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ABSTRACT 

 

Several supercomputer vendors now offer reconfigurable computing (RC) 

systems, combining general-purpose processors with field-programmable gate arrays 

(FPGAs). The FPGAs can be configured as custom computing architectures for the 

computationally intensive parts of each application. In this paper we present an RC-

based hardware accelerator for an important medical imaging algorithm: iterative 

sparse Fourier image reconstruction. We transform the algorithm to exploit massive 

parallelism available in the FPGA fabric. Our design allows different ways of chaining 

custom pipelined vector engines, so that different computations can be carried out 

without reconfiguration overhead. Actual runtime performance data show that we 

achieve up to 10 times speedup compared to the software-only version. The design is 

estimated to provide even more speedup on a next-generation RC platform. 
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CHAPTER 1 

INTRODUCTION 

 

Recent advances in FPGA technology have enabled the emerging field of 

reconfigurable computing (RC). Companies such as Celoxica, Mitrionics, and SRC 

Computers, now offer FPGA-based RC platforms and HLL-to-HDL compiler 

technology, enabling RC development using high-level languages  [1],  [2],  [3]. By 

exploiting massive parallelism available in the FPGA fabric, certain types of 

applications can potentially run much faster on these RC platforms than on traditional 

computers. 

Medical imaging is an important class of such applications. In fact, FPGA 

implementation of the well-established filtered backprojection algorithm (a 

fundamental image reconstruction algorithm) has been studied by several groups  [4], 

 [5],  [6]. It shows that with FPGA implementation, they can achieve up to 100 times 

speedup  [4]. 

In this thesis, we consider an analysis and implementation on reconfigurable 

hardware of a novel, newly developed and complex image reconstruction algorithm, 

recently presented in  [7]. Our goal is to find a scalable implementation of the 
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algorithm that maximizes parallelism, thus maximizing speedup, on our given target 

RC platform. 

 

1.1  Fourier Image Reconstruction Background 

In applications such as magnetic resonance imaging (MRI), the measured data 

are samples of the Fourier transform of the image, not directly of the image itself. The 

reconstruction problem is to recover the image from its measured Fourier samples. 

With sufficient number of measurements, the image can be obtained by simply 

applying the inverse Fourier transform. 

In many practical situations, however, we want to be able to reconstruct the 

image from only a small number of Fourier samples. This would enable faster 

acquisition of the data, which is especially important in dynamic imaging applications 

such as cardiac MRI. However, with sparse sampling, the simple inverse Fourier 

reconstruction method produces only low-quality results. Nonetheless, Venkataramani 

and Bresler  [8] showed that high quality sparse reconstruction is possible when certain 

conditions are met. 

Building on the theoretical results in  [8], Ye, Bresler, and Moulin  [7] proposed 

a novel nonlinear iterative level-set-based reconstruction algorithm. To produce high-

quality results, this algorithm executes many iterations to converge to the optimal 
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solution. However, each iteration itself is the combination of two different algorithms. 

It is this complexity that makes the algorithm slow and computationally intensive. 

Practical applications demand a fast and high-quality reconstruction, when 

large volumes of medical data are processed, or when real-time response is needed. 

One way to satisfy the speed requirement is by accelerating the algorithm with an RC 

implementation. 

 

1.2  Related Applications on RCs 

As mentioned before, the RC implementation of the filtered backprojection 

algorithm for speeding up medical image processing formation has been studied 

before in industry and academia  [4],  [5],  [6]. Comparing to the backprojection 

algorithm, the level set reconstruction algorithm implemented in this work is more 

complicated (about 10 times longer in terms of C source code), and harder to 

parallelize. Indeed, backprojection belongs to the class of “embarrassingly parallel 

problems” – for which the computational graph is disconnected, making 

parallelization straightforward. In contrast, the iterative nature of our reconstruction 

algorithm makes it more challenging to parallelize. 

The conjugate gradient (CG) algorithm is one important component in our 

reconstruction algorithm. Previous work on RC implementation of a conjugate 

gradient solver  [9] only considered running the matrix multiplication operations on the 
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FPGA, which requires many bandwidth-limited data transfers between the FPGA and 

other host-based operations. In our design, we move the entire CG algorithm to the 

FPGA. Of course, we also need to address other issues, such as the scheduling of 

multiple operations and the partitioning of data into different memory banks. 

 

1.3  Overview of the Work 

Our contributions can be summarized as follows: 

1. We carry out several mathematical transformations on the original level-set-based 

algorithm  [7], so that it exhibits more parallelism and is better suited to FPGA 

implementation. 

2. We develop a dynamic fixed-point scheme, so that we can get better precision at 

reduced bit-width. 

3. We develop a method to find the maximum pipeline parallelism for this algorithm, 

which is extendable to other similar algorithms. 

4. We design an efficient application-specific vector processor architecture that 

provides performance and scalability, and can be generalized to other applications. 

In the next chapter, we present the essentials of the level-set-based 

reconstruction algorithm. Chapter 3 describes algorithm transformations, which also 
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include our fixed-point scheme. Next, the parallel architecture is presented in Chapter 

4. Finally we present the implementation results and conclusions. 
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CHAPTER 2 

LEVEL-SET-BASED IMAGE 

RECONSTRUCTION 

 

The goal of the algorithm is to reconstruct an image from sparse samples of its 

Fourier transform. Applications of this problem can be found in magnetic resonance 

imaging (MRI), synthetic aperture radar (SAR), and radio astronomy. 

It was shown  [7] that practical reconstruction from sparse Fourier samples is 

possible if the image consists of objects supported on a small unknown set D . 

Fortunately, such cases are commonly encountered for differential measurements, 

when only small parts of an object change between measurements. 

In Fig. 1, for example, our image is mostly black (zero value pixels), except for 

four small regions. The union of the regions (where the pixels have non-zero values) is 

called the support of the image. This support can also be interpreted as the binary 

version of the image, where pixel values can only be either 0 or 1. 

The reconstruction problem then becomes a nonlinear optimization problem, 

which can be solved by a gradient-based technique as summarized in the next section. 

For more detailed explanations, please refer to the original paper  [7]. 
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Fig. 1. An Image with Small Support (Left) and Its Support (Right) 

 

 

2.1  Image Reconstruction Problem Formulation 

Let D̂  be the unknown image support, ( )v̂ x  be the unknown pixel values 

( ˆx D∈ ), and Φ  be the given (sparse) set of 2-D frequency sample locations. Then 

what we get from the measurements are the noisy measured samples: 

 ( ) ( )
ˆˆf fDy F v n= +  (1) 

where f ∈ Φ  is the (frequency) location of a measured sample, ( )
ˆˆ fDF v  denotes the 

2-D Fourier transform of ( )v̂ x  with the support D̂ , and n  is the noise component. 
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Our goal is to find D , an estimate of D̂ , and v , an estimate of v̂ , to minimize 

the following cost function: 

 ( )
21

2C , D dD v y F v λ
ΓΦ Γ= − + ∫  (2) 

For 0λ = , minimization of the first term would find D  and v  that are least-square 

estimates of D̂  and v̂ , respectively. However, because of the sparse measurements, 

these estimates are non-unique, and in practice would be grossly in error. The 

objective of the second term, dλ
Γ

Γ∫ , is to regularize the solution and make it unique 

and well-behaved, by penalizing the length of the boundary Γ  of the support D  with a 

regularization constant λ . 

 

2.2  Outline of Reconstruction Algorithm 

This nonlinear optimization problem can be solved by alternating 

minimization of the cost function with respect to the support D  and the pixel values v  

separately. This iterative process is illustrated in Fig. 2. 

 

 



 9

Initialize 0D  
for 1k =  to Number_of_Iteration 
     CG step: Find kv  to minimize ( )1C ,k kD v−  
     LS step: Find kD  to minimize ( )C ,k kD v  

end for 
      

 

Fig. 2. Iterative Reconstruction Algorithm, Divided into CG and LS Steps 

 

Each reconstruction iteration is separated into two different sub-problems. In 

the CG step (conjugate gradient algorithm, detailed in Section 2.4), given support 

1kD −  from the previous iteration, we find pixel values kv  that minimize the cost 

function. Then this kv  is used in the LS step (level-set-based algorithm, detailed in 

Section 2.3) to find an updated support kD . Number_of_Iteration can either be a fixed 

value obtained from experiments or be determined adaptively. 

We present these two minimization techniques in the next two sections. 

Because most of the computation takes place inside the CG steps, we mainly focus on 

this CG algorithm. 
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2.3  Level-Set-Based Algorithm 

In this step, given a fixed v , we find support D  to minimize the cost function 

( ) ( )C C ,v D D v= . 

This algorithm is fully described in  [7]. Here, we only mention the novel idea 

behind it: the use of the level-set method  [10]. First, the support D  is represented by a 

2-D level-set function ( ),x yφ . Specifically, ( ) ( ){ }, , 0|D x y x yφ= ≥ , and the 

boundary of D  is the zero level set ( ) ( ){ }, , 0|x y x yφΓ = = . Then, instead of directly 

manipulating the shape of D  or its boundary Γ , we manipulate the level-set function 

φ  to implicitly change D . The advantage of using the level-set method is that we can 

handle topological change (merging, splitting of regions) in D  easily. 

 

2.4  Conjugate Gradient (CG) Algorithm 

In this step, given a fixed support D , we find pixel values v  to minimize the 

cost function ( ) ( )C C ,D v D v= . 

This is the minimization of a quadratic function with large dimensions and 

therefore is preferably handled by the conjugate gradient algorithm. The essence of 

this algorithm is the CG iteration, which updates two 2-D matrices r  and d  according 

to the following equations: 
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where matrix r  is the residual, matrix d  relates to the search direction, Dm  and Φm  

are binary matrix representations of D  and Φ , ,a b  denotes vector inner product, 

 denotes element-wise matrix multiplication, and α  and β  are scalar values.  

The simplified data flow graph of the equations in (3) for one CG iteration step 

is shown in Fig. 3. In this diagram, the thick arrows represent matrices, while the thin 

arrows represent scalar values. Matrix r  is updated through the left path, and matrix 

d  is updated through the right path. 
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Fig. 3. Simplified Dataflow Graph of One CG Iteration 

 

The CG iteration is where most of the computation in our reconstruction 

algorithm takes place. On average, one reconstruction iteration requires the 

computation of about five CG iterations. A typical reconstruction needs about 100 

iterations, which requires about 500 CG iterations. With two 2-D FFT operations per 

iteration, the overall complexity is ( )2
2logO N N  for image size N×N. For our image 

size of 128×128, this totals about 0.3 GFLOP (giga-floating-point operations) for one 

reconstruction. 
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Because this is such a crucial step in terms of computational workload, we 

mainly focus on the CG iterations in the following chapters. 
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CHAPTER 3 

ALGORITHM TRANSFORMATION 

 

Directly mapping the algorithm to RC hardware will not result in an efficient 

implementation. Equations may be mathematically transformed into functionally 

equivalent forms that are more parallelizable or more suitable to FPGA 

implementation. Another important modification is using fixed-point arithmetic, 

which is faster and consumes fewer resources than floating-point arithmetic. We 

present an example of mathematical transformations in Section 3.1 and an interesting 

fixed-point scheme in Section 3.2. 

 

3.1  Mathematical Transformation 

In this section, we present one of several mathematical transformations that we 

have discovered. This particular transformation makes the algorithm more FPGA-

implementation friendly. 

One of the key calculations (required for each element of the image) in the 

level-set-based algorithm is the following expression: 
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2 2

ax by

a b

+
+

 (4) 

where a , b , x , and y  are derived from adjacent values of the 2-D level-set function. 

If implemented directly, this would require 4 multipliers, 1 square root, and 1 division, 

which would take up a significant amount of FPGA logic. The CORDIC algorithm 

 [11], which requires only shift and add operations, can be used to efficiently handle 

the square root, but we are still left with divisions and multiplications. 

If we define ( )arctan /b aρ = , then (4) can be written as cos sinx yρ ρ+ . 

This turns out to be the result when we rotate vector ( ),x y  by the angle ρ . Both 

computing angle ρ  and rotating vector ( ),x y  can be implemented in CORDIC. 

Therefore, by doing two CORDIC vectoring mode operations in locked-step (same 

rotation angle ρ ), we can calculate the expression without any divisions or 

multiplications. We start with two vectors, ( ),a b  and ( ),x y . Applying the CORDIC 

vector mode operations to ( ),a b , we end up with vector ( )2 2 , 0a b+ . Then the same 

sequence of rotation steps applied to vector ( ),x y  will produce 
2 2 2 2

,
ax by ay bx

a b a b

+ −

+ +

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
, 

providing us the value in (4). 
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3.2  Dynamic Fixed-Point Scheme 

To produce an efficient FPGA implementation, fixed-point arithmetic should 

be used. A floating-point implementation would be considerably slower and use much 

more FPGA resources, limiting parallelism. Obviously, narrow bit widths are 

preferred because they reduce logic consumption and allow a faster clock. On the 

other hand, we need sufficient bit widths to achieve adequately precise results. We 

determine the allowable quantization level by software simulation of the fixed-point 

implementation. 

Because we are trying to minimize bit-widths while maintaining adequate 

precision, close study of the CG algorithm leads to an important discovery. In the CG 

algorithm, as we converge to the optimal solution, the magnitudes of elements in 

matrix r  and d  get smaller and smaller after each iteration. At the same time, these 

elements get more and more accurate, which requires more fractional bits. We can 

exploit this behavior of the changing of both dynamic range and accuracy of r  and d  

to improve the efficiency of their fixed-point representation. 

An illustration is shown in Fig. 4. At the beginning, r  and d  have small 

scaling factors (fewer bits after the radix point) so that no overflows occur with the 

chosen bit-width. Note that at this stage we do not need high precision for r  and d  

values. After each CG iteration, because of smaller elements, we can increase the 

scaling factors (more bits after the radix point) without causing overflows. With 
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increased scaling factors, r  and d  are represented more precisely after each CG 

iteration. 

In the simplified example in Fig. 4, the initial values take values up to 21 in 

iteration 1, while the final values requires precision of 2–3 in iteration 3. The straight-

forward static fixed-point implementation would require 5-bit data. With dynamic 

fixed-point scheme, we can use only 3-bit data and still meet the precision requirement 

in the final results. 

 
 Static  Dynamic 
Iter. 1 x x . x x x  x x . x   
               

Iter. 2 0 x . x x x   x . x x  
               

Iter. 3 0 0 . x x x    . x x x 
               

 

Fig. 4. Static vs. Dynamic Fixed-Point Schemes 

 

Thus, comparing to a simple static fixed-point scheme that has constant scaling 

factors, our dynamic scheme needs fewer bits for the same required accuracy by 

adjusting the scaling factors after each CG iteration. 
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CHAPTER 4 

PARALLEL ARCHITECTURE DESIGN 

 

After the algorithm has been transformed into a form suitable for RC 

implementation, our goal is to design a hardware architecture that maximizes the 

available parallelism, given the constraints of the target RC platform. We also 

consider scalability issues for future extensions. 

 

4.1  Target RC Platform 

The SRC-6E is a commercial reconfigurable computing platform from SRC 

Computers Inc.  [3]. This platform has a typical RC architecture, which comprises user 

FPGAs, on-board memory banks, and DMA link to a traditional computer host. SRC’s 

Carte programming environment provides a library to handle host-to-FPGA data 

communication and other necessary details. This allows us to focus on mapping the 

algorithm to FPGA. 
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Fig. 5. SRC-6E Hardware Architecture 

 

The SRC-6E contains two Xilinx Virtex II FPGAs (xc2v6000) running at 

100 MHz. Each FPGA can support massive parallelism: about 33000 logic slices (each 

contains two 4-input LUTs), 144 18-kbit block RAM, and 144 18×18 multipliers  [12]. 

The SRC-6E board also provides six independently addressable SRAM memory banks 

with a total capacity of 24 MB and a total bandwidth of 48 bytes per clock cycle (Fig. 

5). 
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4.2  Parallelization Approach 

There are two basic parallel models that we can use to implement our CG 

iteration. The first model is the pipeline model (Fig. 6a). In this model, sequential 

operations are executed concurrently on different processing blocks. Partial results 

from one block are forwarded to the next block. This approach has very efficient I/O 

usage, only at the first and last operations of the chain. There are, however, pipeline 

barriers, where operations cannot be pipelined. 

The second model is the loops distributed model (Fig. 6b). In this model, we 

simply duplicate the processing blocks. This approach has heavy I/O usage: the more 

blocks, the greater the I/O needed to supply data to those blocks. In addition, the data 

feeding into each block have to be independent. 

To maximize parallelism under I/O constraints, we use a hybrid model, the 

combination of the two mentioned above (Fig. 6c). First, we try to pipeline as much as 

possible, so that we do as many calculations as possible with an I/O operation. Then 

we use the loops distribution model to duplicate our processing blocks until all 

available I/Os are used up. 

 

 

 



 21

        

 (a)     (b)      (c) 

 

Fig. 6. (a) Pipeline Model,  (b) Loops Distributed Model, and (c) Hybrid Model 

 

The most computationally intensive operations in the CG iteration are the two 

2-D FFTs. One way to carry out an N×N 2-D FFT is to separate it into N row-wise 1-D 

FFTs, followed by N column-wise 1-D FFTs  [13]. The ordering is interchangeable: we 

can also do the column-wise FFTs first, then do the row-wise FFTs. This flexible 

ordering allows us to achieve more parallelism, as shown later in Section 4.3. 

In the CG iteration, this separated implementation is the most efficient way 

because we then have N independent rows (or columns) that can easily be distributed 

across identical processing blocks. Furthermore, each row (or column) has only N data 

points, small enough to be stored in the on-chip block RAM of the FPGA. With this 

data locality, we can pipeline rows (or columns) between operations. 

An example is shown in Fig. 7. Assume that we have three different operations 

F, G, and H to sequentially operate on N independent rows, from row 0 to row N–1. 

Using the loops distribution model, we can have two pipelines, one working on even 

rows and the other working on odd rows. In each pipeline, one row result from block 

G can be forwarded immediately to block H, without having to wait for results of 

other rows. So, after G finishes with data originating from row 0, the result is 
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forwarded to H. Now G can work on data originating from the next row (row 2) while 

H is working on data originating from row 0. Thus, pipeline operation at row-level is 

realized. 

 

 

 

Fig. 7. Parallelism at Row Level 
 

 

For actual implementation, the separated FFTs have a regular structure that can 

be mapped into hardware easily. The row-wise FFT and the column-wise FFT can be 

executed by the same FFT hardware block, reducing logic usage. Another benefit is 

that the pipelined 1-D FFT IP core is already available. 

 

4.3  Maximum Pipelines 

Although we can pipeline the operations at the row- and column-level, some 

sequences of operations cannot be pipelined together. There are three vector inner 

products, each produces a single scalar value based on all N×N elements. Therefore, 

single row or column data from the previous pipeline stage is not enough, and the 



 23

inner products cannot be pipelined with following operations. Similarly, the two pairs 

of row and column 1-D FFTs cannot be pipelined together, as we need data from all N 

rows before we can compute FFT for the first column. 

If the ordering of both the inverse FFT (iFFT) and the forward FFT is the 

same—Row followed by Column (refer to Fig. 8)—then another pipeline barrier 

exists: the Row FFT cannot start until all column data are available from the Column 

iFFT. But if we switch the ordering of the forward FFT to Column followed by Row, 

then the Column FFT can start immediately when it receives a single column from the 

Column iFFT. This means we can put these Column iFFT and FFT into two pipeline 

stages of the same pipeline. 

By grouping the five pipeline breaks into two barriers, as shown in the top two 

dark bands in Fig. 8, we can get maximum pipelines. For example, consider the top 

dark band separating two pipelines. When the first pipeline finishes, the last result 

from block Row iFFT is written to the transposition memory. At that time, the inner 

product block also outputs its correct result. Only then can we execute the scalar 

division and start the second pipeline. 

We pipeline results from the end of the previous CG iteration to the beginning 

of the next CG iteration, as shown near the bottom of Fig. 8. In this way, we are able 

to reduce to two pipelines per CG iteration. Each pipeline has two stages 

corresponding to the iFFT and FFT operations. 
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Fig. 8. Pipelines and Barriers 
 

The procedure to determine the maximum pipelines can be summarized as 

follows: 

1. Identify all non-pipelinable operations. 

2. Group these operations into as few pipeline barriers as possible. 
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3. The maximum pipelines are all the operations between those barriers. 

In the final implementation, the platform resource can support two such 

hardware pipelines: one pipeline works on even rows/columns, the other works on odd 

rows/columns. This is the hybrid model illustrated in Fig. 7. The limiting factor here is 

the available I/O bandwidth between the FPGA and the on-board memory banks. 

Figure 9 shows the timing diagram of one CG iteration. In this figure, c0 

denotes column 0, r(N-1) denotes row N–1. Two pipelines stages, iFFT and FFT, are 

shown for each hardware pipeline, even and odd. The horizontal axis shows the 

sequences of operations in time. In a CG iteration, algorithm pipeline 1 operates on N 

columns, then algorithm pipeline 2 operates on N rows. 

 
                

iFFT  c0 c2 c4 … c(N-2)  r0 r2 r4 … r(N-2)  
               

Even 
Pipe- 
line FFT   c0 c2 … c(N-4) c(N-2)  r0 r2 … r(N-4) r(N-2)

                
                

iFFT  c1 c3 c5 … c(N-1)  r1 r3 r5 … r(N-1)  
               

Odd 
Pipe- 
line FFT   c1 c3 … c(N-3) c(N-1)  r1 r3 … r(N-3) r(N-1)

                

   Pipeline 1 (Column) Pipeline 2 (Row) 
                

 

Fig. 9. Pipeline Timing Diagram for One CG Iteration 
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4.4  Datapath 

With the pipelines determined, we can map both Pipeline 1 and 2 to one single 

hardware datapath (Fig. 10). This is because the two pipelines operate sequentially and 

they are nearly identical: each has two FFT blocks at input and output, a vector scaling 

block feeding into a vector addition block, and inner product blocks. The slightly 

different data flows of the pipelines are enabled by the two MUXes embedded in the 

datapath. 

Our architecture can be viewed as an application-specific vector processor. The 

datapath works on data of vector type. Different vector instructions correspond to 

different MUX configurations that execute different data flows. The datapath is highly 

customized to have specific functional units (FFTs, inner products) and dedicated 

links between these functional units. 
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Fig. 10. Datapath Design 

 

4.5  Memory Assignments 

Due to their size, the matrix variables in the CG iterations cannot fit into the 

on-chip block RAM. So they are stored in the on-board memory banks of the SRC-6E. 

To be able to feed data to the pipeline at maximum rate, we need to consider the flow 

of data among variables as well as the memory I/O constraints of the underlying 

platform. 

The SRC-6E has six on-board memory banks, each of which can be addressed 

and read/written independently. Each memory bank is 64-bit wide, and the throughput 

is one read or write access per clock. The access latency, however, is several clocks, 

which makes switching between reads and writes very costly (7 clocks are required). 

Therefore, optimal usage of the on-board memory is to fix the access type to each 
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memory bank during the execution of a pipeline. In this way, we can utilize the 

maximum memory bandwidth of one access per clock. The problem is how to assign 

the variables in the CG iterations to different memory banks so that we can get this 

desired behavior. 

With the pipelines and datapath described in previous sections, each pipeline 

requires reads from two matrix variables and writes to two matrix variables. The scalar 

values are required only once per pipeline and can be ignored. The detailed access 

patterns of these variables are depicted in the left side of Fig. 11. In this figure, the 

rounded shapes represent the variables, and the large rectangles represent the 

pipelines. For example, CG iteration 1 comprises pipeline 1a (column pipeline) and 

pipeline 1b (row pipeline). This iteration reads in 1r  and 1d , and writes out 2r  and 2d . 

There is also a temporary variable between adjacent pipelines, and this is the 

transposition memory for the 2-D FFTs. 
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Fig. 11. Variables Flow (Left) and Assignment (Right) 

 

With the pipeline requiring access to 4 different variables, and the 6 memory 

banks available, we can assign each matrix variable to one memory bank. We cannot 

use all 6 banks because we cannot share one bank to two variables (this would creates 

conflicts in later pipelines due to the flow of variables). Because each data element 
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requires 32 bits and one memory bank is 64-bit wide, we can fetch two data elements 

per clock to feed the odd and even hardware pipelines, as mentioned in Section 4.2. 

The variable assignments for our implementation are detailed in Fig. 11, right 

side. Four memory banks, A, B, C, D, are used to store the variables. In pipeline 1a, 1r  

is read from bank C, and 2r  is written to bank D. Then in pipeline 2a, 2r  is read from 

bank D, and 3r  is written to bank C. Meanwhile, the temporary variable is alternated 

between banks A and B. 

 

4.6  Scalability Analysis 

As mentioned in Section 4.5, the current implementation is bound by the 

available memory I/O bandwidth in the SRC-6E platform. To evaluate the design on 

different configurations, we can consider an image size N×N and I/O bandwidth B. 

One CG iteration accesses O(N.2) data elements at bandwidth B. Therefore, 

throughput for one CG iteration is O(B/N.2). If we can double the bandwidth, we will 

be twice as fast. On the other hand, doubling the image dimensions to 2N×2N will 

make runtime four times longer. 

The multipliers inside the FFT consume the most logic in the FPGA. Each FFT 

block uses O(log2N). The number of pipeline duplications is O(B), so the total number 

of concurrent FFT multipliers is O(B×log2N). This is roughly the resource 
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requirement. We can have more parallelism with either larger images, or increased I/O 

bandwidth. 
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CHAPTER 5 

IMPLEMENTATION RESULTS 

 

Table 1 shows the runtimes for different image sizes. The total runtime on the 

RC platform (with FPGAs clocked at 100 MHz) includes time for configuring the 

FPGAs and time for transferring data between the host and the FPGAs. The software 

version is an optimized floating-point implementation running on a 2.5 GHz Pentium 

IV PC with 1 GB RAM and 512 kB cache (due to scaling overhead, software fixed-

point implementation is slower than floating-point implementation). 

 

Table 1. Runtime Comparison 

Image Size Software (s) RC platform (s) 

128×128 2.0 0.2 

256×256 9.5 0.8 

 

Because the image size of 512×512 does not fit into the on-board memory of 

the SRC-6E, and the FFT requires the size to be power of 2, only resolutions of 

128×128 and 256×256 are tested.  
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Table 2 shows the amount of FPGA resource used by our implementation. We 

use only one of the two Vertex xc2v6000s available, because the parallelism is bound 

by the available memory I/O bandwidth (48 bytes/clock), not the available logic 

resource. 

 

Table 2. FPGA Resource Usage 

Slices 60% (20000)

Multipliers 60% (88) 

Block RAMs 30% (42) 

 

On the more advanced SRC-7 RC platform, with a higher FPGA clock 

(150 MHz) and more memory bandwidth (160 bytes per clock cycle), we estimate that 

the RC-based design will achieve more than a 4-fold speedup over the current SRC-6E 

implementation and still fit into the available FPGAs. 

 

Figure 12 shows the results from a test run of the implemented algorithm on 

the RC platform. On top, from left to right, are the support of the image, the 

reconstructed image (closely resembles the original image), and the original image. At 

the bottom are the final level-set function, the simple inverse Fourier reconstruction 

result (virtually unusable), and the plot of errors vs. reconstruction iterations. 
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Fig. 12. Result from a Test Run of the Reconstruction Algorithm 
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CHAPTER 6 

CONCLUSION 

 

This study shows that the level-set-based image reconstruction algorithm can 

be implemented on an RC platform with much higher performance than software-only 

implementation. Several insights about how to efficiently map the algorithm on to 

FPGA hardware have been discovered at various stages. Our application-specific 

vector processor architecture can be generalized for similar types of imaging 

applications that involve many large vector and matrix operations. 
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