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ABSTRACT 

Accurate estrus detection is an essential component of a successful artificial insemination 

program in modern swine operations.  It is necessary to establish efficacious means of estrus 

detection and to optimize reproductive performance in the herd.  Measurement of physical and 

physiological traits such as body temperature, vaginal electrical resistance and vulva reddening 

have been investigated as methods to aid in estrus detection in swine.  The relationship between 

vulvar skin temperature and ovulation has not been previously investigated.  Therefore, the 

objective of this study was to assess changes in vulvar skin temperatures that occur during the 

periovulatory period using digital infrared thermography (IRT), which has already been 

successfully used as a therapeutic and diagnostic tool in various fields and species in veterinary 

medicine.  The experimental group consisted of a total of 25 gilts and 27 multiparous sows, and a 

control group consisted of 30 sows at 60 days of gestation.  All Yorkshire-Landrace females 

were housed individually in a temperature and humidity controlled environment.  IRT vulvar 

skin temperatures were measured twice daily (8 am and 4 pm) using the infrared digital 

thermocamera (FLUKE IR FlexCam® Thermal Imager, Fluke Corporation, Everett, WA).  Estrus 

detection was performed twice daily with the aid of an adult boar.  Once standing estrus was 

observed, transrectal real time ultrasound was performed twice daily (8 am and 4 pm) in order to 

monitor follicle development and determine the time of ovulation.  Ovaries were visualized using 

an Aloka 500V ultrasonics machine (Aloka Inc., Tokyo, Japan) fitted with a transrectal 7.5 MHz 

linear transducer which was fitted into a rigid, fixed-angle PVC adapter.  Average vulvar skin 

temperatures (VST) and hours were reported (mean ± SEM) and compared using a MANOVA 

and Tukey-Kramer tests using SAS.  Significant differences were reported at P ≤ 0.05. Evidence 

of ovulation, with the disappearing of the dominant follicle was detected at approximately 38 ± 9 

hours after onset of estrus in gilts, and 43 ± 12 hours in sows.  Temperature was collected at the 

same time during all the days of the experiment.  The mean VST of sows during estrus was 

significantly higher (p ≤ 0.05) than gilts, although collected at the same time.  During estrus, the 

mean VST of gilts reached a peak of 35.6 ± 1.6 °C at 32 h prior to ovulation and then decreased 

significantly to 33.9 ± 1.7 °C 8 h prior to ovulation.  This marked change in mean VST was 

detected between 36 and 12 h prior to ovulation.  There was a similar trend in sows with a peak 

VST of 36.1 ±1.3 °C at 24 h prior to ovulation and then dropping to 34.6 ±1.6 °C 12 h prior to 

ovulation.  There was no significant difference (p ≥0.05) between VST in gilts and sows at the 



 
 

iii

time of ovulation.  This study demonstrated that vulvar skin temperatures of sows and gilts 

measured by digital infrared thermography change significantly during the periovulatory period.  

Additionally, there are distinct times that VST rises and then falls precipitously in sows 

compared to gilts.  The potential to use digital infrared thermography as a predictor for ovulation 

in swine appears to be a promising tool.  Further studies involving predictor models and 

hormonal assays need to be performed. 
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CHAPTER 1 

INTRODUCTION 

 Accurate estrus detection is an essential component of a successful breeding program in 

modern swine operations.  It is labor intensive, time consuming and an economically important 

aspect of the production system. Over the last 20-30 years swine production systems have 

changed, there are fewer farms, with these farms holding larger numbers of breeding females.  

Along with this restructuring in the swine industry, the application of techniques to improve 

reproductive efficiency and controlled breeding has occurred [Rasbech 1984].  Some of the 

assisted reproductive techniques now commonly utilized on modern swine operations include 

artificial insemination (AI), hormonal induction of estrus in gilts, estrus synchronization of sows 

and gilts, and B mode ultrasonography for pregnancy diagnosis [Almond and Dial 1987; Crabo 

et al. 1992; Pressing 1992; Britt 1996].  Even with the addition of all of these technologies 

accurate and efficient determination of ovulation, and consequently the best time to AI cannot be 

known until after the female has gone out of estrus. 

Sows ovulate approximately 36 h after the onset of estrus (two-thirds of the way through 

the estrus period) and can range from 10 to 58 h [Soede et al. 1995].  With this large variation, it 

is difficult for breeding managers to know precisely when to inseminate.  Prediction of ovulation 

is still a challenge in swine reproduction.  Researchers such as Soede et al. (1997) have utilized 

various new technologies such as ultrasonography to predict ovulation, but this method is 

invasive and not practical for routine use in swine operations, however it has a great potential for 

investigating basic questions involved in research.  For optimal fertility, insemination should 

occur within 24 h of ovulation [Soede et al. 1995; Nissen et al. 1996].   
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Measurement of vaginal and core body temperature changes have been studied in cattle 

[Junge et al., 1984; Osawa et al., 2004] as well as pigs  [Junge et al., 1984; Soede et al., 1997] to 

determine the relationship between these values and ovulation.  Additionally, investigations of 

skin temperature differentials in relation to estrus have been studied in dairy cattle using a 

thermal infrared scanning technique [Hurnik et al. 1985].   Henne (1991) investigated body 

temperature of gilts during the estrus period using temperature probes anchored inside the 

female’s vagina.  It was determined that although there was a large variability of the temperature 

values at the onset and during estrus, they noticed a drop in temperature 2 days before standing 

heat with a gradual increase and the highest temperature on day 2 of standing heat, which 

coincides with the time near ovulation.  Soede et al. (1997) examined the intravaginal 

temperature of sows during days 4 and 10 after estrus synchronization with altrenogest and found 

that changes in intravaginal temperatures of sows could not be related to the timing of ovulation.   

Behavioral and physical signs of estrus are commonly used by the detector (boar and 

man) to determine the best time to inseminate female pigs [Rotjkittikhun et al. 1992].  Vulvar 

reddening and swelling during estrus has been related to an increase in estrogen levels, which 

stimulates blood flow to the reproductive tract and associated genital organs [Rotjkittikhun et al. 

1992]. Vulvar reddening is a secondary sign of heat and should be used in conjunction with other 

signs to confirm heat. This increase in blood flow increases the skin temperature of the vulva 

during estrus.  Currently, there have been no studies performed in swine using vulvar skin 

temperature as an indicator of estrus or ovulation.  

The current study was designed to investigate the relationship between vulvar skin 

temperature (VST) and time of ovulation in swine using a highly sensitive and accurate infrared 

thermography (IRT) digital camera. 



 
 

3

 Infrared thermography is a noninvasive technique through which temperatures are 

monitored and recorded, thereby allowing visualization of heat flow.  The noninvasive and high 

resolution characteristics of the thermographic systems make them valuable diagnostic as well as 

therapeutic aids. Modern thermal imaging systems comprise technically advanced thermal 

cameras coupled to computers with sophisticated software solutions. Thermography can be 

applied as a diagnostic tool by detecting changes of blood flow and thermal modeling of various 

body regions; hence it’s widely used in oncology, allergic diseases, angiology, plastic surgery, 

rheumatology, reproductive problems and elsewhere. Thermography is a safe, accurate and, most 

importantly, a non-invasive diagnostic method in clinical medicine. It has proven to be highly 

sensitive and accurate during studies performed in human medicine for diagnosis of breast 

cancer [Keyserlingk et al., 1998; Parisky et al., 2003] among other medical applications.  It has 

also been widely used in veterinary medicine for detection of reproductive issues in bulls 

[Purohit, 1985; Kastelic et al. 1996, 1997a, 1997b; Gabor et al. 1998], to accesses animal welfare 

[Stewart et al., 2005], diagnose foot and leg problems in horses and aid in diagnose and 

treatment of lameness [Strömberg, 1975; Weil et al. 1998; Eddy et al., 2001] among others. 

The objective of the current investigation was to explore the possibility of utilizing 

thermal infrared scanning of the vulva in pigs to detect measureable temperature changes related 

to ovulation and so to introduce a new aid for estrus detection in swine that will allow AI time in 

a greater synchrony with ovulation. 
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CHAPTER 2 

LITERATURE REVIEW 

A.   Statement of the Problem 

 With the continued expansion of the pork industry, greater emphasis is placed on 

maintaining consistent productivity from the sow herd.  Approximately 50% of sows are 

replaced annually due to reproductive problems [Baltussen et al., 1998].  In order to decrease 

nonproductive sow days, it is essential to identify sows in estrus and breed the sow at the 

appropriate time.  This will ensure high conception and pregnancy rates resulting in an increase 

in the number of piglets produced per sow per year. The identification of physiological changes 

associated with estrus provides accurate information about the most appropriate time for artificial 

insemination (AI), i.e. insemination near ovulation.   Estrus detection is one of the most 

important aspects of pig husbandry and the one most important factor in an AI program.  It is 

essential to establish efficacious means of estrus detection.  Less than ideal estrus detection is 

major limiting factor for optimal reproductive performance.  Currently, the most common 

method for estrus detection in pigs is the Lordosis /Back Pressure Test, which is a natural 

response as the female is preparing herself to be mounted by the boar for breeding [Almond 

G.W., 2007].  This process requires trained staff and takes up a great amount of effort and is time 

consuming, accounting for 30% of total farm labor [Perez et al., 1986].  The cost of estrus 

detection weights heavily when evaluating the herd’s productivity.  Assuming 20 sows can be 

checked in one hour, it was estimated a cost of $0.40 per sow per day for estrus detection, plus 

$3.93 for insemination labor [Flowers et al., 1993].  According to a report from Minitube and 
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another from Dr. John Mabry from Iowa Pork Industry Center, each of a sow’s nonproductive 

day is equivalent to $2.00, which in relation to a reproductive cycle can add up to $38.00. 

 Even with good estrus detection methods, it may still be difficult to attain maximum 

fertility results since there is a wide range between timing of ovulation in relation to onset of 

estrus.  According to Soede et al. (1997), pigs ovulate 10 to 58 hours after the onset of estrus.  

Weitze et al. (1994) proposed a much wider range of 24 to 96 hours.  Best fertility is attained 

mating within 24 h prior to ovulation [Nissen et al., 1997].  The ideal time for insemination is 8 

to 12 h prior to ovulation [Soede et al 1995].  The availability of these time periods provide a 

breeding window, however, the large variety in hours makes it even more critical for accurate 

estrus detection with the goal of mating as close to ovulation as possible.  The great question is 

being able to predict when the pig will ovulate. 

 To try to overcome this issue and ensure properly timed mating, multiple insemination 

programs have become a standard procedure on the modern swine farm.  Double inseminations 

increase farrowing rates by 8 to 12% and litter sizes by 0.2 pigs [Crabo and Dial, 1992].  These 

numbers remain high as long as AI is performed during the fertile period of estrus.  Fertility and 

litter size decline when the last of multiple inseminations is performed during late estrus or 

metestrus due to a post breeding inflammation [Rozeboom et al. (1996)].  Hence, it is critical to 

be able to time breeding as close to ovulation as possible. 

 As a way to counteract all the less than ideal situations faced when trying to achieve 

optimal reproductive performance, new, practical and effective tools to aid in estrus detection are 

warranted in the modern swine industry.  Various alternatives for improving detection of animals 

in estrus have been described.  Automated estrus detection methods are performed through 

measurement of physical activity by accelerometer, infrared sensor, automation of visit to the 
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boar pen.  Measurement of physical and physiological traits such as body temperature, vaginal 

electrical resistance and vulva reddening have also been investigated as methods to aid in estrus 

detection in swine.  However, for the most part, these methods may be expensive, require well 

trained personnel and may not be practical in a field setting or were demonstrated to be 

inaccurate. 

 The economic reality of swine breeding facilities is the need for simple, fast and 

inexpensive tools to help improve fertility by allowing mating at the appropriate time during 

estrus.     

 

B. Anatomy and Physiology 

1. Anatomy of Reproductive Organs 

Ovaries 

 The ovaries are the primary organs of reproduction in the female.  Not only do they 

release oocytes at the time of ovulation, but they also produce estrogen and progesterone, which 

are essential hormones in the porcine estrous cycle [Frandson 2003].  Oxytocin, relaxin, inhibin 

and activin are also produced by the ovaries at various stages of the female’s reproductive cycle, 

although in lesser quantities than progesterone and estrogen, but just as important.  [Senger, 

1999].   

 Graafian follicles are made up of several cell layers, being them the theca and granulosa 

cells.  Both kids of cells are involved in the production of estrogen and after ovulation, granulosa 

cells are the principal progesterone producing cells in the corpus luteum [Bearden & Fuquay, 

1997].  
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 Follicle stimulating hormone is released from the anterior pituitary and acts on receptors 

of the ovary to convert testosterone to estrogen in the granulosa cells.  FSH act synergistically to 

promote granulosa cell proliferation and thus follicular growth [Peluso, 1983].    Once growth of 

these follicles begins, they will continue to grow until it either ovulates or deteriorates by a 

process called atresia [Peluso, 1983].  Continuous development and subsequent atresia maintains 

a proliferating pool of follicles 1-6 mm in diameter [Foxcroft et. al., 1985], which has been 

estimated to contain approximately 50 follicles per animal during the luteal and early follicular 

phase of the porcine estrous cycle [Anderson, 1993]. 

Oviducts / Uterine Tubes 

 Essential reproductive processes take place within the sow’s oviducts such as pick-up of 

the newly ovulated ova, transport of the gametes to the fertilization site and, the transport of the 

developing embryos to the uterus [Martinez, 1983].   

 The pig’s oviduct shows a definite spontaneous motility throughout the estrous cycle, 

which is associated with gamete transport to the fertilization site and ova descent to the uterus  

[Martinez, 1983]. 

Vulva and Vestibule 

 The external part of the female’s reproductive tract is the vulva, consisting of major and 

minor labia, which meet dorsally and ventrally to form the dorsal and ventral commissures 

[Frandson, 2003].  The ventral commissure is pendulous and where the clitoris is found.    The 

high estrogen levels associated with the onset of estrus generally results in a continuous state of 

erection of the clitoris [Senger, 1999] and also promote rapid epithelium growth leading to 

swelling and increased turgidity of the vulva [Safranski, 2007].   
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2. Physiology of the Estrous Cycle 

 The domestic sow is a non seasonal polyestrous animal with the approximate length of 

the estrous cycle being 21 days [Senger, 1999; Safranski, 2007].  Initiation of ovarian activity 

during puberty is established by activation of the hypothalamic-pituitary-adrenal axis, leading to 

an increase in the normal gonadotropin secretion and in consequence, activation of the estrous 

cycle [Turner et al., 2002].  The estrous cycle can be divided into two distinct phases according 

to the dominant ovarian structure, being either follicular or luteal phase (Figure 2.1).  The 

follicular phase incorporates proestrus and estrus and it is the time from regression of the corpora 

lutea (with decline in progesterone levels) to ovulation, when the primary ovarian structures, the 

dominant follicles are growing and producing estradiol [Senger, 1999].   The luteal phase 

incorporates metestrus and diestrus and it is the time from ovulation until corpora lutea 

regression.  It is a longer phase than the follicular and the dominant structure is the corpora lutea 

secreting progesterone [Senger, 1999].   

 

Figure 2.1.  Hormonal changes of the Estrous Cycle (Adapted from Senger, 1999) 
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Proestrus  

 Proestrus is marked by the occurrence of rapid follicular growth.  It begins with the 

regression of the corpus luteum and consequent drop in progesterone and extends to the start of 

the next estrus [Safranski, 2007].  The drop in progesterone caused by lysis of the corpora lutea 

by prostaglandin F2α   at the end of diestrus removes the hypothalamus from its negative 

feedback inhibition.  The hypothalamus reaches a threshold level of estrogen in the absence of 

progesterone, leading to a release of large quantities of GnRH which stimulate the anterior lobe 

of the pituitary to secrete FSH and LH [Senger, 1999].  GnRH release is essential for tonic FSH 

and LH release, which leads to follicle growth and is crucial in establishing proper pulsatile LH 

pattern release, which is necessary for final follicle growth and ovulation [Driancourt et al., 

1995].  

 A cohort of small and medium follicles present on the surface of the ovary is recruited for 

further growth under FSH stimulation and estradiol production.  This recruitment pool has about 

50 follicles, 1-6 mm in size [Knox 2005].  Within the recruitment pool, follicles will go through 

selection, being the ones that will mature to ovulate.  As follicles enter the selection phase, 

inhibin and estradiol are produced by the growing follicle and hence, inhibit FSH secretion from 

the anterior lobe of the pituitary.  At this time FSH and LH roles begin to shift, considering that 

at selection FSH drops to its lowest point and LH increases [Senger, 1999].  Most follicles at 

selection are approximately 5 mm in size.  Smaller sized follicles fail to respond to the hormonal 

stimuli and go into atresia [Ryan et al., 1994; Kemp, 1998].  Late during proestrus the effects of 

estrogen will make behavioral symptoms of approaching estrus more prominent and detectable 

[Safranski, 2007].    Pulsatile LH is also essential for follicle development, as evidenced by 

Esbenshade (1987) and is critical for growth of follicles >2mm in size [Driancourt et. al., 1985]. 
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Estrus   

 Estrus is characterized by visible behavioral symptoms of female receptivity to the male 

and standing for mating.  The duration of estrus of sows can vary from 24 to 96 hours [Weitze et 

al., 1994; Soede et al., 1995) and this duration of estrus is influenced by factors such as parity, 

season, stress, boar effects, and weaning-to-estrus interval [Weitze et al., 1994; Kemp et al., 

1996]. 

 During estrus, follicles are found at different stages of development.  The ones that 

escaped atresia, become dominant, at the time of selection are mature enough to respond to the 

LH surge and will determine the ovulation rate [Hunter et al., 1990].  The preovulatory surge of 

LH occurs during early estrus and is dependent on adequate numbers of large follicles present in 

the ovaries, since these are needed for the production of threshold estrogen concentrations, which 

initiates the physical expression of estrus and induction of the LH surge [Knox, 2005].  They 

continue to produce increasing amounts of estradiol and inhibin, which is produced by the antral 

follicle and selectively inhibits the release of FSH from the anterior pituitary.  The increasing 

level of estradiol reaches a peak in serum between days 18 and 20 of the estrous cycle and 

prompts and stimulates (through a positive feedback mechanism on the hypothalamus) the 

preovulatory surge of LH from the pituitary causing final growth and maturation and ovulation 

[Britt et al., 1985; Senger, 1999].  The release of inhibin likely modulates the release of FSH 

during estrus, thereby preventing overstimulation of the ovaries [Safranski, 2007].    

 According to different authors, ovulation occurs approximately between 10 and 58 h 

[Soede et al., 1995] or between 24 and 96 h [Weitze, K.F et al., 1994] after onset of estrus in 

sows and lasts about 2 hours as determined by transrectal real-time ultrasound evaluation [Soede 

et al., 1992].  Follicles are selected for ovulation as they shift their dependence on FSH to LH, 
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meaning, there’s a decrease in FSH receptors during the first 3 days of estrus and at the same 

time an increase in LH receptors [Lucy 2001].  The decrease in FSH concentrations at this time 

is also associated with follicular atresia [Guthrie et al., 2001]. 

 Ovulation is triggered by a surge of LH/hCG which stimulates a cascade of proteolytic 

enzymes (plasminogen activator (PA), plasmin, collagenase and matrix metalloproteinase 1 

(MMP-1)).  The physical process of ovulation (Figure 2.2) occurs as the colloid osmotic pressure 

of the follicular fluid increases, permitting water to enter the follicle and as active collagenase 

causes a digestion of the collagen in the follicle wall, and plasmin, as well as possibly other 

proteolytic enzymes may cause a further dissociation of the follicular wall mainly at the apical 

region of the follicle forming the stigma and consequent rupture of the follicle [LeMaire, 1989; 

Tsafriri, 1995, Kilen & Schwartz, 1998].  Increased levels of LH/hCG also increase 

prostaglandin F2α (PGF2α) and histamine which influence smooth muscle by causing contractions 

and causing vascular changes such as increased permeability and vasoconstriction and release of 

enzymes, all leading to ovulation [LeMaire, 1989, Tsafriri, 1995; Senger, 1999].  

Metestrus  

 Metestrus is the period of transition between estrogen dominance to progesterone 

dominance.  The granulosa cells give rise to the luteal cells and corpus luteum formation [Arthur, 

1996].  LH is a luteotropin hormone, since it has the dominant controlling influence on 

formation and function of the corpus luteum.  After the LH surge, estradiol production is reduced 

and the dominant hormone from this point on is progesterone.  LH binds to the membrane 

receptors of granulosa cells and at ovulation initiates reactions within these cells that result in 

luteinization and production of progesterone.  LH may maintain the function of the corpus 

luteum by increasing the blood flow through this luteal structure [Peluso et al., 1983].  
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Figure 2.2.  Ovulation Events (Adapted from Senger 1999) 

Diestrus  

 Diestrus is the longest stage of the estrous cycle and is characterized as the period in the 

cycle when the corpus luteum is fully functional and progesterone levels are high.  It is also 

called the luteal phase.  For the sow it extends from about day 4 through day 13-15 [Bearden & 

Fuquay, 1997; Senger, 1999].  

 After ovulation, the follicles undergo dramatic structural changes as they develop into the 

corpus luteum, producing progesterone [Kilen & Schwartz, 1998].  Progesterone has a dominant 

role in regulating the estrous cycle. It is evident in serum between 2 and 4 days after estrus and 

reaches its maximum at around days 12-15 of the cycle [Whittemore 1993].  It stimulates 

maximal secretion by the endometrial glands which undergo hyperplasia and hypertrophy, 

quiescence of endometrial musculature and tightening of the cervix [Arthur, 1996; Senger, 



 
 

13

1999].  In the mammary gland, progesterone promotes final alveolar development prior to 

parturition, thereby allowing initiation of lactation [Senger, 1999]. All these changes are based 

on the principle of ensuring the development of a proper uterine environment for implantation of 

the conceptus [Foxcroft, 1993]. 

 During diestrus with the corpus luteum functional, high concentrations of progesterone 

inhibit release of FSH and LH through its negative feedback control of the hypothalamus and 

anterior pituitary; progesterone also inhibits behavioral estrus, which also occurs during 

pregnancy [Senger, 1999].  Although progesterone causes endometrial quiescence, in swine, the 

spacing of pre-implantation embryos is dependent on myometrial contraction and even though 

steroid secretion by the embryo itself may regulate spacing, there’s also an increased sensitivity 

of the myometrium to the embryonic signals dependent on maternal steroid changes [Foxcroft, 

1993]. 

 

 C.   Estrus Expression 

 Estrus is defined as the period when the female is receptive and will stand for mating 

with males.  Elevated estradiol along with low progesterone induces profound behavioral 

changes in the female.  In addition to standing for mating, there are other behavioral as well as 

physiological signs of estrus.    

 High levels of estrogens have been associated with the behavioral signs of estrus and are 

of paramount importance.  Estrogen affects all the components of estrus, including receptivity, 

proceptivity and all other sexual behavior signs [Edqvist & Stabenfeldt, 1993; Bearden & 

Fuquay, 1997].  Estrogen targets primarily the reproductive tract mucosal epithelium which 

responds dramatically to its effects leading to expression of estrus behavior.  The major effect of 
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estrogen over the reproductive tract is the increase of blood flow to the reproductive organs, 

causing genital swelling, and change in tissue electrical conductivity, increased mucosal 

secretion, initiation of uterine gland growth and elevated myometrial tone and hyperemia which 

in turn, allows for leukocyte delivery to the submucosa serving as humoral protection, 

phagocytizing all foreign material after copulation [Senger, 1999].   

 The swelling (edema) of the vulva and cervix is the most marking sign of estrus, brought 

about by the increased blood flow that increases the local capillary pressure and causes lymph to 

buildup in the external genitalia, which is in fact the swelling [Foxcroft, 1993; Senger, 1999].  In 

pigs, cervical distension ensures an effective “lock” for the penis and so, ensures effective 

insemination into the body of the uterus [Foxcroft, 1993].  The amount of cervical and vaginal 

serous-mucous secretion also increases and changes in fluidity, color, conductivity, pH and 

crystallization pattern [Zink et al., 1984, Foxcroft, 1993].  This mucus serves as lubrication 

during copulation, promotes sperm penetration of the utero-cervical junction and a barrier to 

contamination of uterus by flushing out foreign material introduced during copulation [Foxcroft, 

1993; Senger, 1999].  In the uterus, estradiol causes increased tone (due to myometrial 

contractions) and motility of the muscularis in all regions of the reproductive tract which 

partially responsible for sperm transport and there’s also stimulation for the development and 

growth of the uterine glands [Senger, 1999].  The oviduct’s epithelium increases its secretory 

rate under estrogen influence.  Also, the cilia within the oviduct increase its motility facilitating 

gamete and fluid transport [Senger, 1999]. 
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Behavior Associated with Reproduction 

 In females, sexual behavior is divided in proceptive and receptive behavior [Beach, 

1976].   Proceptive behavior has been defined by Beach as ‘various reactions by the female 

towards the male which constitute her assumption of initiative in establishing or maintaining 

sexual interaction’ and receptive behavior is defined as ‘female responses necessary and 

sufficient for the male’s success in achieving intra-vaginal (or intra-cervical) ejaculation’.  

During estrus the sow shows receptive behavior and it is the only time when she permits mating 

[Zink et al., 1984].   

 The female expressing estrus seeks out the male either by smell, sound or sight and will 

approach him for the purpose of head-to-head contact and will stay close to the boar for longer 

periods of time as estrus approaches.  This is characteristic of proceptive behavior [Zink et al., 

1984].  The courtship behavior in pigs can include sniffing, head-to-head contact, nosing, chin-

resting, mounting and copulation [Fabre-Nys, 1993; Gordon, 1997].  Vocalization, jaw champing 

and frothing at the mouth is usually evident from both parties, but especially from the male 

[Whittmore, 1993].  Other gradual changes associated with estrus in the sow are increased 

restlessness, reduced appetite, mounting other animals, and male-like sexual behavior [Gordon, 

1997].   

 The mating posture of the estrus female is common in most domestic species and it’s 

limited to an active immobilization, eventually accompanied by deviation of the tail.  The mating 

stance of the sow is clear and long lasting [Fabre-Nys, 1993].  The so-called “standing response” 

is when the sow stands immobile, arches her back and pricks the ears illustrated in Figure 2.3 

and 2.4. This standing response is particularly stimulated by olfactory and tactile stimuli by the 

boar [Zink et al., 1984].  A pheromone identified as 5α-androsterone, produced by the boar testis 
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and salivary glands is one of the responsible components for the female’s sexual receptivity and 

response to allow for mounting by the boar [Fabre-Nys, 1993]. 

 

Figure 2.3.  Sow showing sings of behavior estrus in standing position with arched back. 

 

Figure 2.4.  Sow showing signs of behavior estrus with erect ears.  



 
 

17

D. Estrus Synchronization 

 A reduction in reproductive performance affects a herd when fewer sows return to estrus 

after weaning, when there’s an increase in the time to return to estrus and when there’s a higher 

rate in return to estrus after mating, all of these collectively lead to lower farrowing rates.  Non-

productive days (NPDs) accumulate for females that are not pregnant or lactating and include the 

period between entry of gilt into the "gilt pool" and her first service, and the interval between 

weaning and mating in sows. To enhance reproductive efficiency in the breeding herd, NPDs 

must be minimized. 

  The possible reason for an increase in NPDs may be explained by pathologically 

suppressed gonadotropin secretion and ovarian inactivity; hence, exogenous gonadotropins are 

frequently used to stimulate ovarian activity [Van de Wiel et al., 1981]. 

 Estrus synchronization programs are able to facilitate the reintegration of the sows into a 

breeding schedule employing fixed-time artificial insemination.  

1. Weaning 

 Weaning age has an important influence on litters/mated female/year. But to maximize 

overall sow herd performance, weaning age must be set at an appropriate level. Reducing 

lactation length will decrease subsequent fertility of the female by extending the wean-to-estrus 

interval past the ideal interval of 3 to 5 days, reducing conception rate and decreasing subsequent 

litter size [Estienne et al., 1998].  Therefore, to maximize throughput in an operation, weaning 

age should be set to a degree where it least affects sow reproductive performance.  In most herds, 

the greatest impact on reproduction is observed in lactation periods of less than 17 days 

[Estienne et al., 1998].   
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 The sow remains in anestrus during lactation because the suckling influence of the litter 

suppresses ovarian and pituitary hormonal activity, and stimulates the release of prolactin.  Once 

suckling is reduced or the litter is weaned, prolactin levels gradually decline, and increases in 

blood levels of LH and estradiol stimulate estrus.  This hormonal suppression provides the sow 

time for uterine involution [Senger, 1999; Almond, 2007], during which, the uterus must 

undergo a rapid loss of length and weight during the first two to three weeks of lactation.  

Impaired rates of uterine involution and wean-to-estrus interval, and subsequent embryonic 

deaths, have been linked to lactation lengths of less than 19 days [Kaeoket, 2008].  Similar 

results have been demonstrated by Fernández et al. (2005) where they concluded that the wean-

to-estrus intervals are shortest for sows weaned between three and four weeks after farrowing.  

Sows weaned at less than 10 days of lactation demonstrate a much longer wean-to-estrus interval 

and in contrast, a greater percentage of sows that lactate for more than 20 days return to estrus by 

Day 7.  This is all linked to enough time for uterine involution [Kaeoket, 2008].   

2. Altrenogest  

 Progestin Altrenogest (Matrix; Intervet America Inc., Millsboro, DE) is an orally active 

progestagen which inhibits gonadotropin release, imitating the biological activity of 

progesterone.  It does not prevent luteolysis, but it blocks the onset of estrus even after luteolysis 

[Horsley et al., 2005]. 

 A.  Synchronization of Gilts using Altrenogest 

 Swine operations maintain a pool of replacement gilts to ensure that a sufficient number 

of animals will be available to meet their breeding target.  It is ideal if the replacement gilts 

exhibit estrus all at a predicted time, allowing this way a more efficient use of gestation and 

farrowing facilities and so, it is important to synchronize these gilts [Bates et al., 1991]. 
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 In order to synchronize estrus in gilts, Altrenogest is administered orally as a top-dressing 

on food at a dose of 15-20 mg/day/gilt for 14-18 consecutive days.  Estrus can be expected 5 to 7 

days after the last day of Altrenogest treatment [Bates et al., 1991; Kaeoket, 2008]. 

 In gilts it has been demonstrated by Stevenson and Davis (1982) that a 14-day-treatment 

with altrenogest is long enough for corpora lutea to regress and for the females to come into 

estrus synchronously, although an 18-day-treatment resulted in a better synchronization effect. 

 B. Synchronization of Weaned Sows using Altrenogest 

 Sows, especially first parity ones may have an extended wean-to-estrus interval and an 

increase in embryonic loss mainly due to the lactational catabolism following farrowing 

[Koutsotheodoros et al., 1998].  Altrenogest can be used to synchronize early weaned sows 

without affecting the reproductive performance since it extends the wean-to-estrus interval and 

hence, allowing extra time for the female to recover from the lactational catabolism [Stevenson 

et al., 1982; Santos et al., 2004; Patterson et al., 2008].  It improves the percentage of sows in 

estrus within 7 days after weaning, increases ovulation rate, embryonic survival and subsequent 

litter size (Kemp et al. 2006).    

3. P.G.600 

 The reproductive efficiency within a swine herd can be evaluated based on the proportion 

of sows that return to estrus within 7 days after weaning [Estienne et al., 2001].  To prevent a late 

return to estrus after weaning, a combination of gonadotropins can be administered.  The 

exogenous gonadotropins, pregnant mare serum gonadotropin (PMSG) and human chorionic 

gonadotropin (hCG), act on the ovary to induce follicle growth and subsequent ovulation 

[Kirkwood et al., 1998] and these gonadotropins are commercially available in a product called 

P.G. 600 (Intervet America Inc., Millsboro, DE).  P.G. 600 (400 IU of PMSG and 200 IU of 
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hCG), a non-prescription drug used to stimulate the onset of heat and ovulation in prepubertal 

gilts and weaned sows and thus can decrease non-productive sow days (NPD) [Estienne, 2001]. 

 Administration of P.G.600 to sows on the day of weaning stimulates ovarian follicle 

development and results in a greater expression of estrus with a shorter wean-to-estrus interval 

(Knox et al., 2001).  Administration of P.G. 600 to sows at weaning induces follicle growth, 

leading to an increase in estrogen, an LH surge, and improves return to estrus in multiparous 

sows and primiparous sows and also reduces the wean-to-estrus interval in both primiparous and 

multiparous sows [Bates et al., 1991; Estienne et al., 1998; Knox et al., 2001]. 

 The average time of ovulation is not normally affected by treatment with P.G. 600 and 

sows will typically ovulate 45 hours after estrus [Knox et al., 2001]. 

4. Altrenogest + PG 600 

 A combination of the orally active progestin altrenogest and P.G. 600 given 24 h after the 

last feeding of altrenogest successfully synchronized estrus in cycling gilts [Estienne et al., 2001; 

Estienne et al., 2002].   Administration of P.G. 600 24 hours after withdrawal of altrenogest 

increases ovulation rate compared with gilts treated with altrenogest alone (Estienne et al.  2001). 

However, pregnancy rate and litter size at day 30 were not affected by P.G. 600 treatment 

(Horsley et al. 2005). 

 

E.   Breeding Management of the Sow 

1. Types of Mating Systems 

 In order to have successful mating it is necessary the coordination of insemination with 

ovulation.  There are two types of matings that can be applied in swine productions, natural 
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service and artificial insemination [Christenson et al., 2004].  Natural mating can be performed 

in one of two systems, group mating or hand mating system [Almond, 2007]. 

A. Group or Pen Mating  

 Pen mating is not a common practice currently in production.  It functions as a group of 

females is kept on pasture outside lots or in relatively large confinement pens and consists of 

putting a number of boars in with a proportionate number of sows or gilts.  Each female is then 

bred unknowingly as she comes into estrus.  In group breeding, there are many variations, but 

there are three general methods:  continuous breeding, boar rotation breeding, and sow rotation 

breeding [Almond, 2007].  In continuous breeding, all herd boars have continuous access to the 

sows and gilts, which are kept in the pen for about 70 to 80 days or until they show advanced 

signs of pregnancy [Almond, 2007].  In the boar rotation breeding, females are confined in 

certain lots and each day an appropriate number of boars are placed in the pen, left for 24 hours 

and then altered with another set of boars.  After about 25 days these females are moved to 

gestation pens [Almond, 2007].  In sow rotation breeding, a group of females is placed in a lot 

for about 25 days and then they are moved to the gestation pens [Almond, 2007].  Pen mating 

relies on boars accurately identifying and breeding sows in estrus.  It is also important to have 

enough boar power, requiring adequate number of boars with a common boar-to-sow ratio of 1:8 

[Anderson, 1993]. 

B. Hand Mating  

 In the hand mating system once a day heat checks are performed by moving groups of 

gilts or sows to a centralized pen with a mature teaser boar.  As females are detected in estrus, 

they are exposed to the breeding boar.  The teaser may be moved through several pens with 

females [Almond, 2007].  For sows, estrus detection starts 3 days after weaning and females 
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remain with the boar for at least 5 minutes, ideally for 15 minutes [Almond, 2007].  Sows are 

mated once daily at 24-hour intervals for as long as they stand [Almond, 2007].  In this system, 

fewer boars are required, there’s greater genetic merit and uniformity of progeny and breeding 

dates are accurately know in comparison to the pen mating system [Almond, 2007].   

2. Artificial Insemination 

 Artificial insemination (AI) is the most commonly used mating system in the United 

States.  It presents several advantages over the previous systems discussed, such as the ability to 

assess semen quality before use and hence, identification of infertile and subfertile boars, leading 

to a higher degree of conception rates [Anderson, 1993].  

 Most swine breeding programs adopt the strategy of administering two to three individual 

inseminations, every 12-24 hours apart after the detection of estrus.  Performing multiple 

inseminations can be critical due to the relatively short viability of oocytes and spermatozoa in 

the female reproductive tract and also because time of ovulation in the sow is highly variable, 

making it quite unpredictable [Flowers, 1998]. Fertilization results are highly dependent on the 

time of insemination relative to ovulation; however, the moment of ovulation may vary between 

35 to 45 hours after the onset of behavior estrus [Soede, 1997], hence, the need for multiple AI. 

 The procedure for AI is described by Gordon (1997) as introducing the insemination 

catheter through the lips of the vulva into the vagina and directing it upwards and forwards 

towards the spiral configuration of the cervix.  Once in contact with the cervix, the catheter is 

twisted in an anticlockwise direction to lock it into the cervix.  The semen container is then 

attached to the catheter and pressure gently applied over a period of several minutes to run the 

semen into the uterus. 
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3.   Estrus Detection  

 Pen mating and hand-mating systems rely on the boar for estrus detection.  In order to 

achieve success in an AI program, it is necessary that animal managers be able to recognize the 

behavioral signs of estrus and be aware of the factors which contribute to normal estrual 

behavior.  Since females will sometimes cycle and ovulate without manifestation of estrus, it is 

also important that managers know how to recognize the physiological signs of approaching 

ovulation [Christenson, 2004]. 

 Estrus detection is the most important feature in the breeding herd and so, improper 

detection of females in estrus leads to poor timing of AI which impairs reproductive performance 

[Rozeboom et al., 1996].  If mating if performed more than 24 hours before or after ovulation, it 

will result in reduced fertilization rate and consequently reduced farrowing rate and litter size 

[Kemp, 1996]. 

 Estrus detection should be performed twice daily, which eliminates most cases of false 

estrus, since sows that are not truly in estrus will rarely stand for two consecutive detection 

periods [Altmann, 1941].  Accurate estrus detection is greatly dependable on the presence of a 

mature boar and an experienced stockperson.  Sows and gilts should have daily contact with the 

boar and be taken to the boar rather than the boar to them, which will facilitate the full 

expression of estrus [Senger, 1999].  However, a key point in detecting estrus quickly and 

efficiently is to not allow the female to receive boar stimuli such as contact, sight, sound or smell 

for one or two hours before the time for estrus detection as this will reduce the effectiveness of 

detecting females in estrus [Christenson, 2004]. In addition, the manner in which boar is exposed 

to the females can influence the accurate detection of the standing reflex; because it involves 

muscle contractions and maintenance of the standing reflex requires a considerable amount of 
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energy.  As a result, females in estrus exhibiting the standing reflex can become fatigued or tired.  

If this happens, then she usually cannot resume a standing reflex for several hours [Christenson, 

2004].  Consequently, boar exposure during estrous detection should be restricted to small 

groups of sows, either 5 to 10 crates or 1 to 2 pens.  These small groups should be examined 

carefully and receptive females identified [Gordon, 1997]. 

 Females expressing estrus will show typical signs such as lordosis, swelling and 

reddening of the vulva, vocalization and boar-seeking behavior, “ear popping” or pricking of the 

ears, and standing for back pressure [Safranski, 2007]. 

A. Male presence 

 The male seeking behavior of the sow is in terms stimulated by the boar’s pheromones 

[Kirkwood et al., 1981].  Pheromones produced by boars are the most potent and effective 

inducer of the standing reflex in receptive females.   Two of the steroids produced by the boar 

testis, 3α-androstenol and 5α-androstenone are believed to be concentrated in the submaxillary 

gland of the mature boar and secreted into the saliva, where they act as pheromones [Kirkwood 

et al., 1981]. 

 If sows are housed in crates, running a boar in front of sows while a person applies back 

pressure is a common and effective method of estrous detection.  Sows in crates that are in estrus 

will move forward and assume the standing reflex as the boar moves in front of the crate.  Sows 

in crates that actually try and move away from back pressure, even though they may exhibit 

other positive signs, probably are not in true estrus.  If back pressure is applied and the sow is not 

in estrus, then the animal will attempt to escape the back pressure.  Females housed in pens 

displaying behavior estrus will sometimes attempt to follow the movement of a boar as he passes 
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in front of their pen. This is due to the fact that sexually receptive females seek out males more 

so than males finding sows that are in heat [Gordon, 1997]. 

 This responsiveness to boar stimuli, used for the detection of estrus, increases in the 

period immediately preceding ovulation as the female prepares to allow mounting [Langendijk et 

al., 2000]. 

B. Lordosis / Back Pressure Test 

 Lordosis, or mating posture assumed by the receptive female, triggers significant sexual 

arousal behavior on the part of the male.  It is a highly specific female motor response associated 

with the willingness to mate [Senger, 1999].  This is a natural response as she is preparing 

herself to be mounted by the boar for breeding [Gordon, 1997]. 

 This behavioral characteristic which is often used as the basis of estrus detection is the 

animal’s response to the “riding-test”.  When provided with the appropriate stimuli, receptive 

females will initiate isometric contractions of most of their skeletal muscles. This results in the 

female remaining rigid or "locked up" in anticipation of being mounted by a boar for breeding. 

Often the ears of sows and gilts will become erect during the standing reflex. This is commonly 

called the "ear popping" or pricking of the ears response [Gordon, 1997]. This response provides 

some convenience when performing AI in that sows can be inseminated without restraint if 

pressure is maintained on the rump [Flowers et al., 1993].   

 

Measurement of Vaginal Electrical Resistance  

 Changes in the electrical conductivity of vaginal mucus has been used to try to predict 

with some accuracy the optimum time to inseminate sows with fresh semen [Zink et al., 1984], 

however, a study performed by Stokhof et al. (1996) showed that although vaginal conductivity 
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increased slightly during estrus, it varied considerably between sows and no relationship was 

found between vaginal conductivity and ovulation time as determined by ultrasonography. 

 

Vulvar Changes 

 Vulvar reddening and swelling are related to the rise in circulating estrogens during the 

follicular phase, which stimulates blood flow in the genital organs which is more noticeable in 

gilts than sows [Langendijk et al., 2000].  There’s a significant increase in the density of estrogen 

receptors in the pig uterine and cervical tissue during the late follicular phase and is highest 

during estrus.  Following the rise of the preovulatory LH surge, plasma estradiol concentrations 

start to drop and reach basal levels during the day before ovulation and so, a concomitant 

decrease in related vulvar reddening might be expected [Van de Wiel et al., 1981].  Similar 

results were obtained in a study conducted by Langendijk et al. (2000), where vulvar reddening 

took place at 21 hours before ovulation, indicating a relationship between the decline in 

circulating estrogens before ovulation and vulvar reddening.  The same study also showed that 

the range in the interval between vulvar reddening and ovulation appears to be related to the 

duration of vulvar reddening, since sows with a shorter duration of vulvar reddening will ovulate 

within a 75 hour range from the end of reddening and sows with a longer duration of vulvar 

reddening will ovulate in about 30 hours.  

 

F.   New Technologies for Estrus Detection 

1. Non-automated Methods 
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Ultrasonography 

 The introduction of the transrectal untrasonography has made it possible to relate the 

timing of estrus to ovulation as well as hormonal changes around ovulation in sows. 

Ultrasonography can greatly aid in the understanding of follicular dynamics and time of estrus 

and ovulation in sows. 

 Although it has become increasingly applied on farms as a pregnancy diagnosis method, 

ultrasonographic examinations of the ovaries have only been applied in experimental studied 

guided mostly toward determining the time of ovulation.  

 Ultrasound exams can be performed when sows begin showing the first signs of estrus 

and it can be used to monitor follicle development until ovulation [Soede et al., 1998].  This 

monitoring can be performed using sequential examinations of the ovaries to follow changes and 

a reduction in the number of follicles present in the ovaries [Knox et al., 1999].    

2.   Automated Estrus Detection Methods 

 As females approach estrus, they begin to show an increase in physical activity and 

change in a series of body functions.  Based on this information, several heat detection methods 

have been developed, and specially automated methods for group housed post-weaning sows 

where it can be difficult to identify and access the individual sow in estrus.  Automated methods 

for estrus detection are often designed to facilitate management in large swine operations using 

the so-called principle of "management by exception", which means that the breeder can focus 

the attention on the sows to be checked for estrus and make more adequate management 

decisions, considering that formal estrus detection method takes about 30% of the total labor 

input [Perez et al. (1986)].   
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 Cornou (2006) reviewed methods for automated estrus detection in group-housed sows 

which can be based on sow's activity measurements, using accelerometers, infrared sensors, and 

sow’s activity near the boar pen and body temperature measurements.   

Accelerometer 

 The first sign that females are coming into heat is an increase in activity and vocalization 

[Cornou, 2006], hence, there’s an increase in both exploratory and motor activity at this time 

[Signoret, 1970]. 

 When housed in crates, sows commonly move backward and forward or from side to side 

within the crate and often attempt to nibble or nose females in adjacent crates.  When housed in 

pens, characteristic activities include sniffing; nuzzling the rear and fore flanks; and attempting 

to mount or ride other females. It is important to remember that sows attempting to mount or 

those actually riding other females are not in heat, but rather either just coming in or going out of 

their period of sexual receptivity [Signoret, 1970]. 

 An accelerometer is a device for measuring actions induced by movement or acceleration 

and it can detect magnitude and direction of the acceleration.  A study conducted by Bresser 

(1993) on the efficacy of use of accelerometers for the detection of estrus in group-housed sows 

suggested that this method could reduce in 10 to 15% the number of sow check-ups when 

compared to no automated system.  Another study conducted by Geers et al. (1995) reported 

physical activity to be 10 times higher the day before estrus. 

Visit to the Boar Pen 

 It is an accepted fact that females in general will seek the male during their receptive 

period mainly due to the effects of reproductive hormones, mainly estrogen.  Beach (1976) has 

proposed that during estrus, the female will show periods of attractivity, proceptivity, and 
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receptivity, meaning it will seek for the male, initiates, establishes and maintain sexual 

interaction with the male and finally show positive responses towards the male leading to 

copulation.    

 Using these proven facts certain automated estrus detection methods have been 

developed such as the use of parameters on sow visits to a boar, in which the boar is housed in a 

separate pen from the sows, but can still have nose contact with them.  Experiments performed 

by Houwers et al. (1988) Blair et al.  (1994) experiments had a similar conclusion which was that 

sows in diestrus showed little interest in the boar and increased boar visitation was highly 

correlated with observed estrus. 

 Visit to the boar pen can be considered a very useful tool for estrus detection, offering a 

high degree of sensitivity and specificity; however this system’s negative aspect is the fact that it 

monitors animals individually, therefore it can miss animals in estrus at the same time [Cornou, 

2006]. 

Body Temperature Measurement 

 Several researches have demonstrated a deviation in body temperature around the time of 

estrus in the many different species of animals; however there are many confound differences 

among these researches.  Junge and Holtz (1984) measured intravaginal temperature of sows and 

cows and diagnosed a defined drop of temperature which was at its lowest two days before the 

female was observed in standing estrus and a high point 2 days after standing estrus, which 

coincides with the period close to ovulation.  On the other hand, a study performed by Henne 

(1991) on rectal temperature, measured twice daily during estrus in synchronized gilts and found 

a large variability between animals; at onset of estrus the temperature rose in 30% of the gilts, 

did not change in 20% of the gilts, and declined in 50% of the gilts. 
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 Other researches support the fact of body temperature oscillations during the estrous 

cycle, which may be due to corpus luteum regression as supposed by Kyle et al. (1998) or to 

estrogen-induced changes in peripheral vasodilatation as shown by Czaja and Butera in an 

experiment with guinea pigs (1986).  However due to so many conflicting parameters as to 

whether body and/or vaginal temperature is related to the time of estrus and if those parameters 

are accurate and reliable, body temperature measurement is not currently used as a way of estrus 

detection is swine operations. 

Infrared sensor 

 Not much research has been published in regards to estrus detection in sows using 

infrared sensor other than a study conducted by Freson et al. (1998) where the sow’s body 

activity was monitored continuously by an infrared sensor mounted above the shoulder area.  

The research was based on the principle that the sensor became electrically charged when the 

temperature of the sow changed.  This change in temperature was generated by a change in 

position.  All this information was transmitted to a computer where it was stored for further 

analyses.  The work described the advantages of this method as the ability to monitor estrus 

without touching the sows; fixed installation on a limited number of stalls and no calibration 

required.  The author also stated that 86% of the sows were correctly classified when using the 

mean daily activity as the selection parameter, with 79% sensitivity and 68% specificity. 

 

G. Infrared Thermography 

 Infrared thermography (IRT) is the process of acquisition and analysis of thermal 

information from non-contact thermal imaging devices.  It is a modern, noninvasive and safe 

technique to determine the thermal profile of a certain object or being.   
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 Considering all materials and beings generate heat radiation in the infrared part of the 

light spectrum depending on their temperature and emissivity, the infrared camera captures this 

radiation and transforms it into images which can then be evaluated [Knízková I. et al., 2007].  

The temperature of a being has electromagnetic radiation which is characterized by its 

wavelength and intensity [Schaefer et al., 2003].   The wavelength of an object depends on its 

surface temperature: the higher the temperature, the shorter the wavelength at which most of the 

radiation is emitted [Schaefer et al., 2003].  The wavelengths are in the infrared range of the 

electromagnetic spectrum, consequently measuring radiation emitted by such objects is generally 

called infrared thermography [Schaefer et al., 2003].   

 The function of the emissivity is (ε) is the single most important attribute necessary for 

thermal measurement [Knízková I. et al., 2007].  It is the ratio of the actual amount of 

electromagnetic radiation emitted by an object to the amount emitted by an ideal blackbody at 

the same temperature, since a blackbody is a perfect absorber and emitter of radiation.   

 An object or being will absorb some of the radiation and convert it into heat, reflected 

some at its surface and radiation will also pass right through an object or being.  The infrared 

camera picks up the total radiation from a surface.  The data obtained by an infrared camera is 

computer-processed and shown in the form of temperature maps that provide for a detailed 

analysis of the temperature field [Knízková I. et al., 2007].   

 The use of digital infrared thermography (IRT) has been thoroughly investigated as a 

diagnostic tool in human medicine and has been growing in the field of veterinary medicine, 

primarily for an aid in diagnostic purposes to detect areas of inflammation.  Variations in skin 

temperature result from changes in tissue perfusion and blood flow, especially in pathologic 

scenarios, and so, this information is used to assess the area [Harper, 2000].  A major advantage 
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of the method is the fact that it measures heat emissions and does not require a direct physical 

contact with the surface monitored, thus allowing remote measurement of temperature 

distribution [Speakmen, 1998]. 

 There are some limitations and factors that need to be considered when using IRT 

especially in veterinary medicine.  Thermograms must be collected out of direct sunlight and 

wind drafts, since the effect of weather conditions, circadian and ultradian rhythms, time of 

feeding, milking, laying and other physiological animal behavior are also factors along with hair 

coats and skin cleanliness that will greatly affect the final temperature measurement [Knízková I. 

et al., 2007].     

1. Applications of IRT in livestock 

Bovine 

 IRT has been widely researched in cattle among other species. The IRT method has value 

as a diagnostic tool for assessing udder function and can be considered a useful method for 

indirect and noninvasive evaluation of the condition of teats and udders as indicated by Kunc et 

al. (2007) who concluded that IRT shows potential as an early detection method for mastitis.  

Nikkah et al. (2003) observed hooves of dairy cows.  Images of hooves were taken using IRT to 

determine temperature of the coronary band, and that of a control area above the coronary band. 

The authors recommend IRT as tool for monitoring hoof health. 

 In the reproductive field, Hellebrand and colleagues (2003) concluded that the external 

pudendum temperature follows the core body temperature, and thus IRT can be utilized for 

estrus climax determination.  Also, a study performed by Osawa et al. (2004) had the goal to use 

thermography to detect vulva surface temperature changes during estrus and concluded that it 

can indeed improve estrus detection rate in cows with silent or normal estrus, since temperature 
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increased significantly between three days before and the day of ovulation.  However that study 

did not have a substantial amount of animals and results may be deceiving.   

 In bulls, it has been used to diagnose testicular inflammation and degenerative disease, 

since the compromised testicle will show temperature 2.5 degrees to 3 degrees (C) above that in 

the contralateral side [Purohit, 1985].  And many pathologic and physiologic aspects of testicular 

function related to temperature have been explained by researches with IRT as shown by 

Kastelic et al. (1996, 1997a, 1997b) and Gabor et al. (1998). 

 

Equine 

 In equine medicine, IRT has been mostly widely used to diagnose foot and leg problems 

in horses and aid in diagnose and treatment of lameness [Strömberg, 1975; Weil et al. 1998; 

Eddy et al., 2001].  However, Bowers et al. conducted a study to investigate the use of 

thermography in order to be able to diagnose pregnancy status in mares and concluded that it can 

be performed and used as a trusted noncontact method for mid- to late-gestation pregnancy 

diagnosis in mares. 

 

Swine 

 As with other species, in swine, IRT has been used in a number of ways.  It has been used 

to detect osteoarthrosis tarsi deformans (OATD), in the tarsus of Swedish Landrace boars [Sabec 

and Lazar, 1990] and to detect febrile responses in pigs following intranasal inoculation with 

Actinobacillus pleuropneumonia [Loughmiller et al., 2001].  Infrared thermography has also 

shown to be a useful tool in meat quality control in slaughter plants as shown by Gariepy et al. 

(1989) who observed a correlation between incidence of meat quality defects and increasing skin 



 
 

34

surface temperature of pigs prior to stunning and concluded that IRT can be a practical and rapid 

method of detecting which pigs will yield a significant proportion of meat quality defects.  

Schaefer et al. (1989) studied the relationship between stress sensitivity and meat quality in pigs 

were able to diagnose a higher drip loss and percentage of pale, soft and exudative meat (PSE) 

may be expected in pigs with a lower superficial temperature. 

 

Animal Welfare  

 IRT has shown to be a reliable tool to measure stress in animals, being noninvasive and 

accurate and therefore helping to assess animal welfare [Stewart et al., 2005]. Using IRT, 

Schwartzkopfgenswein and Stookey (1985), were able to detect a prolonged inflammatory 

response observed in hot-iron animals in comparison with animals branded with freeze brand, 

indicating more discomfort associated with hot iron branding.   

 Adamec et al. (1997) studied the possibility of reducing heat stress on fattening pigs 

during the summer period by means of water evaporative cooling. The authors concluded that 

evaporative cooling decreased heat stress on pigs, and improved growth and feed conversion. 
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CHAPTER 3 

MATERIAL AND METHODS 

A. Animals and Housing 

 The study was conducted using 25 nulliparous and 27 pluriparous crossbred (Yorkshire x 

Landrace) females housed individually in crates size 24”x 67”.  The boars used for heat detection 

were 1.5-2 years of age, housed pens size 5’x8’ located in breeding barn.  All animals were kept 

in a temperature and humidity controlled environment recorded daily.  This study was performed 

in accordance with the regulations of the Institutional Animal Care and Use Committee. 

 

B. Experiment Group 

Synchronized gilts 

Gilts were synchronized using an altrenogest solution, a synthetic progestagen (Matrix®, 

Intervet/Schering-Plough Animal Health, Millsboro, DE), 15MG (6.8ML) fed to each female 

daily for 14 days and administered PMSG and HCG (PG600®, Intervet/Schering-Plough Animal 

Health, Millsboro, DE) on the last day of altrenogest treatment.  The day of PG 600 treatment 

was considered as day 0 of the experiment. 

Weaned Sows 

The day of weaning was considered as day 0 of the experiment. 

Controls 

The control group consisted of 30 sows per breeding replicate (3 replicates=90 total).  These 

sows were at least 50 days of gestation, diagnosed pregnant by ultrasonography.  These sows 

were imaged with the infrared thermocamera (FLUKE IR FlexCam® Thermal Imager, model 
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Ti55, Fluke Corporation, Everett, WA) in order to establish a normal vulvar skin temperature for 

animals not undergoing hormonal changes associated with the estrous cycle.   

 

C. Detection of estrus 

Weaned Sows were exposed to the boar for heat detection starting 2 days post-weaning (Day 2). 

Gilts were exposed to the boar for heat detection starting 2 days after the end of a 14 days 

treatment with Altrenogest for estrus synchronization (Day 2).     

 From Day 2 onwards, estrus detection was performed twice daily (every 8 hrs) after the 

thermal images were obtained.   The females were taken to a pen next to the boar’s pen and 

allowed about 5 minutes to acclimate to the new environment.  Onset of estrus was confirmed by 

behavioral subtle signs such as swelling of the vulva, vocalization, boar seeking behavior, 

standing reflex, lordosis (chronic flexing of the back muscles) and ear pricking. 

 

D. Thermal imaging 

 From Day 2 onwards, vulvar skin temperature was measured using the infrared digital 

thermocamera (FLUKE IR FlexCam® Thermal Imager, model Ti55, Fluke Corporation, Everett, 

WA) before onset of signs of estrus in order to establish a baseline temperature for the female 

and digital thermal imaging continued through estrus and until the female was detected as having 

ovulated and not showing any more signs of estrus.  The digital thermal imaging was performed 

with the females in gestation crates before moving them to the boar for estrus detection.  Images 

were acquired while the females were being fed, facilitating the procedure by having them up 

and standing still. 
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Scanning Procedure 

 During the scanning procedure the sows/gilts remained in their crates, and each animal 

was monitored from a fixed distance of 2 feet, measured from the posterior end of the female.  

The monitoring itself focused on the gluteal region of the sow's/gilt’s body, which included the 

anal and vulvar areas (Figure 3.1).  A black spot was marked on each gluteal region of the pig 

(Figure 3.1A) with the aim of taking measurements at the same location during each imaging 

event. Cleaning of this posterior area was not performed unless the area was excessively wet 

and/or dirty as not to disturb the skin temperature. 

 The digital infrared thermal images were downloaded into the computer and visualized 

using the SmartView™ Version 1.7 image analysis software (Fluke Thermography, Plymouth, 

MN).  This software allows the user to display the temperature at any given point on the image.  

Additionally, specific areas such as the vulva can be outlined and the average, minimum and 

maximum temperature values calculated (Figure 3.1B). When analyzing the infrared images, 

average temperatures of the gluteal areas were also recorded.   

 

 

Figure 3.1:  Digital infrared thermal image of a sow’s posterior area with the vulva selected 
Panel A: White-light image. Black spots on the gluteal region (outlined by red circles) were used 
as guides.  Panel B: Infrared thermal image. 
 

A  B 
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E. Real-time Ultrasound 

 Once standing estrus was observed, transrectal real time ultrasonography (RTU) was 

performed twice daily at 8-hour intervals (8 am and 4 pm) to determine the occurrence of 

ovulation.  Ovaries were visualized using an Aloka 500V ultrasonics machine (Aloka Co, Tokyo, 

Japan) fitted with a transrectal 7.5 MHz linear transducer which was fitted into a rigid, fixed-

angle PVC adapter (Knox 1999). After ovulation was diagnosed, one more ultrasound exam was 

performed in order to confirm the diagnosis.  

 Ovulation was the most important parameter for the experiment since the objective of the 

project was to determine if there was a relationship with the vulvar skin temperature.  The female 

was classified as either ovulated or not ovulated. Ovulation was determined to be complete when 

there were fewer than four follicles ≥ 6.5 mm in diameter remaining on the ovaries and 

noticeably fewer large follicles relative to previous observations.    

 During transrectal RTU examinations, the sows remained in the standing position and the 

probe, well lubricated with Lubrivet® gel, was introduced into the rectum with the transducer 

turned over, then it was rotated 180◦ in complete contact with the rectal mucosa.  To find the 

genitourinary structures the probe's transducer was turned down so that the bladder and the 

uterine horns could be observed in longitudinal section. Then, the transducer was rotated 45–90◦ 

clockwise and counterclockwise to locate, respectively, the left and right ovary as explained by 

Ginther and Kot (1994).   

 

F.  Statistical Analysis 

 All mean values for hours and temperatures are reported as mean ± standard error (SE).  

Vulvar temperatures of gilts and sows during the non-estrus and estrus period were compared 
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using an ANOVA and Student’s t test using SAS (SAS Institute Inc., Cary, NC) to test the 

significance of putative temperature spikes.  The average temperature for each measurement time 

interval was compared to the average temperature of the following time interval (8 or 16 h 

intervals).  A significant value reported at p<0.05.   
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CHAPTER 4 

RESULTS 

 

 Temperature data collected at the same time each day was submitted to statistical analysis 

in order to identify significant vulvar temperature fluctuations. 

 In sows, the mean wean to estrus interval (WEI) was 86 ± 2.3 hours (mean ± SEM).  

Gilts showed estrus at 75.5 ± 2 hours after last day of altrenogest and PG600®.  Average 

duration of estrus for gilts was 46 ± 1.2 hours and for sows was 50 ± 1.7 hours.  Ovulation took 

place at average 38 ± 9 hours after onset of estrus in gilts, and 43 ± 12 hours in sows. 

 Average vulvar temperature of gilts during estrus was significantly higher (p= 0.01) than 

during the non-estrus period (Figure 4.1).  Similarly, sows also displayed significantly increased 

temperature during estrus (p< 0.001) as opposed to the non-estrus period (Figure 4.2).  When 

comparing gilts and sows, the latter displayed significantly higher vulvar temperatures (p=0.03) 

during the estrus period than gilts, but in contrast, there was no significant difference (p>0.05) 

between vulvar temperatures in gilts and sows during the non-estrus period.   There was no 

significant difference between the gilts and sows’ vulvar temperatures at the time of ovulation 

(p>0.26).   

 During estrus, there is an increase in average vulvar temperature that occurs at distinct 

times as ovulation approaches both in gilts and sows.  After a “peak” in temperature is reached, 

there is a significant decrease in temperature that occurs.  The most marked increase in 

temperature was present at 36 hours before ovulation for gilts and at 24 hours before ovulation 

for sows.  The frequency at which animals reached peak temperature is illustrated in Figures 4.3 

for gilts and 4.4 for sows. 

 Gluteal area temperature was measured, analyzed, and compared with vulvar 

temperature.  The temperature difference (TD) between the vulvar and gluteal area during estrus 

is illustrated in Figure 4.5 for gilts and 4.6 for sows.  The difference in degrees of temperature 

followed the same trend as the vulvar temperatures.  The gluteal area temperatures remained 
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relatively steady during the measurement periods.  This means that the surface temperature of the 

animal did not change significantly during the non-estrus and estrus periods, only vulvar 

temperature changed.  TD increased at 36 hours before ovulation in gilts and at 24 hours in sows, 

then decreased at 12 hours prior to ovulation and had a small increase at ovulation in gilts, but 

the rise in TD at ovulation did not occur in sows. 

 Pairwise comparisons were performed between the time periods during estrus.  There was 

a significant decrease in temperature from 36 hours before ovulation to 12 hours before ovulation 

in gilts (p=.002) and also between 36 hours before ovulation and time of ovulation (p=.033) 

(Figure 4.7).  In sows, it was possible to observe a distinct decrease in degrees of temperature 

between 24 and 12 hours before ovulation (p=0.000) and between 24 hours before ovulation and 

time of ovulation (p=0.000) in sows (Figures 4.8). 

 In gilts, there was a 0.02% decrease in temperature from 36 to 24 hour and a 0.04% 

decrease from 36 to 12 hours before ovulation.  Then there was a 0.02 % increase in temperature 

from 12 hours before to ovulation.  Figure 4.9. 

 Temperature in sows showed 0.04% increase from 60 to 48 hours before ovulation, 

maintained a relatively stable level and then a significant decrease from 24 to 12 prior to 

ovulation of 0.05%. (Figure 4.10) 

 

. 
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Figure 4.1.   Illustration of the vulvar temperatures of gilts before and during estrus 

 

 

Figure 4.2.   Illustration of the vulvar temperature of sows before and during estrus. 
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Figure 4.3.  Frequency of animals with increase in vulvar temperatures at different times before 

ovulation - Gilts  

 

 

Figure 4.4.  Frequency of animals with increase in vulvar temperatures at different times before 

ovulation - Sows 
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Figure 4.5.  Difference between vulvar and gluteal temperatures during estrus and ovulation in 

Gilts 

 

 
Figure 4.6. Difference between vulvar and gluteal temperatures during estrus and ovulation in 

Sows 
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Figure 4.7.  Comparison between average temperatures during estrus through ovulation in gilts.  

The brackets show where the significant differences are found. 

 

 

Figure 4.8.  Comparison between average temperatures during estrus through ovulation in sows.  
The brackets show where the significant differences are found. 
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Figure 4.9. Percentage temperature difference between estrous and non-estrous gilts  

 

 

Figure 4.10 Percentage temperature differences between estrous and non-estrous sows 
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CHAPTER 5 

DISCUSSION 

 In this study, thermographic imaging was able to determine a rise in temperature several 

hours prior to ovulation, which can be useful in predicting time of ovulation when used along 

with conventional methods such as use of the boar for estrus detection.  No studies have 

previously been performed to investigate the use of Infrared thermography as an aid to estrus 

detection and ovulation predictor. 

 Only one study has been performed in attempt to correlate vaginal temperature and 

ovulation in sows.  Soede et al. (1997) related that vaginal temperature is not related to the time 

of ovulation in sows, and although the temperature showed a daily rhythm, being higher in early 

morning than in the evening, there was no overall consistent change in vaginal temperature from 

96 hours before to 48 hours after ovulation.  In that study, there was a relatively low number of 

animals used (n=10) and they used a different technique for temperature measurement, which 

was temperature transmitters which assessed temperature every 12 hours and RTU was 

performed every 2 hours to determine ovulation.  The results from our experiment agrees with 

the fact that  no rise in vulvar surface temperature occurred to a significant degree at time of 

ovulation, however, the decrease in temperature from 36 and 24 hours prior to ovulation found in 

our study was statistically significant and so, this technique could prove to be an aid in predicting 

time of ovulation. 

 Other researches attempted to relate body temperature to estrus, such as Junge-Wentrup 

and Holtz (1984), who, using temperature probes anchored deep inside the sow’s vagina 

concluded that temperature dropped 2 days before onset of estrus and rose reaching a maximum 

2 days after standing estrus, time near ovulation, and so, could be a useful tool for prediction of 

ovulation, result which agrees with the present study.  Henne (1991) was unsuccessful in trying 

to correlate rectal temperate to estrus, finding a great variation in temperature between animals 

during estrus.      

 The advantage of the present study is that pigs were maintained at an enclosed 

environment, free of drastic temperature, light and humidity changes and also free from wind and 

sunlight, allowing for nearly accurate results in temperature readings.   
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 We decided to analyze multiparous and primiparous animals separately due to their 

reproductive physiology differences.  All animals displayed normal estrus behavior as 

determined by exposure to the boar and back pressure test.  

 There was a clear trend in temperature and a distinct difference between sows and gilts 

that could be observed from the results, which was a rise in temperature at 36 hours in gilts and 

24 hours in sows prior to ovulation.  This rise was always followed by a decrease in temperature 

reaching a low threshold at 12 hours before ovulation, when it began to rise again.    

 It is not clear why surface vulvar temperature presented such fluctuation.  Unfortunately 

hormone assays were not performed, which could have aided in explaining temperature 

fluctuation, since it is likely linked to hormonal changes during the cycle. Two possible reasons 

for the vulvar temperature increase are LH peak prior to ovulation and a rise in Estradiol (E2) 

levels due to follicle development.   

 In cattle, a rise in vaginal temperature coincides with the timing of the LH-peak [Mosher 

et al., 1990; Fisher et al., 2008], which occurs at 21-27 hours before ovulation [Rajamahendran et 

al., 1989; Mosher et al., 1990; Rajamahendran and Taylor, 1991].  Clapper (1990) also 

determined a rise in temperature along with the LH peak in cattle and concluded that temperature 

is a good predictor of LH surge and hence, a better predictor of ovulation, since it occurs after a 

rather consistent interval after the LH surge.    In sows, the LH-peak occurs at about 30 hours 

before ovulation [Soede et al.,1994; Mburu et al., 1995] or 6.5 ± 0.7 hours after the onset of 

estrus [Knox et al., 2003].  Since in the present study temperature was only measured at every 12 

hours, we noticed the rise in temperature either at 36 or 24 hour prior to ovulation which could 

coincide with the timing for LH peak and a rise in temperature could be expected at around 30 

hours before ovulation.   

 A more acceptable explanation for the rise in vulvar temperature is the pre-ovulatory 

increase in estrogen levels.  A similar study performed by Osawa et al. (2004) in cattle 

determined that infrared thermography may be used as a screening tool for estrus detection and 

ovulation.  They measured Estradiol-17b (E2) and found that both the temperature and E2 level 

increased between 3 days before and the day of ovulation in cows.   

 There’s no literature available about the correlation of increase of estrogen during the 

follicular phase with temperature in pigs.  Endocrine changes prior to estrus are characterized by 

increases in serum LH and (FSH) due to increased concentrations of GnRH in the hypothalamus.  
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The increased gonadotropins stimulate follicular growth, which results in increased estrogen 

levels [Stevenson et al., 1981; Cox and Britt, 1982].  Highest levels of estrogen occur one day 

before or the first day of estrus [Knox et al., 2003].    

 The approaching estrual period is characterized by rising plasma estrogens and it has 

been well demonstrated and documented by various experiments that estrogen causes 

vasodilation and increases blood flow to through the uterus and associated structures 

of the reproductive tract in the different species [Ford SP, 1982; Bell et al., 1995; Naderali et al., 

1999; Naderali et al., 2001; Sprague et al., 2009].  Inspection of the female’s genitalia and 

adjacent parts reveals obvious cyclic changes which are undoubtedly of vascular in origin.  

Abrams et al. (1972) performed studies in sheep that imply an increased heat production 

associated with biochemical responses related to increased estrogen levels.  In that sense, 

generalizing from the previous works presented, a rise in vaginal thermal condition may be 

expected during periods when estrogen is known to be present in high concentrations.  If this 

occurs, one might be able to use this principle, based on estrogen-induced rise of vaginal and 

vulvar blood flow rate along with increased temperature of the area to predict ovulation. 

 Based on our results and the timing at which rise of temperature occurred, we assume that 

it is due to the vascular changes such as increase in blood flow that occur in the vaginal and 

vulvar tissues triggered by elevated levels of estrogen.  However, it is not clear the reason for 

vulvar temperature decrease 12 hours prior to ovulation.     
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CHAPTER 6 

CONCLUSION 

 

 The results obtained from this study indicate that there is a clear vulvar temperature 

fluctuation during estrus in sow and gilts; however, although there are evidences as for these 

fluctuations being related to hormonal changes, it is not possible at this time to confidently 

determine such because hormones were not assessed in the present study and hence, further 

investigation using hormonal essays is necessary in order to determine a definite relation 

between temperature changes and hormones in the sow and gilt. 

 The temperature fluctuations can be a good predictor of ovulation and so, it appears at 

present that the usefulness of infrared scanning for routine prediction of ovulation in pigs is a 

promising tool for when used along with regular estrus detection by the boar.  Further 

investigation is warrant in order to establish an adequate protocol for routine farm use in the 

absence of a boar.  The technique however has immense potential as a research tool for the study 

of skin temperature patterns and help well understand temperature fluctuations that occur during 

the pig’s estrous cycle. 
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