
c© 2010 Guillaume Gigaud

A FEATURE-BASED FINGERPRINTING SCHEME ROBUST TO
DESYNCHRONIZATION

BY

GUILLAUME GIGAUD

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Adviser:

Professor Pierre Moulin

Abstract

Traitor-tracing (aka fingerprinting) has received much attention as a possible

solution for protecting media copyrights. However, current schemes for im-

age and video fingerprinting lack robustness against geometric attacks. We

propose a novel semi-blind fingerprinting scheme that can cope with such at-

tacks. The scheme improves a state-of-the-art high-rate fingerprinting code

that can resist tens of colluders and Gaussian noise but has no resistance

against geometric attacks.

Our scheme uses compressed SURF (Speeded-Up Robust Features) image

features as side information in order to estimate and invert any geometric

attack in a given class. We consider simple linear attacks (affine transforms),

and more complex ones (homography and image warping). Our Estimation-

Elimination algorithm estimates the attack parameters by matching image

features and eliminating iteratively suspected outliers. We also compare this

method to an adapted version of RANSAC (Random Sample Consensus).

The fingerprints are embedded securely and invisibly using Spread Trans-

form Dither Modulation (STDM) applied to the intermediate level of a

Laplace decomposition of the image. The fingerprints are robust against

common attacks such as averaging, interleaving, addition of Gaussian noise,

JPEG compression (with quality factor Q = 45), cropping (50% of the image

area), affine transforms, homography and image warping.

ii

To Amélie

iii

Acknowledgments

I would like to thank first my adviser, Professor Pierre Moulin, for the trust

he put in me and his constant pool of ideas that guided me throughout

my research. He has always reviewed and carefully corrected my works –

including this thesis – with much rigor, in a constant search for perfection.

He introduced me to the world of academic research, and showed me that

this activity is as fascinating as it can be challenging.

My girlfriend Amélie was also a great source of inspiration; she always

tried hard to understand my work and advised me wisely on decisions I had

to take. I thank her for bringing happiness into my life and giving me an

excellent reason to go back to my country.

I would also like to thank the friends I met in Urbana-Champaign, the

students of my research group, and my roommates for making my stay so

pleasant and beneficial. Particularly, I had a lot of fun and many interesting

discussions about our respective research with Bruno.

Finally, my parents, sister, family and friends in France were all of great

support while I was abroad, often calling me and reminding me that I should

go back soon.

This work has been possible thanks to the financial support of the Na-

tional Science Foundation under grant CCF 07-29061.

Previously published articles are reprinted with permission from:

• G. Gigaud and P. Moulin, “Traitor-tracing aided by compressed SURF

image features,” CISS 2010, Princeton, NJ c©2010 IEEE.

This material is posted here with permission of the IEEE. Such permission

of the IEEE does not in any way imply IEEE endorsement of any of the

University of Illinois’ products or services. Internal or personal use of this

material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works

iv

for resale or redistribution must be obtained from the IEEE by writing to

pubs-permissions@ieee.org. By choosing to view this document, you agree to

all provisions of the copyright laws protecting it.

v

Table of Contents

Chapter 1 Introduction . 1

Chapter 2 High-Rate Encoder and Decoder 6
2.1 Encoder . 6
2.2 Decoder . 7

Chapter 3 Fingerprint Embedding and Extraction 8
3.1 STDM-Laplace embedding . 8
3.2 Fingerprint extraction . 10
3.3 Large quantization step . 12

Chapter 4 Channel Model . 14
4.1 Non-desynchronizing attacks 14

4.1.1 Copy-merging attacks 14
4.1.2 Additive Gaussian noise 15
4.1.3 Other attacks . 15

4.2 Geometric attacks . 17
4.2.1 Affine transform . 17
4.2.2 Homography . 19
4.2.3 Image warping . 20

Chapter 5 Features Computation and Compression 21
5.1 Image features . 21
5.2 Feature computation . 22
5.3 Feature compression . 23
5.4 Features matching . 25

Chapter 6 Resynchronization 27
6.1 Estimation-elimination algorithm 28
6.2 Adapted RANSAC . 29

Chapter 7 Experimental Results 32
7.1 Copy-merging attacks . 32
7.2 AWGN . 32
7.3 Other non-desynchronizing attacks 33
7.4 Desynchronizing attacks . 34

vi

Chapter 8 Conclusion . 36

References . 37

vii

Chapter 1

Introduction

The multimedia industry has never been so important worldwide: 2.5 mil-

lions jobs are related to the film and television industry in the US, directly

or indirectly, according to the Motion Picture Association of America [1].

Moreover, this industry brings more than $80 billion annually to the US

economy [2].

On the other side, copyright infringement has also never been so present:

from in-theater camcording and illegal redistribution networks to CD/DVD

illegal copies and peer-to-peer, the multimedia industry is attacked at every

level [3]. The loss for the movie industry due to piracy in 2005 was estimated

to be more than $18 billion worldwide, $6.1 billion in the US and $2.7 billion

in China [4]. Similarly, the cost of piracy was estimated to be around $1.5

billion and 10,000 jobs in France in 2008 [5]. According to several reports,

this loss is mainly imputable to recordings of movies in theaters, leading

to illegal DVDs and files available for downloading. Moreover, the major-

ity of awards-nominated movies can be downloaded illegally before they are

officially released due to leaks in the rating process.

One of the main tools to prevent such copyright enfringements is traitor-

tracing (aka fingerprinting or forensic watermarking), among other tech-

niques like watermarking and robust hashing. The idea is to insert a unique

mark in a multimedia content, which contains information about the user or

the date, time, and location of broadcast. This mark, also called a fingerprint,

is intended to be hard to remove in order to prevent illegal redistribution.

The embedding process takes advantage of the human visual or auditory sys-

tem to make the mark invisible. However, colluders (traitors) may process

their individual copies and create a pirated copy in order to remove traces

of their fingerprints, often accepting to alter the quality of the multimedia

content, in exchange for lower probability of detection. When a pirated copy

is found, extracting its fingerprint enables the distributor to trace at least

1

Encoding Embedding

Collusion

channel

Resynchro-

nization
Extraction Decoding

Side Information

Extraction

u1

uM

f1

fM

I

k

d

X1

XK

XM

Ir Is f’

u’

User

signatures

Original image

Secret key

Binary fingerprints
Fingerprinted

copy
Forgery

Resynchronized

content

Extracted

fingerprint

Accused user

signature

Side

information

Figure 1.1: Fingerprinting scheme with K colluders and M users.

one of the colluders.

Such techniques have been used for other applications for centuries. For

instance, in the 17th century, some of the least significant digits of logarithm

tables were intentionally modified in order to identify users who tried to

illegally reproduce the tables [6]. More recently, the use of steganography in

printers enables to know where and when a document was printed and which

model of printer was used [7]. In the movie industry, some motion picture

distributors inserted visible dots in projected movies, identifying the cinema

and the date of projection [8].

Nowadays, fingerprinting is used widely in several applications: digital

cinema to prevent recordings in theaters, pre-release copies to prevent leaks,

online pay-per-view, etc. Thereby, the use of traitor-tracing has helped dis-

mantle several piracy networks, such as the 2005 arrest of William Sprague

who stole several major motion picture copies prior to their theatrical or

DVD release [9], or the 2008 apprehension of Robert Henderson who made

counterfeit DVDs from recordings in a movie theater [10].

The global process of multimedia traitor-tracing is diagrammed in Fig.

1.1. The encoder encodes each user’s binary bitstream and a secret key into

a fingerprint that is designed to be robust against collusion. Each fingerprint

is then inserted into a copy of the original content. The marked copies are

then distributed to the corresponding users. Some of them might collude and

process their copies to create a forgery. The colluders are assumed to know

the entire fingerprinting scheme, except for the secret key. They can use all

kinds of operations provided the content is not too much altered: addition

of white noise, compression, averaging or interleaving of several copies, geo-

metric attacks, etc. Once the forgery is retrieved by the distributor, it is first

2

resynchronized using side information about the original content. Then, the

fingerprint can be extracted from the resynchronized content and decoded in

order to find one of the colluders.

Several efficient traitor-tracing codes have been presented recently. For

example, Jourdas designed two codes, one high-rate and random-like [11, 12]

and another one low-rate with high minimimum distance [13]. The first one

is short, can accomodate millions of users and can deal with tens of collud-

ers. He and Wu proposed two joint coding-embedding schemes. The first

one, called GRACE (Group-Based Joint Coding and Embedding), assumes

that users are gathered in social groups inside which they are more likely

to collude. Orthogonal fingerprints are used inside each group [14]. The

second scheme uses a very long code based on Reed-Solomon which can ac-

comodate millions of users [15]. Trappe et al. introduced Anti-Collusion

Codes (ACC) [16], which are applications of Superimposed Codes (SIC) [17]

to traitor-tracing. Those codes have the property that any composition of

K fingerprints is unique, and thus are efficient under the Boneh and Shaw

marking assumption [18]. More recently and similarly, Korzhik et al. de-

signed random Superimposed Codes (SIC) [19] which have been shown to

outperform ACC under a distortion assumption rather than a marking as-

sumption.

Most of these codes are efficient against additive white noise, averaging of

several copies and some non-linear operations (interleaving, median attacks,

etc). However, none of them was designed to be robust against desynchro-

nization. For instance, while Jourdas’ code [11] is near-capacity achieving

under averaging plus Gaussian noise attacks, the code fails against a rota-

tion by just 1◦ or a scaling of factor 1.1. Our goal is to enhance such schemes

with a layer that protects the fingerprint against such geometric attacks.

Jourdas’ code [11] will be used as a proof of concept.

Geometric attacks have only been studied in the restricted application of

watermarking. While traitor-tracing is a multi-user version of watermark-

ing and presents much greater challenges due to the efficiency of collusion

attacks, the design of geometrically resilient watermarking schemes is very

relevant to our study. Four different approaches have been studied to create

geometrically resilient watermarks.

The first approach consists in performing an exhaustive search for the

attack parameters inside a given class of attacks. The parameters chosen are

3

those that maximize a measure of confidence (e.g. likelihood score) for the

decoder. This algorithm is computationally expensive as it usally requires

full decoding for each set of parameters being tried.

The second idea is still based on exhaustive search for the attack parame-

ters but avoids using the decoder for each iteration [20]. A fixed synchroniza-

tion mark is inserted in the watermarked copy and for each set of parameters

being tried, the synchronization mark is used to determine if the content

is well synchronized. This method is often less expensive than running the

decoder multiple times, but synchronization marks are hard to design and

cause a distortion overhead.

The third approach consists in inserting the watermark into an invari-

ant domain where the attacks considered cannot affect the fingerprint [21].

Theoretically, the watermark can then be extracted and decoded correctly

even if the content is desynchronized using one of those attacks. However,

invariant domains exist for a very limited range of attacks and do not take

advantage of the visual or audible human system.

These three approaches have been mainly used in a blind context where

the decoder does not have information about the original content. In con-

trast, non-blind systems use the original content on the decoder side, and this

facilitates resynchronization. However, the presence of the original content

as side information implies some security and storage issues.

The fourth idea, registration, is an intermediate approach, and can be

advantageously used in a semi-blind context. Here, limited information about

the original content is available to the decoder. The side information is either

a hash [22] — a short description of the content — or a collection of local

feature descriptions [23]. In both cases, one tries to register the original

content and the pirated copy in order to estimate and invert the attack. We

decided to follow this last approach and apply it to fingerprinting because

side information can improve dramatically the robustness of the fingerprint.

However, the size and security of the side information are also important

constraints for semi-blind systems.

We chose to insert the fingerprint in the medium frequencies of the mul-

timedia content. This allows us to avoid the high frequencies, which can be

entirely erased in the case of compression, and low frequencies, which are

very sensible. Moreover, a fundamental concept for both blind and semi-

blind schemes is the use of host-signal interference rejection methods such as

4

Spread Transform Dither Modulation [24, 6] as opposed to spread-spectrum

modulation methods which are more suitable for non-blind schemes. Con-

ventional wisdom is that quantization-based methods are brittle against ge-

ometric attacks; however, we show this is not the case when the decoder is

provided with appropriate side information.

A natural choice for the side information in the case of images is the

SURF (Speeded-Up Robust Features) [25] features, an enhanced version of

the SIFT (Scale Invariant Feature Transform) [26] features. The SURF fea-

tures are robust to a wide range of geometric attacks and to additive noise.

Furthermore, a suitable compression of the SURF features is convenient for

storage and transmission and retains the discriminative properties of these

features.

The main steps of our traitor-tracing algorithm are the following: (i)

match the features of the forgery and those of the original image, (ii) estimate

the parameters of a given class of attacks, (iii) invert the attack, and (iv)

extract the fingerprint.

This thesis is organized as follows. Chapter 2 presents the encoder and de-

coder. Chapter 3 describes our STDM-Laplace embedding/extracting scheme.

Chapter 4 presents our choise of image features and our compression method.

Chapter 5 explains how we used this side information in order to resynchro-

nize the received image. Chapter 6 presents some experimental results for

different classes of attacks.

5

Chapter 2

High-Rate Encoder and
Decoder

2.1 Encoder

RSC encoder

Rate 1/S

Random

interleaver

RSC encoder

Rate 1/S

Random

interleaver

RSC encoder

Rate 1/S

Concatenate
Random

interleaver
u

c1

cNi

f

User

signature

Sub-

fingerprints

Fingerprint

Figure 2.1: Encoder scheme for one user.

Each user is identified by a binary bitstream u of length n, so the code

can accomodate M = 2n users. The binary sequences {ui}1≤i≤M are input

to the encoder of [11], which, analogously to a turbo code, is composed of

Ni RSC (Recursive Systematic Convolutional) encoders preceeded by ran-

dom interleavers. The rate of each RSC encoder is 1/S and the generator

polyomials coefficients are randomly drawn from a Bernoulli distribution of

parameter p. The memory of the encoders is denoted by Me. As shown in

Fig. 2.1, the outputs of the RSC encoders are then concatenated to create

binary fingerprints {fi}1≤i≤M of length N = (n+Me)× S × (Ni + 1).

In order to have symmetric fingerprints for the embedding part, we switch

the domain of {fi}1≤i≤M from {0, 1}N to {−1, 1}N . In the original implemen-

tation of [11], an orthogonal code followed the RSC encoders in order to map

the fingerprint to a real-valued mark. This is not needed here because our

embedding scheme requires only a binary sequence. However, we added a

random interleaver that shuffles the fingerprint. This precaution prevents

the erasure of clusters of the fingerprint if part of the image is cropped.

6

For illustration, the parameters of the code we used are the following:

n = 25, Ni = 4, S = 7, p = 0.7 and Me = 3. With those values, the

maximum number of users is M = 33, 554, 432, the length of the code is

N = 784, and the total rate of the code is R = n
N

= 0.032.

2.2 Decoder

The fingerprint f ′ extracted from the image Is (see Fig. 1.1) is often referred

to as the forgery and is in general real-valued. The decoder used in [11] seeks

the fingerprint that has the highest correlation with the forgery.

The forgery is first deinterleaved and then split into Ni segments of equal

length, each input to a list Viterbi decoder. The outputs of the decoders

(after deinterleaving) are lists of D suspect users. The final accused user is

determined by the highest correlation between the forgery and the suspect

fingerprints. There are at most D ×Ni such fingerprints.

7

Chapter 3

Fingerprint Embedding and
Extraction

3.1 STDM-Laplace embedding

The fingerprint is embedded in the medium frequencies of the image, because

a slight modification of the low frequencies would imply a significant visual

alteration, and the high frequencies can be strongly attacked without any

major visual modification on the image. We chose the Laplacian pyramid of

the image as the transform domain to embed the fingerprint.

The embedding technique is based on STDM (Spread Transform Dither

Modulation) [24, 6]. It spreads the fingerprint bits over a large set of values

in the transform domain.

Given a host image I, we first compute its 3-level Laplacian pyramid

which results in three frequency images {LP1(I), LP2(I), LP3(I)}, respec-

tively the fine, intermediate and coarse descriptions of the image I (see Fig.

3.1). We use STDM on the intermediate description LP2(I) of the pyramid.

Given the length of the fingerprints to embed in the intermediate de-

scription LP2(I), we consider N non-overlapping blocks of equal size. Each

fingerprint bit will then be embedded in one of those blocks. The size of

those blocks is chosen in order to maximize the embedding area and we do

not embed bits on the border of the image, which may be cropped later. For

illustration, in the case where the fingerprint length is N = 784 and the size

of the intermediate description LP2(I) is 256× 256, the size of each block is

set to 9× 9. Those N blocks are then transformed into column vectors, and

we denote this set by {bj}1≤j≤N .

We project each block bj onto a random direction vj (generated using

the secret key), identical for all users:

pj = (vj)Tbj, 1 ≤ j ≤ N. (3.1)

8

(a) (b) (c)

Figure 3.1: Laplacian pyramid of Lena image: (a) Coarse description (size
128×128); (b) intermediate description (size 256×256); and (c) fine descrip-
tion (size 512× 512). Contrast has been enhanced for (b) and (c).

Given the fingerprint fi of the ith user, the projection pj — which is a

scalar — is quantized using the uniform scalar quantizers Q−1(·) or Q1(·),
respectively, when the corresponding fingerprinting bit fij is -1 or 1. The

lattices used for the quantizers Q−1(·) and Q1(·) are respectively L−1 =

{δ(−1
4

+k), k ∈ Z} and L1 = {δ(1
4

+k), k ∈ Z}. The two possible quantizers

are shown on Fig. 3.2. The quantized value of the projection of bj is denoted

by qj
i :

qj
i = Qfij

(pj), 1 ≤ j ≤ N, 1 ≤ i ≤M. (3.2)

The fingerprint bit fij is embedded in the block bj by replacing the pro-

jection pj by its quantized value qj
i . The jth block of the ith fingerprinted

copy is denoted by bj
i :

bj
i = bj + vj(qj

i − pj), 1 ≤ j ≤ N, 1 ≤ i ≤M. (3.3)

We then convert the column vectors {bj
i}1≤j≤N into square blocks and

concatenate them to form the new second detail description LP2(Xi). We

finally form the fingerprinted image Xi for user i from the Laplacian pyramid

composed of the original fine and coarse descriptions LP3(I) and LP1(I) and

the fingerprinted intermediate description LP2(Xi).

This spreading technique, unlike a simple embedding of each bit in one

pixel of LP2(I), is more secure because the colluders cannot determine easily

9

0

-δ/4

-3δ/4

δ/4
p j

Qi (p j)

5δ/4

-5δ/4

3δ/4

7δ/4

(a)

0-δ/4 3δ/4

-δ/4

5δ/4

p j

Qi (p j)

-5δ/4

-5δ/4

δ/4

(b)

Figure 3.2: The two different quantizers: (a) Q−1(·), and (b) Q1(·).

the location of the fingerprint. Moreover, the visual distortion due to the

embedding can be directly controlled via the quantization step δ.

3.2 Fingerprint extraction

The fingerprint extraction is straightforward. Given the received image Is,

we compute its 3-level Laplacian pyramid {LP1(Is), LP2(Is), LP3(Is)} and

consider the N blocks {b′j}1≤j≤N of the intermediate description LP2(Is).

Each block b′j is projected onto the random direction vj, similarly to (3.1):

p′j = (vj)Tb′j, 1 ≤ j ≤ N. (3.4)

The noisy fingerprint f ′ = {f ′j}1≤j≤N is extracted in two different ways

depending on the kind of decoding performed afterwards: hard-bit (f ′ ∈
{−1, 1}N) or soft-bit (f ′ ∈ [−1, 1]N), as shown in Fig. 3.3.

In the hard-bit case, we look for the minimum distance between the pro-

jected value p′j and the points of the two quantizer lattices L−1 and L1. The

extracted bit f ′j is the state of the quantizer for which the minimum distance

was found:

f ′j = argmin
m∈{−1,1}

min
k

∣∣∣(k − m

4

)
δ − p′j

∣∣∣ , 1 ≤ j ≤ N. (3.5)

In order to handle image cropping, we set the components of f ′ to 0

10

pj'

-δ/4 δ/4 3δ/4

fj' = 1

(a)

-δ/4 δ/4 3δ/4

fj' = 0.5

pj'

(b)

Figure 3.3: An example of extraction: (a) in the hard-bit case, and (b) in
the soft-bit case. Crosses and circles represent respectively the elements of
the lattices L−1 and L1.

whenever more than half of the corresponding block of the image is erased.

In the soft-bit case, the value of −1 ≤ f ′j ≤ 1 is given by the following

formula:

f ′j = 1−
∣∣∣∣4δ
(

(p′j +
δ

4
) mod δ

)
− 2

∣∣∣∣ , 1 ≤ j ≤ N, (3.6)

where
∣∣f ′j∣∣ = 1 indicates a reliable bit: p′j is equal to an element of L−1 or

L1.

Cropping is handled automatically in the soft-bit case: an extracted value

f ′j close to 0 indicates that the corresponding block of pixels in the image

Is is not reliable, and thus the extracted bit is treated as an erasure by

the decoder. If a region of In is erased (and thus set to a constant value),

the extracted fingerprint components corresponding to this region will be

zero (or close to zero if noise was added) and this region will not bring any

information to the decoder. More generally, soft-decoding performs better

because more information is conveyed by the extracted fingerprint, and the

decoding algorithm is well adapted to soft values. The extraction is always

performed in a soft way in our simulations, except as otherwise specified.

In order to quantify the distortion due to the embedding, we define the

11

average embedding power d:

d =
1

K

K∑
k=1

||LP2(Xk)− LP2(I)||22 . (3.7)

3.3 Large quantization step

The value of the quantization step δ is set to the “just-noticeable power.”

It means that we choose the maximum value with the constraint that the

fingerprint remains invisible in the embedded images {Xi}i. We chose the

value δ = 60 in our experiments.

We noticed during the implementation of STDM-Laplace that the embed-

ding/extraction scheme we described can be simplified practically, for such

value of the quantization step. Indeed, for all the images we tested, the em-

pirical standard deviation of the projected blocks components {pj}j is around

10, which is inferior to δ/4 = 15, and thus the projection values {pj}j are

most of the time located in the first quantization bin of either Q−1(·) or Q1(·).
Considering this observation, the quantization which takes place while em-

bedding can be approximated to a simple replacement of the projected value

by δ/4 or −δ/4, respectively, when the fingerprint bit considered is 1 or -1.

Equation (3.3) becomes:

bj
i = bj + vj(

δ

4
· f j

i − pj), 1 ≤ j ≤ N, 1 ≤ i ≤M. (3.8)

The extraction is then also simplified for both the hard-bit and soft-bit

case. In the first case, the extracted bit f ′j is determined by the sign of the

projected value p′j:

f ′j = sgn(p′j), 1 ≤ j ≤ N. (3.9)

For the soft-bit case, Equation (3.6) is approximated by the following

formula to determine the extracted fingerprint bits:

f ′j = p′j ·
4

δ
, 1 ≤ j ≤ N. (3.10)

This approximation is exact – and thus
∣∣f ′j∣∣ < 1 – most of the time because

p′j is in the first quantization bin most of the time. Even if the components of

the extracted fingerprint f ′ are no longer always in [−1, 1] – because the noise

12

can statistically take any real value – we avoid with this simplified extraction

method some quantization errors. Moreover, since the extracted fingerprint

bits are now proportional to the projection values, the fingerprinting scheme

is more robust against amplitude scaling and histogram equalization.

We used this approximation of STDM for all our simulations.

13

Chapter 4

Channel Model

The channel can be modeled in general as a combination of collusion at-

tacks involving several copies, also called copy-merging attacks (averaging,

interleaving, median attacks), non-desynchronizing attacks (addition of white

noise, compression, histogram modification, cropping) and geometric attacks

(rotation, geometric scaling, translation, image warping).

As diagrammed in Fig. 4.1, we decided for our experiments to use the

following cascade of attacks: a copy-merging attack, addition of Gaussian

noise, and another attack (cropping, JPEG compression, histogram equal-

ization, affine transform, homography or image warping).

Multiple-

copies

attack

X1

XK

Fingerprinted

images

w

Other

attack

pGaussian

noise

Parameter

vector

Ir

Interleaved

forgery

Ic In

Figure 4.1: Channel model.

4.1 Non-desynchronizing attacks

4.1.1 Copy-merging attacks

Such attacks are performed by merging several fingerprinted copies in order

to create a forgery where all the fingerprints are also mixed. We considered

three different startegies: averaging, median and interleaving attack. For the

averaging attack, each pixel value of the forgery Ic is the average of the pixel

values of the fingerprinted copies {X1, · · · , XK} at the same location (l,m):

14

Ic(l,m) =
1

K

K∑
k=1

Xk(l,m). (4.1)

Similarly, the median attack assigns to each pixel value Ic(l,m) the me-

dian of the pixel values {X1(l,m), · · · , XK(l,m)} of the fingerprinted copies.

In the case of interleaving, each colluder contributes a fraction of its pixels

to the “interleaved forgery” Ic. Specifically, each pixel of Ic is given by:

Ic(l,m) = Xk(l,m)(l,m), (4.2)

where k(l,m) is chosen randomly and uniformly from {1, 2, · · · , K}, inde-

pendently for all pixel locations (l,m).

4.1.2 Additive Gaussian noise

The colluders add the white noise directly to the intermediate description of

the Laplacian pyramid LP2(Ic). Each coefficient of the intermediate descrip-

tion LP2(In) is given by:

LP2(In)(l,m) = LP2(Ic)(l,m) + λ · w(l,m), (4.3)

where w(l,m) is drawn from the standard normal distribution N (0, 1), in-

dependently for all pixel locations (l,m), and λ is the standard deviation of

the Gaussian noise.

Instead of choosing a value for λ in our experiments, we rather set the

value of the fingerprint-to-noise ratio FNR = d/λ2, where d is the previously

defined average fingerprint power.

An example of image corrupted with additive Gaussian noise is shown in

Fig. 4.2(b).

4.1.3 Other attacks

We have studied additional attacks: JPEG compression, histogram equaliza-

tion, and cropping. With JPEG compression, the image is first divided in

blocks and the DCT coefficients of those blocks are quantized with respect

to a quality factor. The smaller the quality factor, the more coarsely the co-

15

(a) (b)

(c) (d)

Figure 4.2: Examples of attacks on part of Lena image: (a) original image;
(b) additive Gaussian noise with FNR = 1/20; (c) JPEG compression with
quality factor 20; (d) histogram equalization.

16

efficients are quantized. Some preprocessing (subsampling of color channels)

and postprocessing (entropy coding) operations are also performed. Fig.

4.2(c) shows an example of JPEG compression with quality factor 20. His-

togram equalization modifies the intensity of the image in a nonlinear way.

An example of histogram equalization is shown in Fig. 4.2(d). Cropping is

performed by deleting entire regions of the image In and replacing them by

black borders (see Fig. 4.3(a)).

4.2 Geometric attacks

4.2.1 Affine transform

Orthographic projection is a way of representing 3D objects in 2D, where

each point is projected orthogonally to the projection plane. This model is

an approximation of the process of taking a picture of an object, when the

object depth is small compared to the distance of the object to the objective

of the camera. The consequence of this model is that every plane in 3D is

projected in 2D through an affine transform.

An affine transform is the composition of a rotation of angle θ, a transla-

tion by (∆x,∆y) pixels, a scaling of factor c, a shearing of angle α, and an

aspect ratio change where r is the new ratio of the height of the image to

its width. The affine transform is then described by a set of six parameters

p = (θ,∆x,∆y, c, α, r). Examples of affine transforms are shown in Fig. 4.3.

To perform the affine transform, the colluders create an image Ir where

the value Ir(x
′, y′) of the pixel at every integer location (x′, y′) is related to

the image In by the following formulas:

Ir(x
′, y′) = In(x, y) (4.4)

(
x

y

)
= A−1

(
x′

y′

)
+

(
∆x

∆y

)
(4.5)

A =

(
c · cos(θ + α) −c · sin(θ + α)

r · c · sin(θ) r · c · cos(θ)

)
(4.6)

where the image indices are defined with respect to Cartesian coordinates

17

(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Examples of attacks on Lena image: (a) cropping of 50% of image
area; (b) scaling of factor 0.7 and rotation by 35◦; (c) scaling of factor 0.74
and shearing by 25◦; (d) aspect ratio of 1:0.6; (e) image warping with a grid
of size 5 × 5 and maximum shift of 30 pixels; (f) scaling of factor 0.6 and
rolling by 30◦.

where the origin is the center of the image. When x or y are not integers,

18

In(x, y) is obtained with bilinear interpolation with the nearest neighbors of

(x, y).

4.2.2 Homography

Perspective projection is a more sophisticated model than orthographic pro-

jection. Based on the pinhole camera model [27], perspective projection takes

into account the focal length and geometry of the optical captors. The whole

model contains eleven parameters but can be simplified to eight parameters

when the object projected is a 2D plane (when a movie is camcorded for

instance). The relation between the 3D plane and its projection is referred

to as a homography.

The eight parameters of a homography are the six parameters of an

affine transform, the angle of camera tilt φ, and the angle of camera roll

ψ. A homography is thus described by a set of eight parameters p =

(θ,∆x,∆y, c, α, r, φ, ψ) (see Fig. 4.3(f)).

A homography is not an affine operation in Cartesian coordinates, but

it becomes linear if we consider the transform in homogeneous coordinates.

We denote by H the 3×3 homography matrix, which is defined up to a scale

factor. The eight freedom degrees of H can be linked to the set of parameters

p [27].

Similarly to affine transforms, homography is performed by creating an

image Ir where the value Ir(x
′, y′) of the pixel at every integer location (x′, y′)

is related to the image In by the following formulas:

Ir(x
′, y′) = In

(x
z
,
y

z

)
(4.7)

 x

y

z

 = H−1

 x′

y′

1

 (4.8)

where the image indices are defined with respect to Cartesian coordinates

and the origin is the center of the image. When x/z or y/z are not integers,

In(x/z, y/z) is obtained with bilinear interpolation with the nearest neighbors

of (x/z, y/z).

19

4.2.3 Image warping

Unlike affine transforms and homography which are global operations, image

warping is a local geometric attack parametrized by a large number of attack

parameters.

The image is divided into a mesh, each vertex of which is randomly

shifted. The regions of the mesh are then stretched according to the sur-

rounding vertices. More specifically, the image In is triangulated using a

regular grid of size l× l. To avoid cropping, the borders are left intact. Each

interior node of the mesh is shifted randomly and uniformly within the range

[−sm, sm]. The set p of parameters is then characterized by the horizontal

and vertical shifts of the interior nodes: p = (sh
1 , s

v
1, · · · , sh

(l−1)2 , s
v
(l−1)2). The

total number of parameters is 2(l − 1)2.

Given a triangle T in this mesh, with vertices coordinates (X1, Y1), (X2, Y2)

and (X3, Y3), we denote by T ′ the resulting triangle after shifting the ver-

tices, with vertices coordinates (X ′1, Y
′
1), (X ′2, Y

′
2) and (X ′3, Y

′
3). The colluders

iterate over all pixels locations {(x′i, y′i)}i which lie in T ′ and compute their

barycentric coordinates (λ1,i, λ2,i, λ3,i) :

 λ1,i

λ2,i

λ3,i

 =

 X ′1 X ′2 X ′3

Y ′1 Y ′2 Y ′3

1 1 1


−1 x′i

y′i

1

 . (4.9)

Since the barycentric coordinates are invariant to linear shifts of the ver-

tices, the colluders find the equivalent location (xi, yi) of (x′i, y
′
i) in the triangle

T :

(
xi

yi

)
=

(
X1 X2 X3

Y1 Y2 Y3

) λ1,i

λ2,i

λ3,i

 . (4.10)

The value of Ir(x
′
i, y
′
i) is then equal to In(xi, yi). Similarly to an affine

transform, if (xi, yi) are not integers, the colluders perform a bilinear interpo-

lation with the nearest neighbors. Figure 4.3(e) shows an example of strong

image warping.

20

Chapter 5

Features Computation and
Compression

In order to resynchronize the received image, we compare its SURF features

to those of the original image.

5.1 Image features

Image features are used in a wide variety of applications: to recognize specific

instances of an object or a class of objects, to clusterize and segment an

image and to register images. More specifically, image features are interest

points (aka keypoints) in an image. They should be visually significant and

robust to usual image transformations. For example, edges, corners and blob

structures are often considered as interest points in an image.

Features are defined in two stages: first, a feature detector extracts in-

terest points from the input image and stores their location, orientation and

scale; second, a feature descriptor is associated with a neighborhood of each

interest point. The descriptors are designed to be robust against basic affine

transforms, and can then be used to match features, recognize objects and

register images.

Detected feature points need to be repeatable — the same points are

detected when the image is modified up to a certain limit — and distinctive

— we need to be able to distinguish them from each other in order to avoid

matching errors. There are trade-offs associated with both the localization

and description of those keypoints.

A variety of feature detectors and descriptors exists, each of them with dif-

ferent properties. The most common and used ones are SIFT (Scale-Invariant

Feature Transform) [26], and SURF (Speeded-Up Robust Features) [25], an

enhanced version of SIFT. Both are robust and perform very well in image

registration applications [28], but we selected SURF which is computationally

21

Figure 5.1: From left to right: the second-order derivatives of a Gaussian
filter (cropped and discretized) in the vertical and diagonal directions re-
spectively, and their respective approximations using box filters [25].

Figure 5.2: Computation of the weighted gradient orientation histogram in
each feature neighborhood.

more efficient [29].

5.2 Feature computation

The SURF algorithm first detects scale-space extrema. This is done by ap-

proximating Laplacian-of-Gaussian using box filters and integral images (an

exact implementation would be too computationally expensive). Examples

of those approximations are shown in Fig. 5.1.

The algorithm then tries to enhance the precision of each extremum lo-

cation by performing bilinear interpolation within the scale-space images.

Moreover, extrema with low contrast or a strong edge response in one direc-

tion only are rejected.

The next step is called orientation assignment: a main orientation is

computed in the neighborhood of each interest point in order to make the

future descriptors robust to rotation. For each interest point, at the correct

scale, the gradient magnitude and orientation are computed in an 8 × 8

neighborhood and a magnitude-weighted gradient orientation histogram is

constructed (see Fig. 5.2). The orientation assigned to the interest point is

the interpolated maximum of this histogram.

The result of those operations is a set of features (or interest points)

described by four parameters: the coordinates (x, y) of the feature, the scale

σ at which the extremum has been found, and the main orientation θ of the

22

feature.

The descriptor for each feature is computed in the following way: the

neighborhood of each feature is rotated and rescaled (according to the as-

signed orientation and scale) to form a 20 × 20 pixels region. This region

is partitioned into sixteen 5 × 5 cells. In each cell, the Haar wavelet gradi-

ents are computed in both directions (we denote by dx and dy respectively

the horizontal and vertical gradients). For each 5 × 5 cell, the SURF de-

scriptor consists of the sums of gradients and sums of absolute gradients:∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|. The descriptor for each feature is then a real-

valued vector of size 16× 4 = 64.

The number of extracted features Nf depends on the size and the con-

tent of the image but generally ranges from 500 to 2000. The ouput of the

algorithm is a list of the feature locations and a list of 64-dimensional feature

descriptors.

5.3 Feature compression

As an example, the SURF algorithm extracts 1493 features for the 512×512

grey-level Lena image, and thus the size of the feature descriptors (382 kB

when each descriptor component is stored on 32 bits) is larger than the size

of the image (40 kB in JPEG format, with quality factor 75). Therefore,

having SURF features as side information is only an advantage if we can

heavily compress them.

In order to compress efficiently the feature descriptors, we first study their

correlation. Figure 5.3 shows the covariance matrix of the feature descriptors

of a set of 44 images (from the “Miscellaneous” category of USC-SIPI im-

age database). To remove the correlation between the descriptors, we com-

pute the eigenvalues (σ2
1 > · · · > σ2

64) and the corresponding eigenvectors

(e1, · · · , e64) of the covariance matrix and multiply the matrix of descriptors

D by the matrix of eigenvectors E:

D′ = ETD, (5.1)

where D′ is the matrix of transformed descriptors.

Following this operation, the transformed descriptors {(d′i,1, · · · d′i,64), 1 ≤

23

Figure 5.3: Covariance matrix of the SURF features of a set of 44 images
(the white color represents highest values).

i ≤ Nf} are statistically orthogonal and the first components of the descrip-

tors are the ones with highest variance. We then assign to each dimension

i ∈ {1, · · · 64} of the new descriptor a number of quantization bits Bi such

that the number of quantization bins 2Bi for the dimension i is almost pro-

portional to the square root of the corresponding eigenvalue σ2
i , with the

constraint that the total number of bits for a descriptor is Nbits:

Bi =

⌊
log2(σi) +

Nbits −
∑64

i=1 log2(σi)

64

⌋
, 1 ≤ i ≤ 64. (5.2)

Due to the floor operation, the total number of bits after this assignement

is generally not Nbits. Hence, we add one bit to the first ∆bits dimensions,

where ∆bits is defined as follows:

∆bits = Nbits −
64∑
i=1

Bi. (5.3)

We then quantize the transformed descriptors using a Max-Loyd quantizer

with the given number of bits. The parameter Nbits is chosen by simulation

to be as small as possible while resulting in a probability of error that is

approximately the same as in the absence of quantization. We obtained

Nbits = 64 bits, and the compression rate of the descriptors is thus 64
64∗32

= 1
32

.

The compressed SURF file size is only 12 kB. Table 5.1 shows the values of

{Bi}1≤j≤64 for Nbits = 64 bits.

One may object that the side information should also include the eigen-

24

Table 5.1: From top to bottom, and from left to right: number of bits
{Bi}1≤j≤64 assigned to each dimension, from the highest eigenvalue to the
lowest.

4 3 2 1 0 0 0 0
3 3 2 1 0 0 0 0
3 3 2 1 0 0 0 0
3 3 1 1 0 0 0 0
3 2 1 1 0 0 0 0
3 2 1 1 0 0 0 0
3 2 1 1 0 0 0 0
3 2 1 1 0 0 0 0

vectors of the covariance matrix and the quantization codebook and partition

(in order to compress the SURF features of the original image I and the re-

ceived image Ir in the same way). However, we noticed that these quantities

are almost independent of the image used. We computed those three matri-

ces over the same set of 44 images and used them to compress the descriptors

of any image. The effect of using fixed transform and quantization on the

resulting error probability is negligible.

A similar compression method for SURF descriptors was proposed by

Chandrasekhar et al. [30], but the application of the features was more

general, and they limited the compression rate to 1/16.

5.4 Features matching

Given the compressed SURF features from both the original image I and the

received image Ir, we need to match them, prior to resynchronization. This

is done identically to [25]. Specifically, for each feature of the original image

I, the algorithm looks for the closest and second-closest features from the

received image Ir, based on the L1 distance of their descriptors. If the ratio

of those distances is smaller than a given threshold tmatch, then the feature

from image I is matched to its closest neighbor in image Ir.

The resulting match set is a list of pairs of points {(Γi(I),Γi(Ir))}1≤i≤Nm

where Γi(I) and Γi(Ir) denote pixel location, respectively, in the images I

and Ir. The size of the match set Nm depends on the parameters of the

attack and on the image.

25

We set the threshold to tmatch = 0.7, as advised in the original implemen-

tation of SURF. For smaller values of the threshold, the matching algorithm

does not provide enough points to be able to resynchronize in some cases,

especially when the feature descriptors are noisy. For larger values of the

threshold, too many outliers are present in the matches, and the resynchro-

nization is not reliable.

26

Chapter 6

Resynchronization

We assume that the received image has been desynchronized through one

of the following attacks: affine transform, homography or image warping.

In an ideal case (i.e. without any other attack), the parameters of the ge-

ometric attacks can be retrieved by solving an overcomplete linear system

using the feature matches. This linear system either uses Cartesian coordi-

nates for affine transform and image warping, or homogeneous coordinates

for homography.

The presence of other attacks (copy-merge attacks, additive noise, etc.)

creates two types or errors in the process of feature detection, description

and matching. The first error is related to localization: two features can

be matched correctly but, since the feature detector is not perfectly robust

to noise and other transforms, those features are not localized identically,

relative to the image. We model the matching process in this case as follows:

Γi(Ir) = f (Γi(I)) +Wi, 1 ≤ i ≤ Nm, (6.1)

where f denotes the geometric attack, and Wi is the localization error, a 2-D

vector drawn from an uncorrelated normal distribution with zero mean and

variance σ2
n.

The other kind of error is related to the feature descriptor: two features

that should have been matched to each other have different descriptors in the

two images and are matched incorrectly. In this case, we model the matching

process as follows:

Γi(Ir) = Oi, 1 ≤ i ≤ Nm, (6.2)

where Oi is a location drawn uniformly over the image Ir. We denote by π

the probability that Γi(Ir) has an incorrect match (i.e. is an outlier).

27

6.1 Estimation-elimination algorithm

Our first algorithm estimates the attack parameters globally (i.e. by consid-

ering all the matches at once). It iterates between two steps: (i) estimation

of the parameters of the attack based on the current matches, and (ii) elimi-

nation of inaccurate matches, given the current estimates of the parameters.

All the geometric transforms we consider can be expressed in homoge-

neous coordinates. Since we need to solve linear systems in our algorithm,

we first normalize the Cartesian coordinates of the feature points before esti-

mating the parameters [31] in order to have well-conditioned problems. This

is done by shifting and scaling the coordinates of the feature points such

that:

1. The centroid of the feature points in each image corresponds to the

origin.

2. The average distance of a feature point to the origin is
√

2.

This normalization is applied in the two images I and Ir independently.

Since the last coordinate in a homogeneous system is 1, this normalization

enhances the stability of the linear system solution used in the algorithm.

When the geometric attack is an affine transform or a homography, the

two steps take the following form:

1. Solve the following overcomplete linear system to get an estimate p(j)

of p:

Γi(Ir) = fa(Γi(I),p(j)), 1 ≤ i ≤ Nm, (6.3)

where fa(·,p(j)) denotes the affine transform or the homography with

parameter p(j) and j ∈ {1, 2, · · · , Niter} is the current iteration index.

2. Eliminate the matches (Γ1,i,Γ2,i) that are too distant from p(j), in the

L1 sense: ∣∣∣∣Γi(Ir)− fa(Γi(I),p(j))
∣∣∣∣

1
>

100

j
. (6.4)

When the geometric attack is image warping, the algorithm is very simi-

lar. However, we add a preprocessing step: we delete the matches (Γi(I),Γ2,i)

for which the two matched points Γi(I) and Γi(Ir) are distant by more than

twice the maximum allowed shift sm, in the L1 sense. Our experiments

28

showed that we need at least 5 matches in each triangle to estimate correctly

the parameters. Then, for each triangle of the mesh, we repeat the following

two steps:

1. Estimate the shift of the three vertices of the triangle by solving an

overcomplete linear system, constrained by the assumption that the

vertices on the borders of the image are not shifted.

2. Eliminate the matches (Γi(I),Γi(Ir)) that are not consistent with the

estimated shifts, according to (6.4).

After each triangle has been processed, each node receives six estimates

of its shift, from the six surrounding triangles. We average those values by

weighting them with the number of matches in each surrounding triangle.

After estimating the unknown parameters, we invert the geometric trans-

form using these estimates. This image is close to the original image but not

perfectly synchronized.

We then apply a second time the same algorithm (feature computation,

matching, parameter estimation and attack inversion) to this image. This

second step improves the accuracy of the estimated attack parameters. The

resulting image Is is almost perfectly synchronized due to the fact that the

SURF features are computed with an image that is fairly close to the original

image (the SURF features are not perfectly robust to all affine transforms).

We noticed that the resulting image Is is not systematically closer to the

original image when we apply more than two times the resynchronization

algorithm.

The main advantage of Estimation-Elimination is that the algorithm is

fast. Indeed, we generally need fewer than 15 iterations to obtain accurate

estimates.

6.2 Adapted RANSAC

The RANSAC algorithm — abbreviation of Random Sample Consensus —

was first published by Fischler and Bolles in 1981 [32] and can be a good

alternative to Estimation-Elimination. It estimates the attack parameters

from a small number of matches instead of trying to fit a model to all the

29

matches at once. Therefore, outliers have no negative effect on the estimation

when they are not part of the set of matches considered.

However, since the matches include outliers and some localization errors,

the algorithm must try many small sets of matches before finally finding

a model that fits most of the matches. Hence it is computationally more

intense than Estimation-Elimination.

The same data normalization as for Estimation-Elimination is first ap-

plied to the feature points coordinates.

Our adaptation of RANSAC algorithm can be described as follows:

1. Choose a random set of Nran matches.

2. Compute an estimate p(j) of the geometric attack parameters using this

set of matches by solving a linear system.

3. Count the number of matches Sj which agree with this set of parame-

ters, within a given distance dran, i.e. which satisfy:

Sj = |Ej| (6.5)

and

Ej =
{
i,
∣∣∣∣Γi(Ir)− f

(
Γi(I),p(j)

)∣∣∣∣
1
< dran

}
. (6.6)

4. Repeat steps 1-3 nran times. Keep the set Ek that corresponds to the

largest number of matches:

k = argmax
1≤j≤Nm

(Sj). (6.7)

5. Compute an estimate p̂ of the geometric attack parameters using this

set of matches Ek.

In the original algorithm, the size Nran of the random set is the minimum

size to be able to fit a model. In the case of homography, eight parameters

have to be estimated so four matches should be enough to get an estimate.

However, we noticed that by setting Nran = 10, we generally had better

estimates and needed fewer iterations. Experimentally, we set dran = 3 and

nran = 1, 000.

30

The complexity of this algorithm is higher than Estimation/Elimination

because we need to estimate the attack parameters twice per iteration, which

is 2,000 times in total, compared to 15 times for Estimation/Elimination.

31

Chapter 7

Experimental Results

For our experiments, we used grey-level images of size 512 × 512. The pa-

rameters of our code are: n = 25, Ni = 4, S = 7, p = 0.7, Me = 3,

M = 33, 554, 432, and N = 784 (see Section 2.1 for a definition of these sym-

bols). We tested the performance of our traitor-tracing scheme by running

Monte Carlo simulations. Each simulation was repeated 1000 times for each

considered attack.

The fingerprinting scheme is deemed “robust” if it can retrieve one of

the colluders with probability of error lower than 5%. The extraction of the

fingerprint is always performed in a soft way, except for Sections 7.1 and 7.2.

7.1 Copy-merging attacks

We first compare the robustness of our scheme against different copy-merging

attacks and different numbers of colluders K. Table 7.1 shows the error prob-

ability for different copy-merging attacks, and Table 7.2 shows the effect of

the number of colluders on the error probability. For both simulations, Gaus-

sian noise is added after the copy-merging attack with FNR = 1. Our scheme

is robust to 6 colluders for any copy-merging attack, when soft decoding is

used. In order to design a code resistant to more colluders, one would need

to change the parameters of the code to obtain a longer fingerprint.

7.2 AWGN

We then studied the impact of Gaussian noise on our scheme. The attacks

considered consist of interleaving between 3 copies followed by addition of

Gaussian noise with variable FNR. The different values of FNR and the

corresponding probabilities of errors are given in Table 7.3. Our scheme

32

Table 7.1: Copy-merging attacks against which our scheme is robust, with
the corresponding empirical probability of error. Gaussian noise is added
with FNR = 1.

Attack Pe

Interleaving K = 6 2.8%
Averaging K = 6 1.9%

Median attack K = 6 3%

Table 7.2: Effect of the number of colluders on the error probability. Gaussian
noise is added with FNR = 1.

Attack Pe (soft decoding) Pe (hard decoding)

Interleaving K = 3 0.0 0.1%
Interleaving K = 4 0.1 0.2%
Interleaving K = 5 0.2 3.9%
Interleaving K = 6 2.8 17.7%
Interleaving K = 7 9.2 35.5%

Table 7.3: Comparison of the hard and soft extraction, for 3 colluders and
different values of the FNR.

FNR Pe (soft decoding) Pe (hard decoding)

1 0.0% 0.0%
1/10 0.0% 0.1%
1/20 0.3% 3.7%
1/30 1.9% 24.5%

is highly robust to AWGN when soft decoding is perfomed, and is able to

retrieve the fingerprint correctly even when the power of the noise is 30 times

the embedding power. This simulation was done to see what is the “break

point” of the algorithm as a function of FNR. An FNR larger than 1/10 is

not very realistic: the quality of the noisy image Ir is very poor.

Tables 7.2 and 7.3 also clearly show the substantial performance improve-

ments obtained by using soft decoding instead of hard decoding.

7.3 Other non-desynchronizing attacks

Table 7.4 presents the probability of error for JPEG compression, cropping,

and histogram equalization, used in conjunction with the interleaving attack

33

Table 7.4: Some non-desynchronizing attacks used in conjunction with inter-
leaving (with K = 3) and addition of Gaussian noise (with FNR = 1).

Attack Pe

JPEG Compression (Q = 45) 2.0%
Cropping (50% of image area) 2.1%

Histogram equalization 3%

Table 7.5: Affine transforms against which our scheme is robust, using Esti-
mation/Elimination algorithm.

Attack and parameters Pe

Scaling ×0.6 4.0%
Scaling ×0.7 and rotation of 35◦ 3.0%

Scaling ×0.74 and shearing of 25◦ 3.9%
Aspect ratio of 1:0.6 3.1%

Table 7.6: Image warping against which our scheme is robust, using Estima-
tion/Elimination algorithm.

Attack and parameters Pe

Warping: 4× 4 grid, 50 pixels max. shift 2.5%
Warping: 5× 5 grid, 30 pixels max. shift 0.8%
Warping: 6× 6 grid, 20 pixels max. shift 1.9%
Warping: 7× 7 grid, 10 pixels max. shift 1.0%

and addition of Gaussian noise with FNR = 1.

7.4 Desynchronizing attacks

This section quantifies the performance of our resynchronization algorithms.

For all those results, the cascade of attacks is the following: interleaving

with 3 colluders, addition of Gaussian noise with FNR = 1, and a geometric

attack.

Tables 7.5 and 7.6 show the probability of error when an affine transform

or an image warping is used. We notice our scheme can resist those strong

attacks very well. In those two cases, Estimation/Elimination is used for

resynchronization.

The results presented in Table 7.7 show a comparison between Estima-

34

Table 7.7: Comparison of Estimation/Elimination and RANSAC algorithms
for two attack models: affine transform (first 3 lines) and homography (last
three lines).

Attack and parameters Resynchronization # iterations Pe

algorithm (Resync. alg.)

Scaling ×0.6 Est./Elim. 15 4.0%
Scaling ×0.6 RANSAC 1,000 4.3%
Scaling ×0.6 RANSAC 100 11.4%

Scaling ×0.6, Rolling 30◦ Est./Elim. 15 5.0%
Scaling ×0.6, Rolling 30◦ RANSAC 1,000 3.2%
Scaling ×0.6, Rolling 30◦ RANSAC 100 30.2%

tion/Elimination and RANSAC as synchronization algorithms. The three

first lines correspond to the affine transform model, and the last three to

the homography model. Both algorithms result in approximately the same

probability of error in the case of a scaling attack (in the affine transform

model), but RANSAC needs 1,000 iterations when Estimation/Elimination

only needs 15. Thus, there is a trade-off between the complexity of RANSAC

and the resulting error probabilty since the latter increases when the number

of iterations for RANSAC is decreased.

However, in the case of homography, RANSAC performs better than Es-

timation/Elimination when the number of iterations for RANSAC is large

enough.

35

Chapter 8

Conclusion

In this paper, we have proposed a complete, practical, robust, and secure im-

age fingerprinting scheme. By using Jourdas’ high-rate code and our Laplace-

STDM embedding scheme, we can accomodate more than 33 million users

and resist coalitions of up to six colluders, while using a short fingerprint. We

showed that our scheme is robust against the most common copy-merging

attacks (averaging, interleaving and median attack), additive Gaussian noise

(with a fingerprint-to-noise ratio of 1/30), JPEG compression, intense crop-

ping, and histogram equalization. Moreover, the embedding scheme ensures

invisibility, security and reliability of the fingerprint.

Our SURF-based resynchronization algorithm is also very efficient: it

can handle geometric attacks that happen in media recording (affine trans-

forms and homography), and other attacks involving more parameters like

image warping. Estimation/Elimination seems more adapted to affine trans-

forms and image warping, and RANSAC is better suited to to homography.

However, RANSAC is globally more complex than Estimation/Elimination

because it needs more iterations. To our knowledge, this is the first fin-

gerprinting scheme that can cope with so many users and severe geometric

attacks.

Future work could include a study of the impact of digital-to-analog and

analog-to-digital transforms on this fingerprinting scheme and solutions to

deal with them.

36

References

[1] The Motion Picture Association of America, “Piracy and the law,”
May 2010. [Online]. Available: www.mpaa.org/piracy AndLaw.asp

[2] ——, “Research statistics,” May 2010. [Online]. Available:
www.mpaa.org/researchStatistics.asp

[3] ——, “2005 US piracy fact sheet,” May 2010. [Online]. Available:
www.mpaa.org/USPiracyFactSheet.pdf

[4] ——, “Piracy economies,” May 2010. [Online]. Available:
http://www.mpaa.org/piracy Economies.asp

[5] Tera Consultants, “Impact économique de la copie illégale des biens
numérisés en france,” Nov. 2008. [Online]. Available: www.droit-
technologie.org/upload/dossier/doc/179-1.pdf

[6] P. Moulin and R. Koetter, “Data-hiding codes,” Proc. of the IEEE,
vol. 93, no. 12, pp. 2083–2126, 2005.

[7] M. Musgrove, “Sleuths crack tracking code discovered in color
printers,” Oct. 2005. [Online]. Available: www.washingtonpost.com/wp-
dyn/content/article/2005/10/18/AR2005101801663.html

[8] Warner Bros Entertainment Inc., “Motion picture anti-piracy
coding,” U.S. Patent 7,206,409, April 2007. [Online]. Available:
http://www.patentstorm.us/patents/7206409/description.html

[9] U.S. Department of Justice, “Chicago man arrested for criminal
copyright infringement in connection,” Jan. 2004. [Online]. Available:
http://www.justice.gov/criminal/cybercrime/spragueArrest.htm

[10] Federal Bureau of Investigation, Kansas City, “Two men plead guilty to
trafficking in counterfeit DVDs, CDs,” Oct. 2009. [Online]. Available:
http://kansascity.fbi.gov/dojpressrel/pressrel09/kc100709a.htm

[11] J.-F. Jourdas and P. Moulin, “A high-rate fingerprinting code,” Proc.
of the SPIE, vol. 6819, p. 68190A, 2008.

37

[12] ——, “High-rate random-like fingerprinting codes with linear decoding
complexity,” IEEE Trans. on Information Forensics and Security, vol. 4,
no. 4, pp. 768 – 780, 2009.

[13] ——, “A low-rate fingerprinting code and its application to blind image
fingerprinting,” Proc. of the SPIE, vol. 6819, p. 681907, 2008.

[14] S. He and M. Wu, “Joint coding and embedding techniques for multime-
dia fingerprinting,” IEEE Trans. on Information Forensics and Security,
vol. 1, no. 2, pp. 231–247, 2006.

[15] ——, “Collusion-resistant video fingerprinting for large user group,”
IEEE Trans. on Information Forensics and Security, vol. 2, no. 4, pp.
697–709, Dec. 2007.

[16] W. Trappe, M. Wu, Z. Wang, and K. Liu, “Anti-collusion fingerprinting
for multimedia,” IEEE Trans. on Signal Processing, vol. 51, no. 4, pp.
1069–1087, 2003.

[17] W. Kautz and R. Singleton, “Nonrandom binary superimposed codes,”
IEEE Trans. on Information Theory, vol. 10, no. 4, pp. 363–377, Oct.
1964.

[18] D. Boneh and J. Shaw, “Collusion-secure fingerprinting for digital data,”
IEEE Trans. on Information Theory, vol. 44, no. 5, pp. 1897–1905, Sep.
1998.

[19] V. Korzhik, A. Ushmotkin, A. Razumov, G. Morales-Luna, and
I. Marakova-Begoc, “Collusion-resistant fingerprints based on the use
of superimposed codes in real vector spaces,” Int. Multiconference on
Computer Science and Information Technology, pp. 487–491, Oct. 2009.

[20] D. Delannay and B. Macq, “Watermarking relying on cover signal
content to hide synchronization marks,” IEEE Trans. on Information
Forensics and Security, vol. 1, no. 1, pp. 87–101, 2006.

[21] M. Pawlak and Y. Xin, “Robust image watermarking: an invariant do-
main approach,” IEEE Canadian Conf. on Electrical and Computer En-
gineering, vol. 2, pp. 885–888, 2002.

[22] B. Coskun and M. Mihcak, “Perceptual hash-based blind geometric syn-
chronization of images for watermarking,” Proc. of the SPIE, vol. 6819,
p. 68191G, 2008.

[23] V.-Q. Pham, T. Miyaki, T. Yamasaki, and K. Aizawa, “Robust object-
based watermarking using feature matching,” IEICE Trans. on Infor-
mation and Systems, vol. E91-D, no. 7, pp. 2027–2034, 2008.

38

[24] B. Chen and G. Wornell, “Quantization index modulation: a class of
provably good methods for digital watermarking and information em-
bedding,” IEEE Trans. on Information Theory, vol. 47, no. 4, pp. 1423–
1443, May 2001.

[25] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features,” CVIU, vol. 110, no. 3, pp. 346–359, 2008.

[26] D. Lowe, “Object recognition from local scale-invariant features,” Proc.
of the 7th IEEE Int. Conf. on Computer Vision, vol. 2, pp. 1150–1157,
1999.

[27] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach. Upper
Saddle River, NJ: Prentice Hall, 2002, pp. 28 – 35.

[28] K. Mikolajczyk and C. Schmid, “A performance evaluation of local de-
scriptors,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 27, no. 10, pp. 1615–1630, 2005.

[29] J. Bauer, N. Sünderhauf, and P. Protzel, “Comparing several implemen-
tations of two recently published feature detectors,” in Proc. of the Inter-
national Conference on Intelligent and Autonomous Systems, Toulouse,
France, 2007.

[30] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, J. Singh, and B. Girod,
“Transform coding of image feature descriptors,” Visual Communica-
tions and Image Processing 2009, vol. 7257, no. 1, p. 725710, 2009.

[31] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge, UK: Cambridge University Press, 2003, pp. 107 –
108.

[32] M. Fischler and R. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381 –
395, June 1981.

39

