobarbituric Acid Reactive Substances (TBARS) 

 For each side, boneless picnic shoulders and boneless Boston Butts, excluding 

Triceps Brachii, were coarse ground together to form an approximate 70% lean to 30% 

fat blend.  A weight for the ground material was collected and salt was added as a 

proxidant at 1% of the total weight.  The meat and salt mixture was then finely ground 

through a 3/16 in plate.  The grinder was rinsed thoroughly between treated and 

controlled samples.  

Samples of finely ground meat weighing 0.5 kg were placed in a modified 

atmosphere package with a mixture of 80/20 of oxygen and carbon dioxide.  Packages 

were assigned to storage durations of 0, 7, 14, or 21 d.  Storage duration time reflects 

time post fabrication, therefore „0 d‟ is 48 h postmortem.  The 7 d sample was placed 

immediately under fluorescent lighting in a retail display case and remained there for 1 

week.  The 14 and 21 d samples were kept in dark storage until seven days prior to their 

assigned storage duration time; they were then placed under fluorescent lighting in a 

retail display case for 1 week.  At the conclusion of their display case storage times, 

samples were analyzed for TBARS.   
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After storage time, finely ground meat samples were further homogenized using 

Cusinart Food Processor (Model DLC 5-TX, Cuisinart, Stamford, CT).  Samples 

weighing 5g were prepared in duplicate and homogenized for 30 seconds in a Waring 

blender with 1 mL of 0.2 mg/mL BHT and 45.5 mL of trichloroacetic acid in 0.2 M 

phosphoric acid.  The homogenate was filtered through a Whatman no. 1 filter paper and 

two 5 mL aliquots of filtrate were added to glass test tubes.  Thiobarbituric acid was 

added to one tube while another tube, designated as blank, received deionized water.  To 

determine percent recovery, two additional samples were randomly selected from both 

treated and control groups to serve as spiked samples.  The spiked samples were 

homogenized with 1 mL of 0.2 mg/mL BHT, 12 mL of 10 uM 1,1,3,3-

tetramethoxypropane and 32 mL of 10% trichloroacetic acid in 0.2 M phosphoric acid.  

Spiked samples were filtered, and aliquotted with thiobarbituric acid or water as 

previously described.  A standard curve was prepared with varying levels of 

malondialdehyde (0, 1.25, 2.5, 5.0, and 7.5 mg malondialdehyde/mL), 25 uM 

tetramethoxypropane, 0.2 M thiobarbituric acid, and 10% tricholoroacetic acid in 0.2 M 

phosphoric acid.  All samples were stored in dark conditions at room temperature for 18 

h.  Absorbance values for all samples, including standards and blanks, were measured at 

530 nm using a spectrophotometer (Beckman Coulter, Inc. Fullerton, CA).  

Thiobarbituric acid reactive substances (TBARS) values were calculated using a standard 

curve and reported as mg of malondialdehyde/kg of tissue. 

Cook Loss and Warner-Bratzler Shear Force 

 Prior to analysis chops were removed from freezer and allowed to thaw at 4˚ C for 

24 h.  Chops were then trimmed of excess fat, weighed and cooked on a Farberware Open 
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Hearth gill (Model 455N, Walter Kiddie, Bronx, NY).  Chops were cooked on one side to 

an internal temperature of 35˚ C, flipped, and cooked to final internal temperature of 

70˚C.  Internal temperature was monitored using copper constantan thermocouples (Type 

T, Omega Engineering, Stanford, CT) connected to a digital scanning thermometer 

(Model 92000-00 Barnant Co., Barington, IL).  Chops were allowed to cool to 25º C and 

then reweighed to determine percentage of cook loss.   Four 1.25 cm cores were removed 

parallel to the orientation of the muscle fibers.  Cores were sheared using a Texture 

Analyzer TA.HD Plus (Texture Technologies Corp., Scarsdale, NY/Stable Microsystems, 

Godalming, UK) with a blade of 10 mm/sec and a load cell capacity of 100 kg.  Shear 

force was determined on each core, and average of the four cores reported.   

Degree of Doneness  

 Chops were prepped, cooked, and sheared in the same manner as the previously 

described shear force chop.  One group of chops was cooked to an internal temperature of 

63º C while another group of chops were cooked to 77º C. 

Sensory Panel 

 A six member trained sensory panel evaluated samples for tenderness, juiciness 

and off flavor.   A 2.54 cm chop was prepped and cooked in the same manner as the 

previously described shear force chop.  Two cubes of 1 cm x 1cm x 2.54 cm were served 

to each panelist under red lighting.  Panelists rated each chop using a 15 cm unstructured 

line scale anchored at the center and both ends with 0 being extremely tough, extremely 

dry, and no off flavor, while 15 was extremely tender, extremely juicy, and intense off 

flavor.   
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Tissue Preparation for SDS PAGE and Western Blotting 

 Longissimus samples aged 0, 7, 14, and 21d were prepared according to a 

modified version of Huff-Lonergan et al. (1996).  A frozen section (0.2 g) was removed 

from the center of longissimus chops and added to 1.5 mL of whole muscle protein 

extraction buffer (10 mM sodium phosphate, and 2% SDS, pH 7.0).  Samples were 

extracted using a tissue lyser (Qiagen, Hilden, Germany) for 1 min.  The homogenate was 

spun at 15,000 x g for 20 minutes at 4°C.  Protein concentration of the supernatant was 

determined using Pierce BCA (Pierce Protein Research Products, Rockford, IL) 

microplate protein assay.  Samples were diluted 6.25 fold with distilled water so that 

concentrations would fall within a readable range.  Bovine serum albumin was used to 

generate a standard curve with points between 2mg/mL and 0.1 mg/mL.  Protein 

concentrations from the fractions were adjusted to 2.5 mg/mL for SDS PAGE. 

SDS PAGE and  Western blotting 

 Protein electrophoresis was conducted using NuPAGE 10% (Troponin T) and 

NuPAGE 12% (Desmin) Bis-Tris gels with MOPS running buffer.  Running buffer and 

reducing agent were added to samples in accordance to NuPAGE protocol (Invitrogen, 

USA) and 10 μg protein were loaded per lane. Magic Mark XP (Invitrogen, USA) was 

used as chemilluminescent molecular weight standard. Gels were run at 200 v for 70 min 

in water-cooled Hoefer SE260 Mighty Small II gel electrophoresis boxes (Hoefer, San 

Francisco, CA).   

 At the conclusion of protein separation by electrophoresis, gels were transferred 

onto nitrocellulose (0.45 μm) membranes that had previously been soaked in NuPAGE 

Transfer Buffer ([25 mM Bicine, 25mM Bis-Tris, 1mM EDTA, SDS, pH 7.2] Invitrogen, 
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USA).  Protein transfer was conducted in a water-cooled Trans-Blot Cell (Bio-Rad, USA) 

for 1.5 h at a constant voltage of 100 v.  After transfer, membranes were soaked in 

blocking buffer ([SuperBlock (TBS) Blocking Buffer with 10% Tween-20 added] 

Thermo Scientific, Rockford, IL) for 1 h.  Membranes were then incubated for 1 h with 

Troponin T antibody ([T6277], Sigma, USA) at 0.15 μg/mL or Desmin antibody 

([D1033] Sigma, USA) at 1.5 μg/mL.  Membranes were then washed 4 times for 5 min in 

TBS with 10% Tween-20 added.  Membranes were then incubated with goat anti-mouse 

antibody as the secondary antibody at 13 ng/mL for Troponin T and 12 ng/mL for 

Desmin ([Immuno Pure Antibody, 31430] Thermo Scientific, Rockford, IL).  Again, 

membranes were washed in TBS with 10% Tween-20 4 times for 5 min and then given a 

final wash with nano pure water.  Membranes were incubated 5 min in a 

chemilluminescent solution and photographed using the ChemiGenius
2
 Imaging System 

(Syngene, UK).  Protein band densities were analyzed using GeneTools (Syngene, UK).  

Protein degradation percentage and intact protein were determined and compared 

between treated and controls.  Per gel, a standard band with a known molecular weight 

was used to standardize values when determining intact protein. 

Soluble and Insoluble Collagen Assay 

 The amount of soluble and insoluble collagen was determined in accordance to a 

modified methods described by Hill (1966) and AOAC method 990.26 (AOAC 

International, 1995). Homogenized Longissimus samples weighing 5 g were placed in 50 

mL conical tubes containing 12 mL ¼ strength Ringer‟s solution.  Tubes were incubated 

in an Environmental Incubator Shaker (New Brunswick Scientific Co., Inc, Edison, N.J.) 

for 2 h at a temperature of 69°C.  After incubation, samples were vortexed on a low 
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setting and then centrifuged at max speed for 10 min at room temperature.  Supernatant 

was decanted into a glass 70 mL test tube, which represented the first portion of soluble 

collagen.  An additional 8 mL ¼ strength Ringer‟s solution (8 mL) was added to the tube 

containing the pellet.  The pellet was broken up using a spatula, vortexed on a low 

setting, and centrifuged again at max speed for 15 min at room temperature.  The 

supernatant was decanted into the glass test tube containing the first portion of soluble 

collagen; collectively this represented the soluble collagen fraction.  The pellet was 

thoroughly removed from the conical tube and placed in a glass tube; this represented the 

insoluble collagen fraction.  Both collagen fractions received 25 mL 6 N hydrochloric 

acid and were incubated at 110° C for 16-18 h. 

 The soluble hydrolysate fraction was poured into a graduated cylinder and 

brought to a volume of 50 mL using deionized water. The hydrolysate was filtered 

through Whatman #1 (12.5 cm) filter papers into 15 mL conical tubes until 8-12 mL of 

filtered hydrolysate had been collected.  The insoluble hydrolysate fraction underwent the 

same procedure, except that it was brought to a volume of 100 mL before being filtered. 

 Soluble collagen filtrate (100 µL) and deionized water (700 µL) were combined 

in duplicate in a 96 deep well plate.  Insoluble collagen filtrate (50 µL) and deionized 

water (750µL) were also combined and plated in duplicate.  Oxidant solution (400 µL) 

was added to each well, covered with foil tape, shaken to mix and incubated at room 

temperature for 20 min.  Color reagent (400 µL) was then added to each well, covered 

with foil tape, shaken to mix, and incubated in a waterbath at 60º C for 15 min.  Oxidant 

and color reagents were mixed in accordance with AOAC methods, and samples were run 

against a hydroxyproline standard curve.  A 200 µL volume was transferred to a 96 well 
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microplate and read at 558 nm on a Synergy HT plate reader.  Soluble and insoluble 

collagen levels were calculated assuming 12.5% hydroxyproline content (AOAC 

International, 1995).  

Restructured Ham Formulation 

 The semitendinosous, biceps femoris, and the knuckle were removed of fat and 

connective tissue, and cut into 2.54 cm chops.   Chops were macerated (Pro-9, Sir Steak 

Machinery, Boxboro, MA) to increase muscle surface area and promote better protein 

bind.  The macerated strips were then cut into 1 in cubes and placed into the mixing bowl 

of a Kitchen Aid mixer (Model# KSM150PSER, St. Joseph, MI).  Curing brine using 68 

kg of water, 2.05 kg of phosphate, 7.61 kg Melozyme (Griffith, Laboratories, Alsip, IL), 

2.77 kg seasonings and 0.31 kg of sodium erythorbate was formulated for a pick up of 

20% over green weight.  The brine was added to the mixing bowl containing meat and 

mixed for 5 min to simulate tumbling. Tumbled meat cubes were hand stuffed into 102 

mm fibrous casings and hung on a smokehouse rack.   Ham chubs were cooked to 

internal temperature of 66.6º C in an Alkar smokehouse (Lodi, Wisconsin).  After 

cooking, ham chubs were chilled for 12 hours in a cooler at 2º C.  All equipment used in 

formulation of restructured hams was rinsed thoroughly between production of control 

and treated samples.   

 Casings were removed and 15.24 cm sections were cut from each end of the 

samples leaving only the center portion of the ham chub.  From the remaining center 

section, four 2.54 cm slices were collected; three slices were designated for binding 

strength analysis and one slice for texture profile analysis. 
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Ham Binding Strength 

 Binding strength of restructured hams was analyzed using three-point bend 

technique.  Ham slices measuring 2.54 cm in thickness were placed on two-raised metal 

platforms that were the same height but had a 3.81 cm gap separating the two platforms.  

The ham slice was positioned on the platform so that the geometric center of the chop 

was situated in the gap between the two platforms.  Prior to analysis, a metal cross bar 

was calibrated to descend between the gap in the metal platform and ascend upon fracture 

of the sample.  The metal platforms were adjusted so that the crossbar was not closer to 

one platform or the other while descending and ascending.  The cross bar and platform 

were attached to a Texture Analyzer TA.HD Plus (Texture Technologies Corp., 

Scarsdale, NY/Stable Microsystems, Godalming, UK) with a crossbar speed of 10 

mm/sec and a load cell capacity of 100 kg.  The crossbar descended and depressed 

sample until fracture; the peak force necessary to fracture sample was recorded.  This 

measurement was conducted on three slices per ham with the final value being the 

averaged force.   

Texture Profile Analysis 

 The Bourne analysis (Bourne, 1978) was used to evaluate the parameters of 

hardness, fracturability, gumminess, chewiness, springiness, cohesiveness, and resilience 

in both fresh chops and restructured hams.  In fresh chops, three 2.54 cm cores were 

collected and compressed on Texture Analyzer TA.HD Plus (Texture Technologies 

Corp., Scarsdale, NY/Stable Microsystems, Godalming, UK).  A 5.08 cm diameter plate 

compressed each core in two consecutive cycles of 75% strain with 2 s between cycles. 

The cross-head moved at a constant speed of 5 mm/s.  The values for the 3 cores were 
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averaged to receive an overall value for each parameter.  Texture profile of ham slices 

was analyzed in the same manner as the previously described methods for fresh chops.  

However, five 2.54 cm cores were used instead of only three. 

Salt Soluble Protein Assay 

 Sarcoplasmic and myofibrillar proteins were extracted in accordance to a 

modified method described by Lan et al. (1993).   An extraction buffer of of 0.01 M 2-

[N-Morpholino] ethanesulfonic acid (MES) was diluted in ultrapure water.  Ground 

Triceps brachii samples weighing 10 g was homogenized in 15 mL extraction buffer for 

1 min using a homogenizer (Brinkman homogenizer, PT 10/35, Brinkman Istruments, 

Westbury, NY).  The homogenate was centrifuged (1500 x g) for 20 min at 4° C.  The 

supernatant was considered to be salt soluble proteins and was diluted 12.5 fold and 

quantified using the BCA protein assay kit.  Samples, along with working solution 

included in the kit, were plated onto a 96 well plate.  A standard curve using bovine 

serum albumin was prepared and plated in duplicate.  Absorbance values of the samples 

were read at 550 nm using a Synergy HT plate reader.  Solublized protein content was 

calculated using a second order polynomial equation.  Salt soluble protein quantities are 

reported as percent of wet tissue weight.   

Histology 

 Longissimus pieces were frozen in liquid nitrogen-cooled isopentane, and stored 

at -80° C.  Frozen muscle pieces were affixed to a cryo-cut chuck using O.C.T. 

embedding compound (Tissue-Tek, Sakura Finetek, USA).  Longitudinal and cross 

sections measuring 10-15 µm thick were cut using a cryo-cut (American Optical Corp.) 

chilled to -20° C.  Cut sections were affixed to slides and stained with Toluidine blue for 



37 

 

3 min.  Stained samples were visually examined using a microscope with 20X objective 

(Nikon Instruments, Inc., Melville, NY) for longitudinal sections and 10X objective for 

cross sections; photographs of magnified sections were taken using a Nikon D60 (Nikon 

Instruments Inc., Melville NY) camera. 

Statistical Analysis 

 Statistical differences were detected using paired option of the Proc T TEST 

procedure of SAS (SAS Inst. Inc., Cary, N.C.).  For texture profile analysis of 

restructured hams, only 5 pairs were analyzed.  For protein degradation only five pairs 

were analyzed.  All other variables were analyzed using 6 pairs. 

Results and Discussion 

pH and Water Holding Capacity 

 Pressurization caused an immediate and significant (P < 0.05) drop in pH (over 

0.3 units) (Figure 2.1). The pH value at 24 h postmortem was 0.4 units less (P < 0.05) for 

control carcasses.  It appears that pressurization induced contraction causing a calcium 

release stimulating glycolysis resulting in a small, but immediate drop in pH.  However, 

as pressure increased glycolytic enzymes were inactivated preventing further decrease of 

pH.    At 24 h postmortem, treated sides experienced a small improvement (0.17 units) in 

pH whereas controls had declined to levels typical of fresh pork.     

The pH at 48 hours postmortem was 0.48, 0.47, and 0.27 units higher (P < 0.05) 

for treated Longissimus, Semimembranosous, and Triceps brachii muscles, respectively; 

the Psoas major was not different (Table 2.1).  Macfarlane (1973) reported that the 

ultimate pH of pressure treated pre-rigor ovine muscles were greater than controls except 

for the Longissimus.  Other studies determined that ultimate pH was lower in samples 
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subjected to HPP (Kennick et al., 1980; Macfarlane et al., 1982; Horgan and Kuypers, 

1983).   

The muscles evaluated in the present research when compared to previous 

research were subjected to a higher pressure level (215 vs 100-150 MPa) and 

considerably less pressurization time (15 sec vs 4-10 min).  Based on the conclusions of 

Horgan and Kuypers, (1983) and Elkhalifa et al. (1984), the muscles in the present 

research may not have completed glycolysis due to the shorter pressurization time and/or 

change in glycolytic enzyme functionality due to the higher pressure level. It should be 

noted that Macfarlane et al. (1982) determined that ultimate pH was high for muscles that 

were pressurized for 3-24 h with pressurization liquid at 0°C; concluding glycolysis did 

not occur.  Although pressurization conditions for the present research were vastly 

different, the 1982 study suggests that glycolysis can be altered by pressurization 

conditions.   

Drip loss percentage was 1.8% less (P < 0.05) for both the Longissimus, and 

Semimembranosous, while the Psoas major and Triceps Brachii were not different (Table 

2.1).  It is not surprising that no differences existed for the Psoas major regarding drip 

loss percentage given its relationship to pH, which also was not different.  Fiber type 

differences among muscles may explain the varied results found in pH and drip loss.  

Horgan (1981) determined fast twitch muscles experienced a larger pH decline (0.6-0.8 

units) than slow twitch muscles (0.2 units) after each were subjected to HPP.  Previous 

work has also found that weep was significantly higher and water-holding capacity 

significantly lower in HPP treated pre-rigor bovine and ovine muscle (Kennick et al., 

1980).  Kennick et al. (1980) also reported treated muscles had an ultimate pH that was 
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significantly lower than non treated counter parts; thus explaining the decreased water 

holding capacity.  Other previous studies that reported high ultimate pH due to HPP, did 

not investigate drip loss. 

Glycolytic Potential 

 Glycolytic potential (Table 2.2) was not different (P < 0.05) between controls and 

treated.  These results were anticipated because paired sides should have the same 

glycolytic potential regardless of how postmortem metabolism occurred. Treated samples 

had 12.88 µg/mol more (P < 0.05) glucose than controls.  Lactate levels for treated 

samples were 20.3 µg/mol less (P < 0.05) than controls.  These findings agree with 

previously discussed ultimate pH results.  The high ultimate pH is likely a result of very 

little lactic acid production.  This evidence suggests that HPP stops glycolysis as shown 

by the high level of glucose and low level of lactate.  The control indicates typical 

postmortem metabolism in which glucose is consumed.  The lactate levels for controls 

are higher indicating that glucose was converted to lactate.  Previous research indicates 

that depending on pressurization chamber settings, glycolysis may be expedited or 

inhibited (Macfarlane, 1973; Macfarlane et al., 1982; Horgan and Kuypers, 1983; 

Elkhalifa et al., 1984).  It appears that the pressurization conditions used in the present 

study did not affect phosphorylase, phosphorylase kinase, and phosphorylase phosphatase 

in a manner that leads to accelerated glycolysis as explained in previous research 

(Horgan; Kuypers, 1983).  The shorter pressurization time used in the current study likely 

garnered less pressure induced calcium release, and inactivated glycolytic enzymes due to 

the higher pressure level, ultimately leading to partial inhibition of glycolysis.  These 

results in addition to the ultimate pH results imply that the use of HPP can be useful tool 
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in persevering pork quality.  Many meat quality attributes such as color, protein 

functionality and water binding properties are decreased at low pH.   A technology such 

as HPP that prevents large pH declines and subsequent negative meat property changes 

would be invaluable to the meat industry. 

 Quality Evaluations 

 For subjective color score, (Table 2.1) no differences (P > 0.05) were found for 

the Longissimus.  The Tricpes brachii, and Semimembranosous were trending (P = 0.10) 

with treated muscles receiving lower scores than controls.  The Psoas major controls 

received higher (P < 0.05) color scores indicating treated Psoas major muscles were 

lighter in appearance.  Subjective firmness evaluation (Table 2.1) determined the 

Longissimus and Semimembranosous from treated carcass sides were subjectively firmer, 

(P < 0.05) whereas firmness scores for treated Triceps Brachii and Psoas major were not 

different from controls.  Differences that occurred between treated and controls for 

subjective measurements were not alarming because regardless of treatment, all muscles 

received acceptable color (NPPC, 1999) and firmness values (NPPC, 1991). 

Minolta L* color scores (Table 2.1) were statistically different (P < 0.05) for all 

four muscles.  The treated Longissimus, Tricpes brachii, and Psoas major muscles 

received L* values that were 3.87, 6.37, and 2.71units higher (lighter) (P < 0.05), 

respectively, than controls.  The treated Semimembranosous had an L* value that was 

4.31 units lower (darker) (P < 0.05) than controls.  Minolta a* scores were different (P < 

0.05) for the Longissimus and the Triceps brachii, but no differences were found for the 

Psoas major and semimembranosous.  The a* values for treated Longissimus muscles 

were 0.94 units lower (less red) than controls, while treated Triceps brachii muscles were 
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0.67 units higher (more green) than controls.  Only the treated Longissimus was different 

(P < 0.05) for Minolta b* scores, indicating its color appeared more blue.    

 It has been shown that higher pH is correlated with higher L* values causing the 

meat to appear darker (Brewer et al., 2001).  Therefore, it was anticipated that color 

results would indicate that treated samples were darker in color based on their high 

ultimate pH.  However, the opposite occurred for all but one muscle.  Results from 

previous research found similar increases in L* values, but also saw more consistent 

decreases in a* values (Carlez et al., 1995).  Carlez et al. (1995) also noted that pressures 

over 200 MPa caused a „whitening‟ effect to the meat.  Although the color of the meat 

used in the present study varied from „typical‟ pork color, no whitening effect was 

observed.  The color differences seen in the present and past research are believed to be 

related to changes in myoglobin content due to pressure induced detnaturation of 

sarcoplasmic proteins (Carlez et al., 1995; Jung et al., 2003).  Additionally, color 

differences in the present research may be attributed to pressure induced changes to 

water-protein binding properties.  These changes may cause differences in the way in 

which light scatters causing the appearance of lighter or darker color. 

Thiobarbituric Acid Reactive Substances (TBARS) 

 The oxidative stability of ground pork product is depicted in Figure 2.2.  At day 0, 

TBARS values were not different (P > 0.05).  Day 0 TBARS values were alarmingly 

higher than expected.  It is believed the addition of salt as a proxidant, as well as other 

unknown factors, such as temperature abuse during transportation, led to high TBARS 

values at day 0.  At day 7, TBARS values for treated samples were less (P < 0.05) than 

controls at a difference of 30%.   Day 14 samples were not included in the analysis.  At 
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day 21, TBARS values were trending (P =0.11) with treated values being numerically 

less than controls.  It can be assumed that the high variability within the small sample 

size prevented statistical differences.  Results indicate that HPP drastically inhibited the 

rate of lipid oxidation in ground pork samples.  The findings of the present research do 

not completely concur with that of previous results.  It is generally regarded that HPP 

increases the rate of lipid oxidation particularly at pressure levels above 300 MPa (Cheah 

and Ledward, 1996; Beltran et al., 2003).  Cheah and Ledward (1996), concluded that 

lipid oxidation rate was unchanged at pressures less than 300 MPa which is consistent 

with the pressure level used in the present research.  Additionally, it has been shown that 

TBARS values in ground pork with high ultimate pH (>6.10) are less than samples with a 

more typical pH (5.4-5.9) (Yasosky et al., 1984).  It is theorized histidine residues in meat 

with low pH alter the tertiary structure reducing the proteins ability to sequester catalytic 

metal ions used during lipid oxidation (Yasosky et al., 1984) 

Cook loss, Warner-Bratzler Shear Force and Degree of Doneness 

 Cook loss (Table 2.1) was different (P < 0.05) for Longissimus chops but no 

differences were detected for any of the other muscles.  The treated Longissimus chops 

retained over 3.5% more moisture during cooking when compared to controls.  The 

present research concurs with Macfarlane (1973) who determined cook loss was 

decreased in treated samples.  More recently however, Jung et al. (2000b) determined that 

cook losses of beef Longissimus muscles were higher (P < 0.05) than controls.  It should 

be noted that research has shown cook losses to be less for meat with high ultimate pH 

(>6.0) (Sayre et al., 1964; Brewer and Novakofski, 1999). 
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 Warner-Bratzler shear force was not different (P > 0.05) between treated and 

controls for the Psoas major, Triceps brachii or Semimembranosous; Longissimus 

approached significance (P =0.07) with treated samples being more tender than controls 

(Table 2.1). The results for individual muscle Warner-Bratzler shear force values indicate 

HPP does not affect all muscles consistently in terms of mechanical tenderness.  

Macfarlane (Macfarlane, 1973) found more consistent results with individual muscles 

determining HPP increased mechanical tenderness in all muscles examined, including the 

Longissimus and Semimembranous (both aged 2 days).   

 Warner-Bratzler shear force values for aged Longissimus chops are presented in 

Figure 2.3.  Treated 0 d chops were more (P < 0.05) tender than controls with values 

being 30% different.  Treated Longissimus samples aged 7 and 14 days approached 

significance (P = 0.07) both days being more tender; samples aged 21 days were trending 

(P = 0.12).  The similarity of mechanical tenderness values across all aging days suggests 

treated samples do not age or become more tender.  Control samples, on the other hand, 

start with higher shear force values at day 0 (3.07 kg), but as aging occurs the samples 

become more mechanically tender (2.27 kg).  These results concur with studies in which 

pre-rigor meat is used to evaluate Warner-Bratzler shear force values.  Kennick et al. 

(1980) as well as Riffero and Holmes (1983) determined HPP decreased Warner-Bratzler 

shear force values of pre-rigor pressurized meat. 

 Degree of doneness (Figure 2.4) chops cooked to lower (63°C) and higher (77°C) 

internal endpoint temperatures were not different (P > 0.05) between treated and control.  

This suggests that HPP does alter Warner-Bratzler shear force value at lower and higher 

degrees of doneness. 
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Protein Degradation 

  Postmortem proteolysis of myofibrillar protein by µ-calpain has been shown to be 

an integral part of postmortem tenderization (Huff-Lonergan et al., 1996).  It has also 

been shown that troponin t and desmin serve as substrates for µ-calpain during 

postmortem proteolysis (Lametsch et al., 2004).  Therefore, it is important to understand 

the affect of HPP on myofibrillar protein to determine if treated samples undergo 

postmortem aging in a typical manner.  Figure 2.5a refers to how troponin t membranes 

were analyzed for protein band densitometry.  The % degradation of troponin t (Table 

2.4) at 0 vs. 7 d, 0 vs. 14 d and 0 vs. 21 d, indicated that control samples had 30.45, 

60.97, and 53.33% more (P < 0.05) degradation of troponin t.  This indicates that over 

time, proteolysis of troponin t in treated samples was not nearly as extensive as control 

samples.  These results suggest that HPP my have altered the functionality troponin t 

and/or μ-calpains resulting in less protein degradation.  Differences of intact troponin t 

(Table 2.4) between controls and treated at 0 d approached significance (P = 0.07).  

Intact troponin t at 14 d was 2.5 times greater (P < 0.05) for treated samples.  Intact 

troponin t was trending (P < 0.10) at 21 d with treated samples having nearly twice the 

amount of intact protein as controls.  Intact troponin t at 7 d was not different (P > 0.05).  

The control troponin t values for both % degradation and intact troponin t agree with 

control sample Warner-Bratzler shear force values plotted on the aging curve seen in 

Figure 2.3.  The increase in troponin t degradation and decrease in intact troponin t are 

reflected in the decrease of mechanical tenderness values over time.   

 Figure 2.5b refers to how desmin membranes were analyzed for protein band 

densitometry. The % degradation of desmin (Table 2.4) for 0 vs. 7 d approached 
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significance (P = 0.07) with treated samples having 50% less desmin degradation.  

Percent degradation of desmin at 0 vs. 14 and 0 vs. 21 were not different (P > 0.05) 

between treated and controls.  Desmin % degradation was relatively unchanged over all 

time points for control samples.   Intact desmin (Table 2.4) for 0 d was trending (P = 

0.10) with treated samples having 4 times the amount of intact desmin.  The amount of 

intact desmin was not different between treated and controls at 7, 14, and 21 d.  Intact 

desmin levels for treated samples were numerically higher at all days but because of the 

high variability among the small sample size, statistical differences were not detected. 

The % degradation of desmin for control and treated samples were not consistent with 

Warner-Bratzler shear force values on the aging curve in Figure 2.3.  The results indicate 

that desmin degradation for controls occurred early and did not increase greatly over 

time.  Treated samples, however, started with very little desmin degradation but then 

increased over time suggesting that the mechanical tenderness values would decrease 

slightly over time.  The aging curve, however, indicates that Warner-Bratzler values for 

treated samples remained relatively unchanged over time suggesting that the aging 

phenomenon did not occur.  This suggests two possible occurrences: (1) HPP damaged 

myofibrillar protein so extensively that it reached maximum tenderness upon treatment; 

(2) changes in tenderness over time were not evident because proteolysis occurred in a 

such a limited capacity that they had no effect on tenderness. 

 Previous research investigating the effect of HPP on calpains has shown decreases 

in activity as pressure increased.  Calpain activity has been shown to decrease at 

pressurization as low as 100 MPa; at 200 MPa activity was one-fifth of controls and at 

300 MPA was completely inactivated (Koohmaraie et al., 1984; Homma et al., 1995).  It 
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is likely that calpain activity for the present study was also decreased given the lower 

levels of protein degradation for both troponin t and desmin. 

Soluble and Insoluble Collagen 

 Soluble collagen, insoluble collagen and total collagen were not different (P > 

0.05) (Table 2.2).  For this particular study, HPP did not have an impact on intramuscular 

collagen.  Some authors have speculated that pressurization does not affect connective 

tissue or what is referred to as „background toughness‟ (Ratcliff et al., 1977; Beilken et 

al., 1990).  Research that has been conducted on actual connective tissue has concluded 

that HPP has no effect on collagen (Bouton et al., 1978; Suzuki et al., 1993)      

Sensory Evaluation 

 Panelists used for sensory evaluation did not detect differences (P > 0.05) 

between treated and control samples when evaluating juiciness (Figure 2.6).  Tenderness 

scores for treated samples were 2.1 points higher (P < 0.05) than control samples.  Off 

flavor was trending (P < 0.10) with treated samples receiving higher off flavor scores.  

Although almost statistically different, the off flavor levels are not of concern due to their 

very low level (treated=0.29 on a 1-15 scale).  In terms of human perception, HPP 

demonstrated the ability to increase tenderness.  Researchers Macfarlane (1973) and 

Riffero and Holmes (1983) reached the same conclusions regarding tenderness but 

disagreed with juiciness; the 1983 study concurred with the present research that no 

differences existed for juiciness.  Although, no quantifiable measurement was taken, 

many panelists noted a mealy texture exclusively with treated samples.  It is believed this 

phenomenon is a result of extensive damage caused to proteins during pressurization.  

Previous work examining electron micrographs has indicated that myofibrillar protein of 
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HPP treated muscles becomes even more disorganized after cooking when compared to 

raw HPP treated samples (Macfarlane et al., 1981).     

Texture Profile Analysis and Ham Binding Strength 

 Texture profile analysis of fresh chops (Table 2.3) determined that differences (P 

< 0.05) between controls and treated existed for cohesiveness, gumminess, and 

chewiness.  HPP treatment did not have an effect (P < 0.05) on the texture properties of 

fresh chops for hardness, springiness, and resilience.  Gumminess and chewiness were 

1.30 and 0.34 kg greater for treated samples while cohesiveness was 2.5 % less for 

control chops.  Although inconsistent across all textural parameters, it appears that HPP 

alters texture profile.  

Texture profile analysis of restructured ham slices (Table 2.3) determined that 

significant differences (P < 0.05) between treated and control samples existed for the 

texture profile parameters of hardness, fracturability, springiness, gumminess and 

chewiness.  The parameters of cohesiveness and resilience were not different between 

treated and controls.  Hardness and fracturability were 2.71 and 3.00 kg less for treated 

samples. Control samples were 5.42% higher for springiness value.  Gumminess and 

chewiness values were 0.72 and 0.50 kg less for treated samples. 

Ham binding strength (Table 2.3) was different (P < 0.05) between treated and 

controls.  The control samples required almost 2 kg of additional force to fracture the 

sample.  This suggests that the effects of HPP resulted in a decrease in protein bind.  This 

is further supported by the results of the texture profile analysis of restructured ham 

cores.  In all texture profile parameters that were statistically different, the treated ham 

slices received lower values than its treated counterparts.  It has been shown in previous 
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research that correlations exist between binding strength and texture profile analysis 

(Herrero et al., 2007).  Previous literature is conflicted regarding the results of texture 

analysis of value added products.  Generally at lower pressure levels, (< 150 MPa) 

binding strength and texture parameters are improved (Macfarlane et al., 1984; Crehan et 

al., 2000).  However, it has also been shown that as pressure level increases some textural 

properties are decreased (Yuste et al., 1999; Crehan et al., 2000; Mor-Mur and Yuste, 

2003).  Cheftel and Culioli (1997) believe that textural changes are a result of high 

pressure induced disruption of protein functionality, particularly myosin heavy chains, 

ultimately causing textural changes.   

Salt Soluble Proteins 

 The amount of salt soluble proteins (Table 2.2) were different (P < 0.05) between 

treated and controls.  Treated samples yielded a difference of 17.8% less salt soluble 

proteins than controls on a wet tissue basis.  These results further help to explain the 

lower value reported for both binding strength and texture profile analysis.  It appears 

that the treatment used in present research resulted in a decrease in myofibrillar protein 

functionality explaining the inability of NaCl to extract these proteins or for them to bind 

to each other.  Previous research has indicated the opposite.  Authors who have 

investigated myofibrillar solubility have concluded that HPP increases protein solubility 

even at higher pressures (Macfarlane, 1974; Macfarlane and McKenzie, 1976; Suzuki et 

al., 1991).  However, it should be noted that all of those experiments were conducted 

with meat being pressurized after it had been suspended in a saline solution.  This 

suggests that myofibrillar protein extraction was occurring prior to and was possibly 

improved during HPP.  It is probable that functionality changes that occurred to proteins 
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during HPP in the current study made proteins less susceptible to extraction when 

introduced to saline solution during analysis. 

Muscle Structure 

 Photographs taken of magnified longitudinal muscle tissue section of treated 

longissimus samples indicated widespread disorganization and damage to muscle tissue 

(Figure 2.7).  Most previous research regarding muscle structure was evaluated using an 

electron microscope allowing for specific evaluation contractile protein structures.  The 

muscle tissue sections for the current research were evaluated using a light microscope 

and only general observations could be made.  Treated longitudinal sections (Figure 2.7b) 

had definite distortion and separation of muscle fibers.  The sarcolemma of treated 

samples was also damaged displaying holes and areas of missing muscle structure.  The 

z-lines of control samples (Figure 2.7a) were clearly visible, whereas z-lines for treated 

samples (2.7b) were only visible in areas of minimal damage suggesting.  The nature of 

the damage seen in Figure 2.7b suggests loss of contractile protein organization as well as 

impaired protein functionality, for postmortem proteolysis, and myofibrillar protein 

solubility.    

The effect of HPP on muscle structure was less conclusive when evaluating 

muscle tissue cross sections.  Figure 2.7d indicates that HPP causes extensive damage to 

muscle structure.  The photograph indicates widespread loss of muscle fiber integrity 

with some areas damaged so extensively that muscle fiber structure is indistinguishable.  

Unexplainably, cross sections were not as conclusive as longitudinal sections in terms of 

consistent damage to muscle structure in all animals.  Figure 2.7f depicts a treated cross 

section that is very comparable to its control counterpart, Figure 2.7e.  Oddly enough, 
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longitudinal sections from all treated animals exhibited similar patterns of damage to 

muscle structure.   

Previous research has consistently found that HPP, particularly at pressures > 130 

MPa, cause extensive muscle structure damage (Macfarlane and Morton, 1978; Kennick 

et al., 1980; Macfarlane et al., 1981; Suzuki et al., 1991; Jung et al., 2000c).  At 

pressurization levels closest to the present research, electron micrograph images indicated 

structural loss of the sarcomere, disappearance of Z-lines, as well as I and A-filament 

disorganization (Suzuki et al., 1991).  The pressure-induced destruction of protein 

structure helps to explain the increased mechanical tenderness for treated samples.  The 

protein degradation results are also clarified considering that a pattern of typical 

proteolysis could not be expected in samples where protein destruction likely occurred.  

 

Conclusions 

 This study identified several HPP induced changes to meat properties.  It is 

apparent that HPP partially inhibits postmortem metabolism. The resulting high ultimate 

pH suggests that HPP may be used to preserve quality in some animals that would have 

had abnormally high pH declines.  The water holding properties associated with HPP 

treated meat also provide usefulness to pumped or injected products where high water 

retention is desired.  Color results from this study indicate that HPP treatment causes 

meat to appear lighter.  Consumers‟ purchasing preferences are highly based on fresh 

meat color.  More work is needed to investigate meat color preservation when using HPP.   

Lipid oxidation only increased slightly in HPP treated samples.  These findings 

are likely attributed to the high ultimate pH.  HPP also improved pork palatability 
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parameters.  Warner-Bratlzer shear force values indicated that HPP causes increased 

mechanical tenderness, which was confirmed by sensory panelists‟ evaluation of 

tenderness.  The ability of HPP to consistently produce tender products without the 

addition of non-natural additives or the use of blade tenderization would be a major 

breakthrough for the meat industry.   HPP did not have any effect on intramuscular 

collagen indicating that the increased tenderness of HPP treated samples was likely not 

due to changes in collagen.  

 Myofibrillar protein solubility is an area of concern regarding the use of HPP.  

Results from texture profile analysis, ham binding strength, and the salt soluble protein 

assay suggest that myofibrillar protein damage, or limited functionality, negatively 

affects further processed pork products that rely heavily on protein-protein bind.  

Photographs of magnified muscle section show that HPP treated muscle structure is 

damaged and highly disorganized.  This suggests that physical destruction of muscle 

components is just as responsible for pressure-induced denaturation of proteins.  HPP has 

the possibility to be a very a useful tool in the meat industry.  However, more research 

must be done to maximize all the positives of HPP, while eliminating all its negatives.     
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Table 2.1.  Effect of HPP on Individual Muscles 

    Longissimus  Psoas major  Triceps brachii  Semimembranosous  

                        

        Con Trt SEM
x
 P-value   Con Trt SEM P-value   Con Trt SEM P-value   Con Trt SEM P-value   

 
pH  5.78

a
 6.26

b
 0.05 0.0003  6.17 6.31 0.09 0.1679  6.08

a
 6.35

b
 0.10 0.0412  6.01

a
 6.48

b
 0.07 0.0012 

 

 
Drip Loss %  2.16

a
 0.30

b
 0.63 0.0328  0.54 0.60 0.12 0.6431  0.63 0.43 0.17 0.3033  2.13

a
 0.33

b
 0.62 0.0012 

 

 
Color  2.67 2.50 0.31 0.6109  5.00

a
 4.00

b
 0.00 <.0001  4.17 3.50 0.33 0.1019  3.83 3.17 0.33 0.1019 

 

 
Firmness  2.00

a
 3.33

b
 0.52 0.0015  2.50 2.50 0.45 1.0000  2.67 2.83 0.31 0.6109  2.50

a
 3.50

b
 0.26 0.0117 

 

 
L*  46.73

a
 50.60

b
 1.48 0.0472  36.86

a
 43.23

b
 1.09 0.0020  41.49

a
 44.20

b
 0.69 0.0112  46.80

a
 42.49

b
 1.50 0.0347 

 

 
a*  6.07

a
 5.13

b
 0.22 0.0085  14.80 13.76 0.55 0.1150  11.67

a
 12.34

b
 0.25 0.0423  7.26 7.01 0.73 0.7439 

 

 
b*  3.06

a
 1.59

b
 0.48 0.0285  3.98 3.92 0.48 0.8993  3.95 3.82 0.18 0.4964  2.24 2.81 0.56 0.3556 

 

 
Cook Loss %  20.58

a
 17.01

b
 0.98 0.0149  19.16 17.87 1.51 0.4325  18.72 20.52 2.60 0.5194  23.71 21.34 2.21 0.3331 

 

  
WBSF kg

y
  2.46 1.97 0.21 0.0659  1.82 2.05 0.36 0.5449  2.35 2.35 0.08 0.9868  2.49

a
 2.11

b
 0.13 0.0292 

  

a,b Means within muscle lacking a common superscript are different (P < 0.05)  
x SEM is the standard error of the difference of the mean 
y Warner-Bratzler shear force chops were aged 14 d and cooked to endpoint internal temperature of 71˚C 
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Table 2.2.  Biochemical Analyses         

         

        Control Treated SEM
y
 P-value   

 Glycolytic Potential* (μmol/g)       

      Glucose  4.87
a
 17.75

b
 2.87 0.0064  

      Lactate  104.30
a
 84.00

b
 1.70 <0.0001  

      Total GP  114.08 119.48 4.80 0.3117  

         

 Collagen* (mg/g wet tissue)       

      Soluble  0.99 0.73 0.14 0.1123  

      Insoluble  2.53 2.52 0.09 0.9259  

      Total Collagen  3.51 3.24 0.20 0.2330  

         

 Salt Soluble Protein
x
       

      Soluble Protein  9.28 7.62 0.51 0.0223  
a,b Means lacking a common superscript are different (P < 0.05)      

*Glycolytic potential (GP) and Collagen analysis were conducted using Longissimus muscle  
xSalt Soluble protein analysis was reported on % wet tissue basis and conducted using Triceps brachii muscle 
ySEM is the standard error of the difference of the mean   
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Table 2.3.  The effect HPP on Ham Texture Profile Analysis and Binding Strength    

         

    Control Treated SEM
x
 P-value   

 Fresh Chops*        

 Hardness kg  20.72 23.57 1.31 0.0821  

 Springiness %  25.00 25.00 1.48 1.0000  

 Cohesivness %  26.77
a
 29.27

b
 0.63 0.0109  

 Gumminess kg  5.45
a
 6.75

b
 0.40 0.0243  

 Chewiness kg  1.36
a
 1.70

b
 0.13 0.0509  

 Resilience %  17.82 17.45 0.72 0.6316  

         

 Ham Slices       

 Hardness, kg  14.59
a
 11.88

b
 0.39 0.0022  

 Fracturability, kg  9.28
a
 6.28

b
 0.68 0.0117  

 Springiness, %  49.42
a
 44.00

b
 0.79 0.0024  

 Cohesivness, %  23.22 22.62 0.81 0.4999  

 Gumminess, kg  3.47
a
 2.75

b
 0.17 0.0122  

 Chewiness, kg  1.73
a
 1.23

b
 0.10 0.0072  

 Resilience, %  7.44 7.50 0.37 0.8789  

 Binding Strength, kg  12.93
a
 10.96

b
 0.56 0.0167  

a,b Means within muscle lacking a common superscript are different (P < 0.05)      

*Longissimus chops aged 7 days were used for texture profile analysis    
xSEM represents the standard error of the difference of the means     
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Table 2.4. The effect of HPP treatment on Troponin t and Desmin Degradation* 

         

        Control Trt SEM
x
 P-value   

 Troponin T       

      % Degradation 0 d vs 7d  48.78
a
 18.33

b
 11.67 0.0477  

 
     % Degradation 0 d vs 

14d  60.97
a
 0.0

b
 14.54 0.0072  

 
     % Degradation 0 d vs 

21d  61.06
a
 7.73

b
 20.76 0.0510  

      Intact Troponin T 0 d  5.22 4.66 0.24 0.0659  

      Intact Troponin T 7 d  2.67 3.74 0.64 0.1598  

      Intact Troponin T 14 d  2.00
a
 4.63

b
 0.78 0.0202  

      Intact Troponin T 21 d  2.14 4.12 0.9805 0.0995  

         

 Desmin        

      % Degradation 0 d vs 7d  82.81 32.49 20.30 0.0683  

 
     % Degradation 0 d vs 

14d  80.59 79.58 15.97 0.9523  

 
     % Degradation 0 d vs 

21d  79.94 86.69 16.74 0.7075  

      Intact Desmin 0 d  1.01 4.12 1.43 0.0958  

      Intact Desmin 7 d  0.10 3.11 1.90 0.1871  

      Intact Desmin 14 d  0.07 0.86 0.44 0.1489  

      Intact Desmin 21 d  0.11 0.36 0.19 0.2849  
a,b Means within muscle lacking a common superscript are different (P < 0.05)      
x SEM is the standard error of the difference of the means   
*Longissimus chops were used for analysis 
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Figure 2.1. The effect of HPP on pH declines of Longissimus  
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Figure 2.2.  The effect of HPP on TBARS 
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Figure 2.3.  The effect of HPP on Warner-Bratzler Shear Force values of 

Longissiumus chops* after aging  

 
 

 

 

 

 

0.00

1.00

2.00

3.00

4.00

0 7 14 21

F
o
rc

e,
 k

g

Aging Day

Control

Treated

*Longissimus chops were cooked to an endpoint internal temperature of 71˚ 
a
 P values are representative of differences between treated and controls at corresponding time point 

 

(P=0.0659) 

 (P=0.1230) 

 

(P=0.0671) 

 

(P=0.0326)
a
 

 



64 

 

Figure 2.4.  The effect of HPP on Degree of Doneness of Longissimus* chops 
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Figure 2.5. Troponin T and Desmin Western Blot Analysis 
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Figure 2.6.  The effect of HPP on sensory evaluation of Longissimus chops 
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Figure 2.7.  The effect HPP on muscle structure 
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CHAPTER 3 

THE EFFECT OF VARYING HIGH PRESSURE PROCESSING 

PRESSURIZATION LIQUID TEMPERATURES ON MEAT COLOR, WARNER-

BRATZLER SHEAR FORCE, TEXTURAL PROFILE OF HOT DOGS AND 

MYOFIBRILLAR PROTEIN SOLUBILITY 

 

Abstract 

 This study evaluated the impact of High Pressure Processing (HPP) treatment 

with varying pressurization liquid (water) temperatures on pork quality, Warner-Bratzler 

shear force, myofibrillar protein solubility, and textural parameters of hot dogs.  HPP 

pressurization liquid temperatures were 15.5°C (HPP Low) and 29.4°C (HPP Med).  

Analyses were conducted using paired boneless loins (HPP Low 12 pairs & HPP Med 10 

pairs) and paired boneless hams (HPP Low & HPP Med 6 pairs each).   

 Loins were evaluated for pH, purge loss, objective color, subjective color and 

firmness; and changes to Minolta L*, a*, and b* during a 20 min bloom time.  Both HPP 

treatment levels resulted in higher (P < 0.05) ultimate pH and less (P < 0.05) purge loss 

%.   Subjective color was lighter (P < 0.05) for HPP Low but not different from controls 

for HPP Med.  Samples from both treatment levels received higher (P < 0.05) subjective 

firmness scores.  Pre-bloom and post-bloom L* values were not different (P > 0.05) for 

either treatment level when compared to their controls.  Pre-bloom and post-bloom a* 

and b* values were less (P < 0.05) for both treatment levels.  Change in bloom analysis 

determined L* and a* blooming ability for both treatment levels was not different          

(P < 0.05) from controls.  Blooming ability of b* was decreased (P > 0.05) for both HPP 

treatment levels.  Texture profile analysis of hot dogs determined that springiness was 

less (P = 0.10) for HPP low treated samples when compared to controls.  Fracturability 

of HPP Med samples was also less (P = 0.10) than controls.  Warner-Bratzler shear force 
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values of Longissimus chops taken from anterior, mid, and posterior positions were not 

different from controls for either HPP treatment level.  HPP Med mid Longissimus chops 

were more (P < 0.05) mechanically tender than controls.  When salt concentration levels 

were pooled, salt soluble proteins extractability was less (P < 0.05) for both HPP 

treatment levels.  There was no HPP treatment*salt concentration interaction for salt 

soluble protein analysis.  Protein band densitometry on SDS PAGE gels determined an 

HPP treatment level*salt concentration level interaction (P < 0.05) for protein product 

bands at 250 and 75 kDa.  In general, salt soluble protein yields were less for both 

treatment levels when compared to controls at most molecular weights.  

Introduction 

 High pressure processing (HPP) is considered a novel food technology that has 

gained popularity in the last two decades.  Several countries such as France, Japan, 

Mexico, Spain, and the U.S. have instituted the use of high pressure processing in 

commercial settings on products ranging from fruit juices to protein-based products (de 

Lamballerie-Anton et al., 2002).   HPP is most widely used for its ability to significantly 

reduce foodborne illness causing pathogens (Shigehisa et al., 1991; Carlez et al., 1993; 

Hayman et al., 2004). HPP is a non-thermal process because there is only a small product 

temperature increase that allows for preservation of product flavor and appearance 

(Swientek, 1992).  Just like many other segments of the food business, the meat industry 

also uses HPP to eliminate food borne illness-causing pathogens.   Besides food safety, 

research has indicated that HPP may offer other benefits to meat properties.   

 Previous investigations have indicated that pressurization level (MPa), time, and 

pressurization liquid temperature provide great variability in changes that meat properties 
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undergo.  In order to determine how to obtain the ideal changes in meat properties, HPP 

conditions must be further investigated.  This chapter will investigate the effect of 

varying pressurization liquid temperature on the parameters of pork quality, Warner-

Bratzler shear force values, textural profile of hot dogs, and the solubility of myofibrillar 

proteins.  

Materials and Methods 

Sample Collection 

 Animals were humanely harvested at a commercial U.S. slaughter facility over 

two days.  Pigs went through normal harvest procedures.  After carcasses were split into 

sides, identification was maintained for each side so that paired data could be analyzed.  

One side from each animal was subjected to HPP.   On harvest day 1, numerous sides 

were subjected to HPP using a pressurization liquid (water) with a temperature of 15.5°C 

(HPP Low).  On harvest day 2, several more sides were HPP treated with pressurization 

liquid at 29.4° (HPP Med).  Carcasses were chilled over night and fabricated the 

following day into boneless loins (NAMP #413C) and bone in fresh legs (NAMP 

#401A).  Paired HPP Low boneless loins (12 pairs) and HPP Med boneless loins (10 

pairs) were randomly selected.  HPP Low and HPP Med boneless hams (6 pairs each) 

were also randomly selected.  Loins and fresh legs were vacuum packaged, boxed and 

transported to the University of Illinois Meat Science Laboratory via a refrigerated truck.  

Meat Quality 

 Data collection occurred 10 days postmortem for harvest day 1, and 7 days 

postmortem for harvest day 2.   Boneless loins were removed from packaging and cut in 
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half.  In order to evaluate blooming ability, pre-bloom Minolta L*, a*, and b* values 

were immediately collected on the freshly exposed cut lean surface using a Minolta CR-

300, utilizing a D65 light source and a 0º observer (Minolta Camera Company, Osaka, 

Japan).  After allowing loins to bloom for 20 minutes, post-bloom Minolta L*, a*, and b* 

values were collected.  The difference between pre-bloom and post-bloom values were 

calculated and analyzed.  Subjective color (NPPC, 1999) and firmness (NPPC, 1991) as 

well as pH (MPI pH Meter Model C033, Meat Probes, Inc., USA) were also taken from 

the center section of the loin.  Three Warner-Bratzler shear force chops measuring 2.54 

cm were obtained from the anterior, mid, and posterior sections of the Longissimus.  The 

anterior chop was obtained approximately 10.5 cm from the anterior end of the 

Longissimus; the mid chop came from the centermost portion of the Longissimus, while 

the posterior chop was obtained immediately anterior to the Gluteus medius muscle.  

Warner-Bratzler shear force chops were vacuum packaged, aged till 14 d postmortem, 

and then stored at -20°C. 

Purge Loss 

 Boneless pork loins were weighed prior to (in bag) and after removal of their 

packaging material (out of bag).  The ten bags were washed, dried and weighed to 

determine bag weight.  The average bag weight was subtracted from the „in bag' weights 

and a purge loss % was calculated. 

Fresh Leg Fabrication 

 Fresh legs were skinned; all subcutaneous fat was kept for use in hot dog 

formulation.  Fresh legs were fabricated into Semimembranosous, Biceps femoris, 
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Semitendinosous, and the knuckle.  All muscles were removed of connective tissue; fat 

was also removed and kept for hot dog formulation.  Meat from the shank and light butt 

were not used for any evaluation.  A 2.54 cm chop to be used for salt soluble protein 

analysis was removed from the center of the Semimembranosous.  Salt soluble protein 

chops were placed in whirl pack bags and stored -20°C.  All other fabricated muscles 

were used for hot dog formulation.   

Proximate Compostion 

Moisture and lipid content were determined for each muscle using the procedures 

described by Novakoski et al. (1989).  Chops were trimmed of external fat and 

connective tissue and homogenized using a Cusinart Food Processor (Model DLC 5-TX, 

Cuisinart, Stamford, CT).  Moisture content was determined by oven drying the samples 

at 110ºC for 48 h.  Lipid content was determined by extraction using a mixture of 

chloroform and methanol.   

Hot Dog Formulation 

A total of 8 hot dog batches were formulated.  The muscles from the Low temp 

treatment group were pooled into 2 treated batches and 2 control batches.  Med temp 

treatment group was formulated in the same manner.  Identification was maintained so 

that parity of samples remained.  The Biceps femoris, semitendinosous, and knuckles of 

each batch were cut into small pieces, mixed together, and coarsely chopped in a bowl 

chopper (Maschinenfabrik Meissner and Co, Biedenkopf Wallau, Germany). All fat 

collected from fresh legs was also coarsely chopped.  Lean and fat samples were 

collected for proximate composition analysis.  The proximate composition results were 
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used to determine the appropriate fractions of raw materials for a 75:25 lean to fat ratio.  

Additional pork fat was needed to reach desired fat inclusion levels.  None of the batches 

required greater than 5% of an outside fat source.  Lean and fat were placed in a bowl 

chopper and chopped for 30 seconds before Leggs Bologna/Frank seasoning (Blend 

#125, Calera, AL) and water were added.  The ingredients were emulsified for an 

additional 3 ½ min until hot dog batter reached approximately 12-14°C.  Hot dog batter 

was stuffed into 22 mm cellulose casings using a Handtmann stuffer ([Model# VF 80] 

Biberach, Germany).  Hot dogs were cooked in an Alkar smokehouse (Lodi, Wisconsin) 

to an internal temperature of 67.8°C and chilled in a cooler at 2°C.  After chilling, hot 

dogs were peeled, vacuum packaged, and stored at 4°C.  Hot dog sections (2) measuring 

2.54 cm were cut from the center of the hot dogs and used for texture profile analysis.  

The remaining hot dog sections were evaluated on the cut surface for Minolta L*, a*, and 

b* and pH values.   

Hot Dog Texture Profile Analysis 

 The Bourne analysis (Bourne, 1978) was used to evaluate the parameters of 

hardness, fracturability, chewiness, springiness, cohesiveness, and resilience in hot dogs.  

Ten 2.54 cm sections per batch were compressed on Texture Analyzer TA.HD Plus 

(Texture Technologies Corp., Scarsdale, NY/Stable Microsystems, Godalming, UK).  A 

5.08 cm diameter plate compressed each section in two consecutive cycles of 75% strain 

with 2 s between cycles. The crosshead moved at a constant speed of 5 mm/s.  The values 

for the 10 sections were averaged to receive an overall value for each parameter per 

batch.  
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Cook Loss and Warner-Bratzler Shear Force 

 Prior to analysis, chops were removed from freezer and allowed to thaw at 4˚C for 

24 h.  Chops were then trimmed of excess fat, weighed, and cooked on a Farberware 

Open Hearth gill (Model 455N, Walter Kiddie, Bronx, NY).  Chops were cooked on one 

side to an internal temperature of 35˚C, flipped, and cooked to final internal temperature 

of 70˚C.  Internal temperature was monitored using copper constantan thermocouples 

(Type T, Omega Engineering, Stanford, CT) connected to a digital scanning thermometer 

(Model 92000-00 Barnant Co., Barington, IL).  Chops were allowed to cool to 25ºC and 

then reweighed to determine percentage of cook loss.   Four 1.25 cm cores were removed 

parallel to the orientation of the muscle fibers.  Cores were sheared using a Texture 

Analyzer TA.HD Plus (Texture Technologies Corp., Scarsdale, NY/Stable Microsystems, 

Godalming, UK) with a blade of 10 mm/sec and a load cell capacity of 100 kg.  Shear 

force was determined on each core, and the average of the four cores reported.   

Salt Soluble Protein Assay and SDS PAGE Sample Prep 

 Sarcoplasmic and myofibrillar proteins were extracted in accordance to a 

modified method described by Lan et al. (1993).  An extraction buffer of 0.01 M 2-[N-

Morpholino] ethanesulfonic acid (MES) was diluted in ultrapure water.  The master mix 

was then aliquotted into 4 beakers with increasing salt concentrations (sodium chloride).  

Concentrations were 0.5% (0.09M), 1.5% (0.26M), 2.5% (0.43M) and 3.5% (0.6M) salt 

by volume.  Homogenized Semimembranosous samples weighing 100 mg were re-

homogenized in 1.5 mL of extraction buffer for 3 min using a Tissuelyzer II (Qiagen, 

Hilden, Germany).  The homogenate was centrifuged (1500 x g) for 20 min at 4°C.  The 

supernatant was considered to be salt soluble proteins and was diluted 12.5 fold and 



75 

 

quantified using the BCA protein assay kit.  Samples along with the working solution 

included in the kit were plated onto a 96 well plate.  A standard curve using bovine serum 

albumin was prepared and plated in duplicate.  Absorbance values of the samples were 

read at 550 nm using a Synergy HT plate reader.  Solubilized protein content was 

calculated using a second order polynomial equation.  Salt soluble protein quantities were 

reported as percent of wet tissue weight.  Protein concentrations from the fractions were 

adjusted to 3.0 mg/mL for SDS PAGE. 

SDS PAGE 

 Protein electrophoresis was conducted using NuPAGE 4-12% Bis-Tris gradient 

gels with MOPS running buffer.  Running buffer and reducing agent were added to 

samples in accordance to NuPAGE protocol (Invitrogen, USA) and 10 μg protein were 

loaded per lane. Kaleidoscope Standards (#161-0375 Bio-Rad, Hercules, CA) was used 

as a molecular weight standard. Gels were run at 200 v for 70 min in water-cooled Hoefer 

SE260 Mighty Small II gel electrophoresis boxes (Hoefer, San Francisco, CA). After 

electrophoresis, gels were washed 3 times for 5 min in ultra pure water and then stained 

for 1 h in Gelcode blue stain (#24592, Thermo-Scientific, Rockford, IL).  Samples were 

washed again in ultrapure water for twenty minutes and then photographed using the 

ChemiGenius
2
 Imaging System (Syngene, UK).  Images were analyzed using GeneTools 

(Syngene, UK).  Protein bands corresponding with molecular weights of >250, 250, 100-

150, 100, and 75 kDa were measured for protein band density.  Per gel, every band was 

standardized using a standard with a known molecular weight.  

Statistical Analysis 
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 Statistical differences for all variables unless otherwise noted were detected using 

paired option of the Proc T TEST procedure of SAS (SAS Inst. Inc., Cary, N.C.).  Paired 

T analysis for HPP Low vs. controls was conducted with 12 pairs of Longissimus 

samples.  Paired T analysis for HPP Med vs. controls was conducted using 10 pairs of 

Longissimus samples.  Paired T test for hot dog variables were conducted using 2 pairs 

for both HPP Low vs. controls and HPP Med vs. controls  

  Salt soluble protein yields were analyzed using the mixed procedure of SAS. 

Treatment (HPP Low, HPP Med, and controls), and salt concentration level were 

considered to be fixed effects.  Dependent variables that were measured for several salt 

concentrations on the same experimental unit were analyzed using repeated measures.  

Covariance structures evaluated and the most appropriate was used.   Residuals were 

examined for normality using the UNIVARIATE procedure of SAS.  Any non-normal 

data was transformed using a natural log or square root transformation.  The actual values 

were used to report data. 

Results and Discussion 

pH, Purge Loss, Color  

 Longissimus pH (Table 3.1) of samples subjected to HPP Low was 0.46 units 

higher (P < 0.05) than controls.  HPP Med treated samples also had a higher pH being 

0.57 units higher than its controls.  These findings indicate that lower pressurization 

liquid temperature results in higher ultimate pH.  Previous research does not concur by 

finding that pressurization liquid at 0°C for 3-24 h prevents an immediate pH drop at 

pressurization and causes ultimate pH to remain high several hours post postmortem 

(Macfarlane et al., 1982).  The current study pressurized samples for only 15 seconds 
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suggesting length of pressurization time may be as influential as pressurization liquid 

temperature. 

 Purge loss (Table 3.1) was 1.15% less (P < 0.05) for HPP Low samples when 

compared to controls.  Purge loss for HPP Med was 0.78% less for treated samples.  

These results are odd in that purge loss % is greater for HPP Med, which has a higher pH 

value than HPP Low.  Generally, water-holding capacity is correlated with pH; therefore, 

samples bind more water at higher pH.  Previous studies in which ultimate pH values 

were comparable to the present research did not evaluate water-binding characteristics.  

 Subjective firmness (Table 3.1) was nearly a full score higher (P < 0.05) for both 

levels of pressurization liquid temperature.  It is believed the increased water binding 

ability of treated samples promotes a firmer feel when touched.  Macfarlane (1973) also 

noted pressure treated muscles had a firmer feel when pressed by the fingers.  Subjective 

color score was not different (P > 0.05) for HPP Low, but was trending (P < 0.10) for 

HPP Med.  Controls and HPP Med were separated by just under a third of a color score 

and would be acceptable in practical applications. 

 Objective color results are reported in Table 3.1.  Pre-bloom L* values were not 

different (P > 0.05) for either treatment level.  Pre-bloom a* values were 0.93 and 0.74 

units higher (P < 0.05) for control samples.  These results indicate that HPP treatment 

causes freshly exposed lean to appear less red than controls.  Pre-bloom b* values were 

1.13 and 1.20 units less (P < 0.05) for HPP Low and HPP Med, respectively.  These 

results indicate that pre-bloom meat color is bluer in color for treated samples.  Post-

bloom L* values were not different for either treatment level when compared to controls.  

These results are not consistent with the findings in Souza (Chapter 2, 2009), which 
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determined HPP increased (appeared lighter) Longissimus L* value.  It appears that the 

cooler pressurization liquid temperatures used for the present study prevented a change in 

L* value.  Post-bloom a* values were 1.28 and 0.92 units less (P < 0.05) for treated 

samples.  This suggests that after allowing samples to bloom, lean color is still 

objectively less red for treated samples.  Zhu and Brewer (1999) determined that 

consumers could detect changes to meat redness with a* change of 0.589 under 

illuminant A or 0.386 under illuminant F.  The a* results agree with research conducted 

in Souza (Chapter 2, 2009), which determined that HPP decreased a* in the Longissimus 

muscle.  Based on the current findings and the results of Souza (Chapter 2, 2009), 

varying pressurization liquid temperature did not prevent a decrease in a* value.  Post-

bloom b* values for samples were 2.41 and 2.17 units less (P < 0.05) than controls for 

HPP Low and HPP Med samples.  These results suggest that after the blooming period, 

the color of the lean from treated samples is bluer in color.  These results agree with the 

findings in Souza (Chapter 2, 2009) regarding the effect of HPP on b* value and suggest 

that b* value of the Longissiums decreases even when cooler pressurization liquid 

temperatures are used.  Change-in-Bloom for L* was not different (P > 0.05) between 

treated and controls for either HPP temperature level indicating that treated samples 

behaved comparably to controls during the blooming period.  Change-in-Bloom for a* 

was also not different      (P > 0.05) when comparing both HPP treatment levels to their 

controls.   Change-in-Bloom for b* was 1.28 and 0.97 units higher (P < 0.05) for 

controls.  These results indicate that both treatment levels decrease the b* blooming 

ability.  Therefore treatment effect on b* is twofold: 1 it decreases overall b* values; 2 it 

decreases b* blooming ability. 
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 Previous literature concurs that HPP treatment causes an increase in L* value, a 

decrease in a* and no changes occurring to b* values. (Carlez et al., 1993; Carlez et al., 

1995).  Other research has determined that decreases in meat redness are correlated to 

increases in metmyoglobin content (Jung et al., 2003).  It is speculated that HPP alters the 

color of fresh meat by damaging the sarcoplasimic protein myoglobin (Carlez et al., 

1995; Jung et al., 2003). 

Hot Dog pH, Color, and Texture Profile 

 The results for hot dog color, pH and texture profile are shown in Table 3.2.  Hot 

dog pH for HPP Low was trending (P < 0.10) being 0.22 pH units higher than controls.  

Hot dog pH was 0.17 units higher (P < 0.05) for HPP Med than controls.  These results 

were expected given the high ultimate pH of the protein source.  Minolta L*, a*, and b* 

values were not different between HPP treatment levels and their respective controls.  

Other research using hot dogs formulated with HPP treated meat found no differences in 

L* a* b* values (Crehan et al., 2000).  It appears that pressure induced denaturation of 

myoglobin that potentially occurred in treated samples does not prevent the formation of 

nitrosylhemochrome, which results in the distinctive cured meat color.  

 The textural parameter hardness was not different (P > 0.05) between HPP low 

and controls or HPP Med and controls.  Fracturability between HPP Low and controls 

was not different (P > 0.05).  Fracturability between HPP Med and controls was trending 

(P =0.12) with treated samples requiring 3.67 kg less force to fracture the sample.  

Springiness was trending (P =0.11) for HPP Low samples and controls.  HPP Low 

samples were 6.9 percentage units less springy than controls.  Springiness values for HPP 

Med and controls were not different (P > 0.05).  Cohesiveness, chewiness and resilience 
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were not different (P > 0.05) between treated and controls for either pressurization liquid 

temperature level.   

  Previous studies investigating the effect of HPP on processed meats have found 

varied results.  Crehan et al. (2000) found that hardness, springiness, cohesiveness, and 

chewiness were not different from non-pressurized hot dog samples at 150 MPa.  

However, when pressure increased to 300 MPa or if NaCl content was 2.5%, the values 

for the aforementioned texture variables decreased (Crehan et al., 2000).  It should be 

noted that the same authors used a pressurization liquid temperature of 15-20°C, which is 

similar to HPP Low at 15.5°C.  Research that used varying pressurization liquid 

temperature to cook poultry sausages during pressurization found varied results among 

texture parameters at different temperatures (Yuste et al., 1999). The research by Souza 

(Chapter 2, 2009) indicated that HPP treatment with a pressurization liquid of 33.3°C 

decreased the texture parameters of hardness, fracturability, springiness, chewiness, and 

cohesiveness of restructured hams.   

Cook Loss % and Warner-Bratzler Shear Force  
 Cook loss % (Table 3.3) for anterior Longissimus chops was not different           

(P > 0.05) between HPP Low and controls or HPP Med and controls.  HPP Med mid 

Longissimus chops retained 2.5% (P < 0.05) moisture during cooking than controls.  HPP 

Low mid Longissimus chops were not different from controls (P > 0.05).  Cook loss % 

for posterior Longissimus chops was not different for HPP Low and controls or HPP Med 

and controls. These results suggest that varying HPP temperature level does not alter 

cook loss % at different anatomical points in the Longissimus muscle.  Differences were 

found for HPP Med mid Longissimus, but this is considered an anomaly due to the fact 
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that all other Longissimus positions at both treatment levels do not approach significance.   

These results vary from those regarding cook loss % in Souza (Chapter 2, 2009), which 

reported HPP to decrease cook loss %.  Previous research is conflicted with some authors 

reporting HPP decreases cook loss % (Macfarlane, 1973; Kennick et al., 1980) while 

others have found the opposite (Jung et al., 2000).  It is important to note that 

experiments reporting decreases in cook loss % used pressurization liquid temps greater 

than 30°C whereas the study reporting increased cook loss % had pressurization liquid 

temperature of 10°C.  

Shear force values (Table 3.3) for anterior Longissimus chops were not different 

(P > 0.05) between HPP Low and controls or HPP Med and controls.  HPP Low mid 

Longissimus chops were not different (P > 0.05) from controls.  HPP Med mid 

Longissimus chops were different (P < 0.05) with treated chops requiring 0.25 kg less 

force than controls.  Posterior Longissimus chops were not different (P > 0.05) between 

HPP Low and controls.  Posterior Longissimus chops were trending (P = 0.11) with 

controls being 0.44 kg more tender than HPP Med treated chops.   

The Warner-Bratzler shear force results from the present study do not reflect the 

HPP induced decreases in mechanical tenderness reported in Souza (Chapter 2, 2009).  

The results of the current study suggest decreased pressurization liquid temperature does 

not alter Warner-Bratzler shear force values.  Most previous work has found that pre-

rigor meat subjected to HPP results in decreased shear force values (Macfarlane, 1973; 

Kennick et al., 1980; Riffero and Holmes, 1983).  More research needs to be done to 

investigate varying pressurization liquid temperature on shear force value as currently 

most work with pre-rigor meat was conducted at temperatures > 30°C.  The differences in 
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shear force seen in Souza (Chapter 2, 2009) were attributed to pressure induced physical 

damage to muscle structure.  This theory does not appear to be plausible for the current 

study.  It should be noted that shear force values for all samples were well within the 

range of what is considered acceptable shear force values.  There is also a need for 

research that investigates the ability of various HPP conditions to tenderize 

predetermined unacceptably tough muscles.   

Salt Soluble Proteins 

 There was no HPP treatment*salt concentration interaction (P > 0.05). When salt 

concentrations were pooled, control samples yielded more (P < 0.05) salt soluble protein 

than either level of HPP treatment.  HPP treatments did not differ (P > 0.05) from each 

other for pooled salt concentration level.  Across all treatments, salt soluble protein yield 

increased (P < 0.06) with increasing salt concentration.  When comparing 0.5 and 1.5% 

salt levels, salt soluble protein yield increased by 6.47%; between 1.5 and 2.5% there was 

a percent increase of 7.08%; and between 2.5 and 3.5% yields increased by 17%.  These 

results suggest that HPP treatment, regardless of pressurization liquid temperature, 

decreases salt soluble protein yields.  It was also shown by Souza (Chapter 2, 2009) that 

HPP treatment decreased salt soluble protein yields.  It has been reported that protein 

solubility was increased at 0°C when compared to yields at 30°C (Macfarlane and 

McKenzie, 1976).  More research using non-saline suspended muscle tissue at lower 

pressurization liquid temperatures is needed to determine if myofibrillar protein solubility 

can be improved by HPP treatment. 

SDS PAGE 

>250 kDa 
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Figure 3.1 refers to how SDS PAGE was analyzed for protein band densitometry.   

There was no interaction (P > 0.05) between HPP treatment and salt concentration for 

soluble proteins with a molecular weight greater than 250 kDa (Table 3.4).  When 

averaged across all salt concentrations, control protein band densities were more            

(P < 0.05) dense than HPP Low.   HPP Med vs. controls were trending (P < 0.10) with 

control band being more dense.  Protein band densities were not different (P > 0.05) 

between HPP low and HPP Med.  Protein band density increased (P < 0.05) as salt 

concentration increased when treatments were pooled (Table 3.5).  These results indicate 

HPP treatment regardless of pressurization temperature produced samples that had less 

salt soluble protein.   

250 kDa 

The results for protein band density of protein products with a molecular weight 

of 250 kDa are shown in Figure 3.2.  Across pooled salt concentrations, control protein 

bands were denser (P < 0.05) than either HPP treatment level; HPP Low and HPP Med 

did not differ (P > 0.05) from each other.  When treatments were pooled, band densities 

were different (P < 0.05) at all salt concentration levels.  Unexplainably, protein band 

density decreased between 0.5 and 1.5% salt level.  There was a significant (P < 0.05) 

interaction between HPP treatment and concentration level.  At a salt concentration of 

0.5% HPP Low band densities were not different (P > 0.05) from controls, while HPP 

Med was trending  (P < 0.10) with control bands being denser.  Control bands were 

denser (P < 0.05) than bands from either HPP treatment at a salt concentration level of 

1.5%.  At a salt concentration of 2.5% protein bands were not different (P > 0.05) 

between control and either HPP treatment level.  Control protein bands at 3.5% salt were 
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denser (P < 0.05) than both HPP treatment levels. HPP treatment levels did not differ (P 

> 0.05) from each other at any salt concentration level.   These results indicate that HPP 

treatment regardless of pressurization temperature level decreases the yield of salt soluble 

protein products at salt concentrations of 1.5 and 3.5%. 

100-150 kDa 

 When salt concentrations were pooled, protein product bands were less dense (P 

< 0.05) for both levels of HPP treatment when compared to controls; HPP Low and HPP 

Med did not differ from each other (P > 0.05) (Table 3.4).  With treatments pooled, 

protein band density increased (P < 0.05) at salt concentrations of 0.5, 1.5, and 2.5%, but 

band density did not increase between 2.5 and 3.5% (P > 0.05) (Table 3.5).  There was 

no HPP treatment *salt concentration interaction (P > 0.05).  Salt soluble protein 

products weighing 100-150 kDa were not as soluble after being subjected to either level 

of HPP treatment.  

100 kDa 

 Control protein product bands averaged across all salt concentrations were denser          

(P < 0.05) than both HPP treatment levels; HPP Low and HPP Med did not differ          

(P > 0.05) (Table 3.4).   Protein band density increased (P < 0.05) at salt levels 0.5 to 

1.5% for all treatments, but from 1.5 to 2.5% and 2.5 to 3.5% protein band density did 

not change (P > 0.05)  (Table 3.5).  This indicates that protein products at a molecular 

weight of 100 kda were only extracted at an increasing rate until a salt inclusion level of 

1.5%.  There was no HPP treatment*salt concentration interaction (P > 0.05).   

75 kDa 
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 Band densities for control samples were denser (P < 0.05) across the pooled 

average of all salt concentration levels.   The main effects of HPP Low and HPP Medium 

did not differ (P > 0.05) across pooled salt concentration levels.  Between the 0.5, 1.5 

and 2.5% salt level, protein band density averaged over all treatments increased             

(P < 0.05).  Protein product band density decreased (P < 0.07) between 2.5 and 3.5% 

salt.  There was an interaction (P < 0.05) between HPP treatment and salt concentration 

(Figure 3.3). At a salt level 0.5%, protein band density was not different (P > 0.05) 

between controls and either HPP treatment level.  At 1.5, 2.5, and 3.5% salt levels, band 

density was higher (P < 0.05) for controls than it was for either HPP treatment levels.  At 

0.5% salt level, protein band density was not different (P > 0.05) between HPP Low and 

HPP Med.  At 1.5, 2.5 and 3.5% salt level, HPP Low had denser (P < 0.06) protein 

product bands than HPP Med.  These results suggest that HPP treatment caused 

decreased protein solubility when compared to controls.   However, HPP Low treatment 

resulted in more soluble protein than HPP Med suggesting that pressurization liquid 

temperature has an effect on protein products weighing 75 kDa.      

Conclusions 

 HPP treatment with varying pressurization liquid temperature had positive and 

negative impacts on pork parameters evaluated in this study.  The high pH and water 

holding capabilities of treated samples has attractive implications for pumping and 

further processing applications.  Objective color suggests that treated samples will not 

appear as typical fresh meat.  This may affect the willingness of consumers to purchase 

treated product.  Hot dog texture profile results suggest that emulsified products can be 

made with pressurized pork without sacrifice to the textural profile.  However, it is 
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apparent that HPP treatment decreases salt soluble protein yields.  The decreased level of 

myofibrillar protein solubility causes concern for the use of treated pork in further 

processing settings.  The lower protein extracting ability of treated pork poses a risk 

when using it in applications where consistent protein bind is necessary.  Warner-Bratzler 

shear force indicated that lower HPP pressurization liquid temperatures did not improve 

pork tenderness.  In general, results were not consistent enough to indicate that one 

pressurization temperature level was more desirable than the other.  This research has 

shown the continued ability of HPP treatment to change pork properties.  More research 

is needed to better understand these changes and to identify which pressurization settings 

will promote the most ideal modifications to meat properties.  
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Table 3.1  The effect of HPP Treatments on Longissimus pH, Purge loss %, and Color 

                         

            

  
HPP Low 

 

HPP Med 

 
  

        
 

        

             
    Control Treated SEM

a
 P-value   Control Treated SEM

a
 P-value   

            

 

pH 5.59
a
 6.05

b
 0.03 < 0.01 

 
5.67

a
 6.24

b
 0.03 < 0.01 

 

 
Purge Loss % 1.55

a
 0.40

b
 0.10 < 0.01 

 

1.31
a
 0.53

b
 0.12 < 0.01 

 

 

Subjective Color 2.92
a
 2.75

b
 0.18 0.34 

 

2.9 2.6 0.16 0.08 

 

 

Subjective Firmness 2.33
a
 3.33

b
 0.14 < 0.01 

 

2.30
a
 3.20

b
 0.13 < 0.01 

 
 

Pre-bloom L* 49.71 50.19 1.25 0.60 

 

47.31 47.98 0.69 0.17 

 

 

Pre-bloom a* 6.20
a
 5.27

b
 0.31 < 0.01 

 

5.61
a
 4.87

b
 0.3 0.02 

 

 

Pre-bloom b* 1.52
a
 0.39

b
 0.30 < 0.01 

 

1.07
a
 -0.13

b
 0.19 < 0.01 

 
 

Post Bloom L* 49.49 49.31 1.19 0.88 

 

47.36 47.86 0.62 0.46 

 

 

Post Bloom a* 7.58
a
 6.30

b
 0.36 < 0.01 

 

6.96
a
 5.77

b
 0.36 < 0.01 

 

 

Post Bloom b* 4.39
a
 1.98

b
 0.38 < 0.01 

 

3.36
a
 1.19

b
 0.22 < 0.01 

 
 

Change in Bloom L* -0.22 -0.88 0.57 0.39 

 

0.05 -0.12 0.31 0.70 

 
 

Change in Bloom a* 1.38 1.03 0.20 0.16 

 

1.34 0.89 0.13 0.13 

 

 

Change in Bloom b* 2.87
a
 1.59

b
 0.20 < 0.01 

 

2.29
a
 1.32

b
 0.14 < 0.01 

                         

            

 
Means within a temperature group lacking a common superscript are different (P < 0.05) 

 

 

a
SEM is the standard error of the differences of the mean 
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Table 3.2  The effect of HPP Treatments on Hot Dog pH, Color and Texture Profile  

   HPP Low  HPP Med  

  Parameter Control Treated SEM
x
 P value  Control Treated SEM

x
 P value   

 pH 6.23 6.45 0.03 0.0941  6.44
a
 6.61

b
 0.01 0.0436  

 L* 72.87 73.00 0.15 0.5454  74.30 74.43 0.05 0.2303  

 a* 11.01 10.74 0.12 0.2745  10.85 10.66 0.11 0.3323  

 b* 8.18 8.18 0.20 0.9551  7.93 7.75 0.06 0.1918  

 Hardness Kg 12.26 12.68 0.35 0.4419  16.45 14.80 3.04 0.6844  

 Fracturability kg 9.82 9.70 1.02 0.9256  14.85 11.18 0.67 0.1159  

 Springiness % 81.50 74.60 1.15 0.1059  78.90 75.20 4.45 0.5627  

 Cohesiveness % 22.30 22.90 0.20 0.2048  22.60 22.50 4.20 0.9848  

 Chewiness kg 2.24 2.18 0.01 0.1346  3.01 2.53 1.20 0.7584  

  Resilience % 6.70 6.70 0.00 1.0000  6.80 6.70 0.95 0.9665   
a,bMeans within treatment lacking a common superscript are different (P < 0.05)  
xSEM is the standard error of the differences of the mean  
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Table 3.3  The effect of HPP on cook loss % and Warner-Bratzler shear force 

values at varying Longissimus* positions   

    HPP Low  HPP Med  

    Control Trt SEM
x
 P-value   Control Trt SEM P-value   

Cook Loss %             

   Anterior  21.47 20.22 1.98 0.5372  21.14 20.56 1.46 0.6827  

   Mid  21.49 21.06 0.86 0.6272  23.21
a
 20.71

b
 0.86 0.0171  

   Posterior  21.44 21.32 0.80 0.1462  19.97 20.75 1.24 0.5443  

WBSF kg            

   Anterior  2.27 2.21 0.29 0.8311  2.27 2.55 0.20 0.1933  

   Mid  2.45 2.28 0.13 0.1939  2.50
a
 2.25

b
 0.09 0.0181  

   Posterior  2.46 2.80 0.28 0.2424   2.34 2.78 0.25 0.1089   
a,b Means within treatment lacking a common superscript are different (P<0.05)        

*Longissimus chops aged 14 days and cooked to an internal temperature of 71oC      
xSEM represents the standard error of the difference of the means         
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Table 3.4  The main effects of treatment for salt soluble proteins & protein band 

density  

    Control HPP Low HPP Med SEM   

SSP Yield (% wet tissue)   5.45
a
 4.91

b
 4.77

b
 0.15  

Protein Band Density        

>250 kDa
*  0.75

a
 0.3175

ab
 0.4841

b
 0.12  

100-150 kDa  0.22
a
 0.11

b
 0.12

b
 0.19  

100 kDa  0.97
a
 0.13

b
 0.13

b
 0.48  

a,b Means lacking a common superscript are different (P<0.05)     
*Molecular weight standards were used as point of reference point when analyzing bands 
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Table 3.5  The main effects of salt concentration for salt soluble proteins and 

protein band density  

    % Salt Concentration   

    0.5 1.5 2.5 3.5 SEM 

SSP Yield  4.45
c
 4.73

c
 5.07

b
 5.93

a
 0.12 

Protein Band Density       

>250 kDa
*  0.18

d
 0.40

c
 0.62

b
 0.87

a
 0.07 

100-150 kDa  0.05
c
 0.10

b
 0.21

a
 0.24

a
 0.10 

100 kDa  0.36
b
 0.42

a
 0.45

a
 0.42

a
 0.03 

a,b,c,d Means lacking a common superscript are different (P<0.05)     
*Molecular weight standards were used as point of reference point when analyzing bands 
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Figure 3.1 Salt Soluble Protein SDS PAGE band densitometry  
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Figure 3.2 The effect HPP treatment with varying pressurization liquid temperature 

on salt soluble protein
* 
band density (250 kDa)
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Figure 3.3 The effect HPP treatment with varying pressurization liquid temperature 

on salt soluble protein* band density (75 kDa) 
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