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Abstract

We consider a variety of problems in extremal graph and set theory.

The chromatic number of G, χ(G), is the smallest integer k such that G is k-colorable.

The square of G, written G2, is the supergraph of G in which also vertices within distance

2 of each other in G are adjacent. A graph H is a minor of G if H can be obtained from a

subgraph of G by contracting edges. We show that the upper bound for χ(G2) conjectured

by Wegner (1977) for planar graphs holds when G is a K4-minor-free graph. We also show

that χ(G2) is equal to the bound only when G2 contains a complete graph of that order.

One of the central problems of extremal hypergraph theory is finding the maximum number

of edges in a hypergraph that does not contain a specific forbidden structure. We consider

as a forbidden structure a fixed number of members that have empty common intersection

as well as small union. We obtain a sharp upper bound on the size of uniform hypergraphs

that do not contain this structure, when the number of vertices is sufficiently large. Our

result is strong enough to imply the same sharp upper bound for several other interesting

forbidden structures such as the so-called strong simplices and clusters.

The n-dimensional hypercube, Qn, is the graph whose vertex set is {0, 1}n and whose edge

set consists of the vertex pairs differing in exactly one coordinate. The generalized Turán

problem asks for the maximum number of edges in a subgraph of a graph G that does not

contain a forbidden subgraph H . We consider the Turán problem where G is Qn and H is

a cycle of length 4k + 2 with k ≥ 3. Confirming a conjecture of Erdős (1984), we show that

the ratio of the size of such a subgraph of Qn over the number of edges of Qn is o(1), i.e. in

the limit this ratio approaches 0 as n approaches infinity.
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Chapter 1

Introduction

In the following, we briefly mention the main results. In the last section of this chapter,

some terminology is provided for the reader who is unfamiliar with the concepts in graph

theory.

1.1 Coloring of the squares of planar graphs

Coloring the vertices of a graph such that vertices near each other receive distinct colors

has been an interesting graph theory problem that arose from an application, the so-called

frequency assignment problem. The general version of this problem in graph theory is called

L(p, q)-labeling. An L(p, q)-labeling, a coloring is a coloring of the vertices such that the

neighboring vertices and the vertices separated by distance 2 receive labels differing by at

least p and q, respectively, where p and q are integers.

In Chapter 2, we present our main result, which concerns the special type of L(p, q)-

labeling, where p=q=1. We can formulate this labeling problem also as a proper coloring

of the square of a graph. The square of a graph G, written G2, is the supergraph of G in

which also vertices separated by distance 2 in G are adjacent. If G is a graph with maximum

degree ∆, then the chromatic number χ(G2), and even the clique number of G2, may be of

the order of ∆2. A trivial lower bound on χ(G2) is ∆(G) + 1, since G2 contains a clique

of size at least ∆(G) + 1. Since ∆(G2) ≤ ∆2(G), it follows that χ(G2) ≤ ∆2(G) + 1. The

graphs C5 and the Petersen graph have the property that χ(G2) = ∆2(G) + 1.

This problem is also motivated by a conjecture of Wegner [95] in 1977, and it is still open

except for a few partial results. He made the following conjecture.
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Conjecture 1.1.1 (Wegner [95]). If G be a planar graph with maximum degree ∆(G), then

χ(G2) 6







∆(G) + 5 if 4 6 ∆(G) 6 7,

⌊3
2
∆(G)⌋ + 1 if ∆(G) > 8.

A graph G has a graph H as a minor if H can be obtained from a subgraph of G by

contracting edges. We not only verify this conjecture for K4-minor-free graphs, a subfamily

of planar graphs, but we also show that it is sharp for only two special examples of graphs.

It would be interesting to look at whether our result also holds for the list coloring version of

this problem. Any counterexample to that would also disprove the conjecture of Kostochka

and Woodall [65], which states that ch(G2) = χ(G2) for every graph G.

1.2 Families without clusters

A set system (or a family or a hypergraph) is a collection of sets that are called members of

the family. One of the central problems of extremal hypergraph (or set) theory is finding the

maximum number of edges of a hypergraph that does not contain a forbidden configuration,

say H . Hypergraphs with this property are called extremal H-free hypergraphs. These

problems have been studied intensively during the last half century in particular in the

excellent book by Babai and Frankl [9].

A family is k-uniform if all its members have size k. The k-uniform family containing all

subsets of S is denoted by
(

S
k

)

. The most well-known result in this area is the Erdős–Ko–

Rado (EKR) Theorem [37]. It states that if F ⊂
(

[n]
k

)

and F has no two disjoint members

are forbidden, then |F| ≤
(

n−1
k−1

)

. This is often called the EKR bound.

We are interested in finding the size of extremal hypergraphs that do not contain a con-

figuration of sets called an a-cluster. It is defined as follows. Given a p-tuple a of positive

integers, say a = (a1, . . . , ap), such that k = a1 + · · · + ap, an a-cluster A in a k-uniform

family F is a subfamily {F0, . . . , Fp} such that the sets Fi \ F0 and F0 \ Fi for 1 ≤ i ≤ p are

pairwise disjoint, and |Fi \ F0| = |F0 \ Fi| = ai. The sets F0 \ Fi for 1 ≤ i ≤ p are said to

form an a-partition of F0, and F0 is called the host of the a-cluster. In Chapter 3, we show
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that the size of an a-cluster-free k-uniform family F (excluding the special case a = 1) is at

most the EKR bound, and equality holds only if the overall intersection of the members of

F is not empty, i.e. F is a star. Our result not only proves a conjecture of Mubayi in [80],

but also it generalizes the conjecture by considering a larger set of forbidden configurations

with small unions.

There is also a hypergraph version of Turán’s problem, which asks for the size of the

extremal k-uniform hypergraph not containing a complete hypergraph on d + 1 elements.

This problem is open whenever d + 1 > k > 2. The case d = k = 2 is a special case of

Turán’s theorem proved by Mantel [77] in 1907. In Chapter 3, we discuss additional famous

results and open problems in this area.

1.3 Extremal cycle-free subgraphs of the hypercube

In this thesis, an H-free graph is a graph not containing H as a subgraph. The Turán

number, denoted by ex(n, H), is the maximum number of edges in an H-free graph with n

vertices. An H-free graph with with n vertices and ex(n, H) edges is an extremal H-free

graph. The Turán graph, Tn,r, is the extremal Kr+1-free graph with n vertices; we write

t(n, r) for its number of edges. This graph is a complete r-partite graph with parts of size

⌊n
r
⌋ or ⌈n

r
⌉. Mantel provided in 1907 the first Turán-type result by determining the extremal

K3-free graphs. He proved that ex(n, K3) = ⌊n2/4⌋. Much later, Turán (1941) generalized

this result to Kr-free graphs for all r, showing that if G is a graph on n vertices and at least

t(n, r − 1) edges containing no Kr, then G must be the Turán graph Tn,r−1.

One may ask a similar question for any graph other than the complete graph. In fact,

Turán graphs are the extremal graphs for various class of graphs. Indeed, for a graph H with

χ(H) = r ≥ 3, the size of the extremal H-free graph on n vertices is the same as t(n, r− 1),

i.e. ex(Kn, H) = e(Tn,r−1). On the other hand, the Turán problem for bipartite graphs is

much more complicated and still unsolved in general. The graphs with chromatic number

2 are called degenerate graphs due to Simonovits [90]. All of the H-free extremal graphs

have size θ(n2) (asymptotically of the same order with n2) in the case of non-degenerate H .

However, in the case of degenerate H , the extremal H-free graphs have size o(n2).
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Another longstanding Turán problem was motivated by a conjecture of Erdős [35]. The

graph Qn is defined by the vertex set V (Qn) = {0, 1}n and E(Qn) is the set of pairs differing

in exactly one coordinate. The Turán number for the hypercube, denoted by ex(Qn, H),

is the maximum number of edges in a subgraph of Qn that does not contain any copy of

H . Erdős [35] conjectured in 1984 that ex(Qn, C4) = (0.5 + o(1))e(Qn) and ex(Qn, C2k) =

o(1)e(Qn) for k ≥ 3. The conjecture is disproved for C6 and settled for C4k, when k ≥ 2, by

Chung [22]. We show that this conjecture is true for C4k+2, when k ≥ 3. The problem of

finding the order of magnitude of ex(Qn, C2k) in terms of e(Qn) is still open for k = 2, 3, 5.

1.4 Some preliminaries

In this section, we summarize elementary definitions in graph theory that are used in the

following chapters. Most of our definitions and notation follows West [97].

1.4.1 Structure and families of graphs

In this work, we consider only finite and simple graphs, i.e. with no multiple edges or loops.

The vertex set of a graph G is denoted by V (G). An edge is a pair of vertices and the edge

set of G is denoted by E(G). The order of G is the size of V (G), denoted by n(G). The

size of G is |E(G)|, denoted by e(G). For an edge e with endpoints u and v, we say that u

and v are incident to e and e is induced by them in G. The deletion of a vertex v in G is to

obtain a graph with vertex set V (G) \ {v} and edge set induced by V (G) \ {v} in G. The

endpoints u and v of an edge are adjacent to each other or neighbors of each other. The set

of neighbors of a vertex v in G is denoted by NG(v) or just N(v), and the size of N(v) is the

degree of v, denoted by dG(v). The maximum degree of a graph G is denoted by ∆(G). A

graph G′ is a subgraph of G if V (G′) is a subset of V (G) and all edges of G′ are also present

in E(G). For a subset X of V (G), the subgraph of G induced by X is the subgraph , denoted

by G[X], whose vertex set is X and whose edge set consists of all edges of G having both

endpoints in X.

A complete graph is a graph, in which the vertices are pairwise adjacent. The vertex
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set of a complete graph is called a clique and a clique of size r is called an r-clique. The

clique number of G, ω(G), is the size of largest clique in G. A graph G is r-partite (bipartite

for r=2) if there is a partition of its vertex set into r parts such that each edge in G has

endpoints in different parts.

A matching is a set of edges whose sets of endpoints are pairwise disjoint. A perfect

matching M of a graph G is a matching such that each vertex in V (G) is incident to some

edge of M . A vertex set is an independent set if it does not contain any pair of adjacent

vertices. The size of a largest independent set of G and a largest matching of G are denoted

by α(G) and α′(G), respectively. A vertex cover of G is a set of vertices that contains at

least one endpoint of each edge in E(G). Similarly, an edge cover of G is a set S of edges

such that for each vertex of G, there is at least one edge in S incident to it. The size of a

smallest vertex cover of G and a smallest edge cover of G are denoted by β(G) and β ′(G),

respectively.

A path of length k is a graph with k + 1 vertices, call them v0, . . . , vk, whose edge set

consists of the pairs vivi+1 with 0 ≤ i ≤ k − 1. A u, v-path is a path whose endpoints are u

and v. Similarly, a cycle of length k is a graph with k vertices v0, . . . , vk−1, whose edge set

consists of the pairs vivi+1 for 0 ≤ i ≤ k − 1 with subscript addition modulo k. The girth

of G is the length of a shortest cycle in G if G contains a cycle. A cycle of length 3 is also

called a triangle. The n-dimensional hypercube, denoted by Qn, is the graph whose vertex

set is {0, 1}n, the set of n-tuple with entries either 0 or 1, and whose edge set is the set of

pairs that differ in exactly one coordinate.

Two graphs G and H are isomorphic if there is a bijection f : V (G) → V (H) such that

f(u)f(v) is an edge of H if and only if uv is an edge in G; then we write G ∼= H or G = H .

Graphs can be partitioned into equivalence classes under the isomorphism relation; and each

equivalence class is called an isomorphism class. We use Kn, Pn and Cn for the isomorphism

classes of complete graphs, cycles and paths with n vertices.

We call a graph G connected if there is a path in G between any pair of vertices. A

component of G is a maximal connected subgraph of G. A graph G is k-connected if either

G is a complete graph with k + 1 vertices or G has at least k + 2 vertices and there is no set

of k − 1 vertices whose deletion makes G disconnected. The connectivity of G is the largest
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k such that G is k-connected. A vertex of G is called a cut-vertex if its deletion increases

the number of components of G.

A curve is the image of a continuous map from [0,1] to R2. A polygonal curve is a curve

composed of finitely many line segments. A drawing of a graph G is a representation of G

such that vertices correspond to distinct points and edges correspond to polygonal curves

connecting its endpoints. A graph G is planar if it can be drawn in a plane without any pair

of crossing edges; such a drawing is called a planar embedding of G. A region is an open set

in the plane such that any two of its points have a polygonal curve connecting them. The

faces of a planar graph are the maximal regions of the plane that does not contain any point

used in the embedding. A finite graph has an unbounded face, also called the outer face.

An outerplanar graph G is a graph with a planar embedding where all vertices are on the

outer face.

We subdivide an edge by replacing it with a path of length 2. We contract an edge with

endpoints u and v by identifying u with v after deleting the edge(s) with endpoints u and

v. To duplicate an edge e in G is to add an edge sharing the same endpoints with e to G. A

graph G has a graph H as a minor if H can be obtained from a subgraph of G by contracting

edges and deleting isolated vertices; the vertices of G that are vertices of this copy of H are

called branch vertices. The square of G, written G2, is the supergraph of G in which also

vertices separated by distance 2 in G are adjacent.

1.4.2 Coloring

A coloring f of V (G) using the set S is a function or labeling f : V (G) → S, where f(v) is

called the “color” of vertex v. A proper coloring of the vertices of a graph G is a coloring

where neighboring vertices have distinct colors. A proper k-coloring of the vertex set of

a graph G is an assignment of colors from a set of k colors to V (G) such that adjacent

vertices have different colors. A graph is k-colorable if there is a proper k-coloring of G. The

chromatic number of G, written χ(G), is the smallest integer k such that G is k-colorable. A

list assignment on a graph G is a function L that assigns a set L(v) of colors to each vertex

v; and it is k-uniform if |L(v)| = k for all v. The list chromatic number or choosability
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of G, denoted by ch(G), is the minimum k such that for any k-uniform list assignment L

on G, there exists a proper coloring in which each vertex is assigned a color from its list.

Obviously, ch(G) is at least as large as χ(G).

1.4.3 Functions

We denote by ⌊x⌋ and ⌈x⌉ the largest and smallest integers with value at most and at least

x, respectively. Given a positive integer d, we define
(

x
d

)

as x(x − 1) . . . (x − d + 1)/d!. For

comparison between the limits of the order of magnitudes of functions, we use the “Oh”

notation. If lim supn→∞ | f(n)
g(n)

| < ∞, then f = O(g) or g = Ω(f). If the functions f and g

are asymptotically of the same order of magnitude, i.e. f = O(g) and f = Ω(g), then we

write f = Θ(g). If lim supn→∞ | f(n)
g(n)

| = 0, then f = o(g) or g = ω(f). The functions f and g

are asymptotically equal if lim supn→∞ | f(n)
g(n)

| = 1.

1.4.4 Turán numbers

A copy of H in G is a subgraph of G isomorphic to H . The Turán number, denoted by

ex(n, H), is the maximum number of edges in an H-free graph with n vertices. The general-

ized Turán number, denoted by ex(G, H), is the maximum size of a subgraph of G that does

not contain any copy of H . We call an H-free graph G of size ex(G, H) (or asymptotically

of the same order of magnitude with ex(G, H)) an extremal graph. The Turán graph, Tn,r, is

the extremal Kr+1-free graph with n vertices and t(n, r) edges; it is an r-partite graph with

parts of size ⌊n
r
⌋ or ⌈n

r
⌉.

1.4.5 Set systems

A set system or a family is a collection of sets called members of the family. A family is

k-uniform if all members are of size k. We define [n] to be {1, . . . , n}. The family of all

subsets of S is denoted by 2S. The k-uniform family containing all k-element subsets of S

is denoted by
(

S
k

)

. A family F ⊂
(

S
k

)

is called k-partite if there is a partition of into sets

X1, . . . , Xk such that each member of F shares at most one element with Xi, for 1 ≤ i ≤ k.
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In this case, X1, . . . , Xk are partite sets of F . If F ⊂
(

[n]
k

)

is k-partite with partite sets

X1, . . . , Xk, then for any S ⊂ [n], the projection Π(S) of S is defined to be {i : S ∩Xi 6= ∅}.
The trace of a family F on a set A, denoted by F|A, is defined to be {F ∩ A : F ∈ F}.

A k-uniform family F ⊂
(

S
k

)

is a star if the common intersection of its members is a vertex

v and |F| =
(

|S|−1
k−1

)

, i.e. F contains all possible edges containing v. A family {F1, . . . , Fs}
of distict sets is called a delta-system or a sunflower of size s with center C if Fi ∩ Fj = C

for 1 ≤ i < j ≤ s. A family F is d-wise intersecting (or intersecting if d=2) if each d-tuple

of its members has nonempty intersection.
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Chapter 2

A Brooks-type bound for squares of K4-minor-free
graphs

2.1 Distance colorings in graphs

A generalization of vertex coloring is L(p, q)-labeling. We define dG(u, v) as the distance

between the vertices u and v in a graph G. For integers p and q, an L(p, q)-labeling of a

graph G is a mapping L : V (G) → [k] ∪ {0} such that

• |L(u) − L(v)| ≥ p if dG(u, v)=1, and

• |L(u) − L(v)| ≥ q if dG(u, v)=2.

The p, q-span of G, denoted by λp
q(G), is the minimum k for which an L(p, q)-labeling into

[k] ∪ {0} exists.

The applications of this type of coloring arise from the channel assignment problem in radio

and cellular phone systems, where the vertices and labels represent the transmitter locations

and the frequency channels, respectively. The natural condition that non-neighboring trans-

mitters in close proximity are assigned different frequency channels motivates the L(p, q)-

labeling problem. This problem is also known as the frequency assignment problem.

Griggs and Yeh [52] studied the L(2, 1)-labeling problem on graphs. They conjectured

that for any graph G with ∆(G) ≥ 2, λ1
2(G) ≤ ∆2(G). They confirmed this conjecture for

various graph classes such as paths, cycles, trees, and graphs with diameter 2. Chang and

Kuo [19] showed that λ1
2(G) ≤ ∆2(G) + ∆(G). A more general result given by Král [69]

yields that λ1
2(G) ≤ ∆2(G)+∆(G)−1 and the present best result λ1

2(G) ≤ ∆2(G)+∆(G)−2

is due to Gonçalves [51].

Because of the natural setup of the frequency assignment problem, it also has been an

attractive problem to consider for planar graphs. One of the strongest results on coloring of
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planar graphs states that if G is a planar graph, then χ(G) ≤ 4. This is known as the Four

Color Theorem, proved in 1977 by Appel and Haken [6] (see also Appel et al. [7]).

Since the case q = 0 corresponds to labeling vertices so that adjacent vertices receive

labels p apart, the Four Color Theorem provides an immediate upper bound of 3p using

a labeling of vertices with labels {0, p, 2p, 3p} only. For the case q ≥ 1, an obvious lower

bound is λp
q ≥ q∆ + p − q + 1. The best known upper bound on λp

q(G) for planar G

is λp
q(G) ≤ (4q − 2)∆ + 10p + 38q − 24, proved by van den Heuvel and McGuiness [92].

Molloy and Salavatipour [79] improved this upper bound asymptotically by showing λp
q(G) ≤

q⌈5
3
∆⌉ + 18p + 77q − 18.

More results and problems regarding the relation between distances and coloring can be

found in Jensen and Toft [57, Section 2.18]. This chapter is organized as follows. In Section

2.2, we provide the most recent results on the coloring of squares of graphs. We give some

preliminaries in Section 2.3. In Section 2.4 we discuss the structure of the cliques of order

⌊3
2
∆⌋ + 1 in the square of a K4-minor-free graph with maximum degree ∆. In Section 2.5

we study properties of minimum counterexamples to the theorem, and in the last section we

conclude the proof of Theorem 2.2.3.

2.2 Coloring of squares of graphs

The square of a graph G, written G2, is the supergraph of G in which also vertices separated

by distance 2 in G are adjacent. Note that χ(G2)=λ1
1(G) + 1. In 1977, Wegner [95] made

the following conjecture for planar graphs.

Conjecture 2.2.1 (Wegner [95]). If G is a planar graph with maximum degree ∆(G), then

χ(G2) 6







∆(G) + 5 if 4 6 ∆(G) 6 7,

⌊3
2
∆(G)⌋ + 1 if ∆(G) > 8.

If G is a graph with maximum degree ∆(G), then the chromatic number χ(G2), and even

the clique number of G2, may be of the order of ∆(G)2. A trivial lower bound on χ(G2) is

∆(G)+1, since G2 contains a clique of order at least ∆(G)+1. The fact that ∆(G2) ≤ ∆2(G)

10



implies χ(G2) ≤ ∆2(G) + 1. The graphs C5 and the Petersen graph have the property that

χ(G2) = ∆2(G) + 1.

Wegner’s conjecture is still open. Wang and Lih [94] proved that if G is a planar graph

with girth g and maximum degree ∆, then χ(G2) ≤ ∆+5, ∆+10 and ∆+16, when g ≥ 7, 6

and 5, respectively. Recently Havet, van den Heuvel, McDiarmid and Reed [54] proved an

approximate upper bound of 3
2
∆+ o(∆), but the exact result has not been proved. The best

upper bound so far is 5∆/3 + 78, given by Molloy and Salavatipour [79].

A graph G has a graph H as a minor if H can be obtained from a subgraph of G by

contracting edges. Kuratowski [70] proved in 1930 that a graph is planar if and only if

it does not contain a K5-minor or a K3,3-minor, this result is also known as Kuratowski’s

theorem. A graph obtained by connecting a vertex to all vertices of an outerplanar graph

is planar. Thus, Kuratowski’s theorem implies a well-known result [20], that a graph is

outerplanar if and only if it is K4-minor-free and K2,3-minor-free. A graph is called a series-

parallel graph if it can be obtained from K2 by applying a sequence of edge duplications

and edge subdivisions. A well-known characterization of a K4-minor-free graph is that each

of its blocks is a series-parallel graph. Therefore, the class of K4-minor-free graphs contain

both outerplanar graphs and series-parallel graphs. The bound of Wegner’s conjecture, if

true, is sharp, as shown in Section 2.4. Moreover, for every ∆ > 4, there are series-parallel

(hence, K4-minor-free) graphs G with maximum degree ∆ such that the chromatic number

and clique number of G2 are both equal to ⌊3
2
∆⌋+ 1: see Figure 2.2, where A, B and C are

independent sets of suitable orders, as explained in Section 2.4. In these examples G, the

clique number of G2 is ⌊3
2
∆⌋ + 1.

Lih, Wang, and Zhu [72] proved the following theorem, which implies that Wegner’s con-

jecture holds for K4-minor-free graphs.

Theorem 2.2.2. [72] If G is a K4-minor-free graph, then

χ(G2) 6







∆(G) + 3 if 2 6 ∆(G) 6 3,

⌊3
2
∆(G)⌋ + 1 if ∆(G) > 4.

Wegner [95] showed that any for planar graph G with ∆(G) = 3 the list chromatic number

11



ch(G) is 8. Cranston and Kim [25] showed that for every connected subcubic graph G,

ch(G2) ≤ 8, except for the Petersen graph. Hetherington and Woodall [55] proved that

the upper bound in Theorem 2.2.2 holds not only for χ(G2) but also for the list chromatic

number ch(G2). They remarked that they “strongly suspect” that the bound t = ⌊3
2
∆⌋ + 1

is attained for ∆ > 4 only when G2 contains a clique of order t. We show that this suspicion

is incorrect for ∆ ∈ {4, 5} but correct for every ∆ > 6.

Theorem 2.2.3 ([66]). Let G be a K4-minor-free graph. If ∆(G) > 6 and G2 does not

contain a clique of order ⌊3
2
∆⌋ + 1, then χ(G2) 6 ⌊3

2
∆⌋.

Our proof uses the approach of Hetherington and Woodall [55]. In the next section we

introduce some notation and present examples for ∆(G) ∈ {4, 5}. We have failed to prove the

analogous result for the list chromatic number, but any counterexample to that would also

disprove the conjecture of Kostochka and Woodall [65], which states that ch(G2) = χ(G2)

for every graph G.

2.3 Some preliminaries

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

u v

x1

x2

x3

y1

y2

y3

Figure 2.1: A K4-minor-free graph G with ∆(G) = 4 such that χ(G2) = 7 and ω(G2)=6.

Let G be the graph in Figure 2.1. By inspection, G is a K4-minor-free graph, and ω(G2)=6.

For i ∈ {1, 2, 3}, let Ci = {xi, yi}∪ (NG(xi)∩NG(yi)). Let f be a proper coloring of G2, and

let α = f(u) and β = f(v). Since uv ∈ E(G2), we have α 6= β. Since x1, x2, and x3 all have

different colors, at most one of them has color β. Similarly, at most one of y1, y2, and y3

is colored with α. Thus, for some i ∈ {1, 2, 3}, neither α nor β is used to color any vertex
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of Ci. However, all five vertices of Ci have different colors in f ; thus f uses at least seven

colors, i.e., χ(G2) > 7. The example for ∆ = 5 is very similar, only instead of three copies

of K2,3 we take three copies of K2,4, call that graph G′. For some i, j ∈ {1, 2, 3, 4}, i 6= j,

neither α nor β is used to color any vertex of Ci ∪ Cj and χ(G′2) > 8. Thus for ∆ ∈ {4, 5}
there is a K4-minor-free graph G with maximum degree ∆ such that χ(G2) = ⌊3

2
∆⌋ + 1

but ω(G2) < χ(G2), contrary to the “strong suspicion” of Hetherington and Woodall [55].

Theorem 2.2.3 shows that this cannot happen if ∆ > 6.

Our proof of Theorem 2.2.3 depends heavily on the following well-known result of Dirac.

Lemma 2.3.1 (Dirac [27]). Every K4-minor-free graph has a vertex with degree at most 2.

2.4 Structure of large cliques

(a) (b)

F1 : F2 :
•

• •v1 v2

v0 (not in
the clique)

A

BC

•

• •v1 v2

v0

A

BC

Figure 2.2: The two possible forms for G[Q].

Let F denote the configuration F1 or F2 in Figure 2.2, where A, B, and C are sets of

vertices, v0 is adjacent to all vertices in B ∪ C, v1 to all vertices in C ∪ A, and v2 to all

vertices in A ∪ B. Let a = |A|, b = |B| and c = |C|. For F 2
1 − v0 or F 2

2 to be a clique of

order ⌊3
2
∆⌋ + 1, with ∆(F ) 6 ∆, we require

a + b 6 ∆ − 1, a + c 6 ∆ − 1;

13



also, in Figure 2.2(a),

b + c 6 ∆,

a + b + c = ⌊3
2
∆⌋ − 1;

and, in Figure 2.2(b),

b + c 6 ∆ − 2,

a + b + c = ⌊3
2
∆⌋ − 2.

If ∆ is even, then there is a unique solution in each case. If ∆ is odd, then there are

three solutions in each case, depending on which one of the three inequalities is strict; but

two of the three solutions are isomorphic (interchanging B and C). For the remaining,

a, b, c >
1
2
(∆− 3) in each solution, so that each of the sets A, B, C has at least two elements

if ∆ > 6. Note also that, in F ,

if ∆ is even, then all of v0, v1, v2 have degree ∆;

if ∆ is odd, then two of v0, v1, v2 have degree ∆ and one has degree ∆ − 1;

every other vertex of F has degree 2.

(2.1)

By an F -path we mean a path whose endvertices are in F but whose internal vertices (if

any) are not in F .

Lemma 2.4.1. Suppose that F (∼= F1 or F2) is a subgraph of a K4-minor-free graph G,

where each of A, B and C has at least two vertices. Then A ∪ B ∪ C is an independent set

in G, and there is no F -path in G that joins two vertices in A ∪ B ∪ C, or that joins one

vertex u in this set to a vertex v ∈ {v0, v1, v2} that is not adjacent to u in F .

Proof. It is easy to see that if there were an edge or an F -path of the type described, then

G would have a K4-minor. For example, if there is an edge uv or an F -path from u to v,

where u ∈ A and v ∈ A∪ B ∪C ∪ {v0}, then there is a K4-minor with branch vertices u, v,

v1 and v2. (Note that, since |A| > 2, there is a path from v1 to v2 through A that does not
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use u.) The remaining cases are similar. 2

If Q ⊆ V (G) and Q induces a clique of order t = ⌊3
2
∆⌋ + 1 in G2, then we will say that

Q, its t-clique, and G[Q], are all of standard form if there is a vertex v ∈ V (G) such that

G[Q ∪ {v}] ∼= F1, or if G[Q] ∼= F2. We will define

F (G, Q) =







G[Q ∪ {v}] if G[Q ∪ {v}] ∼= F1,

G[Q] if G[Q] ∼= F2.
(2.2)

Lemma 2.4.2. Let G be a 2-connected K4-minor-free graph with maximum degree ∆, and

suppose that G2 contains a standard-form clique of order ⌊3
2
∆⌋ + 1 with vertex set Q. Let

F = F (G, Q). Then either G ∼= F, or ∆ is odd and there is a connected subgraph H of G,

and an edge uv of F, where dG(u) = ∆, dF (u) = ∆− 1 and dF (v) = 2, such that G = F ∪H

and F ∩ H = {u, uv, v}.

Proof. It follows from Lemma 2.4.1 that F is an induced subgraph of G. Suppose that

G 6∼= F , and let C1, . . . , Ck be the components of G − V (F ). Since G is 2-connected, there

are at least two vertices of F that are adjacent to each component Ci. It follows from

Lemma 2.4.1 again that if u and v are adjacent to the same component Ci, then uv ∈ E(F ).

Since it is clearly impossible for dF (u) or dF (v) to be ∆, it follows from (2.1) that ∆ is odd,

and one of u and v, say u, is the unique vertex with dF (u) = ∆ − 1, and dF (v) = 2. Since

the one edge between u and Ci raises the degree of u to its maximum possible value ∆, there

is exactly one component C1 of G − V (F ), and exactly two edges uu′ and vv′ between F

and C1. If we define H to be the union of C1 and the path u′uvv′, then G = F ∪ H and

F ∩ H = {u, uv, v} as required. 2

The main result of this section is the following.

Lemma 2.4.3. Let G be a K4-minor-free graph. If ∆(G) > 6, then every clique of size

⌊3
2
∆⌋ + 1 in G2 is of standard form.

Proof. Assume this is false, and consider a smallest K4-minor-free graph G with maximum

degree at most ∆ such that G2 contains a t-clique K with V (K) = Q that is not of stan-

dard form. By the minimality of G, G has no vertices with degree 0 or 1. Therefore, by
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Lemma 2.3.1, G has a vertex with degree 2. Let v be such a vertex, with neighbors u and w.

We consider two cases.

Case 1: v /∈ Q. If u /∈ Q or w /∈ Q or uw ∈ E(G), then (G − v)2 contains the t-clique

K. By the minimality of G, (G − v)[Q] is of standard form, which is a contradiction, since

G[Q] = (G − v)[Q]. Therefore u, w ∈ Q and uw /∈ E(G).

Let H = G − v + uw. Since H is a minor of G (obtained by contracting the edge uv), H

is K4-minor-free. Since v /∈ Q, K ⊆ H2. By the minimality of G, H [Q] is of standard form.

This implies that uw is one of the edges in Figure 2.2, and that by subdividing uw we obtain

G such that G2[Q] is the t-clique K. Notice that every edge in Figure 2.2 is incident with

some vertex vi (i ∈ {0, 1, 2}). By symmetry we may assume that u ∈ {v0, v1}. If u = v0 and

w ∈ B (respectively, w ∈ C), then the distance between w and C (respectively, w and B) is

greater than 2, which contradicts the supposition that G2[Q] is a clique. If u = v1, then we

obtain a similar contradiction using A instead of B. If uw = v1v2 in F1, then the distance

between v1 and B in G is greater than 2. Finally, if uw = v0v1 (respectively, v0v2) in F2,

then the distance between v1 and B (respectively, v2 and C) is greater than 2. In each case

we have a contradiction; thus Case 1 cannot arise.

Case 2: v ∈ Q. Partition the set of vertices in Q at distance exactly two from v as

X0 ∪ X1 ∪ X2, where

X0 := (N(u) ∩ N(w)) ∩ Q \ {v},

X1 := (N(u) \ N(w)) ∩ Q \ {w},

X2 := (N(w) \ N(u)) ∩ Q \ {u},

as shown in Figure 2.3. Let xi = |Xi| for i = 0, 1, 2.

Claim 2.4.4. There is a vertex z0 ∈ V (G) \ {u, v, w} such that z0 is adjacent to all vertices

in (X1 ∪ X2) − z0.

In the following is the proof of Claim 2.4.4. Since X1 ∪ X2 ⊂ Q by the definition of the

sets Xi, and the distance between any two vertices of Q is at most 2, every vertex of X1 is

connected to every vertex of X2 by a path of length at most 2. Let H be the subgraph of
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•

•

•X0

X1 X2

u w

v

Figure 2.3: The vertex sets in Q.

G induced by the vertices of all paths of length at most 2 between X1 and X2. Note that

u, v, w /∈ V (H), since there are no edges between u and X2 or between w and X1.

Suppose there is no vertex z0 as in the statement of the Claim. Then there is no single

vertex whose deletion disconnects all paths of H between X1 and X2. Thus, by Pym’s

version of Menger’s theorem, there are two vertex-disjoint paths P1 and let P2 in H between

X1 and X2. Let P1 have endvertices p ∈ X1 and q ∈ X2, and P2 have endvertices r ∈ X1

and s ∈ X2. Since p and s are in a clique in G2, there is a path P3 of length at most 2 with

endvertices p and s. If P3 is internally disjoint from P1 and P2, then G has a K4-minor with

branch vertices p, s, u and w. If P3 has a central vertex t, and t ∈ V (P1), then G has a

K4-minor with branch vertices s, t, u and w. Similarly, if t ∈ V (P2), then G has a K4-minor

with branch vertices p, t, u and w. In every case we have a contradiction. This completes

the proof of the claim.

The argument now splits into two subcases.

Subcase 2.1: uw ∈ E(G). In this case x0 + x1, x0 + x2 6 ∆ − 2 and, since |Q| = t,

x0 + x1 + x2 > ⌊3
2
∆⌋ − 2. This implies that x1, x2 > ⌊1

2
∆⌋ >

1
2
(∆ − 1).

By Claim 2.4.4, there is a vertex z0 ∈ V (G) such that z0 is adjacent to every vertex in

(X1∪X2)−z0. Note that z0 cannot be in X0, because |X1∪X2∪{u, w}| > ∆. If z0 /∈ X1∪X2,

then G[Q ∪ {z0}] has the form in Figure 2.2(a), with A = X0 ∪ {v}, B = X1, C = X2, and

(v0, v1, v2) = (z0, w, u). If z0 ∈ X1, then G[Q] has the form in Figure 2.2(b) with A = X2,

B = X0 ∪ {v}, C = X1 − z0, and (v0, v1, v2) = (u, z0, w). If z0 ∈ X2, then we handle this

case similar to the previous case by interchanging X1 with X2 and u with w. In each case
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we have a contradiction.

Subcase 2.2: uw /∈ E(G). In this case x0 + x1, x0 + x2 6 ∆ − 1 and, since |Q| = t,

x0 + x1 + x2 > ⌊3
2
∆⌋ − 2. This implies that x1, x2 > ⌊1

2
∆⌋ − 1, so that x1, x2 > 2, since we

are assuming that ∆ > 6.

Recall that G[Q] has diameter 2. Consider the subgraph induced by the vertices of all paths

of length at most 2 connecting the pairs (u, X2), (w, X1), and (X1, X2). If all these paths go

through the vertex z0 whose existence was proved in Claim 2.4.4, then z0 /∈ X1∪X2∪{u, w},
since u and w are not adjacent to X2 and X1, respectively. However, z0 is adjacent to all

vertices in X1∪X2∪{u, w}, so z0 ∈ Q. Thus z0 ∈ X0, and G[Q] has the form in Figure 2.2(b)

with A = (X0 ∪ {v}) − z0, B = X1, C = X2, and (v0, v1, v2) = (z0, w, u).

This contradiction shows that not all of the paths mentioned go through z0. By symmetry,

interchanging X1 and X2 if necessary, we may assume that there is a vertex q ∈ X2 such

that there is a shortest path (of length at most 2) from u to q that does not contain z0 and

clearly does not contain w. Now G has a K4-minor with branch vertices u, w, q and z0.

(This uses the fact that |X1| > 2 and |X2| > 2.) This contradiction completes the proof of

Lemma 2.4.3. 2

2.5 Structure of minimum counterexamples

Definition 2.5.1. Let ∆ > 6 and t = ⌊3
2
∆⌋+1. If Theorem 2.2.3 fails for ∆, then among the

K4-minor-free graphs with maximum degree at most ∆ whose square has chromatic number

at least t but does not contain Kt, choose one having the fewest vertices, and within that

the fewest edges. We will call such a graph a (∆, t)-graph.

In this section, we derive a number of properties of (∆, t)-graphs. We also introduce some

terminology that will be used in the proof of Theorem 2.2.3 in the final section. Note that

t − 1 = ⌊3
2
∆⌋ > ∆ + 3. (2.3)

Lemma 2.5.2. If G is a (∆, t)-graph, where ∆ > 6 and t = ⌊3
2
∆⌋+1, then G is 2-connected.
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Proof. Clearly G is connected. Suppose that G has a cut-vertex v. Let G = G′ ∪G′′, where

G′ ∩ G′′ = {v}, |V (G′)| > 1, and |V (G′′)| > 1. By the minimality of G, there are proper

colorings f ′ and f ′′ of G′2 and G′′2 respectively, using colors in {1, 2, . . . , ⌊3
2
∆⌋}. Permute

colors in f ′′, if necessary, so that v has color f ′(v) and no G′′-neighbor of v has the same

color as any G′-neighbor of v; this is possible, since |NG(v)∪{v}| 6 ∆+1 < ⌊3
2
∆⌋. Now the

union of the two colorings is a proper ⌊3
2
∆⌋-coloring of G, and this contradicts the definition

of G. 2

For a graph G with ∆(G) > 3, we follow [55] in denoting by G1 the graph whose vertices

are the vertices of degree at least 3 in G, defined by making two vertices adjacent in G1 if

and only if they are either adjacent in G or connected in G by a path whose internal vertices

all have degree 2. Note that, G1 is a minor of G.

Lemma 2.5.3. Let G be a graph that does not contain a vertex with degree 0 or 1 or two

adjacent vertices with degree 2. Then G1 has no isolated vertices, and if G is 2-connected,

then either G1 is 2-connected or G1
∼= K2.

Proof. Suppose that there is an isolated vertex v in G1. Then all neighbors of v in G have

degree 2. But only two of these vertices can neighbor each other, so there is a vertex in

NG(v), that is adjacent to a vertex of degree 3 other than v. Therefore, v cannot be an

isolated vertex of G1. Note that G1 can be obtained from G by contracting some edges, each

of which has an endvertex of degree 2 at the time of its contraction, and deleting multiple

edges. Neither of these operations can create a cut-vertex, and so if G is 2-connected, then

G1 is nonseparable, i.e., it is 2-connected or K2. 2

Lemma 2.5.4. If G is a (∆, t)-graph, where ∆ > 6 and t = ⌊3
2
∆⌋ + 1, then

(a) G does not contain a vertex with degree 0 or 1 or two adjacent vertices with degree 2;

(b) G1 exists and is 2-connected.

Proof. Suppose first that G contains two adjacent vertices u and w of degree 2. Then

(G − {u, w})2 = G2 − {u, w}. By the minimality of G, (G − {u, w})2 is ⌊3
2
∆⌋-colorable.

Since dG2(u), dG2(w) 6 ∆ + 2 < ⌊3
2
∆⌋, we can extend a ⌊3

2
∆⌋-coloring of (G − {u, w})2 to
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G2, by coloring u and w with available colors not used on NG2(u) and NG2(w), respectively.

This contradicts the fact that χ(G2) > ⌊3
2
∆⌋. Thus G does not contain two adjacent vertices

of degree 2. Also, by the minimality of G, it has no vertex with degree 0 or 1. This proves

(a).

Since G is 2-connected by Lemma 2.5.2, it follows immediately from (a) and Lemma 2.5.3

that G1 exists and is either 2-connected or K2. But if G1
∼= K2, with vertices u, v, say,

then every vertex of G is adjacent to u, and so G2 is a complete graph; thus G cannot be a

(∆, t)-graph, and this contradiction proves (b). 2

Definition 2.5.5. For u, v ∈ V (G), define

Muv := {x ∈ NG(u) ∩ NG(v) : dG(x) = 2},

ǫuv :=







1 if uv ∈ E(G),

0 otherwise,

and

duv := |Muv| + ǫuv.

Lemma 2.5.6. Let G be a (∆, t)-graph, where ∆ > 6 and t = ⌊3
2
∆⌋ + 1. If v ∈ V (G) and

NG1(v) = {u, w}, then duv > ⌊1
2
∆⌋ and dvw > ⌊1

2
∆⌋.

Proof. Since v ∈ V (G1), duv + dvw = dG(v) > 3. W.l.o.g. we may assume that duv > 2, so

that Muv 6= ∅. Let x ∈ Muv; then (G− x)2 = G2 − x. By the minimality of G, (G− x)2 has

a ⌊3
2
∆⌋-coloring f . Let

N2(x) := (N(u) \ {x}) ∪ (N(v) \ N(u)) ∪ {u, v},

which is the set of G2-neighbors of x. We may assume that |N2(x)| > ⌊3
2
∆⌋, since otherwise

we can extend f to G2 by giving x a color that is not used on any vertex in N2(x). Since

|N(u)| 6 ∆ and |N(v)\ (N(u)∪{u})| 6 dvw, it follows that ∆−1+dvw +2 > ⌊3
2
∆⌋, so that

dvw > ⌊1
2
∆⌋ − 1 > 2. (2.4)
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By symmetry we may assume also that

duv > ⌊1
2
∆⌋ − 1. (2.5)

Suppose now that the lemma is false, say dvw < ⌊1
2
∆⌋. Now (2.4) and its derivation imply

dvw = ⌊1
2
∆⌋ − 1, |N2(x)| = ⌊3

2
∆⌋, and dG(u) = ∆. (2.6)

If uv ∈ E(G), then v ∈ N(u) \ {x}, and so we have counted v twice in our estimate for

|N2(x)|. Hence we may assume that uv /∈ E(G). If vw /∈ E(G), then the degree of v

in G2 is at most ∆ + 2 6 ⌊3
2
∆⌋ − 1, and so we can uncolor v, color x, and then recolor

v. Thus we may assume that vw ∈ E(G). If uw ∈ E(G) then, since vw ∈ E(G), we

obtain |N(v) \ (N(u) ∪ {u})| = dvw − 1, and so |N2(x)| < ⌊3
2
∆⌋. Thus we may assume that

uw /∈ E(G). Let y be a vertex in Mvw. The picture now is as in Figure 2.4.

• • •

• •

u v w

x y

Muv Mvw

Figure 2.4: The neighborhood of a vertex v contradicting Lemma 2.5.6.

If duv < ⌊1
2
∆⌋, then by the same argument we can deduce that uv ∈ E(G) and vw /∈ E(G).

Since this is not so, we can strengthen (2.5) to

duv > ⌊1
2
∆⌋ > 3. (2.7)

Let G′ be the graph obtained from G by deleting all vertices in Muv ∪ Mvw ∪ {v} and

adding an edge joining u and w. Now G′ is a minor of G, and so G′ is K4-minor-free and

connected, since G is.

Suppose that G′ has a cut-vertex y. If y ∈ {u, w}, then y is also a cut-vertex in G.
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Similarly, if y /∈ {u, w}, then since uw ∈ E(G′), vertices u and w are in the same component

of G′−y, and hence y is a cut-vertex in G. Since Lemma 2.5.2 implies that G is 2-connected,

G has no cut-vertex. Since no vertex of G has become a cut-vertex of G′, G′ also has no

cut-vertex, and so G′ is 2-connected. (Clearly G′ 6∼= K2, otherwise v is a cut-vertex of G.)

Suppose now that G′2 contains a t-clique Q. By Lemma 2.4.3, Q is of standard form, and so

F (G′, Q), defined by (2.2), is one of the graphs shown in Figure 2.2. Let F = F (G′, Q). Since

G′ − uw ⊂ G, and G2 has no t-clique, it follows that uw ∈ E(F ). Now, dF (u) 6 dG′(u) =

∆ + 1 − duv < ∆ − 1 by (2.6) and(2.7). By (2.1), therefore, dF (u) = 2 and dF (w) > ∆ − 1,

with strict inequality if ∆ is even. However, dF (w) 6 dG′(w) 6 ∆+1−dvw = ∆+2−⌊1
2
∆⌋,

by (2.6). The only possibility is that ∆ = 7, dvw = 2, and dF (w) = dG′(w) = 6. It now

follows from Lemma 2.4.2 that F = G′, so dG′(u) = dF (u) = 2 and, since dG(u) = ∆ = 7 by

(2.6), duv = 6 and dG(v) = duv + dvw = 8 > ∆. This contradiction shows that G′2 has no

t-clique.

By the minimality of G, there is a proper ⌊3
2
∆⌋-coloring f of G′2. We will use f to give

a proper ⌊3
2
∆⌋-coloring of G2. Since uw ∈ E(G′), color f(u) is not used on vertices in

NG′(w)− u. Therefore, we can use f(u) to color y. We consecutively color vertices in Mvw,

then v, and then vertices in Muv. We can do this, since at the moment of coloring, each

vertex in Mvw ∪ {v} has at most dG(w) colored G2-neighbors, and (because f(y) = f(u))

each vertex in Muv has at most |N2(x)| − 1 = ⌊3
2
∆⌋ − 1 colored neighbors.

This contradiction shows that dvw > ⌊1
2
∆⌋, and it follows by symmetry that duv > ⌊1

2
∆⌋.

This completes the proof of Lemma 2.5.6. 2

Lemma 2.5.7. If G is a (∆, t)-graph, where ∆ > 6 and t = ⌊3
2
∆⌋ + 1, then the graph G1

cannot have two adjacent vertices with degree 2.

Proof. Suppose that there are two adjacent vertices x, y ∈ V (G1) with degree 2. Let w and

z, respectively, be the other neighbors of x and y in G1.

Suppose first that w = z. Note that z cannot be a cut-vertex of G1, since G1 is 2-connected

by Lemma 2.5.4. Thus z also has degree 2 in G1, which is a triangle. Let V0 consist of

the vertices in {x, y, z} that are not adjacent in G to another vertex of this set, and let
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V1 = {x, y, z} \ V0. Now Mxy ∪ Mxz ∪ Myz ∪ V1 is a clique in G2, with order at most ⌊3
2
∆⌋,

since G is a (∆, t)-graph. Thus these vertices can be colored with at most ⌊3
2
∆⌋ colors, and

the vertices in V0 are now easily colored, since each has degree at most ∆ + 2 in G2.

•

• •

•w

x y

z

Mwx

Mxy

Myz

Figure 2.5: The neighborhood of vertices x and y contradicting Lemma 2.5.7.

Thus we may assume that w 6= z. (See Figure 2.5, where the broken edges may or may

not be present.) By Lemma 2.5.6,

⌊1
2
∆⌋ 6 dwx 6 ⌈1

2
∆⌉ and ⌊1

2
∆⌋ 6 dyz 6 ⌈1

2
∆⌉, (2.8)

since dwx = dG(x)−dxy 6 ∆−dxy, and similarly for dyz. Without loss of generality, we may

assume that dwx 6 dyz. Let s = dwx − 1; note that s > 2 by Lemma 2.5.6. Also

dwx = s + 1 and dyz 6 s + 2 (2.9)

by (2.8). Let G′ be the graph obtained from G by deleting all vertices in Mwx ∪ Mxy ∪
Myz ∪ {x, y}, and adding s vertices, v1, . . . , vs, each of which is adjacent to w and z. By the

definition of s,

dG′(w) 6 ∆ − 1 and dG′(z) 6 ∆ − 1; (2.10)

in particular, the maximum degree of G′ is at most ∆.

Since G is 2-connected, G′ also is 2-connected. Since G′ is a minor of G, G′ does not have

a K4-minor. If G′2 contains a t-clique Q, then Q is of standard form by Lemma 2.4.3, and

Q clearly contains at least one of the vertices vi. Thus at least one of w and z has degree ∆

in G′ by (2.1), but this contradicts (2.10). Thus G′2 has no t-clique. By the minimality of
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G, G′2 has a ⌊3
2
∆⌋-coloring f . We will extend f to a ⌊3

2
∆⌋-coloring of G. Color s vertices

of Mwx and s vertices of Myz with the colors f(vi) (1 6 i 6 s). Now consecutively color the

remaining vertices in Mwx ∪ Myz, which is possible, since each of these vertices has at most

∆ colored G2-neighbors at the moment of its coloring.

We now color x. If wx /∈ E(G), then the number of colored G2-neighbors of x does not

exceed dwx + dyz 6 ∆ + 1 by (2.8), so there are at least two spare colors for x by (2.3). If

wx ∈ E(G), then the number of colored G2-neighbors of x does not exceed

|{w} ∪ NG(w) \ {x}| + dyz 6 ∆ + (s + 2) (2.11)

by (2.9). Since s colors are used on both Mwx and Myz, at most ∆ + 2 < ⌊3
2
∆⌋ colors are

forbidden for x, and x can be colored.

We now color y in the same way as x. We have an extra restriction, that f(y) 6= f(x). If

yz /∈ E(G), then there is no problem, as we have at least one spare color for y. If yz ∈ E(G)

then, since dwx = s + 1, we can replace the term (s + 2) by (s + 1) on the RHS of (2.11),

which exactly compensates for the extra color f(x) that is forbidden for y. Thus y can be

colored.

Finally, note that if v ∈ Mxy, then

dG2(v) = (dG(x) − ǫxy) + (dG(y) − ǫxy) − (dxy − ǫxy − 1) (2.12)

6 dG(x) + dG(y) − dxy + 1, (2.13)

where the first term in (2.12) counts x and all its neighbors except v and y, the second term

counts y and all its neighbors except v and x, and the third term subtracts the |Mxy| − 1

vertices of Mxy \ {v} that have been counted twice in the first two terms. The number of

distinct colors that cannot be used on v is at most dG2(v) − s. Thus if dG2(v) 6 ⌊3
2
∆⌋ + 1,

then we can color v, since s > 2. If dG2(v) > ⌊3
2
∆⌋ + 1, then, by (2.13) and Lemma 2.5.6,

∆ is odd, dG(x) = dG(y) = ∆, dxy = ⌊1
2
∆⌋, and dG2(v) = ⌊3

2
∆⌋ + 2. But then dwx =

dyz = ∆ − dxy = ⌈1
2
∆⌉ > 4, and so s > 3 and dG2(v) − s 6 ⌊3

2
∆⌋ − 1. In every case,

dG2(v) − s < ⌊3
2
∆⌋, and so we can consecutively color all the vertices of Mxy to obtain a
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⌊3
2
∆⌋-coloring of G2. This contradicts the definition of G, and this contradiction completes

the proof of Lemma 2.5.7. 2

Lemma 2.5.8. If G is a (∆, t)-graph, where ∆ > 6 and t = ⌊3
2
∆⌋ + 1, then the graph G1

cannot contain a 4-cycle wxyz such that x and z both have degree 2 in G1.

Proof. Suppose there is such a 4-cycle wxyzw in G1; call it C. By Lemma 2.5.7, G1 does

not contain two adjacent vertices with degree 2, and so w and y both have degree at least 3

in G1. By Lemma 2.5.6, ∆ is odd and

dwx = dxy = dyz = dzw = ⌊1
2
∆⌋, (2.14)

and w and y each have exactly one edge in G that is not counted in (2.14). Let these

edges join w and y to w′ and y′ respectively. Note that |Mwx| = ⌊1
2
∆⌋ if wx /∈ E(G) and

|Mwx| = ⌊1
2
∆⌋ − 1 if wx ∈ E(G), and similarly for the other edges of C.

Suppose first that wy ∈ E(G), so that w′ = y, y′ = w, and

V (G) = Mwx ∪ Mxy ∪ Myz ∪ Mzw ∪ {w, x, y, z}.

Now we can color the vertices of G2 with ∆ + 3 6 ⌊3
2
∆⌋ colors, by coloring the vertices of

Mwx and those of Myz from the same set of ⌊1
2
∆⌋ colors, coloring the vertices of Mxy and

Mzw from another set of ⌊1
2
∆⌋ colors, and giving the remaining four colors to w, x, y, z.

We may therefore suppose that wy /∈ E(G). Form G′ from G by deleting x, z, and all

their neighbors except w and y. By the minimality of G, there is a ⌊3
2
∆⌋-coloring f of G′2.

We will extend this coloring to G2. We may assume that f(y) 6= f(w), since y has at most

∆ + 1 colored neighbors in G2 and so can be recolored if necessary. Choose disjoint sets A

and B of ⌊1
2
∆⌋ colors each, which do not include any of the colors of w, w′, y, y′. If there is

a color not in A ∪ B ∪ f({w, w′, y, y′}), then let γ be such a color and let α = γ and β = γ;

otherwise, the colors of w, w′, y and y′ are all distinct (and ∆ = 7), and we let α = f(w′)

and β = f(y′).

Color all vertices of Mwx and Myz with colors from A, and color all vertices of Mxy and

Mzw with colors from B, ensuring that if |Mwx| = |Myz| = |A| − 1, then one color from A is
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not used at all, and similarly with B. If G contains all four edges of C, then there is a color

in A and one in B that we have not used, and we can use these on x and z. If G omits only

one edge of C, say the edge wx, then we can color x with α and use a color from B to color

z. If G contains edges wx and wz (only) of C, then we can color x with the color from A

that is not used on Mwx, and z with the color from B that is not used on Mwz. If G contains

edges wx and xy (only) of C, then we can color x with color γ if it exists. If γ does not exist,

then let v be the unique vertex in Myz whose color is not used on Mwx, color x with f(v),

and recolor v with f(w). Now z can be colored, since it has only ∆ + 1 neighbors in G2.

Finally, if G does not contain two adjacent edges of C, without loss of generality, assume

wx, yz /∈ E(G). Now we can color x with α and y with β. Every other case is similar to one

of these, leading to a ⌊3
2
∆⌋-coloring of G, and this contradiction proves Lemma 2.5.8. 2

Let a 2-thread in G1 be a path of length 2 whose internal vertex has degree 2 in G1.

Lemma 2.5.9. If G is a (∆, t)-graph, where ∆ > 6 and t = ⌊3
2
∆⌋ + 1, then the graph G1

has a triangle xywx such that dG1(w) = 2 and dG1(y) = 3.

Proof. By Lemma 2.5.4, G1 is 2-connected and so does not contain a vertex with degree 0

or 1. By Lemma 2.5.7, G1 does not contain two adjacent vertices with degree 2. Let G2 be

the graph obtained from G1 by suppressing each vertex v of degree 2 (i.e., contracting one

edge incident with v) and removing multiple edges; in other words, G2 = (G1)1. It follows

from Lemma 2.5.3 that G2 exists and is 2-connected or is K2. If G2
∼= K2, with vertices w, y,

then, since dG1(w) > 3, G1 contains at least two 2-threads wxy and wzy between w and y,

and so contains a 4-cycle wxyzw of the sort that was proved impossible in Lemma 2.5.8.

Thus G2 is 2-connected and has minimum degree at least 2.

Since G2 is a minor of G1, G2 is K4-minor-free. So, by Lemma 2.3.1, G2 has a vertex y

with degree 2; let its neighbors in G2 be x and z. By Lemma 2.5.8, there cannot be two or

more 2-threads in G1 connecting x and y or connecting y and z, and so y is connected to

each of x and z by an edge, or a 2-thread, or both. By the definition of G2, dG1(y) > 2, and

so there is no loss of generality in assuming that y is connected to x in G1 by an edge and

a 2-thread ywx, forming a triangle xywx. If y is connected to z by a 2-thread but not by
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u

Figure 2.6: The subgraphs induced by NG1(y) ∪ {y} in G1.

an edge, then redefine z to be the middle vertex of this 2-thread. Now y and its neighbors

in G1 induce one of the graphs in Figure 2.6 (where the broken edges may or may not be

present). However, the graph in Figure 2.6(b) is impossible because, dG(y) would be at least

duy + dwy + 2 > ∆ + 1, by Lemma 2.5.6. Therefore, y and its neighbors in G1 induce the

subgraph in Figure 2.6(a). 2

2.6 Proof of the main theorem

Let ∆ > 6 and t := ⌊3
2
∆⌋ + 1. If the theorem fails for ∆, then there exists a (∆, t)-graph G

(defined at the start of Section 2.5). By Lemma 2.5.9, G1 contains a subgraph of the form

depicted in Figure 2.6(a). In G, this corresponds to the subgraph depicted in Figure 2.7,

where the broken edges may or may not be present. Among all possible subgraphs of this

form in G, choose one such that dwy is as small as possible. By Lemma 2.5.6,

dwx > ⌊1
2
∆⌋ and dwy > ⌊1

2
∆⌋. (2.15)

Since dwx + dwy = dG(w) 6 ∆, it follows that equality holds in both parts of (2.15) if ∆ is

even, and in at least one part if ∆ is odd.

If v ∈ Mwx, then

dG2(v) = (dG(w) − ǫwx) + (dG(x) − ǫwx) − (dwx − ǫwx − 1) − ǫwyǫxy, (2.16)

where the first term in (2.16) counts w and all its neighbors except v and x, the second
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Figure 2.7: The induced subgraph of G.

term counts x and all its neighbors except v and w, the third term subtracts the |Mwx| − 1

vertices of Mwx \ {v} that have been counted twice in the first two terms, and the last term

accounts for y, which is also counted twice if wy, xy ∈ E(G). Let p = dG2(v), which is the

same for all v ∈ Mwx. It follows from (2.16), using (2.15) in the third line, that

p = dG(w) + dG(x) + 1 − dwx − ǫwx − ǫwyǫxy (2.17)

6 2∆ + 1 − dwx − ǫwx − ǫwyǫxy

6 ⌈3
2
∆⌉ + 1

=







⌊3
2
∆⌋ + 2 if ∆ is odd,

⌊3
2
∆⌋ + 1 if ∆ is even.

Similarly, let q = dG2(v) for all v ∈ Mwy. Then

q = dG(w) + dG(y) + 1 − dwy − ǫwy − ǫwxǫxy (2.18)

6 2∆ + 1 − dwy − ǫwy − ǫwxǫxy

6







⌊3
2
∆⌋ + 2 if ∆ is odd,

⌊3
2
∆⌋ + 1 if ∆ is even.

Let Gw denote the graph obtained from G by deleting w and all its neighbors except x

and y. Let G− be obtained from Gw by deleting y and all its neighbors except x and z. Let G+

be obtained from G− by adding the edge xz if it is not already present. Let N ′(x) := NG−(x)

and N ′(z) := NG−(z). Since, by (2.15), dwx + dxy and dwy + dxy are both at least ⌊1
2
∆⌋ + 1,
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it follows that

|N ′(x)| 6 ⌈1
2
∆⌉ − 1 and dyz 6 ⌈1

2
∆⌉ − 1. (2.19)

Let S = N ′(x) ∪ Mxy ∪ Myz ∪ {x, y} and S+ = S ∪ {z}. Note that

|S| 6 (⌈1
2
∆⌉ − 1) + (∆ − dwy) + 2 6 ∆ + 2, (2.20)

by (2.15) and (2.19). Recall that t − 1 = ⌊3
2
∆⌋ > ∆ + 3 by (2.3).

Lemma 2.6.1. If z /∈ N ′(x), and either (i) or (ii) holds, and at least one of (iii) and (iv)

holds :

(i) |N ′(x)| = 1;

(ii) |N ′(x)| = 2 and Myz = ∅;
(iii) there is a ⌊3

2
∆⌋-coloring f of (G−)2 such that all vertices in N ′(x)∪{x, z} have different

colors;

(iv) (G+)2 has no t-cliques.

Then there is a ⌊3
2
∆⌋-coloring of (Gw)2 such that all vertices in S+ have different colors.

Proof. We start by proving a claim, which is needed only in one special case, but which

cannot be avoided.

Claim 2.6.2. If dG(z) = ∆ ∈ {6, 7}, and (ii) and (iii) hold (N ′(x) = {u1, u2}), then f can

be chosen so that some vertex in N ′(z) has the same color as one of u1, u2, x.

Let us assume that this is not true for the given f , so the ⌊3
2
∆⌋ = ∆ + 3 distinct colors

are those of u1, u2, x, z and the ∆ − 1 vertices in N ′(z). Note that x has degree 2 in G−.

Choose a vertex z1 ∈ N ′(z). There are three cases.

Case 1: x is a cut-vertex in G−. Here u1 and u2 are in different components of G− − x.

Let u1 be in the component not containing z1, and interchange the colors f(u1) and f(z1)

throughout this component.

Case 2: there are two internally disjoint paths between x and z in G−. Here there is no

path between u1 and u2 in G− − {x, z}, otherwise G contains a K4-minor. Thus u1 and u2
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are in different components of G− − {x, z}. Let u1 be in the component not containing z1,

and interchange the colors f(u1) and f(z1) throughout this component.

Case 3: neither of the previous cases applies. Now there is a cut-vertex v ∈ V (G−) such

that x and z are in different components of G−−v. Let C(x) be the component that contains

x, and let α be a color not in f(N(v)∪{v, z}). If α ∈ f(N ′(z)), then interchange colors f(x)

and α throughout C(x). Otherwise, α ∈ f({u1, u2, x}), by the first sentence of the proof, so

choose z1 ∈ N ′(z) such that f(z1) 6= f(v), and interchange colors f(z1) and α throughout

C(x). This concludes the proof of Claim 2.6.2.

We can now prove Lemma 2.6.1. Suppose first that (iii) holds. Transfer the given coloring

f to (Gw)2, and extend it to all uncolored vertices in NG(z) by consecutively coloring each

of them differently from all colored vertices in the set N ′(x) ∪ NG(z) ∪ {x, z}; call this set

T . This is possible, because if we are coloring a vertex in T , then there are at most |T | − 1

vertices in T that are colored already. Thus, at each stage, the number of colored vertices

in T is at most ⌊3
2
∆⌋−1 unless |N ′(x)| = 2 (in which case (ii) holds), and |NG(z)| = ∆, and

⌊3
2
∆⌋ = ∆ + 3. We have shown in Claim 2.6.2 that in this case we can choose f so that the

colors of the vertices in T are not all distinct.

We can now consecutively color all vertices in Mxy, and y if yz /∈ E(G), by coloring each of

them differently from all colored vertices in S+, of which there are at most |S+| − 1 6 ∆+2

by (2.20). This gives the required ⌊3
2
∆⌋-coloring of (Gw)2.

This proves the result when (iii) holds. Suppose now that (iv) holds. Since G+ is a minor

of G, G+ is K4-minor-free, and its maximum degree is clearly at most ∆. By hypothesis

(iv), (G+)2 has no t-cliques, and so, by the minimality of G, (G+)2 has a ⌊3
2
∆⌋-coloring f ,

in which all vertices in N ′(x) ∪ {x, z} necessarily have different colors; thus (iii) holds, and

the result follows. 2

Lemma 2.6.3. If there is a ⌊3
2
∆⌋-coloring f of (Gw)2 in which all vertices of S have different

colors and f(x) 6= f(z), then f can be chosen so that there exists a vertex u ∈ N ′(x) with

f(u) 6= f(z).

Proof. If the conclusion fails for the given f , then |N ′(x)| 6 1. Since G is 2-connected (by

Lemma 2.5.2), z is not a cut-vertex, and so |N ′(x)| = 1 and N ′(x) 6= {z}. Let N ′(x) = {u}.
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Since f(u) = f(z), dG(u, z) > 3 and xz /∈ E(G).

Suppose that (G+)2 has a t-clique, with vertex set Q, say. By Lemma 2.4.3, Q is of

standard form in G+, and so F (G+, Q), defined by (2.2), is one of the graphs shown in

Figure 1. Since x has degree 2 in G+, and G2 has no t-cliques, it follows that x ∈ Q and

u is connected to z by more than one path of length 2 in G+. This is impossible, since

dG(u, z) > 3. Thus (G+)2 has no t-cliques. Thus hypotheses (i) and (iv) of Lemma 2.6.1

hold, and the result follows from Lemma 2.6.1. 2

Lemma 2.6.4. If there is a ⌊3
2
∆⌋-coloring f of (Gw)2 in which all vertices of S have different

colors and f(x) 6= f(z), then there is a ⌊3
2
∆⌋-coloring of G2.

Proof. By Lemma 2.6.3, we may assume that there is a vertex u ∈ N ′(x) such that f(u) 6=
f(z). (We use u in Case 1.)

We first color w differently from all the colored vertices in (NG(x) \Mwx) ∪Myz ∪ {x, z},
of which there are at most ∆ − dwx + dyz + 2 6 ∆ + 2 by (2.15) and (2.19).

Case 1: either ∆ is even, or dG(w) < ∆, or dwx = ⌊1
2
∆⌋+ 1. In this case we will first color

consecutively all vertices in Mwy, each of them differently from the (at most ∆− 1) colored

neighbors of y and from w, x, y, a total of at most ∆ + 2 colors; note that ∆ + 2 6 ⌊3
2
∆⌋− 1

by (2.3). In doing this, we take care to use the color f(u) on one vertex of Mwy. We now

consecutively color the vertices of Mwx, in four subcases.

Subcase 1.1: wx ∈ E(G). Here p 6 ⌊3
2
∆⌋ by the hypothesis of Case 1 and (2.17) (since

ǫwx = 1). Since every vertex in Mwx has two G2-neighbors with the same color f(u), the

vertices in Mwx can all be colored.

Subcase 1.2: wx, wy /∈ E(G). Here p 6 ⌊3
2
∆⌋ + 1, so if we try to color the vertices of

Mwx as in Subcase 1.1 it is only with the last vertex that we may fail. If this happens, then

uncolor w, color the last vertex in Mwx, and recolor w, which is possible, since w has at most

∆ + 2 neighbors in G2.

Subcase 1.3: wx /∈ E(G) and wy, xy ∈ E(G). Here p 6 ⌊3
2
∆⌋ by (2.17), and we color as

in Subcase 1.1.
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Subcase 1.4: wx, xy /∈ E(G) and wy ∈ E(G). Here p 6 ⌊3
2
∆⌋ + 1. Now x is not adjacent

to the vertices of Mwy in G2, and so when we color Mwy, as well as using f(u) on one vertex

of Mwy, we also use f(x) on another vertex. Then, when we color the vertices of Mwx as

in Subcase 1.1, each has two pairs of G2-neighbors with the same color, and the coloring

succeeds.

Case 2: dwy 6= ⌊1
2
∆⌋. Here ∆ is odd, dwx = 1

2
(∆− 1), and dwy = 1

2
(∆ + 1), by (2.15). Note

that Cases 1 and 2 are exhaustive, since if dwy = ⌊1
2
∆⌋, then the hypotheses of Case 1 are

satisfied.

We will first color consecutively all vertices in Mwx, each of them differently from the (at

most ∆ − 1) colored neighbors of x and from w, x, y, a total of at most ∆ + 2 6 ⌊3
2
∆⌋ − 1.

Case 2 now divides into three.

Case 2a: either Myz 6= ∅, or Myz = ∅ (here yz ∈ E(G)) and f(z) is not used on any vertex

of N ′(x). Choose v ∈ Myz in the first case and let v = z in the second. When we color

Mwx, we make sure to use f(v) on one vertex of Mwx. We can now color the vertices in

Mwy exactly as in Case 1, interchanging x with y and p with q, and using v instead of u and

(2.18) instead of (2.17). In each subcase, q satisfies the same upper bound as was given for

p in the corresponding subcase of Case 1.

Case 2b: Myz = ∅ and f(z) ∈ f(N ′(x)) and dG(y) < ∆. Here there is no vertex v as in

Case 2a, but in each subcase the upper bound for q is one less than in Case 2a, and so the

argument works with no need for v.

Case 2c: Myz = ∅ and f(z) ∈ f(N ′(x)) and dG(y) = ∆. Here dxy = 1
2
(∆ − 3), and so

|N ′(x)| 6 2. Let N ′(x) = {u1, u2}, where for the moment we allow the possibility that

u1 = u2. We may assume that

f(z) ∈ f(N ′(x)) (2.21)

for every ⌊3
2
∆⌋-coloring f of (Gw)2 satisfying the hypotheses of the lemma, since otherwise

the result follows by Case 2a.

Subcase 2c.1: z ∈ {u1, u2}, i.e., xz ∈ E(G). Here we have a t-clique in G2, a contradiction,

unless either all of the edges wx, wy, xy are in G, or none of these edges are in G. If all of
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these edges are in G, then q 6 ⌊3
2
∆⌋ − 1 by (2.18), and so we can color all the vertices in

Mwy. If none of the edges wx, wy, xy are in G, then q 6 ⌊3
2
∆⌋ + 1, but we can use f(y) on

some vertex of Mwx and also uncolor w before coloring the last vertex of Mwy, after which

it easy to recolor w.

Subcase 2c.2: z /∈ {u1, u2}. Assume f(u1) = f(z). This implies that dG(u1, z) > 3.

If (G+)2 has no t-cliques, then hypotheses (i) or (ii), and (iv), of Lemma 2.6.1 hold, and

the ⌊3
2
∆⌋-coloring of (Gw)2 whose existence was proved in Lemma 2.6.1 contradicts (2.21).

So we may assume that (G+)2 has a t-clique Q. By Lemma 2.4.3, Q is of standard form

in G+, i.e., F (G+, Q), defined by (2.2), is isomorphic to one of the graphs F1 and F2 in

Figure 2.2. Let F = F (G+, Q).

Since G2 has no t-cliques, and x has degree at most 3 < ∆− 1 in G+, it follows from (2.1)

that x has degree 2 in F and the three vertices of degree at least ∆ − 1 in F are z, another

neighbor ui of x, and a third vertex w′. Now ui and z have common neighbors other than

x in F , and hence in G. Since dG(u1, z) > 3, it follows that i 6= 1, so u1 6= u2 and the ‘big’

vertices in F are z, u2 and w′. It follows from this that Q is the only t-clique in (G+)2.

Since x has a G+-neighbor u1 that is not in F , and G is 2-connected (by Lemma 2.5.2),

it follows from Lemma 2.4.2 that either {u2, x} or {x, z} is a cutset of G, and there is a

subgraph H of G+ such that G+ = F ∪ H where F ∩ H = {u2, u2x, x} or {x, xz, z}. There

are two cases to consider.

Case 1: F ∩H = {u2, u2x, x}. Here u2 is a cut-vertex of G−. The given coloring f of (Gw)2

induces a coloring of (G−)2, and we can easily permute colors in this induced coloring so that

z has a different color from both u1 and x (and, necessarily, from u2). Now hypotheses (ii)

and (iii) of Lemma 2.6.1 hold, and the ⌊3
2
∆⌋-coloring of (Gw)2 whose existence was proved

in Lemma 2.6.1 contradicts (2.21).

Case 2: F ∩H = {x, xz, z}. In this case z is the vertex of degree ∆ − 1 in F , and both x

and z have degree 2 in H . Now, H2 has no t-cliques, since we have already seen that Q is

the only t-clique in (G+)2. Since H is a minor of G, it is K4-minor-free. By the minimality

of G, H2 has a ⌊3
2
∆⌋-coloring f ′. Let z1 6= x be the other neighbor of z in H . Note that

f ′(u1) 6= f ′(z) and f ′(x) 6= f ′(z1).
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Let C ′ = F − xz. Note that C ′ is a configuration of the same type as the configuration

C in Figure 2.7 that we have been working with, with the vertices w′, z, u2, x playing the

roles of w, x, y, z respectively; and this configuration exists in G− with z having exactly one

neighbor, z1, outside C ′. Let us emphasize this by writing x′ = z, y′ = u2, z′ = x, and

u′ = z1. Since dwy > ⌊1
2
∆⌋ by the hypothesis of Case 2, we may assume that dw′y′ > ⌊1

2
∆⌋

also, since otherwise we would have chosen to work with C ′ rather than C at the start of

Section 2.6.

Let H− = H − xz. Note that H− is obtained from G− by deleting w′, y′ and all their

neighbors other than x′ and z′. In other words, C ′, H−, and G− are related to each other in

exactly the same way that C, G−, and G are. Also, f ′ is a ⌊3
2
∆⌋-coloring of (H−)2 in which

the vertices u′, x′, z′ (i.e., z1, z, x) all have different colors. With respect to C ′, H−, and G−,

therefore, hypotheses (i) and (iii) of Lemma 2.6.1 hold, and the proof of that Lemma, and

Case 2a of this Lemma, show that f ′ can be extended to a ⌊3
2
∆⌋-coloring of (G−)2, in which

necessarily f ′(u2) 6= f ′(z), since dG−(u2, z) 6 2.

Note that the color modifications required by Claim 2.6.2 and Lemma 2.6.3 have not

been needed here, and the colors of vertices in H have not changed. Thus all vertices in

N ′(x)∪{x, z} now have different colors. This shows that, with respect to C, hypotheses (ii)

and (iii) of Lemma 2.6.1 hold, and the ⌊3
2
∆⌋-coloring of (Gw)2, whose existence was proved

in Lemma 2.6.1, contradicts (2.21). This completes the proof of Lemma 2.6.4. 2

Now let s = dyz and let Ĝ be the graph obtained from G− by adding s vertices y1, . . . , ys

of degree 2, each with neighbors x and z. By (2.19), dĜ(x) 6 ∆ − 1, and so the maximum

degree of Ĝ is at most ∆.

Lemma 2.6.5. The graph Ĝ has no K4-minor, and (Ĝ)2 has no t-cliques.

Proof. The graph obtained from G− by adding just one vertex y1 adjacent to x and z is a

minor of G, and so is K4-minor-free. Adding s − 1 further vertices of degree 2 in parallel

with y1 cannot create a K4-minor, and so Ĝ is K4-minor-free.

Now suppose that (Ĝ)2 has a t-clique, with vertex set Q, say. Then Q must contain at

least one new vertex yi. By Lemma 2.4.3, Q is of standard form. By (2.1), in F (Ĝ, Q), x

34



and z both have degree ∆ if ∆ is even, and if ∆ is odd, then one of them has degree ∆ and

the other has degree at least ∆ − 1. This implies the statements (*1)–(*3) below, where

(*1) and (*2) hold because of (2.19) and the argument that gave rise to (2.19), and (*3)

holds because otherwise a vertex v ∈ {x, z} that has degree ∆ in F (Ĝ, Q) would have degree

greater than ∆ in Ĝ, which we have already seen to be impossible.

(*1) ∆ is odd and |N ′(x)| = dyz = s = 1
2
(∆ − 1);

(*2) dwx = dwy = 1
2
(∆ − 1), dxy = 1 and dG(w) = ∆ − 1;

(*3) all vertices y1, . . . , ys are in Q.

Let G∗ = Ĝ − ys; the graph G∗ is a K4-minor-free graph with maximum degree at most

∆ whose square by (*3) has no t-clique. By the minimality of G, (G∗)2 has a ⌊3
2
∆⌋-coloring

f . We will use f to construct a ⌊3
2
∆⌋-coloring of G2. First we use colors f(y1), . . . , f(ys−1)

to color all but one vertex, say vyz, in Myz , and to color y if yz ∈ E(G). Then we choose

a vertex u ∈ N ′(x) such that f(u) 6= f(z) and we color vyz with a color not used on any

vertex in NG(z) ∪ {u, x, z}. There remain at most two uncolored vertices in Gw: possibly y,

and, by (*2), at most one vertex in Mxy. Each of these vertices (if they exist) can be colored

differently from all the colored vertices in N ′(x)∪Mxy ∪ {x, y, z}, of which by (*1) and (*2)

there are at most 1
2
(∆ − 1) + 4 6 ∆, since here ∆ > 7.

At this point we have a ⌊3
2
∆⌋-coloring of (Gw)2. It may fail to satisfy the hypotheses of

Lemma 2.6.4, but only because it is possible that vyz ∈ Myz may have the same color as

some vertex in N ′(x). However, we have ensured that u ∈ N ′(x) does not have the same

color as any vertex in Myz ∪ {z}, and this is enough to ensure that Case 1 in the proof of

Lemma 2.6.4 works and gives a ⌊3
2
∆⌋-coloring of G2. This contradicts the choice of G as a

(∆, t)-graph, and this contradiction shows that (Ĝ)2 has no t-cliques. 2

Now we will prove Theorem 2.2.3. By Lemma 2.6.5 and the minimality of G, Ĝ2 has a

⌊3
2
∆⌋-coloring f ; clearly f(x) 6= f(z). We will use f to construct a ⌊3

2
∆⌋-coloring of (Gw)2.

First, we use f(y1), . . . , f(ys) to color all vertices in Myz , and to color y if yz ∈ E(G). Then

we consecutively color all vertices in Mxy, and y if yz /∈ E(G), differently from all colored

vertices in S (see (2.20)). The result is a ⌊3
2
∆⌋-coloring of (Gw)2 such that all vertices in S

have different colors. It now follows from Lemma 2.6.4 that there is a ⌊3
2
∆⌋-coloring of G2,
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and this contradiction completes the proof of Theorem 2.2.3.

36



Chapter 3

Unavoidable subhypergraphs: a-clusters

3.1 Forbidden families with small unions

One of the central problems of extremal hypergraph theory is maximizing the size of a hy-

pergraph that does not contain a forbidden configuration. The hypergraphs, that maximize

the number of edges under that condition are called extremal hypergraphs.

We are interested in finding the size of the extremal hypergraphs that do not contain a

configuration of sets called an a-cluster.

Definition 3.1.1. Given a p-tuple a of positive integers, say a = (a1, . . . , ap), such that

k = a1 + · · · + ap, an a-cluster A in a k-uniform family F is a subfamily {F0, . . . , Fp} such

that the sets Fi\F0 and F0\Fi for 1 ≤ i ≤ p are pairwise disjoint, and |Fi\F0| = |F0\Fi| = ai.

The sets F0 \Fi for 1 ≤ i ≤ p are said to form an a-partition of F0, and F0 is called the host

of the a-cluster.

Various cases of the problem of finding the largest k-uniform hypergraph not containing

an a-cluster are inspired by some of the oldest theorems and conjectures of extremal combi-

natorics. The first result in this area was obtained by Erdős, Ko and Rado. A family having

no two disjoint members is an intersecting family.

Erdős-Ko-Rado Theorem (EKR theorem [37]). If F ⊂
(

[n]
k

)

with n ≥ 2k is an intersecting

family, then |F| ≤
(

n−1
k−1

)

. Moreover, equality holds only if F is a star.

A d-dimensional simplex (or d-simplex) is a collection of sets F1, . . . , Fd+1 such that every

d of them intersect, but ∩iFi = ∅. In that sense, a 1-simplex is a family consisting of

two disjoint members; the EKR Theorem gives the maximum size of a family without a

1-simplex.
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There is also hypergraph version of Turán’s problem, which asks for the size of the extremal

k-uniform hypergraph without a complete hypergraph on d + 1 elements. This problem is

open whenever d + 1 > k > 2. The case d = k = 2 is a special case of Turán’s theorem,

proved by Mantel [77] in 1907.

Erdős posed the more general form of this Turán problem. A triangle is a family of three

sets F1, F2, F3 such that each pair has nonempty intersection, but the overall intersection

is empty. Erdős asked for the size of an extremal triangle-free hypergraph. He conjectured

in [34] that extremal k-uniform hypergraph on n elements has size
(

n−1
k−1

)

for n ≥ 3k/2. Partial

results for this conjecture were solved in [11, 26, 42, 43]. Finally, Mubayi and Verstraëte [83]

settled it, where equality holds only for a star. Chvátal [23] proved Erdős’ conjecture for

k=3 in a more general form. He proved that if n ≥ k + 2 ≥ 5, F ⊂
(

[n]
k

)

and F does not

contain a k − 1-simplex, then |F| ≤
(

n−1
k−1

)

. He generalized the question of Erdős by setting

the forbidden configuration to be d-simplex. Note that, if d and k have values close to each

other, then a d-simplex in a k-uniform family is a configuration with small union which is

the main feature of the forbidden families we discuss in this chapter.

Chvátal’s Simplex Conjecture ([23]). Let k ≥ d + 1 ≥ 3, n ≥ k(d + 1)/d and F ⊂
(

[n]
k

)

.

If F contains no d-simplex, then |F| ≤
(

n−1
k−1

)

. Equality holds only when F is a star.

This conjecture is already proved for d = 1 and d = 2 as mentioned earlier and it is still

open for larger values of d. Frankl and Füredi [45] proved Chvátal’s Simplex Conjecture for

sufficiently large n.

Another generalization of the EKR Theorem was proposed by Katona in [60]. He asked for

the size of the extremal family F assuming that |F1 ∪ F2 ∪ F3| ≤ s implies F1 ∩ F2 ∩ F3 6= ∅
for any F1, F2, F3 ∈ F . It is shown that the EKR bound holds for the cases s ≥ 2k

and sufficiently large n in [44] and later for 3k/2 ≤ n < 2k in [83]. Mubayi generalized

the result for n ≥ 3k/2 in [80]. He also showed in [81] that the same bound follows, if

|F1 ∪ F2 ∪ F3 ∪F4| ≤ 2k implies F1 ∩ F2 ∩ F3 ∩ F4 6= ∅ for sufficiently large n, which led him

to make the following conjecture.

Conjecture 3.1.2. (Mubayi, [80]) Let k ≥ d ≥ 2, n ≥ dk/(d− 1) and F ⊂
(

[n]
k

)

containing
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no (k, d)-cluster. Call a family of k-sets {F1, . . . , Fd} a (k, d)-cluster if

|F1 ∪ F2 ∪ · · · ∪ Fd| ≤ 2k and F1 ∩ F2 · · · ∩ Fd = ∅.

Then |F| ≤
(

n−1
k−1

)

, with equality only if F is a star.

The case d = k follows from a theorem of Chvatal [23], as was observed by Chen, Liu, and

Wang [21]. Keevash and Mubayi [63] proved both Conjecture 3.1 and 3.1.2 when k/n and

n/2 − k are bounded away from zero. Recently, Jiang, Pikhurko, and Yilma [58] proved a

more general result concerning the so-called “strong simplices”.

Mubayi and Ramadurai [82] showed that Conjecture 3.1.2 is true when 2 ≤ d ≤ k and suffi-

ciently large n. Their proof uses the stability method pioneered by Erdős and Simonovits [89].

The stability method has been recently used to solve classical problems in extremal com-

binatorics. The idea of the method is to show that given a forbidden configuration F if

the F -free (hyper)graph has size close the size of the extremal (hyper)graph, then also its

structure is nearly the same as the extremal (hyper)graph’s. This method is mostly not

applicable to hypergraph problems because the structure of the extremal hypergraph is not

known. Recently, however, there has been more progress in extremal hypergraph theory

with examples such as [50], [61], [62], [64].

In this chapter, we give a stronger generalization that proves Conjecture 3.1.2 for suf-

ficiently large n > n0(k), where we use the delta-system method developed by Frankl and

Füredi in [45]. We also use a complicated version of the stability method described in Section

3.6. In our result, we additionally give an explicit structure of the unavoidable subhyper-

graphs, the so-called a-clusters.

Theorem 3.1.3. Fix integers k and p with k > p > 1. If F ⊂
(

[n]
k

)

with |F| >
(

n−1
k−1

)

and

n is sufficiently large, i.e. n > n0(k), then F contains an a-cluster, where a = (a1, . . . , ap).

Moreover, if |F| =
(

n−1
k−1

)

and F is a-cluster-free, then it is a star.

Our n0(k) is very large, it is double exponential in k. The case k = p, i.e., a = 1 =

(1, 1, . . . , 1), is special and is discussed in Section 3.9.
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3.2 Definitions and the delta-system method

Definition 3.2.1. For F ∈ F , we denote the intersection structure of F in F by I(F,F),

defined by

I(F,F) = {F ∩ F ′ : F ′ ∈ F , F 6= F ′}

Definition 3.2.2. A family F ⊂
(

S
k

)

is called k-partite if there is a partition of into sets

X1, . . . , Xk such that each member of F shares at most one element with Xi, for 1 ≤ i ≤ k.

In this case, X1, . . . , Xk are partite sets of F . If F ⊂
(

[n]
k

)

is k-partite with partite sets

X1, . . . , Xk, then for any S ⊂ [n], the projection Π(S) of S is defined to be {i : S ∩Xi 6= ∅};
and the projection Π(F) of F is {Π(F ) : F ∈ F}.

A k-partite family F is homogeneous (or has homogeneous intersection structure) if Π(I(F,F))

is the same for each F ∈ F .

Definition 3.2.3. For a homogeneous k-partite family F with J := Π(I(F,F)) for each

F ∈ F , we let r(J ) be the rank of J , defined by

r(J ) = min{|A| : A ⊂ [k], ∄B ∈ J , A ⊂ B}.

The rank is k only if J = 2[k] \ {[k]}; otherwise, it is at most k − 1.

The delta-system method is described in the following theorem due to Füredi.

Theorem 3.2.4 (Füredi [47]). For any two positive integers k and s there exists a positive

constant c(k, s) such that every family F ⊂
(

[n]
k

)

contains a subfamily F∗ ⊂ F satisfying

(3.2.4.1) |F∗| > c(k, s)|F|,
(3.2.4.2) F∗ is k-partite,

(3.2.4.3) there is a family J ⊂ 2[k] \ {[k]} such that Π(I(F,F∗)) = J holds for all

F ∈ F∗,

(3.2.4.4) J is closed under intersection, (i.e., A, B ∈ J imply A ∩ B ∈ J ),

(3.2.4.5) every member of I(F,F∗) is the center of a delta-system of size s formed by

members of F∗ for all F ∈ F∗.
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We frequently use (3.2.4.5) in the following forms:

(3.2.4.5a) if F1, F2 ∈ F∗, M ∈ I(F1,F∗) and M ⊂ F2, then M ∈ I(F2,F∗),

(3.2.4.5b) if F1 ∈ F∗, F2 ∈ F , M ∈ I(F1,F∗) and M ⊂ F2, then M ∈ I(F2,F),

(3.2.4.5c) if F1 ∈ F∗, F2 ∈ F , M ∈ I(F1,F∗), M ⊂ F2, |S| < s, and M ∩ S = ∅, then

there exists an F3 ∈ F∗ such that M = F2 ∩ F3 and S ∩ F3 = ∅.

Definition 3.2.5. For a subset S ⊂ F ∈ F , denote the degree of S in F by degF(S), defined

by

degF(S) = |{F : F ∈ F , S ⊂ F}|.

A subset of F ∈ F is called a private subset of F in F if its degree in F is one.

We assume throughout this chapter that the family F ⊂
(

[n]
k

)

is an a-cluster-free family,

where a 6= 1, and |F| ≥
(

n−1
k−1

)

. Also the constant s in Theorem 3.2.4 is fixed as s = 2k, and

c1 denotes the constant c(k, s) in (3.2.4.1).

In Section 3.3, the subfamily F∗ ⊂ F is a k-partite subfamily satisfying (3.2.4.2)–(3.2.4.5).

In that section, we obtain a significant relation between the rank and the intersection struc-

ture of F∗. In Section 3.4 and 3.5, we partition the family F such that one part has very

rich intersection structure, called F1. It will be shown that the remaining parts of F have

negligible size and therefore |F1| dominates |F|. In Section 3.6, we obtain a partition of F1

using a partition of ∆k−2(F1). By using this partition and the version of Kruskal-Katona

theorem due to Lovász, we obtain a stability-type result. Section 3.7 concludes the proof

of Theorem 3.1.3 . In Section 3.8, we show that a special case of Conjecture 3.1.2, when

d = k + 1, is implied by a well-known lemma of Bollobás. Finally, in Section 3.9 we discuss

the special case when a=1, and we provide some open problems.

3.3 Rank and shadow

Let the subfamily F∗ ⊂ F be a k-partite subfamily satisfying (3.2.4.2)–(3.2.4.5). We define

J as Π(I(F,F∗)) for all F ∈ F∗. Note that J is closed under intersection, and every

member of I(F,F∗) is the center of a delta-system of size 2k formed by the members of F∗.
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Definition 3.3.1. For a family F and A ⊂ F ∈ F with (F \ A) ∈ I(F,F), we denote by

F (A) an arbitrary member of F such that F (A) ∩ F = F \ A.

Lemma 3.3.2. If r(J ) ≥ k − 1, then r(J ) = k − 1, i.e., it is impossible that (F \ {xi}) ∈
I(F,F∗) for all 1 ≤ i ≤ k.

Proof. We assume, on the contrary, that r(J ) = k. Because J is closed under intersection,

J = 2[k] \ {[k]}. Let F = A1 ∪ · · · ∪ Ap be a a-partition of F with |Ai| = ai for 1 ≤ i ≤ p.

Since each F \Ai ∈ I(F,F∗), there are delta-systems in F∗ with these centers. By applying

(3.2.4.5c), one can choose F (A1), . . . , F (Ap) that do not intersect outside F . The subfamily

{F, F (A1), . . . , F (Ap)} is an a-cluster in F∗, a contradiction. 2

Definition 3.3.3. We use the notation ∆ℓ(H) for the ℓ-shadow of the family H, i.e.,

∆ℓ(H) = {L : |L| = ℓ, ∃H ∈ H with L ⊂ H}.

Corollary 3.3.4. F is not too dense, i.e. |∆k−1(G)| > c1|G| for all G ⊂ F .

Proof. We apply Theorem 3.2.4 to G to obtain G∗ such that Π(I(G,G)) = JG. Lemma 3.3.2

implies that r(JG) ≤ k − 1. Therefore, each G ∈ G∗ has a private (k − 1)-subset in G∗ and

|∆k−1(G∗)| ≥ |G∗|. This implies

|∆k−1(G)| ≥ |∆k−1(G∗)| ≥ |G∗| ≥ c1|G|. (3.1)

2

3.4 The intersection structure of F1 and F2

Before proving Lemma 3.4.1 and Lemma 3.4.3, we define the following subfamilies of F .

We apply Theorem 3.2.4 to F with s = 2k to obtain a homogeneous k-partite family and

we define G1 to be F∗. We also define J1 to be Π(I(G,G1)) for all G ∈ G1. We apply

Theorem 3.2.4 again to F \G1 and we define G2 to be (F \G1)
∗ and J2 to be Π(I(G,G2)) for
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all G ∈ G2. We repeat this procedure until either F \ (G1 ∪ · · ·∪Gm) = ∅ or r(Jm+1) ≤ k− 2

for some m.

Let

F1 = ∪i{Gi : r(Ji) = k − 1 and |∆k−1(Ji)| = k − 1}.

We define F2 = ∪i{Gi : Gi /∈ F1} and F3 = F \ (F1 ∪ F2).

Lemma 3.4.1. If F ∈ Gj ⊂ F1 for some j and F \ {xi} ∈ I(F,Gj) for 2 ≤ i ≤ k, then

F \ {x1} is a private subset of F in F . Moreover, in this case

F1 ∈ F and |F1 ∩ F | ≥ k − 2 imply x1 ∈ F1. (3.2)

Proof. Assume that F ∩ F1 = {x2, . . . , xk} for some F1 ∈ F . Let F = A1 ∪ · · · ∪ Ap be an

a-partition of F , |Ai| = ai for all i, such that x1, x2 ∈ A1. Note that {E : E ⊂ F, x1 ∈
E} ⊂ I(F,Gj) and there is a delta-system with center {x1} ∪A2 ∪ · · · ∪Ap containing F as

a member. Pick another member F ′ ∈ Gj of that delta-system such that F ′ ∩ (F1 \ F ) = ∅
and F ′ ∩ F = {x1} ∪A2 ∪ · · · ∪Ap. Let A′

1 = F ′ \ (A2 ∪ · · · ∪Ap). Hence F1 ∩ F ′ = F ′ \A′
1.

Since F ′ ∈ Gj , there exist Fi ∈ Gj for 2 ≤ i ≤ p such that Fi ∩ F ′ = F ′ \ Ai and such

that F1, . . . , Fp do not intersect outside F ′. Hence the subfamily {F ′, F1, F2, . . . , Fp} is an

a-cluster in F , a contradiction.

Note that F \ {x1} is a private subset of F in F , not only in Gj . 2

We need the following claim for the proof of Lemma 3.4.3. This lemma will be used later

to obtain an upper bound on the size of F2 ∪ F3. For the remainder of this section, we fix

F ∈ Gj ⊂ F2 for some j. Let t be fixed, 2 ≤ t ≤ k, such that F \ {xi} /∈ I(F,Gj) only for

1 ≤ i ≤ t. Also we define G to be a bipartite graph with partite sets X = {x1, . . . , xt} and

Y = [n] \ F and edges xiy for y ∈ Y if and only if (F \ {xi}) ∪ {y} ∈ F .

Claim 3.4.2. α′(G) ≤ t − 2.

Proof. We assume, on the contrary, that distinct elements {y2, . . . , yt} exist such that

(F \ {xi} ∪ {yi}) ∈ F for 2 ≤ i ≤ t. Observe that for any A ⊂ F and |A| < k

if |A ∩ {x1, . . . , xt}| ≥ 2, then (F \ A) ∈ I(F,Gj). (3.3)
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(3.3) is implied by the fact that F \ A is the intersection of the following sets and the fact

that Jj is closed under intersection.

F \ A =

(

⋂

xu,xv∈A, u<v≤t

(F \ {xu, xv})
)

⋂

(

⋂

xw∈A, w>t

(F \ {xw})
)

∈ I(F,Gj).

Therefore, if A1, . . . , Ap is an a-partition of F , and each Ai either satisfies (3.3) or Ai = {xj}
for some j, 2 ≤ j ≤ t, then one can find an a-cluster with host F in the following cases.

Without loss of generality, index the entries of a so that a1 ≥ a2 ≥ · · · ≥ ap, where a1 ≥ 2.

We define the positive integers i and ℓ by

a1 + · · ·+ ai−1 < t ≤ a1 + · · · + ai ;

ℓ = t − (a1 + · · ·+ ai−1).

Case 1: ℓ ≥2. In this case, a1, . . . , ai ≥ 2.

Use an a-partition of F such that A1, A2, . . . , Ai−1 ⊂ {x1, . . . , xt} and |Ai∩{x1, . . . , xt}| = ℓ.

Case 2: ℓ = 1 and ai = 1.

Use an a- partition such that A1 ∪ A2 · · · ∪ Ai = {x1, . . . , xt}, x1 ∈ A1.

Case 3: ℓ = 1, ai ≥ 2 and a1 ≥ 3.

Use an a- partition such that A1 ∪ A2 · · · ∪ Ai ⊇ {x1, . . . , xt, xt+1}, x1, xt+1 ∈ A1.

Case 4: ℓ = 1, ai ≥ 2, a1 ≤ 2 and ap = 1. In this case, a1 = · · · = ai = 2.

Use an a- partition such that Ap = {xt} and A1 ∪ A2 · · · ∪ Ai−1 = {x1, . . . , xt−1}, where

x1 ∈ A1.

Case 5: ℓ = 1, a1 = · · · = ap = 2.

This implies that t is odd, t ≥ 3, and k must be even; also, t < k. Pick a member F ′ ∈ Gj such

that F ′ = F \{xk}∪{yk} with yk 6= y2. Let F2 = F \{x2}∪{y2}. We have F ′\F2 = {x2, yk}.
Using again (3.3) and F2 one can build an a-cluster with host F ′ with the partition {x2, yk},
{x1, x3} and {x4, x5}, . . . , {xk−2, xk−1}. 2

Lemma 3.4.3.
∑

1≤i≤t

1

degF(F \ {xi})
≥ 1 +

1

k − 1
.
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Proof. By the claim above and by the well-known König–Egerváry theorem, β(G) ≤ t − 2.

Let |X \ S| = ℓ, we have ℓ ≥ 2 and |S ∩ Y | = ℓ− 2. Since N(v) ⊂ S ∩ Y for each v ∈ X \ S,

we have

degF(F \ {v}) = degG(v) + 1 ≤ |S ∩ Y | + 1 = ℓ − 1.

This yields
∑

v∈X\S

1

degF(F \ {v}) ≥ ℓ

ℓ − 1
≥ k

k − 1
.

2

3.5 F1 dominates F

Lemma 3.5.1.

|F2| + |F3| ≤
k

c1

(

n

k − 2

)

+ (k − 1)

(

n − 1

k − 2

)

< c2n
k−2

for some c2 depending only on k.

Proof. Since the rank of Jm+1 is at most k−2, each member of Gm+1 has its private (k−2)-

subset in Gm+1. We obtain as in (3.1) that

c1|F \ (G1 ∪ · · · ∪ Gm)| ≤ |Gm+1| ≤ |∆k−2(Gm+1)| ≤
(

n

k − 2

)

.

Therefore,
k

k − 1
|F3| ≤

k

(k − 1)c1

(

n

k − 2

)

.

Lemma 3.4.1 implies that every F ∈ F1 contains a private (k − 1)-set in F . Using this and

the result of Lemma 3.4.3, we have

|F1| +
k

k − 1
|F2| ≤

∑

F∈F

(

∑

v∈F

1

degF(F \ {v})

)

= |∆k−1(F)| ≤
(

n

k − 1

)

.

Comparing the sum of the two inequalities above to
(

n−1
k−1

)

≤ |F| gives us the upper bound

on |F2| + |F3|. 2
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3.6 The stability of the extremum

Each F ∈ F1 is contained in a unique Gi ⊂ F1 for some i ∈ [m] as introduced in Section 3.4.

Lemma 3.4.1 implies that there exists a (unique) ℓ(F ) ∈ [n] for each F ∈ F1 such that

{E : ℓ(F ) ∈ E ⊂ F} ⊂ I(F,Gi). In the following, we partition F1 based on ℓ(F ) for each

F ∈ F1.

For all i ∈ [n], let Hi = {F ∈ F1 : ℓ(F ) = i} and H̃i = {H \ {i} : H ∈ Hi}. By Lemma

3.4.1, the subfamilies ∆k−2(H̃1), . . . , ∆k−2(H̃n) are pairwise disjoint. Therefore, H̃i ∩H̃j = ∅
and Hi∩Hj = ∅ for 1 ≤ i < j ≤ n. We will need the following version of the Kruskal-Katona

theorem due to Lovász.

Theorem 3.6.1 (Lovász [74]). If H ⊂
(

[n]
d

)

and |H| =
(

x
d

)

for some real number x such that

x ≥ d, then |∆h(H)| ≥
(

x
h

)

for all d > h ≥ 0.

If Hi 6= ∅, then define xi such that |H̃i| =
(

xi

k−1

)

for i ∈ [n]. Without loss of generality, we

let x1 ≥ xi for all i. Then,

|Hi| = |H̃i| ≤
(

xi

k−1

)

(

xi

k−2

) |∆k−2(H̃i)| ≤
x1 − k + 2

k − 1
|∆k−2(H̃i)| ≤

n − k + 1

k − 1
|∆k−2(H̃i)|. (3.4)

Lemma 3.5.1 provides a lower bound for |F1|.

(

n − 1

k − 1

)

−c2n
k−2 ≤ |F1| =

∑

i∈[n]

|Hi| ≤
x1 − k + 2

k − 1





∑

i∈[n]

|∆k−2(H̃i)|



 ≤ x1 − k + 2

k − 1

(

n

k − 2

)

.

This inequality implies that x1 > n − c3 for some c3 depending only on k. Therefore there

exists a c4, also depending only on k, such that

∑

2≤i≤k

|Hi| ≤
(

n

k − 1

)

−
(

n − c3

k − 1

)

< c4n
k−2.

This and Lemma 3.5.1 lead to

|F \ H1| ≤ (c2 + c4)n
k−2. (3.5)
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3.7 The extremal family is unique

In this section we complete the proof of Theorem 3.1.3. Suppose that F ⊂
(

[n]
k

)

contains no

a-cluster and satisfies |F| ≥
(

n−1
k−1

)

. In previous sections we have already defined H1 ⊂ F1,

F2, and F3 and showed in (3.5) that H1 constitutes the bulk of F . Let a1 be the largest

among a1, . . . , ap, we have a1 ≥ 2. For any F ∈ F and any H ∈ H1, if |F ∩ H| ≥ k − a1,

then 1 ∈ F , otherwise there is an a-cluster with host H .

We partition F into four subfamilies:

B = {B : 1 /∈ B ∈ F},

C = {C : 1 ∈ C ∈ F and |C ∩ B| ≥ k − a1 for some B ∈ B},

D = {D : 1 ∈ D ∈ F \ C and every S with 1 ∈ S ( D

is a center of some delta-system of F of size 2k},

E = {E : 1 ∈ E ∈ F} \ (C ∪ D).

Note that H1 ⊂ D and and by (3.5), C ∪ D dominates F .

Subfamily B: Let D̃ := {D \ {1} : D ∈ D}. By definition of D we have |D ∩ B| 6= k − 2

for D ∈ D̃, B ∈ B. In other words, ∆k−2(D̃) ∩ ∆k−2(B) = ∅. Hence

(

n − 1

k − 2

)

≥ |∆k−2(D̃)| + |∆k−2(B)|.

We choose a real number x ≥ k − 1 such that |∆k−1(B)| =
(

x
k−1

)

. Since B ⊂ F \ H1, (3.5)

gives
(

x

k − 1

)

= |∆k−1(B)| ≤ k|B| < k(c2 + c4)n
k−2, (3.6)

and x = O(n
k−2
k−1 ).

Note that

|∆k−2(D̃)| ≥ k − 1

n − k + 1
|D̃| and |∆k−2(B)| ≥ k − 1

x − k + 2
|∆k−1(B)|.
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Multiplying both of these with (n − k + 1)/(k − 1) and using Lemma 3.3.4 yields

(

n − 1

k − 1

)

≥ |D̃| + n − k + 1

x − k + 2
|∆k−1(B)| ≥ |D| + c1

n − k + 1

x − k + 2
|B|. (3.7)

Subfamily E : Let Ẽ := {E \ {1} : E ∈ E} and apply Theorem 3.2.4 to Ẽ with s = 2k.

Call this (k − 1)-partite subfamily E∗. We first show that each E ′ ∈ E∗ has a (k − 2)-subset

that is neither in I(E ′, E∗) nor in I(E ′, D̃). Suppose, on the contrary, that for some E ∈ E ,

E ′ := E \ {1} ∈ E∗, E ′ = {x1, . . . , xk−1} such that

E ′ \ {xi} ∈
{ I(E ′, D̃) for i = 1, . . . , r

I(E ′, E∗) i = r + 1, . . . , k − 1.
(3.8)

All subsets of E ′ \ {xi} are contained in I(E ′, D̃), for 1 ≤ i ≤ r, and all supersets of the

set {x1, . . . , xr} in E ′, except E ′ itself, are contained in I(E ′, E∗). So, for all S ⊂ E ′, there

is a delta-system of size 2k with center S ∪ {1}. This contradicts E = E ′ ∪ {1} /∈ D and

therefore (3.8) is not true. So,

(

n − 1

k − 2

)

≥ |∆k−2(D̃)| + |E∗|,

Note that
n − k + 1

k − 1
|∆k−2(D̃)| ≥ |D̃| = |D|.

Also by Corollary 3.3.4, |E∗| ≥ c1|Ẽ | = c1|E|. By combining all of above, we obtain

(

n − 1

k − 1

)

≥ |D| + c1
n − k + 1

k − 1
|E|. (3.9)

Subfamily C: Define C̃ := {C \ {1} : C ∈ C}. Apply Theorem 3.2.4 to C̃ with s = 2k. Call

this (k − 1)-partite subfamily C∗ and let JC := Π(I(C ′, C∗)) for any C ′ ∈ C∗.

Claim 3.7.1. Each C ′ ∈ C∗ has a (k − 2)-set that is neither in ∆k−2(D̃) nor in I(C ′, C∗).

Proof. Suppose, on the contrary, that for some C ′ = {x1, . . . , xk−1} ∈ C∗ with C = C ′∪{1} ∈
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C and for some r, we have

C ′ \ {xi} ∈
{ I(C ′, D̃) for i = 1, . . . , r

I(C ′, C∗) i = r + 1, . . . , k − 1.
(3.10)

All subsets of C ′ \ {xi} are contained in I(C ′, D̃), for 1 ≤ i ≤ r, and all supersets of the set

{x1, . . . , xr} in C ′, except C ′ itself, are contained in I(C ′, C∗). So, for all S ⊂ C ′, there is a

delta-system of size 2k with center S ∪ {1}.
First, we claim that JC 6= 2[k−1] \ {[k − 1]}. Otherwise, there exists a member C ′′ ∈ C

such that C ′′ \ {1} ∈ C∗ and |C ′′ ∩ B| = k − a1 for some B ∈ B. Then one can build an

a-cluster with host C ′′ such that C ′′(A1) = B. So, r ≥ 1 in (3.10).

For each 1 ≤ i ≤ r, choose Di ∈ D such that C ∩ Di = C \ {xi}, and choose B ∈ B with

|C ∩ B| ≥ k − a1. By definition of D, |Di ∩ B| ≤ k − a1 − 1. We also have

|Di ∩ B| + 1 ≥ |C ′ ∩ B| = |C ∩ B| ≥ k − a1.

Therefore, all inequalities above are equality for each 1 ≤ i ≤ r and one can find an a-cluster

with host C and C(A1) = B, a contradiction. 2

Since every C ′ ∈ C∗ contains a private (k − 2)-set not covered by any member of D̃ we

have
(

n−1
k−2

)

≥ |∆k−2(D̃)| + |C∗|. Using Corollary 3.3.4, this yields

(

n − 1

k − 1

)

≥ |D| + c1
n − k + 1

k − 1
|C|. (3.11)

In (3.7), (3.9) and (3.11) we prove that for n > n0(k), one has

|D| + 4|B| ≤
(

n − 1

k − 1

)

, |D| + 4|C| ≤
(

n − 1

k − 1

)

, |D| + 4|E| ≤
(

n − 1

k − 1

)

.

Adding these three, we obtain

3|F| + (|B| + |C| + E|) ≤ 3

(

n − 1

k − 1

)
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implying B = C = E = ∅. Thus F = D, ∩F 6= ∅, and we are done. 2

3.8 Finding a (k, k + 1)-cluster

Our first observation is that in Conjecture 3.1.2 the constraint d ≤ k is not necessary. We

prove the case d = k + 1. (It is not clear what is the possible maximum value of d.) We

apply a classical result of Bollobás.

Definition 3.8.1. A cross-intersecting set system is a collection of pairs of sets {Ai, Bi} for

i ∈ [m] such that Ai ∩ Bi=∅ and Ai ∩ Bj 6= ∅ for i 6= j.

Theorem 3.8.2 (Bollobás [14]). If {Ai, Bi} is a cross-intersecting set system with |Ai| ≤
a,|Bi| ≤ b for i ∈ [m], then

m ≤
(

a + b

a

)

.

Equality holds only if {A1, . . . , Am} =
(

[a+b]
a

)

and Bi = [a + b] \ Ai.

Theorem 3.8.3. If F ⊂
(

[n]
k

)

contains no (k, k + 1)-cluster and n ≥ k, then |F| ≤
(

n−1
k−1

)

.

Proof. Every F ∈ F has a (k − 1)-subset B(F ) ⊂ F that is not contained by any other

member of F , otherwise there are sets F1, . . . , Fk ∈ F such that F = {x1, . . . , xk} and

F ∩Fi = F \ {xi}, a contradiction. Therefore, the sets {B(F ), [n]−F} form an intersecting

set pair system as described above and Bollobás’ theorem gives |F| ≤
(

(k−1)+(n−k)
k−1

)

=
(

n−1
k−1

)

.2

3.9 The case a=1 and open problems

A k-uniform family {E1, E2, . . . , Eq} is called k-tree if for every i with 2 ≤ i ≤ q we have

|Ei \ ∪j<iEj | = 1, and there exists an α less than i such that |Eα ∩ Ei| = k − 1. The case

k = 2 corresponds to the usual trees in graphs. Let T be a k-tree on v vertices, and let

exk(n, T ) denote the maximum size of a k-family on n elements not containing T . We have

exk(n, T ) ≥ (1 − o(1))
v

k

(

n

k − 1

)

. (3.12)
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To see this, consider a (k − 1)-packing of maximum size P ⊂
(

[n]
k+v−1

)

, i.e. |P ∩ P ′| <

k − 1 for all distinct P, P ′ ∈ P. Rödl’s theorem [87] provides such a packing of size (1 −
o(1))

(

n
k−1

)

/
(

k+v−1
k−1

)

, when n → ∞. By setting F = ∆k(P), we obtain a T -free k-uniform

hypergraph F with size

(

k + v − 1

k

)

|P|, which equals (1 − o(1))
v

k

(

n

k − 1

)

.

Due to this observation, the following conjecture is best possible if it is true.

Conjecture 3.9.1 (Erdős and Sós for graphs, Kalai 1984 for all k, see in [45]).

exk(n, T ) ≤ v

k

(

n

k − 1

)

.

This was proved for star-shaped trees by Frankl and Füredi [45], i.e., whenever T contains

an edge wich intersects all other edges in k − 1 vertices.

Note that a 1-cluster is a k-tree with v = 2k. A Steiner system S(n, k, t) is a family of

k-subsets of [n] such that each t-subset of [n] is contained in a unique member of that family.

So if an S(n, 2k − 1, k − 1) exists, then the same type of construction used to prove (3.12)

provides a 1-cluster-free k-family of size
(

n
k−1

)

, slightly exceeding the EKR bound. (Such

designs exist, e.g., for k = 3 and n ≡ 1 or 5 (mod20), see [12]). On the other hand, the

result of Frankl and Füredi [45] that is mentioned above implies that if F ⊂
(

[n]
k

)

is a family

with more than
(

n
k−1

)

members, then F contains every star-shaped tree with k + 1 edges,

especially it contains a 1-cluster.

Theorem 3.1.3 is also related to the trace problem of uniform hypergraphs. Given a

hypergraph H , its trace on S ⊆ V (H) is defined as the set {E ∩ S : E ∈ E(H)}. Let

Tr(n, r, k) denote the maximum number of edges in an r-uniform hypergraph of order n and

not admitting the power set 2[k] as a trace. For k ≤ r ≤ n, the bound Tr(n, r, k) ≤
(

n
k−1

)

was

proved by Frankl and Pach [46]. Mubayi and Zhao [84] slightly reduced this upper bound

by logp n − k!kk in the case when k − 1 is a power of the prime p and n is large. So far,

the best lower bound known was given by Ahlswede and Khachatrian [1], who showed that

Tr(n, k, k) ≥
(

n−1
k−1

)

+
(

n−4
k−3

)

for n ≥ 2k ≥ 6. Hence, finding Tr(n, r, k) is still one of the
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challenging open problems in extremal hypergraph theory.
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Chapter 4

Extremal Cycle-free subgraphs of the hypercube

4.1 Turán problem

The generalized Turán number ex(G, H) is the maximum number of edges in an H-free

subgraph of G. An H-free graph with with n vertices and ex(n, H) edges is an extremal

H-free graph. The Turán graph, Tn,r, is defined as the extremal Kr+1-free graph with n

vertices and t(n, r) edges. This graph is an r-partite graph with parts of order ⌊n
r
⌋ or ⌈n

r
⌉.

Mantel [77] provided in 1907 the first Turán-type result by showing a sharp upper bound

on the size of the extremal K3-free graphs. He proved that ex(n, K3) = ⌊n2/4⌋. Much later,

in 1941, Turán generalized this result to all Kr-free graphs, known as Turán’s theorem. It

states that if G is a Kr-free graph on n vertices with e(G) ≥ t(n, r− 1), then G is the Turán

graph Tn,r−1.

One may ask a similar question for any graph other than the complete graph. In fact,

Turán graphs are the extremal graphs for various classes of graphs. For a graph H with

χ(H) = r ≥ 3, the size of the extremal H-free graph on n vertices is the same as e(Tn,r−1),

i.e. ex(n, H) = t(n, r − 1). On the other hand, the Turán problem for bipartite graphs is

much more complicated and is still unsolved for all but a few of the bipartite graphs. The

graphs with chromatic number 2 are also called degenerate graphs due to Simonovits [90].

All of the H-free extremal graphs have size θ(n2) in the case of non-bipartite H . However,

in the case of bipartite H , the extremal H-free graphs have size o(n2). Most of the known

results for the Turán problem supply an error term of order o(n2), which makes it obvious

in the case of bipartite graphs. In the following, we mention some of the seminal results in

the Turán theory of non-bipartite and bipartite graphs.

For a family of graphs F , let its subchromatic number be the number one less than the
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minimum chromatic number over all of its members. The following result, known as Erdős-

Stone-Simonovits theorem proved in [39, 41] states that if F is a family of graphs whose

subchromatic number is r, then

ex(n,F) = t(n, r) + o(n2) =
(

1 − 1

r

)

(

n

2

)

+ o(n2).

The Erdős-Stone-Simonovits theorem becomes obvious in the case of bipartite graphs. On

the other hand, it gives the correct order of magnitude of the Turán number for all non-

bipartite graphs. Another powerful theorem of Erdős and Simonovits is the so-called Stability

Theorem. It says that the extremal graph family for any forbidden graph H with χ(H) = r

is not far from the Turán graph Tn,r, both structurally and in terms of their sizes. In other

words, this result gives information about the structure of the almost extremal graph families

as well. These results of Erdős and Simonovits were proved in [32, 33, 89].

The Turán problem is still unsolved for all but a few of the bipartite graphs, such as even

cycles and complete bipartite graphs. For extremely sparse bipartite graphs and very dense

bipartite graphs, upper bounds are known and, in general, they are believed to be correct

up to constant factors, but the constructions to prove that these upper bounds are tight are

missing.

A simple example of a bipartite graph is a path. The Turán number for a path was first

given by Erdős and Gallai [36] (1959) as ex(n, Pk) = 1
2
(k−2)n; equality holds if k−1 divides

n. The construction proving sharpness of the bound is a disjoint union of complete graphs

on k − 1 vertices.

The fact that ex(n, K1,k) is the same as ex(n, Pk) led Erdős and Sós [31] to conjecture that

for every tree on k + 1 vertices the Turán number is the same as ex(n, Pk). This conjecture

was proved for sufficiently large trees by Ajtai, Komlós and Szemerédi [2, 3]. The same

bound was proved by Sidorenko [88] for all trees on k vertices with a vertex neighboring at

least (k − 2)/2 leaves.

The rest of this section will be on the extremality results for the other two notorious

classes of bipartite graphs for which the extremal graphs are not known: even cycles and

complete bipartite graphs.
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The first result in this area was given by Erdős [29] in 1938 as follows.

ex(n, C4) = ex(n, K2,2) = θ(n
3
2 ).

This result was generalized by Kövári, Sós and Turán [68]. They showed that for r ≤ s,

ex(n, Kr,s) ≤
1

2
(s − 1)1/2n2−1/r + O(n).

Erdős, Rényi, Sós [38] and independently Brown [17] showed that the result in the Kövari-

Sós-Turán Theorem is best possible for r = s = 2 and infinitely many values of n. This was

generalized by Füredi [48] to all K2,t, for t ≥ 1, as

ex(n, K2,t) =
1

2

√
t − 1n3/2 + O(n).

The Kövári-Sós-Turán Theorem gives the correct order of magnitude for r = s = 3 (Brown [17,

18]). However, the Turán number for Kr,s in general is not known.

The best lower bound known was proved by Erdős and Spencer using a probabilistic

technique as follows.

ex(n, Kt,t) ≥
1

2
n2−2/(t+1)

Another long-standing open Turán problem is the case of even cycles. The seminal result

in this area was provided by Bondy and Simonovits [15] in 1974.

Theorem 4.1.1 (Bondy, Simonovits). ex(n, C2k) < 100kn1+ 1
k

The original form of this theorem appears in a much stronger form and says that the

upper bound in Theorem 4.1.1 holds for the Turán number of each cycle of length 2t, where

t ∈ [k, kn1/k]. Later Verstraëte [93] improved the upper bound in Theorem 4.1.1 to 8kn1+ 1
k .

Similar to the case of Kt,t, the first general lower bound was provided by Erdős [30], where

he obtained ex(n, C2k) ≥ θ(n1+1/(2k)) using probabilistic techniques. Imrich [56], Lubotzky,

Phillips and Sarnak [76] and Margulis [78] have shown by using results from number theory

and applying eigenvalue methods in graph theory to construct the so-called Ramanujan

graphs, which have large chromatic number and girth. With the discovery of these graphs
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the best lower bound known for the Turán number of even cycles is as below.

ex(n, C2k) ≥ θ(n1+ 3
4k+21 )

Today, among all the even cycles, only the Turán numbers of C4, C6 and C10 are known

asymptotically and they are of the same order of magnitude as the upper bound in The-

orem 4.1.1. The constructions for the lower bound of these Turán numbers were given

by Benson [10] and Erdős, Rényi, and Sós [38] using finite geometry and then simplified by

Wenger [96]. Also new constructions were provided by Lazebnik, Ustimenko and Woldar [71]

using applications from Lie algebras.

4.2 Turán problem on the hypercube

We denote by Qn the n-dimensional hypercube, the graph whose vertex set is {0, 1}n, with

vertices adjacent if they differ in exactly one coordinate. The Turán number for the hyper-

cube, denoted by ex(Qn, H), is the maximum number of edges in a subgraph of Qn that does

not contain any copy of H .

Definition 4.2.1. Let c(H, n) = ex(Qn,H)
e(Qn)

and c(H) = limn→∞ c(H, n). Note that c(H, n)

is a non-increasing and bounded function of n regardless of the choice of H , and therefore

c(H) exists.

Turán problem on the hypercube received more attention due to the following conjecture

of Erdős.

Conjecture 4.2.2 (Erdős [35], 1984). c(C2k) =

{

1
2

+ o(1) k = 2

o(1) k ≥ 3

The best upper bound known for c(C4) is obtained by F. Chung [22] as 0.6228 + o(1)

and recently improved by Thomason and Wagner [91] to 0.6226 + o(1). Brass, Harborth

and Nienborg [16] showed that the lower bound for c(C4, n) is 1
2
(1 + 1/

√
n), when n = 4r

for integer r, and 1
2
(1 + 0.9/

√
n), when n ≥ 9. Bialostocki [13] proved that in any 2-

coloring of E(Qn) without a monochromatic copy of C4, the size of each color class is at

most (n + 0.9
√

n)2n−2, which provides another lower bound for ex(Qn, C4).
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The problems of deciding the order of magnitude of c(C6) and c(C10) are open as well. The

best results known for c(C6) imply 1/3 ≤ c(C6) < 0.3941; they are due to Conder [24] and

Lu [75], respectively. The lower bound disproves Conjecture 4.2.2 for C6. Conder constructed

an edge-coloring of Qn using 3 colors, where none of the color classes contain a copy of C6.

F. Chung [22] settled the conjecture of Erdős for C4k, k ≥ 2, by showing that

c(C4k, n) ≤ cn− 1
2
+ 1

2k . (4.1)

Axenovich and Martin [8] gave c(C4k+2) ≤ 1/
√

2 for k ≥ 1. We showed in [49] that C(C14)

is 0. Here, we extend this result to c(C4k+2) for k ≥ 3 by using similar but simpler methods

and prove Conjecture 4.2.2 for all cycles of length 4k + 2 and k ≥ 3.

Theorem 4.2.3. For k ≥ 3,

c(C4k+2, n) ≤
{

O(n− 1
2k+1 ) k ∈ {3, 5, 7},

O(n
− 1

16
+ 1

16(k−1) ) otherwise,

i.e. c(C4k+2) is 0.

Another variation of the definition of the Turán problem for the hypercube is to find the

minimum number of edges required to intersect every copy of H in Qn, which is equal to

e(Qn) − ex(Qn, H). We define, for a subgraph H of Qn,

f(H, n) =
e(Qn) − ex(Qn, H)

e(Qn)
, f(H) = lim

n→∞
f(H, n).

Dejter, Emamy, and Guan [28], Harborth and Nienborg [53] and Graham, Harary, Liv-

ingston, and Stout [73] studied f(Qd, n) for small values of n. It is known that f(Q3) ≤ 1/4.

Alon, Krech, and Szábo [4] conjectured that f(Q3) = 1/4. The best lower bound known was

due to a result in [73], which implies f(Q3) ≥ 1 − (5/8)1/4 ≈ .11086. Offner [86] improved

this lower bound to f(Q3) ≥ .1165. Alon, Krech, and Szábo [4] gave the following bounds:

Ω(
log d

d2d
) = f(Qd) ≤

4
(d+1)2

if d is odd,

4
d(d+2)

if d is even.
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The problem of finding minimum set of V (Qn) that intersects every copy of C4 is studied by

Kostochka [67] and by Johnson and Entringer [59]. They proved independently that such a

minimum set has size 1/3|V (Qn)|, when n is sufficiently large.

Many results about Turán-type problems on the hypercube are motivated by the Ramsey

version of these problems. In that vein, H-polychromatic coloring of the hypercube has

attracted some attention, which is a coloring of E(Qn) such that every color class intersects

every copy of H in Qn. We define p(H, n) to be the maximum number of colors with which

it is possible to H-polychromatically color E(Qn). Let p(H) = limn→∞ p(H, n). Trivially,

each color class has at least f(H, n)e(Qn) edges of Qn, which implies p(H) ≤ f−1(H). Alon,

Krech, and Szábo [4] proved for all d ≥ 1,

(

d + 1

2

)

≥ p(Qd) ≥
(d+1)2

4
if d is odd,

d(d+2)
4

if d is even.

To obtain the upper bound, these authors used Ramsey-type results for hypergraphs. Sub-

sequently, the exact order of magnitude of p(Qd) was given by Offner [85] as

p(Qd) =

(d+1)2

4
if d is odd,

d(d+2)
4

if d is even.

4.3 Proof of the main theorem

Remark 4.3.1. If k = a + b− 1 for integers a and b and G is a C4k+2-free graph, then a cycle

of length 4a and a cycle of length 4b in G cannot intersect at a single edge, otherwise their

union contains a copy of C4k+2.

For the remainder of this chapter, we assume that G is a C4k+2-free subgraph of Qn. For

k ≥ 3, we fix the value of a ≥ 2 and let b = k − a + 1. Remark 4.3.1 applies to G.

We define N(G, Ck) to be the number of copies of Ck in the graph G. In Section 4.4, we

obtain an upper bound on N(G, C4a) by proving

N(G, C4a) ≤ dO(2nn2a−2) + O(2nn2a−1+ 1
2
+ 1

2b ), (4.2)
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where d is the average degree of G and equals 2e(G)/2n. In Section 4.5, we find the following

lower bound for N(G, C4a) via the lower bound on the number of copies of C2a in an auxiliary

graph constructed from G.

N(G, C4a) ≥ 2nc
d

4a

n2a
− O(2nna), (4.3)

where c > 0 is a constant. By combining (4.2) with (4.3), we obtain an upper bound on d

in the last section.

4.4 The upper bound on N(G, C4a)

Definition 4.4.1. We define the direction of an edge uv in E(Qn) as the coordinate in [n],

that appears in the symmetric difference of u and v, denoted by d(uv). Similarly,

D(F ) := {d(e) : e ∈ E(F )} ⊂ [n]},

where F is any subgraph of Qn.

A trivial upper bound on N(G, C4a) is given by a counting argument on the edges of G.

Note that, each direction on some edge of a C4a appears an even number times. Let e be

an edge with direction d. There are O(n2a−1) possible ways that remaining at most 2a − 1

directions other than d could appear on a C4a containing e. Therefore,

N(G, C4a) ≤
∑

e∈E(G)

O(n2a−1) ≤ e(G)O(n2a−1) ≤ 2nO(n2a).

The following lemma will help us to obtain a better bound.

Lemma 4.4.2. Let C1 and C2 be cycles of length 4a and 4b in G, respectively, whose inter-

section contains an edge. Then |D(C1) ∩ D(C2)| ≥ 2.

Proof. Let v1 and v2 be the endpoints of an edge in the intersection of C1 and C2. There

must be another vertex v3 shared by C1 and C2, otherwise we have a contradiction with
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Remark 4.3.1. Because v3 differs from either v1 or v2 in at least two coordinates, these two

coordinates are also contained in the intersection of D(C1) and D(C2). 2

Let C denote the set of C4a’s in G. We use a partitioning C = C1 ∪ C2 such that C1 is

the collection of C4a’s that satisfy the assumption of Lemma 4.4.2 and C2 = C \ C1. Recall

again that for any C ∈ C, |D(C)| ≤ 2a. However, if e is an edge contained in a C4a in C1,

then there are not “many” possible C4a’s containing e (only O(n2a−2), instead of O(n2a−1))

because of Lemma 4.4.2. Therefore, we count the C4a’s as follows.

N(G, C4a) =
∑

e∈E(C1) O(n2a−2) +
∑

e∈E(C2) O(n2a−1) ≤
≤ d2n−1O(n2a−2) + ex(Qn, C4b)O(n2a−1)

(4.4)

This and the result of Chung in (4.1) yield the following corollary.

Corollary 4.4.3. N(G, C4a) ≤ dO(2nn2a−2) + O(2nn2a−1+ 1
2
+ 1

2b ).

4.5 The lower bound on N(G, C4a)

For a graph G ⊂ Qn, we define an auxiliary graph H(x, G) for each vertex x ∈ Qn as it

was used by Chung in [22]. The vertex set of H(x, G) consists of the neighbors of x in Qn.

The edge set of H(x, G) is defined as follows. Consider any two vertices y and z of H(x, G).

There is a unique C4 in Qn containing x, y and z. We denote the fourth vertex of that cycle

by w = wx(y, z). We let yz to be an edge of H(x, G) if and only if wz and wy are edges of

G.

According to the definition of Hx, we have

∑

x∈V (Qn)

e(Hx) =
∑

w∈V (Qn)

(

degG(w)

2

)

.

By using convexity, we obtain

h :=
∑

x∈V (Qn)

e(Hx)/2n ≥
(

d

2

)

, (4.5)
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where d = 2e(G)/2n.

For each cycle of Hx with vertex set {y1, . . . , yℓ}, ℓ ≥ 3, there exists a cycle of length 2ℓ

in G with vertex set {y1, wx(y1, y2), . . . , yℓ, wx(yℓ, y1)}. This yields

N(G, C4a) ≥
∑

x∈V (Qn)

N(Hx, C2a). (4.6)

By the following theorem of Erdős and Simonovits, we have a lower bound on N(Hx, C2a),

and therefore on N(G, C4a).

Theorem 4.5.1 ([40]). Let L be a bipartite graph, where there are vertices x and y such

that L−{x, y} is a tree. Then for a graph H with n vertices, there exist constants c1, c2 > 0

such that if H contains more than c1n
3/2 edges, then

N(H, L) ≥ c2
en(L)

n2e(L)−n(L)
.

We use this theorem with L = C2a in the following form so that the condition on the

minimum number of edges is incorporated.

N(Hx, C2a) ≥ c2(
e(Hx)

2a

n2a
− (c1n

3/2)2a

n2a
) (4.7)

(4.6) and (4.7) imply

N(G, C4a) ≥
∑

x∈V (Qn)

c2(
e(Hx)

2a

n2a
− (c1n

3/2)2a

n2a
).

Finally, by (4.5) and above, we have

N(G, C4a) ≥ 2nc2
h

2a

n2a
− O(2nna) ≥ 2nc

d
4a

n2a
− O(2nna), (4.8)

for some constant c > 0.
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4.6 Conclusion

Finally, (4.2) together with (4.3) yield

2nc
d

4a

n2a
≤ dO(2nn2a−2) + O(2nn2a−1+ 1

2
+ 1

2b ) + O(2nna)

Note that the last term is negligible. Because this is an asymptotic result,

either 2nc
d

4a

n2a
≤ dO(2nn2a−2) or 2nc

d
4a

n2a
≤ O(2nn2a−1+ 1

2
+ 1

2b ).

Therefore,

d ≤ max {O(n1− 1
4a−1 ), O(n1− 1

4a
( 1
2
− 1

2b
))}.

Finally, we optimize this upper bound with respect to a. This bound is minimized when

a = 2 (i.e. b = k − 1) yielding that

d ≤ O(n1− 1
16

+ 1
16(k−1) ). (4.9)

Note that another approach we could use in Section 4.4 is to consider a = b = (k + 1)/2 for

odd k. This changes the counting argument by making the set C2 empty. Thus, the second

term in (4.4) and in Corollary 4.4.3 disappear. Following the same proof by using this upper

bound, we obtain for odd k

d ≤ O(n1− 1
2k+1 ).

This improves (4.9) for k = 3, 5, 7.

Our proof also implies that ex(Qn, Θ4a−1,1,4b−1) is o(e(Qn)) for a, b ≥ 2, where Θi,j,k is a

Theta-graph consisting of three paths of lengths i, j, and k having the same endpoints and

distinct inner vertices.

A graph H is said to be l-Ramsey (or Ramsey) if any edge-coloring of Qn with l colors must

contain H in some color class provided that n is sufficiently large. Our result also naturally

implies that C4k+2 is Ramsey for k ≥ 3 which is a result of Alon, Radoičić, Sudakov, and

Vondrák [5] who showed that C2r is Ramsey for r ≥ 5.
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[19] G. J. Chang and D. Kuo. The L(2, 1)-labeling problem on graphs. SIAM J. Discrete
Math., 9(2):309–316, 1996.

[20] G. Chartrand and F. Harary. Planar permutation graphs. Ann. Inst. H. Poincaré Sect.
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[38] P. Erdős, A. Rényi, and V. T. Sós. On a problem of graph theory. Studia Sci. Math.
Hungar., 1:215–235, 1966.
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[47] Z. Füredi. On finite set-systems whose every intersection is a kernel of a star. Discrete
Math, 47(1):129–132, 1983.
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Combinatorica, 25(5):599–614, 2005.

[84] D. Mubayi and Y. Zhao. On the VC-dimension of uniform hypergraphs. J. Algebraic
Combin., 25(1):101–110, 2007.

[85] D. Offner. Polychromatic colorings of subcubes of the hypercube. SIAM J. Discrete
Math., 22(2):450–454, 2008.

[86] D. Offner. Some Turán type results on the hypercube. Discrete Math., 309(9):2905–
2912, 2009.
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