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ABSTRACT

Crop insurance performance and loss rates depend directly on underlying crop yield distributions. However,
there still exists much debate about how to represent the underlying crop yield distributions. Using farm-
level corn and soybean yields from 1972-2008, this study examines in-sample goodness-of-fit measures of
both the whole distribution and the insurance tail to compare a set of flexible parametric, semi-parametric,
and non-parametric distributions in a meaningful economic context. Simulations are then conducted to
investigate the out-of-sample efficiency properties of several competing distributions. The results indicate
that more parameterized distributional forms fit the data better in-sample, but are generally less efficient
out-of-sample — and in some cases more biased — than more parsimonious forms which also fit the data
adequately, such as the Weibull. The results highlight the relative advantages of alternative distributions,

in terms of the bias-efficiency tradeoff in both in- and out-of-sample frameworks.
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CHAPTER 1

INTRODUCTION

This study examines alternative distributional representations of corn and soybean yields in Illinois. Two
complementary approaches are used to examine both the fitting performance and the economic implications
of the distributional form used. The first approach fits alternative candidate distributions to Illinois farm-
level yields, and calculates goodness-of-fit measures and their corresponding implied yield insurance rates
from the left tail of the distribution. The first approach shows that some distributional forms have a tendency
to reproduce the in-sample variation, but are thereby less likely to predict out-of-sample yields as accurately
as the simpler distributional forms. The second approach examines the out-of-sample fitting performance
of alternative distributional representations under known data generating processes. The second approach
demonstrates that distributions with more parameters are apt to be less precise than other distributional
forms, especially in the context of insurance evaluation. The two approaches provide an in-depth examination

into impacts of alternative distributional forms for modeling corn and soybean yields.

1.1 Background

An accurate understanding of yield risk is important for many different applications, including farm
management decisions and risk planning. Farmers model yield risk, so that they can purchase crop insurance
or use hedging strategies to offset the risk emanating from uncertain weather, demand uncertainty, and other
perils. An inaccurate assessment of yield risk can cause many dollars in losses or bankruptcy to farmers
whose income depends solely upon crop production. Federal crop insurance rating agencies, such as the
Federal Crop Insurance Corporation (FCIC), also need to understand the underlying yield risk when issuing
crop insurance products. The pricing of crop insurance not only affects program participation, but also
relative indemnities paid by the FCIC and crop insurance companies. If crop insurance rates are too high,
farmers may choose other methods to manage risk; conversely, rates which are too low encourage adverse
selection and contribute to other problems endemic to the overprovision of insurance (e.g., land use and
degradation).

Crop insurance performance depends directly on the distributions of crop yields. Despite the importance
to crop insurance rating no single family of distributions or method of selection for non-parametric models is
widely accepted for rating farm-level yield crop insurance. The choice of a distributional form for modeling
crop yields is a complicated process because the distributional form needs to fit crop yields well in-sample,
as well as accurately represent future yields. The best distributional form for modeling crop yields is a
distribution that is easily implemented and is flexible enough to capture in-sample variation, but is broad
enough to cover large variations in out-of-sample yields.

Traditionally, federal crop insurance premiums are set from historical loss rates and thus implicitly depend



on the actual data generating process. Just and Weninger (1999) argue that aggregate time-series data cannot
capture the stochastic nature of farm-level yields, and that the only way to examine the stochastic nature
of yields is to examine individual farm-level yields directly. This study uses an extensive farm-level data
set with more than 20 years of yields for each farm from the Illinois Farm Business Farm Management
program (FBFM) from 1972-2008. The Illinois FBFM is a cooperative educational-service program that
assists farmers with management decision-making and provides financial and production business analysis
reports, in cooperation with the University of Illinois, Department of Agricultural and Consumer Economics.
Over 2,000 farms participate in the FBFM program each year, providing dependable and long cross sectional

yield histories.

1.2 Objectives

The goal of this study is to develop insights into the most accurate and efficient distributional form for
modeling in-sample and out-of-sample farm-level corn and soybean yields in Illinois and ultimately identifying
the economic impact on yield crop insurance rates from the distributional forms. Two approaches are used
to reach this goal: (i) FBFM yields are fit to alternative distributional forms to establish how accurately the
distributions fit the in-sample yields, and their accuracy in establishing yield crop insurance rates and; (ii)
yields are drawn from a known data generating process to determine the out-of-sample fitting acuity and

efficiency of alternative distributions when the true underlying yield model is known.

1.3 Methods

The proper distributional representation of corn and soybean yields is developed through a comparison of
the fitting performance and yield crop insurance rate estimation of selected distributional forms on a large
data set of Illinois farm-level yields. The large and varied farm-level yield data set in this study is paramount
to advance the understanding in the crop insurance literature of a correct distributional form for modeling
corn and soybean yields.

This study is arranged in seven chapters, including this introduction chapter. Chapter 2 includes a
review of previous farm-level yield modeling and yield crop insurance literature, as well as how the previous
literature relates to this study. Chapter 3 contains a background of the data, the detrending process, and
the distributional forms utilized throughout the study. Chapter 4 is comprised of methods and results for a
parametric fitting examination. The examination uses a wide and varied sample of actual farm-level yields
throughout Illinois to test the fitting ability of specified parametric distributions. Chapter 5 includes two
sections using the large farm-level data set and the four best fitting parametric distributional forms from
the goodness-of-fit examination, in addition to a non-parametric and a semi-parametric distribution. The
first section is a graphical representation of the distributional forms and the varying shapes the distributions
take in fitting in-sample data. The second section estimates the yield insurance rates from each of the
distributional forms and compares the rates against the farm-level empirical rates. Chapter 6 takes a known
underlying data generating process — drawing from sample characteristics that are historically found on
Illinois farms — and fits two parametric, one non-parametric, and one semi-parametric distribution to the
data for the purpose of estimating and comparing yield insurance rates to the known process generating the

samples. Chapter 7 is a compilation and discussion of the results and implications of the study.



CHAPTER 2

LITERATURE REVIEW

While there is an extensively developed body of literature on goodness-of-fit measurements among estima-
tors, crop insurance applications depend more upon the bias and efficiency characteristics in limited regions
of the distribution — generally the left tail — and thus may render standard approaches for performance eval-
uation less relevant. Furthermore, goodness-of-fit tests are difficult to compute for non- and semi-parametric
distributions and even more difficult to compare the results to that of a parametric goodness-of-fit test.
Some previous studies focus on how best to establish parametric yield distributions in rating applications,
and others advance the use of non-parametric and semi-parametric methods. Moreover, past studies are
principally concerned with evaluating bias in rates generated from alternative distributions relative to un-
known empirical distributions. However, no studies are found that examine the efficiency of alternative
distributions drawn from multiple families of distributions. The efficiency question is critically important
here since typically only a few years of data are available for any farm or county in actual rating applications.

Each of the three representations: parametric, non-parametric, and semi-parametric, are discussed ex-
tensively in past crop insurance yield literature. The parametric family of distributions has the advantage
of easy implementation, as well as an overall greater efficiency over the other two statistical procedures in
small sample crop yield modeling. Its main disadvantage is that its parameters are not flexible enough to
capture any future variability in crop yields. However, past research (Zanini, 2001; Pichon, 2002; Sherrick
et al., 2004) shows that parametric distributions fit farm-level yields well when the underlying distributional
form is unknown. Non-parametric distributions are more flexible than their parametric counterparts, but
what they offer in flexibility they tend to lose in efficiency. Because yields used in rating crop insurance
are typically estimated using small samples, the non-parametric method may be less relaible, due to out-
of-sample concerns. Also, if the underlying distribution is known, a parametric distribution produces more
efficient estimates than a non-parametric distribution. The non-parametric distribution in this study is a
Gaussian kernel density estimator, which is similar to one of the distributions Goodwin and Ker use. The
semi-parametric distribution this study examines is of the cluster-based variety, specifically a two-component
mixture-of-normals. The advantage to this approach is that each yield is grouped into one of two clusters
where each yield is assumed to have a similar probability distribution as the others in the cluster. This
approach allows for the parameters to be estimated by an easy to implement process, and captures the vari-
ability in the sample well. Ker and Goodwin (2000) propose that yields may come from two sub-populations:
years in which a catastrophic event occurs and normal weather years. If this characterization is accurate,
the semi-parametric distribution is best suited to capture the variability in weather and model crop yields
that come from either of the two sub-populations.

Among parametric families of distributions, many studies (Day, 1965; Ramirez, 1997; Atwood et al., 2003;
Ramirez et al., 2003) reject normality as the “correct” distributional form of crop yields because of empiri-

cally prevalence of negative skewness and excess kurtosis. In contrast, Just and Weninger (1999) argue that



the rejection of the normal distribution in preceding empirical research is an incorrect assumption due to
methodological problems in typical yield distribution analyses. Their study identifies the common distribu-
tional problems of misspecification of the nonrandom components of yield distributions, the misreporting of
statistical significance, and the use of aggregate time-series data to represent farm-level yield distributions.
They imply that these problems must be solved before a rejection of normality can be confirmed. Atwood
et al. state that Just and Weninger predispose their results, in favor of failing to reject for normality, by
detrending at a farm level. Atwood et al. put forth a new detrending procedure of detrending individual
farms by region so that the trend better follows that of the other farms in the area. The Atwood et al. study
tests three detrending procedures — no trend, Just and Weninger’s process of detrending by individual farm,
and implicit error component detrending — using a short-term Monte Carlo simulation to generate pseudo-
farms and an empirical examination on Kansas farm-level yield data. In both cases, Atwood et al. find that
using implicit error component detrending by region produces more robust and powerful normality tests
than detrending at an individual level. In addition, they find that detrending at an individual level tends
to reduce relative insurance premia. This thesis finds that the expected value and standard deviation of the
farm-level yields are sensitive to the choice of aggregation level. This thesis uses the Atwood et al. procedure
by detrending each farm by its National Agricultural Statistics Service (NASS) district trend because the
expected value and standard deviation sensitivity of detrending at a district level offers the greatest balance
between the aggregation levels.

Other works (Nelson and Preckel, 1989; Nelson, 1990; Hennessy et al., 1997) use a conditional beta dis-
tribution to depict crop yields. The conditional beta distribution is arguably the most highly examined
parametric form along with the normal distribution in empirical crop yield modeling literature. The con-
ditional beta distribution is flexible enough to take on varying forms of skewness and kurtosis, as well as
being bounded at zero and a maximum value. Nelson and Preckel use the conditional beta distribution to
model the probability distribution of Iowa Agricultural Experiment Station farm-level corn yields from 1961
to 1970. Their analysis demonstrates that the conditional beta distribution is consistent with agronomic
models of field crop production. Nelson further expands the examination of the conditional beta distribution
by comparing crop insurance premia from both a normal and conditional beta distribution using average
county yields over Iowa Agricultural Experiment Station farms for seven counties during 1964 to 1969. He
provides evidence that the use of a normal distribution for crop yields consistently produces larger premium
rates than when a conditional beta distribution is used. In their methodology for choosing a distribution to
accurately model crop yields in rating GRP crop insurance, Skees, et al. conclude that the conditional beta
distribution is best because of its thick left tail. This characteristic allows the conditional beta distribution
to give a higher probability of catastrophic events occurring and hence increase the insurance premium rates
to actuarial fair levels.

Still other works attempt to examine alternative parameterizations of crop yield distributions, Gallagher
(1986) and Pope and Ziemer (1984) with the gamma distribution, Sherrick et al. (2004) with the Weibull
distribution, and Chen and Miranda (2004) with the Burr distribution. The gamma, Weibull, and Burr
distributions are similar to the conditional beta distribution and its need for relatively few parameters to
capture varying degrees of skewness — positive and negative — and variances. Gallagher applies the gamma
distribution to U.S. soybean yields from 1941 to 1984. His study finds that soybean yields have negative
skewness stemming from the fact that “yield cannot exceed the biological potential of the plant, yet it
can approach zero under blight, early frost, or extreme heat.” Sherrick et al. examine whether there are

economically important differences that arise from alternative parameterizations of crop yield distributions.



Their study utilizes a high quality farm-level data set from the University of Illinois Endowment Farms to
compare the conditional beta, Weibull, logistic, normal, and lognormal distributions in terms of goodness-of-
fit and expected payouts to APH insurance. They conclude, using the Anderson-Darling test and comparisons
of the likelihood functions, the Weibull and beta distributions consistently describe the data better than the
other distributions tested. In addition, they show that the distributional choice can have a significant impact
in the expected value of payouts. Some previous crop yield literature, such as Chen and Miranda, use a
two-parameter Burr distribution, among other distributions, to model county level crop yields in Texas. This
thesis goes a step further and uses a three-parameter Burr distribution, namely the Burr XII to fit corn and
soybean yields. The Burr XII distribution includes the Weibull distribution as a special case and can capture
a wider range of skewness and kurtosis values than the two-parameter Burr distribution.

In addition to alternative parametric distributions, some research investigates the use of non-parametric
methods (Goodwin and Ker, 1998; C.G. and Zhao, 1999; Ker and Goodwin, 2000; Norwood et al., 2004)
to model crop yields. Goodwin and Ker employ a non-parametric Gaussian kernel density estimator to fit
wheat and barley NASS county-level crop yields and determine fair crop insurance premium rates. The
study concludes insurance premium rates estimated from a non-parametric distribution for the 1995 to 1996
Federal Group Risk crop insurance program are more actuarially accurate than current methods. Norwood
et al. use a non-parametric Gaussian kernel density estimator, in addition to five other distributions from
previous empirical works, to examine the in-sample and out-of-sample crop yield forecasts for 180 crop and
county combinations in the U.S. Corn Belt. The in-sample forecasts are based on yields from 1967 to 1987,
while the extrapolative forecasts use trends from the in-sample years to predict yields from 1988 to 1992. In
this study, the forecasting rankings of the distributions are based on not only prediction error, but also how
well the distribution forecasts probability statements in comparison to the observed probability statement.
The non-parametric Gaussian kernel density estimator dominates the other distributional forms with the
in-sample forecasts, but does not have as much power when predicting out-of-sample yields.

Still, other studies investigate the use of semi-parametric methods (Wang and Zhang, 2002; Ker and
Coble, 2003). Ker and Coble apply the conditional beta, gamma, and semi-parametric kernel estimators
with both a normal and conditional beta distribution to 87 Illinois counties from 1956 to 2000, to test rate
efficiency. They find that the semi-parametric estimator with a normal distribution is the most efficient of
those investigated. Wang and Zhang apply semi-parametric — two- and three-component mixture-of-normals
— approaches to model dry land winter wheat yields for 2,945 farms with ten years of more of yields each from
1981 to 1995 in Whitman County Washington. The number of farms may be inflated since the USDA Ag
Census only states there were 1,087 farms in 2002 in Whitman County. Not surprisingly, they find that the
three-component mixture-of-normals distribution was the best fitting in-sample due to its ability to reflect
sample variability better than a two-component mixture-of-normals.

This study further develops the work of previous empirical studies by using a unique farm-level data set
to compare many competing parametric, non-parametric and semi-parametric distributional forms in terms
of their ability to accurately model corn and soybean yields. Access to the long — over 35 years of historical
yields — and complete — over 10,000 corn and soybean records — FBFM data set, is unprecedented in previous
empirical literature.

Furthermore, this study contributes to the yield modeling literature by comparing eight widely discussed
distributional forms in the same context. Most of the previous literature focuses on a single type of dis-
tribution, whereas this study examines parametric, non-parametric, and semi-parametric distributions. In

comparing distributions from three distributional types, this study is able to show the advantages and dis-



advantages of using these distributions to model in-sample and out-of-sample corn and soybean yields.



CHAPTER 3

DATA AND DISTRIBUTIONS CONSIDERED

The suitability of distributional forms for modeling farm-level corn and soybean yields has been discussed
thoroughly in past literature. This study further illuminates the subject by examining six parametric distri-
butions: the conditional beta, the Weibull, the inverse Gaussian, the normal, the Burr XII (Singh-Madalla),
and the gamma; one non-parametric distribution: the Gaussian kernel density estimator; and one semi-

parametric distribution: the two-component mixture-of-normals.

3.1 Data

This study improves on previous work by utilizing a high quality, extensive farm-level dataset from the
Ilinois Farm Business Farm Management program (FBFM) from 1972 to 2008. FBFM, in cooperation with
the University of Illinois, Department of Agricultural and Consumer Economics, is a cooperative educational-
service program that assists farmers with management decision-making, and provides financial and produc-
tion business analysis reports. Over 2,000 grain farms participate in the FBFM program each year, providing
dependable and extensive yield histories. This dataset is unique in the United States for its long and certified
corn and soybean yield data that captures a one-of-a-kind cross-section of farms.

The soybean and corn farms in the FBFM dataset contain yields from 1972 to 2008, and are from 98
of the 102 counties in Illinois. The FBFM dataset does not contain farms in Cook (Chicago), Alexander,
Hardin, or Putnam counties due to combined county reporting with neighboring counties. Furthermore, in
the dataset some of the yields are zeroes, which according to FBFM management are artifacts of the old
data reporting system, therefore any yield that falls below 15.0 bushels/acre for corn and 6.8 bushels/acre
for soybeans or the .08% percentile of all yields is removed. The initial corn filter removes 126 corn yields
from 125 different farms, of which only 23 farms are used in the analysis in Chapters 4 and 5. The initial
soybean filter removes 119 soybean yields from 119 different farms, of which, only 16 farms are used in the
analysis in Chapters 4 and 5. There still remain many yields that appear low by modern-day production
standards, but when compared to the county average are within a few standard deviations of the average.
For example, the 1983 county averages for corn in Clay and Richland counties were 20 and 28 bushels/acre,
respectively. However, 1983 was one of the worst drought years in Illinois history, so it is not surprising that
some yields in those counties were below 20 bushels/acre. Figure 1 demonstrates the upward trend, as well
as the precipitous drop in corn crop yields in 1983 and 1988 for four yield series from 1972 to 2008 — the
state of Illinois, the East Southeast district, Clay county, and Clay county Farm 29. It is seen in all four of
the yield series that expected yields in 1983 and 1988 are well below the historical average yields.

The farms are grouped into nine Agricultural Statistics Districts created by the National Agricultural

Statistics Service (NASS). According to NASS, each district is homogenous in terms of its geography, pro-



duction, and weather characteristics. The natural breaks of each district include soil type, terrain, rainfall
and length of growing season. The nine Illinois National Agricultural Statistics Districts are displayed in
Figure 2 — Northwest, Northeast, West, Central, East, West Southwest, East Southeast, Southwest, and
Southeast.

The long current yield history and variability of the farms in the Illinois FBFM data set give the results of
this study a broad audience throughout the United States Corn Belt. Many corn and soybean farms in the
Corn Belt have similar characteristics to Illinois farms in this study and are able to incorporate the results

into their respective yield modeling and yield crop insurance applications.

3.2 Data Screening

The FBFM data set also includes farms with short yield histories, minimal acres, and multiple year
interruptions between yields. Farms with these characteristics are undesirable in this study because this
study focuses on commercially viable farms with complete yield histories. A data screen is applied to the full
data set in order to remove the farms with, in the following order, short yield histories, minimal acres, and
multiple year interruptions. The impact of varying sample sizes is tested in Chapter 6, but smaller sample
sizes are omitted at the estimation stage.

In the FBFM program, farms are given the option each year to continue their enrollment in the program
for a nominal fee or opt out of the services offered by FBFM. In addition, farms may close for any number
of reasons, including death of proprietor, unprofitability, or sale of land. To eliminate farms that have closed
or opted out of the FBFM program without providing enough yield information to accurately conduct yield-
fitting routines, a filter is implemented that only selects farms with 20 or more records. Furthermore, a filter
is included that removes farms that average less than 80 acres in size from 1972-2008. This filter removes
hobby farms, so that only commercially viable scale farms remain in the study. Lastly, due the nature of
how FBFM collects yield data from farms, the identification numbers for farms are occasionally reused when
one farm closes or opts out of FBFM participation. To ensure this study does not include overlapping farms
from the same identification number, a filter is implemented that discards farms that are missing more than
two consecutive years of data. This filter allows for farms that maintain one- and two-year crop rotations to
remain in the study.

Application of the filters on the original yield data provides a subset of 2,088 corn farms and 1,881 soybean
farms for this study. Of the corn farms, 16 have 37 or more years of data, 768 have 30 or more years of data,
and 1,368 have 25 or more years of data. For the soybean farms, 13 have 37 or more years of data, 657 have
30 or more years of data, and 1,207 have 25 or more years of data. Tables 1 and 2 display the number of
corn and soybeans farms passing the data screen by time period and length of yield history. The top row of
the table lists the starting year of the yield history, with a maximum of 1989 since the yield samples must be
20 years or longer. The left column shows the sample length criteria and the far right column gives a sum of
the number of farms that fit into each grouping. For example, there are 37 corn farms that have 26 or more
years of yields with the yield history starting in 1980. This abundance of relatively large farms with long
and uninterrupted sample periods is unprecedented in empirical literature and allows for a fairly large-scale

evaluation of potential distributions to model crop yields.



3.3 Detrending the Yields

In order to accurately model yield distributions in the context of rating crop insurance products, the
deterministic components of yields over time, namely the effects of improvements in farm technology, must
be removed to allow yields from early years to be compared with yields from more recent years in a like
framework. Figure 1 captures the increase in yields over time from the deterministic components. Although
Figure 1 is a small cross-section of the yield series in Illinois, it is an accurate representation of the Illinois
experience. The slopes from all counties and districts in the NASS database for corn and soybeans show a
clear increase in yields from 1972 to 2008.

Empirical crop insurance rating papers use many different techniques to detrend data. The most common
approach is to use a least squares regression with yield as the dependent variable and time as the independent
variable; the coefficient on time is then identified as the trend. This method is used when the yields are
stationary around a trend. Once the trend is removed the yields display constant means and standard
deviations across time. A common approach to test if the yield series are stationary around a trend is to
use the augmented Dickey Fuller (ADF) test. The null hypothesis of the ADF test is that the time series is
non-stationary and therefore contains a unit-root, while the alternative is that the time series is stationary
around a trend (Wooldridge, 2003). In 82% of the 1,881 soybean farms and 86% of the 2,088 corn farms the
null hypothesis is rejected at a 1% level of significance and the alternative hypothesis of stationary around a
trend is accepted. The results demonstrate that with the trend removed, the yield series becomes stationary.
Therefore, the trend is removed from each yield series to control the deterministic component of the yields.

For the purpose of removing the trend, four data aggregation levels — state, district, county, and individual
farm — are considered in this study. Detrending at an individual farm-level is discarded because the dispersion
or standard deviation of the farm yields falls too low after detrending and negative trends start appearing in
the data. There appear to be anomalies in the soybean case, as the NASS state level trend causes the standard
deviation of the sample to fall below that of the district and county level. The standard deviations found
by detrending at the different aggregation levels for corn remain true to form, with the dispersion ranking
for the state level being the highest, followed by the district level, and the county level. The sensitivity of
the standard deviation leads to the district level being chosen as the proper aggregation level for detrending
because the detrended dispersion is found to be in between the individual and state levels. The district level
is also selected because the weather, access to technological advances and soil qualities tend to be of the
same nature for the farms within the specified district.

The trends for each district are calculated by a linear regression of the NASS district yields from 1972 to
2008, on time. The yields of each screened FBFM farm can be detrended by,

DetrendYield; ; = OriginalYield; ; + Slopepisirict * (BaseY ear — Year;)

where ¢ encompasses each FBFM farm, ¢t goes from 1972 - 2008, and BaseY ear is 2009.

3.4 Summary Statistics

Tables 3 and 4 provides summary statistics, farm and yield counts, and the percentage of total acreage
for the Ilinois FBFM filtered original and detrended yields by district, as well as aggregated by state. The

summary statistics include the first four moments of the data — mean, standard deviation, skewness, and



kurtosis — as well as the minimum, maximum, and coefficient of variation (CV). The CV is calculated as the
standard deviation divided by the mean and allows for comparison of data sets that are centered on different
values. The farm count is the number of farms that pass the data screening for each district. The yield
count is the number of yields found under all of the filtered farms in the district. Finally, the percentage of
total acreage by district is the sum of the average acreage for each farm in the district divided by the sum

total of average acreage of all FBFM farms in the filtered sample.

3.4.1 Corn

Over 40% of the filtered corn farms, yields and percentage of total acreage are located in the Northwest
and Central districts of Illinois. When the East and East Southeast districts are included they encompass
approximately 70% of the total acreage and farms in the remaining sample. The Central district farms
comprise of the highest detrended mean in the filtered sample at 181.8 bushels/acre. The lowest mean
is found in the Southwest district, which not surprisingly contains about 5.0% of the total filtered farms
and 3.4% of the total average acreage. The standard deviations range from 23.9 bushels/acres to 28.4
bushels/acres in the detrended data. Each district exhibits negative skewness or, in other terms, the mass
of the yields for each district are found in the right tail of the probability distribution. For comparison, a
normal distribution is symmetric and therefore has a skewness of zero, while the farm-level yield data in this
study tend to be left skewed. The negative skewness of crop yields is a traditional argument explaining why
normality should not be assumed when dealing with yields. The highest kurtosis values are found in the
Central and Northwest districts. This means that the variance in these districts is made up of infrequent
high values instead of consistent average sized deviations. Given the higher kurtosis in these districts, it is
not surprising that these districts also contain the highest yields in the data set which are close to three

standard deviations from the mean. The minimum detrended yield is found in the Southwest district.

3.4.2 Soybeans

For soybean farms, about 55.0% of the average acreage, yields and farms are found in the Central, East,
and East Southeast districts of Illinois. Similar to the corn case, the highest average detrended yield average
of 54.3 bushels/acre is in the Central district. The Central district contains the highest average of corn and
soybean yields in the filtered data set, a strong indication of the high quality soil and good growing weather
in the Central district. In order to compare the dispersion between corn and soybean districts on a similar
level, it is necessary to analyze their respective CV values. The CV values are slightly lower in the soybean
case with respect to the detrended data; therefore the soybean yields are not as spread out as the corn yields.
The skewness values for the soybeans are also negative throughout all districts of Illinois and the kurtosis
is approximately the same as in the corn data. The soybean yields range from a detrended minimum of 8.6
bushels/acre to a detrended maximum of 100.9 bushels/acre. The maximum is found in the Central district

while the minimum is found in the Northwest, East Southeast, and Southwest districts.

3.5 Distributions Considered

The debate as to the proper distributional form for modeling crop yields in previous empirical literature

leads to many differing theoretical and empirical studies, including, but not limited to, Nelson and Preckel
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for the use of the conditional beta; Wang and Zhang and Ker and Coble for semi-parametric distributions;
Ker and Goodwin for non-parametric distributions; Sherrick et al. for the Weibull distribution; Just and
Weninger for the normal distribution; Chen and Miranda for the Burr distribution; and Gallagher for the
use of the gamma distribution. This study examines the following eight alternative distributional forms for
modeling crop yields: the conditional beta, the normal, the gamma, the Weibull, the Burr XII, the inverse

Gaussian, the Gaussian kernel density estimator, and the two-component mixture-of-normals.

3.5.1 Parametric

The conditional beta distribution is included due to the fact the upper and lower bounds give the beta
more flexibility and its focus in many previous empirical research studies, (Nelson and Preckel, Nelson, and

Hennessey et al.). The beta’s probability density function is given by,

(x =D tx (h—2)0~D
(h = 1)(e+r=1) « B(a, )

f(x7 l’ h|a’ 7) =

where [ is the lowest value in the range and h is the highest value in the range. Additionally, the beta

distribution probability density function contains the beta function, given by,
B(a,y) = I'(@) «T'(7)/T'(er +7)
which includes the gamma function,

I'(z) = /tz_le_tdt
0

The normal distribution is included to strengthen or weaken Just and Weninger’s claim that the distribu-
tion cannot easily be rejected and that it should not be excluded from crop yield modeling discussions without
further inspection. Just and Weninger use multiple statistical significance tests, including the Jacque-Bera
test and the R-test, to test the normality of a time series sample. Where useful this study compares several
empirical distribution function and chi-square tests to test normality of farm-level yields.

The normal distribution has constant skewness and kurtosis and can possibly include values less than zero.
Although these characteristics are unfavorable to modeling crop yields, as is shown in the summary statistics
of each of the districts in Illinois; the economic impact in crop insurance ratings has yet to be shown. The

probability density function of the normal is,

1 —(e=pw?

e 202
V2mo?

and its CDF is the integral of the probability density function over the range specified,

f(x‘u7o—) =

]_ —(z—p)?
F(x\,u,a):-/me S d

The gamma distribution is able to capture many different degrees of skewness with only two parameters.
It is not used as frequently as other distributional forms in empirical literature (Gallagher and Pope and

Ziemer), but its ease of calculation and relatively few parameters give it credibility in this study. The
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gamma’s probability density function is,

ko) = b1
Stk 6) =+ ey
and its cumulative distribution function is,
v(k, )
F = -7

both the PDF and the CDF contain the gamma function, as described above.
The Burr XII or Singh-Madalla distribution is a highly flexible parametric distribution due to its two
shape parameters and one location parameter. The Burr XII distribution is capable of covering a large range

of skewness and kurtosis values and has distributional forms that are easy to fit. The Burr XII's PDF is,

z\a1—(a+D) /g (a-1)
st o (8)[(+3)] " )

and its cumulative distribution function is,

q
1

F(z|a,b,q) =1~ T zN\@
(1+%)

The Weibull distribution is a special case of the Burr XII distribution and has many favorable character-
istics for modeling crop yields. Sherrick et al. find that since the Weibull distribution is bound by zero and
can cover large ranges of skewness and kurtosis values, it is a valid competing distribution to the empirically
popular conditional beta distribution, in terms of goodness-of-fit and yield insurance rating. The Weibull’s
PDF is,

-1,
f(zla, B) :a*:c(a B > % e~ (®@/B)"

and its CDF is,
Flala,3) = 1 — e /"
The inverse Gaussian is utilized in insurance contexts to model positively skewed data. It is included in

this thesis to support or weaken Day’s argument for positive skewness in crop yields. The inverse Gaussian’s
PDF is given by,

A Y2 ox —\z —p)?
2w P 2ulx

ren s (3 (51 v ()0 (V3 G)

which contains the standard normal distribution CDF,

flalnn) = |

and its CDF is,

1 r 2
(I)(."I)) = \/7277( / e_t /2dt
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3.5.2 Non-Parametric

The Gaussian kernel density estimator is a highly flexible distribution that is shown by Goodwin and Ker
to do an accurate job of modeling crop yields in an insurance context. The advantage offered by the kernel
density estimator is that it does not have any parameters to estimate and therefore mimics the empirical
distribution of a dataset. The limited ability of a non-parametric distribution to predict out-of-sample is
one of its downfalls in modeling crop yields. The kernel density estimator places a bump or kernel at each
yield realization and the sum of the densities is used to construct the non-parametric curve. The Gaussian

kernel density approximation of its PDF is,

Ftw) = o Yo (55
=1

which contains both the Gaussian kernel function,

% <x—xi) 1 _(%:;)2
= ——€ 2
h Vor

and Silverman’s rule of thumb for the smoothing parameter, h,

interquartilerange wp—(1/5)
1.34

h = 0.9 % min [standarddeviation,

The smoothing parameter allows for varying weights to be given to close data points in order to construct the
density function. Silverman’s optimal smoothing function takes away some of the density function smoothing

parameter guesswork (Silverman, 1986).

3.5.3 Semi-Parametric

The two-component mixture-of-normals is a highly flexible distribution, but it loses many degrees of
freedom, in terms of its six parameters, to get such flexibility. Due to more recent developments in crop
insurance rating techniques, the two-component mixture-of-normals is getting more attention. The two-
component mixture-of-normals captures much of the in-sample variation with its many degrees of freedom,
but fails to produce accurate out-of-sample forecasts because it tends to over-fit the sample. The PDF of

the two-component mixture-of-normals is,

2

1 —(z—m)?
f(x|,u1,u2,01,0'2,w1,w2)= E Wi e 207
= V2mo?
and its CDF is,
—(z—py)?
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2
—5—
F(x|u1,u2,01,02,w1,w2):/E wie @M dp
i=1

13



3.6 Fitting Methods

For all of the distributions, except the Gaussian kernel density estimator, a maximum likelihood approach
is used to estimate the distributional parameters. The likelihood function for a density distribution f(x)

with a 6 parameter set over an n number of samples is defined as:
n
i=

The parameters of the conditional beta are estimated by using the maximum likelihood estimation distri-
bution fitting tool in @Risk for Excel 5.5. The maximum likelihood estimation in @Risk for Excel 5.5 for the
conditional beta distribution uses a proprietary algorithm based on information in “Continuous Univariate
Distributions” by Johnson, Katz and Balakrishnan to locate the upper and lower limits. MATLAB only
has the capability to solve for the conditional beta parameters on a [0, 1] scale, therefore for the sake of
consistency @QRisk for Excel 5.5 is utilized.

The parameters of the remaining four parametric distributions — Weibull, gamma, Burr XII, inverse
Gaussian, and normal — and the two-component mixture-of-normals are estimated by using their respective
maximum likelihood estimation functions in MATLAB. MATLAB uses the Expectation Maximization (EM)
algorithm to solve for the complexity of the maximum likelihood estimation of the parameters for the two-
component mixture-of-normals distribution. The EM algorithm is an iterative two-step process: (i) Using
estimated values for the latent variables, it computes the expectation of the log-likelihood and (ii) then it
maximizes the log-likelihood found in (i) to estimate the parameters of the distribution; the parameters are
next used to estimate new values for the latent variables until a maximum log-likelihood is found (Hogg
et al., 2005).

The Gaussian kernel density estimator is a non-parametric distribution; therefore it does not have any
parameters to estimate. The approximation of its PDF is coded into MATLAB for the purpose of producing
density estimations at each crop yield data point.
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CHAPTER 4

PARAMETRIC GOODNESS-OF-FIT APPLICATION

The purpose of this section is to examine the farm-level corn and soybean yield modeling capability of
selected parametric distributions by comparing the distributions with several proven goodness-of-fit tests
to select the top four fitting distributions. The methods section explains the intuition behind choosing the
Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), and Chi-Squared (x? ) statistical tests to compare
the crop yield modeling ability of six parametric distributions - conditional beta, inverse Gaussian, gamma,
normal, Burr XII, and Weibull. The results section includes the statistical test rankings of the parametric
distributions over all data screened and detrended FBFM farms in Illinois and an examination of the top

four fitting parametric distributions.

4.1 Methods

The K-S, A-D, and x? tests each provide well-accepted methods to assess differences between the empirical
CDF of a dataset and its fitted representation. To compare and rank the goodness-of-fit of each distribution,
in addition to examining the ranks of the individual tests, a weighted average of the K-S, A-D, and x? test
ranks is created. The smaller the weighted or individual rank, the closer a distribution lies to the empirical
CDF of the data and therefore a better fit.

The A-D test examines if the fit of a specified distribution is statistically significant from the empirical
distribution (Stephens, 1974). The A-D test also gives more weight to the right and left tails of the data
than the K-S test and is calculated as,

where n is the number of data points, ¥? = is the fitted density function, ﬁ(m) is the

L ~
Feh—r@] @
fitted cumulative distribution function, F,(z) = %, and N, is the number of X/s less than z.

The K-S test calculates the maximum distance between the empirical distribution function and the CDF of
the distribution being analyzed (Chakravart et al., 1967). It is more sensitive to the center of the distribution
than the A-D statistic and is calculated as,

D F(Y;) -1 F(Y;)
= ma i) T T i
19‘5\1 N 'N
where N is the number of data points and F(Y;) is the CDF of the continuous distribution.
The x? test tends to put emphasis on both the center and the tails of the distribution and groups the
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data into k number of bins and finds the difference between the observed and the expected number of data

points in each bin (Snedecor and Cochran, 1989). It is calculated as,

K
0, — E;)?
X2 = § (’7’
i=1 E;

where O; is the number of observed data points in the i*" bin and E; is the number of expected data points

in the #** bin. The number of expected data points in the i** bin is expressed as,
E,=N=x(F(Y,) — F()))

where F(Y,) is the CDF of the upper limit of the i" bin of the distribution and F(Y;) is the CDF of the
lower limit of the i*" bin of the distribution.

Due to the nature of the A-D and K-S goodness-of-fit tests, the statistics are not adjusted for different
numbers of parameters. Therefore, the scope of the fitting only includes the parametric distributions with
similar number of parameters. This study notes that the upper limit of the conditional beta distribution and
the second shape parameter of the Burr XII distribution give slight advantages in terms of fitting in-sample,
but the results from this section show this advantage for the conditional beta is miniscule or nonexistent
in most cases and applications later show the problem of over-fitting to be more pronounced as a result.
The mixture-of-normals and kernel density estimator are not included at this state due to different nature of
parameterizations and inability to compare. Note that these more flexible distributions are predisposed to fit
the actual data better than the parametric distributions !, but they also tend to give higher probabilities to
outliers than parametric distributions and often have poor out-of-sample performance. These out-of-sample
issues are developed more completely in Chapter 6. The caveat to this ability to closely mirror the empirical
data and give more weight to outliers is that the non- and semi-parametric distributions lack the robustness
to remain accurate distributional forms for modeling farm-level crop yields in out-of-sample applications, as

is shown in Chapter 7.

4.2 Results

The purpose of this section is to provide evidence as to the parametric distributions that most effectively
model crop yields. To establish this evidence, the weighted and individual test rankings are summarized and
the top four distributions are selected for further analyses. This section is divided into two subsections for
corn and soybeans. The subsections contain goodness-of-fit results for all detrended farms passing through
the acreage and yield data screening. However, 132 corn and 176 soybean farms are removed because the
maximum likelihood estimation of the conditional beta distribution does not converge, due to the way the
gradient is calculated for the log-likelihood estimation procedure, among other non-identifiable problems
with @Risk for Excel 5.5’s proprietary conditional beta estimation fitting routine. The one identifiable
characteristic of the non-converging farms is that the sample size of more than 55% of the farms is between
20 and 25 years and the sample size of over 32% of the farms is between 26 and 31 years. This characteristic

shows that the likelihood of the conditional beta not converging is a factor of the sample size, among other

n preliminary investigations, the mixture-of-normals fit best in-sample with respect to all goodness-of-fit tests and therefore
is not included going forward.
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factors. The results from the remaining farms are not sensitive to dropping the observations. The comparison
of goodness-of-fit rankings is examined on the remaining 1,956 corn farms and 1,705 soybean farms.

Tables 7 and 8 contain the results for this section and are laid out as follows. The far-left column contains
the three goodness-of-fit tests and the weighted average of the three test ranks; the next column lists the
parametric distributions. The values represent the percentage of times that a distribution is ranked between
one and six; a ranking of one means that the distribution fit the best according to the specified test statistic.
For example, the K-S test ranks the Burr XII distribution the best in 44.8% of the farms in the Northwest
district, 37.2% second best, and 14.0% third best. The highlighted boxes indicate the distribution that fits
the highest percentage of farms by ranking and goodness-of-fit test. The sums of the percentages are 100% in
all cases except for the x2 case. The calculation of the x2 test allows for ties between the different parametric
distributions, hence the percentages under the x? rankings do not always sum to 100%.

In addition to Tables 7 and 8, summary heat-map tables of the rankings are included. The values from
Tables 9 and 10 are the sum products of the rankings and the percentage of times a distribution falls into
the ranking, by distributional form and district. For example, in Table 9 under the East Southeast district,
the combined ranking score for the Burr XII distribution is 2.10 (37% x 1 +29% x 2 +24% x 34+ 8% x 4+
2% x 54 0% x 6 = 2.10). The results are colored in such a way that the lightest colors represent the better
fitting distributions and the darkest colors represent the worse fitting distributions, by district.

To test if the sample characteristics of the farms have an effect on the distributional goodness-of-fit
rankings, this study also groups the farms into three bins for various sample characteristics — sample size,
acreage, expected yield, and standard deviation. The results from the sample characteristic groupings are
found in Tables 11-18 and are laid out as follows. The far-left column contains the three goodness-of-fit tests
and the weighted average of the three test ranks; the next column has the parametric distributions being
examined. The goodness-of-fit rankings are separated into three categories that correspond to the different
groupings. For example, in Table 11, the rankings are separated by sample size into the following three bins
— between 20 and 24 years of data, between 24 and 30 years of data, and between 30 and 37 years of data.

The values represent the percentage of times that a distribution is ranked between one and six by groupings.

4.2.1 Corn

This section contains goodness-of-fit results for the 1,956 detrended FBFM corn farms across all NASS
crop reporting districts. The overall results from this section are found in Table 7, while the summarized
heat-map results are found in Table 9. With respect to the A-D test, the Burr XII distribution fits six
of the nine districts best. The six districts in which the Burr XII performs best make up over 86% of
the total FBFM reported acreage in Illinois. The Burr XII also performs best across all 1,956 farms, with
40.9% of the first place finishes. The conditional beta and Weibull are split as to the next best fitting
parametric distributional form. The conditional beta comes in first place three times for the A-D test,
while the Weibull does not come in first once, but does come in second in nine of the districts. Examining
the A-D panel of Table 9 shows that the Weibull distribution performs slightly better than the conditional
beta when all rankings are taken into consideration. The Burr XII distribution is far and away the best
distribution under the A-D test; at its best the normal distribution captures, in the East Southeast district,
20.3% of the first place ranks; the gamma, in the Southeast district, 5.3% of the first place ranks; and the
inverse Gaussian does not have any first place finishes across all districts. It is no surprise that the normal

distribution — with its inability to capture positive or negative skewness or excess kurtosis — fits 18.1% of

17



the time the best in the Southwest district since that district has the lowest skewness (-0.30 bushels/acre)
and kurtosis (2.99 bushels/acre) values among all districts. In contrast, the normal distribution fits worst,
in terms of first place rankings, in the East district, which has the highest skewness (-0.83 bushels/acre)
and kurtosis (4.35 bushels/acre) among the districts. The normal distribution has the highest percentage
of fourth place finishes and is consistently the next best after the conditional beta. The inverse Gaussian
distribution performs poorly across all farms with almost all of its goodness-of-fit rankings falling behind
the other distributional forms.

The combined score results for the K-S, x2, and weighted average tests are similar to the results from the
A-D test with the Burr XII performing best overall. With respect to the K-S and x? tests, the conditional
beta has the highest percentage of first place ranks in eight of the districts, including the state total, but
still lags behind the Burr XII when the combined score ranking is examined. The Weibull and normal
distributions consistently come in third and fourth place, respectively, across all districts, while the gamma
and inverse Gaussian distributions again fall into fifth and sixth place. From the results of all four goodness-
of-fit tests, the Burr XII distribution is the overwhelming favorite for fitting in-sample farm-level corn yields.
The results from the grouping by sample size, acreage, expected yield, and standard deviation do not vary
from the original results of all the farms together. The Burr XII continues to fit best across all groupings
and goodness-of-fit tests. This is not surprising given the extra shape parameter the Burr XII distribution
has to fit dataZ.

4.2.2 Soybeans

This section contains goodness-of-fit results for the 1,705 detrended FBFM soybean farms across all NASS
crop reporting districts. The overall results from this section are found in Table 8, while the summarized
heat-map results are found in Table 10. With respect to the A-D test, the Burr XII distribution fits the
greatest number of detrended FBFM soybean farms best in all ten of the categories. The Weibull follows the
Burr XII by coming in second in the nine districts and the state total. With the majority of second place
finishes, the combined rank score for the Weibull is slightly lower than the score for the conditional beta. The
gamma distribution fits on average 2.2% of the soybean farms best, while the inverse Gaussian is in last place
across all categories. A priori, the normal distribution should have a higher percentage of first place ranks in
the Southwest district and a lower percentage in the Central district, due to the each district’s skewness and
kurtosis values. In fact, the normal distribution fits 10.6% of the farms in the Southwest district best and
only 5.9% of the farms best in the Central district. This pattern also emerges in the other districts, where
higher skewness and kurtosis values lead to lower best fitting ranks for the normal distribution. This result
reinforces the argument that the normal distribution is not a good candidate distribution for modeling crop
yields when the yields in question are skewed or have excess kurtosis. The inverse Gaussian again performs
worst which is no surprise given its inability to capture the negative skewness found in Illinois soybean farms.

The results from the K-S, x?, and weighted average tests contain similar results to the A-D test, with
the Burr XII having the greatest number of first place rankings and the lowest combined score ranking
across the districts. The rankings from the weighted average test are not surprising given the dominance
the Burr XII exhibits across the other goodness-of-fit tests. The conditional beta and Weibull distributions

are the next best fitting in-sample parametric distributional forms, with respect to the percentage of first

2If only comparing parametric distributions with two parameters, the Weibull distribution is the best fitting. This result
holds for the corn farms as well as the soybean farms.

18



place finishes across districts and combined score ranking, followed by the normal, gamma, and inverse
Gaussian. The results from the grouping by sample size, acreage, expected yield, and standard deviation
do not vary from the original results of the soybean farms separated by district. The Burr XII distribution
consistently outperforms all the other parametric distributions, followed in close succession by the conditional
beta and Weibull distributions. The results from this section show that the Burr XII distribution is the best
distributional form for modeling detrended soybean FBFM yields at a farm-level. Although, similar to the
results from the corn farms, the normal distribution makes a decent case for farms that have no skewness or

kurtosis.

4.3 Summary

The A-D, K-S, and x? goodness-of-fit tests are used to discern the distance between the empirical CDF
and the CDF of a specified distribution. These tests give approximately the same weight to differences in
the tails as they do to differences in the center of the distribution. The goodness-of-fit ranking results, across
districts and sample sizes, identify the Burr XII as the distributional form with the greatest percentage of
first place fits across the farms. Rounding out the top four best fitting distributional forms are the conditional
beta, Weibull, and normal distributions. The inverse Gaussian distribution consistently performs poorly in
all cases due to its inability to capture negative skewness.

The left tail of a distribution is of primary importance in a yield-based crop insurance context and these
results do not indicate which distribution fits the left tail best. For example, envision a histogram or any
empirical graphical method for estimating the PDF of a detrended farm-level yield history. The left tail
of the histogram is made up of years in which the yield on the farm falls below the average. If a farmer
purchases yield-based crop insurance and these below average years fall beneath the yield guarantee, the
insurance company would indemnify the farmer for the loss in yield. This example illustrates the importance
of a further examination into how accurately a distributional form can fit the left tail of a sample of yields.
The distributions must not only accurately fit in-sample data, but also be robust enough to provide accurate

crop yield forecasts.
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CHAPTER 5

EMPIRICAL LEFT TAIL GRAPHICAL AND INSURANCE
APPLICATION

This chapter contains two separate applications quantifying the distance between the left tail of the
empirical distribution and the left tail of a specified distribution. The first application takes a graphical
approach to identifying the distances in the left tail, while the second application calculates the area under
the left tail and compares it to the area under the empirical distribution. The purpose of this chapter is
to provide additional evidence for the distribution that best represents the left tail of a farm’s empirical
distribution.

This chapter is divided into two main sections and each separated into three subsections — methodology,
results, and a summary. The first section introduces the graphical application, while the first subsection
describes the methods behind the creation of the graphs. The first results subsection contains figures of
the empirical CDF from several representative corn and soybean farms overlaid with CDF plots from six
distributional forms — conditional beta, normal, Weibull, Burr XII, two-component mixture-of-normals, and
Gaussian kernel density — and an examination of the graphs. The second section establishes the motivation
behind the empirical insurance application. The methods behind the estimation and comparison of the
empirical and distributional insurance rates are put forth in the second methodology subsection. The second
results subsection is made up of tables comparing the consistency and accuracy of the distributional forms

for both corn and soybeans.

5.1 Graphical Comparisons

This section takes a graphical approach to identify the distributional form that fits the left tail best. The
graphical approach visually demonstrates how closely the top four ranked goodness-of-fit parametric distri-
butions — conditional beta, normal, Burr XII, and Weibull distributions —, in addition to the two-component
mixture-of-normals and the kernel density estimator, fit the left tail of the farm empirical distribution. The
distributions are ranked by how well they fit the empirical CDF in the left tail.

5.1.1 Graphical Methods

The graphical comparison examines the empirical CDF of each detrended farm-level yield sample from
the counties of Dekalb, Mclean, and Marion overlaid with CDF graphs of parametric, semi-parametric,
and non-parametric distributions. The farms from Dekalb, Mclean and Marion counties are used because
they historically offer accurate representations of the Northern, Central, and Southern sections of Illinois,
respectively. The clearest and most repetitive distributional patterns occurring in the farms are found within

four corn farms and four soybean farms and displayed in Figures 3 and 4.
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5.1.2 Graphical Results

This section contains a graphical comparison of the different distributional forms and a discussion of
the various forms each distribution takes when fitting a sample of yields. This section also gives weight
to the argument that the two-component mixture-of-normals and kernel density estimator tend to over-fit
in-sample, while the forms of the conditional beta, Burr XII, and Weibull distributions are broad enough to

capture out-of-sample variation.

5.1.2.1 Corn

The four representative detrended FBFM corn farms from Dekalb, Marion and McLean counties, found
in Figure 3, contain various common distributional forms of the six distributions — Weibull, conditional
beta, Burr XII, normal, kernel density estimator, and two-component mixture-of-normals. The empirical
CDF plots from McLean-891 and McLean-794 show a large spike in the left tail of the sample. The kernel
density estimator and the mixture-of-normals distribution fit this spike best and continue to fit the sample
with great accuracy. With respect to the parametric distributions, the Weibull and Burr XII distributions
capture the left tail better than the normal and conditional beta distributions. The conditional beta CDF
plot over-estimates the empirical CDF in three of the four representative farms. When an outlier appears in
the left tail, the Weibull and Burr XII distributions converge to the discrepancy at a faster rate than either
the normal or conditional beta distributions. The normal distribution performs the worst, most likely due
to its inability to capture any skewness, but when the data are almost symmetric, such as in DeKalb-316,
the normal does perform almost as well as the Burr XII and Weibull distributions.

The flexibility that is exhibited by the mixture-of-normals and kernel density estimator limits their out-
of-sample forecasting ability. They tend to fit the in-sample data so well that they are unable to capture
any variation outside of the sample, as shown in Chapter 6. On the other hand, the Weibull and Burr
XII distributions are desirable in out-of-sample crop yield forecasting because of their capability to better

capture out-of-sample variation.

5.1.2.2 Soybeans

The four representative detrended FBFM soybean farms from Dekalb, Marion and McLean counties, found
in Figure 4, contain various common distributional forms of the six distributions — Weibull, conditional
beta, Burr XII, normal, kernel density estimator, and two-component mixture-of-normals. In all of the
representative farms, the mixture-of-normals and kernel density estimator have the best fitting approach
due to their flexibility in capturing the nuances of the data. The best example of this over-fitting is in
McLean-926; the kernel density estimator takes many forms in almost perfectly fitting the outlier found in
the left tail. This proclivity for over-fitting in-sample does not give the kernel density estimator or mixture-of-
normals any room to capture out-of-sample data points. Next, the conditional beta, Burr XII, and Weibull
distributions fit about the same in three out of the four representative farms. While in the fourth farm,
DeKalb-189, the conditional beta distribution does not fit nearly as well as either the Burr XII or Weibull.
Also, when there is an outlier in the left tail, as in McLean-788, the Burr XII and Weibull distributions
converge faster to the empirical distribution and fit the empirical distribution better in the left tail than
the conditional beta. Finally, when the distribution of yields is close to symmetric, such as Marion-113,

the normal distribution fits as well as the other parametric distributions, but the mixture-of-normals and
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kernel density estimator still perform better in the left tail because they converge faster to the empirical
distribution due to their flexibility.

5.1.3 Summary

The graphical examination in this section compares different distributional forms in terms of their ability
to fit the empirical CDF of a sample farm. The two-component mixture-of-normals and kernel density
estimator tend to over-fit the representative farms and occasionally give excess importance to one or two low
production year outliers in the data. In contrast, the Burr XII, Weibull, and conditional beta distributions
are able to capture most of the in-sample variation and are better suited than the two-component mixture-
of-normals and kernel density estimator to accommodate out-of-sample yields from either low or high crop
production years.

Although the overall fitting prowess of the distributional forms is of importance when modeling yields,
when estimating yield crop insurance the left tail of the distribution is of the most importance. Estimating
the left tail of the distributional form is infeasible in a graphical context due to the fitting nuances of
many of the distributional forms and the sheer number of graphs that need to be examined to draw a proper
conclusion. Therefore, the next section examines only the left tail of the distributions and uses a quantitative

approach to compare the areas under the distributions to the area under the empirical distribution.

5.2 Empirical Insurance Comparison

This section takes an empirical insurance rating comparison approach to identify the distributional form
that fits the left tail best. This empirical insurance approach compares the area under the left tails of six
distributions — conditional beta, Burr XII, normal, Weibull, two-component mixture-of-normals distributions,
and the kernel density estimator — with the area under the empirical distribution. The left tail in this
approach is identified as the area under the distributional curve from the yield guarantee of an individual
farm to zero. The yield guarantee is the coverage level multiplied by the expected detrended yield of the
farm. The distributions are compared not only by how close their yield insurance rates come to the empirical
yield insurance rates, but also by how consistently they converge to the empirical rates.

The empirical insurance approach is implemented by calculating the integral from zero to the yield guar-
antee; this area is the estimated insurance rate under the distribution. In order to capture the estimated
insurance rates from the left tail of the distribution, the integral from zero to the yield guarantee is taken.

The expected yield insurance rate is expressed for each farm and candidate distribution as,
ki
InsRate; g = /Max{O7 ki — Y} fa.i(Yil0:,4)dY;
0

where k; = Cover x E(Y;), E(Y;) is the expected yield of the farm i, Cover is the coverage level, Y; is the yield
for farm 4, and fy,(Y;|6;) is the probability density function of the estimated parameter set 6; 4 for farm i
and candidate distribution d. The rate estimation approach is used throughout previous empirical literature.
This study builds upon the methods and data of previous works by utilizing the comprehensive FBFM Illinois
farm-level filtered data set and comparing not only the estimated rates from parametric distributions, but

also the estimated rates from a non-parametric and a semi-parametric distribution. Due to the large number
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of farms in the state that pass the filters, the farms are aggregated up into their respective districts and a
state total for closer examination.

Pope and Ziemer state that the empirical distribution function is typically the best distributional form for
modeling crop yields if little or nothing is known about the underlying distribution. Since the underlying
distribution is unknown for all the farms in the filtered data set, this section uses a method for calculating the
rates of the empirical distribution, namely the burn rate, as the basis for comparing the estimated rates of
the other distributions. The empirical burn rate in this application is the expected value of all the detrended

yields for a farm that fall below the yield guarantee,
BurnRate; = — En Maz{0,k —y;}
urnitate; axr i
7 n < - bl y_]
J

where n is the number of yields for farm ¢. For example, if a farm had a detrended yield history of, in
bushels/acre, 113, 110, 135, 130, 180, and 170 then the average amount by which yields fall below 85% of

the mean would be 7.5 bushels/acre.

5.2.1 Empirical Insurance Methods

In order to compare how different distributions fit the left tail of the empirical data, two different ap-
proaches are used. The first compares the rate estimates of a chosen distributional form to the empiri-
cal/burn rates to identify a form of bias. In this application, bias is the difference between the estimated
yield insurance rate of a distributional form and the empirical/burn rate. The bias of each distributional

form and farm is calculated as:

Bias; 4 = Z [InsRate; 4 — BurnRate;]
i
The closer the absolute bias is to zero, the better that distribution fits the sample data for this empirical
insurance application.

The bias of the distributional forms has been studied extensively in previous literature, but the efficiency,
or precision, of distributional forms has not been examined as extensively. This study uses the root mean
square error (RMSE) to measure the precision and efficiency of the distributional fits. The RMSE of each
distributional form is calculated as the square root of the sum of the differences squared between the dis-
tribution’s rate estimate and the empirical/burn rate of each farm divided by the number of yields. The

in-sample precision or efficiency of each distributional form is measured using the root mean squared error
(RMSE) across farms as:

.y 1 2
E wi= |~ > (InsRate; s — BurnRate;
[ ficiency; q \/n i (InsRate; 4 urnRate;)

The purpose of this section is to examine which distributional form most accurately estimates yield crop
insurance rates as it relates to the empirical/burn rates. For this comparison, the detrended yield histories
of all corn and soybean farms that pass the data screening and do not have convergence errors with the
conditional beta distribution are included, as is the case in Chapter 4. The six distributions — conditional

beta, normal, Burr XII, Weibull, two-component mixture-of-normals, and kernel density estimator — are fit
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to each individual farm and the parameter estimates are used to calculate a yield crop insurance at three
different coverage levels — 85%, 75%, and 65%.

Estimation of yield insurance rates is done using a computational integration method. The integration
method is a variant of Gaussian quadrature, which is a numerical method to approximate the definite integral
of a function. The integration numerical method is known as Gauss-Kronrod quadrature, which is a slight
variation on Gaussian quadrature. This method comes pre-packaged in MATLAB.

As an example, in this study there are 154 corn farms in the Northeast district of Illinois. The expected
yield of each of the individual farms is multiplied by each of the three coverage levels and saved as the yield
guarantee from which to distinguish the left tail of the distribution. Next, each of the six distributional
forms is fit to the individual farms and their respective parameters are estimated. Using the numerical
integration method and the distributional parameter estimates, the area under each distributional curve
from the yield guarantees to zero for each individual farm is calculated as the yield insurance rate. Finally,
the yield insurance rates for each distributional form and coverage level are averaged over the farms in the
district.

5.2.2 Empirical Insurance Results

Results are presented in two subsections for corn and soybeans. The subsections contain a comparison
of yield crop insurance rates for all farms passing through the acreage and yield data screening, except for
farms where the conditional beta maximum likelihood estimation did not converge. The comparison of yield
insurance rates by distributional form is examined on the remaining 1,956 corn farms and 1,705 soybean
farms.

This section presents results that support a conclusion as to which distribution is best for modeling in-
sample crop yields, and ultimately, for evaluating yield crop insurance at the farm-level in Illinois. In addition,
this section identifies distributional forms that are prone to over-fitting in-sample data by examining the
efficiency results. The results are organized in Tables 19 and 20 as follows. The tables contain the comparison
statistics — average, bias, and efficiency — in the far-left column and the distributional forms being compared
in the next column. The bias and efficiency (RMSE) values are presented in terms of percentages relative
to the empirical/ burn rate. The average portion of the table includes the empirical /burn rate, which is not
included in other sections because it is implied in the calculation of the other statistics. The distributions are
separated by a dashed line to distinguish the different types of distributions: parametric, parametric with
three parameters, semi-parametric, and non-parametric. The results are presented by coverage level and
district. The highlighted boxes within the bias and efficiency statistic demarcations indicate the distributional
form that contains the lowest absolute value under each district and coverage level. For example, in the corn
case of the East Southeast district the average of all the biases under a 75% coverage level for the Weibull
distribution is the closest to zero when compared to the other distributions, so it is highlighted. The bold
values within the bias section indicate distributional rate estimates that are larger than the empirical/burn
rates. For example, in the case of corn, all the bias values under each district and coverage level for the

kernel density estimator are bold because they are greater than the empirical/burn rate in every case.
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5.2.2.1 Corn

The corn results are separated into FBFM farms by district and state total. The number of FBFM corn
farms in each region and the total of FBFM corn farms in Illinois for this examination are: Northwest - 379,
Northeast - 154, West - 88, Central - 492, East - 280, West Southwest - 140, East Southeast - 236, Southwest
- 111, Southeast - 76, and state total - 1,956.

Referring to Table 19, the average of the empirical rates ranges from a high of 3.8 bushels/acre in the
East district to a low of 2.3 bushels/acre in the West Southwest district, at an 85% coverage level. The
averages of the empirical/burn rates for each FBFM corn farm across all districts and coverage levels are 3.1
bushels/acre, 1.3 bushels/acre, and 0.4 bushels/acre, at coverage levels of 85%, 75%, and 65%, respectively.
In comparison to the empirical/burn rates — the bias statistic on the table — the conditional beta fits best in
13 of the 27 district/coverage level combinations , while the mixture-of-normals and Weibull each fit six of
the combinations best and the Burr XII fits the remaining two best. The normal and kernel density estimator
distributions do not produce the best fitting rates in any of the districts, in terms of bias. In absolute value
terms across all the districts, the mixture-of-normals is, on average, the least biased distribution at both an
85% and a 65% coverage level, while the conditional beta is the least biased at a 75% coverage level. The
rate estimates from the conditional beta and kernel density estimator distributions consistently overstate the
empirical /burn rate; all 30 rates for the kernel density estimator and 25 for the conditional beta. In contrast,
the rate estimates from the Weibull and mixture-of-normals distribution underestimate the empirical/burn
rates 86.7% and 100% of the time, respectively. A surprising characteristic of the differences between the
empirical /burn rates and the rate estimates from the distributional forms is the fact that the kernel density
estimator performs the worst in terms of absolute distance from the empirical distribution rates.

In contrast, the kernel density estimator is the most efficient in-sample distribution across all districts and
the state, with respect to the RMSE statistic. The kernel density estimator is the most efficient distributional
form in 16 of the 27 coverage level/district combinations while the two-component mixture-of-normals is the
most efficient in the remaining 11. The Weibull and Burr XII distributions have the highest RMSE values
of the distributions tested with average percentages of 33.4% and 31.6%, respectively, at an 85% coverage
level. The Burr XII distribution is more efficient than the Weibull in all cases because the Weibull is only
one special case of the Burr XII; the Burr XII has the flexibility to capture more combinations of skewness
and kurtosis than the Weibull. For all the distributions in this section, the average RMSE across all districts
declines as the coverage level goes down. For instance, the RMSE value for the conditional beta is 25.0%
at an 85% coverage level; 53.6% at a 75% coverage level; and 115.2% at a 65% coverage level. This result
points to the fact that as the yield guarantee gets closer to zero, the distributions do not do as well in fitting
the left tail. The overall corn results show that the mixture-of-normals and kernel density estimator are the
best, of the distributions in this study, for measuring in-sample efficiency when the underlying distributional

form is unknown.

5.2.2.2 Soybeans

The soybean results are separated into FBFM farms by district and state total. The number of FBFM
soybean farms in each region and the total of FBFM soybean farms in Illinois for this examination are:
Northwest - 209, Northeast - 143, West - 79, Central - 474, East - 279, West Southwest - 137, East Southeast
- 224, Southwest - 94, Southeast - 66, and state total - 1,705.

Referring to Table 20, the average of the empirical rates ranges from a high of 1.0 bushel/acre in the
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Southwest district to a low of 0.5 bushels/acre in the West district, at an 85% coverage level. The averages of
the empirical rates for all the data screened and detrended FBFM farms across the state are, in bushels/acre,
0.8, 0.3, and 0.1, at coverage levels of 85%, 75% and 65%, respectively. Examining the bias section of Table 20,
which in this application is the distance between the fitted insurance rate and the empirical /burn rate, shows
that the conditional beta and the two-component mixture-of-normals distributions perform the best over all
district/coverage level combinations, followed closely by the Weibull and Burr XII. The two-component
mixture-of-normals fits the best in 11 of the 27 district/coverage level combinations, while the conditional
beta fits best in six. The Weibull and Burr XII distributions come in third and fourth respectively, fitting
the best in five and four of the district/ coverage level combinations. In contrast to the corn results, in
almost all coverage level and districts, the conditional beta and Weibull distributions carry the same sign.
For example, when the rate estimate of the conditional beta is less than the empirical/burn rate, the rate
estimate of the Weibull is also less than the empirical/burn rate. Similar to the corn results, the kernel
density estimator does not fit the best in any of the coverage level or district combinations and overstates
the empirical /burn rate in 100% of the cases.

With respect to the RMSE, the two-component mixture-of-normals and kernel density estimator outper-
form the other distributions in all districts and coverage levels. The mixture-of-normals is the most efficient
distribution in 15 of the 27 coverage level/district combinations, while the kernel density estimator is the
best in the remaining 12. The parametric distributions, including the conditional beta and Burr XII, all have
RMSE values between 29.5% and 39.7% at an 85% coverage level. The RMSE values of the distributions
again decline as the yield guarantee goes to zero. For example, the RMSE of the normal distribution falls from
a value of 29.5% at an 85% coverage level to 141.3% at a 65% coverage level. Similarly to the corn results,
the two more flexible distributions — the kernel density estimator and the two-component mixture-of-normals

— are more precise at fitting in-sample.

5.2.3 Summary

Overall, the non- and semi-parametric distributional forms are shown to fit in-sample yields quite well
in terms of in-sample precision, while the parametric distributions perform less well. Nevertheless, in both
the goodness-of-fit examination and the empirical insurance application, the conditional beta, Burr XII, and
Weibull distributions outperform all other parametric distributional forms and are still capable of repre-
senting a relatively large range of skewness and kurtosis values. The normal distribution does not tend to
perform as well in either the goodness-of-fit examination or the empirical insurance rating application, most

likely due to its inability to capture any variation in skewness or kurtosis.
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CHAPTER 6

CORN YIELD CROP INSURANCE SIMULATION
APPLICATION

The purpose of this chapter is to compare the accuracy and efficiency of crop insurance rates from the em-
pirical, conditional beta, Weibull, and two-component mixture-of-normals distributions. Since the underlying
distributional form for crop yields is unknown, this examination shows the potential impact of alternative
assumptions given known conditions for the data generating process. The conditional beta, Weibull, and
mixture-of-normals distributions are chosen due to the extensive previous literature focused on them. The
empirical distribution is included to show that it is an unbiased distributional form. Crop yields of vary-
ing sizes, means, and standard deviations are drawn from the known underlying distributional form, either
Weibull or conditional beta, to create pseudo-farms. Then, four distributions are fit to the crop yields of
the pseudo-farms to estimate yield crop insurance rates and to compare the rate estimates to the underlying
known rates of the pseudo-farms.

The presentation is divided into the following sections. The first section contains the methodology be-
hind the crop yield data generating process of the pseudo-farms and the fitting methods of the empirical,
conditional beta, Weibull, and mixture-of-normals distributions. The second section includes an in-depth
examination of the yield crop insurance rate estimates from the empirical, conditional beta, Weibull, and
mixture-of-normals distributions fit to pseudo-farms that contain similar expected yields and standard de-
viations as the bulk of the FBFM farms in Illinois. This approach provides a method to compare the

out-of-sample fitting ability of four empirically popular distributional forms.

6.1 Methods

The characteristics of the pseudo-farms for this simulation application are based on the sample statistics
of the FBFM corn farms. The expected district yields from the detrended FBFM corn farms — from Table 3
— vary from a low of 136.8 bushels/acre to a high of 181.8 bushels/acre, while the standard deviations range
from a low of 24.0 bushels/acre to a high of 28.4 bushels/acre. To develop a sample of farms having a broad
appeal to yield crop insurance policy makers, this application uses pseudo-farms with expected yields from
160 bushels/acre to 180 bushels/acre, in multiples of 20 and standard deviations from 20 bushels/acre to
40 bushels/acre, in multiples of ten. Although the empirical fitting application in Chapter 5 does not take
into account farms with less than 20 years of yields, this simulation application contains pseudo-farms with
the following sample sizes: ten years, 15 years, 20 years, and 30 years. Due to the ability of the conditional
beta and Weibull distributions to capture a large range of skewness and kurtosis values traditionally found
in individual corn farms, the underlying distributional forms for the pseudo-farm’s crop yields are generated
from both distributions.

This section explains the development and methodology behind the model used to compare the accuracy
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and efficiency of the empirical, conditional beta, Weibull, and two-component mixture-of-normals distri-
butions when the underlying distributional form is known. Once either the Weibull or conditional beta
distribution is selected as the underlying distributional form, the yields for each combination of sample size,
mean, and standard deviation are randomly drawn. The system for drawing the random yields is done by
first using a modified method-of-moments' approach to estimate the distributional parameters from a given
mean and standard deviation and second, using the estimated parameters to draw random yield samples of
a specified size.

The method-of-moments approximation for the Weibull distribution is as follows. The Weibull distribution
has two parameters — a scale parameter, «, and a shape parameter, 3. The shape parameter, 3, is estimated

given the coefficient of variation, z, by

1/8==z (1 +(1- z)QEn:kizZ)

=0

where z = o/p and the k; and n coefficients are given below. The approximations are good for z < 1.2,

where n = 5 and the maximum difference is 3.64¢~6.

k1 = —0.001946641
ko = 0.153109251
ks = —0.083543480
ks =0
ks = 0.007454537

The scale parameter, «, is estimated, given the shape parameter, 3, and the mean, u, as
a=[(1+1/b)/u)’

where T' is the gammafunction (Garcia, 1981). Once the parameters are estimated using method-of-
moments, the estimated parameters and the sample size are used as arguments for a Weibull random number
generating function in MATLAB. The sample size dictates the size of the random sample yield vector.

The method-of-moments approximation for the conditional beta is as follows. The conditional beta distri-
bution has two shape parameters, a and (3, as well as an upper and lower limit. The lower limit is bounded

at zero. The two shape parameters and the function for the upper limit are expressed as,

(-2 (B0 ),
h=p+3xo

where p, v, and o are the sample mean, variance, and standard deviation, respectively. There is a caveat
as to how the sample yields from an underlying conditional beta distribution are drawn once the estimated

parameters are approximated by method-of-moments. The random number generating function in MATLAB

1The process of method-of-moments equates the first two moments of the sample — mean and standard deviation — to the
first two moments of the selected distribution in order to estimate the distributional parameters.
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outputs values on a scale from zero to one and therefore does not take into account the upper limit. The
approach this study puts forth to overcome this issue is to use the two parameter estimates of the conditional
beta distribution and the sample size as arguments in the beta distribution random number generating
function in MATLAB and then multiply the subsequent numbers by the upper limit to place the yields
within the range of zero to the upper limit.

Given 5,000 randomly generated pseudo corn yield sets drawn from the conditional beta or Weibull dis-
tributions in groups by sample size, expected yield, and standard deviation, the yield crop insurance rates
at coverage levels of 85%, 75%, and 65% are calculated for the empirical, conditional beta, Weibull, and
mixture-of-normals distributions using maximum likelihood estimation fitting routines in MATLAB. MAT-
LAB does not include a maximum likelihood estimation fitting routine for the conditional beta distribution.
To work around this exclusion, MATLAB is packaged with a custom maximum likelihood estimation func-
tion, which takes a function and starting values as arguments in order to solve for the specified parameters
of the function. In order to get sufficient starting values for this routine, each sample of data is scaled down
by 110% of the sample maximum. The new data falls between zero and one, the pre-packaged MATLAB
two-parameter beta maximum likelihood estimation fitting routine is able to return values for the two shape
parameters. Using these values, in addition to 110% of the upper limit and zero, as the starting values and
the conditional beta PDF function, a conditional beta MLE fitting routine is constructed in MATLAB. The
crop insurance rates for the empirical distribution are calculated in the same method as the empirical /burn
rate in the previous chapter.

The true yield crop insurance rates are calculated using method-of-moments to solve for the distributional
parameters and then the parameters are used to integrate from zero to the yield guarantee — expected
yield value multiplied by coverage level. The bias and efficiency statistics are calculated with the true yield

insurance rates for an out-of-sample representation of the fitting competence of each distribution.

6.2 Results

The purpose of this section is to develop a highly detailed and diverse set of results that examines the
performance of alternative parameterizations when the underlying or true distributional form is known. The
results are displayed in a similar way across many tables. Each table is comprised of eight panels, under
each distributional form there are four panels for each of the four sample sizes. The tables are also grouped
by mean and standard deviation of the underlying distributional forms. The panels contain the comparison
statistics — average, bias, and RMSE — in the far-left column and the four distributional forms being compared
in the next column. The bias and RMSE values are in terms of percentages relative to the known theoretical
true rate and are separated by coverage level. For instance, Table 22 includes average, bias, and efficiency
statistics for 5,000 pseudo-farms drawn from both a Weibull and conditional beta distribution with ten, 15,
20, and 30 years of crop yields having an expected yield of 160 bushels/acre with a standard deviation of
30 bushels/acre. The highlighted cells represent the minimum bias or RMSE for the specified statistic and
coverage level; the bold values identify the bias values where the rate estimate is greater than the true rate.
The first line of each table contains the true rate for the given data generating distributional form, mean,
and standard deviation. The true rates are listed at the top of the table because they are not dependent on

sample size, only the first two moments of the underlying distributional form.
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6.2.1 Expected Yield of 160 bushels/acre

This section contains results for the pseudo-farms having expected yields of 160 bushels/acre. The results
are found in Tables 21-23. The comparison of the estimated yield crop insurance rates from the empirical,
conditional beta, Weibull, and mixture-of-normals distributions is done over varying sample sizes, — ten, 15,
20, and 30; data generating processes — Weibull and conditional beta; standard deviations — 20, 30, and 40
bushels/acre; and coverage levels — 85%, 75%, and 65%.

The true rates from both the underlying distributional forms are close in value, but the rates from the
underlying Weibull tend to be higher until the standard deviation of the pseudo-farms goes above 40
bushels/acre at an 85% coverage level and then the true rates from the underlying conditional beta dis-
tribution are greater. The cause of this is that the upper limit of the conditional beta is dependent on the
standard deviation, therefore at higher standard deviation levels the conditional beta is stretched out to
accommodate the potential of higher yields and it converges to zero at a slower rate.

With respect to the bias statistic, the fitted conditional beta distribution consistently overstates rates,
ranging from 17.7%-97.3% for a small sample size of ten at the 85% coverage level, and larger at lower
coverage levels. As the sample size increases the rate estimates from the conditional beta become closer
to the true rate across all coverage levels. For example, at a coverage level of 85% and a sample size of
30, the bias percentage of the conditional beta ranges from 5.8%-23.4%. The conditional beta overstates
the underlying true rate in 100% of the 72 combinations. Across all sample sizes at an 85% coverage level,
the conditional beta overstates the true rate by approximately 25.4% more than the empirical rate. The
rates from the empirical distribution are on average 2.2% lower than the Weibull rate estimates and that
absolute difference becomes greater as the sample size increases. In more than 76% of the 72 cases, the
Weibull distribution overstates the true rate, but at a much smaller magnitude than the conditional beta.
For example, the rate estimates from the fitted Weibull distribution range from 1.2%-17.6% above the true
rates for a sample size of ten at the 85% coverage level. Opposite to the Weibull, the two-component mixture-
of-normals distribution understates rates in 97.2% of the standard deviation, sample size, and underlying
distributional form cases. At a coverage level of 85% and a sample size of ten, the range for which the
mixture-of-normals understates the rates is 5.4%-18.2%. Not surprisingly, the empirical distribution has
the lowest absolute bias percentage in 66 of the 72 combinations, while the mixture-of-normals and Weibull
distributions have the lowest absolute value bias percentage in the remaining six. The rate bias from
the mixture-of-normals distribution is on average 30.7% lower than the rate bias from the conditional beta
distribution. The bias results from an expected yield of 160 bushels/acre show that the empirical distribution
is less biased than the mixture-of-normals, conditional beta, or Weibull distributions, but as the sample size
increases the differences in bias between the distributional forms approaches zero.

Next, this section compares the out-of-sample efficiency results for the empirical, mixture-of-normals,
conditional beta, and Weibull distributions. The RMSE of the conditional beta rate estimates is, on average,
34.8% greater than the RMSE of the Weibull rate estimates; 24.5% greater than the RMSE of the mixture-of-
normals rate estimates; and 25.1% greater than the RMSE of the empirical rate estimates at an 85% coverage
level. The RMSE of the conditional beta is consistently higher than the Weibull, mixture-of-normals, or
empirical distributions across all sample sizes and coverage levels, but the RMSE of the conditional beta
does become smaller as the sample size increases. The RMSE of the mixture-of-normals rate estimates is,
on average across all sample sizes, 10.4% greater than the RMSE of the Weibull and 0.7% smaller than the
empirical at an 85% coverage level; 14.8% greater and 8.9% greater at a 75% coverage level for the Weibull

and empirical distributions, respectively. The empirical RMSE values range from an average of 12.9% greater
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than Weibull at a sample size of ten to an average of 6.8% greater at a sample size of 30. Similar to the
conditional beta, the RMSE of the mixture-of-normals becomes smaller and more precise as the sample
size increases. The Weibull distribution has the lowest RMSE value in 89% of the combinations, while the
mixture-of-normals has the lowest RMSE in the remaining 11%. For the empirical, conditional beta, and
mixture-of-normals distributions, a larger sample size corresponds to a more efficient out-of-sample fitting,
but even at higher sample sizes the Weibull distribution is still a consistently more efficient distributional

form for modeling out-of-sample corn yields when the yields are centered on 160 bushels/acre.

6.2.2 Expected Yield of 180 bushels/acre

This section contains results for the pseudo-farms having expected yields of 180 bushels/acre. The tab-
ulated results are found on Tables 24-26. The comparison of the fitted yield crop insurance rates from the
empirical, conditional beta, Weibull, and mixture-of-normals distributions is done over varying sample sizes,
— ten, 15, 20, and 30 — data generating processes — Weibull and conditional beta — standard deviations — 20,
30, and 40 bushels/acre — and coverage levels - 85%, 75%, and 65%.

At an 85% coverage level, the true rates from each underlying distribution converge to each other as the
standard deviation increases. The convergence is slower with an expected yield of 180 bushels/acre than
with an expected yield of 160 bushels/acre because at a standard deviation of 40 bushels/acre the true rates
from an underlying Weibull distribution are greater by 0.05. Although out of the scope of this study, given a
larger standard deviation, the true theoretical rates from an underlying conditional beta distribution should
become greater than the rates from an underlying Weibull distribution.

With respect to the bias statistic and similar to the previous results of expected yields of 160 bushels/acre,
the conditional beta distribution consistently overstates rates — 100% of the time — ranging from 26.2% to
130.9% for a sample size of ten at the 85% coverage level, and larger at lower coverage levels. Unexpectedly,
the conditional beta rates are more biased across all sample sizes and standard deviations when the pseudo-
farms are drawn from a conditional beta. As the sample size increases, the rate estimates from the conditional
beta become closer to the true rate across all coverage levels. For example, at a coverage level of 85%
and a sample size of 30, the bias percentage of the conditional beta ranges from 7.3% to 27.8%. The
Weibull distribution overstates the true rates 79.2% of the time, while the two-component mixture-of-normals
understates the true rates 95.8% of the time. Again, the lowest absolute value bias percentage in 66 of the 72
combinations comes from the empirical distribution, while the remaining six are split between the Weibull
and mixture-of-normals. In examining the different underlying distributional forms, the Weibull distribution
tends to exhibit smaller absolute value percentages from the true rate when the underlying distributional
form is Weibull, while the mixture-of-normals performs better than the Weibull in almost all cases where
the underlying distributional form is conditional beta.

In comparing the out-of-sample efficiency results for the empirical, mixture-of-normals, conditional beta,
and Weibull distributions the RMSE values of the conditional beta rate estimates is, on average across all
sample sizes, 45.8% greater than the RMSE of the Weibull rates; 34.6% greater than the RMSE of the
mixture-of-normals; and 34.7% greater than the RMSE of the empirical rates at an 85% coverage level. Sim-
ilar to the previous out-of-sample efficiency results for the yields with an expected value of 160 bushels/acre,
the RMSE of the conditional beta does become smaller as the sample size increases, but is not smaller
than the empirical, mixture-of-normals, or Weibull distributions in any of the cases. The RMSE of the

mixture-of-normals rate estimates is, on average, 11.2% greater than the RMSE of the Weibull rates at an
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85% coverage level; 13.4% greater at a 75% coverage level; and 1.9% greater at a 65% coverage level. The
RMSE of the empirical rate estimates is, on average, 11.1% greater than the RMSE of the Weibull at an
85% coverage level; 28.4% greater at a 75% coverage level; and 67.1% at a 65% coverage level. In 87.5% of
the 72 standard deviation, sample size, and underlying distributional form combinations the Weibull distri-
bution has the smallest RMSE value, while the mixture-of-normals is the best in the remaining 12.5%. An
interesting observation is that the mixture-of-normals has the lowest RMSE value only when the underlying
distributional form is the conditional beta; the standard deviation is 20 bushels/acre; and the coverage level
is either 75% or 65%. In all other cases, the Weibull distribution is the most efficient or precise distributional

form for modeling corn yields when the expected yield is 180 bushels/acre.

6.3 Summary

Given that the Illinois FBFM data set has data from 1972; the largest sample size possible is 37 years. An
individual FBFM farm containing yields for 30 or more years is rare in Illinois and therefore out of the scope
of this simulation application. The bulk of the FBFM farms in Illinois contain yields between ten and 30 years
of yields. Based on this characteristic and a known underlying distributional form, the Weibull distribution
is more efficient in estimating yield crop insurance rates across many standard deviations and expected corn
yields than the empirical, conditional beta, or two-component mixture-of-normals distributions.

The assumption of a known underlying distributional form is unrealistic in empirical examinations given
the random nature of yields in any county or district, but it is a good way to gauge the left tail out-of-
sample fitting performance of one non-parametric, one semi-parametric, and two parametric distributional
forms against the true theoretical left tail of an underlying distribution. The results show that the empirical
distribution performs best when the bias of the fitted rates is examined, but when the focus is on the out-
of-sample efficiency the Weibull distribution is more precise across all expected yields, standard deviations,
coverage levels, sample sizes, and underlying distributional forms in this study. The results also show that
given an underlying conditional beta distribution, the conditional beta distribution performs no better than
when the underlying distributional form is Weibull. In fact the two-component mixture-of-normals comes

closer to the true rate when the pseudo-farms are drawn from a conditional beta distribution.
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CHAPTER 7

CONCLUSION

Issues surrounding the choice of distribution for modeling yields, as well as the manner in which one should
go about evaluating and comparing them, are and remain contentious issues. This study sheds light on these
issues by using a comprehensive dataset from the Illinois FBFM of commercial scale corn and soybean yields
from 1972-2008 to examine alternative distributional forms for modeling crop yields and to inspect their
economic implications to crop insurance rates. This chapter is divided into three sections. The first section
provides a summary of the methods and findings. The second section gives examples of further research
that come from the findings of this study and the implications the findings of this study provide. The third

section contains the conclusions of the study.

7.1 Summary

Chapter 4 ranks the in-sample fitting performance of six parametric distributional forms — conditional
beta, gamma, inverse Gaussian, normal, Beta XII, and Weibull. The distributional representations are fit
using maximum likelihood estimation to Illinois detrended FBFM farm-level corn and soybean yields. Three
common goodness-of-fit tests — Anderson-Darling, Kolmogorov-Smirnov, and Chi-Squared — in addition to
a weighted average of the three tests are used to rank the in-sample fitting of the parametric distributions.
The results from this chapter show that the Burr XII distribution fits the in-sample data much better than
the other parametric distributional forms. While the Weibull, conditional beta, and normal distributions
fall into line behind the Burr XII.

Chapter 5 is comprised of two parts. In the first part, the top four parametric distributions from Chapter
4 are compared against a two-component mixture-of-normals distribution and a kernel density estimator in a
graphical context. The distributions are fit to the detrended FBFM farms and eight representative corn and
soybean farms are chosen, from three representative counties in different geographical sections of Illinois, to
give a context for how the distributional forms fit in-sample. The second part takes the six distributions
from part one and compares the left tail of each of the distributional forms against the empirical /burn rate.
To compare the left tails, the parameters of the fitted distributions are used to estimate insurance rates. The
distribution rate estimates are compared on accuracy and efficiency to the empirical distribution. The results
from the two approaches show that the two-component mixture-of-normals and kernel density estimator are
the most efficient distributions for modeling in-sample farm-level yields.

Chapter 6 compares the out-of-sample left-hand fitting ability of the empirical, conditional beta, Weibull,
and two-component mixture-of-normals distributions when the underlying distributional form of the sample is
known. Pseudo-farm yields are generated from either an underlying Weibull or conditional beta distribution

having similar means, standard deviations, and sample sizes to what is traditionally found on farms in Illinois.
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The empirical, conditional beta, Weibull, and mixture-of-normals distributions are fit to the pseudo-farm
yields and insurance rates are estimated at coverage levels of 65%, 75%, and 85%. The rate estimates for each
distribution are compared by their proximity to the underlying true theoretical rates. The results show that
while the empirical distribution has lower absolute bias values, the more parsimonious Weibull distribution
outperforms the empirical, conditional beta, and mixture-of-normals on the basis of out-of-sample efficiency,

especially in smaller sample sizes.

7.2 Implications and Suggestions for Future Research

The scope of this study includes few farms with greater than 30 years of yields due to the small number
of actual farms that contain near-perfect yield histories in the data. Nevertheless, insurers typically group
large numbers of farms together with like characteristics when making rates. Thus, further research is needed
in order to assess the sampling distribution questions addressed here in more realistic and comprehensive
frameworks when several like risk farms are combined to estimate rates. Also, the out-of-sample analysis
is based on simulated pseudo-data from known and restrictive parametric distributions, and thus the out-
of-sample results found here may not always carry over to cases representing actual data for any particular
application (e.g., if the data has larger tails than the fitted conditional beta and Weibull distributions in use
here). Thus, frameworks need to be developed which can effectively assess out-of-sample rate performance
using actual yield data.

This study includes a large and diverse data set containing individual FBFM farms with yield histories
ranging from 20 to 37 years of yields. The yields from the individual FBFM farms encompass a vast range of
means, standard deviations, skewness, and kurtosis values for corn and soybean farms in Illinois. The nine
NASS crop reporting districts in Illinois also vary in their soil quality and expected production, among other
characteristics. For example, the Southern districts tend to yield fewer bushels per acre than the central
part of the state. This wide array of farms and yield histories gives the study appeal to insurance agencies
and corn and soybean farmers across the United States Corn Belt. The implications of using such a diverse
sample of high quality farms is that the results are overarching and are not biased by focusing on only one
similar sample of farms.

This study also examines multiple families of distributional forms that are commonly included in empirical
yield modeling and crop insurance research papers. This study finds it is important to test the distributions
on similar grounds and not give preference to one distributional form over another. The implications of
using many different types of distributions — non-parametric, semi-parametric, and parametric — in similar
situations are that this study provides a unique examination into the over-fitting tendencies of non- and
semi-parametric distributions comparing them to the broad distributional coverage offered by parametric

distributions.

7.3 Conclusions

This study takes into consideration the previous empirical yield modeling and crop insurance literature
and then attempts to add to the discussion with a broad spectrum of results and empirical methods both
in-sample and out-of-sample. This study adds to the previous empirical literature by examining many

alternative distributional forms and fitting them in-sample to a high quality farm-level data set to examine
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the economic implications of rating yield crop insurance products. This study also examines the out-of-sample
accuracy and efficiency of one non-parametric, one semi-parametric, and two parametric distributional forms
by drawing pseudo-farms from known underlying distributional forms.

The overall results of this study point to the Weibull distribution as the most efficient distribution out-
of-sample and the kernel density estimator and mixture-of-normals in-sample. In-sample, the Burr XII
distribution is the best fitting and most efficient parametric distributional form. These results are somewhat
in contrast to the findings of Norwood, Roberts, and Lusk (2004), who find that the mixture-of-normals
is superior to other distributions in that study, and calls into question generalization of the “best” distri-
bution (whether in-sample or out-of-sample) for any particular application. The results of the simulations
illustrate the bias-efficiency tradeoff when evaluating distributions with different levels of parameterization,
and also add insight to the in-sample versus out-of-sample question as it relates to crop insurance rating and

distribution selection.
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Figure 1: Comparison of Corn Yields at Different Aggregations over Time in Illinois
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Figure 2: Map of Illinois NASS Crop Reporting Districts
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Source: U.S. Census Bureau
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Figure 3: Comparison of Distributional Forms on Representative Detrended FBFM Corn Farms
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Figure 3: Comparison of Distributional Forms on Representative Detrended FBFM Corn Farms - Continued
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Figure 4: Comparison of Distributional Forms on Representative Detrended FBFM Soybean Farms
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Figure 4: Comparison of Distributional Forms on Representative Detrended FBFM Soybean Farms - Con-
tinued
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Table 1: FBFM Data: Number of Corn Farms with Twenty or More Years of Data with Sample Periods Ending in 2008

Start of Sample Period™
Years of Data“1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 Total Farms

41

20+ 719 244 134 120 74 74 88 85 69 93 o7 56 39 68 75 42 60 31 2,088
21+ 682 226 129 115 70 69 87 81 67 48 95 %4 35 61 o6 30 30 1,895
224 653 217 124 112 69 69 85 78 63 47 50 53 29 42 39 20 1,750
23+ 629 211 119 104 64 67 79 73 59 42 47 36 18 32 18 1,598
24+ 607 202 116 101 59 64 74 68 52 39 4 26 13 10 1,475
25+ 581 195 112 99 o7 58 70 63 46 33 29 20 5 1,368
26+ 550 188 105 92 93 92 65 52 37 23 17 9 1,243
274 531 177 97 91 48 47 55 47 28 12 8 1,141
28+ 495 169 87 85 42 39 43 31 19 3 1,013
29+ 462 152 80 69 35 30 35 19 6 388
30+ 428 132 75 56 28 20 24 5 768
314 391 117 61 41 21 7 9 647
32+ 334 99 46 25 12 2 018
33+ 267 70 20 11 2 370
34+ 197 47 6 4 254
35+ 115 25 1 141
36+ 50 ) 95
374 16 16

* . . . .
Years of data in a sample period. Data may be continuous or non-continuous.

™ Starting year of sample period to examine. Ending year of sample period is 2008.



Table 2: FBFM Data: Number of Soybean Farms with Twenty or More Years of Data with Sample Periods Ending in 2008

Start of Sample Period™
Years of Data“1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 Total Farms

15374

20+ 560 239 129 112 61 79 84 81 60 50 o8 56 38 68 79 42 55 30 1,881
21+ 528 220 125 109 58 () 83 79 98 46 93 93 33 99 o8 29 29 1,695
22+ 512 210 120 104 56 73 80 7 55 45 50 49 27 42 40 18 1,558
23+ 494 203 114 99 52 71 7 73 49 41 46 32 18 30 18 1,417
24+ 478 195 112 93 49 69 70 66 45 37 42 20 13 12 1,301
25+ 463 190 108 91 47 65 64 62 37 31 29 14 6 1,207
26+ 437 182 102 84 45 99 61 51 32 23 16 5 1,097
27+ 424 172 94 82 41 52 54 44 23 11 7 1,004
28+ 394 162 87 76 35 42 43 31 15 3 888
29+ 364 150 78 61 29 33 35 16 5 771
30+ 332 130 71 52 24 20 22 6 657
31+ 303 106 57 40 17 10 9 042
32+ 260 89 42 24 9 3 427
33+ 212 66 21 10 1 310
34+ 158 46 4 4 212
35+ 92 19 1 112
36+ 37 ) 42
374 13 13

* . . . .
Years of data in a sample period. Data may be continuous or non-continuous.

™ Starting year of sample period to examine. Ending year of sample period is 2008.
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Table 3: Illinois District Sample Characteristics from Filtered FBFM Corn Farms

Sample Summary Statistics

NASS District Data Mean” St Dev’ CV" Skew” Kurt® Max® Min® Farm Count Yield Count Avg % of Tot Acreage

NW Original 13597  20.00 021 -042  3.72  242.00 15.50
395 10,959 19.50%

Detrended - = 2.07 173.81  23.97 0.4 -0.83 435 252.34 4427

NE Original 141.39  28.68 020 -0.20  3.30  250.00 24.34
rigima 176 4,662 8.30%

Detrended - 6= 1.86 172.60  24.46  0.14 -0.51  3.36  265.10 46.03

West Original 136.35 3275  0.24 -048  3.63  265.00 17.00
94 2,647 5.06%

Detrended - = 2.12 17558 2817  0.16 -0.60  3.60 27527 48.37

Central Original 14671  30.95 021 -0.63  3.80 263.00 17.35
entra rigima 519 14,292 25.75%

Detrended - = 2.03 181.82 2623 0.4 -0.75 3.93 281.36 59.10

East Original 139.86  32.17 023 -0.75  3.64  239.00 18.96
296 7,849 13.90%

Detrended - = 1.84 17149 2837 0.7 -0.86  3.81  253.68 57.58

WSW Original 141.07  28.06 020 -0.39  3.33  238.00 27.02
151 4,106 6.93%

Detrended - = 1.87 177.59  24.45  0.14 -0.58 343  257.84 62.08

ESE Original 126.85 2820 022 -0.35  3.27 21800 15.00
253 6,682 12.17%

Detrended - = 1.61 15554  26.73 0.7 -0.37 291  239.09 44.24

SW Original 106.05  28.80 027 -0.08  3.05 22000 16.66
119 3,426 3.41%

Detrended - = 1.71 136.81  26.02  0.19 -0.30 2.89 22857 29.00

SE Original 112.05  26.62 024 -0.18 320 206.64 16.84
rigia 85 2,277 4.97%

Detrended - 6= 1.68 14255  24.77 0.7 -0.33  2.99 23520 37.76

Total Original 13625  20.80  0.22 -046  3.55  265.00 15.00
2,088 56,900 100%

Detrended - = 1.87 169.55  25.95 020 -0.66  3.69 277.79  30.10

* in bushels/acre; for years 1972 to 2008
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Table 4: Illinois District Sample Characteristics from Filtered FBFM Soybean Farms

Sample Summary Statistics

NASS District Data Mean” St Dev’ CV" Skew” Kurt® Max® Min® Farm Count Yield Count Avg % of Tot Acreage

NW Original 4639 821 018 -0.56 3.81  89.00  7.00
rigma 240 6,442 8.88%

Detrended - = 0.42  53.61 7.65  0.14 -0.67 437 10044 13.42

NE Original 4507  7.27  0.16 -0.54  3.79  74.00 8.67
rigina 166 4,360 7.84%

Detrended - 8= 0.39 5167 694 013 -0.65 414 81.24 16.76

West Original  44.21 730 017 -030 342  90.66 11.00
©s rigina 92 2,580 5.36%

Detrended - 8= 0.47 5275 673 013 -0.32  3.29 10091 17.40

Central Original  46.66  7.33  0.16 -0.85 445  73.00  7.27
entra rigia 503 13,783 26.98%

Detrended - = 0.44 5430 686 013 -0.83 456  85.10 16.59

East Original 4458 819 018 -074 391  89.00  9.00
as rigina 203 7,772 16.49%

Detrended - = 0.44 5219  7.65 015 -081 420  89.89  18.32

WSW Original 4396  7.22 0.6 -0.57 3.65  75.00 10.92
rigina 150 4,071 8.02%

Detrended - = 0.40 51.68  6.56 0.3 -0.50 3.66  78.96  19.79

ESE Original 4048  7.59 0.9 -044 358  76.00  7.00
249 6,568 15.61%

Detrended - = 0.43 4823  7.05 015 -0.39 329 8387 13.34

SW Original 3752 855 023 -0.12 332 7865  8.00
rigma 110 3,198 5.28%

Detrended - = 0.30  42.85 791 018 -0.18 331  86.66 859

SE Original 37.93 772 020 -0.18 311  73.00  7.87
rigima 78 2,099 5.53%

Detrended - 8= 0.40  45.05 723 016 -021 312 8657 10.80

Total Original  44.11 768 017 -0.59 388  90.66  7.00
1,881 50,873 100%

Detrended - = 0.42 5139  7.15 014 -0.63  4.02 10028 8.83

* in bushels/acre; for years 1972 to 2008



Table 5: Sample Average and Standard Deviation Sensitivity to Detrending Levels —
FBFM Corn Farms

Detrending Levels
Statistics Original State District County Individual

Average* 136.250  169.548 170.138 170.398 164.888
Standard Deviation™ 29.802 25.951 25.904 25.900 24.954

* .
in bushels/acre.
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Table 6: Sample Average and Standard Deviation Sensitivity to Detrending Levels
— FBFM Soybean Farms

Detrending Levels
Statistics Original State District County Individual

Average* 44.110 51.392 51.507 51.414 49.843
Standard Deviation” 7.682 7.146 7.162 7.157 6.900

* .
in bushels/acre.
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Table 7: Goodness-of-Fit Results: Illinois Districts for Corn Farms

Illinois Districts

NW NE West Central East
Goodness-of-Fit Rankings"

Test Distribution 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 a4 s 6 1 2 3 4 5 6 1 2 3 4 5 6
A-D? Weibull 13% 49% 25% 7% 7% 0% |12% 40% 31% 8% 10% 0% |14% 39% 30% 7% 11% 0% |13% 48% 26% 6% 7% 0% |12% 51% 31% 3% 3% 0%
gamma 1% 4% 2% 14% 79% 0% | 2% 3% 1% 16% 77% 0% | 2% 5% 2% 10% 81% 0% | 1% 2% 1% 15% 80% 0% | 0% 2% 1% 16% 81% 0%

normal 9% 4% 15% 72% 0% 0% | 8% 10% 15% 67% 0% 0% | 9% 6% 16% 69% 0% 0% | 8% 4% 17% 71% 0% 0% | 6% 2% 18% 75% 0% 0%

Burr XII 45% 37% 14% 3% 1% 0% |38% 39% 17% 6% 0% 0% | 39% 39% 15% 8% 0% 0% | 48% 36% 13% 3% 0% 0% |36% 42% 19% 2% 0% 0%

invGauss 0% 0% 0% 0% 8% 92%| 0% 0% 0% 0% 10% 90%| 0% 0% 0% 0% 6% 94%| 0% 0% 0% 0% 8%  92%|0% 0% 0% 0% 12% 88%

beta 33% 6% 44% 4% 6% 8% | 40% 8% 36% 3% 3% 10% |36% 12% 38% 6% 2% 6% |30% 9% 43% 5% 4% 8% |46% 3% 381% 4% 3% 12%

K-sP Weibull 16% 39% 31% 7% 7% 0% |18% 39% 26% 7% 10% 0% |18% 32% 34% 2% 14% 0% |18% 39% 26% 7% 9% 0% |16% 45% 30% 6% 3% 0%
gamma 6% 4% 1% 9% 80% 0% | 2% 8% 3% 10% 77% 0% | 6% 9% 3% 3% 78% 0% | 4% 6% 2% 9% 79% 0% |2% 1% 1% 7% 89% 0%

normal 8% 8% 13% 71% 0% 0% |15% 6% 15% 64% 0% 0% |12% 6% 7% 75% 0% 0% | 8% 8% 15% 68% 0% 0% |5% 6% 10% 79% 0% 0%

Burr XII 34% 42% 16% 6% 1% 0% |27% 40% 21% 9% 2% 0% |30% 43% 15% 11% 1% 0% | 39% 40% 14% 6% 2% 0% |34% 43% 21% 2% 0% 0%
invGauss 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%

beta 37% 5% 39% 7% 12% 0% |38% 6% 35% 9% 12% 0% |34% 10% 41% 8% 7% 0% |31% 7% 43% 10% 10% 0% |43% 5% 39% 6% 8% 0%

x2¢ Weibull 17% 31% 28% 14% 9% 0% |20% 31% 29% 9% 11% 0% |18% 25% 20% 19% 17% 0% |17% 29% 30% 12% 12% 0% |12% 31% 33% 14% 10% 0%
gamma 12% 11% 9% 13% 55% 0% |12% 10% 5% 14% 60% 0% |19% 8% 12% 7% 53% 0% |10% 10% 7% 12% 60% 0% | 9% 9% 8% 11% 63% 0%

normal 14% 15% 13% 47% 11% 0% | 9% 14% 16% 51% 10% 0% |11% 27% 10% 40% 11% 0% |13% 15% 14% 49% 9% 0% |12% 15% 12% 52% 9% 0%

Burr XII 23% 34% 20% 16% 7% 0% |21% 40% 21% 15% 3% 0% |16% 26% 28% 20% 9% 0% |19% 38% 22% 15% 6% 0% |21% 40% 21% 14% 5% 0%
invGauss 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0%  100%| 0% 0% 0% 0% 0% 100%

beta 34% 9% 29% 10% 18% 0% | 38% 6% 30% 10% 16% 0% | 35% 14% 28% 14% 9% 0% | 40% 8% 28% 12% 12% 0% |46% 4% 26% 10% 13% 0%

Weightedd  Weibull 18% 40% 27% 10% 5% 0% |18% 38% 26% 9% 8% 0% |22% 25% 33% 7% 14% 0% |17% 42% 27% 7% 7% 0% |16% 42% 31% 8% 2% 0%
gamma 3% 3% 4% 15% 74% 0% | 2% 3% 5% 19% 71% 0% | 7% 5% 3% 18% 67% 0% | 2% 4% 3% 15% 77% 0% | 1% 3% 0% 12% 84% 0%

normal 9% 8% 19% 58% 7% 0% |10% 7% 24% 53% 5% 0% | 8% 12% 16% 55% 9% 0% | 8% 7% 21% 59% 5% 0% | 6% 4% 21% 64% 5% 0%

Burr XII 46% 32% 14% 7% 1% 0% | 38% 38% 12% 11% 1% 0% | 40% 32% 14% 12% 2% 0% | 48% 32% 12% 7% 1% 0% |42% 38% 16% 3% 0% 0%
invGauss 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%

beta 24% 17% 35% 10% 13% 0% |31% 13% 34% 8% 14% 0% |24% 26% 34% 8% 8% 0% |25% 16% 38% 12% 10% 0% |35% 13% 31% 12% 9% 0%

Continued on next page
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Table 7 — continued from previous page

Illinois Districts

WSsw ESE sSw SE Total
Goodness-of-Fit Rankings
Test Distribution 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
A-D? Weibull 11% 47% 25% 7% 10% 0% 8% 41% 22% 17% 12% 0% |13% 35% 27% 13% 13% 0% 5% 41% 29% 11% 14% 0% [12% 45% 27% 8% 8% 0%
gamma 3% 6% 1% 21% 69% 0% 4% 8% 5% 18% 65% 0% 5% 5% 5% 12% 75% 0% 5% 3% 1% 16% 75% 0% 2% 4% 2% 16% T7% 0%
normal 14% 10% 19% 56% 0% 0% |[20% 13% 19% 48% 0% 0% |[18% 14% 14% 55% 0% 0% |14% 12% 13% 61% 0% 0% |11% 7% 16% 66% 0% 0%
Burr XII 40% 31% 21% 6% 1% 0% | 37% 29% 24% 8% 2% 0% | 34% 37% 20% 9% 0% 0% |[28% 34% 32% 7% 0% 0% | 41% 36% 17% 5% 1% 0%
invGauss 0% 0% 0% 0% 13% 87% | 0% 0% 0% 0% 11% 89%| 0% 0% 0% 0% 5% 95%| 0% 0% 0% 0% 5% 95%| 0% 0% 0% 0% 9% 91%
beta 32% 5% 34% 9% 7% 13% |31% 10% 30% 9% 9% 11% |31% 10% 35% 12% 7% 5% | 47% 11% 25% 7% 5% 5% |35% 8% 37% 6% 5% 9%
K-sb Weibull 15% 40% 24% 9% 13% 0% |[17% 34% 26% 12% 11% 0% |[23% 25% 23% 16% 12% 0% |11% 25% 33% 12% 20% 0% |17% 38% 28% 8% 9% 0%
gamma 7% 9% 3% 14% 68% 0% 8% 11% 3% 14% 64% 0% |[11% 6% 4% 6% 73% 0% % 12% 7% 11% 64% 0% 5% 6% 2% 9% 7% 0%
normal 14% 10% 16% 59% 0% 0% |[17% 13% 22% 48% 0% 0% [20% 10% 17% 53% 0% 0% |21% 14% 7% 58% 0% 0% |11% 9% 14% 66% 0% 0%
Burr XII 31% 36% 19% 12% 2% 0% |26% 36% 23% 13% 2% 0% |21% 43% 19% 14% 3% 0% [21% 39% 21% 17% 1% 0% |32% 40% 18% 8% 2% 0%
invGauss 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%
beta 33% 6% 38% 6% 17% 0% |33% 6% 25% 13% 22% 0% | 25% 15% 37% 10% 13% 0% | 41% 9% 33% 3% 14% 0% |35% 7% 38% 8% 12% 0%
X2C Weibull 13% 28% 27% 16% 16% 0% |[22% 25% 28% 13% 13% 0% | 23% 28% 19% 14% 16% 0% |11% 25% 38% 18% 8% 0% |17% 29% 29% 14% 12% 0%
gamma 17% 17% 6% 14% 45% 0% |17% 10% 7% 13% 53% 0% |14% 16% 7% 14% 49% 0% |[13% 14% 5% 18% 49% 0% |13% 11% 7% 13% 56% 0%
normal 17% 19% 14% 37% 13% 0% |[11% 18% 21% 42% 8% 0% |[19% 14% 16% 42% 9% 0% |22% 12% 4% 47% 14% 0% |13% 16% 14% 47% 10% 0%
Burr XII 20% 31% 20% 20% 9% 0% |19% 36% 19% 22% 3% 0% |22% 32% 16% 21% 9% 0% |13% 38% 24% 13% 12% 0% [20% 36% 21% 17% 6% 0%
invGauss 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%
beta 33% 4% 33% 12% 18% 0% | 31% 11% 26% 9% 23% 0% |22% 10% 41% 10% 17% 0% | 41% 11% 29% 3% 17% 0% |37% 8% 29% 10% 16% 0%
Weightedd Weibull 19% 39% 22% 10% 11% 0% |[17% 36% 20% 17% 10% 0% |[22% 29% 24% 13% 13% 0% |12% 28% 29% 16% 16% 0% |18% 38% 27% 10% 8% 0%
gamma 4% 6% 4% 21% 66% 0% 6% 9% 6% 16% 63% 0% 5% 6% 9% 14% 65% 0% 5% 8% 5% 14% 67% 0% 3% 5% 4% 15% 73% 0%
normal 15% 9% 23% 48% 5% 0% |[19% 10% 25% 42% 4% 0% |[22% 13% 13% 50% 4% 0% |22% 13% 17% 43% 4% 0% |11% 8% 21% 55% 5% 0%
Burr XII 40% 28% 19% 12% 1% 0% | 31% 31% 25% 11% 2% 0% | 28% 39% 14% 14% 5% 0% |[17% 39% 26% 16% 1% 0% | 41% 34% 16% 8% 1% 0%
invGauss 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%
beta 22% 19% 32% 9% 18% 0% |28% 14% 24% 14% 21% 0% |23% 14% 40% 10% 14% 0% | 43% 12% 22% 11% 12% 0% |27% 16% 33% 11% 13% 0%

* Highlighted values represent the distributional form that fits the
& Anderson-Darling Test - (Stephens, 1974)
b Kolmogorov-Smirnov Test - (Chakravart et al., 1967)
€ %2 Test - (Snedecor and Cochran, 1989)
dWeighted Test = (.334%A-D + .333*K-S +.333%x2)

highest percentage of farms by ranking

and goodness-of-fit test.
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Table 8:

Goodness-of-Fit Results: Illinois Districts

for

Soybean Farms

Illinois Districts

NW NE West Central East
Goodness-of-Fit Rankings"

Test Distribution 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 a4 s 6 1 2 3 4 5 6 1 2 3 4 5 6
A-D? Weibull 13% 51% 18% 7% 11% 0% |15% 44% 17% 11% 12% 0% |13% 39% 19% 9% 20% 0% |14% 54% 16% 7% 9% 0% |14% 52% 21% 7% 6% 0%
gamma 0% 6% 2% 15% 76% 0% | 2% 8% 1% 14% 75% 0% | 3% 11% 1% 19% 66% 0% | 1% 3% 1% 12% 82% 0% | 2% 1% 1% 20% 75% 0%

normal 11% 8% 18% 64% 0% 0% |14% 6% 16% 64% 0% 0% |18% 8% 20% 54% 0% 0% | 6% 7% 14% 74% 0% 0% | 4% 6% 22% 67% 0% 0%

Burr XII 50% 30% 14% 5% 0% 0% | 49% 32% 14% 5% 0% 0% | 44% 32% 19% 5% 0% 0% |59% 27% 12% 2% 0% 0% |53% 33% 11% 2% 1% 0%

invGauss 0% 0% 0% 0% 9% 91%| 0% 0% 0% 0% 10% 90%| 0% 0% 0% 0% 9% 91%|0% 0% 0% 0% 7%  93%|0% 0% 0% 0% 16% 84%

beta 26% 6% 48% 8% 4% 9% |20% 9% 52% 6% 3% 10% |23% 10% 41% 13% 5% 9% |21% 10% 57% 4% 2% 7% |27% 8% 44% 4% 2% 16%

K-sb Weibull 20% 38% 23% 8% 11% 0% |14% 40% 19% 15% 13% 0% |18% 28% 24% 15% 15% 0% |18% 45% 19% 7% 11% 0% |17% 44% 25% 7% 6% 0%
gamma 5% 6% 1% 8% 80% 0% | 4% 13% 3% 6% 73% 0% | 6% 15% 5% 5% 68% 0% | 4% 6% 2% 8% 80% 0% | 3% 3% 1% 8% 85% 0%

normal 8% 11% 13% 68% 0% 0% |15% 9% 13% 63% 0% 0% |19% 9% 18% 54% 0% 0% | 8% 7% 12% 73% 0% 0% | 4% 6% 16% 73% 0% 0%

Burr XII 42% 39% 10% 7% 2% 0% | 40% 28% 22% 8% 2% 0% | 34% 33% 15% 11% 6% 0% | 48% 32% 13% 5% 1% 0% |42% 37% 16% 4% 1% 0%
invGauss 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%

beta 26% 7% 53% 8% 6% 0% |27% 10% 42% 9% 12% 0% |23% 15% 38% 14% 10% 0% |23% 9% 54% 7% 8% 0% |34% 10% 41% 7% 8% 0%

x2¢ Weibull 19% 32% 22% 17% 10% 0% |21% 31% 27% 10% 11% 0% | 25% 28% 23% 10% 14% 0% |21% 32% 24% 12% 11% 0% |19% 33% 27% 11% 9% 0%
gamma 12% 11% 6% 15% 55% 0% |15% 12% 5% 14% 54% 0% |20% 3% 8% 13% 57% 0% | 8% 11% 7% 11% 63% 0% | 7% 10% 5% 14% 65% 0%

normal 13% 14% 17% 43% 13% 0% |13% 15% 13% 50% 9% 0% | 9% 16% 14% 51% 10% 0% |11% 14% 13% 52% 10% 0% |13% 12% 15% 51% 10% 0%

Burr XII 25% 30% 24% 13% 7% 0% | 25% 33% 18% 15% 8% 0% |22% 43% 20% 13% 3% 0% | 31% 34% 17% 14% 4% 0% |25% 35% 21% 12% 6% 0%
invGauss 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0%  100%| 0% 0% 0% 0% 0% 100%

beta 30% 12% 31% 11% 15% 0% | 25% 9% 38% 10% 17% 0% |24% 10% 35% 14% 16% 0% |29% 9% 39% 11% 12% 0% | 36% 10% 32% 12% 10% 0%

Weightedd  Weibull 19% 38% 23% 10% 10% 0% |19% 89% 20% 10% 12% 0% |22% 83% 18% 11% 16% 0% |19% 45% 22% 7% 8% 0% |20% 43% 23% 9% 5% 0%
gamma 3% 5% 2% 19% 70% 0% | 6% 8% 5% 10% 72% 0% | 5% 10% 6% 13% 66% 0% | 2% 4% 3% 13% 78% 0% |3% 1% 1% 14% 80% 0%

normal 11% 8% 18% 57% 6% 0% |15% 10% 16% 56% 2% 0% |16% 9% 23% 49% 3% 0% | 8% 6% 19% 62% 5% 0% | 5% 8% 20% 64% 4% 0%

Burr XII 46% 35% 10% 6% 3% 0% | 44% 29% 17% 8% 1% 0% | 39% 32% 18% 10% 1% 0% |55% 29% 9% 6% 1% 0% |51% 29% 14% 5% 0% 0%
invGauss 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%

beta 21% 13% 47% 9% 10% 0% |16% 13% 43% 15% 13% 0% |18% 16% 35% 16% 14% 0% |17% 16% 47% 12% 8% 0% |21% 19% 42% 8% 10% 0%

Continued on next page
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Table 8 — continued from previous page

Illinois Districts

Wsw

ESE sSw SE Total
Goodness-of-Fit Rankings
Test Distribution 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
A-D? Weibull 14% 36% 25% 7% 18% 0% |10% 39% 28% 11% 12% 0% 9% 35% 22% 19% 15% 0% 9% 86% 27% 14% 14% 0% |13% 47% 20% 9% 11% 0%
gamma 0% 4% 1% 20% 74% 0% 4% 2% 2% 18% T73% 0% 7% 1% 3% 14% 74% 0% 0% 8% 6% 18% 68% 0% 2% 4% 2% 16% 76% 0%
normal 12% 10% 14% 64% 0% 0% |[12% 10% 20% 58% 0% 0% |[11% 23% 17% 49% 0% 0% |23% 8% 17% 53% 0% 0% |10% 8% 17% 65% 0% 0%
Burr XII 50% 34% 11% 5% 0% 0% | 42% 37% 14% 6% 0% 0% | 40% 31% 22% 5% 1% 0% |35% 33% 24% 8% 0% 0% | 50% 31% 14% 4% 0% 0%
invGauss 0% 0% 0% 0% 5% 95%| 0% 0% 0% 0% 8% 92%| 0% 0% 0% 0% 1% 99%| 0% 0% 0% 0% 9% 91%| 0% 0% 0% 0% 9% 91%
beta 23% 16% 49% 4% 3% 5% |31% 12% 36% 7% 6% 8% |33% 10% 35% 13% 9% 1% |33% 15% 26% 8% 9% 9% |25% 10% 47% 6% 4% 9%
K-sb Weibull 9% 40% 25% 12% 14% 0% |[19% 34% 26% 10% 11% 0% |[16% 36% 17% 14% 17% 0% |14% 24% 27% 21% 14% 0% |17% 40% 22% 10% 11% 0%
gamma 5% 7% 3% 7% 78% 0% 8% 5% 2% 12% 73% 0% 9% 9% 6% 10% 67% 0% 8% 15% 3% 12% 62% 0% 5% 7% 3% 8% T7% 0%
normal 9% 9% 14% 68% 0% 0% |[11% 16% 14% 60% 0% 0% |[16% 16% 19% 49% 0% 0% |15% 14% 18% 53% 0% 0% |10% 10% 14% 67% 0% 0%
Burr XII 43% 31% 15% 9% 1% 0% |29% 37% 23% 8% 4% 0% | 32% 32% 21% 10% 5% 0% |36% 32% 15% 8% 9% 0% | 41% 34% 16% 7% 2% 0%
invGauss 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%
beta 34% 12% 43% 4% 7% 0% | 34% 8% 35% 11% 12% 0% |28% 7% 36% 18% 11% 0% |[27% 15% 36% 6% 15% 0% |28% 10% 45% 8% 9% 0%
X2C Weibull 20% 23% 24% 18% 15% 0% |[24% 25% 21% 13% 16% 0% |[21% 18% 21% 19% 20% 0% |18% 26% 23% 14% 20% 0% |(21% 29% 24% 13% 12% 0%
gamma 18% 12% 7% 8% 55% 0% |17% 11% 6% 13% 53% 0% |22% 17% 6% 3% 51% 0% [12% 8% 11% 11% 59% 0% |12% 11% 6% 12% 58% 0%
normal 9% 16% 18% 47% 9% 0% |[12% 21% 12% 47% 8% 0% |[13% 21% 23% 34% 9% 0% |21% 15% 15% 44% 5% 0% |12% 15% 15% 48% 10% 0%
Burr XII 21% 35% 16% 17% 11% 0% |17% 34% 23% 20% 6% 0% |17% 28% 23% 24% 7% 0% |[17% 38% 27% 15% 3% 0% |24% 34% 20% 15% 6% 0%
invGauss 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%
beta 31% 15% 35% 9% 9% 0% |30% 8% 38% 7% 17% 0% | 27% 16% 26% 19% 13% 0% | 32% 14% 24% 17% 14% 0% | 30% 11% 35% 11% 13% 0%
Weightedd Weibull 14% 34% 26% 11% 15% 0% |[19% 32% 27% 15% 7% 0% |[13% 29% 28% 17% 14% 0% |14% 30% 24% 21% 11% 0% |18% 39% 23% 11% 9% 0%
gamma 3% 7% 3% 16% 72% 0% 5% 4% 4% 16% 71% 0% 6% 6% 7% 18% 62% 0% 2% 8% 12% 12% 67% 0% 3% 5% 4% 14% 74% 0%
normal 12% 8% 20% 54% 6% 0% |[15% 12% 21% 46% 5% 0% |[16% 16% 24% 38% 5% 0% |18% 17% 24% 39% 2% 0% |11% 9% 20% 56% 5% 0%
Burr XII 48% 31% 7% 10% 3% 0% | 34% 37% 16% 10% 3% 0% | 34% 33% 16% 13% 4% 0% | 41% 27% 14% 14% 5% 0% | 47% 31% 12% 8% 2% 0%
invGauss 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%| 0% 0% 0% 0% 0% 100%
beta 23% 20% 44% 9% 5% 0% |27% 15% 31% 14% 14% 0% |31% 16% 24% 14% 15% 0% |[26% 18% 26% 14% 17% 0% |21% 16% 41% 12% 11% 0%

* Highlighted values represent the distributional form that fits the highest percentage of farms by ranking
& Anderson-Darling Test - (Stephens, 1974)
b Kolmogorov-Smirnov Test - (Chakravart et al., 1967)
€ %2 Test - (Snedecor and Cochran, 1989)
dWeighted Test = (.334%A-D + .333*K-S +.333%x2)

and goodness-of-fit test.
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Table 9: Heat-Map of Combined Goodness-of-Fit Ranking Scores: Illinois Districts for Corn Farms

Illinois Districts”

NWwW NE West Central East WSW ESE SW SE Total

A-D Weibull 2454 2656 2.636 2474 2336 2.586 2.839 2775 2.882 2557
g 4673 4636 4625 AT05  ATSO 4TI 49X L4TT 4526 461

normal  3.504 3.403 3.455  3.498  3.614 3.179 2949 3.054 3.197 3.380

Burr XII 1776 1.903 1.920  1.724  1.88 1.964 2.097 2036 2171 1.877

invGauss 5.886 5.908

beta 2673 2500 2420 2681 2539 2929 2903 2712 2276 2.664

K-S Weibull 2493 2513  2.614 2488 2350 2.643  2.669 2.676 3.053 2.542
gamma | 4525 4513 4.398 | 4549 4804 4264 4169 4243 4.145 | 4472

normal 3472 3.286 3.443 3439  3.614 3.207 3.017 3.036 3.013 3.352

Burr XII 1984 2182 2114 1921 1921 2193 2292 2351 2382  2.069

invGauss 6.000  6.000 6.000  6.000

beta 2525 2506 2432  2.604 2311 2693 2.852 2.694 2408  2.565

x> Weibull  2.670 2.604 2.920 2726  2.764  2.943  2.699 2712 2.882 2.737
gamma 3.881 4.006 3.670  4.018 | 4111 3529 3750 3.658 3.750  3.890

normal 3.261 3.403 3125  3.246  3.311  3.093 3.191 3.090 3.197 3.237

Burr XII 2493 2370 2.807 2514 2425 2657 2538 2631 2724 2527

invGauss

beta 2694 2.617 2477 2496  2.389 2779  2.822 2910 2447  2.609

Weighted ~ Weibull 2449 2513  2.659 2451 2386  2.557 2.674 2658 2961 2.521
gamma | 4522 4545 4341 | 4614 4754 4379 4216 4270 4.303 | 4502

normal 3.462 3.357 3.443 3465  3.579 3.186  3.025 3.009 2934  3.352

Burr XII 1850 1.974 2.057 1805  1.807 2.057 2216 2297 2447 1.959

invGauss
beta

6.000

2.718

6.000
2.610

2.500

2.665

2.475

2.821

2.869

2.766

2.355  2.666

* Darker colors represent larger values and lighter colors represent smaller values.
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Table 10: Heat-Map of Combined Goodness-of-Fit Ranking Scores: Illinois Districts for Soybean Farms

Illinois Districts”

Nw NE West Central East WSW ESE SW SE  Total
A-D Weibull 2522 2601 2.848 2443 2398 2803 2.746 2968 2.864 2.591
gawma 608 4510 4342 ATIL 4G5 A6 453 1468 4470 4603
normal ~3.354 3294 3.114 3557 3523 3285 3.250 3.043 3.000 3.372
Burr XII 1.761 1748 1848 1580 1638 1.708 1862 1.957 2045 1.724
invGauss 5.909
beta 2842 2944 2937 2776 2943 2620 2.692 2574 2712 2.796
K-S Weibull 2541 2.720 2.823 2481 2423 2803 2594 2798 2970 2.592
gamma | 4517 4308 4139 | 4549 4688 4453 4375 4181 4.061 | 4459
normal 3435 3245 3.076 3496 3599 3409 3.228 3.011 3.091  3.380
Burr XII 1.885 2042 2228 1802 1835 1.956 2223 2245 2212 1965
invGauss 6.000  6.000 6.000  6.000
beta 2622 2685 2734 2673 2455 2380 2580 2766 2.667 2.604
X2 Weibull 2,679 2587 2.595  2.589 2581 2869 2.714 2989 2909  2.672
gamma 3.890 3.790 3.835 4103 4197 3.708 3.741 3436 3.970 3.933
normal 3.282 3273 3367 3359 3330 3299 3170 3.043 2955 3.275
Burr XII 2464 2490 2316 2278 2384 2613 2652 2777 2500 2.450
invGauss
beta 2684 2860 2.886  2.671 2509 2511  2.723 2755 2.667 2.670
Weighted ~ Weibull 2541 2573 2684 2411 2369 2781 2589 2904 2848 2.544
gamma | 4474 4350 4.241 | 4622 4670 4467 4424 4223 4.348 | 4500
normal 3.388 3.189 3.127 3496  3.552 3.328 3.143 3.011 2894 3.339
Burr XII 1.852 1.937 2025 1684 1735 1.883 2112 2202 2136 1868

invGauss
beta

2.746

2.951

2.924

2.787

2.674

2.540

2.732

2.660

2.773

2.749

* Darker colors represent larger values and lighter colors represent smaller values.
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Table 11: Goodness-of-Fit Results Grouped by Sample Size: Corn Farms

Bins

20 < SampleSize < 24

24 < SampleSize < 30

30 < SampleSize < 37

Goodness-of-Fit Rankings*

Test Distribution 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
A-D? Weibull 12%  50% 24% 7% 8% 0% 12%  43% 26% 10% 9% 0% 12%  43% 30% 6% 8% 0%
gamma 3% 5% 1% 22%  70% 0% 1% 5% 3%  15% 7% 0% 2% 2% 2%  10% 83% 0%

normal 11% 6% 22% 60% 0% 0% 1% 9% 16% 65% 0% 0% 10% 5% 11% 4% 0% 0%

BurrXII 46% 33% 16% 5% 0% 0% 40% 36% 19% 5% 1% 0% 37%  41% 1% 4% 0% 0%

invGauss 0% 0% 0% 0% 14% 86% | 0% 0% 0% 0% 9% 91% | 0% 0% 0% 0% 5% 95%

beta 28% 6% 36% 6% 8% 14% | 37% 8% 37% 6% 4% 9% 40% 9% 39% 5% 3% 5%

K-SP Weibull 18% 37% 27% 9% 9% 0% 16% 38% 29% 7% 10% 0% 17%  39% 28% 8% 9% 0%
gamma 5% 7% 3%  12% 3% 0% 5% 6% 2% 9% % 0% 5% 6% 2% 7% 81% 0%

normal 12% 9% 1% 62% 0% 0% 11%  10% 14% 66% 0% 0% 10% 7% 12%  71% 0% 0%

BurrXII 31% 42% 19% 7% 1% 0% 33%  39% 17% 10% 2% 0% 32%  40% 18% 8% 1% 0%

invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%

beta 34% 6% 34% 10% 1% 0% 35% 6% 38% 9% 11% 0% 36% 8% 41% ™% 9% 0%

x2¢ Weibull 22% 27% 31% 11% 9% 0% 15% 25%  30% 15% 15% 0% 15% 35% 24% 15% 11% 0%
gamma 12% 10% 5% 11% 62% 0% 15% 11% 9% 13% 52% 0% 10% 13% 8% 14% 55% 0%

normal 13% 14% 14% 54% 5% 0% 15% 19% 14%  41% 10% 0% 11%  15% 13%  45% 16% 0%

BurrXII 19% 44% 20% 14% 3% 0% 16%  35% 22% 20% 7% 0% 26% 29% 21% 15% 8% 0%

invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%

beta 34% 6% 30% 9% 21% 0% 39% 9% 24% 11% 1% 0% 37% 8% 33% 11% 10% 0%

Weighted? Weibull 20% 40% 24% 9% 7% 0% 5% 37% 29% 10% 9% 0% 17% 38% 26% 11% 7% 0%
gamma 4% 4% 3% 1% 2% 0% 2% 6% 6% 15% 71% 0% 3% 4% 3%  14% 5% 0%

normal 10% 8% 27% 52% 2% 0% 13% 8% 20% 53% 5% 0% 9% 8% 15% 60% 8% 0%

BurrXII 42% 37% 14% 7% 1% 0% 40% 31% 16% 11% 1% 0% 41% 33% 1% ™% 2% 0%

invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%

beta 24% 12% 32% 15% 18% 0% 29% 18% 29% 10% 13% 0% 29% 17%  39% % 8% 0%

* Highlighted values represent the distributional form that fits the highest percentage of farms by ranking and goodness-of-fit test.
# Anderson-Darling Test - (Stephens, 1974)

b Kolmogorov-Smirnov Test - (Chakravart et al., 1967)

¢ x2 Test - (Snedecor and Cochran, 1989)

4 Weighted Test = (.334*¥A-D + .333*K-S +.333%x?)
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Table 12: Goodness-of-Fit Results Grouped by Sample Size: Soybean Farms

Bins

20 < SampleSize < 24

24 < SampleSize < 30

30 < SampleSize < 37

Goodness-of-Fit Rankings*

Test Distribution 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
A-D? Weibull 12% 48% 20% 8% 12% 0% 14%  43% 20% 10% 12% 0% 12%  49% 21% 9% 9% 0%
gamma 2% 6% 1% 23% 67% 0% 2% 3% 3%  14% 8% 0% 2% 2% 1% 10% 84% 0%
normal 13% 7% 23% 56% 0% 0% 9% 9% 16% 67% 0% 0% ™% 10% 11%  73% 0% 0%
BurrXII 53% 30% 12% 6% 0% 0% 47% 34% 15% 4% 0% 0% 52% 29% 16% 2% 0% 0%
invGauss 0% 0% 0% 0%  15% 85% | 0% 0% 0% 0% 7% 93% | 0% 0% 0% 0% 4% 96%
beta 20% 9% 44% 6% 6% 15% | 28% 10%  46% 6% 3% 7% 27% 11%  51% 5% 3% 4%
K-sP Weibull 18% 38% 23% 9% 13% 0% 15%  42% 21% 9% 13% 0% 17%  40% 23% 11% 8% 0%
gamma 7% 7% 2% 1%  73% 0% 5% 8% 3% 8% % 0% 3% 5% 3% 6% 83% 0%
normal 10% 10% 16% 63% 0% 0% 10% 9% 13% 68% 0% 0% 8% 10% 13% 68% 0% 0%
BurrXII 40% 36% 15% 8% 1% 0% 41% 31% 17% ™% 3% 0% 41% 35% 15% 5% 3% 0%
invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%
beta 25% 9% 43% 9%  13% 0% 29% 10% 46% 7% 7% 0% 30% 10% 45% 9% 6% 0%
x2¢ Weibull 23% 24% 28% 12% 13% 0% 21% 26% 25% 16% 12% 0% 18%  40% 18% 12% 12% 0%
gamma 16% 10% 3% 11% 60% 0% 12%  11% 8% 13% 56% 0% 9% 11% 8% 12%  60% 0%
normal 14% 16% 16% 50% 4% 0% 12%  17% 13%  45% 13% 0% 10% 13% 16% 50% 12% 0%
BurrXII 17% 41% 22% 1% 4% 0% 22%  34% 19% 1% 8% 0% 36% 26% 20% 11% ™% 0%
invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%
beta 30% 9% 31% 10% 19% 0% 32% 13% 35% 9% 11% 0% 27% 10%  38% 15% 10% 0%
Weighted? Weibull 20% 38% 21% 10% 11% 0% 18% 37% 25% 12% 9% 0% 16% 42% 24% 10% ™% 0%
gamma 5% 6% 3%  17%  69% 0% 3% 5% 3%  15% 74% 0% 2% 3% 5%  11%  79% 0%
normal 12% 9% 23% 53% 2% 0% 1% 8% 18% 55% 7% 0% 9% 9% 18% 60% 4% 0%
BurrXII 48% 31% 12% 8% 2% 0% 44% 33% 14% 8% 1% 0% 49% 30% 12% ™% 3% 0%
invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%
beta 15% 16% 41% 12% 16% 0% 24% 16%  40% 11% 8% 0% 24% 16%  42% 12% ™% 0%

* Highlighted values represent the distributional form that fits the highest percentage of farms by ranking and goodness-of-fit test.
# Anderson-Darling Test - (Stephens, 1974)

b Kolmogorov-Smirnov Test - (Chakravart et al., 1967)

¢ x2 Test - (Snedecor and Cochran, 1989)

4 Weighted Test = (.334*¥A-D + .333*K-S +.333%x?)



Table 13: Goodness-of-Fit Results Grouped by Acreage: Corn Farms

Bins (in acres)

80.6 < acreage < 228.8 228.8 < acreage < 364.7 364.7 < acreage < 2,650.4

Goodness-of-Fit Rankings*

Test Distribution 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

A-D* Weibull 10% 42% 27% 12% 9% 0% 13%  49% 26% 6% 6% 0% 13% 4% 27% 5% 8% 0%
gamma 2% 5% 3% 17% 4% 0% 1% 3% 1% 16%  79% 0% 1% 1% 2% 14%  79% 0%

normal 10% 8% 19% 62% 0% 0% 7% 5% 16% 72% 0% 0% 11% 4% 15% 70% 0% 0%

BurrXII 43% 36% 15% 5% 1% 0% 42% 36% 18% 3% 1% 0% 42% 37% 15% 5% 0% 0%

invGauss 0% 0% 0% 0% 10% 90% 0% 0% 0% 0% 10% 90% 0% 0% 0% 0% 8% 92%

beta 34% 9% 36% 5% 6% 10% 37% 6% 39% 4% 4% 10% 33% 8% 41% 6% 5% 8%

K-sP Weibull 16% 36% 28% 10% 10% 0% 18% 41% 28% ™% 6% 0% 18% 41% 29% 5% 8% 0%
gamma 6% 7% 2% 9% % 0% 4% 5% 2% 9%  80% 0% 4% 5% 1%  10% 79% 0%

normal 11% 10% 15% 64% 0% 0% 9% %  15%  10% 0% 0% 10% 8% 14% 69% 0% 0%

BurrXII 32% 39% 18% 8% 2% 0% 32%  42% 18% 6% 1% 0% 36% 41% 16% 6% 1% 0%

invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%

beta 36% 8% 36% 9% 11% 0% 37% 5% 38% 8% 12% 0% 33% 5% @ 40% 10% 12% 0%

9¢

X3¢ Weibull 19% 26% 29% 14% 12% 0% 17%  29% 30% 13% 10% 0% 17%  32% 28% 11% 11% 0%
gamma 11% 11% 9% 14%  55% 0% 12%  10% 7% 11%  58% 0% 12% 8% 6% 12%  62% 0%
normal 12% 18% 16%  43% 10% 0% 15% 14% 11%  50% 9% 0% 9% 17% 15%  50% 9% 0%
BurrXII 19% 37% 21% 1% 7% 0% 20% 38% 21% 15% 6% 0% 22%  35% 21% 1% 4% 0%
invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%
beta 39% 8% 25% 12% 16% 0% 36% 8% 30% 10% 16% 0% 39% % 29% 10% 14% 0%

Weighted? Weibull 18% 34% 28% 13% 7% 0% 16%  44% 25% 10% 6% 0% 18%  40% 28% 7% 7% 0%
gamma 3% 6% 4% 14%  73% 0% 3% 3% 3% 16%  74% 0% 2% 3% 3% 16%  76% 0%
normal 11% 8% 23%  52% 6% 0% 8% 7% 22% 5% 6% 0% 9% 7% 19% 60% 5% 0%
BurrXII 40% 36% 14% 8% 2% 0% 43% 31% 18% 6% 1% 0% 46% 33% 13% 8% 0% 0%
invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%
beta 28% 15% 32% 13% 12% 0% 29% 15%  32% 11% 13% 0% 25% 17%  36% 10% 12% 0%

* Highlighted values represent the distributional form that fits the highest percentage of farms by ranking and goodness-of-fit test.
# Anderson-Darling Test - (Stephens, 1974)

> Kolmogorov-Smirnov Test - (Chakravart et al., 1967)

¢ x2 Test - (Snedecor and Cochran, 1989)

4 Weighted Test = (.334*¥A-D + .333*K-S +.333%x?)
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Table 14: Goodness-of-Fit Results Grouped by Acreage: Soybean Farms

Bins (in acres)

80.1 < acreage < 207.5

207.5 < acreage < 328.0

328.0 < acreage < 1,360.5

Goodness-of-Fit Rankings*

Test Distribution 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
A-D* Weibull 13%  45% 20% 12% 10% 0% 15% 4% 22% 6% 10% 0% 12% 4% 20% 8% 13% 0%
gamma 2% 5% 1% 15% 76% 0% 1% 3% 2%  16% 78% 0% 2% 3% 3% 18% 4% 0%
normal 10% 9% 18% 62% 0% 0% 9% ™%  15%  69% 0% 0% 9% 8% 18%  64% 0% 0%
BurrXII 48% 31% 16% 4% 0% 0% 50% 33% 13% 4% 0% 0% 54% 30% 12% 4% 0% 0%
invGauss 0% 0% 0% 0% 9% 91% | 0% 0% 0% 0% 7% 93% | 0% 0% 0% 0% 9% 91%
beta 26% 10% 45% 6% 4% 9% 25% 9%  49% 5% 4% 7% 23% 11%  47% 6% 3% 9%
K-SP Weibull 18% 36% 26% 10% 11% 0% 17%  43% 19% 9% 12% 0% 16%  41% 22% 10% 11% 0%
gamma 6% 7% 3% 8% % 0% 4% 8% 2% 9% 6% 0% 4% 6% 3% 8% 79% 0%
normal 9% 11% 15% 65% 0% 0% 1% 9% 13% 67% 0% 0% 9% 9% 15% 68% 0% 0%
BurrXII 38% 39% 14% 8% 2% 0% 42% 30% 19% 6% 3% 0% 43% 34% 15% 6% 2% 0%
invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%
beta 29% 8% 44% 10% 10% 0% 26% 10% 47% 8% 9% 0% 28% 11%  45% 8% 7% 0%
x2¢ Weibull 20% 28% 26% 14% 13% 0% 22%  31% 23% 14% 10% 0% 19% 30% 23% 12% 15% 0%
gamma 12% 10% 9% 13% 56% 0% 12%  12% 4% 11% 61% 0% 12% 1% 6% 12% 58% 0%
normal 11% 18% 16%  45% 10% 0% 12%  13% 13%  52% 10% 0% 14% 15% 14%  48% 9% 0%
BurrXII 23% 35% 19% 16% 7% 0% 25%  33% 22% 14% % 0% 25% 33% 21% 16% 5% 0%
invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%
beta 34% 9% 30% 13% 14% 0% 29% 11%  37% 9% 13% 0% 29% 11%  35% 12% 12% 0%
Weighted? Weibull 19% 34% 26% 12% 9% 0% 19%  41% 21% 9% 9% 0% 17%  39% 22% 12% 10% 0%
gamma 4% 6% 3% 14% 3% 0% 3% 4% 5% 14% 74% 0% 3% 4% 3% 15% 7% 0%
normal 11% 10% 19% 55% 4% 0% 11% 7% 19% 58% 4% 0% 10% 10% 21% 55% 5% 0%
BurrXII 43% 35% 11% 8% 2% 0% 47% 29% 14% ™% 2% 0% 50% 31% 11% % 1% 0%
invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%
beta 22% 14% 41% 12% 11% 0% 19%  19%  40% 11% 11% 0% 20% 16%  42% 12% 9% 0%

* Highlighted values represent the distributional form that fits the highest percentage of farms by ranking and goodness-of-fit test.
# Anderson-Darling Test - (Stephens, 1974)

b Kolmogorov-Smirnov Test - (Chakravart et al., 1967)

¢ x2 Test - (Snedecor and Cochran, 1989)

4 Weighted Test = (.334*¥A-D + .333*K-S +.333%x?)
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Table 15: Goodness-of-Fit Results Grouped by Expected Yield: Corn Farms

Bins (in bushels/acre)

93.8 < pu < 164.6

164.6 < p < 179.0

178.9 < p < 206.2

Goodness-of-Fit Rankings*

Test Distribution 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
A-D* Weibull 12% 40% 2% 11% 9% 0% 11%  49%% 27% ™% 7% 0% 12% 4% 26% 6% 9% 0%
gamma 3% 4% 3% 1% 2% 0% 1% 4% 2% 13%  80% 0% 1% 4% 2%  16% 7% 0%
normal 14% 9% 18% 59% 0% 0% 9% 5% 15%  T1% 0% 0% 9% 6% 16% 69% 0% 0%
BurrXII 37% 38% 18% 6% 1% 0% 42% 36% 18% 4% 0% 0% 44% 35% 16% 5% 0% 0%
invGauss 0% 0% 0% 0% 12% 88% | 0% 0% 0% 0% 8% 92% | 0% 0% 0% 0% 8% 92%
beta 34% 8% 33% 8% 6% 12% | 37% ™% 38% 6% 5% 8% 34% 8%  41% 4% 5% 8%
K-SP Weibull 18% 34% 28% 10% 10% 0% 17%  40% 28% 8% 7% 0% 17%  40% 27% 6% 11% 0%
gamma 7% 7% 2%  10%  73% 0% 4% 5% 2% 8% 81% 0% 4% 6% 2%  10% 7% 0%
normal 14% 9% 15% 62% 0% 0% 10% 9% 14% 67% 0% 0% 10% 8% 14% 68% 0% 0%
BurrXII 28% 42% 19% 10% 2% 0% 32%  40% 19% 7% 1% 0% 36% 39% 1% ™% 2% 0%
invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%
beta 34% 8% 36% 7% @ 15% 0% 37% 6% 36% 9% 11% 0% 34% %  40% 9% 11% 0%
x2¢ Weibull 17% 25% 30% 15% 12% 0% 18% 30% 29% 13% 10% 0% 17% 31% 2% 13% 13% 0%
gamma 14% 12% 7% 14% 53% 0% 1% 1% 7% 11% 61% 0% 12% 1% 8% 14% 55% 0%
normal 15% 16% 15% 43% 11% 0% 12%  15% 11%  52% 9% 0% 13% 17% 15%  45% 10% 0%
BurrXII 17% 36% 21% 18% 7% 0% 21%  37% 22% 15% 5% 0% 22%  34% 20% 1% % 0%
invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%
beta 36% 10% 26% 10% 18% 0% 38% % 31% 9%  15% 0% 36% 7% 30% 12% 15% 0%
Weighted? Weibull 19% 33% 28% 11% 10% 0% 17%  41% 28% 9% 5% 0% 17%  41% 24% 10% 8% 0%
gamma 5% 6% 5% 17% 67% 0% 2% 4% 3%  14% 7% 0% 3% 4% 3% 15%  74% 0%
normal 15% 9% 20% 50% 5% 0% 9% 6% 19% 61% 5% 0% 9% 8% 23% 54% 6% 0%
BurrXII 33% 38% 1% 11% 2% 0% 44% 33% 15% ™% 1% 0% 45% 30% 16% 8% 1% 0%
invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%
beta 28% 15% 31% 11% 16% 0% 28% 16%  35% 10% 12% 0% 27% 16%  34% 12% 11% 0%

* Highlighted values represent the distributional form that fits the highest percentage of farms by ranking and goodness-of-fit test.
# Anderson-Darling Test - (Stephens, 1974)

b Kolmogorov-Smirnov Test - (Chakravart et al., 1967)

¢ x2 Test - (Snedecor and Cochran, 1989)

4 Weighted Test = (.334*¥A-D + .333*K-S +.333%x?)



Table 16: Goodness-of-Fit Results Grouped by Expected Yield: Soybean Farms

Bins (in bushels/acre)

31.7 < pu < 49.8 49.8 < 11 < 53.9 53.9 < pu < 65.8

Goodness-of-Fit Rankings*

Test Distribution 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

A-D* Weibull 13%  42% 23% 11% 12% 0% 14%  50% 20% 9% 8% 0% 12% 48% 18% 8% 14% 0%
gamma 4% 4% 2%  18% 172% 0% 1% 4% 1% 14% 81% 0% 1% 5% 2% 1% % 0%

normal 12% 12% 19% 5% 0% 0% 7% 6% 16% T1% 0% 0% 10% % 16% 67% 0% 0%

BurrXII 43% 34% 17% 6% 0% 0% 51% 33% 12% 3% 0% 0% 57% 26% 13% 4% 0% 0%

invGauss 0% 0% 0% 0%  10% 90% | 0% 0% 0% 0% 8% 92% | 0% 0% 0% 0% 8% 92%

beta 29% 8% 39% 9% 6% 10% | 27% ™% 50% 4% 3% 8% 19% 14%  51% 5% 3% 8%

K-sP Weibull 18% 36% 23% 11% 12% 0% 16%  41% 25% 10% 8% 0% 17% 42% 19% 8% 14% 0%
gamma 7% 7% 3% 9% 4% 0% 4% 6% 2% 5% 8% 0% 4% 8% 3%  11%  74% 0%

normal 10% 12% 16% 61% 0% 0% 8% % 13% 2% 0% 0% 10% 9% 14% 67% 0% 0%

BurrXII 35% 34% 20% 9% 3% 0% 40% 37% 15% 6% 2% 0% 47% 31% 13% 6% 2% 0%

invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%

beta 30% 10% 38% 10% 12% 0% 33% 9%  45% 8% 6% 0% 22% 10% 51% 8% 9% 0%
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x2¢ Weibull 23% 26% 23% 15% 13% 0% 19% 33% 26% 12% 10% 0% 20% 30% 22% 13% 14% 0%
gamma 16% 10% 7% 10% 56% 0% 9% 10% 6% 11% 64% 0% 13% 12% 6% 14% 55% 0%

normal 13% 18% 15% 45% 8% 0% 10% 12% 14%  54% 10% 0% 14% 15% 16%  45% 10% 0%

BurrXII 21% 34% 22% 1% 7% 0% 25%  36% 20% 13% 6% 0% 27% 32% 18% 16% ™% 0%

invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%

beta 28% 12% 32% 12% 16% 0% 37% 9% 34% 10% 9% 0% 26% 11%  38% 11% 14% 0%

Weighted? Weibull 21% 32% 26% 12% 10% 0% 17%  43% 23% 10% 7% 0% 17%  41% 20% 11% 11% 0%
gamma 4% 6% 5% 17% 68% 0% 2% 4% 2%  11% 80% 0% 3% 5% 4%  15%  72% 0%

normal 12% 13% 21% 49% 4% 0% 8% 6% 18% 64% 4% 0% 12% 8% 20% 54% 5% 0%

BurrXII 40% 33% 16% 9% 2% 0% 49% 32% 11% 6% 2% 0% 52% 29% 11% ™% 2% 0%

invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%

beta 23% 17% 32% 13% 15% 0% 24% 15%  45% 9% 7% 0% 16% 17%  45% 12% 9% 0%

* Highlighted values represent the distributional form that fits the highest percentage of farms by ranking and goodness-of-fit test.
# Anderson-Darling Test - (Stephens, 1974)

> Kolmogorov-Smirnov Test - (Chakravart et al., 1967)

¢ x2 Test - (Snedecor and Cochran, 1989)

4 Weighted Test = (.334*¥A-D + .333*K-S +.333%x?)
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Table 17: Goodness-of-Fit Results Grouped by Standard Deviation: Corn Farms

Bins (in bushels/acre)

13.3 < o < 23.9

23.9< o < 27.8

27.8 < o < 43.5

Goodness-of-Fit Rankings*

Test Distribution 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
A-D? Weibull 11%  42% 24% 10% 14% 0% 11%  48% 25% 8% 8% 0% 14%  46% 31% 6% 4% 0%
gamma 3% 5% 2%  14% 76% 0% 1% 4% 2%  16% 76% 0% 1% 2% 2% 1% 7% 0%

normal 11% 9% 13% 67% 0% 0% 12% ™% 15% 66% 0% 0% 9% 4%  22%  65% 0% 0%

BurrXII 43% 32% 19% 6% 0% 0% 42% 35% 18% 4% 1% 0% 38% 42% 16% 4% 0% 0%

invGauss 0% 0% 0% 0% 4% 96% | 0% 0% 0% 0% 9% 91% | 0% 0% 0% 0%  14% 86%

beta 32% 12% 43% 4% 5% 4% 33% 6% 40% 6% 6% 9% 39% 5% 29% 8% 5% 14%

K-SP Weibull 18% 35% 25% 9% 13% 0% 16% 38% 27% 9% 10% 0% 17%  41% 31% 6% 4% 0%
gamma 7% 7% 3% 10% 73% 0% 6% 7% 2% 9% 6% 0% 3% 4% 1%  10% 82% 0%

normal 11% 10% 14% 64% 0% 0% 12% 9% 14% 65% 0% 0% 9% %  15%  69% 0% 0%

BurrXII 32% 38% 18% 9% 2% 0% 34% 38% 1% 10% 2% 0% 30% 45% 20% 5% 1% 0%

invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%

beta 31% 10% 40% 8% 12% 0% 33% 7%  40% % 12% 0% 41% 3% 33% 10% 13% 0%

x2¢ Weibull 21% 28% 23% 12% 15% 0% 16% 29% 29% 14% 12% 0% 14% 29% 34% 14% 8% 0%
gamma 13% 12% 7% 13% 55% 0% 13% 12% 8% 13% 54% 0% 1%  10% 7% 11% 60% 0%

normal 13% 17% 14% 4% 8% 0% 16% 15% 14%  44% 11% 0% 11%  16% 14%  49% 10% 0%

BurrXII 21% 34% 19% 18% 8% 0% 22%  36% 21% 16% 5% 0% 17%  38% 23% 16% 5% 0%

invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%

beta 31% 9% 37% 9%  14% 0% 33% % 29% 12% 18% 0% 46% 7% 22% 9%  16% 0%

Weighted? Weibull 18% 36% 22% 13% 11% 0% 16% 39% 27% 10% 8% 0% 18%  39% 31% 8% 3% 0%
gamma 4% 5% 4%  13%  13% 0% 3% 5% 5% 18% 69% 0% 2% 3% 3% 16% 16% 0%

normal 11% 11% 20% 54% 3% 0% 13% 8% 20% 52% 7% 0% 9% 5% 21%  58% 5% 0%

BurrXII 40% 30% 19% 11% 1% 0% 41% 35% 13% 9% 2% 0% 41% 36% 16% 6% 1% 0%

invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%

beta 26% 18% 35% 10% 11% 0% 27% 12%  36% 11% 14% 0% 29% 16% 29% 11% 14% 0%

* Highlighted values represent the distributional form that fits the highest percentage of farms by ranking and goodness-of-fit test.
# Anderson-Darling Test - (Stephens, 1974)

b Kolmogorov-Smirnov Test - (Chakravart et al., 1967)

¢ x2 Test - (Snedecor and Cochran, 1989)

4 Weighted Test = (.334*¥A-D + .333*K-S +.333%x?)



Table 18: Goodness-of-Fit Results Grouped by Standard Deviation: Soybean Farms

Bins (in bushels/acre)

33<0<6.4 64<0 <77 77<0<12.8

Goodness-of-Fit Rankings*

Test Distribution 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

A-D* Weibull 12%  43% 18% 10% 18% 0% 14%  50% 18% 10% 8% 0% 13%  47% 25% 8% 7% 0%
gamma 2% 7% 3% 15%  73% 0% 2% 3% 1% 15%  78% 0% 2% 2% 1% 18% 7% 0%

normal 13% 7% 16% 65% 0% 0% 9% 9% 15% 67% 0% 0% 7% 9% 21% 62% 0% 0%

BurrXII 54% 26% 13% 6% 0% 0% 51% 30% 16% 4% 1% 0% 7% 37% 13% 3% 0% 0%

invGauss 0% 0% 0% 0% 1% 96% 0% 0% 0% 0% 10% 90% 0% 0% 0% 0% 11% 89%

beta 19% 18% 50% 4% 4% 4% 25% 9% 50% 4% 3% 10% 31% 4% 40% 10% 4% 11%

K-sP Weibull 16% 37% 18% 10% 19% 0% 17%  42% 22% 11% ™% 0% 17%  40% 26% 8% 8% 0%
gamma 6% 10% 4% 10% 70% 0% 3% 6% 2% 9%  80% 0% 6% 5% 2% 6% 82% 0%

normal 13% 10% 14% 63% 0% 0% 9% 9% 14% 68% 0% 0% ™% 10% 15% 69% 0% 0%

BurrXII 43% 28% 16% 9% 3% 0% 42% 34% 15% 6% 3% 0% 37% 39% 1% 6% 1% 0%

invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%

beta 22% 14% 48% 8% 8% 0% 28% 9%  46% 6% 10% 0% 34% 6% 41% 11% 9% 0%
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x2¢ Weibull 24% 26% 21% 11% 18% 0% 19%  32% 23% 16% 11% 0% 21% 30% 2% 14% 9% 0%
gamma 13% 13% 7% 11% 56% 0% 12%  10% 8% 12% 58% 0% 12% 9% 5%  12%  62% 0%

normal 13% 14% 15% 49% 9% 0% 13% 16% 14%  49% 9% 0% 11%  16% 16% 47% 10% 0%

BurrXII 23% 33% 20% 18% 6% 0% 28% 31% 20% 14% 6% 0% 22% 3% 21% 13% 7% 0%

invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%

beta 26% 13% 3% 11% 12% 0% 29% 11% 36% 9%  16% 0% 35% 8% 31% 14% 12% 0%

Weighted? Weibull 18%  35% 20% 13% 14% 0% 17%  42% 22% 10% 8% 0% 19%  39% 28% 8% 7% 0%
gamma 4% 6% 5% 14%  71% 0% 3% 3% 3% 16%  74% 0% 3% 5% 3% 14%  76% 0%
normal 14% 10% 19% 52% 5% 0% 10% 8% 21%  56% 4% 0% 8% 9% 19%  59% 4% 0%
BurrXII 46% 30% 12% 9% 2% 0% 48% 30% 13% 7% 2% 0% 46% 34% 13% 6% 1% 0%
invGauss 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100% | 0% 0% 0% 0% 0% 100%
beta 17% 19% 44% 11% 9% 0% 21% 16% 41% 11% 11% 0% 24% 14%  37% 13% 12% 0%

* Highlighted values represent the distributional form that fits the highest percentage of farms by ranking and goodness-of-fit test.
# Anderson-Darling Test - (Stephens, 1974)

> Kolmogorov-Smirnov Test - (Chakravart et al., 1967)

¢ x2 Test - (Snedecor and Cochran, 1989)

4 Weighted Test = (.334*¥A-D + .333*K-S +.333%x?)
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Table 19: Insurance Rate Statistics: Illinois by Districts for FBFM Corn Farms at Three Coverage Levels.

Illinois Districts

NwW NE ‘West Central East
Coverage Levels™

Statistics Distribution 85% 75% 65% | 85% 175% 65% | 85% 75% 65% | 85% 75% 65% | 85% 75% 65%

Average® Empirical® 244 1.01 038 | 266 1.05 036 | 339 150 051 | 284 1.13 037 | 384 173  0.68
Weibull 1.97 0.63 018 | 2.30 078 024 | 298 109 035 | 230 074 021 | 275 099 031

normal 1.84 048 011 | 212 062 016 | 2.80 0.86 023 | 213 055 0.12 | 291 094 0.26
Burr XII 186 058 0.16 | 217 073 022 | 2.8 1.00 031 | 217 068 0.19 | 270 096  0.30

beta 2.60 099 036 | 2.83 1.14 044 | 352 142 051 | 293 112 040 | 387 172 071
Mix2Norm 2.11 073 022 | 256  0.95 0.32 | 320 125 039 | 267 096 029 | 3.71 1.58 0.57
kernel 2.82 1.18 046 | 3.10 1.27 047 | 394 1.74 067 | 324 132 047 | 428 200 083

Bias (%)° Weibull -19.2% -37.8% -53.5% |-13.4% -25.6% -33.6% |-11.9% -27.1% -31.1% |-19.2% -34.3% -43.8% |-28.4% -43.0% -54.5%
normal -24.8% -52.8% -70.8% |-20.4% -41.4% -54.4% |-17.3% -42.2% -55.1% |-25.1% -51.0% -67.0% |-24.4% -45.9% -61.7%
Burr XII -23.9% -43.0% -58.5% |-18.3% -31.1% -39.4% |-16.7% -32.9% -37.9% |-23.6% -39.6% -49.7% |-29.7% -44.5% -55.9%

beta 6.4% -22% -7.4% | 6.4% 7.9% 21.5%| 3.9% -52% 1.5% |3.2% -1.0% 6.7% | 0.8% -0.7% 3.8%
Mix2Norm -13.8% -28.2% -42.9% | -3.6% -9.8% -11.8% | -5.3% -16.6% -23.6% | -6.2% -15.0% -20.7% | -3.6% -8.5% -15.4%
kernel 15.3% 16.3% 20.2% |16.5% 20.3% 31.7% |16.4% 16.7% 32.4%|13.8% 16.9% 25.8% |11.5% 15.6% 22.4%

RMSE (%)!  Weibull 41.6% 81.3% 137.5%| 37.0% 73.0% 126.6% | 32.1% 56.6% 92.4% | 38.0% 71.2% 124.7% | 39.6% 67.9% 105.5%
normal 32.0% 77.2% 135.2%| 27.9% 67.3% 121.0% | 23.9% 55.6% 93.4% | 30.7% 69.6% 124.2% | 28.8% 60.4% 100.2%
Burr XII 40.1% 80.5% 136.9% | 35.2% 72.1% 126.2% | 30.2% 56.4% 92.1% | 36.6% 70.0% 123.3% | 39.4% 67.7% 105.5%

beta 20.7% 62.6% 118.7%| 27.0% 57.1% 122.4%|19.1% 31.9% 63.1% | 25.2% 54.8% 111.1% | 20.3% 41.6% 77.0%
Mix2Norm 36.3% 64.5% 110.0% | 13.7% 27.4% 49.4% | 18.3% 35.2% 65.3% | 21.2% 38.7% 72.8% | 14.7% 25.6% 46.9%

kernel 18.4% 24.1% 34.8% | 18.9% 27.2% 50.2% | 18.1% 20.5% 46.5% | 16.2% 22.1% 37.6% | 13.7% 20.0% 31.3%

Continued on next page
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Table 19 — continued from previous page

Illinois Districts

WSW ESE SW SE Total
Coverage Levels™t
Statistics Distribution 85% 75% 65% | 85% 175% 65% | 85% 75% 65% | 85% 75% 65% | 85% 75% 65%
Average® Empirical® 2.34 0.81 0.21 3.33 1.27 0.42 3.70 1.56 0.56 3.14 1.23 0.42 3.00 1.23 0.43
Weibull 2.13  0.69 020 | 3.21 1.20 0.46 | 357 155 060 | 3.02 122 044 | 253 090 0.29
normal 1.85 047 010 | 297 105 033 | 3.36 133 047 | 282 1.02 0.32 | 239 073  0.20
Burr XII 202 064 0.8 | 3.06 1.21 042 | 339 1.45 055 | 2.88 1.4 040 | 241 084 026
beta 2.67 100 035 | 3.77 170 071 | 3.88 1.78 0.75 | 3.37 148 060 | 3.18 131  0.50
Mix2Norm 2.13 067 016 | 3.26 1.190 0.38 | 3.62 147 051 | 307 112 035 | 283 1.06 0.34
kernel 2.77 1.0l  0.31 | 3.98 1.68 063 | 433 1.99 081 | 375 1.61 062 | 3.46 148  0.56
Bias (%)° Weibull -9.1% -152% -7.7% | -3.5% 1.2% 10.2%| -3.5% -0.2% 7.0% | -3.6% -0.7% 3.8% |-15.7% -26.5% -33.3%
normal -20.7% -42.1% -51.0% |-10.6% -17.3% -20.0% | -9.2% -14.6% -16.8% | -9.9% -17.6% -23.5% |-20.3% -40.6% -53.5%
Burr XII-13.5% -21.6% -16.8% | -7.9% -53% 1.2% | -82% -7.1% -2.5% | -82% -7.5% -51% |-19.7% -31.4% -39.0%
beta 14.3% 22.8% 63.1% |13.5% 33.3% 70.5% | 4.9% 14.1% 32.8% | 7.5% 20.0% 40.6% | 5.8% 6.6% 17.0%
Mix2Norm -8.8% -17.0% -26.0% | -2.1% -6.6% -9.6% | -2.0% -5.5% -9.3% | -2.1% -9.2% -17.1% | -5.8% -13.3% -20.9%
kernel 18.4% 24.8% 47.3% |19.7% 31.9% 50.4% | 17.3% 28.2% 44.5% |19.7% 30.9% 46.5% |15.4% 20.4% 30.6%
RMSE (%)!  Weibull 38.2% 79.9% 179.8%| 26.6% 52.7% 101.4%| 21.0% 42.8% 86.7% | 26.3% 51.4% 104.2% | 36.0% 68.0% 118.7%
normal 30.2% 74.1% 169.3% | 18.4% 42.2% 89.0% | 15.2% 34.6% 74.4% | 18.2% 42.6% 94.2% | 27.3% 62.6% 113.7%
Burr XII 36.2% 77.8% 175.6% | 24.1% 49.3% 96.6% | 19.3% 40.5% 83.4% | 23.1% 49.6% 103.2% | 34.6% 66.9% 117.5%
beta 35.1% 73.5% 189.2% | 28.0% 66.8% 148.1%| 18.2% 42.0% 90.8% | 22.3% 51.6% 110.3% | 25.3% 54.1% 109.8%
Mix2Norm 27.6% 41.6% 154.6% | 11.4% 22.7% 50.5% | 8.7% 19.4% 42.8% |11.6% 26.1% 58.3% | 20.5% 36.7% 71.3%
kernel 21.2% 31.5% 71.5% | 21.4% 37.9% 72.3% | 19.0% 32.3% 55.7% | 21.7% 37.2% 64.1% | 18.1% 27.1% 47.1%

* The highlighted values represent the distributional form with the lowest absolute bias or efficiency value by district

*+The bolded values represent bias values for which the fitted rate is greater than the empirical/burn rate.

2 Expected value of fitted distributional rates over all farms by district and coverage level.
b Empirical/burn rate [max(0,Yield Guarantee-Estimated Rate)] for all farms by district and coverage level.

¢ Bias (%) is expected value of [empirical/burn rate - fitted distributional rate] for all farms divided by empirical/burn rate by district and coverage

level.

dRMSE (%) is the expected value of the RMSE for all farms divided by empirical /burn rate by district and coverage level.

and coverage level.
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Table 20: Insurance Rate Statistics:

Illinois by Districts for FBFM Soybean Farms at Three Coverage Levels.

Illinois Districts

NwW

NE

‘West

Central

East

Coverage Levels™

Statistics Distribution 85%

8% T75% 65%

Empirical® 0.83

Weibull 0.71

normal 0.64

Average®

Burr XII 0.63
beta 0.83

kernel 0.94

Weibull -14.3% -32.7% -40.2%
normal -22.9% -49.8% -62.3%

Burr XII -23.9% -43.8% -53.3%
beta 0.3% -13.7% -12.7%

Mix2Norm -9.0% -17.3% -13.0%

kernel 13.5% 13.4% 23.8% |

Bias (%)°

35.9%
-39.1%
3.4%
92.1%

13.9%

22.1% -38.4% -41.3%
-33.3% -60.3% -70.7%
(-31.4% -48.8% -53.5% |
-10.4% -24.3% -19.5%

11.2% 14.1% 26.6%

-22.3% -40.6% -54.7%
-25.2% -51.7% -69.7%

-28.6% -47.7% -61.8%
-0.8% -11.5% -16.6%

111%  -9.9% | -41% -9.2% -11.2%

12.1% 13.5% 17.8%

Weibull 40.9% 72.3% 130.0%
normal 30.7% 68.6% 125.2%

Burr XII 37.6% 72.9% 130.7%
beta 29.9% 55.7%7194.2%

Mix2Norm 28.8% 44.7% ) 76.5%
kernel 17.1% 20.4% 38.5%

RMSE (%)4

19.1% 32.3%

198.6%
101.8% 281.7%
29.0% 64.4%

22.4% 40.9% 85.7%

161.2%
161.1%

89.7%
90.1%
160.9%
140.1%

90.8%
69.9%

38.6% 83.4%

41.3% 75.3% 117.9%
31.1% 71.0% 116.7%

40.7% 75.6% 118.3%
25.9% 51.8% 87.8%

16.9% 29.0% 45.6%

"23.8% 51.4% | 15.0% 18.2% 26.5%

Continued on next page
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Table 20 — continued from previous page

Illinois Districts

WSW ESE SW SE Total

Coverage Levels™t

Statistics Distribution 85% 75% 65% | 85% 75% 65% | 8% 75% 65% | 8% 75% 65% | 85% T5% 65%

Average? Empirical® 0.58 0.18 0.04 0.70 0.25 0.07 1.04 0.43 0.16 0.85 0.33 0.10 0.74 0.29 0.09

Mix2Norm 0.55 0.16 0.04 0.67 0.23 0.07 1.02 0.40 0.14 0.84 0.31 0.10 0.70 0.26 0.08

kernel 0.67 0.23 0.06 0.84 0.32 0.10 1.23 0.55 0.22 1.00 0.42 0.15 0.85 0.34 0.12

Bias (%)¢ Weibull -6.2% -3.7% 20.1% | -0.2% 0.8% 22.4% | 3.7% 7.4% 13.6% | 1.7% 6.2% 23.1% |-12.8% -24.2% -27.3%
normal -24.5% -40.1% -40.0% |-14.4% -28.4% -26.1% | -6.8% -14.5% -19.5% |-11.5% -19.3% -16.6% |-23.3% -45.3% -55.7%

Burr XII-16.5% -19.8% -8.3% | -8.9% -12.3% 1.4% | -6.7% -8.6% -8.8% |-10.3% -10.9% -0.9% |-21.8% -35.4% -41.1%
beta -02% 8.2% 50.9% |10.6% 19.6% 61.4% | 5.0% 7.9% 13.9%| 9.7% 23.1% 61.8% | -02% -6.1% 1.2%

Mix2Norm -5.0% -9.2% 1.6% | -3.9% -9.5% -2.8% | -1.6% -7.0% -12.0% | -1.7% -4.0% -2.3% | -5.5% -10.8% -9.6%

kernel 16.6% 28.4% 50.6% |19.6% 26.9% 53.7% |18.6% 28.2% 42.0% |17.2% 28.2% 51.0% |14.5% 18.6% 29.9%

RMSE (%)4 Weibull 45.8% 107.2% 246.7% | 36.5% 72.7% 162.1%| 26.2% 49.8% 96.8% | 35.2% 63.8% 146.7% | 41.5% 79.6% 144.0%
normal 36.6% 92.5% 208.3%|25.4% 60.9% 139.1%| 16.0% 37.8% 82.6% | 20.0% 46.1% 116.0%| 32.4% 74.3% 136.9%

Burr XII 42.1% 97.6% 206.0% | 29.5% 61.9% 144.3%| 18.8% 41.6% 88.7% | 24.2% 52.5% 132.4%| 39.0% 77.5% 140.2%
beta 35.5% 95.9% 258.1% | 32.7% 76.6% 195.4%| 18.2% 40.1% 86.0% 33.1%770.5% 174.1%| 29.8% 64.3% 128.6%

Mix2Norm 13.4% 29.9% 71.1% | 15.0% 28.2% 63.0% | 8.0% 18.7% 49.2% | 7.6% 21.8% 50.1% | 19.3% 34.2% 68.0%

kernel 21.1% 42.7% 95.8% | 23.2% 38.6% 92.1% | 20.5% 33.2% 55.8% | 19.3% 37.2% 80.1% | 18.5% 28.1% 52.7%

* The highlighted values represent the distributional form with the lowest absolute bias or efficiency value by district and coverage level.

+The bolded values represent bias values for which the fitted rate is greater than the empirical/burn rate.

a Expected value of fitted distributional rates over all farms by district and coverage level.

b Empirical/burn rate [max(0,Yield Guarantee-Estimated Rate)] for all farms by district and coverage level.

¢ Bias (%) is expected value of [empirical/burn rate - fitted distributional rate] for all farms divided by empirical/burn rate by district and coverage

level.
dRMSE (%) is the expected value of the RMSE for all farms divided by empirical /burn rate by district and coverage level.



Table 21: Out-of-Sample Rate Simulation Analysis: u=160; 0=20

Data Generating Process: Weibull beta
Coverage Level™ Coverage Level
Statistic Distribution 85% 75% 65% 85% 5% 65%
True Theoretical 1.59 0.43 0.10 1.42 0.30 0.04
n=10
A Empirical 1.60 0.44 0.10 1.42 0.30 0.04
verage Beta 2.80 1.39 0.70 2.81 1.39 0.70
Weibull 1.61 0.49 0.13 1.67 051 0.14
Mix2Norm 1.30 0.32 0.07 1.19 0.23 0.04
Bi % Empirical 0.7% 2.4% 2.4% -0.2% -0.7% 1.6%
las (%) Beta 76.6% 222.2% 631.5% 97.3% 359.2% 1502.8%
Weibull 1.2% 13.6% 38.9% 17.6% 68.6% 211.6%
Mix2Norm -18.2% -25.3% -23.8% -16.4% -24.7% -10.9%
RMSE (% Empirical 120.8% 223.8% 437.8% 115.3% 233.1% 592.3%
(%) Beta 214.6% 561.5% 1706.5% 242.0% 815.2% 3741.4%
Weibull 90.4% 138.8% 227.8% 97.9% 197.6% 498.2%
Mix2Norm 117.1% 184.6% 307.4% 111.2% 180.9% 382.7%
n=15
A Empirical 1.58 0.43 0.10 1.42 0.30 0.04
verage Beta 2.48 1.07 0.47 236  0.98 0.41
Weibull 1.60 0.47 0.12 1.69 0.50 0.13
Mix2Norm 1.38 0.33 0.07 1.28 0.25 0.04
Bi % Empirical -0.4% 0.9% 5.8% 0.0% -0.8% -4.7%
ias (%) Beta 56.1% 148.7% 392.6% 65.6% 223.8% 839.5%
Weibull 0.9% 9.3% 25.7% 18.7% 66.5% 195.4%
Mix2Norm -13.2% -23.7% -25.3% -10.3% -17.8% = -4.7%
RMSE (% Empirical 96.5% 179.6% 368.0% 92.4% 184.5% 430.3%
(%) Beta 155.4% 378.0% 1051.5% 158.2% 487.9% 1998.2%
Weibull 72.1% 105.3% 160.1% 80.5% 160.6% 389.7%
Mix2Norm 96.2% 151.4% 252.2% 91.3% 151.6% = 291.2%
n=20
A Empirical 1.58 0.42 0.09 1.43 0.30 0.05
verage Beta 2.12  0.80 0.30 205  0.74 0.27
Weibull 1.60 0.46 0.11 1.70 0.50 0.13
Mix2Norm 1.44 0.34 0.07 1.33 0.27 0.04
Bias (% Empirical -0.7% -21% -5.3% 0.5% 0.4% 7.2%
ias (%) Beta 33.4% 85.7% 214.3% 44.0% 146.1% 512.8%
Weibull 0.8% 7.2% 19.8% 19.1% 65.2% 187.4%
Mix2Norm -9.3% -20.6% -23.8% -6.4% -12.2% = 0.7%
RMSE (% Empirical 83.3% 150.2% 293.4% 82.7% 166.7% 414.4%
(%) Beta 112.1% 248.6% 623.6% 118.9% 341.7% 1303.9%
Weibull 62.0% 88.9% 131.5% 71.9% 144.3% 347.1%
Mix2Norm 84.4% 132.2% 221.8%  82.4% 142.0% 286.0%
n=30
A Empirical 1.59 0.44 0.10 1.42 0.30 0.04
verage Beta 1.87  0.60 0.18 1.76  0.53 0.15
Weibull 1.59 0.45 0.11 1.70 0.49 0.12
Mix2Norm 1.50 0.37 0.08 1.36 0.27 0.04
Bi % Empirical 0.5% 1.5% 4.1% -0.1% -0.3% -2.4%
ias (%) Beta 17.8% 40.3% 93.2% 23.3% 75.0% 238.9%
Weibull -0.1% 3.9% 12.1% 19.4% 63.1% 175.5%
Mix2Norm -5.5% -13.2% -16.4% -4.5% -10.3%  0.5%
iri A%  125. 251. ) 132.7% 19.5%
RMSE (%) Empirical 67.4% 125.5% 251.6% 65.7% 132.7% 319.5%

Beta 79.5% 158.6% 360.3%  77.8% 195.3% 641.1%
Weibull 50.0% 70.6% 101.1% 58.8% 119.0% 281.5%
Mix2Norm 69.3% 114.8% 188.5%  66.0% 116.5% 237.2%

* The highlighted values represent the distributional form with the lowest absolute
bias or efficiency value by district and coverage level.

* The bolded values represent bias values for which the fitted rate is greater than
the empirical/burn rate.
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Table 22: Out-of-Sample Rate Simulation Analysis: u=160; 0=30

Data Generating Process: Weibull beta
Coverage Level™ Coverage Level
Statistic Distribution 85% 75% 65% 85% 5% 65%
True Theoretical 4.10  1.72 0.62 3.99 1.54 0.48
n=10
A Empirical 4.08 1.71 0.62 4.00 1.53 0.47
verage Beta 5.55  3.23 1.84 5.63 3.27 1.86
Weibull 4.00 1.75 0.69 4.06 1.77 0.69
Mix2Norm 3.62  1.39 0.46 3.67 1.31 0.39
Bi %) Empirical -04% -0.6% -0.8% 0.2% -0.8% -1.8%
las (% Beta 35.5% 88.1% 196.2% 41.1% 112.5% 289.2%
Weibull -2.3% 1.9% 10.8% 1.8% 14.9% 44.0%
Mix2Norm -11.6% -19.0% -25.5%  -8.1% -14.7% -17.9%
RMSE (% Empirical 85.0% 125.8% 196.1% 81.8% 124.6% 205.0%
(%) Beta 124.3% 230.7% 468.6% 131.6% 271.1% 650.4%
Weibull 71.3% 94.0% 127.9% 69.9% 100.0% 159.9%
Mix2Norm 87.1% 117.9% 157.5% 84.2% 117.5% 166.3%
n=15
A Empirical 4.11  1.71 0.61 4.00 1.55 0.48
verage Beta 5.27 281 1.46 5.25 2.79 1.43
Weibull 4.03  1.74 0.67 4.10 1.77 0.68
Mix2Norm 3.88  1.53 0.52 3.81 1.39 0.43
Bi % Empirical 0.4% -0.1% -1.4% 0.3% 1.0% 0.1%
ias (%) Beta 28.6% 63.9% 134.5% 31.7% 81.0% 198.6%
Weibull -1.7% 1.2% 7.3%  2.8% 15.0% 41.4%
Mix2Norm -5.2% -11.0% -16.5% -4.6% -9.4% -10.5%
RMSE (% Empirical 70.1% 102.8% 159.0% 67.0% 102.4% 173.9%
(%) Beta 98.0% 176.6% 344.7%  97.7% 194.6% 445.6%
Weibull 58.2% 75.6% 99.8%  57.2% 81.8% 129.8%
Mix2Norm 72.2% 100.2% 137.8%  68.9% 99.2% 149.8%
n=20
A Empirical 4.10  1.72 0.63 4.01 1.55 0.48
verage Beta 4.93  2.44 1.15 483 235 1.08
Weibull 4.04  1.73 0.65 4.12 1.77 0.67
Mix2Norm 3.95  1.58 0.55 3.89 1.44 0.44
Bias (% Empirical 0.0% 0.2% 1.2% 0.4% 0.9% 0.8%
ias (%) Beta 20.3% 42.4% 85.1% 21.1% 52.6% 125.0%
Weibull -1.5% 0.6% 5.2%  3.3% 15.1% 40.2%
Mix2Norm -3.7% -8.0% -11.6% -2.5% -6.1% -7.3%
RMSE (% Empirical 60.1% 90.0% 142.9% 58.8% 90.4% 148.9%
(%) Beta 77.6% 133.6% 248.4%  73.8% 139.1% 300.3%
Weibull 50.5% 65.5% 86.2% 50.7% 72.6% 114.9%
Mix2Norm 62.1% 89.3% 126.9% 60.2% 87.8% 130.1%
n=30
A Empirical 4.11 1.72 0.63 3.99 1.54 0.48
verage Beta 4.45 1.98  0.80 4.35 1.91 0.76
Weibull 4.06  1.72 0.64 4.14 1.77 0.66
Mix2Norm 4.04  1.64 0.57 3.93 1.47 0.45
Bias (% Empirical 0.4% 0.5% 0.7% 0.1% -02% -0.5%
las (%) Beta 8.5% 15.7% 28.9% 8.9% 24.4% 58.6%
Weibull -1.0% 0.5% 3.6%  3.8% 14.9% 38.2%
Mix2Norm -1.4% -4.6% -7.9% -1.4%  -4.8%  -5.3%
iri ) 2.7% 114.1 46. 1.8% 119.69
RMSE (%) Empirical 48.7% 72.7% % 6.9% 71.8% 9.6%

Beta 51.9% 79.4% 127.6% 49.7% 84.7% 162.8%
Weibull 40.7% 52.3% 67.2% 41.1% 58.8% 92.8%
Mix2Norm 49.7% 72.2% 103.4%  47.8% 70.3% 105.4%

* The highlighted values represent the distributional form with the lowest ab-
solute bias or efficiency value by district and coverage level.

* The bolded values represent bias values for which the fitted rate is greater
than the empirical/burn rate.
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Table 23: Out-of-Sample Rate Simulation Analysis: u=160; c=40

Data Generating Process: Weibull beta

Coverage Level ™ Coverage Level

Statistic Distribution 85% 75% 65% 85% 75% 65%
True Theoretical 7.13 3.69 1.71 7.15 3.61 1.58
n=10

Empirical 7.14 3.71 1.72 7.17 3.64 1.61

Average Beta 839 534  3.30 849  5.41 3.35
Weibull 6.88 3.62  1.75 6.88  3.61 1.73
Mix2Norm 6.63 3.28  1.45 6.76  3.29 1.40
Bi % Empirical 0.1% 0.4% 0.9% 0.3% 0.8% 2.0%
ias (%) Beta 17.7% 44.6% 92.9% 18.7% 50.0% 111.6%
Weibull -3.5% -1.9% 2.0% -3.8% 0.1% 9.3%
Mix2Norm -7.0% -11.3% -15.4% -5.4% -8.7% -11.7%
RMSE (% Empirical 70.0% 94.8% 134.2% 68.7% 93.2% 132.9%
(%) Beta 91.1% 142.6% 242.5% 92.4% 149.4% 268.5%
Weibull 61.2% 75.7% 95.6% 60.5% 75.6% = 99.3%
Mix2Norm 72.6% 93.8% 121.7% 71.6% 93.1% 121.7%
n=15
A Empirical 7.16 3.73  1.74 7.16  3.62 1.59
verage Beta 8.39 5.04  2.89 8.39  5.05 2.90
Weibull 6.95 3.64  1.74 6.98  3.65 1.74
Mix2Norm 6.92 3.48  1.56 6.97  3.43 1.46
Bi % Empirical 0.4% 0.9% 1.5% 0.2% 0.3% 0.4%
ias (%) Beta 17.6% 36.4% 69.0% 17.3% 40.0% 83.3%
Weibull -2.6% -1.4% 1.5% -2.4% 1.3% 9.8%
Mix2Norm -3.0% -5.7% -8.9% -2.5% -5.0% -7.6%
RMSE (% Empirical 58.5% 78.7% 110.6% 56.6% 76.7% 109.0%
(%) Beta 71.8% 110.0% 178.8% 68.6% 109.2% 190.1%
Weibull 51.2% 63.0% 78.4% 49.7% 62.5% @ 82.3%
Mix2Norm 60.3% 79.0% 103.2% 58.2% 77.1% 102.6%
n=20
A Empirical 7.11  3.68  1.70 7.15  3.58 1.55
verage Beta 7.90 4.49  2.38 7.83 446  2.38
Weibull 7.00 3.66  1.73 7.00  3.65 1.72
Mix2Norm 6.97 3.52 157 7.04  3.45 1.47
Bias (% Empirical -0.3% -0.3% -0.8% 0.0% -0.7% -1.8%
ias (%) Beta 10.8% 21.5% 39.4% 9.4% 23.7% 50.9%
Weibull -1.9% -1.1% 1.0% -2.1% 1.3% 9.0%
Mix2Norm -2.2% -4.8% -8.0% -1.5% -4.3% -7.3%
Empirical 49.9% 67.3% 94.2% 47.7% 64.4% 92.1%
RMSE (%) Beta 53.8% 79.0% 122.1% 54.0% 83.0% 139.6%
Weibull 43.8% 53.8% 66.5% 42.3% 52.7% @ 68.7%
Mix2Norm 50.7% 67.1% 88.4% 48.6% 64.4% 86.1%
n=30
A Empirical 7.13 3.71 1.72 7.14 3.59 1.57
verage Beta 7.57 4.09  2.02 7.56  4.10  2.03
Weibull 7.04 3.67 1.72 7.04  3.67 1.72
Mix2Norm 7.05 3.60  1.63 7.08  3.49 1.49
Bine (% Empirical 0.0% 0.5% 0.7% -02% -0.5% -0.8%
ias (%) Beta 6.1% 10.7% 18.2% 5.8% 13.7% 28.7%
Weibull -1.3% -0.8% 0.7% -1.6% 1.6% 8.7%
Mix2Norm -1.1% -2.7% -4.7% -1.0% -3.2% -5.5%
iri 6% .29 ) 49 4 .89
RMSE (%) Empirical 40.6% 55.2% 77.6% 39.4% 53.4% 75.8%

Beta 42.4% 59.2% 85.6% 40.8% 59.4% 92.9%
Weibull 35.8% 44.0% 54.2% 34.8% 43.4% 56.3%
Mix2Norm 41.0% 54.8% 73.3% 39.6% 53.2% 71.7%

" The highlighted values represent the distributional form with the lowest
absolute bias or efficiency value by district and coverage level.

* The bolded values represent bias values for which the fitted rate is greater
than the empirical/burn rate.
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Table 24: Out-of-Sample Rate Simulation Analysis: p=180; 0=20

Data Generating Process:

Weibull

beta

Coverage Level™

Coverage Level

Statistic Distribution 85% 5% 65% 85% 5% 65%
True Theoretical 1.29  0.30 0.05 1.11 0.19 0.02
n=10
A Empirical 1.31 0.30 0.06 1.11 0.19 0.02
verage Beta 2.49 1.16 0.55 2.57 1.21 0.59
Weibull 1.32  0.35 0.08 1.41 0.38 0.09
Mix2Norm 1.01  0.19 0.04 0.91 0.14 0.02
Bi % Empirical 1.1% -0.5% 0.7% 0.0% 2.4% 6.0%
ias (%) Beta 92.7% 290.4% 912.1% 130.9% 554.3% 2902.9%
Weibull 2.5% 18.4% 51.2% 26.5% 104.1% 352.6%
Mix2Norm -21.8% -34.7% -30.9%  -18.6% -25.1%  4.2%
RMSE (% Empirical 131.8% 265.7% 589.1%  130.7% 299.2% 880.1%
(%) Beta 244.9% 711.1% 2436.5% 304.9% 1252.2% 7571.7%
Weibull 96.7% 156.6% 277.1% 113.0% 263.1% 797.2%
Mix2Norm 123.7% 200.7% 385.2%  121.7% 214.4% 525.0%
n=15
A Empirical 1.29  0.29 0.05 1.12 0.19 0.02
verage Beta 2.25 0.93 0.39 2.09 0.82 0.33
Weibull 1.32  0.34 0.07 1.41 0.36 0.08
Mix2Norm 1.08  0.21 0.04 0.99 0.16 0.02
Bi % Empirical -0.5% -1.5% -4.3% 0.4% 1.5% -5.0%
ias (%) Beta 74.0% 211.1% 618.6% 87.9% 341.8% 1594.7%
Weibull 2.2% 13.3% 35.3%  26.2% 96.5% 310.5%
Mix2Norm -16.3% -28.9% -33.9% -11.2% -15.7% = 1.3%
RMSE (% Empirical 107.6% 212.7% 459.8%  107.3% 239.4% 612.2%
(%) Beta 194.5% 536.8% 1737.3% 207.3% 773.9% 4158.6%
Weibull 77.9% 119.7% 195.3%  93.2% 212.2% 610.5%
Mix2Norm 104.8% 168.1% 285.0% 104.6% 187.7% 409.2%
n=20
A Empirical 1.28  0.29 0.05 1.11 0.18 0.02
verage Beta 1.84  0.64 0.23 1.81 0.61 0.22
Weibull 1.32  0.33 0.07 1.42 0.36 0.08
Mix2Norm 1.14  0.22 0.04 1.01 0.16 0.02
Bias (% Empirical -1.0% -3.7% -11.8% = 0.0% -3.2% -13.5%
ias (%) Beta 42.0% 114.2% 312.2% 62.6% 230.9% 1002.4%
Weibull 1.8% 10.3% 27.2% 27.6% 96.6% 301.7%
Mix2Norm -11.8% -24.8% -26.9%  -9.0% -15.8%  -1.9%
RMSE (% Empirical 92.3% 179.0% 366.9%  91.6% 201.1% 531.3%
(%) Beta 134.7% 338.9% 1001.3% 158.8% 564.0% 2896.3%
Weibull 67.1% 101.1% 158.2% 81.9% 187.4% 524.7%
Mix2Norm 92.4% 151.5% 268.4%  89.9% 161.5% 351.3%
n=30
A Empirical 1.28  0.29 0.05 1.11 0.18 0.02
verage Beta 1.52  0.42 0.11 1.42 0.37 0.09
Weibull 1.31  0.32 0.07 1.43 0.36 0.07
Mix2Norm 1.19  0.24 0.04 1.04 0.16 0.02
Bins (% Empirical -0.9% -1.9% -6.8% -0.6% -2.9%  0.4%
ias (%) Beta 17.5% 42.4% 106.7% 27.7% 98.3% 358.1%
Weibull 1.6% 7.5% 18.9% 27.9% 93.3% 281.6%
Mix2Norm -8.1% -18.8% -23.8%  -6.8% -12.2% 10.3%
RMSE (% Empirical 75.2% 149.4% 308.9%  74.0% 168.7% 473.7%
(%) Beta 85.7% 180.6% 446.9%  90.2% 259.5% 1050.7%
Weibull 54.1% 79.0% 117.2%  67.8% 156.8% 430.2%
Mix2Norm 76.9% 131.1% 227.4% 73.6% 140.1% 326.6%

* The highlighted values represent the distributional form with the lowest absolute

bias or efficiency value by district and coverage level.

* The bolded values represent bias values for which the fitted rate is greater than

the empirical/burn rate.
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Table 25: Out-of-Sample Rate Simulation Analysis: p=180; 0=30

Data Generating Process: Weibull beta
Coverage Level™ Coverage Level
Statistic Distribution 85% 75% 65% 85% 75% 65%
True Theoretical 3.58 1.35 0.43 3.43 1.15 0.30
n=10
A Empirical 3.59 1.34 0.43 3.43 1.14 0.29
verage Beta 5.18 2.88 1.59 5.18 2.86 1.58
Weibull 3.51 1.40 0.50 3.61 1.44 0.51
Mix2Norm 3.13 1.06 0.32 3.05 0.93 0.24
Bi % Empirical 0.2% -0.1% -0.1% 0.1% -0.6% -2.9%
as (%) Beta 44.7% 114.2% 268.4% 51.1% 149.8% 430.0%
Weibull -2.0% 3.7% 15.7% 5.4% 25.2% 70.8%
Mix2Norm -12.6% -21.0% -26.3% -11.0% -18.5% -20.5%
RMSE (% Empirical 92.1% 145.2% 244.9% 89.5% 146.0% 261.7%
(%) Beta 142.2% 287.9% 643.9% 154.9% 360.7% 1012.2%
Weibull 76.0% 104.4% 149.8% 76.2% 117.7% 209.3%
Mix2Norm 93.2% 131.7% 191.3%  90.7% 130.6% 195.5%
n=15
A Empirical 3.56 1.35 0.45 3.45 1.16 0.30
verage Beta 4.90 2.48 1.23 4.73 2.33 1.12
Weibull 3.54 1.39 0.48 3.63 1.43 0.49
Mix2Norm 3.27 1.14 0.35 3.25 1.03 0.27
Bias (% Empirical -0.6% 0.2% 3.7% 0.6% 0.8% -0.5%
ias (%) Beta 36.9% 84.3% 185.8% 38.1% 103.0% 275.5%
Weibull -1.1% 3.0% 11.2% 6.1% 24.6% 66.2%
Mix2Norm -8.6% -15.1% -18.1% -5.1% -10.1% -10.5%
RMSE (% Empirical 75.8% 121.8% 207.7% 74.2% 119.8% 216.7%
(%) Beta 112.6% 220.0% 470.2% 109.4% 241.4% 633.9%
Weibull 61.0% 81.9% 112.6% 63.6% 98.6% 174.1%
Mix2Norm 78.2% 114.8% 169.6% 75.9% 113.7% 178.9%
n=20
A Empirical 3.58 1.34 0.43 3.41 1.14 0.29
verage Beta 4.42  2.03 0.89 4.30 1.93 0.83
Weibull 3.56 1.38 0.47 3.67 1.43 0.49
Mix2Norm 3.41 1.20 0.36 3.28 1.03 0.27
Bias (% Empirical -0.1% -0.6% -1.0%  -0.4% -1.0% -2.0%
ias (%) Beta 23.4% 51.1% 107.8% 25.5% 68.4% 178.2%
Weibull -0.7% 2.6% 9.1%  7.0% 24.9% 64.2%
Mix2Norm -4.7% -11.2% -16.5% -4.2% -9.8% -10.3%
RMSE (% Empirical 66.5% 104.9% 172.0% 63.5% 102.4% 185.3%
(%) Beta 85.7% 157.2% 313.9%  83.8% 174.4% 426.4%
Weibull 54.1%  72.2% 98.1%  54.8% 84.7% 148.3%
Mix2Norm 68.6% 101.5% 148.4% 64.8% 96.8% 150.8%
n=30
A Empirical 3.60 1.35 0.43 3.42 1.14 0.29
verage Beta 3.94 1.62 0.60 3.86 1.54 0.56
Weibull 3.55 1.36 0.45 3.67 1.42 0.48
Mix2Norm 3.52 1.26 0.38 3.35 1.07 0.28
Bias (% Empirical 0.5% 0.3% -1.1% -0.1% -0.1% -1.6%
ias (%) Beta 9.9% 20.0% 40.2% 12.8% 34.6% 87.2%
Weibull -1.0% 0.9% 4.8% 7.1% 23.8% 60.2%
Mix2Norm -1.8% -6.6% -11.5% -2.1% -6.7% -6.9%
iri 3% 84.2 140. 1. 8%  150.39
RMSE (%) Empirical 53.3% 84.2% 0.6% 51.6% 83.8% 50.3%

Beta 57.6% 94.5% 165.2%  57.5% 108.3% 238.4%
Weibull 43.1% 56.5% 74.3% 44.9% 69.7% 122.5%
Mix2Norm 54.6% 82.5% 122.8% 52.5% 80.5% 127.0%

" The highlighted values represent the distributional form with the lowest abso-
lute bias or efficiency value by district and coverage level.

* The bolded values represent bias values for which the fitted rate is greater than
the empirical/burn rate.
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Table 26: Out-of-Sample Rate Simulation Analysis: p=180; 0=40

Data Generating Process: Weibull beta
Coverage Level™ Coverage Level
Statistic Distribution 85% 5% 65% 85% 5% 65%
True Theoretical 6.46  3.09 1.30 6.41  2.93 1.13
n=10
A Empirical 6.47  3.11 1.31 6.42  2.96 1.17
verage Beta 8.15  5.03 3.02 8.09  4.98 2.98
Weibull 6.26  3.07 1.37 6.29  3.08 1.37
Mix2Norm 5.92  2.68 1.07 5.97  2.61 0.98
Bi % Empirical 0.2% 0.5% 0.6% 0.2% 1.1% 3.0%
ias (%) Beta 26.2% 62.8% 131.4% 26.2% 69.9% 163.1%
Weibull -3.1% -0.6% 5.1%  -1.8% 5.2% 20.8%
Mix2Norm -8.3% -13.2% -18.1% -6.8% -10.9% -13.2%
RMSE (% Empirical 76.5% 106.8% 157.7%  74.6% 106.1% 161.4%
(%) Beta 106.2% 180.4% 329.2% 103.9% 184.1% 367.4%
Weibull 66.3% 84.1% 109.1% 64.7% 85.4% 121.4%
Mix2Norm 79.3% 104.6% 138.5%  77.7% 104.3% 143.4%
n=15
A Empirical 6.45  3.07 1.30 6.38  2.91 1.12
verage Beta 7.87 453 250 774 439 238
Weibull 6.32  3.08 1.35 6.38  3.11 1.36
Mix2Norm 6.15  2.81 1.14 6.18  2.71 1.02
Bi P Empirical -0.1% -0.5% -0.1% -0.4% -0.8% -1.3%
ias (%) Beta 21.8% 46.5% 92.0% 20.8% 49.8% 109.8%
Weibull -2.1% -0.4% 3.5% -0.5% 6.0% 20.1%
Mix2Norm -4.7% -9.0% -12.8% -3.6% -7.6% -10.4%
RMSE (% Empirical 61.4% 86.1% 127.1% 60.2% 84.9% 126.9%
(%) Beta 83.4% 136.8% 240.1%  76.0% 130.8% 250.6%
Weibull 53.3% 67.1%  85.4%  52.8% 69.2% 96.7%
Mix2Norm 63.7% 85.7% 115.6% 61.9% 84.2% 115.3%
n=20
A Empirical 6.46  3.07 1.29 6.41  2.92 1.13
verage Beta 7.47 4.05  2.07 7.40  3.98 201
Weibull 6.36  3.09 1.34 6.40  3.11 1.35
Mix2Norm 6.31  2.91 1.18 6.31  2.80 1.06
Bias (% Empirical 0.0% -0.8% -1.4% 0.0% -0.3% -0.2%
ias (%) Beta 15.6% 31.0% 58.3% 15.5% 35.8% 77.0%
Weibull -1.5% -0.1% 3.0%  -0.1% 6.0% 18.9%
Mix2Norm -2.3% -5.7% -9.6%  -1.6% -4.3% -6.4%
RMSE (% Empirical 54.2% 75.6% 109.9% 51.9% 73.4% 111.3%
(%) Beta 66.2% 104.5% 175.9% 61.5% 102.3% 188.4%
Weibull 46.7% 58.7% 74.2% 45.3% 59.2% 82.2%
Mix2Norm 55.5% 75.6% 102.2%  53.0% 73.3% 102.7%
n=30
A Empirical 6.45  3.07 1.29 6.40  2.93 1.13
verage Beta 6.93  3.49 1.60 6.90  3.45 1.56
Weibull 6.39  3.09 1.33 6.43  3.11 1.34
Mix2Norm 6.37  2.96 1.21 6.34  2.83 1.08
Bias (% Empirical -0.1% -0.5% -1.2% 0.0% -0.1% 0.1%
ias (%) Beta 7.3% 13.1% 22.8% 7.6% 17.6% 37.4%
Weibull -1.0% -0.1% 2.0% 0.4% 6.1% 18.1%
Mix2Norm -1.3% -4.1% -7.3% -1.1%  -3.3%  -5.1%
iri ) .29 ) 42. .99 1
RMSE (%) Empirical 43.0% 60.2% 88.0% 3% 59.9% 90.1%

Beta 46.1% 67.4% 102.7% 44.2% 67.5% 112.8%
Weibull 37.5% 47.0% 59.1% 37.0% 48.3% 67.2%
Mix2Norm 43.6% 60.1% 82.7% 42.9% 59.4% 83.6%

* The highlighted values represent the distributional form with the lowest ab-
solute bias or efficiency value by district and coverage level.

* The bolded values represent bias values for which the fitted rate is greater
than the empirical/burn rate.
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