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ABSTRACT

Vaccination is one of the most important and successful public health endeavors in human history,

profoundly reducing mortalities caused by infectious diseases. In the United States, the compre-

hensive success of large scale pediatric immunization programs results from the collaboration of an

interdependent system of government and industry stakeholders. A stakeholder in this system acts

independently in pursuit of its own interests; yet, the actions of one stakeholder may profoundly

affect the welfare of another stakeholder. It is imperative that these stakeholders understand the

nature of their interdependence and the holistic impact of their behavior on the entire vaccine

market. The market for pediatric vaccines is fragile and requires ongoing vigilance to meet public

health goals regarding immunization coverage rates. Of particular concern is the economic com-

petition within the vaccine industry, the impact of government regulatory policies on the vaccine

industry, and the attendant impact on the vaccine system’s ability to ensure the adequate provi-

sion of vaccines. This dissertation applies operations research and game theoretic methods to aid

public health policy practitioners in making more informed decisions regarding the purchasing and

pricing of vaccines in the public sector of the United States pediatric vaccine market. The market

is analyzed from three different perspectives. First, an operations research approach is proposed

for analyzing a pharmaceutical firm’s pricing strategy for a single combination vaccine. A vaccine

price is sought that maximizes a firm’s expected revenue. Next, a game theoretic approach enables

formulation of a static Bertrand pricing model that characterizes oligopolistic interaction between

all of the firms in a multiple homogeneous product market. Sufficient conditions for the existence

of a price equilibrium are provided. Finally, a monopsonistic buyer’s vaccine formulary pricing and

purchasing problem is formulated. Using a mixed integer non-linear program (MINLP) model, a

pricing and purchasing policy for government health care policy practitioners can be designed that

establishes a sustainable and stable capital investment environment in which the reliable provision

of the pediatric vaccines so essential to public health can occur.

ii



ACKNOWLEDGMENTS

This dissertation represents the culmination of my educational experience. I am truly happy to

have reached the top of the ladder. Yet, up here on this new Ph.D. platform, I see other ladders

to climb. It’s hard to see where these new ladders lead, but certainly to exciting and rewarding

experiences. This dissertation would not have been possible without the support and guidance of

many people, not only during my time here at the University of Illinois, but throughout my life.

First, I must thank my wife and two little girls, whose support and unfailing love have provided

me the determination to finish. For those many nights my wife had to put the girls to bed by

herself because I was studying or writing papers, a heartfelt thank you. A special thanks for the

sweet ’Daddy, you home?’s and baby grins; they never failed to rejuvenate my spirits. Indeed, I

could not have accomplished what I have without my family’s support.

I would like to thank my father and mother who always espoused the virtues of education and

instilled in me the desire to learn at a very young age. They sacrificed so I could do well in school

(and in life) and I am grateful.

I am thankful for the steadfast guidance of Professor Sheldon Jacobson, my academic advisor.

He was always cheerful and encouraging, providing substantive advice on a host of issues; he was

an excellent mentor. I will miss our meetings; I always enjoyed our off-topic discussions. I want to

thank him for his patriotism and service to his country. I look forward to ongoing collaboration

and friendship.

I am thankful for the time and support given to me by Professor Uday Shanbhag. His mentoring

was extremely helpful in structuring and communicating my ideas concerning game theory. I express

my gratitude to Professor Ali E. Abbas. I thoroughly enjoyed his classes and my interactions with

him in helping area youths make better decisions. I also appreciate the support and feedback from

Professor Chandra S. Chekuri.

I must express my gratitude to the United States Air Force for affording me the opportunity to

iii



pursue higher education. In particular, I’d like to thank the Department of Operational Sciences at

the Air Force Institute of Technology for sponsoring me. A big thank you to Professor Dick Deckro

for serving as my advisor for my Master’s thesis and supporting my effort to attain a Ph.D. My

thanks to Professor Shane Hall for introducing me to Professor Jacobson and for his encouraging

words. I would also like to thank Dr. John Salerno at the Information Directorate of the Air Force

Research Lab for his support.

I appreciate the friendship and assistance my research group gave me during my time here:

Gio Kao, Doug King, Adrian Lee, David Morrison, Alex Nikolaev, Ruben Proano, and Jason

Sauppe. I will miss the many discussions we had concerning geopolitics, philosophy, relationships,

mathematics, graph theory, and many other topics.

I would like to thank Bruce G. Weniger, M.D., M.P.H., Chief, Vaccine Technology Immuniza-

tion Safety Office, Centers for Disease Control and Prevention, and Janet Jokela, M.D., M.P.H.,

F.A.C.P., Head, Department of Internal Medicine, University of Illinois at Urbana-Champaign,

for their support of this research. I would also like to thank Professor Edward C. Sewell for his

assistance with my research. This research has been supported in part by the National Science

Foundation (DMI-0457176).

The views expressed in this document are those of the author and do not reflect the official

position of the United States Air Force, Department of Defense, or the U.S. Government.

iv



For my wife and daughters.

v



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Operations Research and Pediatric Immunization Markets . . . . . . . . . . . . . . . 6
2.2 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 3 PRICING STRATEGIES FOR COMBINATION PEDIATRIC VACCINES . 10
3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

CHAPTER 4 THE WEIGHTED SET COVERING GAME: A BERTRAND OLIGOPOLY
PRICING MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 The Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 The Iterative Improvement Algorithm (IIA) . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Convergence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 The United States Pediatric Vaccine Market . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

CHAPTER 5 THE ALTRUISTIC MONOPSONIST VACCINE FORMULARY PRIC-
ING AND PURCHASING PROBLEM: INFORMING PUBLIC HEALTH POLICY . . . 59
5.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

CHAPTER 6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

AUTHOR’S BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vi



LIST OF TABLES

3.1 2009 CDC licensed pediatric vaccines by pharmaceutical company (competitive antigens only) . . . 11
3.2 List of existing competitive vaccines and attendant features . . . . . . . . . . . . . . . . . . . 13
3.3 Lowest overall cost formulary with associated pharmaceutical company revenue per child earned

(Scenario 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Lowest overall cost formulary with associated pharmaceutical company revenue per child earned

(Scenarios 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Lowest overall cost formulary with associated pharmaceutical company revenue per child earned

(Scenario 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Vaccine information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Firm profits at contract prices ending 31 Mar 2010 . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Equilibrium prices for the Γ instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Firm profits at static game equilibrium price point . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Focal equilibrium vaccine formularies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Equilibrium prices for Γr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7 Firm profits at repeated game equilibrium price point 1 . . . . . . . . . . . . . . . . . . . . . 56
4.8 Firm profits at repeated game equilibrium price point 2 . . . . . . . . . . . . . . . . . . . . . 56

5.1 Rule for vaccine unit production cost determination . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Vaccine information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Total production cost to complete 2010 RCIS by monovalent vaccine . . . . . . . . . . . . . . . 69
5.4 Rule for apportionment of total industry profit . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Vaccine manufacturer target profit levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6 Vaccine formulary selection (Scenario 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.7 Vaccine system cost and formulary purchase quantities (Scenario 1) . . . . . . . . . . . . . . . 70
5.8 Vaccine prices and purchase quantities (Scenario 1) . . . . . . . . . . . . . . . . . . . . . . . 71
5.9 Vaccine formulary selection (Scenario 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.10 Vaccine system cost and formulary purchase quantities (Scenario 2) . . . . . . . . . . . . . . . 72
5.11 Vaccine prices and purchase quantities (Scenario 2) . . . . . . . . . . . . . . . . . . . . . . . 73

vii



LIST OF FIGURES

1.1 United States 2009 Recommended Childhood Immunization Schedule (through Age 6) . . . . . . . 3

4.1 United States 2010 Recommended Childhood Immunization Schedule (through Age 6) . . . . . . . 50

5.1 United States 2010 Recommended Childhood Immunization Schedule (through Age 6) . . . . . . . 61

viii



CHAPTER 1

INTRODUCTION

Vaccination is one of the most important and successful public health endeavors in human history,

profoundly reducing mortalities caused by infectious diseases [46, 49]. In the United States, the

incidence of many childhood diseases has dramatically decreased, even as the number of diseases

preventable by vaccination has increased [46]. The comprehensive success of large scale pediatric

immunization programs results from the collaboration of an interdependent system of government

and industry stakeholders. A stakeholder in this system acts independently in pursuit of its own

interests; yet, the actions of one stakeholder may profoundly affect the welfare of another stake-

holder. It is imperative that these stakeholders understand the nature of their interdependence and

the holistic impact of their behavior on the entire vaccine market. The market for pediatric vac-

cines is fragile and requires ongoing vigilance to meet public health goals regarding immunization

coverage rates [46]. Of particular concern is the economic competition within the vaccine industry,

the impact of government regulatory policies on the vaccine industry, and the attendant impact on

the vaccine system’s ability to ensure the adequate provision of pediatric vaccines.

There are numerous stakeholders involved in the United States pediatric vaccine market. Phar-

maceutical firms manufacture the vaccines. The Food and Drug Administration (FDA) licenses the

use of the vaccines. The Centers for Disease Control and Prevention (CDC), Advisory Commit-

tee on Immunization Practices (ACIP), and American Academy of Pediatrics (AAP) recommend

proper use of the vaccines. The customers (i.e., healthcare providers, state and local government

public health officials) purchase vaccines for the immunization of the patients (i.e., the consumers)

under their care. Federal government public health officials negotiate the vaccine prices for the

purchases made by the state and local governments. Pediatric vaccines purchased at the public

sector price, as negotiated by the federal government, account for approximately 57% of total pe-

diatric vaccine purchases by volume [46]. For the results presented in this dissertation, only the

public sector of the market is considered. However, the methods discussed could also be applied to
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the private sector.

The pediatric vaccine industry consists of a relatively small number of pharmaceutical firms (i.e.,

companies, manufacturers) engaged in the research, development, manufacture, and distribution

of pediatric vaccines. Participation in the vaccine industry is a difficult, costly, risky, and (most

importantly), voluntary enterprise. All pediatric vaccines distributed in the United States are

manufactured by privately held companies, with no obligation to sustain or initiate the production

of pediatric vaccines, regardless of the importance of such vaccines to public health [18]. In the past

forty years, the manufacture of pediatric vaccines has become less profitable due to rising costs and

limited demand, inducing many pharmaceutical firms to exit the market [18, 45]. As of 2009, only

four pharmaceutical firms manufacture vaccines for young children. Moreover, pediatric vaccines

against seven diseases are manufactured by a single firm [20]. The contraction of the pediatric

vaccine market negatively impacts the provision of the vaccines. When a vaccine is produced by a

small number of manufacturers, production problems create immediate, acute shortages. In order

to ensure adequate immunization coverage levels, a robust vaccine industry is paramount.

The FDA’s licensing and approval process is a requirement for vaccine use in the United States.

Following FDA approval, a positive recommendation is very important to the success of a pediatric

vaccine. Changes in recommendations or requirements from the CDC, ACIP, or AAP greatly influ-

ence the demand for a particular vaccine. These organizations issue numerous guidelines regarding

policies to effectively control vaccine-preventable diseases. This includes the CDC maintaining a

list of acceptable vaccines and publishing an annual schedule concerning the appropriate period-

icity and dosages of vaccines, the United States Recommended Childhood Immunization Schedule

(RCIS) (see Figure 1.1 from CDC [12]).

Over the past two decades, the RCIS has grown increasingly complex, requiring children to

endure numerous vaccine injections over the first two years of life. To fully meet the current RCIS

may require up to twenty-four separate injections (not including Rotavirus, Influenza, Hepatitis A,

and Meningococcal). Indeed, during a single clinical visit, at the two and six month well-child visit,

a child may be required to receive up to five separate injections. Nonetheless, healthcare providers

seek to satisfy the RCIS in order to ensure proper coverage for a given child and ultimately to

provide public health protection for society at large. An important assumption held throughout

this work is the premise that vaccine purchasers are rational and that over time, they will select

vaccine formularies that satisfy the RCIS at the lowest overall cost, given their particular financial,
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Figure 1.1: United States 2009 Recommended Childhood Immunization Schedule (through Age 6)

Recommended Immunization Schedule for Persons  Aged 0 Through 6 Years—United States • 2009
For those who fall behind or start late, see the catch-up schedule

Certain 
high-risk 
groups

Range of 
recommended 
ages 

This schedule indicates the recommended ages for routine administration 
of currently licensed vaccines, as of December 1, 2008, for children aged 
0 through 6 years. Any dose not administered at the recommended age 
should be administered at a subsequent visit, when indicated and feasible. 
Licensed combination vaccines may be used whenever any component 
of the combination is indicated and other components are not contraindicated 
and if approved by the Food and Drug Administration for that dose of 

the series. Providers should consult the relevant Advisory Committee on 
Immunization Practices statement for detailed recommendations, including 
high-risk conditions: http://www.cdc.gov/vaccines/pubs/acip-list.htm. 
Clinically significant adverse events that follow immunization should 
be reported to the Vaccine Adverse Event Reporting System (VAERS). 
Guidance about how to obtain and complete a VAERS form is  
available at http://www.vaers.hhs.gov or by telephone, 800-822-7967.

Vaccine  Age  Birth
1

month
2

months
4

months
6

months
12

months
15

months
18

months
19–23

months
2–3

years
4–6

years

Hepatitis B1 HepB see  
footnote1

Rotavirus2 RV RV RV
2

Diphtheria, Tetanus, Pertussis3 DTaP DTaP DTaP see  
footnote3

Haemophilus influenzae type b4 Hib Hib Hib
4

Pneumococcal5 PCV PCV PCV

Inactivated Poliovirus IPV IPV

Influenza6

Measles, Mumps, Rubella7

Varicella8

Hepatitis A9

Meningococcal10

HepBHepB

DTaP DTaP

Hib

IPVIPV

MMR

VaricellaVaricella

MMR

see footnote8

see footnote7

PCV

  HepA (2 doses) HepA Series

MCV

Influenza (Yearly)

PPSV

1.	Hepatitis B vaccine (HepB). (Minimum age: birth)
	 At birth:
	 • ��Administer monovalent HepB to all newborns before hospital discharge.
	 • �If mother is hepatitis B surface antigen (HBsAg)-positive, administer HepB 

and 0.5 mL of hepatitis B immune globulin (HBIG) within 12 hours of birth.
	 • �If mother’s HBsAg status is unknown, administer HepB within 12 hours of 

birth. Determine mother’s HBsAg status as soon as possible and, if  
HBsAg-positive, administer HBIG (no later than age 1 week).

	 After the birth dose:
	 • �The HepB series should be completed with either monovalent HepB or a 

combination vaccine containing HepB. The second dose should be  
administered at age 1 or 2 months. The final dose should be administered 
no earlier than age 24 weeks.

	 • �Infants born to HBsAg-positive mothers should be tested for HBsAg and 
antibody to HBsAg (anti-HBs) after completion of at least 3 doses of the 
HepB series, at age 9 through 18 months (generally at the next well-child visit).

	 4-month dose:
	 • �Administration of 4 doses of HepB to infants is permissible when combination 

vaccines containing HepB are administered after the birth dose.

2.	Rotavirus vaccine (RV). (Minimum age: 6 weeks)
	 • �Administer the first dose at age 6 through 14 weeks (maximum age:  

14 weeks 6 days). Vaccination should not be initiated for infants aged  
15 weeks or older (i.e., 15 weeks 0 days or older).

	 • �Administer the final dose in the series by age 8 months 0 days.
	 • �If Rotarix® is administered at ages 2 and 4 months, a dose at 6 months is 

not indicated.

3.	�Diphtheria and tetanus toxoids and acellular pertussis vaccine (DTaP). 
(Minimum age: 6 weeks)

	 • �The fourth dose may be administered as early as age 12 months, provided 
at least 6 months have elapsed since the third dose.

	 • Administer the final dose in the series at age 4 through 6 years. 

4.	�Haemophilus influenzae type b conjugate vaccine (Hib).  
(Minimum age: 6 weeks)

	 • �If PRP-OMP (PedvaxHIB® or Comvax® [HepB-Hib]) is administered at ages  
2 and 4 months, a dose at age 6 months is not indicated.

	 • �TriHiBit® (DTaP/Hib) should not be used for doses at ages 2, 4, or 6 months 
but can be used as the final dose in children aged 12 months or older.

5.	�Pneumococcal vaccine. (Minimum age: 6 weeks for pneumococcal conjugate 
vaccine [PCV]; 2 years for pneumococcal polysaccharide vaccine [PPSV])

	 • �PCV is recommended for all children aged younger than 5 years. 
Administer 1 dose of PCV to all healthy children aged 24 through 59 
months who are not completely vaccinated for their age.

	 • �Administer PPSV to children aged 2 years or older with certain underlying 
medical conditions (see MMWR 2000;49[No. RR-9]), including a cochlear 
implant.

6.	�Influenza vaccine. (Minimum age: 6 months for trivalent inactivated  
influenza vaccine [TIV]; 2 years for live, attenuated influenza vaccine [LAIV])

	 • �Administer annually to children aged 6 months through 18 years.
	 • �For healthy nonpregnant persons (i.e., those who do not have underlying 

medical conditions that predispose them to influenza complications) aged 
2 through 49 years, either LAIV or TIV may be used.

	 • �Children receiving TIV should receive 0.25 mL if aged 6 through 35 months 
or 0.5 mL if aged 3 years or older.

	 • �Administer 2 doses (separated by at least 4 weeks) to children aged younger 
than 9 years who are receiving influenza vaccine for the first time or who 
were vaccinated for the first time during the previous influenza season but 
only received 1 dose.

7.	��Measles, mumps, and rubella vaccine (MMR). (Minimum age: 12 months)
	 • �Administer the second dose at age 4 through 6 years. However, the second 

dose may be administered before age 4, provided at least 28 days have 
elapsed since the first dose.

8.	Varicella vaccine. (Minimum age: 12 months) 
	 • �Administer the second dose at age 4 through 6 years. However, the second 

dose may be administered before age 4, provided at least 3 months have 
elapsed since the first dose.

	 • �For children aged 12 months through 12 years the minimum interval 
between doses is 3 months. However, if the second dose was administered 
at least 28 days after the first dose, it can be accepted as valid.

9.	Hepatitis A vaccine (HepA). (Minimum age: 12 months)
	 • �Administer to all children aged 1 year (i.e., aged 12 through 23 months). 

Administer 2 doses at least 6 months apart.
	 • �Children not fully vaccinated by age 2 years can be vaccinated at  

subsequent visits.
	 • �HepA also is recommended for children older than 1 year who live in areas 

where vaccination programs target older children or who are at increased 
risk of infection. See MMWR 2006;55(No. RR-7). 

10. �Meningococcal vaccine. (Minimum age: 2 years for meningococcal conjugate 
vaccine [MCV] and for meningococcal polysaccharide vaccine [MPSV])  

	 • �Administer MCV to children aged 2 through 10 years with terminal complement 
component deficiency, anatomic or functional asplenia, and certain other 
high-risk groups. See MMWR 2005;54(No. RR-7).

	 • �Persons who received MPSV 3 or more years previously and who remain 
at increased risk for meningococcal disease should be revaccinated with MCV.

The Recommended Immunization Schedules for Persons Aged 0 Through 18 Years are approved by the Advisory Committee on Immunization Practices (www.cdc.gov/vaccines/recs/acip),
the American Academy of Pediatrics (http://www.aap.org), and the American Academy of Family Physicians (http://www.aafp.org). C

S
1
0
3
1
6
4

Department of Health and Human Services • Centers for Disease Control and Prevention

social, and immunization environment. It follows that the vaccine manufacturers desire to have

their vaccines selected (and purchased) as a part of the lowest overall cost formulary, at the highest

possible price.

Vaccine pricing remains a matter of conflict with respect to short-term consumer fairness and

long-term industry efficiency. From the perspective of the pharmaceutical firms, high vaccine prices

are warranted. Many experts [18, 38, 45, 46] suggest that manufacturers should earn adequate

returns on their investments in order to sustain and expand the production of vaccines. From the

perspective of the vaccine purchasers, low prices are needed. Experts contend [33, 38] that high

prices may cause large groups of patients in publicly funded programs to go unvaccinated, leading

to even higher costs to treat the subsequent expected increase in disease incidence rates.

This dissertation focuses on new approaches for aiding public health policy practitioners in

examining the United States pediatric vaccine market. The pricing strategies of pharmaceutical

firms in the public sector are explored. The pricing and purchasing policies of the monopsonistic

federal government are also examined. The analysis presented enables government public health

officials to make more informed decisions regarding regulatory policies concerning the pricing of

pediatric vaccines. The appropriate pricing of pediatric vaccines is critically important to the

success of public immunization programs. Lower prices facilitate higher immunization coverage

rates while higher prices facilitate revenue streams that sustain the pharmaceutical industry’s

participation in the vaccine market. The dissertation is organized as follows.
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Chapter 2 presents a literature review of earlier research where operations research techniques

have been applied to the examination of the United States pediatric vaccine market. Other relevant

topics related to the research are also discussed.

Chapter 3 examines pricing strategies for pediatric combination vaccines and their impact on the

United States pediatric vaccine market. The methodology enables the analysis of pricing strategies

of directly competing, partially overlapping, and mutually exclusive combination vaccines in the

United States pediatric vaccine market, with the goal of maximizing each pharmaceutical company’s

expected revenue. The resulting analysis determines if a combination vaccine is competitively priced

when compared to its competitors, for a given suite of federal contract prices. The proposed pricing

approach suggests an appropriate price for a given combination vaccine, whereby a substantial

increase in expected revenue can be realized.

Chapter 4 presents a static Bertrand oligopoly pricing model that characterizes oligopolistic

interaction between asymmetric firms in a multiple homogeneous product market with a novel

demand structure. The treatment of the novel nature of the demand structure is the matter of

interest where firms satisfy demand by selling bundles of one or more products and consumers

seek to purchase at least one of each product at an overall minimum cost. Demand is captured by

defining a weighted set covering problem (WSC) instance, with the weights (prices) dynamically

controlled by firms engaged in Bertrand competition. A Nash equilibrium is sought in order to

analyze the depicted market. Complicating the analysis is the overlapping and interdependent

nature of the bundles of products and the discontinuity of the payoff in the price of each bundle.

An iterative improvement algorithm is defined that enables construction of pure strategy Nash

equilibrium price-tuples. Sufficient conditions for the existence of pure strategy Nash equilibria

(some in the limiting sense) are provided, indicating that this class of game always yields at

least one pure strategy equilibrium. The temporal assumption of the model is relaxed to allow

for repeated interaction between the competing firms. The repeated game version of the model

enables examination of tacit collusion in an underlying market of interest. The utility of the models

is demonstrated by analyzing the public sector of the United States pediatric vaccine market.

Chapter 5 presents an operations research approach that addresses the issue of the pediatric vac-

cine industry’s continuing viability from the perspective of the CDC. The monopsonistic market

power of the federal government uniquely positions it to significantly influence the pediatric vaccine

market by negotiating contractual agreements that increase the vaccine manufacturers’ financial

4



incentives to remain in the market. The Altruistic Monopsonist Vaccine Formulary Pricing and

Purchasing Problem (AMVF3P) is introduced, which seeks pediatric vaccine prices and purchase

quantities that ensure a birth cohort is fully immunized according to the recommended childhood

immunization schedule at an overall minimum system cost while also ensuring that vaccine manu-

facturers each attain a reasonable level of profit. The practical value of AMVF3P is demonstrated

by analyzing and assessing different pricing and purchasing policies that the CDC could adopt in

attempting to actively manage the long-term provision of pediatric vaccines.

Chapter 6 presents a brief conclusion and identifies areas for future research.
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CHAPTER 2

LITERATURE REVIEW

This chapter provides a literature review of past research where operations research was used to

examine pediatric immunization markets and is applicable to the research efforts presented in

Chapters 3 and 5. Another relevant topic related to the research presented in this dissertation

is also discussed, specifically, background information on game theory, which is applicable to the

research effort presented in Chapter 4.

2.1 Operations Research and Pediatric Immunization Markets

This section reviews the operations research literature as it applies to the examination of pediatric

immunization markets. Operations research methods have been applied to the analysis of the

United States pediatric vaccine market. Prior research has mostly addressed the selection of an

optimal vaccine formulary (i.e., a set of vaccines) that satisfies a RCIS at minimum cost [27, 30,

61] (from the perspective of a vaccine purchaser) or the determination of optimal vaccine prices

[29, 31, 51, 55, 56] (from the perspective of a vaccine manufacturer).

Weniger et al. [61] introduce an integer program (IP) model to aid health care decision makers

in determining a vaccine formulary that minimizes the cost to fully immunize a child according to a

given childhood immunization schedule. Jacobson et al. [30] present a full technical description of

the model introduced by Weniger et al. [61]. Hall et al. [27] introduce the general vaccine formu-

lary selection problem, providing fundamental insights into the structure of problems concerning

minimum cost satisfaction of a childhood immunization schedule.

Sewell et al. [56] adopt a ”reverse engineering” scheme involving a bisection algorithm to compute

a vaccine’s maximum inclusion price (i.e., the maximum price at which a vaccine is selected to be

part of the lowest overall cost formulary). The algorithm can be adjusted to investigate pricing

and purchasing questions; it enables determination of the lowest overall cost formulary, the set of

vaccines that satisfies the RCIS at the overall minimum formulary cost. The algorithm accounts for
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a number of different applicable cost components, one of which is the purchase price of individual

vaccines. The other cost components are clinical visitation costs, vaccine preparations costs, and

a vaccine administration cost also known as the cost of an injection. Sewell and Jacobson [55]

present a full technical description of the methods in Sewell et al. [56]. Similar efforts are seen in

Jacobson et al. [29, 31]. While these efforts provide analysis tools to help one group of stakeholders

in the pediatric vaccine market make decisions, no study has presented a comprehensive approach

in which the interests of all stakeholders in the market are simultaneously considered.

2.2 Game Theory

Noncooperative game theory provides an appropriate technique for analyzing economic conflict

between firms when no collusion is allowed [59]. A firm’s determination of the proper pricing

strategy when its profits are affected by the pricing decisions of other firms in the market lends

itself well to game theory. Myerson [41] defines game theory as the study of mathematical models

of conflict and cooperation between intelligent and rational decision-makers (firms). An intelligent

firm knows everything there is to know about the game. A rational firm acts in a consistent manner

pursuant to its own objectives (i.e., it seeks to maximize its own profit). The motivating principle of

this method of analysis is the understanding of the fundamental issues underlying the real market

of interest.

Models of oligopolistic interaction depict a finite and typically small number of firms competing

in a homogeneous product market. The strategic variable of interest for each firm depends on the

specific model that is implemented. In the classical model put forth by Bertrand [3], each firm’s

strategic variable is the price of the homogeneous product. The market reacts to the offered prices

by first demanding an attendant quantity and then clearing by some unspecified mechanism. It is

assumed that the lowest price firm(s) must supply the entire market demand. In contrast, in the

classical model proposed by Cournot [15], each firm’s strategic variable is its quantity produced.

The market reacts to the aggregate production level of the firms by first setting a price and then

clearing by some unspecified mechanism. Note that market clearing refers to the process by which

markets gravitate towards prices that balance quantity supplied and quantity demanded, such that

in the long run, the market is cleared of all surpluses and shortages.

The appropriateness of a model depends on the basic structure of the market of interest. For

example, the Bertrand model is well suited to production-to-order markets (e.g., various service
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industries) [48]. Conversely, the Cournot model is well suited to production-to-stock markets (e.g.,

agricultural products, automobiles). Vives [59] also notes that the industry variable that is more

difficult to adjust mid-process, due to contractual obligations or other extenuating circumstances,

could be the dominant strategic variable, even in industries where the other strategic variable is

typically dominant. Indeed, the motivating domain problem of interest in this dissertation reflects

such a situation. In the United States pediatric vaccine market, pharmaceutical companies man-

ufacture vaccines on a production-to-stock basis, yet the industry is best modeled as a Bertrand

competition since vaccine prices (in the public sector) are fixed for one year periods due to con-

tractual obligations negotiated by the Centers for Disease Control and Prevention (CDC).

A review of the relevant literature suggests a need for a model treating a market exhibiting a

demand structure with a highly combinatorial and interdependent nature. The model presented

in Chapter 4 allows for the analysis of markets in which consumers face a weighted set covering

(WSC) optimization problem (in which a minimum cost set cover is sought) with several competing

firms setting the applicable weights in the problem (in order to maximize individual firm profit).

The WSC problem is: given S, a set of elements, and B, a set of weighted subsets of S, find a

minimum cost collection C of subsets from B such that C covers all elements in S.

No game has been formulated in the literature to account for markets with such a demand

system. While many studies concentrate on pricing behavior in markets with multiproduct firms,

studies typically consider markets with differentiated products and demand systems portrayed by

smooth (or at least, twice differentiable) functions [58, 59]. Distinguishing characteristics of the

results presented in this dissertation involve the structure of the demand system; a smooth demand

function is attributed only to the aggregate cost of the minimum weighted cover (i.e., the group

of bundles of homogeneous products). An additional combinatorial complication results from the

overlapping bundles of products offered by the competing firms. Demand for any given bundle

is determined by the set of solutions to the defining WSC problem, indicating the discontinuous

nature of the market structure.

A solution concept is a rule for specifying predictions concerning the expected behavior of players

in a game [41]. In this research effort, the solution concept to the formulated game is the Nash equi-

librium [43]. The classical Bertrand equilibrium is easily seen as a forerunner to the modern game

theory solution concept provided by Nash. The goal of Chapter 4 is to examine the fundamental

questions regarding the proposed game to include the existence of pure strategy Nash equilibria
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and the computation of such equilibria. Note that mixed strategy equilibria are not desirable (and

are not considered in this effort) due to their problematic economic interpretation. The nondeter-

ministic selection of the support strategies and the corresponding lack of a clear incentive to use

the prescribed mixed strategy in an equilibrium prevents decision-makers from fully supporting a

mixed strategy policy. As Vives [59] notes, it is doubtful that firms select optimal strategies by

rolling dice.

When examining markets using a Bertrand framework, it is important to consider three critical

assumptions. The first assumption relates to production capacity; Bertrand competition assumes

that any firm can fully satisfy market demand. The second assumption relates to the temporal

aspect of the competition; firms supposedly engage in competition only once. The third assumption

relates to product differentiation; the firms’ products are assumed to be perfect substitutes for

one another. Together, these assumptions depict an extreme economic situation in which only

two firms are required to induce a perfectly competitive result (i.e., prices fall to marginal cost,

providing very low economic profit to the competing firms). Moreover, due to the stringency of the

assumptions, the resulting Nash equilibrium is often economically naive and unrealistic. To address

these concerns, the temporal aspect of the model presented in Chapter 4 is relaxed to allow for

repeated interaction between the firms. This relaxation provides a noncooperative game theoretic

mechanism to expand the set of Nash equilibria to include more realistic behavior.
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CHAPTER 3

PRICING STRATEGIES FOR COMBINATION PEDIATRIC

VACCINES

Routine administration of pediatric vaccines is considered one of the most effective means of pre-

venting infectious diseases. In the United States, the Centers for Disease Control and Prevention

(CDC) acts as the primary public health organization responsible for setting pediatric immuniza-

tion policy. The CDC has identified a number of compelling reasons for the use of combination

vaccines in pediatric immunization [8]. This includes reducing the number of injections necessary

to satisfy the United States Recommended Childhood Immunization Schedule (RCIS), reducing

pain and discomfort experienced by children, and the potential to increase vaccination compliance

rates [34, 35, 40, 39].

The CDC has issued numerous guidelines concerning the proper methods and scheduling for

vaccinating a child. The Advisory Committee on Immunization Practice (ACIP), an advisory body

to the CDC, provides specific guidance regarding policies to effectively control vaccine-preventable

diseases. This includes maintaining a list of acceptable pediatric vaccines as well as publishing an

annual schedule regarding the appropriate periodicity and dosages [9, 5].

Over the past two decades, the RCIS has grown increasingly complex, requiring children to

endure numerous vaccine injections over the first two years of life. To fully meet the current RCIS

(see Figure 1.1 from CDC [12]) may require up to twenty-four separate injections (not including

Rotavirus, Influenza, Hepatitis A, and Meningococcal). Indeed, during a single clinical visit, at the

two and six month well-child visit, a child may be required to receive up to five separate injections.

Nonetheless, healthcare providers seek to satisfy the RCIS in order to ensure proper coverage for a

given child and ultimately to provide public health protection for society at large.

In the United States pediatric vaccine market, four pharmaceutical companies manufacture all

the vaccines required to successfully complete the RCIS. The analysis that follows concentrates only

on diseases for which there are competing vaccines produced by different pharmaceutical companies

(i.e., when two or more vaccines can satisfy the dosage requirement during a given time period,
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they are said to compete). For the four competitive antigens, three pharmaceutical companies

compete pairwise with each other over the sale of seven monovalent and five combination vaccines

(Table 3.1).

Table 3.1: 2009 CDC licensed pediatric vaccines by pharmaceutical company (competitive antigens only)

Sanofi Pasteur GlaxoSmithKline Merck
DTaP DTaP HepB
Hib HepB Hib
IPV DTaP-IPV Hib-HepB

DTaP/Hib DTaP-HepB-IPV
DTaP-IPV/Hib

Pharmaceutical companies have developed combination pediatric vaccines that immunize against

multiple diseases in a single injection. Several combination pediatric vaccines have been licensed for

use within the United States. For example, Comvax (Hib-HepB), manufactured by Merck (Comvax

is a registered trademark of Merck), contains antigens providing protection against Haemophilus in-

fluenzae type B and hepatitis B, TriHIBit (DTaP/Hib), manufactured by Sanofi Pasteur (TriHIBit

is a registered trademark of Sanofi Pasteur), contains antigens providing protection against four

diseases: diphtheria, tetanus, pertussis, and Haemophilus influenzae type B, and Kinrix (DTaP-

IPV), manufactured by GlaxoSmithKline (Kinrix is a registered trademark of GlaxoSmithKline),

contains antigens providing protection against four diseases: diphtheria, tetanus, pertussis, and po-

lio. The first pentavalent vaccine, Pediarix (DTaP-HepB-IPV), manufactured by GlaxoSmithKline

(Pediarix is a registered trademark of GlaxoSmithKline), contains antigens providing protection

against five diseases: diphtheria, tetanus, pertussis, hepatitis B, and polio. From December 2002

until the summer of 2008, Pediarix was the only pentavalent combination vaccine available in the

market. However, that changed in June 2008, when the Food and Drug Administration (FDA)

approved a second pentavalent combination vaccine, Pentacel (DTaP-IPV/Hib), manufactured by

Sanofi Pasteur (Pentacel is a registered trademark of Sanofi Pasteur), which contains antigens pro-

viding protection against diphtheria, tetanus, pertussis, polio, and Haemophilus influenzae type B.

The structure of the RCIS makes it unrealistic for both Pediarix and Pentacel to be used simulta-

neously in a single pediatric immunization formulary. It follows that the immunization market will

gravitate to the combination vaccine providing the best economic value in terms of overall cost,

which in turn leads to three important (and related) questions. From the perspective of the health-

care providers, what set of vaccines fully satisfies the RCIS at minimum cost? Should a vaccine

formulary be formed around Pediarix or Pentacel? From the perspective of the pharmaceutical

companies, what prices should be set for their vaccines in order to maximize revenue? Therefore,
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the pricing strategies of Pediarix and Pentacel are of direct interest.

This chapter describes how the vaccine selection algorithm introduced by Jacobson et al. [30]

can be used to investigate a pharmaceutical company’s pricing strategy for a pediatric combination

vaccine and gain insight into the subsequent attendant market conditions. The main contribution

of the chapter is to provide a methodology for objectively evaluating two partially overlapping

combination vaccines (e.g., DTaP-HepB-IPV and DTaP-IPV/Hib) based on price and (uncertain)

cost of injection information. Furthermore, the analysis addresses how a pharmaceutical company

should price such a vaccine in order to maximize its expected revenue per child (ERPC), which

quantifies the amount of revenue the pharmaceutical company can expect to earn per child fully

immunized according to the RCIS, and hence, is a proxy measure for the long term market prospects

of a company’s suite of vaccines.

The approach in this chapter focuses on maximizing revenue for products that have low marginal

costs. The fundamental premise is that a pharmaceutical company’s capital expenditures associated

with the research, development, and start-up production of a new pediatric vaccine are treated as

sunk costs. Having already made the decision to enter the market, competitive market forces now

dictate appropriate pricing, not the price best suited to recover sunk cost. Actual marginal costs

of production are assumed to be very low. Consequently, with low marginal costs it is reasonable

to equate revenue with profit. Moreover, note that there is no demand elasticity. Demand is fixed,

based on CDC recommendations concerning routine administration of licensed pediatric vaccines

(a healthcare provider must satisfy the RCIS). For a fixed cost of injection, a pharmaceutical

company’s revenue can only be increased at the expense of another company’s revenue. The premise

here is that over time, healthcare providers will build their formularies around the combination

vaccine resulting in the lowest overall cost, given their particular financial, social, and immunization

environment. This perspective, as captured by each pharmaceutical company’s expected revenue

for each child completing his or her RCIS, is articulated as the pediatric vaccine market.

The methodology employed in this chapter builds upon the results reported in [55, 56] by ana-

lyzing the conditions in a Pediarix-only market and one in which both Pediarix and Pentacel are

available for purchase. Naturally, this general approach is applicable to any partially overlapping

combination vaccine (e.g., Comvax) for which there is competition. The target audience includes

those within the pediatric healthcare community seeking information regarding the relative eco-

nomic value, effective pricing strategies, and impact of combination vaccines on market conditions.
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The chapter is organized as follows: Section 3.1 describes the methods used to analyze the

conditions in a market without Pediarix and Pentacel (prior to December 2002), a Pediarix-only

market (December 2002 to June 2008), and a market in which both Pediarix and Pentacel are

available for purchase (June 2008 to present). A pricing strategy is then proposed for Pentacel,

whereby its manufacturer, Sanofi Pasteur, seeks to maximize its ERPC. Section 3.2 reports the

results of the analysis, including the economic value of Pediarix and Pentacel. Additionally, an

approach is suggested for pricing Sanofi Pasteur’s Pentacel in order to increase its ERPC. Section

3.3 provides concluding comments and directions for future research.

3.1 Methods

Jacobson et al. [30] propose an integer programming model to obtain the lowest overall cost formu-

lary needed to satisfy a subset of the RCIS. The lowest overall cost formulary is the set of vaccines

that satisfies the RCIS at minimum cost, where cost includes the purchase price of individual vac-

cines, clinical visitation costs, vaccine preparations costs, and a vaccine administration cost (the

cost of an injection). The model has been enhanced and updated to consider all monovalent and

combination vaccines that were licensed in the United States and under federal contract (ending 31

March 2010) for purchase by the CDC for use in United States public-sector immunization program

(Table 3.2) [5, 19]. The analysis in this chapter uses only federal contract prices (typically lower

than private sector prices), although the methods discussed could also be applied using private

sector prices for the vaccines.

Table 3.2: List of existing competitive vaccines and attendant features

Vaccine Pack- Price Prep. cost Subtotal Manufacturer
aging per dose per dose

DTaP Tripedia [v] $13.25 $ 0.75 $14.00 Sanofi Pasteur
DTaP Infanrix [s] $13.75 $ 0.25 $14.00 GlaxoSmithKline
DTaP-IPV Kinrix [s] $32.25 $ 0.25 $32.50 GlaxoSmithKline
DTaP-HepB-IPV Pediarix [s] $48.75 $ 0.25 $49.00 GlaxoSmithKline
DTaP/Hib TriHIBit [v] $27.31 $ 0.75 $28.06 Sanofi Pasteur
DTaP-IPV/Hib Pentacel [v] $51.49 $ 0.75 $52.24 Sanofi Pasteur
IPV IPOL [s] $11.51 $ 0.25 $11.76 Sanofi Pasteur
HepB ENGERIX B [s] $9.75 $ 0.25 $10.00 GlaxoSmithKline
HepB RECOMBIVAX [v] $10.00 $ 0.75 $10.75 Merck
Hib-HepB COMVAX [v] $28.80 $ 0.75 $29.55 Merck
Hib COMVAX [v] $28.80 $ 0.75 $29.55 Merck
Hib ActHIB [v] $8.66 $ 0.75 $9.41 Sanofi Pasteur

Note that monopoly vaccine manufacturers and their products are not included in the analysis.

The vaccine selection algorithm trivially selects the single product available and therefore no mean-

ingful analysis is accomplished, as no competition occurs. Merck’s measles, mumps, and rubella
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(MMR) combination vaccine and Wyeth/Lederle’s Pneumococcal Conjugate 7-valent (PCV7) vac-

cine are examples of monopoly products excluded from this analysis.

Four objective function components determine the overall cost for an immunization formulary

that fully satisfies the RCIS: the purchase prices of the vaccines, the estimated cost of a clinic visit,

an estimated cost for vaccine preparation time by nurses, and an estimated cost of administering

an injection [55, 56]. The cost of a clinic visit remains the same as in previous studies [30, 61],

though since all relevant time periods require a visit, this value does not impact the selection of

the lowest overall cost formulary.

The cost of administering an injection is a highly subjective value [61]. Unlike previous studies

[31, 55, 56] which treated it as a constant (albeit varied across a range of values), a probabilistic

distribution is chosen here so as to better represent a user’s beliefs regarding the intrinsic value

associated with reducing the number of injections a child must endure in order to complete the

RCIS. Due to the highly subjective nature of the cost of an injection, a well fit, empirically backed

distribution is unavailable. The dearth of data suggests a more general selection is warranted. The

analysis in this chapter uses a triangular distribution with a minimum of $6, a mode of $10, and a

maximum of $14, though any distribution may be considered.

Vaccine preparations costs for vials [v] and syringes [s] were $0.75 and $0.25 per dose, respectively

(Table 3.2) (see [30, 61] for detailed descriptions and explanations). Qualitative factors affecting

the vaccine selection process were not included in this study due to the difficulty in quantifying their

values. Issues such as vaccine brand loyalty (where lowest overall cost alone does not dictate vaccine

selection) and vaccine formulary inertia (where an incumbent formulary remains a health provider’s

choice despite the cost saving merits of a competing, lower cost formulary, due to resistance to

change) can be adequately formulated but the associated parameters remain difficult to quantify.

Only cost factors provide an objective measure of comparison between two competing combination

vaccines and their attendant formularies.

The integer programming model introduced by Jacobson et al. [30] enforces the structure and

rules of pediatric immunization (periodicity and dosage constraints) as recommended by the ACIP

[9, 12]. The six time periods of interest include: birth-month, month 2, month 4, month 6, month

12-18, and year 4-6 periods. The four vaccine components of interest are DTaP, HepB, Hib, and

IPV. A vaccine can only be administered for diseases and in time periods for which it has been

licensed by the FDA [19]. Examples of ACIP recommendations include: manufacturer brand
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matching for the month 2, 4, and 6 doses of DTaP, whereby each of the doses of DTaP for the

pertinent three time periods must be of the same brand [8]. Administering Merck’s Hib in the

month 2 and 4 time periods implies that the month 6 dose is not required [12]. Extraimmunization

with additional doses beyond those required is permissible in the model [30]. In each of the market

scenarios investigated, it is assumed that a monovalent HepB vaccine birth dose is administered to

all newborns prior to discharge from the hospital.

Three different market scenarios are analyzed. Scenario 1 examines a market in which Pediarix

and Pentacel are both unavailable (i.e., prior to December 2002). The ERPC for each pharma-

ceutical company is reported. The results of Scenario 1 provide a base case for comparison with

Scenario 2, which examines market conditions in which only Pediarix is available. Comparing the

results provides insights into the economic value of Pediarix. Scenario 2 reflects market conditions

as they stood prior to the entry of Pentacel (on 23 June 2008) into the market. Scenario 3 ex-

amines a market in which both Pediarix and Pentacel are available for purchase and reflects the

current (i.e., for vaccines with federal contract prices ending 31 March 2010) market conditions. A

pharmaceutical company’s relative contribution to the total ERPC earned for competitive antigens

provides insight into natural market tendencies in the long term. That is to say, one would expect

pediatric vaccine purchasers to gravitate towards the formulary that provides them full immuniza-

tion coverage for the lowest overall cost, given their belief concerning the distribution of cost of

injection (C) for their patient population. The ERPC is expressed as:

E[RPCMfg(C)] =

∫ CMax

CMin

RPCMfg(c)f(c)dc, (3.1)

where f is the density function for C ∼ triangular(CMin = 6, CMode = 10, CMax = 14) and

RPCMfg(c) is the revenue per child earned by vaccine manufacturer (pharmaceutical company)

Mfg at a cost of injection c. The process of determining RPCMfg(c) requires reverse engineering

of the vaccine selection algorithm in order to find the lowest overall cost formulary across the range

of values for C; this typically involves solving between 50 and 100 integer programs using CPLEX.

An approach for pricing a pediatric vaccine is presented to ensure that a pharmaceutical com-

pany achieves its highest possible ERPC given its belief concerning the distribution of the cost

of an injection for its customers and the prices of vaccines manufactured by other pharmaceutical

companies. A pharmaceutical company could very well adjust the price of all the vaccines it con-

trols. The focus of this chapter is on combination vaccines however, so the approach is employed
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changing only one vaccine price at a time; the maximizing expected revenue per child (MERPC)

approach is demonstrated on Pentacel in Scenario 4, with both Pediarix and Pentacel available for

purchase and reflects the current (i.e., for vaccines with federal contract prices ending 31 March

2010) market conditions. The MERPC approach can be expressed as

arg max
p

(E[RPCSP (p, C)]), (3.2)

where,

E[RPCSP (p, C)] =

∫ CMax

CMin

RPCSP (p, c)f(c)dc, (3.3)

and where p is the price of Pentacel, and RPCSP (p, c) is the revenue per child earned by Sanofi

Pasteur when the cost of an injection equals c and Pentacel costs p dollars per dose. One could

solve Equation (3.2) by exhaustive enumeration, though when multiple vaccine prices are adjusted

simultaneously, such a solution method quickly becomes computationally infeasible. For this anal-

ysis, a bisection search algorithm was employed to reduce the number of integer program solutions

needed to obtain the revenue per child values. The MERPC approach typically requires thousands

of integer programs to be solved to identify a vaccine price that maximizes ERPC.

3.2 Results and Analysis

This section reports the results of reverse engineering the vaccine selection algorithm to gain insights

into the United States pediatric vaccine market. Sections 3.2.1-3.2.3 report the results of Scenarios

1-3, respectively. Section 3.2.4 reports the results of Scenario 4, providing details concerning a

proposed pricing strategy for Pentacel whereby Sanofi Pasteur prices Pentacel under current (i.e.,

for vaccines with federal contract prices ending 31 March 2010) market conditions so as to maximize

its ERPC. The general approach applies to any pharmaceutical company for any of its pediatric

vaccines. Comparing Sanofi Pasteur’s ERPC after pricing Pentacel using the MERPC approach,

with its performance reported in Scenario 3, reveals that the initial federal contract price for

Pentacel should be lowered to increase Sanofi Pasteur’s ERPC.
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3.2.1 Market Conditions without Pediarix and Pentacel

Scenario 1 considers a pediatric vaccine market in which both Pediarix and Pentacel are unavailable.

This scenario reflects actual conditions in the market prior to the licensing of Pediarix in December

2002. The vaccine selection algorithm solves for the lowest overall cost formulary for a fixed cost

of an injection, across the specified range of values for the cost of an injection. The cost of an

injection bounds for which a formulary remains lowest overall cost (referred to as the cost of

injection interval) are determined using a bisection search algorithm. The bounds for the cost of

an injection are constrained by the minimum and maximum values of its chosen distribution. For

this analysis, the cost of an injection is distributed triangular, with a minimum of $6, a mode of

$10, and a maximum of $14. The vaccines and their associated costs are listed in Table 3.2.

Scenario 1 results (see Table 3.3) indicate the presence of two lowest overall cost formularies.

The Monovalent+TriHIBit Formulary is the lowest overall cost formulary for C ∈ [$6.00, $7.51].

This formulary uses all monovalent vaccines to satisfy the RCIS, with the exception of Sanofi

Pasteur’s TriHIBit in the month 12-18 period. As discussed previously, the monovalent vaccines

do well at lower costs of injection because the intrinsic premiums associated with the combination

vaccines have not yet been overcome by the cost of an injection. For this formulary, TriHIBit,

a combination vaccine itself, is priced ($28.06 per dose, post-preparation) close to the sum of

its component monovalent vaccines ($23.41, post-preparation) and is thus economically attractive

for a $6.00 cost of an injection, the lowest value of interest for the cost of an injection in this

analysis. Recall that Merck competes for two of the four contested antigens (HepB and Hib; see

Table 3.1). In this formulary two injections of its Hib monovalent are selected, which eliminates

the requirement for the Hib dosage in the month 6 period, creating an economic benefit over the

competing Sanofi Pasteur Hib monovalent (i.e., although the Sanofi Pasteur Hib is less expensive,

it requires three doses versus Merck’s two, and hence, is not as cost effective). GlaxoSmithKline

competes for three of the four contested antigens (though in this scenario, it competes only for

DTaP and HepB, since Pediarix is unavailable). In this formulary, its monovalent HepB is selected,

since it is simply less expensive than the competing Merck HepB monovalent. Its DTaP monovalent

is credited with 2.5 of the five doses in the RCIS, since both it and Sanofi Pasteur’s DTaP have a

post-preparation cost per dose of $14.00. Sanofi Pasteur competes for three of the four contested

antigens and is the dominant manufacturer in this formulary. Its DTaP monovalent is tied with the

competing GlaxoSmithKline DTaP monovalent and is selected for 2.5 of the five doses in the RCIS.
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Table 3.3: Lowest overall cost formulary with associated pharmaceutical company revenue per child earned
(Scenario 1)

6.00$   7.51$        7.51$    14.00$      
Pharmaceutical 

Company Time Period Vaccine Vaccine Notes
Merck Birth - -

Month 2 Hib 11.29$  Hib-HepB Hib exits 28.80$  
Month 4 Hib 11.29$  Hib 11.29$  
Month 6 - -
Month 12-18 - -
Month 19-36 - -
Month 48-72 - 22.58$       - 40.09$       

GlaxoSmithKline Birth HepB 9.75$    HepB 9.75$    
Month 2 DTaP, HepB 16.63$  DTaP HepB exits 6.88$    
Month 4 DTaP 6.88$    DTaP 6.88$    
Month 6 DTaP, HepB 16.63$  DTaP, HepB 16.63$  
Month 12-18 - -
Month 19-36 - -
Month 48-72 DTaP 6.88$    56.75$       DTaP 6.88$    47.00$       

Sanofi Pasteur Birth - -
Month 2 DTaP, IPV 18.14$  DTaP, IPV 18.14$  
Month 4 DTaP, IPV 18.14$  DTaP, IPV 18.14$  
Month 6 DTaP, IPV 18.14$  DTaP, IPV 18.14$  
Month 12-18 DTaP/Hib 27.31$  DTaP/Hib 27.31$  
Month 19-36 - -
Month 48-72 DTaP, IPV 18.14$ 99.85$      DTaP, IPV 18.14$  99.85$      

Monovalent + TriHIBit® Formulary COMVAX® Formulary
Cost of injection interval Cost of an Injection interval

Revenue Revenue

 

Since Pediarix is unavailable for this scenario, the Sanofi Pasteur IPV monovalent is a monopoly

product and is trivially selected for all four doses. Sanofi Pasteur earns $99.85 of revenue per child

completing the RCIS using this formulary, compared to $28.50 for GlaxoSmithKline and $22.58 for

Merck.

The COMVAX Dominant Formulary is the lowest overall cost formulary for C ∈ [$7.51, $14.00].

A cost of an injection of $7.51 is sufficiently high enough that the inclusion of COMVAX becomes

economically viable. Thus it enters the lowest overall cost formulary at a cost of an injection

of $7.51, displacing one injection of Merck’s Hib and one injection of GlaxoSmithKline’s HepB.

This results in a transfer of revenue from GlaxoSmithKline to Merck due to the superiority of

the combination vaccine COMVAX. Merck realizes the COMVAX premium while acquiring one of

GlaxoSmithKline’s monovalent HepB doses. The remainder of the formulary remains unchanged

when compared to the Monovalent+TriHIBit Formulary. While Merck increases revenue at the

expense of GlaxoSmithKline, Sanofi Pasteur remains the dominant manufacturer. Sanofi Pasteur

still earns $99.85 of revenue per child, completing the RCIS using this formulary, compared to

$47.00 for GlaxoSmithKline and $40.09 for Merck.

In Scenario 1, the COMVAX Dominant Formulary has the largest impact on the ERPC for

the three competing pharmaceutical companies. The COMVAX Dominant Formulary is the lowest

overall cost formulary for C ∈ [$7.51, $14.00]. This means that approximately 93% of the customers
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who value the cost of an injection as represented by a triangular(6,10,14) prefer the COMVAX

Dominant Formulary to serve as their lowest overall cost formulary. The ERPC for the three

competing pharmaceutical companies can be computed using Equation (3.1). Recall that the

revenue of interest is only for the four antigens for which there is competition, with Sanofi Pasteur

obtaining 53.6% of the ERPC, GlaxoSmithKline 25.6%, and Merck 20.8%. Sanofi Pasteur competes

for three of the four antigens, totaling 13 doses, providing higher potential for earned revenue.

Merck also does well, considering it is only competing for two of the four antigens totaling just seven

doses. Note that GlaxoSmithKline, without Pediarix, earns $47.69 of ERPC. This baseline expected

revenue will be compared to its expected earnings in Scenario 2, where Pediarix is available.

3.2.2 Market Conditions with Pediarix

Scenario 2 considers a pediatric vaccine market in which Pediarix is available. This scenario reflects

actual conditions in the market prior to the licensing of Pentacel on 23 June 2008. As in Scenario

1, the vaccine selection algorithm enables construction of the lowest overall cost formulary for a

fixed cost of an injection, across the specified range of values for the cost of an injection. The

Scenario 2 results (Table 3.4) indicate the presence of two lowest overall cost formularies. The

Monovalent+TriHIBit Formulary is the lowest overall cost formulary for C ∈ [$6.00, $6.62]. Since

the make-up of the Monovalent+TriHIBit Formulary was detailed in Scenario 1, it is not repeated

here. Recall from Scenario 1 though that Sanofi Pasteur earns $99.85 per child completing the

RCIS using this formulary, compared to $56.75 for GlaxoSmithKline and $22.58 for Merck.

The 2-shot Pediarix Dominant Formulary is the lowest cost formulary for C ∈ [$6.62, $14.00].

This formulary is so named because its backbone is the two injections of Pediarix at the month 2

and month 6 time periods. It supplants the Monovalent+TriHIBit Formulary as the lowest overall

cost formulary at a cost of an injection of $6.62. The COMVAX Dominant Formulary never achieves

lowest overall cost status in Scenario 2 however, since Pediarix is priced such that it enters the

lowest overall cost formulary $0.89 ahead of COMVAX in terms of cost of an injection ($7.51 versus

$6.62). This means that GlaxoSmithKline effectively prices COMVAX out of the market, which

explains the decreased sales volume of COMVAX [1]. Since Pediarix does not contain Hib, its

natural partner is Merck’s Hib. In fact, Merck keeps its two injections of Hib in the 2-shot Pediarix

Dominant Formulary. GlaxoSmithKline replaces its own two monovalent HepB injections at the

month 2 and month 6 time periods with doses of Pediarix. The economic viability of Pediarix allows
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Table 3.4: Lowest overall cost formulary with associated pharmaceutical company revenue per child earned
(Scenarios 2 and 3)

6.00$   6.62$        6.62$    14.00$      
Pharmaceutical 

Company Time Period Vaccine Vaccine Notes
Merck Birth - -

Month 2 Hib 11.29$  Hib 11.29$  
Month 4 Hib 11.29$  Hib 11.29$  
Month 6 - -
Month 12-18 - -
Month 19-36 - -
Month 48-72 - 22.58$       - 22.58$       

GlaxoSmithKline Birth HepB 9.75$    HepB 9.75$    
Month 2 DTaP, HepB 16.63$  DTaP-HepB-IPV HepB exits 48.75$  
Month 4 DTaP 6.88$    DTaP 13.75$  
Month 6 DTaP, HepB 16.63$  DTaP-HepB-IPV HepB exits 48.75$  
Month 12-18 - -
Month 19-36 - -
Month 48-72 DTaP 6.88$    56.75$       DTaP 6.88$    127.88$     

Sanofi Pasteur Birth - -
Month 2 DTaP, IPV 18.14$  - DTaP, IPV exit
Month 4 DTaP, IPV 18.14$  IPV DTaP exits 11.51$  
Month 6 DTaP, IPV 18.14$  - DTaP, IPV exit
Month 12-18 DTaP/Hib 27.31$  DTaP/Hib 27.31$  
Month 19-36 - -
Month 48-72 DTaP, IPV 18.14$ 99.85$      DTaP, IPV 18.14$  56.96$      

Revenue Revenue

2-shot Pediarix® Dominant FormularyMonovalent + TriHIBit® Formulary
Cost of an Injection intervalCost of injection interval

 

GlaxoSmithKline to take the DTaP doses away from Sanofi Pasteur in addition to retaining its

HepB doses. This market gain is effectively realized due to the economic effectiveness of replacing

three injections with a single injection, saving twice the cost of an injection. The use of Pediarix at

the month 2 and month 6 time periods forces the month 4 dose of DTaP to be a GlaxoSmithKline

product, due to the DTaP manufacturing matching requirement for the months 2, 4, and 6 period

series, even though the Sanofi Pasteur DTaP monovalent is equally expensive. Note that the vaccine

selection algorithm recognizes that a third dose of Pediarix used at the month 4 time period is

wasteful since the RCIS does not call for a HepB dose at that time period. The intrinsic price

premium of Pediarix is too expensive to warrant the replacement of only the monovalent DTaP

and IPV injections for the more expensive Pediarix. The 3-shot Pediarix Dominant Formulary gives

a Pediarix injection at the month 4 period, resulting in the extraimmunization of HepB (which is

allowed), but is only economical at higher cost of an injection values. As for Sanofi Pasteur, it

loses doses because of Pediarix. All three Sanofi Pasteur DTaP doses for which Pediarix competes

are lost, as are the two doses of IPV that Pediarix covers. Sanofi Pasteur only retains the IPV

monovalent injection in the month 4 period. Sanofi Pasteur loses revenue but retains a respectable

$56.96 of revenue per child, whereas GlaxoSmithKline increases its revenue to $127.88 per child.

Merck remains constant at $22.58 per child.

As with Scenario 1, the second formulary has the most impact on the ERPC for the three com-
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peting pharmaceutical companies. The 2-shot Pediarix Dominant Formulary is the lowest overall

cost formulary for C ∈ [$6.62, $14.00]. This means that approximately 98.8% of the customers who

value the cost of an injection as represented by a triangular(6,10,14) prefer the 2-shot Pediarix

Dominant Formulary to serve as their lowest overall cost formulary. Again the ERPC for the three

competing pharmaceutical companies is computed using Equation (3.1). Due to the presence of

GlaxoSmithKline’s Pediarix, both Sanofi Pasteur and Merck lose ERPC; GlaxoSmithKline obtains

61% of the ERPC, Sanofi Pasteur 28%, and Merck 11%. The value of Pediarix to GlaxoSmithKline

can be computed by examining GlaxoSmithKline’s ERPC both with and without Pediarix. From

such an analysis, Pediarix provides a net gain of $127.02 - $47.69 = $79.33 of ERPC, which means

that GlaxoSmithKline can expect to earn $79.33 more revenue for every child fully completing the

RCIS due to its offering of Pediarix. Both Sanofi Pasteur and Merck lose revenue not only due to

Pediarix being available, but also to its adroit pricing.

On 23 June 2008, Pentacel was licensed by the FDA for use in the United States pediatric

vaccine market. By design, Pentacel competes directly with Pediarix, offering three vaccines in one

injection, similar to Pediarix, albeit with different antigens. Scenario 3 examines market conditions

with Pentacel priced at its initial federal contract price (ending 31 March 2010) of $51.49 per dose.

3.2.3 Market Conditions with both Pediarix and Pentacel

Scenario 3 considers a pediatric vaccine market in which both Pediarix and Pentacel are available.

This scenario reflects current conditions in the market with vaccine prices set according to the

federal contract prices ending 31 March 2010. As in prior scenarios, the vaccine selection algorithm

enables construction of the lowest overall cost formulary for a fixed cost of an injection, across the

specified range of values for the cost of an injection. The cost of an injection parameters remain

the same, as do the vaccines and their associated costs (see Table 3.2).

Scenario 3 results are identical to Scenario 2 results. This means that when Sanofi Pasteur prices

Pentacel at $51.49 per dose, Pentacel never enters the lowest overall cost formulary, even when the

cost of an injection is $14.00, its highest value. Indeed, increasing the cost of an injection to

$20.00 still results in the exclusion of Pentacel from the lowest overall cost formulary. Introducing

Pentacel to the pediatric vaccine market at $51.49 per dose does not increase Sanofi Pasteur’s

ERPC; it remains at $57.47, implying a value of zero for Pentacel. A closer examination of Scenario

3 indicates that the 3-shot Pentacel Dominant Formulary overcomes the 2-shot Pediarix Dominant
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Formulary at a cost of an injection of $28.88. Moreover, the 3-shot Pediarix Dominant Formulary

dominates the 3-shot Pentacel Dominant Formulary (with Pediarix priced at $48.75 per dose and

Pentacel priced at $51.49 per dose) independent of the cost of an injection. Based on federal contract

prices ending 31 March 2010, to overcome the 3-shot Pediarix Dominant Formulary, Pentacel must

be priced no more than $1.03 per dose higher than Pediarix.

These results indicate that at $51.49 per dose (with Pediarix at $48.75 per dose), Pentacel

is overpriced. The potential implication of this analysis is that Pentacel is likely to penetrate the

pediatric vaccine market very slowly. Essentially, unless the price of Pentacel is aggressively lowered

from its initial offering price, there appears no incentive for healthcare system decision-makers to

build their formularies with Pentacel as the backbone. Healthcare program administrators with

limited budgets are able to complete more RCISs, and hence, fully immunize more children using

formularies with Pediarix as its backbone (if the cost of an injection is believed to vary at higher

ranges) or even the monovalent-only formulary (if the cost of an injection is believed to vary at lower

ranges). Obviously, after a substantial financial investment in the development and licensing of

Pentacel an ineffective pricing strategy with the subsequent poor revenue generation is undesirable.

One would expect to see a Pentacel price adjustment downward for the next contract cycle (federal

contract prices ending 31 March 2011). An adroit question to ask is: how should Sanofi Pasteur

determine its price for Pentacel? Scenario 4 addresses this question.

3.2.4 Pricing Pentacel to Maximize Expected Revenue Per Child

Scenario 4 considers a pricing strategy for Pentacel whereby Sanofi Pasteur prices Pentacel under

current market conditions (federal contract prices ending 31 March 2010) in order to maximize

its ERPC. Pentacel is priced using the MERPC pricing approach (see Equation (3.2)). Sanofi

Pasteur’s ERPC is then compared to the results reported in Scenario 3 with Pentacel priced at its

current $51.49 per dose. As with Scenarios 1-3, the vaccine selection algorithm enables construction

of the lowest overall cost formulary for a fixed cost of an injection, across the specified range of

values for the cost of an injection. The cost of an injection parameters remain the same, as do

the vaccines and their associated costs (listed in Table 3.2). Lastly, the price of Pentacel is not

fixed, and is repeatedly adjusted using the MERPC approach to find the price at which Sanofi

Pasteur’s maximum ERPC is obtained. Implementation of the MERPC approach (as discussed in

Section 2) results in an optimal Pentacel price of $44.07 per dose, with Sanofi Pasteur achieving a
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Table 3.5: Lowest overall cost formulary with associated pharmaceutical company revenue per child earned
(Scenario 4)

6.00$   6.62$        6.62$    14.00$      
Pharmaceutical 

Company Time Period Vaccine Vaccine Notes
Merck Birth - -

Month 2 Hib 11.29$  - Hib exits
Month 4 Hib 11.29$  - Hib exits
Month 6 - -
Month 12-18 - -
Month 19-36 - -
Month 48-72 - 22.58$       - -$          

GlaxoSmithKline Birth HepB 9.75$    HepB 9.75$    
Month 2 DTaP, HepB 16.63$  HepB DTaP exits 9.75$    
Month 4 DTaP 6.88$    - DTaP exits
Month 6 DTaP, HepB 16.63$  HepB DTaP exits 9.75$    
Month 12-18 - -
Month 19-36 - -
Month 48-72 DTaP 6.88$    56.75$       DTaP 6.88$    36.13$       

Sanofi Pasteur Birth - -
Month 2 DTaP, IPV 18.14$  DTaP-IPV/Hib DTaP, IPV exit 44.07$  
Month 4 DTaP, IPV 18.14$  DTaP-IPV/Hib DTaP, IPV exit 44.07$  
Month 6 DTaP, IPV 18.14$  DTaP-IPV/Hib DTaP, IPV exit 44.07$  
Month 12-18 DTaP/Hib 27.31$  DTaP/Hib 27.31$  
Month 19-36 - -
Month 48-72 DTaP, IPV 18.14$ 99.85$      DTaP, IPV 18.14$  177.66$       

Revenue Revenue

Monovalent + TriHIBit® Formulary 3-shot Pentacel® Dominant Formulary
Cost of injection interval Cost of an Injection interval

 

maximum ERPC of $176.72, and GlaxoSmithKline earning an ERPC of $36.37 (due mostly to its

HepB monovalent) while Merck is nearly completely shut out with an ERPC of $0.27.

The Scenario 4 results (Table 3.5) indicate the presence of two lowest overall cost formularies.

As with Scenarios 1-3, the Monovalent+TriHIBit Formulary is the lowest overall cost formulary

for C ∈ [$6.00, $6.62]. The Monovalent+TriHIBit Formulary was detailed in Scenario 1 and is

not repeated here. However, recall from Scenario 1 that Sanofi Pasteur earns $99.85 per child

completing the RCIS using this formulary, compared to $56.75 for GlaxoSmithKline and $22.58 for

Merck.

The 3-shot Pentacel Dominant Formulary is the lowest cost formulary for C ∈ [$6.62, $14.00].

This formulary is so named because the backbone of the formulary is the three injections of Pentacel

at the month 2, 4, and 6 time periods. It supplants the Monovalent+TriHIBit Formulary as lowest

overall cost at a cost of injection of $6.62. The Monovalent+TriHIBit Formulary moves from

lowest overall cost formulary to third best at a cost of an injection of $6.62. The 2-shot Pediarix

Dominant formulary, which would have become the lowest overall cost formulary at a cost of

injection of $6.62, becomes the second best formulary. The MERPC approach selects a price of

$44.07 per dose for Pentacel, resulting in Sanofi Pasteur effectively pricing Pediarix entirely out

of the market. When Pentacel is present in the lowest overall cost formulary, Merck’s Hib is

not selected. In regard to HepB, GlaxoSmithKline’s monovalent is less expensive than Merck’s,
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resulting in no Merck vaccines in the lowest overall cost formulary. GlaxoSmithKline retains only

its three HepB monovalent injections (and half a DTaP dose in the month 48-72 period) from the

Monovalent+TriHIBit Formulary. When compared to the 2-shot Pediarix Dominant Formulary,

GlaxoSmithKline loses its two doses of Pediarix in the month 2 and month 6 periods and the DTaP

monovalent dose in the month 4 period. The three doses of HepB remain, as its HepB monovalent is

less expensive than Merck’s HepB. The effective pricing of Pentacel allows Sanofi Pasteur to obtain

the doses for DTaP, Hib, and IPV for the month 2, 4, and 6 doses. From the Monovalent+TriHIBit

Formulary, Sanofi Pasteur replaces its own DTaP and IPV monovalents as well as Merck’s two Hib

injections. From the 2-shot Pediarix Dominant Formulary, Sanofi Pasteur replaces the DTaP and

IPV from Pediarix in months 2 and 6 and the GlaxoSmithKline DTaP monovalent in month 4 as

well. In the 3-shot Pentacel Dominant Formulary (see Table 3.5), Sanofi Pasteur earns $177.66

of revenue per child, whereas GlaxoSmithKline loses nearly 72% of the revenue it earns with the

2-shot Pediarix Dominant Formulary ($127.88 per child) at $36.13 of revenue per child. Merck

earns no revenue in the 3-shot Pentacel Dominant Formulary.

The 3-shot Pentacel Dominant Formulary is the lowest cost formulary for C ∈ [$6.62,$14.00]

which is approximately 98.8% of the probability density of the chosen distribution for cost of

injection. This means that approximately 98.8% of the customers who value the cost of an injection

as represented by a triangular(6,10,14) prefer the 3-shot Pentacel Dominant Formulary to serve as

their lowest overall cost formulary. The ERPC for the three competing pharmaceutical companies

is computed using (1). Due to the presence of Sanofi Pasteur’s appropriately priced Pentacel,

both GlaxoSmithKline and Merck lose ERPC when compared to the results from Scenario 3.

In particular, Sanofi Pasteur obtains 83% of the ERPC, while GlaxoSmithKline obtains 17%, and

Merck obtains slightly above 0%. The value of Pentacel is computed by comparing Sanofi Pasteur’s

ERPC with Pentacel priced at its current $51.49 per dose to its ERPC with Pentacel priced at

$44.07 per dose. It follows that Pentacel provides a net gain of $119.25 for its ERPC. This means

that Sanofi Pasteur can expect to earn $119.25 more revenue for every child fully completing

the RCIS by adjusting downward the price of Pentacel. The MERPC approach provides a more

effective price for Pentacel, resulting in Sanofi Pasteur increasing its relative contribution to the

total ERPC from 28% to 83%. An aggressively re-priced Pentacel provides incentive for healthcare

system decision makers to order pediatric vaccine formularies with Pentacel as its backbone. If

priced at $44.07 per dose, one would expect to see substantial revenue growth for Pentacel.
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3.3 Conclusions

This chapter describes a methodology for analyzing and assessing pricing strategies for pediatric

combination vaccines and their impact on the United States pediatric vaccine market. An analysis

of three pediatric vaccine markets featuring both Pediarix and Pentacel is presented whereby a

comparison of pharmaceutical company expected revenue provides a measure of value for the com-

bination vaccines. Secondly, an approach is given for pricing a pediatric vaccine to ensure that a

pharmaceutical company achieves its highest possible ERPC. These analyses provide insight into

how Pediarix and Pentacel impact the United States pediatric vaccine market.

Operations research techniques have been used to assess the value, long term market prospects,

and potential pricing strategies for two combination vaccines, Pediarix and Pentacel. As the com-

plexity of the RCIS increases, pharmaceutical companies will respond with new combination vac-

cines. As these new combination vaccines gain FDA approval and enter the market, the method-

ology reported in this chapter provides a valuable resource for pediatric vaccine purchasers and

suppliers alike to determine the price premium intrinsic to such vaccines.

Several potentially important economic factors that could impact the overall cost of immunization

are not included in this study. The exclusion of such factors is due primarily to the lack of data or

economic models regarding them. Some factors are important as an issue of differentiation between

manufacturer products. For example, vaccine efficacy, adverse reaction frequency, shelf life, and

thermal storage requirements [31] could all be factors distinguishing two vaccines and may influence

the decision on which product to purchase. In addition to product differentiation, this study does

not address potential cost savings associated with reduced inventory handling resulting from the

reduction in the number of separate vaccines included in the lowest overall cost formulary. Lastly,

brand loyalty, volume discounting, risk of shortages, and formulary inertia are not addressed due

to the difficulty in quantifying economic model parameters describing them.

The results presented here should interest those within the pediatric healthcare community seek-

ing information regarding the relative economic value, effective pricing strategies, and impact of

combination vaccines on market conditions. A combination vaccine holds an intrinsic price pre-

mium based on the sum of its individual vaccine components and relates directly to how a particular

segment of the market values the cost of an injection. It behooves both the pharmaceutical compa-

nies and purchasers to arrive at a fair market price in order for beneficial transactions to occur. A

cursory examination of the portion of the pediatric vaccine market (in terms of volume and value)
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that is captured in the federal contract prices provides insight into the overall applicability of the

results of the analysis to the market. For a population of approximately 4.3 million children requir-

ing immunization annually [14], approximately 77.4% achieve full immunization coverage [10]; and

of those, approximately 43% are immunized via the Vaccines For Children program using pediatric

vaccines bought at federal contract prices [7]. This is a lower bound on the volume of pediatric

vaccines bought at federal contract prices (since federal 317 funds and state funds also use federal

contract prices, increasing the volume above 43%). Using only monovalents, it costs a minimum

of $626.00 to complete the RCIS (excluding Rotavirurs, Influenza, Hepatitis A, and Meningococ-

cal) for each child, at federal contract pricing, while it costs $949.13 using private sector prices.

This implies that as a lower bound, the portion of the market captured in the prices that the CDC

negotiates is approximately 33% with respect to value. In a related issue, an examination of the po-

tential economic consequences of an improper pricing strategy for Sanofi Pasteur’s Pentacel reveals

a $170M per year difference in expected revenue. Such a value is calculated using population and

vaccine coverage data from the Central Intelligence Agency [14] and CDC [10, 7], in conjunction

with the computed $119.25 value of a properly priced Pentacel (see Section 3.2.4).

The analysis of Pediarix and Pentacel presented provides a new approach to understanding the

impact of pricing on pediatric vaccine markets. By design, both these combination vaccines cannot

be present in the same vaccine formulary. The natural market tendency will be to gravitate towards

the combination vaccine that provides the best economic value. The pricing strategy for each

vaccine and the belief regarding the distribution of the cost of an injection both significantly impact

the purchasing choice. The pricing strategy suggested (MERPC) indicates an aggressive under

pricing of Pentacel is necessary to increase its expected revenue. Yet, Pediarix could implement

a similar strategy. Such a Bertrand Duopoly price competition results in short term savings for

vaccine purchasers. However, such a situation may lead to competing pharmaceutical companies

exiting the pediatric vaccine market, resulting in a vaccine monopoly that leads to larger price

increases in the long term. It is in the interest of both the pharmaceutical industry and vaccine

purchasers to pursue a healthy economic relationship in the interests of long term market stability.

It will also be interesting to observe how GlaxoSmithKline and Sanofi Pasteur adjust their prices

for Pediarix and Pentacel, respectively, over the next several years, as the each wrestle to gain and

secure revenue for their products.
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CHAPTER 4

THE WEIGHTED SET COVERING GAME: A BERTRAND

OLIGOPOLY PRICING MODEL

This chapter explores a generalization of the classical Bertrand model. The proposed Bertrand

oligopoly pricing model, in the form of a static strategic game, characterizes interactions between

asymmetric firms in a homogeneous multiple product market with a combinatorial and interde-

pendent demand structure. A firm controls a given collection of bundles containing one or more

products and must determine the price for each of its bundles so as to maximize profit.

Consumer demand behavior is characterized by a WSC optimization problem in which a consumer

seeks to obtain at least one of each of the products (at a minimum overall cost) by purchasing

bundles of the products. The model employs a smooth, concave demand curve to capture consumer

price sensitivity to total cost, with the notable characteristic that the consumer is sensitive only

to the aggregate price of the lowest overall cost set of bundles, not the individual prices of the

bundles. The firms face constant returns, in that each firm has only a constant marginal cost of

production to consider. As is typical of Bertrand models, assume that each firm simultaneously

(and independently) chooses the prices of its bundles of products and has the capacity to supply

all forthcoming demand. The game is static, in that the firms anticipate playing the game only

once. A no-bankruptcy constraint is also imposed, in that no bundle is priced below its marginal

cost.

The chapter is organized as follows: Section 4.1 provides a description of the proposed oligopoly

pricing models and states the main Nash equilibrium existence results. Section 4.2 describes the

computational difficulty of computing Nash equilibria for the weighted set covering game and intro-

duces an iterative improvement algorithm devised to compute such equilibria. Section 4.3 provides

proofs of the conditions required for the existence of Nash equilibria. Section 4.4 demonstrates the

utility of two games by applying them to the analysis of the United States public sector pediatric

vaccine market. Section 4.5 provides concluding comments and directions for future research.
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4.1 The Games

This section describes the oligopoly pricing models formulated to characterize oligopolistic inter-

actions between asymmetric firms in a homogeneous multiple product market. Several factors

complicate such interactions, most notably the specification of demand from the solution to an

integer program (IP). Analysis indicates that a pure strategy Nash equilibrium for the weighted

set covering game always exists. The repeated game version of the model relaxes the static game’s

temporal assumption of only one interaction, enabling repeated interactions between the firms.

Conditions for the existence of a sub-game perfect Nash equilibrium in the repeated game are

presented.

4.1.1 The Weighted Set Covering Game

This section describes the weighted set covering game, a Bertrand oligopoly pricing model. Consider

a simultaneous move, single stage, complete information game. The simplest way to portray the

game is in an appended strategic form, consisting of five key parts: the set of players (firms),

the appended game structure (i.e., the WSC optimization problem), the manner in which players

interact with the appended game structure, the set of strategies (prices) available to each player,

and the manner in which the players’ payoffs (profits) depend on the strategies chosen. Each

firm attempts to maximize its profits by independently selecting an appropriate pricing strategy,

knowing only the structure of the game (i.e., firms are rational and intelligent). Thus, each firm

must consider the pricing strategies that the other firms are likely to select. Moreover, in oligopoly

pricing models such as the one reported in this study, important elements in the determination

of each firm’s profits are the relevant market demand structure and its own cost structure [59].

Several definitions are required to precisely describe the game.

Let N denote the set of firms in the market. Firms produce a collection of bundles containing

one or more homogeneous products. Homogeneous products originating from different firms are

perceived as identical products by consumers; when appropriate, an additional marginal cost com-

ponent is included to account for minor product differentiation. The aggregate collection of all of

the firms’ bundles allows characterization of the market demand structure.

There is no direct characterization of demand. A WSC optimization problem describes market

demand with respect to a single consumer, where S is the set of homogeneous products and B, a

set of subsets of S, is the set of bundles of products available for purchase from the firms in N . A
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rational consumer seeks to obtain at least one of every homogeneous product in S at the lowest

possible overall cost by purchasing bundles in B (i.e., a consumer seeks to find a minimum cost

collection C of bundles from B such that C covers all elements in S). The minimum weighted

cover, C, ensures
⋃
j∈C{j} ⊇ S at overall minimum cost. The collection of restricted covers, R,

contains covers deemed infeasible as a solution. In the algorithm introduced in section 4.2, R is

used in conjunction with binary cuts [2] to derive alternative optimal solutions. In this chapter, the

defining WSC optimization problem is parameterized by W = (S,B, (wj)j∈B, (c̃j)j∈B, τ, R) and is

modeled as a 0-1 IP:

WSC(W )

Minimize
∑
j∈B

(wj + c̃j + τ)xj

subject to
∑
j∈B

aijxj ≥ 1 for all i ∈ S,

xj ∈ {0, 1} for all j ∈ B,∑
j∈Ĉ

xj −
∑
j /∈Ĉ

xj ≤
∣∣∣Ĉ∣∣∣− 1 for all Ĉ ∈ R,

where,

wj is the price corresponding to bundle j ∈ B,

c̃j ≥ 0 is the product differentiation price adjustment to bundle j ∈ B,

τ ≥ 0 is a penalty cost for including a bundle in cover C ⊆ B,

aij = 1(0) if product i ∈ S is in bundle j ∈ B, (j /∈ B), and

xj = 1(0) indicates bundle j ∈ C, (j /∈ C).

To capture the relationship between firms and the bundles of products produced by them, define

the set valued map g : N → B, where g(f) ⊆ B is the set of bundles produced by firm f ∈ N .

Define

Kf =
∏

j∈g(f)

Kj

as the Cartesian product set of prices available to each firm f , where Kj = {wj ∈ < | cj ≤ wj ≤ βj}

is the closed interval of available prices for a bundle of products j ∈ g(f). The weight wj represents

the price specified by firm f for bundle j ∈ g(f). Each bundle j has a constant marginal cost

of production cj and an upper bound in price of βj such that 0 ≤ cj ≤ βj . A no-bankruptcy

assumption prevents the pricing of a bundle under its marginal cost. By design, the set of prices is
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compact and convex.

When the game is played, each firm f must simultaneously select one of the pricing tuples in

the set Kf (i.e., each firm must select a feasible price for each of its bundles). The combination of

bundle prices that the firms in N collectively select is referred to as a price point, w = (wj)j∈B.

The set of prices available to any firm f may differ from the set of prices available to any firm i

due to possibly different cost structures or upper bounds on the set of available prices. When the

collection of bundles produced by any two firms differ or their respective cost structures differ, the

game is considered asymmetric.

The solution to WSC(W ) depicts consumer demand behavior given the market conditions de-

scribed by W . With the exception of the price point w and the set of restricted covers R, the market

conditions depicted by W remain unchanged. Thus, the market conditions are often described only

by the price point w with R empty, unless otherwise noted. Let the minimum weighted set cover C

denote the solution to WSC(W ) and let z (w) =
∑

j∈C (wj + c̃j + τ)xj denote the associated over-

all cost of C. Define X (w) as the collection of all minimum weighted covers available at the price

point w. X (w) enables specification of the market share for each bundle (i.e., how many of each

bundle is purchased per customer). Define ψj =

∑
C∈X(w) ICj
|X(w)| ∈ [0, 1] as the market share of bundle

j ∈ B at the market conditions described by W , where ICj = 1(0) if bundle j ∈ (/∈)C ∈ X (w).

Assume that when there is more than one optimal cover, demand is shared equally among the

optimal covers.

The aggregate market demand function D : < → < specifies the total quantity of bundles

purchased as a function of the overall cost of the minimum weighted cover and is of the form:

D (z (w)) = d− η (z (w))λ , (4.1)

where D is assumed to be twice continuously differentiable and concave (i.e., d2D
dz2 ≤ 0). This form

enables specification of conventional demand functions typically found in the literature [58, 59].

To complete the description of the game, denote the payoff function of each firm f ∈ N as:

πf (w) = D (z (w))
∑
j∈g(f)

(ψj (w) (wj − cj)) . (4.2)

Each firm f receives the sum of the unit profits for each bundle j ∈ g(f) present in each cover

C ∈ X (w) times the number of covers purchased by consumers. In the case where multiple optimal
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covers are available (i.e., |X (w)| > 1), the market share of a particular bundle is determined by the

number of optimal covers in X (w) in which it is present. For example, if X (w) = {{1, 2} , {2, 3}}

and D (z(w)) = 100, then ψ1 = 0.5, ψ2 = 1.0, and ψ3 = 0.5, resulting in a demand of 50, 100, and

50 for bundles 1, 2, and 3, respectively.

Formally, the Weighted Set Covering Game is any Γ of the form

Γ = (N,W, g(N), (Kf )f∈N , (πf )f∈N ) .

The game theoretic solution to Γ is now examined. Analysis reveals insights regarding long term

market profit prospects that are important to both consumers and firms. Solution concepts in the

study of games differ mostly with respect to the level of collusion or cooperation allowed between

firms [41]. In this study, for the pure strategy Nash equilibrium sought in Γ, no cooperation is

allowed.

As Vives [59] notes, in most situations typifying economic conflict, two or more firms make

decisions that influence each other’s profits, while operating in a market environment in which

binding legal contracts may not be enforceable (e.g., anti-trust laws). In such situations, nonco-

operative game theory provides an appropriate mathematical framework for analysis, as it enables

the determination of a rational prediction regarding the outcome of the game.

Nash’s concept of equilibrium [43] is the central solution concept in noncooperative game theory

and consequently, to the study of oligopoly pricing models [59]. A Nash equilibrium (Definition 1)

is a set of pricing strategies (i.e., a price point) such that no firm can unilaterally deviate from its

strategy in order to realize a gain in profits.

Definition 1 (Nash Equilibrium). In Γ, a price point w∗ =
(
w∗f ; w∗−f

)
constitutes a pure strategy

Nash equilibrium if for any firm f ∈ N , πf

(
w∗f ; w∗−f

)
≥ πf

(
wf ; w∗−f

)
, for all other price points

wf , where w∗f ∈ Kf denotes the set of bundle prices controlled by firm f , and w∗−f ∈ K−f denotes

the set of bundle prices controlled by firms other than f .

When attempting to predict or stipulate firms’ pricing behavior in a game, the price point

suggested must be a Nash equilibrium; if the suggested price point is not a Nash equilibrium,

irrational behavior is being attributed to at least one of the firms, in that it could change its

pricing strategy to increase its profits but is choosing not to do so. Nash’s equilibrium provides a

consistent solution concept [59] in that all firms behave rationally; a nonequilibrium specification
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is self-defeating, since a firm can gain by changing its pricing strategy. Moreover, any solution

concept imputing systemic irrational behavior to players in a game warrants clear justification.

Determining the existence of Nash equilibria and efficiently computing them are important areas

of research (see for example [44, 47, 52]). While most studies concentrate on mixed strategy Nash

equilibria, this effort focuses on pure strategy Nash equilibria. Unfortunately, as Vives [59] notes,

”Nonexistence of Nash equilibria in pure strategies is pervasive in oligopoly models.” Note that

Nash equilibria in this chapter refer only to pure strategy Nash equilibria.

Γ is a game with infinite strategy spaces and models a strategic economic situation in which

firms may choose prices from a continuum of prices. As with Bertrand’s classic game [3], Γ exhibits

discontinuities in the firms’ payoffs. For example, when determining demand for the simple case

in which a single homogeneous product is produced by two firms and both products are equally

priced, the tie must be broken according to some predetermined sharing rule. This rule ultimately

leads to a discontinuity in the firms’ payoffs since one firm’s slight decrease in the price of the

product results in it obtaining full market demand, a discontinuous increase when compared to the

demand it received when prices were equal.

As a consequence of the discontinuous nature of Γ, standard theorems found in the literature (see

for example, [16, 17, 26, 43]) cannot be applied to establish the existence of pure strategy Nash

equilibria. However, using the algorithm detailed in Section 4.2, pure strategy Nash equilibria

(some in the limiting sense) can always be constructed. The following theorem states the main

result, proven in Section 4.3.

Theorem 1 (Static Game Equilibrium Existence). Given an instance of Γ, a pure strategy Nash

equilibrium always exists.

In the results presented in this chapter, a pure strategy Nash equilibrium can exist in the limiting

sense. This concept merits further discussion. Consider an open set problem as discussed by Tirole

[58]. To illustrate, consider a Bertrand duopoly in which two firms face a price competition with

asymmetric costs, where ĉ1 < ĉ2, over the sale of a single homogeneous good. If the monopoly

price is greater than or equal to the second firm’s cost, then the optimal price for the first firm

does not exist in a strict sense because the first firm will always be better off by setting its price

ever closer to ĉ2. Therefore, in such situations, an equilibrium in the limiting sense is a price point

(p̂1 = ĉ2, p̂2 = ĉ2) where the first firm sets its price p̂1 equal to the second firm’s cost and receives

the entire market demand, earning a unit profit of ĉ2 − ĉ1 and where the second firm sets its price
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p̂2 as low as possible, at its own unit cost, receives no demand, and earns no profit.

In Γ, the concept of an equilibrium in the limiting sense allows a firm with an absolute advantage

to increase the cost of a lowest overall cost cover up to the cost of the next lowest cost cover. The

next lowest cost cover receives no demand and the firms whose bundles are present in the next

lowest cost cover earn no profit from its sale.

4.1.2 The Repeated Weighted Set Covering Game

This section introduces the repeated weighted set covering game, the analysis of which addresses

the often problematic temporal assumption in Γ of a single economic interaction between firms.

In reality, firms are likely to interact repeatedly in the market of interest. Adoption of a repeated

game structure enables exploration of more sustainable and higher profit price points. As Myerson

[41] notes, firms in the same market may behave quite differently toward one another when there is

an expectation of a long-term relationship involving repeated interaction. In the classic symmetric

Bertrand game, the Nash equilibrium provides zero economic profit for the competing firms. In

such a situation, firms would like to transform the game and extend the set of Nash equilibria to

include the higher profit results [41, 58].

In a repeated game, a firm must consider the effect of its current pricing strategy on the pricing

strategies of other firms in the future and the attendant impact on its own future profits. Such

considerations almost certainly lead to more cooperative behavior, assuming the firms value future

profits highly enough. The temporal extension to Γ enables examination of tacit collusion in

the market and its effect on profits and costs for the firms and consumers involved, respectively.

Interestingly, the possibility of tacit collusion is entirely enabled by a noncooperative game theoretic

mechanism.

Consider the repeated weighted set covering game with standard information, where the exact

same instance of Γ is replicated an infinite number of times. Several definitions are required to

precisely describe the repeated game.

Define πf (w(t)) as firm f ’s profit for time period t, where t = {0, 1, . . .}, with the bundles of

products in B priced at w(t). In Γr, firm f wants to maximize the δ-discounted average of its

profits,

(1− δf )

∞∑
t=1

δt−1
f πf (w(t)), (4.3)
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where πf (w(t)) is determined according to (4.2) and δf ∈ [0, 1) is the discount factor, a measure

of the patience or long-term financial perspective of firm f . By design, δf close to one represents

a patient firm, one that values future profits relatively high with respect to current profits. δf can

also represent an alternative source of profit for firm f , with the payoffs earned at each replication

of Γr (i.e., δf ≡ 1
1+r , where r is the interest rate for a single time period).

At each time period t, the firms in N simultaneously select prices for the current Γ replication.

Each firm’s pricing strategy may depend on the history of the prices set in replications prior to t,

where a history H(t) =
{
w(1),w(2), . . . ,w(t−1)

}
. Each firm is able to perfectly recall other firms’

past pricing decisions. A pricing strategy for firm f , σf (H(t)) ∈ Af , specifies a price w
(t)
j for

each bundle j ∈ g(f) for every possible sequence of outcomes
{
w(1),w(2), . . . ,w(t−1)

}
of Γr. A

subgame-perfect Nash equilibrium is then sought where for every firm f ∈ N and any history H(t),

the strategy employed by firm f for periods t, t+ 1, . . . maximizes (4.3).

Formally, the Repeated Weighted Set Covering Game is any Γr of the form

Γr =
(

Γ, (Af )f∈N , H
(t), (δf )f∈N

)
.

The analysis of Γr proceeds by formulating a strategy for each firm f ∈ N that induces subgame-

perfect equilibria with profits greater than those earned in Nash equilibria in Γ. Denote w∗ and

π∗f as a Nash equilibrium price point and corresponding profit for firm f , respectively, in the static

game Γ. Consider the following grim trigger strategy : let each firm f ∈ N tacitly agree to a mutually

beneficial price point ŵ, where at each time period t, firm f charges (w
(t)
j )j∈g(f) = (ŵj)j∈g(f) and

produces ψjD(z(w(t))) of each bundle j ∈ g(f). Firm f maintains this collusive agreement provided

(w
(t̂)
j )j∈g(−f) = (ŵj)j∈g(−f) for all t̂ < t, where g(−f) is the set of bundles in B not controlled by

firm f . Otherwise, firm f reverts to Bertrand behavior by setting prices at (w∗j )j∈g(f) for all time

periods beyond t.

More formally, define the grim trigger strategy σf (H(t)) ∈ Af as

σf

(
H(t)

)
=


(ŵj)j∈g(f) if H(t) is empty,

(ŵj)j∈g(f) if w
(t̂)
j = ŵj , j ∈ g(−f), for all t̂ < t,

(w∗j )j∈g(f) otherwise.

Under the grim trigger strategy, a firm f ∈ N selects high prices and receives a higher profit than
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is achieved should it and the other firms engage in Bertrand behavior. Cooperation is maintained

until an opposing firm deviates by undercutting in price. When deviating, the opposing firm receives

a (possibly substantial) short-term gain in profit but would receive its lower Nash equilibrium profit

in all later periods, as firm f responds to the deviation by setting a low Nash equilibrium price ad

infinitum. Such unforgiving punishment may appear extreme, yet it is the threat of this punitive

action that induces cooperative play. There are other less punitive strategies that may induce

equilibria. Myerson [41] discusses a variety of strategies in the context of repeated games (e.g.

tit-for-tat, getting even, limited punishment, and mutual punishment).

In a standard repeated game such as Γr, when firms are sufficiently patient, almost any feasible

price point can be realized in an equilibrium. In the game theory literature, the theorems proving

such results are often referred to as general feasibility theorems (see [22, 23, 41, 53]). Fudenberg and

Maskin [23] provide a general feasibility theorem for subgame-perfect Nash equilibria of standard

repeated games with discounting. In particular, they provide proof that given a collusive agreement

stipulating an equilibrium price point at which all firms receive a payoff greater than the payoff

they can achieve by acting unilaterally, a discount factor exists that sustains the equilibrium.

In the analysis of Γr, examining each firm f ’s optimal deviation from the stipulated equilibrium

price point, ŵ, provides the desired conditions on each firm’s discount factor, δf , necessary for

the sustainment of the equilibrium. In order for the collusive agreement to be rational and the

grim trigger strategy equilibrium maintained, the short-term gain must be less than or equal to

the long-term loss for every firm. The profit stream for maintaining the collusive agreement is

(πf (ŵ), πf (ŵ), . . .), resulting in a discounted average of πf (ŵ). The profit stream for deviating

for a short term gain is
(
πdf , π

∗
f , π
∗
f , . . .

)
, resulting in a discounted average of (1− δf )

(
πdf +

π∗f δf
1−δf

)
,

where πdf is the maximum profit attainable by firm f should it deviate from ŵ. The required

conditions necessary for the sustainment of the grim trigger strategy equilibrium is given by,

δf ≥
πdf − πf (ŵ)

πdf − π∗f
, for all f ∈ N, (4.4)

which leads to the main existence result for Γr.

Theorem 2 (Repeated Game Equilibrium Existence). If (πf (ŵ))f∈N Pareto dominates the payoffs

(π∗f )f∈N of a Nash equilibrium w∗ of the static game Γ, then, if δf ≥
πdf−πf (ŵ)

πdf−π
∗
f

for all f ∈ N ,

there exists a subgame-perfect equilibrium of the infinitely repeated game Γr, where the δ-discounted

average of profits firm f is πf (ŵ).
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Proof. The result follows from Fudenberg and Maskin [23] and (4.4). �

One can argue that the theory of repeated games is too successful in explaining tacit collusion

since it can be used to justify nearly any feasible price point as a Nash equilibrium. Indeed, as Tirole

[58] notes, the large set of equilibria is an ”embarrassment of riches”. In some manner, firms must

coordinate on a focal equilibrium. How this focal equilibrium is selected remains an important issue.

Schelling [54] considered the matter in great detail, arguing that any galvanizing force that focuses

the firms’ attention on a particular equilibrium point is a focal effect, facilitating the selection

of that price point (akin to the satisfaction of a self-fulfilling prophecy). Welfare properties of

efficiency and equity may determine the focal equilibria [41]. If only one focal equilibrium exists

(due to galvanizing, exogenous focal effects), then one should expect to see it realized.

4.2 The Iterative Improvement Algorithm (IIA)

This section discusses complexity issues concerning Γ and provides a detailed description of the

iterative improvement algorithm (IIA) for computing its Nash equilibria. The inherent difficulty in

computing a Nash equilibrium is unsurprising, given that the computation of payoffs in Γ involves

finding a solution to an intractable problem (i.e., WSC). Consider the following theorem:

Theorem 3. Given an instance of Γ, computing a pure strategy Nash equilibrium is NP-hard.

Proof. Let S̃, B̃ = {B̃1, . . . , B̃n}, and (w̃j)j∈B̃ denote an arbitrary instance of the WSC optimiza-

tion problem, which is NP -hard [24, 32]. Define the corresponding particular instance of Γ as

follows: Set N = {1, 2, . . . , n}, W = (S = S̃, B = B̃, (wj) = (w̃j)j∈B̃, (c̃j)j∈B = 0, τ = 0, R = �),

(g(f))f∈N = B̃f , (Kf )f∈N = (w̃j)j∈g(f), and (πf )f∈N = 0. Suppose that there exists a polynomial

time algorithm to determine X(w), the collection of minimum weighted covers available at the price

point w, given the collection B of bundles of a set S of products. Then, by design, the arbitrary

instance of WSC can be solved in polynomial time. In particular, given the Turing reduction from

WSC to Γ, X(w) = X(w̃) solves the arbitrary instance of the WSC problem defined by S̃, B̃, and

(w̃j)j∈B̃. Therefore, Γ is NP -hard. �

IIA seeks a Nash equilibrium price point via a best response scheme, iteratively choosing a firm

with the ability to increase its profit, then adjusting prices to achieve the greatest increase in profit

(subject to the profit level indicated by the inter-bundle Cournot equilibrium, detailed in step
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13). By design, IIA constructs a sequence of price points that must terminate under one of three

conditions. Several definitions are needed to describe the algorithm.

A veto firm is a firm that controls at least one bundle (not at its price limit) in every lowest

overall cost cover and every tight bounding cover.

Definition 2 (Set of Veto Firms). Given an instance of Γ and execution of IIA, the set of veto firms

at iteration k is defined as Ωk ≡ {f ∈ N : for all C ∈ X
⋃
Lk such that

∑
h∈C (wkh + c̃h + τ) ≤ zk,

there exists j ∈ g(f)
⋂
C such that βj − wkj > 0}.

An active veto firm is a veto firm yet to attain the equilibrium profit associated with an inter-

bundle Cournot equilibrium price point.

Definition 3 (Set of Active Veto Firms). Given an instance of Γ and execution of IIA, the set of

active veto firms at iteration k is defined as Ω̃k ≡
{
f ∈ Ωk : ukf 6= p∗

}
.

A veto bundle is a bundle j ∈ g(n) that is a member of at least one cover in X or Lk.

Definition 4 (Set of Veto Bundles). Given an instance of Γ and execution of IIA, the pivot firm’s

set of veto bundles is defined as V ≡ {j ∈ g(n) : j ∈ C, C ∈ X
⋃
Lk}.

Prior to applying IIA, a preprocessing reduction stage occurs in which equivalent, dominated

bundles (see Definition 5) are sequentially removed from consideration.

Definition 5 (Dominated Bundle). For bundles i, j ∈ B, i is dominated by j if i ⊆ j, j ⊆ i and

ci ≥ cj.

Among a set of equivalent bundles, the remaining unique bundle is one with the lowest unit cost

and, as part of the process, is bounded in price by the cost of the bundle with the second lowest

unit cost. Therefore, a firm will only increase the price of a particular bundle up to the next best

price of an equivalent competing bundle. This is due to the results of a simple single homogeneous

product n-player Bertrand oligopoly game. After this reduction process, the collection of bundles

B in Γ contains only unique bundles.

IIA begins with an initialization phase, consisting of 13 steps.

(Step 1) The iteration counter, k, is set to zero, the initial price point, wk, is set to c, and

the collection of restricted covers (i.e., covers imputed as infeasible, and hence, not available as a

solution), R, is set to empty.
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Algorithm 1 Iterative Improvement Algorithm (IIA)

Require: Instance of Γ
Ensure: wk is a Nash equilibrium price point

1: Set k ← 0, wk ← c, and R← �
2: Solve WSC where W = (S,B,wk, c̃, τ ,R) to obtain C∗ and z∗

3: Set X ← C∗ and zk ← z∗

4: repeat
5: Set R← X
6: Solve WSC where W = (S,B,wk, c̃, τ ,R) to obtain C∗ and z∗

7: if z∗ = zk then set X ← X
⋃
C∗

8: until z∗ > zk

9: Set Lk ← C∗

10: Determine Ωk

11: if Ωk is empty then return wk

12: Set (ukf ← 0)f∈Ωk and Ω̃k ← Ωk

13: Solve Equation (4.6) to obtain p∗

14: repeat
15: Set n←min

i∈Ω̃k
{i}

16: while Conditions (i) and (ii) hold do
17: Set R← X

⋃
Lk

18: Solve WSC where W = (S,B,wk, c̃, τ ,R) to obtain C∗ and z∗

19: Set Lk ← Lk
⋃
C∗

20: end while
21: Determine V
22: Solve BR

(
W,V,X,Lk, zk

)
to obtain θ∗ and (m∗j )j∈V

23: Set Lk+1 ← Lk, zk+1 ← zk + θ∗, (wk+1
j ← m∗j )j∈V , and uk+1

n ← ukn + θ∗

24: Set k ← k + 1
25: Determine Ωk

26: if
∣∣Ωk
∣∣ < ∣∣Ωk−1

∣∣ then solve Equation (4.6) to obtain p∗

27: Determine Ω̃k

28: until Ωk is empty or Ω̃k is empty
29: return wk

(Steps 2-8) The defining WSC instance, WSC(W ), is solved to obtain, X = X(wk), the set

of minimum cost covers at the price point wk = c and zk = z(wk), its attendant overall cost.

For deriving all optimal solutions of WSC(W ), a binary cut is appended to the original problem

to make the previous solution infeasible (i.e., R is updated to contain the previous solution).

WSC(W ) is then solved again to find another optimum. In the case of a 01 IP, Balas and Jeroslow

[2] introduced the well-known binary cut involving no additional variables and one constraint.

Within IIA, the minimum weighted set cover C∗ denotes the particular solution to WSC(W ) and

z∗ =
∑

j∈C∗ (wj + c̃j + τ)xj denotes its associated overall cost. Moreover, solving an infeasible

instance of WSC(W ) returns solution C∗ = � with z∗ =∞.
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(Step 9) Lk, the set of bounding covers is set to C∗, where a bounding cover is a cover whose

overall cost is greater than or equal to the cost of the covers in X. (Constraints in subproblem BR

ensures this occurs.) In order to fully compute X, it is necessary to determine the first bounding

cover.

(Step 10) The set of veto firms (see Definition 2) is determined. A tight bounding cover is a cover

whose cost is equal to the lowest overall cost of the covers in X. A veto firm is able to unilaterally

increase its profits since it can affect an increase in the price of every tight cover in X and Lk by a

positive amount, with no tight cover in X or Lk remaining at a lower cost to prevent the profitable

price increase. If there is a lowest overall cost cover C ∈ X or Lk for which a veto firm f does not

have a bundle present, then the firms that control the price of C can ensure its price is lower than

those covers in which firm f can control the price. This fact prevents a profitable increase in price

by f , since the rational customer will always buy the lower cost cover.

(Step 11) The first termination condition is checked. If it is determined that there are no veto

firms (i.e., Ωk = �), then from Proposition 1, a pure strategy Nash equilibrium exists at wk = c

and IIA terminates. In this case, the sequence of price points is the singleton (c). If a veto firm

exists, IIA continues.

(Step 12) ukf , the aggregate unit profit for firm f is set to zero for all f ∈ Ωk and the initial set

of active veto firms (see Definition 3), Ω̃k, is set to Ωk.

(Step 13) p∗, the solution to (4.6), indicates the optimal increase in aggregate unit profit for

a veto firm in Ωk. In Γ, the veto firms participate in an embedded Cournot strategic game, in

which a veto firm’s profit, in the absence of bounding covers, is a function of the total price of the

covers in X in which each of the veto firms have bundles. In this sense, the firms engage in a price

competition with respect to the pricing of bundles in the same cover, corresponding to a Cournot

strategic game. Equation (4.5) describes a veto firm’s profit function in this embedded game,

P (p, D,Ωk,Λ) = pf

d− η(Λ + pf +
∑

i 6=f∈Ωk

pi)
λ

 , (4.5)

where p is the vector of the veto firms’ aggregate unit profit for the bundles in any cover in X

(i.e., pf ≡
∑

j∈g(f)
⋂
C (wkj − cj) for firm f in a cover C in X), D is the market demand function

denoted in (4.1), Ωk is the set of veto firms at iteration k as defined by Definition 2, and Λ ≡

z0 +
∑

h∈Ω0\Ωk (ukh) is the component of a cover’s price that is treated as shared common cost by
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the veto firms. The shared common cost of a cover is the sum of the unit costs of all of the bundles

in the cover plus the unit profit of the bundles controlled by firms no longer able to increase price

as of iteration k (i.e., no longer a veto firm). A Nash equilibrium price point to the Cournot game

is labeled as an inter-bundle Cournot equilibrium price point.

Determination of the maximizer of the profit function P provides the aggregate unit profit

equilibrium for a veto firm in Ωk. The first order condition for unit profit maximization is given by

dP

dpf
(p, D,Ωk,Λ) = d− ηλpf (Λ + pf

∣∣∣Ωk
∣∣∣)λ−1 − η

(
Λ + pf

∣∣∣Ωk
∣∣∣) = 0. (4.6)

Concavity of the market demand function D and the convexity of Kf is sufficient to ensure that

the p∗ obtained by solving (4.6) is indeed a maximum. Note that p∗ = p∗f , for all f in Ωk due to

symmetry. Proposition 2 provides more details concerning the inter-bundle Cournot game.

In steps 14 through 28, the iterative loop executes until one of the two remaining termination

conditions is satisfied.

(Step 15) A pivot firm, n, is selected from the set of active veto firms, Ω̃k. In IIA, the selection

rule is to select the lowest indexed firm among the set of firms in Ω̃k. The selection rule for

determining the pivot firm impacts the sequence of price points generated by IIA.

(Steps 16-20) A while loop executes provided both of the following conditions hold true:

i) for all C ∈ Lk there exists j ∈ g(n)
⋂
C such that wkj < βj ,

and,

ii) z∗ < zk + p∗ − ukn.

Condition (i) requires that the pivot firm must have at least one of its bundles present in every

cover C in Lk and that the bundle’s price not be at its upper bound. Condition (ii) requires that

the minimum overall cost associated with the latest solution to WSC(W ), z∗, must be less than the

minimum overall cost associated with the computed inter-bundle Cournot price point, zk+p∗−ukn,

a cost which the pivot firm cannot exceed. Within the while loop, WSC(W ) is repeatedly solved in

order to identify the lowest overall cost bounding cover in which the pivot firm has no bundle. The

bounding cover effectively limits the unit profit the pivot firm is able to obtain unilaterally since

the pivot firm will not increase the prices of the bundles in the covers in X higher than a bounding

cover’s overall cost. Similar to steps four through eight, when deriving multiple optimal solutions of

WSC(W ), a binary cut is appended to each subsequent WSC problem to render previous solutions
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infeasible (i.e., R is updated).

(Step 21) The pivot firm’s set of veto bundles (see Definition 4) is determined. (Step 22) The best

response subproblem, BR, is solved. BR is a piece-wise linear maximization problem, the solution

to which provides an optimal weighting for the pivot firm’s bundles given constraints regarding

the costs of the bounding covers in Lk (found in steps 16 through 20) and maximum bounds on

bundle pricing, (βj)j∈V . BR is solved for θ∗ and m∗ = (m∗j )j∈V , where θ∗ denotes the maximum

amount of improvement in aggregate unit profit that the pivot firm realizes at the current iteration

and m∗j denotes the optimal weight attributed to veto bundle j in V . Constraint C1 ensures

that the maximum aggregate unit profit does not exceed the minimum attainable aggregate unit

profit of any single cover in X. Constraint C2 ensures that the overall cost associated with the

maximum aggregate unit profit does not exceed the overall cost of any single bounding cover in

Lk. Constraint C3 ensures the maximum aggregate unit profit does not result in the inter-bundle

Cournot aggregate unit profit margin being exceeded (i.e., it ensures any price decrease is not

profitable). Constraints C4 and C5 ensure each veto bundle is priced within acceptable bounds.

BR
(
W,V,X,Lk, zk

)
Maximize θ

subject to θ ≤
∑

j∈C
⋂
V

mj −
∑

j∈C
⋂
V

cj , for all C ∈ X, (C1)

θ ≤
∑

j∈C
⋂
V

mj +
∑

j∈B\{C
⋂
V }

wkj

+
∑
j∈C

(c̃j + τ)− zk for all C ∈ Lk, (C2)

θ ≤ p∗ − ukn, (C3)

mj ≥ wkj for all j ∈ V , (C4)

mj ≤ βj for all j ∈ V . (C5)

(Steps 23-24) Lk, zk, wk, ukn, and k are updated. (Steps 25-27) The set of veto firms and the set

of active veto firms are updated. If the number of veto firms decreases compared to the previous

iteration (i.e., the pivot firm did not attain the Cournot profit margin, P ), then (4.6) must be

solved to compute a new p∗ for the new set of veto firms.

(Step 28) The second two termination conditions are checked. If it is determined that there

are no remaining active veto firms (i.e., Ω̃k = �), then from Proposition 2, a pure strategy Nash

equilibrium exists at wk with each firm f ∈ Ωk satisfying (4.6). IIA terminates in the following
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step. In this case, the sequence of price points is
(
w0,w1, . . . ,wk

)
. If an active veto firm exists,

IIA continues, returning to step 14.

If there are no remaining veto firms (i.e., Ωk = �), then from Proposition 3, a pure strategy

Nash equilibrium exists at wk and IIA terminates in the following step. In this case, the sequence

of price points is
(
w0,w1, . . . ,wk

)
. If a veto firm exists, IIA continues, returning to step 14.

To determine the complexity of IIA, suppose that the WSC(W ) problem instance can be solved

in O(TWSC) time. Label M as the maximum number of possible covers that IIA may visit (from

Lemma 1, due to Weisstein [60]). Then, given an arbitrary instance of Γ, IIA executes in O(M ·

TWSC) time to compute a pure strategy Nash equilibrium. IIA’s worst-case complexity is due to

the repeated calls to solve the WSC problem instances, which in the general case, is NP -hard in

the strong sense [24] and requires exponential time algorithms for finding exact solutions (unless

P=NP).

Lemma 1. The number of possible covers for a set of |S| products is

M ≡ 1

2

|S|∑
i=0

(−1)i
(
|S|
i

)
22|S|−i .

4.3 Convergence Theory

This section provides convergence results for IIA by examining the validity of the three termination

conditions. A proposition is established for each condition, leading to the main Nash equilibrium

existence result for Γ, given by Theorem 1.

Proposition 1 provides necessary and sufficient conditions for the initial price point w0 = c to

be a Nash equilibrium. The sequence that terminates immediately is the singleton (c).

Proposition 1 (Termination Condition 1). Given an instance of Γ and execution of IIA, consider

a nonempty collection of lowest overall cost covers, X = X(c), corresponding to a minimum cost

z = z(c), where the price point c = (cj)j∈B represents the lowest possible price for each bundle in

B. The price point c is a pure strategy Nash equilibrium if and only if Ω0 is empty.

Proof. (⇒)

Assume to the contrary that c is a pure strategy Nash equilibrium and Ω0 is nonempty. Then, by

the definition of Ω0 (see Definition 2), there exists a firm f ∈ N that controls at least one bundle
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(not at its upper bound in price) in every cover in X. Denote δj ≥ 0 as the unit increase in price

from cj for bundle j ∈ g(f). Let
∑

j∈g(f)
⋂
C δj ≥ α for each cover C ∈ X, where α > 0 exists since

firm f has at least one bundle (not at its upper bound in price) in C. The unilateral price change

by firm f results in a price point w 6= c, where wj = cj + δj , j ∈ g(f) and wj = cj , j ∈ g(−f).

The price change by firm f is profitable since the cost attendant to the inter-bundle Cournot price

point is greater than or equal to z + α (i.e., dP
dpf

> 0 at w). Firm f ’s unit profit increases by α,

since no cover in X remains at an overall cost less then z + α. The profitable price change by firm

f contradicts the assumption that c is a pure strategy Nash equilibrium, and hence, Ω0 is empty.

(⇐) Assume to the contrary that Ω0 is empty and c is not a pure strategy Nash equilibrium.

Then, by the definition of a Nash equilibrium (see Definition 1), there exists a firm i ∈ N for which

a profitable increase in price exists. Since Ω0 is empty, there exists a cover C ∈ X for which firm

i cannot increase the price of any of the bundles in C (i.e., no bundle j ∈ g(i) is a member of

the cover C, or if it is a member of C, its price is at its upper bound). If firm i were to increase

the aggregate price of bundles belonging to a cover C ′ ∈ X by α > 0, then the cost of C ′ would

be greater than the lowest overall cost (i.e., z + α > z), while the cost of C would remain at z.

Therefore, the aggregate price increase of bundles belonging to a cover C ′ results in zero profit for

firm i. Since firm i cannot lower prices from c, it then follows that a profitable change in price

for firm i does not exist. This contradicts the non-equilibrium assumption, establishing the Nash

equilibrium claim. �

Proposition 2 provides sufficient conditions for the existence of a pure strategy Nash equilibrium

in a Cournot strategic game that directly corresponds to the desired optimal increase in aggregate

unit profit for each firm in the set of veto firms. At the inter-bundle Cournot equilibrium price point,

the increase or decrease in price of one of the bundles in a cover C ∈ X (controlled by a veto firm)

affects the profit of the other veto firms controlling bundles in C due to the effect of the aggregate

price of C on consumer demand. This is precisely the case of the Cournot game, where instead

of prices as the strategic variable, quantity produced is considered. By appropriately setting the

parameters, the inter-bundle Cournot equilibrium is found by solving the corresponding Cournot

game. At iteration k of IIA, while an inter-bundle Cournot equilibrium exists for Ωk, bounding

covers or bundle price bounds reached in later iterations may prevent the attainment of an inter-

bundle Cournot equilibrium price point for Ωk; such an occurrence would require re-computing

another equilibrium (i.e., step 26 of IIA) with the new set of veto firms.
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Consider a Cournot game in which a single homogeneous product is produced by a set of F

firms. The cost to firm i ∈ F of producing qi units of the product is Ĉi(qi), where Ĉi is convex and

twice continuously differentiable. Aggregate production is sold at a single market clearing price as

determined by an inverse demand function. If the total production in the market is Q =
∑

i∈F qi,

then the market price is P̂ (Q), where P̂ is concave and twice continuously differentiable. The

assumption of convexity and concavity on the cost and inverse demand functions, respectively,

provides sufficient condition for a firm’s profit function vi to be concave in its own output [58],

where vi = qiP̂ (Q) − Ĉi(qi). Note that the assumption of convexity for cost and of concavity

for inverse demand are satisfied by fixed charge cost and linear inverse demand. The following

existence result holds.

Lemma 2 (Existence of a Pure Strategy Equilibrium in the Cournot Game). A pure strategy Nash

equilibrium exists at an aggregate output of Q∗, with each firm i producing q∗i .

Proof. Determining the Nash equilibrium of such a game is as follows: define the best response

production quantity for firm i, φi(Q), by its first order profit maximization condition, P̂ (Q) −
ˆ̃Ci(qi)+qi

ˆ̃P (Q) = 0, where φi(Q) is continuous and nonincreasing due to the assumptions regarding

Ĉi and P̂ . Denote Φ(Q) =
∑

i∈F φi(Q) as the sum of the best response production quantities, where

Φ is also continuous and nonincreasing. A pure strategy Nash equilibrium of the Cournot game

is found by finding a fixed point of the function Q → Φ(Q). Application of a Brouwer’s fixed

point theorem [4] provides the result. To satisfy the conditions necessary for application of the

theorem, the function must be continuous and nonincreasing, and the feasible region compact.

Φ(Q) is continuous and nonincreasing due to the assumptions regarding Ĉi and P̂ . Compactness is

obtained by requiring 0 ≤ Φ(0) < Q for all Q such that P̂ (Q) = 0. Denote the optimal aggregate

production as Q∗ and the corresponding production of firm i as q∗i = φi(Q
∗). �

The results given by Lemma 2 are applied in Proposition 2.

Proposition 2 (Termination Condition 2). Given an instance of Γ and execution of IIA, if the

set of active veto firms, Ω̃k, is empty, then a pure strategy inter-bundle Cournot equilibrium exists

at wk.

Proof. Assume to the contrary that Ω̃k, is empty and a pure strategy inter-bundle Cournot equilib-

rium does not exist at wk. Execution of IIA results in a sequence of price points, w0,w1, . . . ,wk,

where the iterative adjustments are made according to the solution to subproblem BR. In BR,
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constraints C1 and C2 ensure that at each iteration any change in price results in a price point

where the covers in Lk are greater than or equal to the cost of the covers in X. Constraint C3

ensures that at each iteration any change in price results in a price point where dP
dpf
≥ 0, which

implies that in IIA an aggregate price decrease is always unprofitable. Constraints C4 and C5

ensure that at each iteration any change in price results in a feasible price point.

For the set of firms not in Ωk, by the definition of Ωk (see Definition 2), there exists a cover

C ∈ X for which firm f /∈ Ωk cannot increase the price of any of the bundles in C (i.e., no bundle

j ∈ g(f) is a member of the cover C, or if it is a member of C, its price is at its upper bound). If

firm f were to increase the aggregate price of bundles belonging to a cover E ∈ X by α > 0, the

cost of E would be greater than the lowest overall cost zk, while the cost of C would remain zk.

Therefore, any aggregate price increase of bundles belonging to a cover E results in zero profit for

firm f . Constraint C3 in subproblem BR of IIA ensures firm f cannot profitably lower prices from

wk. It then follows that a profitable change in price for firm f does not exist.

For the set of firms in Ωk, the results of a standard Cournot strategic game are applied. At

iteration k of IIA, given Ωk, choose any cover C ∈ X. Let the veto firms in Ωk equate to the

firms in F (i.e., F ← Ωk). For each firm i ∈ F , let qi ←
∑

j∈g(i)
⋂
C (wkj − cj) denote the aggregate

unit profit of its bundles in C and let Q =
∑

i∈F qi denote the total aggregate unit profit for all

of the firms in Ωk due to the cover C. Let Ĉi(qi) ← 0 denote the cost function for firm i. Let

P̂ (Q)← D(Q+ `) denote the market demand function, where ` =
∑

j∈C cj + c̃j + τ +
∑

f∈Ω0\Ωk u
k
f

represents the shared constant cost of C for the firms in Ωk. Recall that the market demand function

D satisfies the same properties as the inverse demand function P̂ . The best response function φi(Q)

remains continuous and nonincreasing due to the assumptions on Ĉi and P̂ . Compactness is satisfied

by requiring
∑

j∈g(Ωk)
⋂
C (wj − cj) > 0 for any w such that D(z(w)) = 0. The result follows from

Lemma 2 where q∗i denotes the equilibrium aggregate unit profit of firm i for any cover C in X.

Since Ω̃k is empty, uki =
∑

j∈g(i)
⋂
C (wj − cj) = q∗i for all i ∈ Ωk and wk is a price point where a

profitable change in price for firm i does not exist.

Since firm f /∈ Ωk and firm i ∈ Ωk cannot affect a profitable change in price at wk, no firm in N

has the ability to adjust prices to unilaterally increase profit. This contradicts the non-equilibrium

assumption, establishing the Nash equilibrium claim. �

Proposition 3 provides sufficient conditions for the price point wk to be a Nash equilibrium. The

conditions indicate that if there are no remaining veto firms, then no firm is able to unilaterally
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increase profit.

Proposition 3 (Termination Condition 3). Given an instance of Γ and execution of algorithm

IIA, if the set of veto firms, Ωk, is empty, then a pure strategy Nash equilibrium exists at wk.

Proof. Begin with the same initial paragraph given in the proof of Proposition 2.

Since Ωk is empty, there exists a cover C ∈ X for which firm f ∈ N cannot increase the price of

any of the bundles in C (i.e., no bundle j ∈ g(f) is a member of the cover C, or if it is a member

of C, its price is at its upper bound). If firm f were able to increase the aggregate price of bundles

belonging to a cover E ∈ X by α > 0, the cost of E would be zk+α, greater than the lowest overall

cost zk, while the cost of C would remain at zk. Therefore, any aggregate price increase of bundles

belonging to a cover E results in zero profit for firm f . Constraint C3 in subproblem BR of IIA

ensures firm f cannot profitably lower prices from wk. It then follows that a profitable change in

price for firm f does not exist. This contradicts the non-equilibrium assumption, establishing the

Nash equilibrium claim. �

All elements are in place to prove Theorem 1, which guarantees that a pure strategy Nash equi-

librium always exists for Γ.

Theorem 1 (Static Game Equilibrium Existence) Given an instance of Γ, a pure strategy Nash

Equilibrium always exists.

Proof. Given an instance of Γ, implement IIA, which provides a sequence of price points w0,

w1, . . ., wk ending with the price point wk satisfying one of three termination conditions. If IIA

terminates immediately under Termination Condition 1, Proposition 1 shows w0 = c is a pure

strategy Nash equilibrium. If IIA terminates under Termination Condition 2, Proposition 2 shows

wk is a pure strategy Nash equilibrium (in the limiting sense if Lk is nonempty). If IIA terminates

under Termination Condition 3, Proposition 3 shows wk is a pure strategy Nash equilibrium (in

the limiting sense if Lk is nonempty). The number of iterations in IIA is governed by the maximum

number of possible covers. As indicated by Lemma 1, in the worst case, the maximum number of

covers, M , is finite. Since there are a finite number of covers IIA must terminate.

IIA provides a sequence of price points w0,w1, . . . ,wk and must terminate with the price point

wk as a Nash equilibrium. To see this, assume to the contrary that IIA terminates at iteration k,

returning wk. Moreover, assume wk is not a Nash equilibrium. For the case when k = 0, since wk
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is not a Nash equilibrium, then by the definition of a Nash equilibrium (Definition 1), a profitable

change in price exists for some firm i. Since wk = c the profitable change must result from a price

increase. Then by the definition of a veto firm (Definition 2), i ∈ Ω0 indicating Ω0 is nonempty,

which implies that IIA has not terminated, which is a contradiction. For the case when k > 0,

since wk is not a Nash equilibrium, then by the definition of a Nash equilibrium (Definition 1),

a profitable change in price exists for some firm f , implying ukf 6= p∗. Then by the definition of

an active veto firm (Definition 3), Ω̃k is nonempty and since Ω̃k ⊆ Ωk, then Ωk is nonempty. Ω̃k

and Ωk nonempty implies that IIA has not terminated, which is a contradiction. These arguments

establish that IIA cannot terminate at the price point wk, where wk is not a Nash equilibrium. �

4.4 The United States Pediatric Vaccine Market

Section 4.4 demonstrates the utility of Γ and Γr by applying them to the analysis of the United

States public sector pediatric vaccine market. Three different scenarios are examined. The first

scenario establishes the economic profit of the vaccine manufacturers based on current vaccine

prices. The second scenario applies Γ in order to examine the impact of a Bertrand price competition

on the profit levels of the competing vaccine manufacturers. The third scenario applies Γr in order

to examine the ramifications of tacit collusion on the market. The section begins with a brief

description of the market and concludes with a discussion of limitations and general results.

4.4.1 Market Description

The development of pediatric vaccines is a difficult and costly endeavor. In the United States

pediatric vaccine market, a relatively small number of pharmaceutical firms engage in the research,

development, manufacture, sales, marketing, and distribution of pediatric vaccines [18]. All pedi-

atric vaccines distributed in the United States are manufactured privately, with no obligation to

sustain or initiate the production of pediatric vaccines, regardless of the importance of such vac-

cines to public health. Multiple stakeholders influence the development, licensing, production, and

distribution of pediatric vaccines. It behooves these stakeholders to be aware of the complexities

of the market in which they participate. The economic competition between pharmaceutical firms

and the impact of various public policies on the market warrants detailed analysis.

When investigating the United States pediatric vaccine market, the techniques presented in this
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chapter are a natural game theoretic extension to the work of Robbins et al. [51], who provide

a methodology for analyzing pricing strategies for competing combination vaccines in the United

States pediatric vaccine market, with the goal of maximizing a pharmaceutical company’s expected

revenue. Since unit production cost was assumed to be negligible, the methodology effectively

sought to maximize expected profit. The methodology was applied to a single firm and a single

combination vaccine (i.e., a bundle of products) and assumed all other vaccine prices remained

constant. The proposed approach represents a single price adjustment in a best response dynam-

ics process. Applied systematically, the competing pharmaceutical companies would continually

undercut each other in price in order to achieve higher profits. This market situation is indicative

of Bertrand economic competition and clearly lends itself to study via game theory, and more

specifically, to study with Γ.

There are numerous stakeholders involved in the United States pediatric vaccine market. The

pharmaceutical firms, GlaxoSmithKline, Merck, and Sanofi Pasteur, manufacture the vaccines of in-

terest in this chapter. The Food and Drug Administration (FDA) licenses the use of the vaccines.

The Centers for Disease Control and Prevention (CDC), Advisory Committee on Immunization

Practices (ACIP), and American Academy of Pediatrics (AAP) recommend proper use of the vac-

cines. The customers (i.e., state and local government public health officials) purchase vaccines

for the immunization of the citizens in their administrative areas of responsibility. Federal govern-

ment public health officials negotiate the vaccine prices for the purchases made by the state and

local governments. Pediatric vaccines purchased at the public sector price, as negotiated by the

federal government, account for approximately 57% of total pediatric vaccine purchases by volume

[46]. For the results presented in this chapter, only the public sector of the market is considered.

However, the methods discussed could also be adapted to the private sector.

Vaccine development by the pharmaceutical firms requires proficient management of a host of

processes, most requiring highly skilled scientists and engineers in order to successfully produce

the products [18]. The manufacturing process is expensive and time consuming, requiring vigilant

maintenance of stringent FDA regulatory specifications. The estimated total unit production cost

of a fully burdened liquid product vaccine (including the costs of filling, vialing, and packaging)

is between $0.70 and $1.30 [18]. In addition to production costs, there is a federal excise tax

associated with each vaccine dose; $0.75 for each antigen the vaccine contains [13]. Vaccines are

slightly differentiated in that they may be packaged in either vials or syringes. This difference
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in packaging affects costs with respect to nurse preparation time. Vaccine preparations costs for

vials and syringes are assumed to be $0.75 and $0.25 per dose, respectively (see [30] or [61] for

detailed descriptions). The vaccines of interest in this chapter are those that were licensed in the

United States and under federal contract (ending 31 March 2010) for purchase by public-sector

immunization programs [5]. Note that monopoly vaccine manufacturers and their products are

not included in the analysis. The results presented in this study seek to portray long term market

trends; as such, research and development costs are ignored since the actual cost of producing

the vaccine with respect to research and development depreciate over time. However, if research

and development costs were of direct interest, one could compare the δ-discounted profit stream

generated by an alternative investment vehicle for the research and development costs to the δ-

discounted profit stream resulting from a likely tacit collusion equilibrium point in the market.

The FDA’s licensing and approval process is a requirement for vaccine use in the United States.

Following FDA approval, a positive recommendation is very important to the success of a pediatric

vaccine. Changes in recommendations or requirements from the CDC, ACIP, or AAP greatly influ-

ence the demand for a particular vaccine. These organizations issue numerous guidelines regarding

policies to effectively control vaccine-preventable diseases. This includes maintaining a list of ac-

ceptable vaccines and publishing an annual schedule concerning the appropriate periodicity and

dosages of vaccines, the United States Recommended Childhood Immunization Schedule (RCIS)

(see Figure 4.1 from CDC [13]). Public health officials seek to satisfy the RCIS for each child in

their administrative area of responsibility in order to ensure proper immunization coverage and

promote public health. The five time periods of interest in this study are the following: (1) birth,

(2) 2-month, (3) 4-month, (4) 6-month, and (5) 12-18 months.

When formulating Γ instances to model the United States pediatric vaccine market, the RCIS

defines the WSC instance that drives customer demand. Indeed, the demand structure reflects

a desire by vaccine purchasers to satisfy the RCIS, directly corresponding to finding a minimum

cover, where vaccine component antigens cover disease prevention requirements [27]. There is an

assumption of rational consumer behavior in that a minimum weighted set cover is sought (i.e., a

consumer seeks to satisfy the RCIS at a minimum cost). The analysis presented in this chapter

focuses on four competitive antigens, which provide protection against the following diseases: diph-

theria, tetanus, and pertussis (DTaP), Haemophilus influenzae type b (Hib), hepatitis B (HepB),

and polio (IPV). These antigens are said to be competitive because more than one firm manufac-
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Figure 4.1: United States 2010 Recommended Childhood Immunization Schedule (through Age 6)

This schedule includes recommendations in effect as of December 15, 2009. 
Any dose not administered at the recommended age should be administered at a 
subsequent visit, when indicated and feasible. The use of a combination vaccine 
generally is preferred over separate injections of its equivalent component vaccines. 
Considerations should include provider assessment, patient preference, and 
the potential for adverse events. Providers should consult the relevant Advisory 

Committee on Immunization Practices statement for detailed recommendations: 
http://www.cdc.gov/vaccines/pubs/acip-list.htm. Clinically significant adverse 
events that follow immunization should be reported to the Vaccine Adverse Event 
Reporting System (VAERS) at http://www.vaers.hhs.gov or by telephone,  
800-822-7967.

1.	 Hepatitis B vaccine (HepB). (Minimum age: birth)
At birth:
•	Administer monovalent HepB to all newborns before hospital discharge.
•	 If mother is hepatitis B surface antigen (HBsAg)-positive, administer HepB 
and 0.5 mL of hepatitis B immune globulin (HBIG) within 12 hours of birth.

•	 If mother’s HBsAg status is unknown, administer HepB within 12 hours of 
birth. Determine mother’s HBsAg status as soon as possible and, if HBsAg-
positive, administer HBIG (no later than age 1 week).

After the birth dose:
•	The HepB series should be completed with either monovalent HepB or a com-
bination vaccine containing HepB. The second dose should be administered 
at age 1 or 2 months. Monovalent HepB vaccine should be used for doses 
administered before age 6 weeks. The final dose should be administered no 
earlier than age 24 weeks.

•	 Infants born to HBsAg-positive mothers should be tested for HBsAg and 
antibody to HBsAg 1 to 2 months after completion of at least 3 doses of the 
HepB series, at age 9 through 18 months (generally at the next well-child 
visit).

•	Administration of 4 doses of HepB to infants is permissible when a combina-
tion vaccine containing HepB is administered after the birth dose. The fourth 
dose should be administered no earlier than age 24 weeks.

2.	 Rotavirus vaccine (RV). (Minimum age: 6 weeks)
•	Administer the first dose at age 6 through 14 weeks (maximum age: 14 
weeks 6 days). Vaccination should not be initiated for infants aged 15 weeks 
0 days or older.

•	The maximum age for the final dose in the series is 8 months 0 days
•	 If Rotarix is administered at ages 2 and 4 months, a dose at 6 months is not 

indicated.
3.	 Diphtheria and tetanus toxoids and acellular pertussis vaccine (DTaP).

(Minimum age: 6 weeks)
•	The fourth dose may be administered as early as age 12 months, provided 

at least 6 months have elapsed since the third dose.
•	Administer the final dose in the series at age 4 through 6 years. 

4.	 Haemophilus influenzae type b conjugate vaccine (Hib).
(Minimum age: 6 weeks)
•	 If PRP-OMP (PedvaxHIB or Comvax [HepB-Hib]) is administered at ages 2 

and 4 months, a dose at age 6 months is not indicated.
•	TriHiBit (DTaP/Hib) and Hiberix (PRP-T) should not be used for doses at ages 

2, 4, or 6 months for the primary series but can be used as the final dose in 
children aged 12 months through 4 years. 

5.	 Pneumococcal vaccine. (Minimum age: 6 weeks for pneumococcal conjugate 
vaccine [PCV]; 2 years for pneumococcal polysaccharide vaccine [PPSV])
•	PCV is recommended for all children aged younger than 5 years. Administer 

1 dose of PCV to all healthy children aged 24 through 59 months who are 
not completely vaccinated for their age.

•	Administer PPSV 2 or more months after last dose of PCV to children aged 2 
years or older with certain underlying medical conditions, including a cochlear 
implant. See MMWR 1997;46(No. RR-8).

6.	 Inactivated poliovirus vaccine (IPV) (Minimum age: 6 weeks)
•	The final dose in the series should be administered on or after the fourth 

birthday and at least 6 months following the previous dose.
•	 If 4 doses are administered prior to age 4 years a fifth dose should be admin-

istered at age 4 through 6 years. See MMWR 2009;58(30):829–30.
7.	 Influenza vaccine (seasonal). (Minimum age: 6 months for trivalent inacti-

vated influenza vaccine [TIV]; 2 years for live, attenuated influenza vaccine 
[LAIV])
•	Administer annually to children aged 6 months through 18 years.
•	For healthy children aged 2 through 6 years (i.e., those who do not have under-

lying medical conditions that predispose them to influenza complications), 
either LAIV or TIV may be used, except LAIV should not be given to children 
aged 2 through 4 years who have had wheezing in the past 12 months.

•	Children receiving TIV should receive 0.25 mL if aged 6 through 35 months 
or 0.5 mL if aged 3 years or older.

•	Administer 2 doses (separated by at least 4 weeks) to children aged younger 
than 9 years who are receiving influenza vaccine for the first time or who were 
vaccinated for the first time during the previous influenza season but only 
received 1 dose.

•	For recommendations for use of influenza A (H1N1) 2009 monovalent vaccine 
see MMWR 2009;58(No. RR-10).

8.	 Measles, mumps, and rubella vaccine (MMR). (Minimum age: 12 months)
•	Administer the second dose routinely at age 4 through 6 years. However, the 
second dose may be administered before age 4, provided at least 28 days 
have elapsed since the first dose.

9.	 Varicella vaccine. (Minimum age: 12 months) 
•	Administer the second dose routinely at age 4 through 6 years. However, the 
second dose may be administered before age 4, provided at least 3 months 
have elapsed since the first dose.

•	For children aged 12 months through 12 years the minimum interval between 
doses is 3 months. However, if the second dose was administered at least 
28 days after the first dose, it can be accepted as valid.

10.	Hepatitis A vaccine (HepA). (Minimum age: 12 months)
•	Administer to all children aged 1 year (i.e., aged 12 through 23 months). 

Administer 2 doses at least 6 months apart.
•	Children not fully vaccinated by age 2 years can be vaccinated at subsequent 

visits
•	HepA also is recommended for older children who live in areas where vac-
cination programs target older children, who are at increased risk for infection, 
or for whom immunity against hepatitis A is desired.

11.	Meningococcal vaccine. (Minimum age: 2 years for meningococcal conjugate 
vaccine [MCV4] and for meningococcal polysaccharide vaccine [MPSV4])
•	Administer MCV4 to children aged 2 through 10 years with persistent comple-

ment component deficiency, anatomic or functional asplenia, and certain other 
conditions placing tham at high risk.

•	Administer MCV4 to children previously vaccinated with MCV4 or MPSV4 
after 3 years if first dose administered at age 2 through 6 years. See MMWR 
2009;​58:1042–3.

Range of  
recommended 
ages for certain 
high-risk groups

Range of 
recommended 
ages for all 
children except 
certain high-risk 
groups

Vaccine ▼ Age ► Birth
1

month
2

months
4

months
6

months
12

months
15

months
18

months
19–23

months
2–3

years
4–6

years

Hepatitis B1 HepB

Rotavirus2 RV RV RV2

Diphtheria, Tetanus, Pertussis3 DTaP DTaP DTaP see  
footnote3

Haemophilus influenzae type b4 Hib Hib Hib4

Pneumococcal5 PCV PCV PCV

Inactivated Poliovirus6 IPV IPV

Influenza7

Measles, Mumps, Rubella8 see footnote8

Varicella9 see footnote9

Hepatitis A10

Meningococcal11

HepBHepB

DTaP DTaP

Hib

IPVIPV

MMR

VaricellaVaricella

MMR

PCV

HepA Series

MCV

Influenza (Yearly)

PPSV

HepA (2 doses)

Recommended Immunization Schedule for Persons Aged 0 Through 6 Years—United States • 2010
For those who fall behind or start late, see the catch-up schedule

C
S
2
0
7
3
3
0
-A The Recommended Immunization Schedules for Persons Aged 0 through 18 Years are approved by the Advisory Committee on Immunization Practices 

(http://www.cdc.gov/vaccines/recs/acip), the American Academy of Pediatrics (http://www.aap.org), and the American Academy of Family Physicians (http://www.aafp.org). 

Department of Health and Human Services • Centers for Disease Control and Prevention

tures a vaccine containing the antigen.

Table 4.1 provides a summary of the information describing the United States public sector

pediatric vaccine market. This information is used to construct the three scenarios of interest.

Column 1 indicates the set of pharmaceutical firms, N (from [5, 20]), column 2 indicates the set of

pediatric vaccines, B, where each vaccine contains a subset of the set of antigens, S, sold by the

firms (from [13, 20]), column 3 indicates the time periods in the RCIS for which the vaccines are

licensed to immunize children (from [5, 20]), and columns 4-8 indicate unit costs per dose. Column

4 indicates the base unit production cost (from [18]), column 5 indicates the federal excise tax

associated with each vaccine (from [13]), column 6 indicates the total unit cost for manufacturing

the vaccine, (cj)j∈B, column 7 indicates the product differentiation cost vector, (c̃j)j∈B, and column

8 indicates the maximum allowable price of a vaccine (βj)j∈B, (assumed to be the current public

sector price, from [5]). In each of the scenarios, there is an assumed cost of $10.00 associated with

each injection (i.e., τ = 10) that the consumer considers. See Glazner et al. [25] for a detailed

discussion regarding the costs to healthcare providers for delivering childhood vaccinations.

To characterize the demand function for the Γ instances, three different population and healthcare

statistics are required: the number of children completing a RCIS on an annual basis, the vaccine

coverage rate among those children completing a RCIS, and the proportion of those children for

which the vaccines were purchased at the public sector price. According to a recent National Vital

Statistics Report [37], approximately 4.3 million births were registered in the United States in
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Table 4.1: Vaccine information

(1) (2) (3) (4) (5) (6) (7) (8)
Firm Vaccine Available Prod. Federal Total Diff. Max

Periods Cost Excise Tax Cost Cost Price
GlaxoSmithKline DTaP Infanrix R© 2, 3, 4, 5 $0.90 $2.25 $3.15 $0.25 $13.75

Hib Hiberix R© 2, 3, 4, 5 $0.70 $0.75 $1.45 $0.75 $8.66
HepB ENGERIX B R© 1, 2, 4 $0.70 $0.75 $1.45 $0.25 $9.75
DTaP-HepB-IPV Pediarix R© 2, 3, 4 $1.30 $3.75 $5.05 $0.25 $48.75

Merck Hib PedvaxHIB R© 2, 3, 4, 5 $0.70 $0.75 $1.45 $0.75 $11.29
HepB RECOMBIVAX HB R© 1, 2, 4 $0.70 $0.75 $1.45 $0.75 $10.00
Hib-HepB COMVAX R© 2, 3, 4 $0.80 $1.50 $2.30 $0.75 $28.80

Sanofi Pasteur DTaP Tripedia R© 2, 3, 4, 5 $0.90 $2.25 $3.15 $0.75 $13.25
Hib ActHIB R© 2, 3, 4, 5 $0.70 $0.75 $1.45 $0.75 $8.66
IPV IPOL R© 2, 3, 4 $0.70 $0.75 $1.45 $0.25 $11.51
DTaP/Hib TriHIBit R© 5 $1.00 $3.00 $4.00 $0.75 $27.31
DTaP-IPV/Hib Pentacel R© 2, 3, 4 $1.30 $3.75 $5.05 $0.75 $51.49

2006. These children represent the maximum potential set of consumers of the vaccines. The most

recent National Immunization Survey (NIS) results provide estimated vaccine coverage rates for

children aged 19-35 months [11]. With respect to the four diseases of interest in this chapter, the

NIS provides the proportion of children completing the full schedule (0.782) and the proportion of

children completing none of the schedule (0.006). The estimated proportion of children for which

full schedules were purchased at public sector prices lies in the interval (0.782, 0.994) and must be

estimated using the NIS data.

Denote α as the estimated proportion of the RCIS completed by ρ, the corresponding proportion

of children aged 19-35 months. The parameter ρ1 denotes the coverage rate for the full 4:3:1:3:3

vaccination series (i.e., α = 1 for ρ ∈ [0, ρ1]), which most closely resembles completion of the full

RCIS with respect to the four diseases of interest in this chapter. The parameter ρ2 denotes the

proportion of children who received at least one vaccination (i.e., α = 0 for ρ ∈ [ρ2, 1]). The

quadratic function ν(ρ) = κ1ρ
2 +κ2ρ+κ3, for ρ ∈ [ρ1, ρ2] represents the coverage rate as a function

of the proportion of children. The NIS results do not specify the exact nature of the reduction

from full coverage to no coverage. The function ν(ρ) can be fit to the NIS data and its parameters

specified to represent any belief concerning the rate at which coverage decreases. For the results

presented in this chapter, a concave relationship is assumed, in which a slow decay of the coverage

rate occurs. To compute α set ρ1 = 0.782 and ρ2 = 0.994 (both from [11]) and set κ1 = −18; κ2

and κ3 are then computed to induce the desired concave curve. Note that κ1 = −18 is arbitrary; no

empirical data is available to provide a justifiable value. The coverage rate α provides the necessary

coverage information for characterizing the Γ demand function, where α ≡ ρ1 +
∫ ρ2

ρ1
ν(ρ)dρ = 0.917.

The market demand function used in the Γ instances reflects the perfect inelasticity (see Mankiw

[36]) inherent in the United States public sector pediatric vaccine market. The three components

discussed above give the following constant demand function: D (z(w)) where d = 4, 300, 000·0.917·
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0.57 ≈ 2, 200, 000. Regardless of the price of the vaccines and the overall cost of the minimum cost

cover, the demand remains the same. Naturally, this market situation is untenable unless price is

bounded in some manner. An exogenous government entity (i.e., Congress) provides funding for

the purchase of the vaccines and as one would expect another government entity (i.e., the CDC)

effectively caps prices by exercising its monopsonistic leverage with vaccine manufacturers (see

Table 4.1, column 8). Moreover, the prices of monovalent vaccines, when purchased using federal

funds, are capped by law.

4.4.2 Current Firm Profits

In the first scenario, given the information in Table 4.1, the annual profit of the pharmaceutical

firms are determined using the techniques discussed by Robbins et al. [51]. Table 4.2 presents the

resulting firm profits. GlaxoSmithKline fares very well due to the slight price advantage of the

formulary containing three doses of Pediarix R© compared to the formulary containing three doses of

Pentacel R©. Note that the current price of the pediatric vaccines and the attendant profit levels are

not in equilibrium. Indeed, by lowering the price of Pentacel R©, Sanofi Pasteur could easily obtain

a profit as large as that earned by GlaxoSmithKline. GlaxoSmithKline could then follow suit by

again decreasing prices. This repeated undercutting in price leads to an unacceptable result for all

of the firms in the market, as shown in the second scenario. Note that the pressure on the price of

pediatric vaccines is due in part to the assumption of perfect substitutability among the competing

vaccines with respect to satisfaction of the RCIS.

Table 4.2: Firm profits at contract prices ending 31 Mar 2010

Firm Profit Cost Revenue
GlaxoSmithKline $ 306,680,000.00 $ 36,520,000.00 $ 343,200,000.00
Merck $ 43,296,000.00 $ 6,380,000.00 $ 49,676,000.00
Sanofi Pasteur $ 51,282,000.00 $ 8,800,000.00 $ 60,082,000.00

4.4.3 Equilibrium Firm Profits in the Static Game

In the second scenario, three Γ instances are formulated, two for the first and fifth periods of interest

and one for the second thru fourth periods of interest. The second thru fourth periods of interest

are consolidated into a single weighted set cover in order to address the special attribute of Merck’s

Hib vaccine; if PedvaxHIB R© or Comvax R© is administered in the second and third time periods, a

Hib dose in the fourth period is not required. Together, the three Γ instances provide insight as
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to what would occur should the pharmaceutical companies engage in Bertrand price competition,

continually undercutting one another in prices.

IIA finds a pure strategy Nash equilibrium for each of the three Γ instances (see Table 4.3).

The vaccine prices computed by IIA for each of the problem instances are consistent, in the re-

spect that there are no pricing conflicts. The amalgamation of the Nash equilibria provides a

consistent, common pure strategy Nash equilibrium (in the limiting sense) for the entire schedule.

GlaxoSmithKline’s HepB vaccine increases in price by $0.50 to match the HepB vaccine offered by

Merck. This price change provides an advantage for GlaxoSmithKline in the second thru fourth

periods. In the second Γ instance, the formulary (i.e., cover or group of bundles) consisting of three

doses of Pediarix R© plus two doses of PedvaxHIB R© provides the best value to the consumer. The

next best lowest cost formulary consists of three doses of Pentacel R© and two doses of ENGERIX

B R©. These two formularies provide the best economic value to a purchaser since they cover the

RCIS requirements in five doses. Given the relatively high cost of an injection (with respect to the

cost of the vaccines), a rational purchaser greatly values a reduction in the number of injections

administered. Another reason these two formularies are so competitive is the Merck Hib advantage.

The use of three doses of Pediarix R© results in an over-immunization with respect to HepB. How-

ever, this loss in value is made up for by Pediarix R©’s formulary partner, PedvaxHIB R©, whereby a

third dose of Hib is unnecessary. With an equivalent number of doses and equal marginal costs,

the only difference between the two formularies results from packaging. GlaxoSmithKline packages

its vaccine products in prefilled syringes, which takes less nurse preparation time than vaccines

packaged in vials, and hence provides a small economic advantage. The GlaxoSmithKline $0.50

price increase for its HepB vaccine provides a $1.50 slack in cost that can be exploited. In the last

period, Sanofi Pasteur’s TriHIBit R© provides a one dose savings to its closest competing formulary.

Its price is increased to match its competitor. Table 4.3 shows the Nash equilibrium prices.

Table 4.3: Equilibrium prices for the Γ instances

Firm Vaccine Current Inst. 1 Nash Inst. 2 Nash Inst. 3 Nash Scenario Nash
Price [6] Equilibrium Equilibrium Equilibrium Equilibrium

GlaxoSmithKline DTaP $13.75 free free $3.15 $3.15
Hib $8.66 free $1.45 $1.45 $1.45
HepB $9.75 $1.95 $1.95 free $1.95
DTaP-HepB-IPV $48.75 free $5.55 free $5.55

Merck Hib $11.29 free $1.45 free $1.45
HepB $10.00 $1.45 $1.45 free $1.45
Hib-HepB $28.80 free free free free

Sanofi Pasteur DTaP $13.25 free free free free
Hib $8.66 free $1.45 free $1.45
IPV $11.51 free free free free
DTaP/Hib $27.31 free free $14.85 $14.85
DTaP-IPV/Hib $51.49 free $5.05 free $5.05
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The attendant annual profits and costs attributed to the pharmaceutical firms are indicated for

the Nash equilibrium price list (see Table 4.4). In comparing the current market (see Table 4.2)

with one that has engaged in a Bertrand price competition, GlaxoSmithKline loses nearly all of

its profit, dropping from over $306 million to over $4 million, Merck drops to a zero profit level

margin, and Sanofi Pasteur loses the least, down from over $51 million to nearly $25 million.

Table 4.4: Firm profits at static game equilibrium price point

Firm Profit Cost Revenue
GlaxoSmithKline $ 4,400,000.00 $ 36,520,000.00 $ 40,920,000.00
Merck $ - $ 6,380,000.00 $ 6,380,000.00
Sanofi Pasteur $ 24,970,000.00 $ 8,800,000.00 $ 33,770,000.00

The Nash equilibrium payoffs shown in Table 4.4 indicate that engaging in Bertrand price com-

petition results in a profound loss of profit for all of the pharmaceutical firms competing in the

United States public sector pediatric vaccine market. Certainly, pharmaceutical firms are aware

that systematic reductions in price negatively impacts future profits, especially considering the

price inelasticity in this market. The current vaccine prices and their corresponding adjustments in

recent years reflect this understanding. Moreover, the Γ results are economically naive, as discussed

in Section 2.2. Recall that Γ is a static game with no mechanism to model ongoing or repeated

interaction between the competing firms. As such, there is no incentive for firms to cooperate in

any manner. Collusion in any form is not allowed. Therefore, Γr enables a more realistic analysis.

4.4.4 Equilibrium Firm Profits in the Repeated Game

In the third scenario, three Γr instances models the pediatric vaccine market, where a pharmaceu-

tical firm must consider the effect of its current pricing strategy on the pricing strategies of other

firms in the future and the attendant impact on its own future profits. The Nash equilibrium of

vaccine prices determined for each of the Γr instances are consistent, in that there are no pricing

conflicts. The amalgamation of the three equilibria provides a single, consistent equilibrium. As-

sume that current prices reflect a price limit, indicating firms can only decrease prices in order to

reach an amicable arrangement.

The focal equilibrium price point is selected based on the current component prices within the two

most competitive formularies (i.e., the Pediarix R© dominant formulary and the Pentacel R© dominant

formulary; see Table 4.5) and the assumption that Sanofi Pasteur and Merck would reduce the price

of the vaccines in the more expensive of the two formularies, the Pentacel dominant formulary, so
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Table 4.5: Focal equilibrium vaccine formularies

PediarixR© PentacelR©

Firm Vaccine Dominant Dominant
Formulary Formulary

GlaxoSmithKline HepB 1 0
DTaP-HepB-IPV 3 0

Merck Hib 2 0
HepB 0 3

Sanofi Pasteur DTaP/Hib 1 1
DTaP-IPV/Hib 0 3

that the two dominant formularies are equal in cost from a vaccine purchaser’s perspective. The

equilibrium result holds assuming each pharmaceutical firm values future profits sufficiently high.

Table 4.6 shows the Nash equilibrium prices for Γr. In order to obtain the Nash equilibrium prices

for the repeated game, Merck reduces the price of its HepB from $10.00 per dose to $9.25 per dose

and Sanofi Pasteur reduces the price of Pentacel R© from $51.49 per dose to $49.61 per dose. The

attendant market shares of these two formularies are evenly split, where the firms produce pediatric

vaccines so that 1.1 million schedules are satisfied using the Pediarix R© dominant formulary and 1.1

million schedules are satisfied using the Pentacel R© dominant formulary.

Table 4.6: Equilibrium prices for Γr

Firm Vaccine Current Nash
Price [6] Equilibrium

GlaxoSmithKline DTaP $13.75 $13.75
Hib $8.66 $8.66
HepB $9.75 $9.75
DTaP-HepB-IPV $48.75 $48.75

Merck Hib $11.29 $11.29
HepB $10.00 $9.25
Hib-HepB $28.80 $28.80

Sanofi Pasteur DTaP $13.25 $13.25
Hib $8.66 $8.66
IPV $11.51 $11.51
DTaP/Hib $27.31 $27.31
DTaP-IPV/Hib $51.49 $49.61

The Nash equilibrium payoffs shown in Table 4.7 indicate that in the long run, the firms benefit

greatly from maintaining the pediatric vaccines at the focal equilibrium price point indicated in

Table 4.6. In comparing the market where the firms tacitly collude with one that has engaged in

Bertrand price competition, on an annual basis GlaxoSmithKline earns nearly $149 million more,

Merck earns over $47 million more, and Sanofi Pasteur earns over $173 million more. Assuming

that the firms continue to tacitly collude by employing grim trigger strategies and that each firm’s

condition on its discount factor is met (see rightmost column in Table 4.7), these higher profit

levels can be sustained. If any firm breaks the arrangement, Bertrand behavior results, ultimately

leading to the Nash equilibrium outcome shown in Table 4.4.

Note that should a desire for a different profit allocation amongst the firms motivate a requirement

for a new focal equilibrium point, an alternative means for attaining the new allocation could be

55



Table 4.7: Firm profits at repeated game equilibrium price point 1

Firm Profit Cost Revenue δf ≥
GlaxoSmithKline $ 153,340,000.00 $ 18,260,000.00 $ 171,600,000.00 0.507
Merck $ 47,388,000.00 $ 7,986,000.00 $ 55,374,000.00 0.079
Sanofi Pasteur $ 198,330,000.00 $ 25,476,000.00 $ 223,806,000.00 0.459

reached by stipulating production limits as part of the collusive agreement. The equilibrium price

point would not change; instead, production levels for the pertinent vaccines would adjust to reflect

a self-imposed capacity constraint. For example, if GlaxoSmithKline desires profits approximately

equal to those earned by Sanofi Pasteur, yet still desires the price point indicated in Table 4.6,

then it becomes a matter of producing the appropriate quantity in order to meet the required

profit target levels. Agreeing to limit production to induce market shares of 57.5% and 42.5% for

the Pediarix R© dominant formulary and Pentacel R© dominant formulary, respectively, results in the

profit levels seen in Table 4.8.

Table 4.8: Firm profits at repeated game equilibrium price point 2

Firm Profit Cost Revenue δf ≥
GlaxoSmithKline $ 176,308,000.00 $ 20,988,000.00 $ 197,296,000.00 0.431
Merck $ 46,772,000.00 $ 7,744,000.00 $ 54,516,000.00 0.091
Sanofi Pasteur $ 176,308,000.00 $ 22,968,000.00 $ 199,276,000.00 0.528

4.4.5 Discussion

One should note that there are several factors that are not included in this analysis, including

important economic factors that could impact the payoffs of the firms in the market of interest.

The exclusion of such factors is due to the lack of data or economic models regarding them. These

include factors that further differentiate between manufacturer products (e.g., safety and efficacy),

as well as costs associated with reduced cold storage handling that result from reductions in the

number of separate vaccines necessary to satisfy the RCIS. Other factors not included are brand

loyalty, volume discounting, and formulary inertia, due to the difficulty in quantifying economic

model parameters describing them. Moreover, treatment of catch-up and high-risk immunization

groups is not considered and could certainly impact the desirability of vaccines (e.g., monovalent

vaccines may be more desirable in catch-up situations). The risk of vaccine shortages may also

impact the analysis, but is not explicitly included in the study. For example, the formulary for

the 2-month time period, consisting of one dose of Pediarix and one dose of PedvaxHIB R©, is very

cost effective; however, if the risk of shortage for Merck’s PedvaxHIB R© was considered too high (or
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indeed, if PedvaxHIB R© was currently unavailable), then a risk adverse vaccine purchaser may select

the next best formulary despite its additional cost, so as to avoid the possibility of not satisfying

the RCIS. Such concerns regarding the risk of shortage is not explicitly modeled in Γ, although by

modifying the set of available vaccines, such concerns could be examined.

Higher prices, while seemingly disadvantageous to the purchaser, may be warranted in the bigger

picture. Indeed, issues exogenous to the model may be of concern. For example, in the United

States public sector pediatric vaccine market, it is in the best interest of the government to pay

higher prices in order to prevent vaccine manufacturers from exiting the market [45, 50]. This

rationale is motivated primarily by concerns regarding the stable supply of vaccines; when a vaccine

is produced by a small number of manufacturers, production problems create immediate, acute

shortages. Providing financial incentives, in the form of higher profit margins, encourages firms to

enter and remain in the pediatric vaccine market. A robust number of firms in the market benefits

society by securing the vaccine supply and enabling the development of future vaccines.

4.5 Conclusions

Γ is a generalization of Bertrand price competition that provides a mathematical framework for the

analysis of markets in which a consumer makes purchasing decisions based on the outcome of an

associated WSC problem. The Nash equilibrium solution concept provides a consistent mechanism

by which rational and intelligent pricing behavior of the firms in Γ can be examined. Theorem

1 indicates a pure strategy Nash equilibrium of the static game Γ always exists. The algorithm

introduced enables computation of a Nash equilibrium and also provides the means for constructing

the theory for the existence of an equilibrium. Development of Γr addresses the often problematic

temporal assumption of a single economic interaction between firms. Indeed, firms are likely to

interact repeatedly in the market of interest; the repeated game structure enables examination of

more realistic market equilibria. Theorem 2 provides conditions by which a subgame-perfect Nash

equilibrium of the repeated game Γr exists.

The proposed static game provides an appropriate mathematical framework by which to ana-

lyze oligopolistic interactions in markets such as the United States public sector pediatric vaccine

market. A meaningful understanding of important issues affecting the market of interest is gained.

Stakeholders more thoroughly comprehend the consequences of their own actions as well the ac-

tions of other stakeholders. Moreover, the holistic impact of rational and intelligent individual
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stakeholder on the market provides valuable insight. Such information can be leveraged to improve

a single stakeholder’s position or influence policy decisions that affect the market in its entirety for

the betterment of all parties involved.
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CHAPTER 5

THE ALTRUISTIC MONOPSONIST VACCINE FORMULARY

PRICING AND PURCHASING PROBLEM: INFORMING

PUBLIC HEALTH POLICY

Vaccination is one of the most important and successful public health endeavors in human history,

profoundly reducing the number of mortalities caused by infectious diseases [46, 49]. In the United

States, the incidence of many childhood diseases has dramatically decreased, even as the number

of vaccine-preventable diseases has increased [46]. Yet, by some measures the pediatric vaccine

industry is quite fragile [46]. To ensure the safe, secure, and reliable provision of vaccines, the

economic interests of the vaccine industry must be considered by public health policy makers.

The United States pediatric vaccine industry consists of a relatively small number of pharmaceu-

tical companies engaged in the research, development, manufacture, and distribution of pediatric

vaccines. Participation in the vaccine industry is a difficult, costly, risky, and most importantly,

voluntary enterprise. All pediatric vaccines distributed in the United States are manufactured

by privately held companies, with no obligation to sustain or initiate the production of pediatric

vaccines, regardless of the importance of such vaccines to public health [18, 62]. Over the past

forty years, the manufacture of pediatric vaccines has become less profitable due to rising costs and

limited demand, inducing many pharmaceutical companies to exit the market [18, 45]. As of 2010,

just six pharmaceutical companies manufacture vaccines for young children, three of which manu-

facture only one pediatric vaccine [6]. The contraction of the pediatric vaccine market negatively

impacts the provision of vaccines. When a vaccine is produced by a small number of manufacturers,

production problems create immediate, acute shortages. In order to ensure adequate immunization

coverage levels, a robust vaccine industry is vital to the nation’s public health and well being.

A substantial number of public health policy experts have highlighted factors that would assist

in sustaining the current supply of vaccines, as well as encourage the development of new vaccines

[18, 28, 38, 45, 46, 50]. Typically, recommendations concerning the vaccine industry’s robustness

involve financial incentives. For example, Hinman [28] suggests pricing a vaccine in advance based

on its estimated social value. McGuire [38] offers an economic model to facilitate the determination
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of such prices, reporting that while vaccines have high social value (see Zhou et al. [62] for a full

analysis concerning the economic benefit of vaccines to society), the vaccine manufacturers do not

receive appropriate financial incentives for participation in the market. Many public health experts

contend that vaccine manufacturers should earn higher returns on their investments in order to

sustain and expand the production of vaccines [18, 28, 38, 45, 46, 50].

The monopsonistic market power of the federal government uniquely positions it to significantly

influence the pediatric vaccine market by negotiating contractual agreements that increase the

vaccine manufacturers’ financial incentives to remain in the market. Pediatric vaccines purchased

at the public sector price, as negotiated by federal government officials at the Centers for Disease

Control and Prevention (CDC), account for approximately 57% of total pediatric vaccine purchases

by volume [28, 46]. In the United States, the CDC acts as the primary federal public health

organization responsible for setting pediatric immunization policy. Based on recommendations

from the Advisory Committee on Immunization Practices (ACIP), the CDC annually publishes a

Recommended Childhood Immunization Schedule (RCIS) (see Figure 5.1 from [13]) that provides

specific guidance regarding the effective control of vaccine-preventable diseases, to include the

appropriate periodicity and dosage requirements for each pediatric vaccine. The RCIS serves as

the fundamental force driving market demand; vaccine purchasers buy vaccines in order to fully

immunize children in accordance with the RCIS. The CDC also maintains a list of acceptable

pediatric vaccines (i.e., licensed by the Food and Drug Administration (FDA) [21]) and negotiates

discounted prices at which federal, state, and local governments can purchase the vaccines. A

model that addresses the short term need to satisfy the RCIS at minimum economic cost while

accounting for long term concerns regarding the vaccine industry’s viability provides value to the

public health community (specifically, the CDC) and is the focus of this research.

Operations research methods have been applied to the analysis of the United States pediatric

vaccine market. Prior research was reviewed in Section 2.1. This research effort addresses the issue

of the pediatric vaccine industry’s continuing viability from the perspective of the monopsonistic

federal government. The fundamental premise of the analysis is the supposition that the altruistic

CDC desires to negotiate pediatric vaccine prices and determine purchase quantities in order to

minimize the vaccine system’s delivery costs while ensuring that the pharmaceutical companies

manufacturing the pediatric vaccines each earn a profit that induces them to remain in the market.

The operations research approach presented in this chapter defines the Altruistic Monopsonist
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Figure 5.1: United States 2010 Recommended Childhood Immunization Schedule (through Age 6)

This schedule includes recommendations in effect as of December 15, 2009. 
Any dose not administered at the recommended age should be administered at a 
subsequent visit, when indicated and feasible. The use of a combination vaccine 
generally is preferred over separate injections of its equivalent component vaccines. 
Considerations should include provider assessment, patient preference, and 
the potential for adverse events. Providers should consult the relevant Advisory 

Committee on Immunization Practices statement for detailed recommendations: 
http://www.cdc.gov/vaccines/pubs/acip-list.htm. Clinically significant adverse 
events that follow immunization should be reported to the Vaccine Adverse Event 
Reporting System (VAERS) at http://www.vaers.hhs.gov or by telephone,  
800-822-7967.

1.	 Hepatitis B vaccine (HepB). (Minimum age: birth)
At birth:
•	Administer monovalent HepB to all newborns before hospital discharge.
•	 If mother is hepatitis B surface antigen (HBsAg)-positive, administer HepB 
and 0.5 mL of hepatitis B immune globulin (HBIG) within 12 hours of birth.

•	 If mother’s HBsAg status is unknown, administer HepB within 12 hours of 
birth. Determine mother’s HBsAg status as soon as possible and, if HBsAg-
positive, administer HBIG (no later than age 1 week).

After the birth dose:
•	The HepB series should be completed with either monovalent HepB or a com-
bination vaccine containing HepB. The second dose should be administered 
at age 1 or 2 months. Monovalent HepB vaccine should be used for doses 
administered before age 6 weeks. The final dose should be administered no 
earlier than age 24 weeks.

•	 Infants born to HBsAg-positive mothers should be tested for HBsAg and 
antibody to HBsAg 1 to 2 months after completion of at least 3 doses of the 
HepB series, at age 9 through 18 months (generally at the next well-child 
visit).

•	Administration of 4 doses of HepB to infants is permissible when a combina-
tion vaccine containing HepB is administered after the birth dose. The fourth 
dose should be administered no earlier than age 24 weeks.

2.	 Rotavirus vaccine (RV). (Minimum age: 6 weeks)
•	Administer the first dose at age 6 through 14 weeks (maximum age: 14 
weeks 6 days). Vaccination should not be initiated for infants aged 15 weeks 
0 days or older.

•	The maximum age for the final dose in the series is 8 months 0 days
•	 If Rotarix is administered at ages 2 and 4 months, a dose at 6 months is not 

indicated.
3.	 Diphtheria and tetanus toxoids and acellular pertussis vaccine (DTaP).

(Minimum age: 6 weeks)
•	The fourth dose may be administered as early as age 12 months, provided 

at least 6 months have elapsed since the third dose.
•	Administer the final dose in the series at age 4 through 6 years. 

4.	 Haemophilus influenzae type b conjugate vaccine (Hib).
(Minimum age: 6 weeks)
•	 If PRP-OMP (PedvaxHIB or Comvax [HepB-Hib]) is administered at ages 2 

and 4 months, a dose at age 6 months is not indicated.
•	TriHiBit (DTaP/Hib) and Hiberix (PRP-T) should not be used for doses at ages 

2, 4, or 6 months for the primary series but can be used as the final dose in 
children aged 12 months through 4 years. 

5.	 Pneumococcal vaccine. (Minimum age: 6 weeks for pneumococcal conjugate 
vaccine [PCV]; 2 years for pneumococcal polysaccharide vaccine [PPSV])
•	PCV is recommended for all children aged younger than 5 years. Administer 

1 dose of PCV to all healthy children aged 24 through 59 months who are 
not completely vaccinated for their age.

•	Administer PPSV 2 or more months after last dose of PCV to children aged 2 
years or older with certain underlying medical conditions, including a cochlear 
implant. See MMWR 1997;46(No. RR-8).

6.	 Inactivated poliovirus vaccine (IPV) (Minimum age: 6 weeks)
•	The final dose in the series should be administered on or after the fourth 

birthday and at least 6 months following the previous dose.
•	 If 4 doses are administered prior to age 4 years a fifth dose should be admin-

istered at age 4 through 6 years. See MMWR 2009;58(30):829–30.
7.	 Influenza vaccine (seasonal). (Minimum age: 6 months for trivalent inacti-

vated influenza vaccine [TIV]; 2 years for live, attenuated influenza vaccine 
[LAIV])
•	Administer annually to children aged 6 months through 18 years.
•	For healthy children aged 2 through 6 years (i.e., those who do not have under-

lying medical conditions that predispose them to influenza complications), 
either LAIV or TIV may be used, except LAIV should not be given to children 
aged 2 through 4 years who have had wheezing in the past 12 months.

•	Children receiving TIV should receive 0.25 mL if aged 6 through 35 months 
or 0.5 mL if aged 3 years or older.

•	Administer 2 doses (separated by at least 4 weeks) to children aged younger 
than 9 years who are receiving influenza vaccine for the first time or who were 
vaccinated for the first time during the previous influenza season but only 
received 1 dose.

•	For recommendations for use of influenza A (H1N1) 2009 monovalent vaccine 
see MMWR 2009;58(No. RR-10).

8.	 Measles, mumps, and rubella vaccine (MMR). (Minimum age: 12 months)
•	Administer the second dose routinely at age 4 through 6 years. However, the 
second dose may be administered before age 4, provided at least 28 days 
have elapsed since the first dose.

9.	 Varicella vaccine. (Minimum age: 12 months) 
•	Administer the second dose routinely at age 4 through 6 years. However, the 
second dose may be administered before age 4, provided at least 3 months 
have elapsed since the first dose.

•	For children aged 12 months through 12 years the minimum interval between 
doses is 3 months. However, if the second dose was administered at least 
28 days after the first dose, it can be accepted as valid.

10.	Hepatitis A vaccine (HepA). (Minimum age: 12 months)
•	Administer to all children aged 1 year (i.e., aged 12 through 23 months). 

Administer 2 doses at least 6 months apart.
•	Children not fully vaccinated by age 2 years can be vaccinated at subsequent 

visits
•	HepA also is recommended for older children who live in areas where vac-
cination programs target older children, who are at increased risk for infection, 
or for whom immunity against hepatitis A is desired.

11.	Meningococcal vaccine. (Minimum age: 2 years for meningococcal conjugate 
vaccine [MCV4] and for meningococcal polysaccharide vaccine [MPSV4])
•	Administer MCV4 to children aged 2 through 10 years with persistent comple-

ment component deficiency, anatomic or functional asplenia, and certain other 
conditions placing tham at high risk.

•	Administer MCV4 to children previously vaccinated with MCV4 or MPSV4 
after 3 years if first dose administered at age 2 through 6 years. See MMWR 
2009;​58:1042–3.

Range of  
recommended 
ages for certain 
high-risk groups

Range of 
recommended 
ages for all 
children except 
certain high-risk 
groups

Vaccine ▼ Age ► Birth
1

month
2

months
4

months
6

months
12

months
15

months
18

months
19–23

months
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years
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years

Hepatitis B1 HepB
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Diphtheria, Tetanus, Pertussis3 DTaP DTaP DTaP see  
footnote3
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Inactivated Poliovirus6 IPV IPV
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Vaccine Formulary Pricing and Purchasing Problem (AMVF3P) mixed integer non-linear program

(MINLP) model, which minimizes the weighted sum of the cost to fully immunize a birth cohort

according to a given childhood immunization schedule. The model determines optimal vaccine

prices and purchase quantities while ensuring that each vaccine manufacturer earns at least a

particular amount of profit, with vaccine production quotas, capacities, and price caps respected.

The AMVF3P MINLP model can be used to design a pricing and purchasing policy for the CDC

that establishes a sustainable and stable capital investment environment in which the reliable

provision of the pediatric vaccines (so essential to public health) can occur.

The chapter is organized as follows. Section 5.1 presents the MINLP model formulation for

the optimization problem AMVF3P that determines the set of pediatric vaccine formularies and

attendant component vaccine prices and quantities that should be used to satisfy a given childhood

immunization schedule for an entire birth cohort. The model minimizes overall system cost while

ensuring a sustainable market environment for vaccine manufacturers. Section 5.2 presents the

computational complexity of AMVF3P. Section 5.3 reports the computational results of applying

the AMVF3P MINLP model to the analysis of CDC pricing and purchasing policies; optimal

pediatric vaccine prices and purchase quantities for the current United States pediatric vaccine

market are reported. Section 5.4 provides concluding comments and directions for future research.
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5.1 Model Formulation

This section presents the MINLP model formulation for AMVF3P, which is used to determine a set

of vaccine formularies, the quantity of each vaccine formulary to be purchased, and the prices of the

vaccines within the vaccine formularies for a given market environment. The prices and quantities

of the vaccines must be chosen so as to minimize the weighted sum of the cost to fully immunize a

given birth cohort, while ensuring the vaccine manufacturers each earn at least a specified amount

of profit. Moreover, minimum production quotas, maximum capacity limitations, and price caps

for each of the vaccines must be respected. Several sets and parameter definitions are required to

precisely describe the pediatric vaccine market. Let

T = {1, 2, . . . , τ}: set of time periods for a given childhood immunization schedule.

D = {1, 2, . . . , δ}: set of diseases requiring immunization.

V = {1, 2, . . . , υ}: the set of vaccines available to immunize against the diseases in D.

M = {1, 2, . . . , µ}: set of pharmaceutical companies manufacturing the vaccines in V .

F = {1, 2, . . . , φ}: set of vaccine formularies.

nd ∈ Z+: number of vaccine doses that must be administered for immunization against disease

d ∈ D in a single schedule.

rv ∈ Z+: minimum total number of doses of vaccine v ∈ V that must be purchased.

kv ∈ Z+: maximum total number of doses of vaccine v ∈ V that can be produced.

Lv ∈ <+: maximum price (weight) allowable for vaccine v ∈ V .

Cv ∈ <+: cost incurred to produce vaccine v ∈ V .

C̃v ∈ <+: ancillary cost to immunize patient using vaccine v ∈ V (i.e., nurse preparation cost

and cost of injection).

Pm ∈ <+: total profit each manufacturer m ∈M must earn (as negotiated by CDC and industry

representatives).

N ∈ <+: number of children that must complete a schedule (i.e., size of the birth cohort).

Ivd = 1 if vaccine v ∈ V immunizes against disease d ∈ D, 0 otherwise (i.e., a set of binary

parameters that indicate which vaccines immunize against which diseases).

Sdjt = 1 if in time period t ∈ T , a vaccine may be administered to satisfy the jth dose requirement

for disease d ∈ D, j = 1, 2, . . . , nd, 0 otherwise (i.e., a set of binary parameters that indicate the set

of time periods during which a particular vaccine dose could be administered to immunize against

a disease).
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Gvm = 1 if vaccine v ∈ V is produced by manufacturer m ∈M , 0 otherwise (i.e., a set of binary

parameters that indicate which manufacturer produces which vaccines).

These sets and parameters provide a robust framework for describing an arbitrary pediatric

vaccine market. Note that the problem formulation is due in part from Hall et al. [27] in analyzing

pediatric vaccine formulary selection problems; their extensive analysis of childhood immunization

schedules is applicable to AMVF3P due to the supposition that health care policy makers attempt

to fully immunize children according to a particular childhood immunization schedule. Using the

terminology introduced by Hall et al. [27], satisfaction of the 2010 RCIS can be identified as a

GVFSP-MED problem instance, in which every disease has mutually exclusive doses with respect

to periodicity.

The following decision variables capture the pricing and purchasing policy decisions in AMVF3P.

Let

Wv ∈ <+: negotiated price (weight) of vaccine v ∈ V .

Yf ∈ <+: number of children immunized using vaccine formulary f ∈ F .

Xftv = 1 if vaccine v ∈ V , in formulary f ∈ F , is administered in time period t ∈ T , 0 otherwise.

AMVF3P is formulated as a MINLP, a mathematical program with continuous and discrete

decision variables and a nonlinear objective function and (or) constraints. The MINLP lends

itself well to the formulation of problems where the system structure and parameters must be

simultaneously optimized. In AMVF3P, the system structure is the set of vaccine formularies; the

parameters are the number of children vaccinated using a particular formulary and the prices of

the vaccines in the formularies. MINLPs have been applied to a wide variety of different fields,

including finance, engineering, management science, and operations research [57]. Specific problems

addressed include portfolio selection, chemical engineering batch processing, design of transmission

networks, and automobile manufacturing processes [57]. The MINLP formulation described in

this chapter addresses optimal policy decision-making within the field of health care management

science. The formal presentation of the AMVF3P MINLP model follows:
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AMVF3P

Minimize
∑

f∈F

∑
t∈T

∑
v∈V Yf

(
Wv + C̃v

)
Xftv (O)

subject to
∑

t∈T

∑
v∈V SdjtXftvIvd ≥ 1 for all f ∈ F , d ∈ D, (1)

j = 1, 2, . . . , nd,

Xftv ∈ {0, 1} for all f ∈ F , t ∈ T , v ∈ V , (2)∑
f∈F

∑
t∈T

∑
v∈V Yf (Wv − Cv)GvmXftv ≥ Pm for all m ∈M , (3)∑

f∈F Yf = N (4)

rv ≤
∑

f∈F

∑
t∈T YfXftv ≤ kv for all v ∈ V , (5)

Cv ≤Wv ≤ Lv for all v ∈ V . (6)

The objective function (O) minimizes the weighted sum of the cost to immunize a birth cohort

of N children subject to the six sets of constraints. Constraint (1) ensures that for each vaccine

formulary f ∈ F , at least one vaccine that immunizes against disease d ∈ D is administered in

some time period when dose j = 1, 2, . . . , nd can be administered. Constraint (2) enforces the

binary nature of the decision to use or not use a vaccine v ∈ V in period t ∈ T in formulary

f ∈ F . Constraint (3) ensures that each vaccine manufacturer m ∈ M makes a profit at least

as much as its target profit level, Pm. Constraint (4) ensures that all children satisfy the given

childhood immunization schedule. Constraint (5) ensures that each vaccine v ∈ V meets the

required minimum purchase and maximum production levels. Constraint (6) ensures that the price

of each vaccine v ∈ V does not fall below its unit cost nor exceed its price cap.

5.2 Computational Complexity

This section presents the computational complexity of AMVF3P. In the worst case, the problem is

shown to be intractable.

Theorem 4. AMVF3P is NP-hard.

Proof. Let U , B = {B1, B2, . . . , Bn}, and (wj)j∈B denote an arbitrary instance of the weighted

set covering optimization problem (WSC): Given U , a set of elements, and B, a set of weighted

subsets of U , find a collection Z of subsets from B such that Z covers all elements in U at an overall

minimum cost. Define the corresponding particular instance of AMVF3P as follows: Set D = U ,

V = B, (Cv)v∈V = (wj)j∈B, N = 1, T = {1}, M = {1}, F = {1}, nd = 1 for all d ∈ D, Sdjt = 1,

d ∈ D, j = 1 and t = 1 for all d ∈ D, Lv = Cv for all v ∈ V , C̃v = 0 for all v ∈ V , Gvm = 1,
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v ∈ V , m = 1, Pm = 0, and rv = 0, kv = 1 for all v ∈ V . Suppose that there exists a polynomial

time algorithm to determine Xftv for AMVF3P. Then, by design, the arbitrary instance of WSC

can be solved in polynomial time. In particular, given the polynomial time Turing reduction from

WSC to AMVF3P, (Zj)j∈B = (Xftv)v∈V solves the arbitrary instance of WSC defined by U , B,

and (wj)j∈B. Therefore, since WSC is NP -hard (see Garey and Johnson [24]), then AMVF3P is

NP -hard. �

Although AMVF3P is NP -hard, software exists that provides solutions for small instances of

the problem. The AMVF3P instances that represent the current United States pediatric vaccine

market are sufficiently small that exact results can be obtained in a reasonable amount of time.

5.3 Results and Analysis

This section reports computational results demonstrating the practical value of the AMVF3P

MINLP model. Two different CDC vaccine procurement policies in the public sector of the United

States pediatric vaccine market are analyzed. In Scenario 1, no constraint is placed on the mini-

mum number of doses that must be purchased nor on the maximum number of doses that can be

produced. The maximum number of formularies allowed in this policy scenario is two. In Scenario

2, it is assumed policymakers wish to purchase at least 500, 000 doses of each vaccine. The maxi-

mum number of formularies allowed in this policy scenario is four. Comparisons between the two

policies provide insight into the tradeoffs between minimizing costs and increasing the robustness

of vaccine supply. The section begins with a brief description of the market. Sections 5.3.1 and

5.3.2 present the results for Scenarios 1 and 2, respectively. Section 5.3.3 presents a discussion of

the general results.

Vaccine research and development requires proficient management of a host of processes, most

requiring highly skilled scientists and engineers in order to successfully produce the products [18].

The manufacturing process is expensive and time consuming, requiring vigilant maintenance of

stringent FDA regulatory specifications. The estimated total unit production cost of a fully bur-

dened liquid product vaccine (including the costs of filling, vialing, and packaging) is between $0.70

and $1.30 [18]. In addition to production costs, there is a federal excise tax associated with each

vaccine dose; $0.75 for each antigen the vaccine contains [13]. Vaccines are slightly differentiated in

that they may be packaged in either vials or syringes. This difference in packaging affects costs with
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respect to nurse preparation time. Vaccine preparations costs for vials and syringes are assumed

to be $0.75 and $0.25 per dose, respectively (see [30] or [61] for detailed descriptions).

Table 5.1: Rule for vaccine unit production cost determination

No. Antigens Unit Cost
1 $0.70
2 $1.00
3 $1.30
4 $1.60
5 $1.90

Further explanation regarding the vaccine unit production costs used in this chapter is war-

ranted. Douglas et al. [18] report that the fully burdened unit production cost for bulk vaccines

manufactured in the United States is approximately $0.70 to $1.30. This range represents the

authors’ viewpoint due to their collective industry experience (as of 2005). However, it is unclear if

they accounted for the production of the more complex combination vaccines which have recently

come into the market. Therefore, for the results presented in this chapter, the base unit production

cost for each vaccine is calculated according to the rule shown in Table 5.1, based in part upon

the information provided by Douglas et al. [18], where the unit production cost of the vaccine is a

function of the number of antigens it contains.

The vaccines of interest in this chapter are those that were licensed in the United States and

under federal contract (ending 31 March 2011) for purchase by public-sector immunization programs

[13, 6]. Note that monopoly vaccine manufacturers and their products are not included in the

analysis. The single product available would be trivially selected and its price calculated so as

to meet the required manufacturer profit level; no meaningful analysis is accomplished. Merck’s

measles, mumps, and rubella (MMR) combination vaccine and Wyeth’s Pneumococcal 13-valent

(PCV) vaccine are examples of monopoly products excluded from this analysis.

The AMVF3P MINLP model enforces the structure and rules of pediatric immunization (pe-

riodicity and dosage constraints) as recommended by the ACIP [9, 13]. The six time periods of

interest in this study include: (1) birth-month, (2) month 2, (3) month 4, (4) month 6, (5) month

12-18, and (6) year 4-6 periods. The analysis presented in this chapter focuses on four competitive

immunogenic antigens, administered to induce acquired immunity in a patient against the following

diseases: diphtheria, tetanus, and pertussis (DTaP), Haemophilus influenzae type b (Hib), hepati-

tis B (HepB), and polio (IPV). These antigens are said to be competitive because more than one

pharmaceutical company manufactures a vaccine containing the antigen. A vaccine can only be

administered for diseases and in time periods for which it has been licensed by the FDA [21]. It is
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assumed that a monovalent HepB vaccine birth dose is administered to all newborns in the birth

cohort prior to discharge from the hospital.

Table 5.2: Vaccine information

(1) (2) (3) (4) (5) (6) (7) (8)
Manufacturer Vaccine Available Prod. Federal Total Prep. Max

Periods Cost Ex. Tax Cost Cost Price

GlaxoSmithKline DTaP InfanrixR© 2, 3, 4, 5, 6 $1.30 $2.25 $3.55 $0.25 $14.25

Hib HiberixR© 5 $0.70 $0.75 $1.45 $0.75 $8.66

HepB ENGERIX BR© 1, 2, 4 $0.70 $0.75 $1.45 $0.25 $10.25

DTaP-IPV KinrixR© 6 $1.60 $3.00 $4.60 $0.25 $48.00

DTaP-HepB-IPV PediarixR© 2, 3, 4 $1.90 $3.75 $5.65 $0.25 $70.72

Merck Hib PedvaxHIBR© 2, 3, 4, 5 $0.70 $0.75 $1.45 $0.75 $22.77

HepB RECOMBIVAX HBR© 1, 2, 4 $0.70 $0.75 $1.45 $0.75 $10.25

Hib-HepB COMVAXR© 2, 3, 4 $1.00 $1.50 $2.50 $0.75 $43.56

Sanofi Pasteur DTaP TripediaR© 2, 3, 4, 5, 6 $1.30 $2.25 $3.55 $0.75 $14.25

Hib ActHIBR© 2, 3, 4, 5 $0.70 $0.75 $1.45 $0.75 $8.83

IPV IPOLR© 2, 3, 4, 6 $0.70 $0.75 $1.45 $0.25 $11.74

DTaP-Hib TriHIBitR© 5 $1.60 $3.00 $4.60 $0.75 $46.346

DTaP-IP-HI PentacelR© 2, 3, 4 $1.90 $3.75 $5.65 $0.75 $75.33

Table 5.2 provides a summary of the information describing the public sector of the United States

pediatric vaccine market. This information is used when constructing AMVF3P instances for the

policy scenarios of interest. Column 1 indicates the vaccine manufacturers (from [6, 21]), column

2 indicates the pediatric vaccines, (from [6, 21]), column 3 indicates the time periods in the RCIS

for which the vaccines are licensed by the FDA to immunize children (from [13, 21]), and columns

4-8 indicate unit costs per dose. Column 4 indicates the base unit production cost (based on [18]),

column 5 indicates the federal excise tax associated with each vaccine (from [6]), column 6 indicates

the total unit cost for manufacturing the vaccine, column 7 indicates the product differentiation

cost vector (see [30] or [61]), and column 8 indicates the maximum allowable price of a vaccine

(assumed to be the current public sector price for monovalents and the current private sector price

for polyvalents (from [6]). There is an assumed cost of $10.00 associated with each injection that

the consumer considers when making a purchasing decision. The cost of an injection reflects the

value the purchaser places on reducing the number injections required to satisfy the RCIS. This

reduction in the number of injections is accomplished through the use of combination vaccines,

which immunize against multiple diseases in a single injection. See Glazner et al. [25] for a detailed

discussion regarding the costs to health care providers for delivering childhood vaccinations.

According to a recent National Vital Statistics Report [37], 4.3 million births were registered in

the United States in 2006. These children represent the maximum potential set of consumers of the

vaccines. However, pediatric vaccines purchased at the public sector price, as negotiated by federal

government officials at the CDC, account for only approximately 57% of total pediatric vaccine

purchases by volume [28, 46], reducing the size of the birth cohort for which the CDC should plan.
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Moreover, accurate vaccine coverage rates for children (aged 0-6 years) completing the full RCIS

using pediatric vaccines purchased at the public sector price are not available (but are certainly

less than 100%). For the most pertinent information, see the most recent National Immunization

Survey (NIS) for estimated vaccine coverage rates for children aged 19-35 months [11]. It is difficult

to specify the exact number of children for which CDC officials should plan; CDC officials would

determine such a number based on budgetary and other considerations. For the analysis presented

in this chapter it is assumed that for planning purposes at the CDC, the size of the birth cohort is

2.3 million children; moreover, it is assumed these children satisfy the RCIS using pediatric vaccine

formularies recommended by the CDC and the vaccines are purchased at contract prices negotiated

by the CDC.

To proceed with the development of a realistic policy, it remains to specify appropriate profit

levels for the three vaccine manufacturers of interest. It is beyond the scope of this chapter to

advise a legitimate target profit value for each manufacturer; such a determination should occur

directly (and indirectly) in discussions between CDC officials and industry representatives when

establishing federal contract prices for the vaccines. Therefore, although total industry profit and a

rule for the apportionment of that profit are provided here, real-world values will be negotiated as

described above, with health care policy-makers assessing and scrutinizing the target profit levels

used. One should note the difficult and sensitive nature of having government officials specify

profits for individual pharmaceutical companies. The delicate matter of specifying profit levels

could be viewed as an allocation of industry profit, with actual dollar amounts resulting from an

open collaboration of public health care policy experts from government, the medical community,

and the vaccine industry. This issue brings to light the delicate balance between allowing markets

to determine vaccine prices and capacity, and the need to provide vaccines to enhance public health.

Clearly, no easy answers exist for resolving such a complex problem.

An approximate value for the total industry profit earned (as a result of vaccine sales for those

containing the four competitive antigens under consideration) can be computed from the results

provided by Robbins et al. [51]. Given the current RCIS and current pediatric vaccine prices, there

is an estimated total industry profit of approximately $400 million annually. Note that this value

does not take into account research and development costs borne by the industry.

A rule for the apportionment of the total industry profit enables specification of the profit levels

each manufacturer should earn. The rule is based upon a manufacturer’s participation in the
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Table 5.3: Total production cost to complete 2010 RCIS by monovalent vaccine

Vaccine Doses Cost / Dose Subtotal
HepB 3 $1.45 $4.35
DTaP 5 $3.55 $17.75
Hib 4 $1.45 $5.80
IPV 4 $1.45 $5.80

Table 5.4: Rule for apportionment of total industry profit

Vaccine Manufacturer
Vaccine GlaxoSmithKline Merck Sanofi Pasteur
HepB $4.35 $4.35
DTaP $17.75 $17.75
Hib $5.80 $5.80 $5.80
IPV $5.80 $5.80

Subtotal $33.70 $10.15 $ 29.35
Share 46.0% 13.9% 40.1%

market (i.e., which diseases the manufacturer’s vaccines provide immunization against), weighted

by the production cost of the attendant monovalent vaccine (see Tables 5.3 and 5.4). Together with

an assumed $400 million base level of total industry profit, the rule results in the following target

profit levels: GlaxoSmithKline, $184 million; Merck, $56 million; Sanofi Pasteur, $160 million.

Many experts provide arguments contending that the current economic return for investing in

vaccine development is too low, relative to the benefit immunization programs provide society

[18, 28, 38, 45, 46, 50]. It is assumed then, that the CDC may wish to increase industry profit

levels in order to provide a financial incentive that improves the long term investment environment

for the provision of vaccines. In the results presented in this chapter, two CDC vaccine procurement

policy scenarios are evaluated. A sensitivity analysis is performed for each policy scenario where the

effect of various industry profit levels on the vaccine system’s cost is measured. Cases investigated

include increases of 25%, 50%, and 75% over the estimated current industry profit. Table 5.5

reports the different vaccine manufacturer target profit levels examined. Computational results are

obtained using TOMLAB R©’s suite of MINLP solvers.

Table 5.5: Vaccine manufacturer target profit levels

Case GlaxoSmithKline Merck Sanofi Pasteur
base $184M $56M $160M

+25% $230M $70M $200M
+50% $276M $84M $240M
+75% $322M $98M $280M

5.3.1 Scenario 1 - No Minimum Vaccine Purchase Volumes

Table 5.6 reports the formularies selected by the solver for Scenario 1. Formulary 1 is best described

as the Pediarix R© dominant formulary since three Pediarix R© doses deliver nine of the 16 antigens
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required to satisfy the RCIS. Formulary 2 is best described as the Pentacel R© dominant formulary

since three Pentacel R© doses deliver nine of the 16 antigens required to satisfy the RCIS. Both

Formulary 1 and Formulary 2 satisfy the RCIS in only eight vaccine doses. The solver has selected

the two formularies with the most advantageous structure with respect to the number of injections.

Recall that the cost of injection is assumed to be $10.00. This relatively higher value makes

combination vaccines like Pediarix R© and Pentacel R© valuable and cost effective alternatives.

Table 5.6: Vaccine formulary selection (Scenario 1)

Period Formulary 1 Formulary 2

1 RECOMBIVAX HBR© RECOMBIVAX HBR©

2 PediarixR© RECOMBIVAX HBR©

PedvaxHIBR© PentacelR©

3 PediarixR© PentacelR©

PedvaxHIBR©

4 PediarixR© RECOMBIVAX HBR©

PentacelR©

5 TriHIBitR© TriHIBitR©

6 KinrixR© KinrixR©

Table 5.7 reports the vaccine system cost and the formulary purchase quantities for Scenario 1.

The results indicate that for the base case a birth cohort of 2.3 million children can be immunized

according to the 2010 RCIS at an overall vaccine system cost of $662.8 million (note that this cost

only considers the four competitive antigens of interest in this chapter). Nearly two million children

satisfy the RCIS using Formulary 1. The remaining 300, 000 satisfy the RCIS using Formulary 2.

The sensitivity analysis indicates that increasing industry profit by 25% increases vaccine system

cost by approximately 15%. The formulary purchase quantities (and vaccine prices) change with

each case in order to meet the higher profits required.

Table 5.7: Vaccine system cost and formulary purchase quantities (Scenario 1)

Mfg. Profit Sys. Cost Formulary 1 Formulary 2
base $662.8M 1,993,900 306,100

+25% $763.3M 1,474,300 825,700
+50% $863.6M 1,150,000 1,150,000
+75% $962.9M 1,429,900 880,100

Table 5.8 reports the vaccine prices and purchase quantities for Scenario 1. The results indicate

a wide range of possible vaccine prices and quantities are available to meet policy maker criteria.

In the base case, nearly six million doses of Pediarix R© are purchased while less than one million

doses of Pentacel R© are purchased. However, Pentacel R© is priced at its private sector price of

$75.33 while Pediarix R© is priced at $31.854. Note that the nonconvex bilinear nature of the price-

quantity relationship enables policy makers to specify more tightly defined ranges of vaccine prices

and still achieve a minimum cost solution that satisfies the manufacturer profit constraints. It is also
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important to note that of the 13 vaccines considered, seven are not purchased. This characteristic

may be of concern to policy makers since it may be deemed too risky to stake the success of the

entire public immunization program on the successful manufacture, distribution, and delivery of

six vaccines; when dependent on so few vaccines, production problems create immediate, acute

shortages and may substantially impact immunization coverage levels. Scenario 2 addresses this

concern by requiring a minimum purchase level of 500, 000 for all 13 vaccines.

Table 5.8: Vaccine prices and purchase quantities (Scenario 1)

base +25% +50% +75%
Vaccine Price ($) Doses (M) Price ($) Doses (M) Price ($) Doses (M) Price ($) Doses (M)

InfanrixR© - 0.000 - 0.000 - 0.000 - 0.000

HiberixR© - 0.000 - 0.000 - 0.000 - 0.000

ENGERIX BR© - 0.000 - 0.000 - 0.000 - 0.000

KinrixR© 16.449 2.300 15.937 2.300 41.540 2.300 39.666 2.300

PediarixR© 31.854 5.982 51.758 4.423 61.023 3.450 62.310 4.260

PedvaxHIBR© 11.511 3.988 19.653 2.949 22.145 2.300 22.770 2.840

RECOMBIVAX HBR© 6.560 2.912 5.266 3.951 9.037 4.600 10.244 4.060

COMVAXR© - 0.000 - 0.000 - 0.000 - 0.000

TripediaR© - 0.000 - 0.000 - 0.000 - 0.000

ActHIBR© - 0.000 - 0.000 - 0.000 - 0.000

IPOLR© - 0.000 - 0.000 - 0.000 - 0.000

TriHIBitR© 46.346 2.300 46.315 2.300 33.450 2.300 46.346 2.300

PentacelR© 75.330 0.918 47.656 2.477 55.982 3.450 75.330 2.640

5.3.2 Scenario 2 - Minimum Vaccine Purchase Volumes

Table 5.9 reports the formularies selected by the solver for Scenario 2. Formularies 1 and 2 are

exactly the same as in Scenario 1. Formulary 3 is best described as the COMVAX R© dominant

formulary since COMVAX R© is administered and together with the use of PedvaxHIB R©, the Merck

Hib advantage is achieved. The Merck Hib advantage provides Hib coverage for the 2-,4-, and 6-

month series in only two doses instead of the three doses needed if other manufacturers’ Hib vaccines

are used, thereby saving a shot. Formulary 4 is best described as a monovalent formulary (one

of many such formularies that could be selected), since every vaccine administered is considered a

monovalent vaccine. Formularies 3 and 4 do not have the same inherent structural advantage as

Formularies 1 and 2 since they require 13 and 16 vaccine doses, respectively, to satisfy the RCIS.

Formularies 3 and 4 are selected in order to satisfy the minimum dosage requirement.

Table 5.10 reports the vaccine system cost and the formulary purchase quantities for Scenario 2.

The results indicate that for the base case a birth cohort of 2.3 million children can be immunized

according to the 2010 RCIS at an overall vaccine system cost of $703.1 million. The sensitivity

analysis indicates that increasing industry profit by 25% increases vaccine system cost by approxi-

mately 14%. Regarding the formulary purchase quantities, it is seen that Formularies 1 and 2 are
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Table 5.9: Vaccine formulary selection (Scenario 2)

Period Formulary 1 Formulary 2 Formulary 3 Formulary 4

1 RECOMBIVAX HBR© RECOMBIVAX HBR© ENGERIX BR© RECOMBIVAX HBR©

2 PediarixR© RECOMBIVAX HBR© InfanrixR© RECOMBIVAX HBR©

PedvaxHIBR© PentacelR© COMVAXR© TripediaR©

IPOLR© ActHIBR©

IPOLR©

3 PediarixR© PentacelR© InfanrixR© TripediaR©

PedvaxHIBR© PedvaxHIBR© ActHIBR©

IPOLR© IPOLR©

4 PediarixR© RECOMBIVAX HBR© InfanrixR© RECOMBIVAX HBR©

PentacelR© ENGERIX BR© TripediaR©

IPOLR© ActHIBR©

ActHIBR©

5 TriHIBitR© TriHIBitR© InfanrixR© HiberixR©

HiberixR© TripediaR©

6 KinrixR© KinrixR© KinrixR© TripediaR©

IPOLR©

purchased to minimize cost and meet manufacturer profit requirements. Formularies 3 and 4 are

purchased only to satisfy vaccine minimum purchase quantities as they are more expensive. An im-

portant implication of the results presented here is that minimum vaccine purchase quantities (and

the attendant risk mitigation) is achieved at a relatively small system cost of $40 million ($703.1M

vs. $662.8M), an increase of approximately 6%. Using a limited number of inferior formularies to

achieve a measure of risk mitigation with respect to the impact of vaccine production interruptions

may be cheaper than one would expect.

Table 5.10: Vaccine system cost and formulary purchase quantities (Scenario 2)

Mfg. Profit Sys. Cost Formulary 1 Formulary 2 Formulary 3 Formulary 4
base $703.1M 1,362,700 270,600 500,000 167,700

+25% $803.1M 1,171,400 461,900 500,000 167,700
+50% $903.2M 980,000 653,300 500,000 167,700
+75% $1002.8M 1,088,300 545,000 500,000 167,700

Table 5.11 reports the vaccine prices and purchase quantities for Scenario 2. The results indicate

a much more diversified allocation of vaccine purchases when compared to Scenario 1 (see Table

5.8). For example, in the case of 75% increased manufacturer profit, the highest purchasing volume

is 3.265 million doses of Pediarix R© while the lowest volume is 500,000 doses of COMVAX R© and

ActHIB R©. Regarding vaccine prices, it is important to know that federal law (i.e., the Omnibus

Budget Reconciliation Act of 1993) places price caps on many of the monovalents. This price

setting restriction keeps the profit margins on these vaccines very low. Consequently, the prices

of unrestricted combination vaccines must be greatly increased in order to attain the required

manufacturer profit levels. Note that the price caps of TriHIBit R© and Pentacel R© were relaxed in

the +75% case in order to attain a feasible solution.
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Table 5.11: Vaccine prices and purchase quantities (Scenario 2)

base +25% +50% +75%
Vaccine Price ($) Doses (M) Price ($) Doses (M) Price ($) Doses (M) Price ($) Doses (M)

InfanrixR© 13.795 2.000 3.550 2.000 5.943 2.000 7.652 2.000

HiberixR© 8.190 0.667 1.450 0.667 4.340 0.667 1.450 0.667

ENGERIX BR© 5.060 1.000 1.450 1.000 10.250 1.000 10.244 1.000

KinrixR© 8.607 2.133 22.464 2.133 48.000 2.133 47.995 2.133

PediarixR© 41.572 4.089 60.254 3.514 62.757 2.940 70.711 3.265

PedvaxHIBR© 9.067 3.226 22.770 2.843 22.770 2.460 22.766 2.677

RECOMBIVAX HBR© 5.613 2.674 1.450 3.057 4.218 3.440 7.240 3.223

COMVAXR© 41.095 0.500 18.783 0.500 43.560 0.500 43.560 0.500

TripediaR© 14.250 0.833 14.250 0.833 14.250 0.833 14.250 0.833

ActHIBR© 8.830 0.500 8.830 0.500 8.830 0.500 8.830 0.500

IPOLR© 11.740 2.167 11.740 2.167 11.740 2.167 11.740 2.167

TriHIBitR© 46.346 1.633 46.346 1.633 46.346 1.633 60.000 1.633

PentacelR© 75.330 0.812 75.330 1.386 75.330 1.960 99.999 1.635

5.3.3 Discussion

AMVF3P provides a robust mathematical framework for analyzing and assessing a wide variety of

pediatric vaccine pricing and procurement policies. The results presented in this chapter represent

a sample of the different policies that can be evaluated in order to gain important insights. Indeed,

one fundamental insight reported in this chapter is the relative inexpensiveness of establishing min-

imum purchasing volume requirements to reduce the risk of vaccine supply interruption negatively

impacting immunization coverage levels. It is important to stress that it is the structure of the

presented problem that is valuable; users of the tool specify the problem parameters. AMVF3P

can be used to design finely tailored policies to meet specific public health policy goals and assist

decision makers in crafting policies (in negotiations between government and industry) that address

concerns regarding the vaccine system’s cost, robustness, and ongoing viability.

5.4 Conclusions

This chapter describes AMVF3P, which seeks pediatric vaccine prices and purchase quantities that

ensure a given birth cohort is fully immunized according to a particular childhood immunization

schedule at an overall minimum cost while also ensuring vaccine manufacturers each attain an

appropriate level of profit. Although AMVF3P was shown to be NP -hard, real-world problem

instances are sufficiently small and are solvable in a reasonable amount of time using commercial

software. The practical value of the proposed MINLP model was demonstrated by analyzing and

assessing different pricing and purchasing policies that the CDC could adopt in attempting to

actively manage the long-term provision of pediatric vaccines.

Public health policies made by the CDC greatly influence the capital investment environment
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within the United States pediatric vaccine market. Current policies regarding vaccine prices and

purchase quantities affect pharmaceutical companies’ expectations concerning future profit for vac-

cines still in the developmental stage. An expectation of excessive price control suppresses capital

investment in the research and development of new vaccines as pharmaceutical companies see that

alternative investment vehicles would provide a higher return on investment. The necessary revenue

streams for sustaining the pharmaceutical industry’s participation in the vaccine market would be

absent, stifling innovation, and ultimately leading to an unsafe environment for the reliable provi-

sion of vaccines.

The CDC’s vaccine pricing and purchasing policies are critical to the long term success of public

immunization programs. Indeed, the CDC has a delicate task: it must balance the division of the

net benefit (i.e., economic vs. social surplus) received from the sale and use of a vaccine between the

vaccine manufacturer and the purchaser/consumer. The monopsonistic federal government is well

positioned to achieve the appropriate balance between immunization coverage levels (facilitated by

lower prices) and appropriate investment in research and development (facilitated by higher prices).

The AMVF3P MINLP model provides a mathematical framework by which public health policy

practitioners at the CDC can develop and analyze any number of potential policies that seek to

address this balance and best provide for the common good.

Several potentially important economic factors that could impact the overall cost of immunization

are not included in this study. The exclusion of such factors is due primarily to the lack of data or

economic models regarding them. Some factors are important as an issue of differentiation between

manufacturer products. For example, vaccine efficacy, adverse reaction frequency, shelf life, and

thermal storage requirements [31] could all be factors distinguishing two vaccines and may influence

the decision on which product to purchase. In addition to product differentiation, this study does

not address potential cost savings associated with reduced inventory handling resulting from the

reduction in the number of separate vaccines included in the lowest overall cost formulary. Lastly,

brand loyalty, volume discounting, risk of shortages, and formulary inertia are not addressed due

to the difficulty in quantifying economic model parameters describing them.
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CHAPTER 6

CONCLUSIONS

This dissertation applied operations research and game theoretic methods to aid market partici-

pants in making more informed decisions regarding the pricing and purchasing of vaccines in the

public sector of the United States pediatric vaccine market. The pediatric immunization market

was analyzed from three different perspectives.

In Chapter 3 an operations research approach was proposed for analyzing a pharmaceutical

company’s pricing strategy for a single combination vaccine. Unlike prior operations research

papers in the area of pediatric immunization, the proposed approach treated the cost of an injection

as a random variable. The main contribution was to provide a methodology for analyzing pricing

strategies of directly competing, partially overlapping, and mutually exclusive combination vaccines

in the United States pediatric vaccine market, with the goal of maximizing a pharmaceutical

company’s expected revenue. The resulting analysis showed that Pentacel was not competitively

priced when compared to Pediarix, its strongest competitor, for federal contract prices ending

31 March 2010. Accordingly, Sanofi Pasteur should have expected to generate low revenue upon

market entry, while Pediarix remained well priced, with GlaxoSmithKline able to generate a high

level of revenue at the expense of Sanofi Pasteur. The proposed pricing approach suggests an

appropriate price for Pentacel whereby a substantial increase in expected revenue can be realized.

It is interesting to note that for federal contract prices ending 31 March 2011 Pentacel dropped in

price while Pediarix increased in price. These price adjustments are consistent with the analysis

presented - that Pentacel was overpriced relative to Pediarix and an adjustment was needed to

make the two dominant vaccine formularies more economically equitable.

In Chapter 4, a game theoretic approach enabled formulation of a static Bertrand pricing model

that characterizes oligopolistic interaction between firms in a multiple product homogeneous mar-

ket. A pure strategy Nash equilibrium was sought to analyze the depicted market. The repeated

game version of the model enabled repeated interaction between firms, allowing examination of
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tacit collusion in the market of interest. The main contribution was in the treatment of the com-

binatorial and interdependent nature of the novel demand structure in the market of interest. An

iterative improvement algorithm was defined that constructed a pure strategy Nash equilibrium

for the static game. Sufficient conditions for the existence of pure strategy Nash equilibria (some

in the limiting sense) were provided, indicating that this class of games always yields at least one

pure strategy equilibrium. The utility of the models was demonstrated by analyzing the United

States public sector pediatric vaccine market. The relevant Nash equilibrium payoffs indicated that

engaging in Bertrand price competition resulted in a profound loss of profit for all of the pharma-

ceutical firms competing in the pediatric immunization market. Certainly, pharmaceutical firms

are aware that systematic reductions in price negatively impacts future profits, especially consid-

ering the price inelasticity in the market. The equilibrium results of the repeated game provided

conditions under which tacit collusion agreements could be upheld. The current vaccine prices and

their corresponding adjustments in recent years reflect this understanding.

Possible research extensions include the incorporation of fixed charge costs and capacity con-

straints. Also, examining the simultaneous treatment of multiple market segments may provide an

appropriate analytical perspective for certain markets of interest (e.g., considering both the public

and private sector of the pediatric vaccine market). In the context of the repeated game, Γr, it

may be worthwhile to develop a methodology for determining efficient market sharing allocations.

Once the Pareto frontier of efficient allocations (i.e., price points and production levels) are iden-

tified, application of Nash Bargaining theory [42] could select an equitable allocation amongst the

participating firms. Lastly, uncertainty could be introduced into the model to account for the risk

of production interruptions. Often, when determining suppliers, purchasers must consider the risk

of shortage and delay.

In Chapter 5, an operations research approach was presented that defined the Altruistic Monop-

sonist Vaccine Formulary Pricing and Purchasing Problem (AMVF3P) mixed integer non-linear

program (MINLP) model, which minimizes the weighted sum of the cost to fully immunize a birth

cohort according to a given childhood immunization schedule. The model determines optimal vac-

cine prices and purchase quantities while ensuring that each vaccine manufacturer earns at least a

particular amount of profit, with vaccine production quotas, capacities, and price caps respected.

While AMVF3P was shown to be NP -hard, real world problem instances are sufficiently small and

are solvable in a reasonable amount of time using commercial software. The practical value of
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the proposed model was demonstrated by analyzing and assessing different pricing and purchasing

policies that the CDC could adopt in attempting to actively manage the long-term provision of

pediatric vaccines. The AMVF3P MINLP model provides a mathematical framework by which

public health policy practitioners at the CDC can develop and analyze any number of potential

policies that seek to best provide for the common good.

Possible research extensions include the development of heuristics for AMVF3P that do not

guarantee optimality but execute in time polynomial in the size of the inputs. The determination of

approximation bounds and generating empirical results for relevant real-world AMVF3P instances

are also of interest.
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