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ABSTRACT

In this thesis we use control theoretic techniques to provide a new perspective

for analyzing some problems in information theory. In particular, we explore

two related data dissemination problems - channel coding with feedback and

source coding with feedforward - and see that the Lyapunov exponent of a

related dynamical system emerges as a fundamental quantity. For channel

coding with feedback, we show that for a broad class of channels - both with

and without memory - the Lyapunov exponent of the transmission function

is fundamentally linked to the maximum rate which the scheme can attain.

We note that the posterior matching scheme - a provably optimal feedback

communication scheme for memoryless channels - has an encoding function

with a Lyapunov exponent exactly equal to the communication rate. In the

dual problem, source coding with feedforward, the optimal test channel is

memoryless. This motivates the idea of dualizing posterior matching for

this setting. By exploiting the Lyapunov exponent property, we demonstrate

that such a scheme - with low decoder complexity - attains the rate-distortion

function. By approaching these problems from a dynamical systems perspec-

tive, we hope to provide the intuition to motivate the evaluation and design

of new communication schemes.
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CHAPTER 1

INTRODUCTION

With the increasing complexity of control systems, there is growing interest

in relating the areas of control and communication. Towards that end, in this

thesis we use control theoretic techniques to provide a new perspective for

analyzing some previously studied problems in information theory involving

causal side information. In particular we explore two related problems - chan-

nel coding with feedback and source coding with feedforward - in which the

Lyapunov exponent of a related dynamical system emerges as a fundamental

quantity related to the theoretical limits of the problem.

In control systems, feedback provides inherent robustness to system uncer-

tainties, adaption to unknown disturbances, and often a significant reduction

in complexity, energy, or other costs. However, even when feedback is dra-

matically present, the study and use of feedback in information theory has

not been explored in as much depth as other aspects of communication. Al-

though the use of feedback information cannot increase the Shannon capac-

ity in point to point communications over general memoryless channels [1],

it can reduce the complexity of encoding schemes [2, 3, 4]. Considering the

prevalence of recent applications involving many decentralized communica-

tion networks with centralized complexity nodes, there is strong motivation

to reconsider how feedback should be used in communication systems.

Given that the natural mathematical framework to handle feedback is con-

trol theory, we consider the problem of communication over noisy channels

with feedback from the dynamical systems perspective, and make use of

recent sequential approaches to communication. This viewpoint has been

made largely possible by a recent development in the information theory lit-

erature - the posterior matching (PM) scheme [5] - which generalizes other

known feedback communication schemes where the communication problem

was slightly augmented from the standard communication viewpoint [2, 3, 4].

Rather than nR bits, a message point on the interval [0, 1] is considered.
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The notion of “decoding nR bits” now becomes equivalent to determining

the message point within an interval of length 2−nR at the receiver.

Figure 1.1 on top shows an example of the posterior distribution fW |Y n

after n channel uses, and on bottom shows the discritization of this posterior

distribution into the corresponding PMF. The interval [0, 1] is partitioned

into 2nR equal-length segments, and the probability that the message point

lies in each of these segments is computed. A maximum likelihood decoder

selects the interval which has accumulated the most probability at time n.

In order to decode nR bits reliably, the posterior distribution must contract

fast enough so that arbitrarily large amounts of the a posteriori density ac-

cumulate in the same interval of length 2−nR for large enough values of n.

fW |Y n

0 1
2−nR

PM |Y n(m|Y n)

1 2nR

Figure 1.1: Quantization of the posterior distribution at time n into 2nR

mass points.

The implementational details and fundamental limits are completely in line

with traditional communication paradigms, but there are subtle, yet striking

differences. Because the message is a point on the [0, 1] line, there is no

pre-specified block length; the system operates to sequentially give the user
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the information that is “still missing” at the receiver. Moreover, the scheme

is remarkably simple.

The high level idea is that the encoder first extracts the information missing

at the receiver from the posterior distribution by generating a random vari-

able that is statistically independent of past observations, but when coupled

with those observations, deterministically produces the intended message.

This information is then matched to the optimal input distribution of the

channel to achieve capacity.

Additionally, a generic decoder exploits this recursive representation to

provide linear complexity decoding as well. These nice properties for PM

style communication schemes led us to analyze the problem of feedback com-

munication under these settings from the viewpoint of control. In [6] it was

demonstrated that “achievable rates” with the PM scheme can be interpreted

from a stochastic control perspective by defining an appropriate Lyapunov

function. Given that these types of schemes hold great promise to design

dynamical systems based encoder and decoders for next generation com-

munication systems with feedback, we endeavor to understand a necessary

condition for any feedback communication system.

In this thesis we show that for a broad class of channels - including some

with memory - the performance of any communication scheme over that

channel is related to the Lyapunov exponent of the transmission function,

when it exists. More generally, we can upper-bound the set of achievable

rates for a given encoding scheme - with or without feedback - by consider-

ing a generalization of the Lyapunov exponent of the transmission function.

We note that the PM scheme - a provably good feedback communication

scheme for memoryless channels - has an encoding function with a Lyapunov

exponent equal to the mutual information between channel inputs and out-

puts. Moreover, in the case of PM, the Lyapunov exponent is exactly equal

to the communication rate. In some sense, this explains why the PM scheme

is optimal.

The dual of channel coding is source coding [7, 8], and the dual of channel

coding with feedback is source coding with feedforward [9]. Source coding

with feedforward is a special case of source coding with side information,

which was first introduced in [10] for distributed source coding applications.

The scenario for reproducing a source with causal side information was in-

troduced by Weissman and Merhav [11] as a competitive prediction problem.
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Around the same time, Pradhan and others also began studying source cod-

ing with side information, with a particular emphasis on source coding with

feedforward information [9, 12, 13]. This model is useful, for example, in

sensor networks where some sensors may have information about a random

measurement, but they are limited to by power or bandwidth constraints to

send only a compressed version of this information.

For source coding with feedforward, an encoder compresses an i.i.d. source

into a message, and the decoder takes this message, along with causal noise-

less side information about the source, to construct an estimate. Analogous

to channel coding with feedback over memoryless channels, with additive

distortion measures and i.i.d. sources, feedforward does not change the rate-

distortion function. Given that the optimal test channel in source coding

with feedforward is a memoryless channel, this motivates the idea of dualiz-

ing posterior matching for this setting. By exploiting the Lyapunov exponent

property, we demonstrate that such a scheme, with low encoder and decoder

complexity, attains the rate-distortion function. By approaching these prob-

lems from a dynamical systems perspective, we hope to provide the intuition

to motivate the evaluation and design of new communication schemes.

In Chapter 2 we present both problems which are to be considered: chan-

nel coding with feedback and source coding with feedforward. We also define

the Lyapunov exponent and other important concepts which we will need.

In Chapter 3, we focus on channel coding with feedback and develop a nec-

essary condition for an encoding scheme to achieve a given rate. This work

also appears in [14]. Chapter 4 concerns the dual problem of source coding

with feedforward and develops a provably good scheme based on the poste-

rior matching encoder. This work was presented in [15]. In Chapter 5, we

conclude with a discussion.
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CHAPTER 2

NOTATIONS AND PRELIMINARIES

Channel coding with feedback and source coding with feedforward are closely

related problems, which in some sense are duals of each other [9]. In this

chapter, we present the basic model for each problem and define some im-

portant concepts which will be needed, including the Lyapunov exponent of

a dynamical system.

2.1 Channel Coding with Feedback

A general memoryless channel with noiseless feedback is depicted in Figure

2.1. We assume that the encoder has instantaneous feedback at time n of all

channel outputs up to time n− 1.

W Enc
Xn P (Y |X)

Yn
Dec Ŵn

Y n−1

Figure 2.1: Communication system with feedback.

• Let W be a random message point distributed uniformly over the inter-

val (0, 1), representing an infinite sequence of bits to be communicated

across the noisy channel:

fW (w) = 1 , w ∈ [0, 1] . (2.1)
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• Denote the input alphabet of the channel by X and the output alphabet

by Y .

• We specify the statistical nature of the channel from X to Y with input

xi ∈ X and output yi ∈ Y at time i in terms of its transition kernel

PYi|Xi,Xi−1,Y i−1(yi|xi, x
i−1, yi−1). (2.2)

The “simplest” class of channels, termed memoryless channels, has the

property

PYi|Xi,Xi−1,Y i−1(yi|xi, x
i−1, yi−1) = PY |X(yi|xi). (2.3)

The PM scheme presented in Section 2.1.3 is optimal for memoryless

channels. This fact will be exploited in Chapter 4; however, in Chapter

3 we will work in the more general framework of (2.2).

• Our encoding scheme specifies the sequence of transmission functions

which are used to determine the channel inputs

Xi = gi(W,Y i−1). (2.4)

Define

∂wgi(u, Y
i−1) , ∂

∂w
gn
(
w, Y n−1

) ∣∣∣
w=u

(2.5)

when the derivative exists.

• Our decoding scheme specifies the sequence of estimates of the message

point, based on the received channel outputs:

Ŵn = ϱn(Y
n). (2.6)

• The quantization of a message W ∈ [0, 1] is defined by

⟨W ⟩nR , ⌈W2nR⌉
2nR

(2.7)

and the corresponding index is given by m , ⟨W ⟩nR 2nR.
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• The lim sup in probability of a sequence of random variables {Xn} is

defined by [16]:

lim sup
in p.

Xn =
arg min

b
s.t. lim

n→∞
P (Xn ≥ b) = 0. (2.8)

• Similarly, the lim inf in probability of {Xn} is [16]:

lim inf
in p.

Xn =
arg max

a
s.t. lim

n→∞
P (Xn ≤ a) = 0. (2.9)

2.1.1 Sequential Communication with Feedback

In this section, we specify a non-standard yet illuminating approach to re-

liable communication with feedback. Traditionally, one assumes that there

is a fixed block length of n transmissions, and considers a message lying in

one of 2nR possible values, and a coding scheme is designed that maps the

possible hypotheses and causal feedback to the next channel input. At time

n, the decoder attempts to decode the message.

Here, we consider an alternative approach that has the same fundamen-

tal limits. This approach was originated by Horstein to achieve capacity on

the binary symmetric channel with feedback [4], applied to achieve capacity

on the additive Gaussian channel with feedback in [2], and then generalized

to achieve capacity on arbitrary memoryless channels with feedback in [5] -

which unifies all previous approaches with a simple recursive interpretation.

This approach for feedback communication is particularly attractive practi-

cally for the following reasons: there is no pre-specified rate or block length;

there is no forward error correction - the encoder can simply adapt on the

fly based upon feedback from the decoder; the schemes can admit a simple

recursive structure; and the fundamental limit - or capacity - is the same

as the more traditional viewpoint. In essence, the question of a rate being

achievable is decoder-centric - at time n, it is required that the decoder can

resolve the message point to one of 2nR non-overlapping intervals, each of

length 2−nR.

The a posteriori distribution at time n is the conditional probability dis-

tribution on the message point, given the channel outputs yn, and is denoted

by fW |Y n(u|yn). For any good communication scheme, as the receiver at-
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tains more channel outputs, its posterior belief becomes more concentrated

around the message point. In order to communicate nR bits, the decoder at

the receiver at time n must be able to guess which interval of length 2−nR

contains the message point. The probability of error is the probability that

the true message point lies outside of the guessed interval. We will denote

the midpoint of the interval chosen by the decoder at time n as Ŵn. Then

we say that:

Definition 1. A rate R is achievable if there exists a decoding scheme such

that

lim
n→∞

P
(
|W − Ŵn| > 2−(nR+1)

)
= 0.

That is to say, the probability that the intended message W lies outside

of the decoded interval goes to zero.

A simple way to interpret this is that, for any δ > 0, it should be that with

high probability, ∫ W+2−(nR+1)

W−2−(nR+1)

fW |Y n(u|Y n)du ≥ 1− δ (2.10)

for sufficiently large n.

This implies that the probability mass of the posterior distribution must be

concentrated within an interval around the message pointW of exponentially

decreasing width if we are to communicate reliably at a positive rate. This

implies that the height of the posterior must be exponentially increasing

as well. In fact, the value of the posterior evaluated at the message point

must increase exponentially at a rate R for large n with high probability.

This lemma follows closely from [17, Thm 4] under the assumption that the

channel law (2.2) is such that the the posterior distribution will be continuous

in the message point W .

Lemma 2.1.1. If a rate R is achievable then

lim inf
in p.

1

n
log fW |Y n(W |Y n) ≥ R.
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Proof. Define the sets

Bn
m , {yn ∈ Yn : PM |Y n(m|yn) ≤ 2−nγ}

Dm , {yn ∈ Yn :
⟨
Ŵn

⟩
nR

=
m

2nR
}

for some γ > 0. Now consider the conditional probability distribution on

the quantized version of the message, given the sequence of received channel

outputs

P
(
1

n
log

PM |Y n(⟨W ⟩nR |Y n)

PM(⟨W ⟩nR)
≤ R− γ

)
= P

(
1

n
logPM |Y n(⟨W ⟩nR |Y n) ≤ −γ

)
(2.11)

=
2nR∑
m=1

∑
yn∈Bn

m

PM,Y n(m, yn)

=
2nR∑
m=1

∑
yn∈Bn

m∩Dc
m

PM,Y n(m, yn) +
2nR∑
m=1

∑
yn∈Bn

m∩Dm

PM,Y n(m, yn)

≤
2nR∑
m=1

∑
yn∈Dc

m

PY n|M(yn|M = m)PM(m) +
2nR∑
m=1

∑
yn∈Bn

m∩Dm

PM,Y n(m, yn)

≤ Perror +
2nR∑
m=1

∑
yn∈Bn

m∩Dm

PY n(yn)PM |Y n(m|yn)

≤ Perror + 2−nγ
∑

yn∈Yn

PY n(yn) (2.12)

≤ Perror + 2−nγ.

Here, (2.11) follows because the original random variable was uniform, so

its quantization is equiprobable over all indices, and (2.12) follows because

the sets Dm are disjoint. Because the rate is achievable, the probability of

error can be made arbitrarily small and

P
(
1

n
log

PM |Y n(⟨W ⟩nR |Y n)

PM(⟨W ⟩nR)
≤ R

)
→ 0

as n increases.

When the posterior distribution is continuous, the desired result concerning

the posterior distribution follows from this analysis of quantized posterior.
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Note that since R is an achievable rate, with high probability for any δ > 0,

when n is large enough

∫ ⟨w⟩nR

⟨w⟩nR−2−nR

fW |Y n(u|yn)du = PM |Y n(⟨w⟩nR |yn) (2.13)

≥ 1− δ. (2.14)

By the mean value theorem, almost surely ∃u ∈
[
⟨w⟩nR − 2−nR, ⟨w⟩nR

]
such that fW |Y n(u|yn) ≥ (1 − δ)2nR and |u − w| < 2−nR. By our continu-

ity assumption, as n increases fW |Y n(w|yn) → fW |Y n(u|yn), establishing the

desired result.

2.1.2 A Perspective from the Converse to the Channel Coding
Paradigm with Feedback

We note from the converse to the channel coding theorem with feedback that

in order to achieve reliable communication at any rate R, it must be that

R ≤ 1
n
I(W ;Y n) + o(n), with

1

n
I(W ;Y n) =

1

n

n∑
i=1

H(Yi|Y i−1)−H(Yi|Y i−1,W )

=
1

n

n∑
i=1

H(Yi|Y i−1)−H(Yi|Y i−1,W,Xi)

=
1

n

n∑
i=1

H(Yi|Y i−1)−H(Yi|Xi) (2.15)

≤ 1

n

n∑
i=1

H(Yi)−H(Yi|Xi) (2.16)

≤ C (2.17)

where (2.15) follows from the channel being memoryless (2.3); and (2.16)

follows if and only if Yi’s are i.i.d and drawn according to P ∗
X .

The posterior matching scheme [18, 19] generalizes other feedback com-

munication schemes [4, 2, 3] to provide a recursive scheme for a broad class

of memoryless channels with noiseless feedback, and it tightens the converse

10



inequalities above.

2.1.3 The Posterior Matching Scheme

The posterior matching scheme [5] generalizes other feedback communication

schemes [4, 2] to provide a recursive scheme for a broad class of memoryless

channels with noiseless feedback. The high level idea is that the encoder

first extracts the information missing at the receiver from the a-posteriori

probability distribution by generating a random variable that is statistically

independent of past observations, but when coupled with those observations,

deterministically produces the intended message. This information is then

matched to the optimal input distribution of the channel, FX , to achieve

capacity.

This idea is encapsulated by the posterior matching scheme by determining

the channel input at time n+ 1 by the transmission rule

Xi+1 = gi+1(W,Y i) = F−1
X

(
FW |Y i

(
W |Y i

))
. (2.18)

Note that because FW |Y n (W |Y n) is distributed uniformly on [0, 1], regard-

less of the sequence Y n, it follows that [5]

• Xi+1 is independent of Y
n and so, due to the memoryless nature of the

channel, Yi+1 is independent of Y i.

• The marginal distribution on Xi+1 is PX , the capacity-achieving distri-

bution. In particular, {Yi} are i.i.d.

The encoder also admits a simple recursive representation which is com-

pletely determined by the channel input distribution and the channel tran-

sition law, obviating the computationally infeasible task of computing the

posterior distribution at each time step:

Xi = F−1
X (Wi)

W1 = W

Wi+1 = SYi
(Wi). (2.19)
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This simple scheme is optimal in the sense that it is able to achieve any

rate below capacity for a broad class of memoryless channels. To understand

why this scheme performs so well, let us first define the Lyapunov exponent

of a dynamical system.

2.2 Lyapunov Exponents

The Lyapunov exponent of a dynamical system indicates how quickly the

state of a system diverges from its initial condition. For a channel encoder,

we can consider the state of the system at time n to be the channel input

that it chooses at that time. Then the Lyapunov exponent of the encoder is

given by

L = lim
n→∞

1

n
log
∣∣∂wgn(W,Y n−1)

∣∣ , (2.20)

where the limit is interpreted in the probability sense.

2.2.1 The Upper Lyapunov Exponent

In general, this limit in equation (2.20) may not exist, and we may wish

to consider a generalization of the limit. Let us define the upper Lyapunov

exponent as follows:

L̄ = lim sup
in p.

1

n
log
∣∣∂wgn(W,Y n−1)

∣∣ . (2.21)

Similarly, the lower Lyapunov exponent is defined by the liminf. When the

limit in (2.20) exists, the upper Lyapunov exponent in (2.21) and the lower

Lyapunov exponent will be equal to the Lyapunov exponent in (2.20).

2.2.2 Lyapunov Exponent of the PM Scheme

If we consider the channel input at time i to be the state of a dynamical

system, then the Lyapunov exponent of this encoding system is a measure of

12



the divergence between sequences of channel inputs corresponding to different

messages. If the Lyapunov exponent is positive, two different messages which

are relatively close to each other will still result in increasingly different input

sequences to the channel.

To determine the Lyapunov exponent of the PM scheme, we first con-

sider the following result regarding the asymptotic behavior of the posterior

distribution, evaluated at the message point [18, lemma 2]:

Lemma 2.2.1. For the posterior matching scheme, when the Markov chain

defined by the channel inputs is positive Harris recurrent (PHR)

lim
n→∞

1

n
log fW |Y n(w|yn) = I(X;Y ).

Proof. First note that applying Bayes’ rule to the posterior distribution

yields:

fW |Y n(w|yn) = fW |Y n−1(w|yn−1)
fYn|W,Y n−1(yn|w, yn−1)

fYn|Y n−1(yn|yn−1)

=
n∏

i=1

fYi|W,Y i−1(yi|w, yi−1)

fYi|Y i−1(yi|yi−1)
.

Now taking the logarithm and dividing by n we get

1

n
log fW |Y n(w|yn) =

1

n
log

n∏
i=1

fYi|W,Y i−1(yi|w, yi−1)

fYi|Y i−1(yi|yi−1)

=
1

n

n∑
i=1

log
fYi|W,Y i−1(yi|w, yi−1)

fYi|Y i−1(yi|yi−1)

=
1

n

n∑
i=1

log
fYi|Xi

(yi|gi(w, yi−1))

fYi
(yi)

(2.22)

where (2.22) follows because the channel is memoryless, and the posterior

matching scheme results in i.i.d. channel outputs. Now we note that the

quantity on the right hand side is the information density. Taking limits we

apply the strong law of large numbers to arrive at the desired result with

probability one.

Now we state the following lemma from [18, lemma 3] describing the Lya-

punov exponent of the transmission function when the posterior matching
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scheme is used:

Lemma 2.2.2. When the Markov chain (Xi, Yi) is PHR, the Lyapunov ex-

ponent of the encoding system is equal to the mutual information between the

channel input and output:

lim
n→∞

1

n
log

∂gn (w, Y
n−1)

∂w
|w=W= I(X;Y ) a.s. (2.23)

Proof. By taking the derivative of the recursive transmission function (2.19),

we have

∂S(x, y)

∂x
=

fX|Y (x|y)
fX(S(x, y))

. (2.24)

Then the derivative with respect to the message point is

∂gn(w, y
n−1)

∂w
=

1

fX(g1(w))

n∏
i=1

∂S(xi, yi)

∂x
(2.25)

=
1

fX(g1(w))

n∏
i=1

fX|Y (x|y)
fX(S(x, y))

(2.26)

=
fW |Y n−1(w|yn−1)

fX(xn)
. (2.27)

Taking the logarithm and dividing by n, we arrive at

1

n
log

∂gn(w, y
n−1)

∂w
=

1

n
log fW |Y n−1(w|yn−1)− 1

n
log fX(xn). (2.28)

Finally, taking the limit we can apply the previous lemma to arrive at the

desired result.

2.3 Source Coding with Feedforward

The source coding with feedforward paradigm is a special case of source

coding with side information, where the side information made available

at the decoder is a noiseless, delayed version of the source as depicted in

Figure 2.2.
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Y n

(fn,R)

Enc
m

(hn,R,i)

Dec

Yi−1

Xi

Figure 2.2: General source coding with feedforward.

• The source sequence consists of a sequence of i.i.d. random variables

{Yi}∞i=1 with each Yi distributed according to the distribution PY .

• A source encoding scheme of rate R consists of a sequence of map-

pings fn,R : Yn → {1, 2, · · · , 2nR} from the possible source sequences

of length n to an index M ∈ {1, . . . , 2nR} of nR bits.

• The reconstruction at time i is given by Xi ∈ X ⊆ R.

• A decoding scheme consists of a sequence of time-varying decoding

functions, denoted hn,R,i : {1, 2, · · · , 2nR} × Y i−1 → X , which are pa-

rameterized by the rate R, and the time step i ∈ {1, · · · , n}.

• The distortion measure ρn : Yn ×X n → R+ is taken to be the average

distortion between symbols in the sequence:

ρn(y
n, xn) =

1

n

n∑
i=1

d(yi, xi) (2.29)

for some function d : Y × X → R+.

• We say that a rate-distortion pair (R,D) is achievable if there exists

a sequence of (n,R) rate-distortion codes such that ∀ϵ > 0 , ∃Nϵ such

that for all n ≥ Nϵ,

E[ρn (Y n, Xn)] =
1

n

n∑
i=1

E [d (Yi, Xi)] ≤ D + ϵ.

15



2.3.1 The Feedforward Rate-Distortion Function

When the distortion measure is additive and the source is memoryless, feed-

forward information cannot improve the rate-distortion region, i.e. Rff (D) =

R (D) for all D [20].

For a given source distribution PY and additive distortion measure d(x, y),

and target rate I, denote the induced joint distribution as P I
Y,X where the

marginal PY is satisfied, I = I(X;Y ) = I(P I
Y,X), and the induced distribution

P I
Y,X has expected distortion

EP I
Y,X

[ρ (Y,X)] = D(I).
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CHAPTER 3

CHANNEL CODING WITH FEEDBACK

Most communication and control systems in practice use feedback periodi-

cally to enhance performance. In control systems, feedback provides inherent

robustness to system uncertainties, adaption to unknown disturbances, and

often a significant reduction in complexity, energy, or other costs. However,

even when feedback is dramatically present, the study and use of feedback in

information theory has not been explored in as much depth as other aspects of

communication. Given the prevalence of recent applications involving many

decentralized communication networks with centralized complexity nodes,

there is strong motivation to reconsider how feedback should be used.

In this chapter, we demonstrate a converse to the fundamental limit of

communication with feedback, that can be stated in terms of the mathemat-

ics of dynamical systems in control. Intuitively, it states that if a rate R

is achievable, then the upper Lyapunov exponent of the dynamical system

acting as the encoder must exceed R. This bound is a property of the en-

coding scheme rather than the channel and will hold over a broad class of

memoryless channels.

Section 3.1 presents the necessary condition for reliable communication

that we have developed, explaining the conditions under which it holds, and

an example follows in Section 3.2. The main results from this chapter also

appear in [14].

3.1 A Necessary Condition for Reliable

Communication

Assume that the sequence Y n is the output of a noisy channel with a se-

quence of transition laws given by (2.2), where the encoder specifies Xi given

feedback Y n and message W according to some law (2.4). Let xi(u) denote

17



the sequence of “virtual” channel inputs corresponding to the message point

u and the received output sequence yn, so that xi(u) = g(u, yi−1). Examining

the posterior distribution, we see that for a fixed sequence of channel outputs

yn, the posterior distribution evaluated at the message point u depends on

that message only through the sequence xi(u) , {xi(u), xi−1(u), . . . , x1(u)}
of channel inputs that would have been generated by that message:

fW |Y n(u|yn)

=
fY n|W (yn|u)fW (u)

fY n(yn)

=
fY n|W (yn|u)
fY n(yn)

(3.1a)

=
n∏

i=1

fYi|u,Y i−1(yi|u, yi−1)

fYi|Y i−1(yi|yi−1)

=
n∏

i=1

fYi|u,Y i−1,Xi(yi|u, yi−1, xi(u))

fYi|Y i−1(yi|yi−1)
(3.1b)

=
n∏

i=1

fYi|Y i−1,Xi(yi|yi−1, xi(u))

fYi|Y i−1(yi|yi−1)
, (3.1c)

where (3.1a) follows from (2.1); (3.1b) follows from (2.4).

Now consider the sequence Xn(W + ϵn) generated using the message point

W + ϵn. If the sequence of transmission functions is continuous, then for

ϵn small, we expect this sequence of “virtual” channel inputs to be, in some

sense, very similar to the channel input sequence resulting from the message

W , which actually produced the output sequence Y n

Lemma 3.1.1. Define ϵn,δ , 2−n(L̄+δ). If the sequence of transmission func-

tions is gi(·, yi−1) almost always continuously differentiable, then for any

δ > 0:

lim sup
in p.

1

n
log |Xn (W + ϵn,δ)−Xn(W )| ≤ −δ.

Proof. Note that since gi(·, yi−1) is almost always continuously differentiable,

18



L̄ exists from (2.21). Thus,

lim
n→∞

P
(
1

n
log |Xn (W + ϵn,δ)−Xn(W )| ≥ −δ

)
= lim

n→∞
P
(
1

n
log
∣∣gn(W + ϵn,δ, Y

n−1)− gn(W,Y n−1)
∣∣ ≥ −δ

)
= lim

n→∞
P
(
1

n
log
∣∣∣g′n(W̃ )ϵn,δ

∣∣∣ ≥ −δ

)
(3.2)

= lim
n→∞

P
(
1

n
log |g′n(W̃ )|+ 1

n
log |ϵn,δ| ≥ −δ

)
= lim

n→∞
P
(
1

n
log |g′n(W̃ )| ≥ L̄

)
= 0, (3.3)

where (3.2) holds for some W̃ between W and W + ϵn,δ from the first or-

der Taylor’s series representation; (3.3) follows from our assumption that gi

is continuously differentiable and the upper Lyapunov exponent definition

(2.21).

For a broad class of channels, this exponential decay between the channel

inputs corresponding to W and W + ϵn,δ is sufficient to ensure that the

posterior distribution evaluated at these two points will be approximately

the same. This property will hold for channels which satisfy the following

assumption:

Assumption 1. Define the vector

gi(δ) = (2−δ, 2−2δ, . . . , 2−iδ). For all δ > 0 and b ≥ 0, and almost all xn

sequences, the following holds:

lim
n→∞

P

(
1

n

n∑
i=1

log
fYi|Y i−1,Xi (Yi|Y i−1, xi + gi(δ))

fYi|Y i−1(Yi|Y i−1)
≤ b

)

= lim
n→∞

P

(
1

n

n∑
i=1

log
fYi|Y i−1,Xi (Yi|Y i−1, xi)

fYi|Y i−1(Yi|Y i−1)
≤ b

)
.

We note briefly here that many channels satisfy this assumption. For
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example, consider the Gaussian auto-regressive channel:

Yi =
J∑

j=1

αjYi−j +
K∑
k=0

βkXi−k +Ni, (3.4)

where the Ni’s are independent, identically distributed, Gaussian random

variables with 0 mean and variance σ2. Note that

lim
n→∞

1

n

n∑
i=1

(
Ni +

K∑
k=0

βk2
i−k

)2

= lim
n→∞

1

n

n∑
i=1

N2
i = σ2 a.s.

and so the assumption holds.

With this, we can now state our main theorem.

Theorem 3.1.2. If an encoding scheme with continuously differentiable trans-

mission functions gi(w, y
i−1) can achieve a rate R with feedback over a noisy

channel satisfying Assumption 1, then L̄ ≥ R.

Proof. We will prove this via contradiction. Assume that R > L̄, is achiev-

able by some feedback communication scheme. Let δ ∈ (0, R − L̄) and

consider a sequence of messages W + ϵn,δ so that 2−nR < ϵn,δ < 2−nL. From

Lemma (3.1.1), we see that the difference between the trajectories of W+ϵn,δ

and W will decay exponentially. Under assumption 1, this will imply that

the posterior distribution evaluated at W + ϵn will be approximately equal

to the posterior evaluated at W :

lim
n→∞

P
(
1

n
log fW |Y n(W + ϵn,δ|Y n) ≤ R

)
= lim

n→∞
P

(
1

n

n∑
i=1

log
fYi|Y i−1,Xi (Yi|Y i−1, X i + gi(δ))

fYi|Y i−1(Yi|Y i−1)
≤ R

)
(3.5)

= lim
n→∞

P

(
1

n

n∑
i=1

log
fYi|Y i−1,Xi (Yi|Y i−1, X i)

fYi|Y i−1(Yi|Y i−1)
≤ R

)
(3.6)

= lim
n→∞

P
(
1

n
log fW |Y n(W |Y n) ≤ R

)
(3.7)

= 0. (3.8)

Here, (3.5) follows from (3.1) and the exponential decay of the trajectories

shown in lemma (3.1.1); (3.6) follows from assumption (1); (3.7) follows again

from (3.1); and (3.8) follows from lemma (2.1.1).
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Thus with high probability the posterior distribution evaluated at W + ϵ

will also be close to 2nR for all ϵ ∈
[
0, 2−n(L̄+δ)

)
. Because 2−nL̄ > 2−nR,

this implies that the posterior distribution does not decay rapidly outside

an interval of length 2−nR. From above, we see that for large n, with high

probability, fW |Y n(W + ϵn,δ|yn) ≥ 2nR for all ϵn ∈ [0, 2−n(L̄+δ)). Thus, with

high probability, for large n, the conditional probability of error given Y n, is

given by

lim
n→∞

P (E|Y n) ≥ lim
n→∞

∫ W+ϵn,δ

W+2−nR

fW |Y n(u|yn)du

≥ lim
n→∞

2nR
(
2−n(L̄+δ) − 2−nR

)
(3.9)

= lim
n→∞

2n(R−L̄−δ) − 1,

where (3.9) holds from (3.8). Since R− L̄ > δ, the probability of error does

not tend to zero as n increases - thus leading to a contradiction.

3.2 Example: AWGN Channel

Consider an additive white Gaussian noise channel with noise power σ2 and

an average power constraint P . In this case, the PM scheme reduces to the

Schalkwijk-Kailath scheme, and the transmission scheme is given by

gn+1(W,Y n) = SYn(Xn)

=

√
1 +

P

σ2

(
Xn − Yn

P
σ2

1 + P
σ2

)
.

First, note that the derivative of the recursive transmission function with

respect to X is

∂

∂X
SYi

(X) =

√
1 +

P

σ2
.

Now using the chain rule to take the derivative of gn with respect to the
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message point, we get

∂

∂w
gn+1(w, Y

n) =
1

fX(w)

n∏
i=1

∂

∂X
SYi

(X)

=
1

fX(w)

(
1 +

P

σ2

)n
2

.

And the Lyapunov exponent is

lim
n→∞

1

n
log

∂

∂w
gn+1(w, Y

n) = lim
n→∞

1

n
log

1

fX(w)

(
1 +

P

σ2

)n
2

= lim
n→∞

1

n
log

1

fX(w)
+

1

n
log

(
1 +

P

σ2

)n
2

=
1

2
log

(
1 +

P

σ2

)
,

which we recognize as the capacity of an AWGN channel.

Now suppose instead that a particular encoding scheme chooses to use the

same recursive functions, but transmit only a fraction β = 1
α
of the time at

a power αP , so that

gn(W,Y n) =


√
1 + αP

σ2

(
Xnk

− Ynk

αP
σ2

1+ P
σ2

)
w.p. β

0 w.p. 1− β,

where nk was the last time at which the encoder chose to transmit a non-zero

message. When gn+1(W,Y n) = 0, the derivative will be equal to zero, since

it is constant for all message points. At other times, the derivative will be

positive, thus the limit defining the Lyapunov exponent does not exist. The

derivative when the encoder transmits will be given by

∂

∂w
gn+1(w, Y

n) =
1

fX(w)

k∏
i=1

∂

∂x
SYni

(x)

=
1

fX(w)

(
1 +

αP

σ2

) k
2

.
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Note that for any w ∈ (0, 1), the following limit holds almost surely:

lim
n→∞

1

n
log

∂

∂w
gn+1(w, Y

n) = lim
n→∞

1

n
log

1

fX(w)
+

1

n
log

(
1 +

αP

σ2

) k
2

=
k

2n
log

(
1 +

αP

σ2

)
=

α

2
log

(
1 +

αP

σ2

)
, (3.10)

where (3.10) follows from the law of large numbers. It follows that the limit

also holds in probability; thus, the upper Lyapunov exponent is given by

(3.10). So any achievable rate R < α
2
log
(
1 + αP

σ2

)
< 1

2
log
(
1 + P

σ2

)
if this

encoding scheme is used with α < 1, verifying that this was a suboptimal

encoding strategy.
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CHAPTER 4

SOURCE CODING WITH FEEDFORWARD

In this chapter, we explore the duality between source coding with feed-

forward and channel coding with feedback. By looking at the probabilistic

relationship between optimal inputs and outputs in the channel coding prob-

lem, we see that a source coding problem exists with the same relationship

between the source and reconstruction sequences. This leads us to a provably

good scheme for source coding with feedforward. In particular, we show that

the posterior matching scheme, which is already known to be an optimal en-

coder for the channel coding problem, can also be used as an optimal decoder

for the source coding problem.

The problem of source coding with side information was first introduced in

[10] for distributed source coding applications. The scenario for reproducing a

source with causal side information was introduced by Weissman and Merhav

[11] as a competitive prediction problem. Around the same time, Pradhan

and others also began studying source coding with side information, with

a particular emphasis on source coding with the availability of feedforward

information [9, 12, 13]. This model is useful, for example, in sensor networks

where some sensors may have information about a random measurement

before other sensors, but they are limited by power or bandwidth constraints

to send only a compressed version of this information.

The dual of source coding is channel coding [7, 8], and the dual of source

coding with feedforward is channel coding with feedback [9]. The posterior

matching (PM) scheme, introduced by Shayevitz and Feder [5], is a general

scheme for communication with feedback over memoryless channels. In this

paper, we show that dualizing the role of the PM scheme results in an optimal

scheme for source coding with feedforward. Concurrent work by Shayevitz

[21] also exploits this duality for lossy compression when the source and

reconstruction alphabets are countable. Our scheme differs by making use

of the Lyapunov exponent property of the PM scheme to develop a source
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coding scheme when the source and reconstruction alphabets are continuous.

4.1 A Perspective from the Converse to the Source

Coding Paradigm with Feedback

According to the converse to the source coding with feedforward [20], any

source coding scheme that attains an average distortion

lim sup
n→∞

E[ρn (Y n, Xn)] ≤ D (4.1)

must have a rate R ≥ Rff (D). Indeed, for any source Y n, with message

index M ∈ {1, . . . , 2nR} and reconstruction Xn for which (4.1) holds, we

have:

nR ≥ I(M ;Y n)

=
n∑

i=1

H(Yi|Y i−1)−H(Yi|Y i−1,M)

=
n∑

i=1

H(Yi)−H(Yi|Y i−1,M,X i) (4.2)

≥
n∑

i=1

H(Yi)−H(Yi|Xi) (4.3)

=
n∑

i=1

I(Xi;Yi)

≥ nR (D) , (4.4)

where (4.2) follows because the Y process is i.i.d. and because X i is a deter-

ministic function of Y i−1 and M ; (4.3) follows because conditioning reduces

entropy; and (4.4) follows from the convexity and monotonicity of the rate-

distortion function [20].

Equality in (4.3) holds when the induced channel with message M, input X

and output Y is memoryless (2.3). Finally, equality occurs in (4.4) when the

minimizing joint distribution on Xi and Yi for the rate-distortion function is

used.
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4.2 The Test Channel

To emphasize the relationship between the primal and dual problems, define

the normalized index:

W ∗
n , m

2nR
∈ (0, 1] .

Consider a memoryless channel with transition law PY |X(y|x) and noiseless

feedback. We wish to communicate the message W ∗
n over this channel, as

suggested by the right side of Figure 4.1 below.

Y n

Encoder
XiW ∗

n Test

Channel
Dec/Enc

Yi−1

Yi

Figure 4.1: Test channel.

For this problem, the posterior matching scheme specifies an optimal en-

coding strategy in the sense that it can asymptotically achieve capacity [5].

This encoding strategy determines a sequence of channel inputs Xi that are

statistically independent of all previous outputs (thus leading to the outputs

Yi being independent). To attain equality in the converse (4.3), the optimal

test channel is memoryless, and therefore, the output sequence Yi will also be

i.i.d., determined according to the induced transition law for the test channel

P I
Y |X .

4.3 Dualizing the PM Encoder

For channel coding with feedback, we start with a memoryless channel and

specify the inputs, Zi, that are randomly mapped to an output sequence

of i.i.d. random variables Yi, which induces a distribution PY . Instead, for

source coding with feedforward, we start with the source Y that is i.i.d.

drawn according to a given distribution PY and a sequence of distortion

measures ρn. For any R > 0, we can pick I > 0 such that I < R. Then for

any I > 0, the distortion measure induces a joint distribution P I
Y,Z such that

the expected distortion EP I
Y n,Zn

[ρn (Y
n, Xn)] = D(I).
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Define the test channel to have a transition law given by the induced con-

ditional distribution, P I
Y |Z . Since the Y n sequence is i.i.d., we can interpret

them as the channel outputs from a posterior matching scheme algorithm

with message point W uniformly distributed on [0, 1] and “virtual” channel

inputs given by

Zi , gi(W,Y i−1). (4.5)

Note that in this case, the expected distortion is given by

EP I
Y n,Zn

[ρn (Y
n, Zn)] = D(I). (4.6)

Now we consider finding the proposed quantization scheme at the encoder,

by taking advantage of how the decoder has causal feedforward side informa-

tion. After observing Y n, define the quantizer index W ∗
n ∈ { 1

2nR ,
2

2nR , . . . , 1}
and subsequent reproductions Xn as

W ∗
n , argmin

Wn ∈ { 1
2nR ,

2
2nR , · · · , 1}

n∑
i=1

d
(
Yi, gi

(
Wn, Y

i−1
))

(4.7a)

Xi , gi(W
∗
n , Y

i−1). (4.7b)

In order to prove our main theorem, we will need to define a few other

pieces of terminology:

Z̃i , gi(⟨W ⟩nR , Y i−1) (4.8)

ϵn , 2−n(R−I) (4.9)

ḋ2(a, b) , ∂

∂z
d(a, z)

∣∣
z=b

(4.10)

d̈2(a, b) , ∂2

∂z2
d(a, z)

∣∣
z=b

. (4.11)

This will allow us to compare W ∗
n to an intermediate pair of quantizer in-

dices and reproductions pertaining to the quantized virtual message point:

⟨W ⟩nR ∈ { 1
2nR ,

2
2nR , . . . , 1}, and Z̃n - which would be the decoder’s reproduc-

tions if the PM scheme were used operating on ⟨W ⟩nR.
Note that the error introduced by the quantizer, |⟨W ⟩nR −W |, is bounded

in magnitude by the size of the quantization intervals, 2−nR. Since R > I,
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and since the PM scheme has a Lyapunov exponent of I, we now show that

using a PM decoding scheme with ⟨W ⟩nR results in {Zi : i = 1, . . . , n} to be

“close to” {Z̃i : i = 1, . . . , n} with an approximation error of approximately

{ϵi = 2−i(R−I)} with very high probability:

Lemma 4.3.1. With probability one, the following holds:

lim sup
n→∞

1

n
log
∣∣∣Zi − Z̃i

∣∣∣ = −(C −R). (4.12)

Proof. Apply Lemma 2.2.2, Assumption 2b, Taylor’s theorem, and the fact

that |⟨W ⟩nR −W | < 2−nR.

We state another lemma as follows:

Lemma 4.3.2. If a non-negative sequence (an : n ≥ 1) satisfies

lim sup
n→∞

1

n

n∑
i=1

ai < ∞, then

lim sup
n→∞

1

n

n∑
i=1

ϵiai = 0.

Proof. Suppose lim supn→∞
1
n

∑n
i=1 ϵiai > 0. Then clearly, lim supn→∞ ϵiai =

∞. Since ϵi >
1
i
for all i greater than some i0, lim supn→∞

1
n

∑n
i=1 ai = ∞,

which is a contradiction.

We state our technical conditions in terms of the following “feasible” set

of distortion measures:

Assumption 2. The following technical conditions hold:

• a: d(y, ·) is twice continuously differentiable for almost all y ∈ Y.

• b: EPY,Z

[∣∣∣ḋ2(Y, Z)∣∣∣] < ∞

and EPY,Z

[∣∣∣d̈2(Y, Z)∣∣∣] < ∞.

• c:
∣∣∣ḋ2(y, z)∣∣∣ < ∞ for almost all y ∈ Y and z ∈ Z.

• d: the Markov chain (Yi, Zi) given by (4.5) is Harris-Recurrent.

Theorem 4.3.3. If Assumption 2 holds, then the scheme given by (4.7)

achieves the rate-distortion function D(I).
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Proof. First note that for any ω ∈ Ω,

ρn(Y
n, Xn) =

1

n

n∑
i=1

d
(
Yi, gi(W

∗
i , Y

i−1)
)

(4.13)

≤ 1

n

n∑
i=1

d
(
Yi, gi(⟨W ⟩nR , Y i−1)

)
(4.14)

= ρn(Y
n, Z̃n), (4.15)

where (4.13) follows from (4.7b);(4.14) follows from (4.7a); (4.15) follows

from (4.8).

Next, note that for any ω ∈ Ω:

∣∣∣ρn(Y n, Zn)− ρn(Y
n, Z̃n)

∣∣∣ =

∣∣∣∣∣ 1n
n∑

i=1

d(Yi, Zi)− d(Yi, Z̃i)

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣d(Yi, Zi)− d(Yi, Z̃i)
∣∣∣

=
1

n

n∑
i=1

∣∣∣Zi − Z̃i

∣∣∣ ∣∣∣ḋ2(Yi, Ži)
∣∣∣ , (4.16)

where (4.16) follows from Taylor’s theorem for some Ži between Zi and Z̃i.

Note that for almost all ω ∈ Ω and any δ > 0, there exists an m ≡ m(δ, ω)

such that with

lim sup
n→∞

1

n

n∑
i=m

∣∣∣Zi − Z̃i

∣∣∣ ∣∣∣ḋ2(Yi, Ži)
∣∣∣

≤ δ + lim sup
n→∞

1

n

n∑
i=m

ϵi

∣∣∣ḋ2(Yi, Zi) + ϵid̈2(Yi, Zi)
∣∣∣ (4.17)

≤ δ + lim sup
n→∞

1

n

n∑
i=m

ϵi

∣∣∣ḋ2(Yi, Zi)
∣∣∣+ ϵ2i

∣∣∣d̈2(Yi, Zi)
∣∣∣

= δ + lim sup
n→∞

1

n

n∑
i=m

ϵi

∣∣∣ḋ2(Yi, Zi)
∣∣∣ (4.18)

= δ, (4.19)

where (4.17) follows from Lemma 4.3.1 and Assumption 2a; (4.18) follows

from the Strong Law of Large Numbers for Markov chains applied to (Yi, Zi)

for the function ḋ2(y, z) and Assumption 2b; and (4.19) follows from As-
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sumption 2d.

Lastly, from Assumption 2c and Lemma 4.3.1, we have that for almost all

w ∈ Ω,

lim sup
n→∞

m∑
i=1

∣∣∣Zi − Z̃i

∣∣∣ ∣∣∣ḋ2(Yi, Ži)
∣∣∣ = 0. (4.20)

Combining (4.15), (4.16), (4.19),(4.20) with Assumption 2d, we have that

lim sup
n→∞

n∑
i=1

ρn(Yn, Xn) = lim sup
n→∞

n∑
i=1

ρn(Yn, Zn) = D(I).

4.4 Example: Gaussian Source with Mean Squared

Distortion

Suppose that we have a memoryless zero-mean gaussian source with variance

σ2 so that Yi ∼ N (0, σ2) for all i. If our distortion measure is the mean-

squared difference between corresponding terms of the sequence, and we wish

to attain a distortion of no more than D, then our test channel should have

independent additive noise with variance D (i.e. ni ∼ N (0, D)). In this

case, the PM encoding scheme provides optimal inputs to this channel which

are independent Gaussian random variables with a power constraint of P =

σ2 −D. Now we can compare the input sequence generated by encoding W

versus the sequence generated by using a quantized version of the message,

⟨W ⟩nR.
If we let FX denote the Gaussian CDF corresponding to an N (0, P ) dis-

tribution, then the first terms of the corresponding input sequences are

Z1 = F−1
X (W ), Z̃1 = F−1

X (⟨W ⟩nR).

For subsequent terms of the sequence, posterior matching is equivalent

to the Schalkwijk-Kailath scheme [2] and channel inputs would be chosen

according to the recursive equations:
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Zn =

√
P +D

D

(
Zn−1 −

P

P +D
Yn−1

)
Z̃n =

√
P +D

D

(
Z̃n−1 −

P

P +D
Yn−1

)
.

We see that the difference between the two terms of these sequences at

time n is given by

∣∣∣Zn − Z̃n

∣∣∣ =

√
P +D

D

∣∣∣Zn−1 − Z̃n−1

∣∣∣
=

(
P +D

D

)n
2 ∣∣∣Z1 − Z̃1

∣∣∣
=

(
2I
)n ∣∣∣Z1 − Z̃1

∣∣∣ , (4.21)

where (4.21) follows because log
√

P+D
D

is the capacity of a Gaussian channel

with input power constrained to P and noise power D. Because we are using

the optimal input distribution for our test channel, the mutual information

will be equal to the capacity of the channel. If we bound the difference

between the initial conditions of these sequences by the Taylor’s series ap-

proximation, we get∣∣∣Z1 − Z̃1

∣∣∣ =
∣∣F−1

X (⟨W ⟩nR)− F−1
X (W )

∣∣
≤

(
F−1
X

)′ (
W̄
)
ϵn (4.22)

≤ 2log(F
−1
X )

′
(W̄) (2−nR

)
≤ 2−n(R−ℓ), (4.23)

where (4.22) holds for some W̄ ∈ [W, ⟨W ⟩nR] and (4.23) holds for arbitrarily

small ℓ when n is large enough. Substituting (4.23) for the difference between

Z1 and Z̃1 in (4.21), we get∣∣∣Zn+1 − Z̃n+1

∣∣∣ ≤
(
2I
)n (

2−n(R−ℓ)
)

= 2−n(R−I−ℓ). (4.24)
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So we can bound the mean-squared distortion between Z̃i and Yi as follows:

d
(
Z̃i, Yi

)
=

(
Z̃i − Yi

)2
=
(
Z̃i − Zi + Zi − Yi

)2
=

(
Z̃i − Zi

)2
+ (Zi − Yi)

2

+2
(
Z̃i − Zi

)
(Zi − Yi)

=
(
Z̃i − Zi

)2
+N2

i + 2
(
Z̃i − Zi

)
(Ni)

≤
(
2−i(R−I−ℓ)

)2
+N2

i (4.25)

+2
(
2−i(R−I−ℓ)

)
(Ni) ,

where (4.25) comes from applying (4.24). Now taking expectations, we get

E
[
d
(
Z̃i, Yi

)]
≤

(
2−i(R−I−ℓ)

)2
+ E

[
N2

i

]
+2
(
2−i(R−I−ℓ)

)
E [Ni]

=
(
2−2i(R−I−ℓ)

)
+D.

As long as we are allowed to use a rate R > I, we can choose a positive

ℓ < R − I so that the distortion in our scheme decays to the rate-distortion

function at an exponential rate when the source sequence is i.i.d. Gaussian

random variables.
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CHAPTER 5

CONCLUSION

In this thesis we use control theoretic techniques to provide a new perspective

for analyzing two related problems in communication: channel coding with

feedback and source coding with feedforward. We see that the Lyapunov

exponent of a related dynamical system emerges in both scenarios.

For channel coding with feedback, we show that for a broad class of chan-

nels, the Lyapunov exponent of the transmission function - when it exists

- is fundamentally linked to the maximum rate which the scheme can at-

tain. More generally, we bound the set of achievable rates for a given en-

coding scheme by considering a generalization of the Lyapunov exponent of

the transmission function. We note that the posterior matching scheme - a

provably optimal feedback communication scheme for memoryless channels

- has an encoding function with a Lyapunov exponent exactly equal to the

communication rate.

In the dual problem, source coding with feedforward, the optimal test chan-

nel is memoryless. This motivates the idea of dualizing posterior matching

for this setting. By exploiting the Lyapunov exponent property, we demon-

strate that such a scheme, with low encoder and decoder complexity, attains

the rate-distortion function. By approaching these problems from a dynam-

ical systems perspective, we hope to provide the intuition to motivate the

evaluation and design of new communication schemes.
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