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ABSTRACT

Sparse representations of visual information are essential for many image

processing tasks. Because of the nonstationary geometric structure of nat-

ural images, representations derived from one-dimensional tensor products

or compact frequency support will be suboptimal. Therefore, there is strong

motivation to search for more powerful methods to efficiently represent the

geometric structure of visual information.

This thesis demonstrates a method to create a directional image repre-

sentation with compact spatial support which is not limited to a single di-

mension. Within the lifting framework of perfect reconstruction filter banks,

sparse representation requires prediction filters able to adapt to the local

structure of the signal. As most images are locally regular except at edges,

this adaptation adjusts the support of the prediction filters in order that a

larger percentage of the output is predicted from pixels which do not come

from both sides of an edge.

To allow for the adaptation of filter support, the image must be segmented

into blocks of consistent directional bias. To allow sufficient adaptivity while

reducing overhead, this segmentation must allow for multiple sizes of blocks

dependent on the image data. We solve this problem by extending a clas-

sic tree pruning algorithm used in classification for adaptive block-based

transforms. Furthermore, as images do not directly include directional infor-

mation, we propose a weighted estimation method using the techniques of

directional statistics to determine the dominant direction of an image block.

Within a compression framework, we see that the directional estimation

and adaptive segmentation algorithms robustly and accurately determine the

dominant direction of variably sized blocks; however, because of limitations

caused by the discrete nature of the data and dimensional degeneracy of

polynomial interpolation over various point sets, our directional image rep-

resentation was not able to provide a coding gain over traditional methods.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

One of the main challenges in signal processing and mathematical analysis

is signal representation and approximation. If there exists some representa-

tion of the signal which is sparse, many signal processing operations become

simpler. Compression is achieved merely by transforming the signal into the

sparse representation and only storing the few nonzero coefficients. If noise is

present in the signal such that the noise is not sparse under this representa-

tion, denoising can be accomplished simply by forcing the signal to be sparse

under this representation. Finally, if the sparse coefficients have a subband

structure, interpolation can be implemented as the inverse representation of

the zero-padded known data.

The goal of a sparse representation is often to determine a set of basis

functions such that a class of signals can be written as a linear combination

of a small subset of the basis functions. More formally, consider a class of

functions F and a function f such that f ∈ F . Assume that there exists a

set of basis functions {φm}m∈N such that

f =
∑

m∈N

cmφm

for all f ∈ F . If the set {φm}m∈N forms an orthonormal set, this can be

rewritten as

f =
∑

m∈N

〈 f, φm〉φm

where

〈 f, φm〉 =

∫ ∞

−∞

f(x)φ∗
m(x)dx.
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Signals written in this form can be approximated by M coefficients as

f̂ =
∑

m∈IM

〈f, φm〉φm

where IM is an index set with M elements [1]. The error is thus

ǫM =
∑

m/∈IM

〈f, φm〉φm.

There are two main types of approximation: linear and nonlinear. Linear

approximation creates the index set IM = {1, . . . ,M}. Linear approximation

maintains all of the properties of linearity, such as superposition. Nonlinear

approximation creates the set IM from the M largest | 〈f, φm〉 | [1]. This

is not a linear approximation because two approximations need not use the

same set of M vectors. The nonlinear approximation error will necessarily

be smaller than or equal to the linear approximation error because larger or

equal basis elements were used.

One of the bases with the the longest history is the Fourier basis. The

Fourier basis is useful because it can represent any square-summable func-

tion and because it diagonalizes linear, shift-invariant operators [1]. Unfor-

tunately, the nonlinear approximation error for signals with discontinuities

is O(M−1) [1].

Over the past twenty years, wavelet bases have become extremely impor-

tant for signal approximation. Wavelet bases improve upon the Fourier bases

because they are scaled to form a multiresolution approximation and can be

compactly supported. Given a mother wavelet φ and a sequence of function

spaces Vj ⊂ F satisfying the multiresolution requirements, the functions

φj,k(x) = 2−j/2φ(2−jx− k) (1.1)

form an orthonormal basis for Vj [2]. For signals which have a finite num-

ber of discontinuities and are uniformly Lipschitz of order s between these

discontinuities, the nonlinear approximation by a wavelet basis with more

than s vanishing moments is O(M−2s) [2, Proposition 9.4]. If the signal is

not continuous, but has bounded variation, then the wavelet approximation

is O(M−2) [2, Proposition 9.5]. Furthermore, the approximation error de-

cay rate of wavelets for signals with bounded variation is equal to or better
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Figure 1.1: Wavelet transform of an image. The transformed image shows
the locations of the largest 10% of the detail coefficients after the 9-7
wavelet transform. Notice the spatial correlation of the large coefficients
along the edges.

than the approximation error decay rate for optimal spline approximations

and the nonlinear approximation created by any orthonormal transform [2].

Therefore, wavelets are essentially optimal for bounded variation signals.

The separable extension of wavelets through tensor products does not

demonstrate a similar optimality. If f is a two-dimensional discontinuous

function with bounded total variation, the error of separable wavelet approx-

imations only decays as O(M−1) [2, Theorem 9.8]. This result is also true

more generally for signals which are piecewise regular, but have discontinuity

curves [2].

The difference between wavelet approximations in one dimension and in

two dimensions is that two-dimensional signals can have one-dimensional

singularity curves, while one-dimensional signals can only have point singu-

larities. Wavelets can approximate the discontinuity orthogonal to the edge

fairly well; however, they cannot exploit the smoothness along the edge [1].

This can be clearly seen in Figure 1.1 in the spatial correlation present in the

detail bands of a typical image transformed into a wavelet basis. The wavelet

basis assumed that each pixel on the edge needed its own large coefficient to

represent the singularity instead of providing a mechanism to approximate

the entire curve with few coefficients.

These singularity curves present in images are not some mathematical

oddity that can easily be ignored. Rather, the presence of smooth edges is

one of the main defining features of the geometry of natural images. There-

fore, two-dimensional representations which are derived from separable one-

dimensional representations or which do not account for these singularity
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curves will not be able to fully exploit the information present in the signal.

A class of signals which better represents the discontinuity curves present in

natural images is the set of functions which are in C2 except for the presence

of discontinuity curves which are also C2. For this class of signals, the lower

bound on the approximation error decay rate is O(M−2) [3]; however, this

rate has not yet been achieved.

1.2 Problem Statement

The previous discussion presents a compelling motivation for the further

creation of representations which account for the geometry of natural images.

The geometry of natural images is dominated by three factors. First, natural

images are not stationary; information in one region of an image is typically

unrelated to information in another region. Therefore, all processing must be

local. Second, except at singularity curves, images tend to be isotropically

regular, which implies that neighboring pixels should be able to predict any

pixel effectively. Furthermore, this prediction will be most effective if the

prediction includes information from multiple sides of the predicted pixel

rather than just along the scanlines. Finally, there exist singularity curves

across which neighboring pixels are unrelated. In a local region, a singularity

curve can be linearly approximated as a direction. By adjusting to these

directions, the prediction will become more effective as fewer unrelated pixels

are included. Using directionality as an integral part of representation is also

supported from the field of physiology. Studies in primate vision systems have

demonstrated that the response of cells in the visual cortex is dominated by

cells with a directional structure [4].

Our goal is to create a new image representation with the following char-

acteristics:

Discrete: The representation should be derived in the discrete domain to

facilitate fast algorithms.

Multiresolution: The representation should create a subband structure

that facilitates multiple resolutions of representation.

Sparse: The number of nonzero coefficients for natural images expressed in
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this representation should be small. Furthermore, the amount of over-

head required by any representation adaptivity should also be small.

Local: The representation should have basis functions with small support

which are derived in the spatial domain to account for the spatial non-

stationarity of natural images.

Nonseparable: The bases should not be tensor products of one-dimensional

bases as optimality of one-dimensional approximation does not imply

optimal two-dimensional approximation.

Directional: The bases should be anisotropic and align with directions be-

yond those provided by separable wavelets.

1.3 Related Work

Researchers in many areas of signal approximation have created represen-

tations for images as a means to improve upon the results of separable

wavelets. These representations fall into three main areas. The first area

is geometric wavelets, which uses frequency domain constructions to create

directional representations similar to wavelets. The second area is separable

directional lifting, which applies spatial domain constructions along arbi-

trary one-dimensional axes. The third area is multidimensional adaptive

transforms, which create nonseparable transforms adapted to the signal, but

which are not adapted in a directional manner.

1.3.1 Geometric Wavelets

Directionlets, developed by Velisavljević et al., applies a one-dimensional

wavelet transform along two independent directions, which need not be along

the scanlines [5, 6]. This method has vanishing moments along these two

directions while retaining separable filtering. Directionlets have an approxi-

mation error decay rate of O(M−s) where s = 1
2
(
√

17 − 1) ≈ 1.55 [5]. Fur-

thermore, using directionlets in a transform coding application provides a

peak signal-to-noise ratio (PSNR) gain of 0.1–0.8 dB over traditional space

frequency coding [6].
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Ridgelets, created by Candès and Donoho, approximate a signal by ridge

functions that are constant in some direction and smooth in the perpendicular

direction [7]. They defined a ridgelet in terms of a smooth mother wavelet

as

φa,b,θ(x, y) = a−1/2φ

(
x cos θ + y sin θ − b

a

)

.

The ridgelet transform is equivalent to applying a Radon transform followed

by a one-dimensional wavelet transform. The Radon transform maps linear

singularities into point singularities, for which wavelets are optimal [1].

Curvelets, also created by Candès and Donoho, extend ridgelets to allow

for curve singularities [8, 3]. The initial formulation of curvelets was a direct

extension to ridgelets by breaking curve singularities into a collection of line

singularities and filtering by the local ridgelet transform [9]. The second for-

mulation bypassed ridgelets to directly replace (1.1) with a two-dimensional

mother curvelet φ with a two-scale relation

φj,l,k(x) = 23j/2φ
(
DjRθj,l

x − k
)

where j is the scale parameter, Dj is the parabolic scaling matrix

Dj =

[

22j 0

0 2j

]

,

l is an orientation parameter, Rθj,l
is a rotation matrix oriented at θj,l =

2π ·2−j ·l, and k is a translation parameter. Curvelets have an approximation

error decay rate of O(M−2(logM)3) [3]. This approximation error rate is

close to the approximation error rate for nonsingular images and is much

better than the error decay rate of separable wavelets for large M . On the

other hand, curvelets use polar coordinates which are difficult to discretize. In

addition, their space-frequency and directional localizations are constructed

in the frequency domain, which leads to long spatial support and Gibbs

oscillations.

Shearlets, developed by Guo and Labate [10] and extended to a discrete

frame by Lim [11], are similar to curvelets except that they use a shearing

operator instead of a rotation operator. Shearlets replaces the mother wavelet
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with a mother shearlet which satisfies

φj,l,k(x) = | det A|j/2φ(BlAjx − k)

where A is a diagonal scaling matrix, B is a shearing matrix, and k is

a translation vector. Shearlets satisfy the same approximation error decay

rate as curvelets of O(M−2(logM)3). Shearlets do not have the discretization

problems of curvelets; however, they still suffer from long spatial support and

Gibbs oscillations.

Contourlets, developed by Do and Vetterli, differ from curvelets and shear-

lets in that the initial formulation uses discrete filter banks instead of con-

tinuous bases [12]. They use a Laplacian pyramid to create a multiresolution

representation of the signal. Each bandpass segment is further processed

using a directional filter bank to select contours along specific directions.

Similar to curvelets and shearlets, contourlets have an approximation error

decay rate of O(M−2(logM)3). Contourlets solve the discretization prob-

lem of curvelets by using a discrete grid; however, they still suffer from long

spatial support and Gibbs oscillations.

Bandlets, developed by Mallat and Peyré, differ from the previous trans-

forms in that their bases adapt to the structure of the signal [13, 14]. The

bandlet transform starts with an ordinary wavelet transform. Given the

parametric representation of the contours in the detail bands x2 = γ(x1),

the coefficients are warped such that (1, γ′(x1)) is aligned with the horizontal

axis. The coefficients are then approximated along this axis by a polynomial.

The approximation error decay rate is O(M−s(logM)s) for two-dimensional

functions in Cs except for discontinuities along Cs curves. This transform has

a better approximation error decay rate than the previous methods and can

be extended to higher orders signals. On the other hand, it requires an edge

detection step to determine γ and will need to retain index information to

properly reconstruct the signal.

1.3.2 Separable Directional Lifting

An alternative construction and extension to traditional wavelets is lift-

ing [15]. Daubechies and Sweldens demonstrated that any one-dimensional

finite impulse response (FIR) wavelet transform can be factored into a fi-
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nite number of lifting steps [16]. Lifting works by splitting a signal into

polyphase components, for example split x = (xn)n∈Z
into xe = (x2n)n∈Z

and xo = (x2n+1)n∈Z
. Because these components tend to be highly corre-

lated, one set should form a good predictor of the other set. Specifically, the

difference

d = xo − P (xe) (1.2)

should be sparse. This difference signal can then update the first polyphase

component of the form

c = xe + U (d) . (1.3)

Notice that given (c,d), (xe,xo) can be trivially obtained for any choice of

P and U by rearranging (1.2) and (1.3).

As lifting is mathematically identical to wavelets for one-dimensional FIR

wavelet filters, separable extensions of lifting to higher dimensions exhibit the

same problems as separable extensions of wavelets. Specifically, they cannot

sparsely represent singularity curves.

Multiple researchers in the area of directional lifting have attempted to

improve upon the error rate of wavelet transforms. In this area, the standard

error metric is the gain of the peak signal-to-noise ratio (PSNR) of various

test images over traditional wavelets.

Gerek and Çetin extended the standard lifting procedure for the 5/3 wave-

let to diagonal directions [17]. They observed that the best prediction of a

value from its two neighbors may not come from the two neighbors in the

current scanline. Instead, they predict the value using the current scanline or

one of the two diagonals using an edge orientation estimator. For a series of

test images, their method demonstrated 0.04–0.14 dB improvement in PSNR

over the 5/3 wavelet. On the other hand, these results only allow for angles

along ±45◦.

Chappelier and Guillemot perform a similar extension by using quincunx

sampling and predicting along the scanlines [18]. For a series of test images,

their method demonstrated 0.3-1.0 dB improvement over separable wavelets

in JPEG-2000. Similar to [17], this method only allows for a few directions.

Ding et al. extended the standard lifting procedure to operate along an

arbitrary direction [19]. By aligning the lifting direction with strong corre-

lation, the prediction should be more accurate than merely predicting along

the scanlines. As pixel values are not available at arbitrary locations, they
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use sinc interpolation to generate these extra values. The PSNR gain of their

system over JPEG-2000 ranged from 0.21 to 1.36 dB. This work is limited

by isotropically using sinc interpolation for subpixel values.

Liu and Ngan improved upon [19] by weighting multiple pixels from the

even polyphase component [20]. If the direction of strong correlation in-

tersects a pixel value, only that single value is used. If the direction is at

a subpixel location, the weighting reduces to an interpolating filter. They

further improve upon [19] by aligning the interpolation filter with the direc-

tion of strong correlation. The PSNR gain of their system over JPEG-2000

ranged from 0.19 to 3.06 dB for the 5/3 filter and 0.19 to 1.79 dB for the

9/7 filter. This work is limited by using a two-step procedure to interpolate

subpixel locations, then predict the current pixel from these values.

Chang and Girod also developed a method to perform standard lifting

along an arbitrary direction [21]. Unlike [19, 20], they do not use subpixel

interpolation. Instead, they continue along the direction until a pixel value

is reached. The PSNR gain of their system over a system similar to JPEG-

2000 ranged from 0.4 to 2.5 dB with one image at 5.4 dB. On the other

hand, this method only uses values along a single orientation to determine

the prediction filter.

In addition, the reliance of all of these methods upon separable one-

dimensional transforms demonstrates two shortcomings. First, as an exten-

sion from the separable lifting scheme, the existing directional lifting schemes

still downsample along each dimension sequentially. It is unclear what the

final transform coefficients are in the equivalent two-dimensional filters. Due

to the concatenation of lifting stages for each dimension, the final equivalent

two-dimensional filters might have large or isotropic support, which limits

the transform’s ability to approximate local and geometric regularities. Sec-

ond, by considering images as a stack of independent smooth one-dimensional

slices, directional lifting still only exploits one-dimensional regularity along

the edge direction. Nevertheless, with subpixel interpolation and concate-

nation of lifting along each dimension, existing directional lifting schemes

implicitly exploit smoothness along all dimensions.
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1.3.3 Nonseparable Adaptive Lifting

Two methods avoid these issues by designing nonseparable filters. Benazza-

Benyahia et al. create nonseparable filters in three dimensions across two

spatial dimensions and one spectral dimension [22]. Their method finds

the filter coefficients using maximum likelihood estimation on the predic-

tion residuals, assuming a generalized Gaussian distribution. The support of

the filter is constant across the entire signal, which does not allow it to adapt

to the geometric regularity contained within the signal.

Quellec et al. create nonseparable filter banks using a vanishing moment

constraint with additional degrees of freedom in order to optimize a higher

level criterion [23]. They optimize these extra degrees of freedom for the

higher level criterion, then ensure that the vanishing moment constraint is

met. However, there is no method to ensure that the support of the filter is

directional.

1.4 Thesis Summary

The remainder of this thesis is structured as follows. In Chapter 2, we discuss

the orthogonality properties of single-stage, multi-channel lifting structures

and demonstrate the design of geometric filters. This lifting structure is con-

strained such that, except in trivial cases, it cannot be orthonormal. There-

fore, we propose a measure of divergence of a filter bank from orthonormality

as an optimization criterion. We then focus on creating directional support

for the prediction filters and designing the filters such that the analysis filter

bank has two vanishing moments. Finally, we consider various methods to

determine the update filters and scaling and determine which method min-

imizes the divergence from orthonormality for the filter bank. The various

filters are then packaged into a geometric filter dictionary.

Chapter 3 explores the BFOS tree pruning algorithm for adaptive segmen-

tation of blocked transforms. We present the theoretical requirements for

the rate and distortion functions and develop a recursive algorithm to find

the optimal segmentation. We then discuss the problem of block boundary

conditions within the framework of a lifting scheme and propose a method

to minimize their impact.

Chapter 4 presents a method to determine the dominant direction of the
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edges within an image block. We review the theory of empirical estimation

of mean and variance for angular random variables. We extend this theory to

robustly determine the dominant edge direction within an image block and

an associated confidence measure. These estimates are then integrated into

the segmentation algorithm.

Chapter 5 contains results of the proposed system. The first set of results

tests the directions estimation and adaptive segmentation algorithms. For a

simple class of synthetic images, Monte Carlo experiments demonstrate that

the estimate is unbiased with a circular variance of 0.058. On more realistic

synthetic and natural images, the proposed algorithm subjectively seems to

choose reasonable directions and segment into the largest regions of consistent

directional bias. The second set of results tests the nonlinear approximation

of the proposed algorithm by comparison with the 5/3 wavelet. While the

proposed transform has a gain of 2–4.5 dB in peak signal-to-noise ratio over

the 5/3 wavelet for synthetic images, it has a degradation of 1–2.5 dB for

natural images.

Chapter 6 presents an empirical and theoretical analysis of the problem of

dimensional degeneracy for filters designed as in Chapter 2. This partially

explains why the nonlinear approximation using this system was unable to

improve upon the 5/3 wavelet.

Chapter 7 presents concluding remarks and an explanation of possible

reasons why the directional image representation proposed in this thesis failed

to improve upon current algorithms in the field.

Appendix A presents the prediction, equivalent analysis, and equivalent

synthesis filters for all of the filters designed in Chapter 2. The equivalent

analysis and synthesis filters for the 5/3 wavelet are presented for comparison.
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CHAPTER 2

GEOMETRIC LIFTING

The most common method for designing signal representations in the discrete

domain is by using filter banks. Filter bank image representations can be

designed either through the theory of perfect reconstruction filter banks [24]

or through lifting [15, 16]. While perfect reconstruction filter bank theory

allows the design of arbitrary filters for each channel, the requirements for

perfect reconstruction are not trivial, especially in higher dimensions or when

combined with directional spatial support requirements. Lifting solves the

problem of perfect reconstruction merely by its structure; any prediction or

update filter may be used without sacrificing perfect reconstruction.

In our algorithm, we will use the simplest of lifting schemes, which is a four-

channel single-stage lifting scheme created by separable sampling by two in

each dimension, which is shown in Figure 2.1. The polyphase lattice created

by separable sampling is shown in Figure 2.2. By using this lattice, the

representation will be consistent with the dyadic two-scale relation of tensor

product wavelet representations. Therefore, our results will be reported by

comparison with the results using separable wavelets.

To have a sparse representation, many of the coefficients need to be zero or

near zero. Except at edges, most natural images have a locally regular geom-

etry. Therefore, sparse representation depends upon the number of vanishing

moments in the analysis filter [2]. Assuming that the image is locally linear,

this criterion is that the equivalent analysis filter bank contain two vanish-

ing moments. While the locally linear assumption seems unrealistic, filters

designed under this assumption have found widespread acceptance (e.g. the

5/3 wavelet in JPEG-2000 [25]). The assumption that the image is locally

regular breaks down at edges. Within a lifting framework, this means that

the prediction residual will be large whenever the filter support contains pix-

els from both sides of the edge. Therefore, the prediction residual can be

minimized by designing the filter support to align with edge directions.
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Figure 2.1: Filter bank representation of a four channel single-stage lifting
scheme.
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Figure 2.2: Demonstration of the four polyphase components of separable
sampling.

2.1 Orthonormal Lifting Structures

Lifting schemes with linear filters can be expressed through their analysis

and synthesis polyphase matrices. The analysis polyphase matrix of the four

channel lifting scheme shown in Figure 2.1 is

P =









s0 0 0 0

0 s1 0 0

0 0 s2 0

0 0 0 s3

















1 U1 U2 U3

0 1 0 0

0 0 1 0

0 0 0 1

















1 0 0 0

−P1 1 0 0

−P2 0 1 0

−P3 0 0 1









.

Similar to the one-dimensional case, the invertibility of P demonstrates that

the lifting scheme is trivially invertible for any choice of prediction and update

filters.

In many filter bank applications, the goal is to create an orthonormal filter

bank. One significant advantage of orthonormal filter banks is that they

preserve the ℓ2 norm. This is useful for nonlinear approximations because it

13



ensures that minimizing the ℓ2 norm of the error in the transform domain is

equivalent to minimizing the ℓ2 norm in the signal domain. Unfortunately,

the conditions for orthonormality and a single-stage multi-channel lifting

scheme are nearly incompatible.

Theorem 2.1. An M-channel single-stage lifting structure with linear FIR

filters is orthonormal if and only if there exists a single m ∈ {1, . . . ,M − 1}
such that the following conditions hold:

1. Pi = 0 for all i 6= m.

2. Pm is a monomial with gain
√

s−2
m − 1.

3. Ui = 0 for all i 6= m.

4. Um = s2
mP̃m.

5. si = ±1 for all i 6= m and i 6= 0.

6. sm = ±s−1
0 .

Pi and Ui above are the transfer functions of the predict and update filters Pi

and Ui respectively, and P̃ is the adjoint of P .

Proof. A necessary and sufficient condition for a filter bank to be orthonormal

is that its synthesis polyphase matrix P−1 satisfy P−1P̃−1 = I where P̃ is

the adjoint polyphase matrix [24]. Therefore, it is sufficient to prove that the

listed conditions are true if and only if P̃P = I. As the left and right inverse

of invertible matrices are identical, this implies PP̃ = I. The M -channel

polyphase matrix is

P =









s0 0 · · · 0

0 s1 · · · 0
...

...
. . .

...

0 0 · · · sM−1

















1 U1 · · · UM−1

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

















1 0 · · · 0

−P1 1 · · · 0
...

...
. . .

...

−PM−1 0 · · · 1









=










s0

(

1 − ∑M−1
k=1 UkPk

)

s0U1 · · · s0UM−1

−s1P1 s1 · · · 0
...

...
. . .

...

−sM−1PM−1 0 · · · sM−1










.
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Therefore, the necessary and sufficient condition is that

I =










s0

(

1 − ∑M−1
k=1 UkPk

)

s0U1 · · · s0UM−1

−s1P1 s1 · · · 0
...

...
. . .

...

−sM−1PM−1 0 · · · sM−1










·










s0

(

1 − ∑M−1
k=1 ŨkP̃k

)

−s1P̃1 · · · −sM−1P̃M−1

s0Ũ1 s1 · · · 0
...

...
. . .

...

s0ŨM−1 0 · · · sM−1










.

This is an M2 system of equations. Consider each element of the output

matrix in turn. For consistency with the previous notation, enumerate the

rows and columns of the matrix starting from zero.

• Element (i, i) for i > 0: s2
iPiP̃i + s2

i = 1. This equation reduces to

PiP̃i = s−2
i − 1. Assume that the order of the Laurent polynomial Pi

is q. By the definition of adjoint, the order of P̃i is also q. By Laurent

polynomial multiplication, the order of the product PiP̃i is 2q. As this

product is equal to s−2
i − 1, which has order zero, we have 2q = 0.

Therefore Pi is a monomial. As the gain of Pi and P̃i must be equal,

the gain of Pi must be
√

s−2
i − 1.

• Element (i, j) for i > 0, j > 0, and i 6= j: sisjPiP̃j = 0. As both Pi and

P̃j are monomials, the zero product property implies that one of them

must be zero. As this equation holds for every pair of (i, j) greater

than zero, there is only one m ∈ {1, . . . ,M − 1} such that Pm 6= 0.

Furthermore, by combining with the previous equation, for all i 6= m,

PiP̃i = 0 implies si = ±1.

• Element (0, j) for j > 0: −s0sjP̃j

(

1 − ∑M−1
i=1 UiPi

)

+ s0sjUj = 0. If

j = m this reduces to Um(1 + PmP̃m) = P̃m, which further reduces to

Um = s2
mP̃m. If j 6= m, then P̃j = 0, which implies Uj = 0.

• Element (i, 0) for i > 0: −s0siPi

(

1 − ∑M−1
i=1 ŨiP̃i

)

+ s0siŨi = 0. If

i = m, then this reduces to Ũm = s2
mPm. Otherwise, Pi = 0, which

implies Ũi = 0. By taking the adjoint of both sides of these equations,
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we see that this relationship is identical to the required relationship

from the previous set of equations.

• Element (0, 0):
(

1 − ∑M−1
k=1 UkPk

) (

1 − ∑M−1
k=1 ŨkP̃k

)

+
∑M−1

k=1 UkŨk =

s−2
0 . Eliminating all terms that are zero, this becomes s2

0(1−UmPm)(1−
ŨmP̃m) + s2

0UmŨm = 1. Expanding terms, substituting the relations

Um = s2
mP̃m, Ũm = s2

mPm, and PmP̃m = s2
m−1, and simplifying provides

s2
0s

2
m = 1. �

This theorem is very restrictive, as constant filters cannot have multiple

vanishing moments or directional support. Therefore, we cannot restrict

ourselves to orthonormal filters.

As there is no restriction on the relationship between the ℓ2 norm in the

signal domain and the transform domain for biorthogonal filters, we would

like to create filters that are nearly orthonormal. If the filter bank were

orthonormal, the polyphase matrix evaluated on the unit circle would be

unitary. Therefore, its condition number is always one. As no matrix can

have a condition number smaller than one, the magnitude of the condition

number is a measure of divergence away from orthonormality. The condition

number of a polyphase matrix is formally defined in terms of the minimum

and maximum singular values as

c =
sup

ω∈[0 2π)2 σmax(P (ω))

infω∈[0 2π)2 σmin(P (ω))
.

2.2 Directional Support

In order to meet the criterion of geometric basis functions, we need to define

filters with directional support. As we are assuming bilinear polynomials, we

need at least four independent points. The question is how to choose these

points in a manner which is directional and local, yet which acknowledges

the limitations of a discrete grid.

One method is to create the filter support in the continuous domain, then

use subpixel interpolation to determine all points which do not fall on in-

teger locations. While this approach seems to easily solve the question of

directional support, it actually does not maintain directional filters. If the

subpixel interpolation filter is not directional (e.g. [19]), the anisotropy of

16



the equivalent filter will be significantly reduced. Even if the subpixel in-

terpolation filter is directional (e.g. [20]), the two-step process of designing

the filter for subpixel locations then interpolating data to those locations is

suboptimal. Rather, the filter should be designed similar to [21], which ac-

knowledges that data only exists at integral locations and designs the filters

accordingly. Therefore, in this work, we will only allow filter taps at integral

locations.

In order to design a filter with at least four taps which is local and direc-

tional, create the filter support by using a parallelogram. A parallelogram is

uniquely determined by two vectors. Recall from the block diagram of the

lifting scheme in Figure 2.1 that the prediction filters need to be defined such

that all filter taps correspond to data in polyphase zero. This implies that

the vertices of the parallelogram should only fall on even integers. Align one

of the vectors at the desired angle. In order to maintain locality without

using subpixel interpolation, the desired angle needs to be the arctangent

of a ratio of small even integers. Align the second vector along a scanline.

This maintains locality by operating in a direction in which data exists at

a distance of two pixels. This scanline vector can be defined in four ways.

It could be chosen to be either always horizontal or always vertical; how-

ever, this does not create consistent properties between directions which are

nearly horizontal or nearly vertical. A better method is to choose the scan-

line which is either more parallel or more perpendicular to the directional

vector. We will refer to the “more parallel” case as “skinny” parallelograms

and the “more perpendicular” case as “fat” parallelograms. An example of

parallelograms defined in this way is shown in Figure 2.3.

Given a parallelogram, the remaining filter support questions for predic-

tion filters are which points should be used in the prediction and which point

is being predicted. To account for the local regularity of natural image ge-

ometry, the filter should use all available information that is consistent with

direction and locality in making the prediction. This implies that every

phase zero point which falls within the parallelogram should be used. The

predicted point should be as near as possible to the center of the parallelo-

gram in order to maintain locality in all directions. As these filters will be

used as prediction filters for all three polyphases, a predicted point needs to

be chosen for each polyphase. Finally, the filter support can be shifted for

each phase such that it becomes a proper impulse response. An example of
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(b) Skinny Parallelogram

Figure 2.3: Demonstration of parallelograms designed for a direction of
arctan(6/2).
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(a) Fat Filter
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(b) Skinny Filter

Figure 2.4: Demonstration of the filters designed from the parallelograms of
Figure 2.3. The black dots are the values used in the prediction. The
square, triangle, and diamond are the predicted locations for phases 1–3. In
order to show all three predicted locations on the same figure, the shifting
needed to make an impulse response has not been applied.

filters defined from the parallelograms of Figure 2.3 is shown in Figure 2.4.

Using this method of designing filters for directional parallelograms, we

propose a set of 12 geometric filters. The parallelograms were chosen to

provide good angular coverage while maintaining locality. The set of fat

filters is shown in Figure 2.5 and the set of skinny filters is shown in Figure 2.6.

18



−
1

0
1

2
3

−
1 0 1 2 3D
ir
e

c
ti
o

n
 1

: 
9

0
°

−
2

0
2

4
6

0 2 4 6D
ir
e

c
ti
o

n
 2

: 
7

2
°

0
2

4

0 2 4D
ir
e

c
ti
o

n
 3

: 
6

3
°

−
2

0
2

4

0 2 4D
ir
e

c
ti
o

n
 4

: 
4

5
°

0
2

4

0 2 4D
ir
e

c
ti
o

n
 5

: 
2

7
°

0
2

4
6

−
2 0 2 4 6D
ir
e

c
ti
o

n
 6

: 
1

8
°

−
1

0
1

2
3

−
1 0 1 2 3D

ir
e

c
ti
o

n
 7

: 
0
°

0
2

4
6

−
6

−
4

−
2 0 2

D
ir
e

c
ti
o

n
 8

: 
−

1
8

°

0
2

4

−
4

−
2 0

D
ir
e

c
ti
o

n
 9

: 
−

2
7

°

−
2

0
2

4

−
4

−
2 0

D
ir
e

c
ti
o

n
 1

0
: 

−
4

5
°

0
2

4

−
4

−
2 0

D
ir
e

c
ti
o

n
 1

1
: 

−
6

3
°

−
2

0
2

4
6

−
6

−
4

−
2 0

D
ir
e

c
ti
o

n
 1

2
: 

−
7

2
°

F
ig

u
re

2.
5:

S
et

of
12

fa
t

ge
om

et
ri

c
fi
lt

er
s.

T
h
e

la
rg

e
d
ot

s
ar

e
th

e
el

em
en

ts
of

p
h
as

e
ze

ro
u
se

d
in

th
e

p
re

d
ic

ti
on

.
T

h
e

sq
u
ar

e,
tr

ia
n
gl

e,
an

d
d
ia

m
on

d
ar

e
th

e
p
re

d
ic

te
d

lo
ca

ti
on

s
in

p
h
as

es
1–

3
re

sp
ec

ti
ve

ly
.

In
or

d
er

to
sh

ow
al

l
th

re
e

p
re

d
ic

te
d

lo
ca

ti
on

s
on

th
e

sa
m

e
fi
gu

re
,
th

e
sh

if
ti

n
g

n
ee

d
ed

to
m

ak
e

an
im

p
u
ls

e
re

sp
on

se
h
as

n
ot

b
ee

n
ap

p
li
ed

.

19



−
1

0
1

2
3

−
1 0 1 2 3D
ir
e

c
ti
o

n
 1

: 
9

0
°

−
4−

2
0

2
4

6

0 2 4 6 8D
ir
e

c
ti
o

n
 2

: 
7

2
°

−
2

0
2

4

0 2 4 6D
ir
e

c
ti
o

n
 3

: 
6

3
°

−
2

0
2

4

0 2 4D
ir
e

c
ti
o

n
 4

: 
4

5
°

0
2

4
6

−
2 0 2 4D
ir
e

c
ti
o

n
 5

: 
2

7
°

0
2

4
6

8

−
4

−
2 0 2 4 6D
ir
e

c
ti
o

n
 6

: 
1

8
°

−
1

0
1

2
3

−
1 0 1 2 3D

ir
e

c
ti
o

n
 7

: 
0
°

0
2

4
6

8

−
6

−
4

−
2 0 2 4

D
ir
e

c
ti
o

n
 8

: 
−

1
8

°

0
2

4
6

−
4

−
2 0 2

D
ir
e

c
ti
o

n
 9

: 
−

2
7

°

−
2

0
2

4

−
4

−
2 0

D
ir
e

c
ti
o

n
 1

0
: 

−
4

5
°

−
2

0
2

4

−
6

−
4

−
2 0

D
ir
e

c
ti
o

n
 1

1
: 

−
6

3
°

−
4−

2
0

2
4

6

−
8

−
6

−
4

−
2 0

D
ir
e

c
ti
o

n
 1

2
: 

−
7

2
°

F
ig

u
re

2.
6:

S
et

of
12

sk
in

n
y

ge
om

et
ri

c
fi
lt

er
s.

T
h
e

la
rg

e
d
ot

s
ar

e
th

e
el

em
en

ts
of

p
h
as

e
ze

ro
u
se

d
in

th
e

p
re

d
ic

ti
on

.
T

h
e

sq
u
ar

e,
tr

ia
n
gl

e,
an

d
d
ia

m
on

d
ar

e
th

e
p
re

d
ic

te
d

lo
ca

ti
on

s
in

p
h
as

es
1–

3
re

sp
ec

ti
ve

ly
.

In
or

d
er

to
sh

ow
al

l
th

re
e

p
re

d
ic

te
d

lo
ca

ti
on

s
on

th
e

sa
m

e
fi
gu

re
,
th

e
sh

if
ti

n
g

n
ee

d
ed

to
m

ak
e

an
im

p
u
ls

e
re

sp
on

se
h
as

n
ot

b
ee

n
ap

p
li
ed

.

20



30

−150

60

−120

90

−90

120

−60

150

−30

180 0

Figure 2.7: Angular quantization of the geometric filters.

We propose using the fat filters as opposed to the skinny filters for reasons

described in Section 2.4. The angular quantization of the filters is shown in

Figure 2.7. As image edges are axial, specifying the filters for half of the

unit circle is sufficient. The maximum difference between neighboring filters

is 18◦ and the minimum difference is 9◦.

2.3 Prediction Filters

In our formulation of geometric lifting, we desire that the analysis portion of

the filter bank have two vanishing moments in each dimension. As images

can be approximated fairly well as locally linear in areas away from edges,

this choice should sparsify the detail bands. In addition, this choice will

make our transform comparable with the tensor product 5/3 wavelet, which

also has two vanishing moments in each dimension. Kovačević and Sweldens

proved that the analysis portion of the filter bank has K vanishing if and

only if the prediction filter is able to exactly represent polynomials of order

less than K [26].

For the case of two vanishing moments in each dimension, this implies that

we must exactly represent all functions of the class

Π1,1 = {f [m,n]|f [m,n] = a1 + a2m+ a3n+ a4mn, a1, a2, a3, a4 ∈ R}.
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This class is defined as the span of four linearly independent basis func-

tions {1,m, n,mn}. Consider a set of N points in the plane, enumerated as

{(m1, n1), . . . , (mN , nN)}. Given a set of the parameters {a1, a2, a3, a4}, the

value of the function at these locations can be calculated through the matrix

equation






f [m1, n1]
...

f [mN , nN ]







=







1 m1 n1 m1n1

...
...

...
...

1 mN nN mNnN















a1

a2

a3

a4









.

This equation can be written succinctly as f = RT a. If the points are not

degenerate RT has rank four. Therefore, the minimization

a = argmin
a

‖f − RT a‖2

has the unique solution

a = (RRT )−1Rf . (2.1)

The value of the function at any other point (mp, np) can be written as

f [mp, np] = a1 +mpa2 + npa3 +mpnpa4.

Defining pT =
[

1 mp np mpnp

]

allows the value of the function to be

written as f [mp, np] = pT a. This can be expanded using (2.1) as

f [mp, np] = pT (RRT )−1Rf .

This function evaluation can be written as a linear filter by expressing the

output value as f [mp, np] = hT f where

h = RT (RRT )−1p. (2.2)

An alternate formulation is also informative. In this method, the goal of

f [mp, np] = hT f is expressed first. Under the assumption that the signal

is a bilinear, we have the two constraints f [mp, np] = pT a and f = RT a.

Substituting these together provides pT a = hT RT a. As this must be true

for all a, we know that

p = Rh. (2.3)
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If N is greater than four, this system is underdetermined. Define a solution

for h as the minimizer of J(h) = ‖h‖2 subject to p = Rh.

Because J is strictly convex and the set of feasible directions q such that

p = R(h + q) is a convex subspace, this problem can be solved by the

Projection Theorem [27]. The minimizer is the vector such that ∇TJq = 0

for all q ∈ Null(R), which implies that ∇J ∈ Null(R)⊥. By the Fundamental

Subspaces Theorem, this is equivalent to ∇J ∈ Range(RT ) [28]. Therefore,

there exists s such that ∇J = RT s. As ∇J = 2h, we have h = 1
2
RT s.

Substituting this into the constraint implies that 2p = RRT s. As RT is

rank four, this equation can be solved as s = 2(RRT )−1p. Therefore, h =

RT (RRT )−1p as before. Therefore, in addition to minimizing the difference

between the function and the linear polynomial, it is also the minimum norm

solution assuming a linear polynomial.

The significance of (2.2) is that the value of the function at any location

can be determined solely from the value of the function at other locations

and the geometric relationship between the various points. Since (2.2) does

not depend upon f , the filter h depends only on the locations of the various

points {(m1, n1), . . . , (mN , nN), (mp, np)} not on their values. Furthermore,

the method to create h is shift-invariant. This is seen by expressing (2.3) as









1

mp

np

mpnp









=









1

m

n

m ⊗ n









h

where 1 is a row vector of ones, m and n are row vectors of the m and

n coordinates of each point used in the prediction, and ⊗ is elementwise

multiplication. The solution for h can be found using the augmented matrix









1 1

m mp

n np

m ⊗ n mpnp









. (2.4)
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If the coordinate system is shifted by ∆m and ∆n, then (2.3) is









1

mp + ∆m

np + ∆n

(mp + ∆m)(np + ∆n)









=









1

m + ∆m1

n + ∆n1

(m + ∆m1) ⊗ (n + ∆n1)









h∆m,∆n
.

The solution for h∆m,∆n
must satisfy the augmented matrix









1 1

m + ∆m1 mp + ∆m

n + ∆n1 np + ∆n

(m + ∆m1) ⊗ (n + ∆n1) (mp + ∆m)(np + ∆n)









.

Through elementary row operations on the middle two rows and expanding

the bottom row, we get









1 1

m mp

n np

m ⊗ n + ∆mn + ∆nm + ∆m∆n1 mpnp + ∆mnp + ∆nmp + ∆m∆n









.

Applying elementary row operations on the fourth row reduces this aug-

mented matrix to (2.4). Therefore, the system of equations which leads to

the solution h is equivalent to the system of equations leading to h∆m,∆n
.

Therefore, the filter coefficients are independent of ∆m and ∆n and the filter

is shift-invariant.

For signals which are members of Π1,1, the filter h exactly evaluates the

function at the new location. However, most signals are not members of Π1,1.

For the broader class of signals which are approximately locally linear, the

residual

d[mp, np] = f [mp, np] − hT f

should be small. Therefore, these filters can be viewed as a prediction filter of

the value at (mp, np) given the various other points. This method provides a

simple mechanism to create a prediction filter from any set of nondegenerate

points. Therefore, this method can be used to design the prediction filters

for a lifting scheme.
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2.4 Update Filters and Scaling

Unlike the prediction filters, the update filters do not have an easily identi-

fiable role. Possible types of update filters include:

• Eliminate the update filter.

• Use square averaging filters.

• Use the prediction filter.

• Use filters that provide vanishing moments in the synthesis portion of

the filter bank. By [26] this implies that the update filters are 1
4

the

adjoint of the prediction filters.

• Use a scaled version of the square averaging filter or prediction filter.

Similarly, the scaling constants are not easily derived. For orthogonal filter

banks, the scaling is often designed such that ‖h‖ = 1, which makes the filter

bank orthonormal. As our filters cannot be orthonormal, this derivation of

the scaling parameters is uninformative. From our previous discussion, the

prediction filters were designed by exactly fitting bilinear polynomials. As

a constant function is a bilinear polynomial, it must be exactly represented.

Therefore, every filter must have unitary DC gain. The scaling parameters

s0, . . . , s3 do not need to be unitary; however, to allow the filters to cross block

boundaries as described in Section 3.3, the DC gain of the approximation

band for each direction must be the same. Intuitive choices for the scaling

are:

• Set s0 to force the average ℓ2 norm of the equivalent approximation

filters to be one. Set the detail band scaling to force the ℓ2 norm of

each equivalent detail filter to be one.

• Allow s0 to be a free parameter and set the detail band scaling to force

the ℓ2 norm of each equivalent detail filter to be one.

• Allow s0 to be a free parameter and set the detail band scaling to one.

The design criterion for the update filters and the scaling is to jointly force

the complete filter bank to be as orthonormal as possible. From prior discus-

sion, minimizing the condition number of the polyphase matrix measures the
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Table 2.1: Optimal Condition Number for each Direction

Direction Angle Condition Number
1 90 2.0000
2 72 2.1699
3 63 2.0962
4 45 2.0000
5 27 2.0962
6 18 2.1699
7 0 2.0000
8 -18 2.1699
9 -27 2.0962
10 -45 2.0000
11 -63 2.0962
12 -72 2.1699

divergence from orthonormality. In addition to optimizing over the update

filters and scaling constants, this optimization also allowed the prediction fil-

ters to be either fat or skinny filters. The optimization space was discretized

by allowing the scaling of the update filters and the free parameters of the

scaling to be chosen from the set of 2β where β = −4, . . . , 4.

By exhaustive search, the solution to this optimization problem was fat

prediction filters, update filters which provide vanishing moments, and scal-

ing such that s0 was two and all of the other scaling parameters were one.

The condition number of each directional filter bank is shown in Table 2.1.

2.5 Geometric Filter Dictionary

The filter design operations described in this chapter do not need to be imple-

mented in practical image representation algorithms. Rather, the filters can

be placed into a geometric filter dictionary, which can be accessed whenever

a specified filter is desired. This dictionary consists of the following elements:

• The prediction filter angles and coefficient locations of Figure 2.5, prop-

erly shifted to form impulse responses.

• The prediction filter coefficients calculated for each prediction filter

according to (2.2).
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• The update filter coefficients as 1
4

the adjoint of the prediction filter

coefficients.

• The scaling coefficients
[

2 1 1 1
]

.
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CHAPTER 3

ADAPTIVE SEGMENTATION

To maximally benefit from the adaptability of directional lifting, the image

must be segmented into regions with consistent dominant directions. This

problem can be cast as a rate-distortion optimization problem. The im-

age can be recursively partitioned into blocks of variable size by quad-tree

decomposition. Smaller blocks will have more uniformity in dominant direc-

tion; however, they will require more side information to code the directions

and the tree structure. On the other hand, larger blocks will have less side

information at the expense of higher prediction errors.

3.1 Optimal Tree Pruning Theory

One standard algorithm is the BFOS tree pruning algorithm [29]. This al-

gorithm was created to determine the optimal classification tree given a set

of training examples of the objects to be classified. This algorithm can be

modified to provide a mechanism for adaptive segmentation for block-based

adaptive transforms, for example [19].

Define the initial tree as T0. This tree was built by recursively subdividing

each block into subblocks until a minimum block size is reached. Let t ∈ T0

be a node in the tree. As this tree is intended to segment an image f , define

the block of the image represented by node t as Bt ⊂ Z
2 and the number of

pixels in this block as |Bt|. Given a node t, define a branch Tt ⊂ T as the set

of t and its descendants. For any tree or subtree, let | · | be the number of

nodes in the tree or subtree. Let T̃t be the set of leaves in branch Tt. Notice

that T̃t is a tree if and only if |Tt| = 1.

For image coding applications, each pixel should only be coded once.

Therefore, the preferred tree structure contains non-overlapping blocks. The

transform itself can still use the pixels that belong to other nodes; how-
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ever, the adaptive parameters of the pixel belong to only one node. In the

tree structure this requires that Bt = ∪t′∈T̃t
Bt′ and Bt′ ∩ Bt′′ = ∅ for ev-

ery t′, t′′ ∈ T̃t such that t′ 6= t′′. These two properties in turn imply that

|Bt| =
∑

t′∈T̃t
|Bt′ |.

The optimal tree is defined as

T̂0 = argmin
S⊂T0

J(S) (3.1)

where the objective function is composed of distortion and rate terms as

J(S) = D(S) + λR(S). The regularization parameter λ allows the user to

adjust the weight given to distortion and rate.

In [29], the distortion function was the resubstitution error of the classifier.

While this is the most intuitive distortion function for classification problems,

it does not apply to block based adaptive transforms. For adaptive transform

coding, the distortion for a node should be some function of the image values

in the block corresponding to the node and of the adaptive parameters used to

transform that node. Express these dependencies by defining the distortion

function for node t as d(f(Bt), αt) where αt are the adaptive parameters.

The distortion function for a tree is defined from the distortion functions for

each leaf in the tree as

D(Tt) =
∑

t′∈T̃t

d(f(Bt′), αt′).

In order for the optimization to be well defined, the distortion for a node

needs to be a nonnegative function which satisfies:

Property 3.1 (Monotonicity).

d(f(Bt), αt) ≥
∑

t′∈T̃t

d(f(Bt′), αt′).

This property ensures that the distortion of a large block is always larger

than the distortion of its constituent small blocks. This is intuitive because

the collection of small blocks has more adaptive parameters, so it should have

lower distortion.

In [29], the rate function for a tree was defined as the size of the tree. While

this accounts for the overhead of the tree structure, it does not account for
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any adaptive parameters of the transform. Therefore, define the rate function

as the number of overhead bits required to encode the adaptive parameters

for each leaf in the tree plus the overhead needed to code the tree structure.

For node t, define r(αt) as the number of bits required to encode the adaptive

parameters αt. The overhead for the tree is one bit per node, which specifies

whether the node is a leaf or an internal node. The rate to code a tree is

thus

R(Tt) = |Tt| +
∑

t′∈T̃t

r(αt′).

Often, the rate to encode the overhead of one large block is smaller than the

rate to encode the overhead of a collection of smaller blocks; however, that

is not strictly necessary.

3.2 Optimal Tree Pruning Implementation

The idea behind the solution to (3.1) is that every branch is itself a tree;

however, it has fewer nodes than the original tree. Therefore, the problem

can be solved by decomposing the minimization of the objective function for

a tree into a sum of independent minimizations among the branches defined

by the children of the root of that tree. As this is a recursive formulation,

it is typically implemented starting with the leaves and building towards the

root. Define {t} to be the tree composed solely of node t. This implies that

|{t}| = 1 and ˜{t} = {t}. Define Ct to be the set of children of node t. Define

{t→ {Si}i∈I}

for disjoint trees Si in some index set I as the tree created with root t and

subtrees Si.

The solution to (3.1) is thus:

Case 1: Tt = {t}
In this case, the objective function is

J({t}) = D({t}) + λR({t})
= d(f(Bt), αt) + λ [1 + r(αt)] .
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Therefore,

min
S⊂{t}

J(S) = d(f(Bt), αt) + λ [1 + r(αt)]

and

argmin
S⊂{t}

J(S) = {t}.

Case 2: Tt 6= {t}
This case has two subcases depending upon whether the minimizing

argument is {t} or some other tree.

Case 2a: argmin
S⊂Tt 6={t}

J(S) = {t}

By the assumption that {t} is the minimizer,

min
S={t}

J(S) = J({t})

= d(f(Bt), αt) + λ [1 + r(αt)] .

Case 2b: argmin
S⊂Tt 6={t}

J(S) 6= {t}

Because the minimizing argument is not {t}, we know that the

children of t are not removed in the minimization process. There-

fore, the objective function can be expanded along the children of

t.

J(Tt) = D(Tt) + λR(Tt)

=
∑

t′∈T̃t

d(f(Bt′), αt′) + λ



|Tt| +
∑

t′∈T̃t

r(αt′)





=
∑

t′∈Ct

∑

t′′∈T̃t′

d(f(Bt′′), αt′′)

+ λ



1 +
∑

t′∈Ct



|Tt′| +
∑

t′′∈T̃t′

r(αt′′)









= λ+
∑

t′∈Ct

[D(Tt′) + λR(Tt′)]

= λ+
∑

t′∈Ct

J(Tt′).

As each of the trees defined by the children of t is independent,
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the minimization distributes over the sum as

min
S⊂Tt 6={t}

S 6={t}

J(S) = λ+
∑

t′∈Ct

min
S⊂Tt′

J(S).

For simplicity of notation, define

Jt = λ+
∑

t′∈Ct

min
S⊂Tt′

J(S).

The minimizing argument is

argmin
S⊂Tt 6={t}

S 6={t}

J(S) =

{

t→
{

argmin
S⊂Tt′

J(S)

}

t′∈Ct

}

.

Combining both of the subcases, we know that

min
S⊂Tt 6={t}

J(S) =







J({t}) J({t}) ≤ Jt

Jt J({t}) > Jt.

The minimizing argument is

argmin
S⊂Tt 6={t}

J(S) =







{t} J({t}) ≤ Jt
{

t→
{

argmin
S⊂Tt′

J(S)

}

t′∈Ct

}

J({t}) > Jt.

As these minimizations are written in terms of minimizations with fewer

nodes, a finite number of recursive calls to Case 1 or Case 2 will solve (3.1).

3.3 Block Boundary Issues

In creating a blocked transform, there is a proliferation of boundaries within

the image. While the original image only had boundaries along the outside,

the blocked transform has boundaries along the outside and at every block

boundary. These boundaries can be handled in two ways. First, classical

boundary methods such as zero padding, symmetric extension, or periodic

extension can be applied. This method maintains the independence of each
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block; however, it increases the prediction residual of the block. Whenever

the prediction filter needs to access a location across the boundary, the re-

lationship between the predicted value and data extended to this location is

probably different than the relationship between the predicted value and the

data that would have been there except for the boundary. In the context of

geometric lifting, all three methods modify edges. Zero padding adds vertical

and horizontal edges not present in the original image. Symmetric extension

reflects an edge across an axis, changing its direction. Periodic extension uses

data from another location in the image, which may or may not have any

related edge structure. For these reasons, images segmented with classical

boundary methods tend to have large blocks because the error introduced by

the extra boundaries is not offset by the adaptivity of the transform.

The second method is to use data from across the edge for all internal

boundaries. This eliminates all boundary problems; however, the blocks are

no longer independent. Consider a one-dimensional lifting scheme with two

blocks, denoted by x1 and x2. The lifting equations (1.2) and (1.3) are thus

d1 = x1,o − P1(x1,e)

c1 = x1,e + U1(d1)

d2 = x2,o − P2(x2,e)

c2 = x2,e + U2(d2).

Using data across block boundaries implies that there are some pixel locations

n such that d1[n] depends upon both x1,e and x2,e. These equations need

to be rewritten as

d1 = x1,o − P1(x1,e,x2,e) (3.2a)

c1 = x1,e + U1(d1,d2) (3.2b)

d2 = x2,o − P2(x1,e,x2,e) (3.2c)

c2 = x2,e + U2(d1,d2). (3.2d)

Notice that the equation for c1 depends upon d2. Therefore, the implementa-

tion of the transform must be stage based (d1 and d2 followed by c1 and c2)

rather than block based (d1 and c1 followed by d2 and c2). This precludes
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x1,1 x1,2 x2,1 x2,2

︸ ︷︷ ︸

x1

︸ ︷︷ ︸

x2

Figure 3.1: Adjacent data blocks at two scales.

the inclusion of tensor product lifting schemes such as the 5/3 wavelet in

the system because they cannot be factored into stage based transforms on

a separable two-dimensional sampling lattice.

In addition, there are limitations on the type of segmentation required by

the interdependence of the blocks. Assume that x1 is split into two adjacent

blocks x1,1 and x1,2 and likewise for x2 such that x1,2 shares a boundary

with x2,1, as shown in Figure 3.1. The lifting equations become

d1,1 = x1,1,o − P1,1(x1,1,e,x1,2,e) (3.3a)

d1,2 = x1,2,o − P1,2(x1,1,e,x1,2,e,x2,1,e) (3.3b)

d2,1 = x2,1,o − P2,1(x1,2,e,x2,1,e,x2,2,e) (3.3c)

d2,2 = x2,2,o − P2,2(x2,1,e,x2,2,e) (3.3d)

c1,1 = x1,1,e + U1,1(d1,1,d1,2) (3.3e)

c1,2 = x1,2,e + U1,2(d1,1,d1,2,d2,1) (3.3f)

c2,1 = x2,1,e + U2,1(d1,2,d2,1,d2,2) (3.3g)

c2,2 = x2,2,e + U2,2(d2,1,d2,2) (3.3h)

Assume that the segmentation algorithm determines that the objective func-

tion is minimized by transmitting blocks x1,1, x1,2, and x2 . Therefore, the

transmitted signals are {c1,1,d1,1, c1,2,d1,2, c2,d2}. Inverting this stream re-

quires inverting equations (3.2c), (3.2d), (3.3a), (3.3b), (3.3e), and (3.3f).
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These equations become

x2,e = c2 − U2(d1,d2) (3.4a)

x1,1,e = c1,1 − U1,1(d1,1,d1,2) (3.4b)

x1,2,e = c1,2 − U1,2(d1,1,d1,2,d2,1) (3.4c)

x2,o = d2 + P2(x1,e,x2,e) (3.4d)

x1,1,o = d1,1 + P1,1(x1,1,e,x1,2,e) (3.4e)

x1,2,o = d1,2 + P1,2(x1,1,e,x1,2,e,x2,1,e) (3.4f)

Unfortunately, these equations depend upon d1, d2,1, x1,e, and x2,1,e which

are not transmitted or calculated. Furthermore, if the prediction and update

filters of equations (3.2) and (3.3) are independent, these quantities cannot

be calculated from the known data. Therefore, the segmentation cannot

occur after the update step. The segmentation can occur either before any

transforms or after the first predict step. It can occur at the beginning

because then all transforms have a consistent segmentation. It can occur after

the first predict step because all transforms depend only upon the original

data, which is the same at all scales.
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CHAPTER 4

DIRECTION ESTIMATION

To perform block-based directional filtering on a natural image, one of the

fundamental challenges is determining the dominant direction in each block.

Under the assumption that the image is piecewise smooth, this dominant

direction is caused by the edge directions. This reduces the problem to find-

ing the dominant edge direction within a block. For images which are also

piecewise constant, the gradient of the image along the edge will point in the

direction perpendicular to the edge and will be zero elsewhere. Therefore,

a reasonable estimate of the dominant direction is the direction perpendic-

ular to the average of the gradient directions. These types of averages are

computed using the techniques of directional statistics. While the piecewise

smooth assumption is generally valid, the piecewise constant assumption is

generally invalid. Therefore, the standard equations for average direction

will need to be modified.

4.1 Theory of Directional Statistics

The mean and dispersion of angular quantities are computed using the tech-

niques of directional statistics [30]. Let {θ1, . . . , θN} be a collection of N

samples of an angular distribution that is periodic on 2π. Define the com-

plex resultant by

z1 =
1

N

N∑

i=1

ejθi .

The mean is defined as the angle of the complex resultant

µ1 = ∠z1.
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The circular dispersion about some angle η is defined as

V 1(η) =
1

N

N∑

i=1

[1 − cos(θi − η)] .

The variance is merely the dispersion about the mean.

These definitions of mean and dispersion exhibit many nice properties [30]:

Property 4.1 (Coordinate System Invariance). An additive change to the

distribution results in merely an additive change in the directional mean.

Specifically, if the mean of the set {θ1, . . . , θN} is µ1, then the mean of the

set {(θ1 + δ) (mod 2π) , . . . , (θN + δ) (mod 2π)} is (µ1 + δ) (mod 2π).

Property 4.2 (Average Deviation from the Mean is Zero). The sum of the

sine of the deviations from the mean is zero. Specifically

N∑

i=1

sin(θi − µ1) = 0.

Property 4.3 (Dispersion Monotonicity). The term 1 − cos(θi − η) in the

dispersion is a monotonically increasing function of the absolute difference

|θi − η| for −π < θi − η ≤ π.

Property 4.4 (Dispersion Invariance to Coordinate System). The dispersion

is invariant to the choice of the zero direction. Specifically, if the dispersion of

the set {θ1, . . . , θN} about the angle η is V 1(η), then the dispersion of the set

{(θ1+δ) (mod 2π) , . . . , (θN +δ) (mod 2π)} about the angle (η+δ) (mod 2π)

is V 1(η).

Property 4.5 (Bounded Variance). The variance satisfies 0 ≤ V 1(µ1) ≤ 1.

For distributions periodic with some other period, for example 2π/l, the

mean and dispersion calculations need to be adjusted. The standard method

to calculate the mean is to define the complex resultant by [30]

zl =
1

N

N∑

i=1

ejlθi . (4.1)

The mean is thus

µl =
1

l
∠zl. (4.2)
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In his initial book, Mardia claims that a descriptive formulation for the cir-

cular variance is more difficult to construct. He offers approximations of

the variance for distributions clustered in a small arc and for the wrapped

normal and von Mises distributions; however, he does not offer a general for-

mula [31]. In the revised book, he ignores the topic altogether [30]. Similar

to the transform applied to calculate the mean, one logical definition is

V l(η) =
1

N

N∑

i=1

[1 − cos(l(θi − η))] . (4.3)

4.2 Directional Statistics for Edge Direction

Estimation

The theory of directional statistics can be applied to direction estimation

in images by finding the mean and dispersion of the gradient directions.

As edges in an image are not directed vectors, this is an axial estimation

problem as opposed to an angular estimation problem. Therefore, the proper

equations for mean and dispersion are (4.2) and (4.3) with l = 2.

For a given image f [m,n], express the gradient of f as a complex image

g[m,n] =
∂f

∂m
+ j

∂f

∂n
.

Because f is defined on a discrete grid, this equation needs to use discrete

approximations to the derivative. Form the estimate of the mean and dis-

persion by evaluating (4.2) and (4.3) with θi = ∠g[mi, ni] where [mi, ni] form

the lattice of sample points.

If the image f were piecewise constant, this estimation would produce reli-

able results; however, the gradients in areas away from the edges significantly

influence the result. Because each gradient is included in (4.2), the small, but

nonzero, gradients caused by noise and texture will influence the estimate as

much as the gradients caused by the edges. Even worse, as the number of

pixels in a block that correspond to edges is only a small percentage of the

total number of pixels in the block, the influence of noise and texture will

greatly outweigh the influence of the edges.

The solution to this problem lies in the proper inclusion of gradient mag-
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nitudes in the calculation. One method is to only include those gradients

whose magnitude is above some global threshold. While this is attractive

for its consistency across the image, there may be blocks with weak edges

where no gradients have large enough magnitude to meet the threshold. A

second method is to adapt the threshold to each block. For example, only

include those gradients whose magnitude is greater than some percentage of

the maximum gradient magnitude in the block. While this method solves

the problem of weak edges, the varying thresholds imply that the dispersion

cannot be used as a distortion metric in the adaptive segmentation algorithm

because it violates Property 3.1.

We propose a solution to rewrite (4.1), (4.2), and (4.3) as weighted averages

where the weight is the square of the magnitude of the gradient. As the pixels

which do not lie on an edge greatly outnumber the pixels which do lie on an

edge, the magnitude must be squared in order to ensure that the contribution

of the edge pixels still dominates. Specifically, the complex resultant for axial

data is

zw =

∑N
i=1 |g[mi, ni]|2 ej2θi

∑N
i=1 |g[mi, ni]|2

. (4.4)

The mean is

µw =
1

2
∠zw. (4.5)

The dispersion becomes

V w(η) =

∑N
i=1 |g[mi, ni]|2 [1 − cos(2(θi − η))]

∑N
i=1 |g[mi, ni]|2

. (4.6)

These formulas for the mean and dispersion satisfy the same properties as

before, which will be proven following an introductory lemma.

Lemma 4.6 (Change of Modulus).

l
[

(x)
(

mod
n

l

)]

= (lx) (mod n) .
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Proof. Expand the modulus using the floor function as

l
[

(x)
(

mod
n

l

)]

= l

[

x− n

l

⌊
x

n/l

⌋]

= l

[

x− n

l

⌊
lx

n

⌋]

= lx− n

⌊
lx

n

⌋

= (lx) (mod n) . �

Property 4.7 (Coordinate System Invariance). An additive change to the

distribution results in merely an additive change in the mean. Specifically, if

the weighted mean of the set {θ1, . . . , θN} is µw, then the weighted mean of

the set {(θ1 + δ) (mod π) , . . . , (θN + δ) (mod π)} is (µw + δ) (mod π).

Proof. Let quantities which refer to the shifted coordinate system be denoted

with a bar. The complex resultant becomes

z̄w =

∑N
i=1 |g[mi, ni]|2 ej2[(θi+δ) (mod π)]

∑N
i=1 |g[mi, ni]|2

=

∑N
i=1 |g[mi, ni]|2 ej(2(θi+δ)) (mod 2π)

∑N
i=1 |g[mi, ni]|2

=

∑N
i=1 |g[mi, ni]|2 ej2(θi+δ)

∑N
i=1 |g[mi, ni]|2

= ej2δ

∑N
i=1 |g[mi, ni]|2 ej2θi

∑N
i=1 |g[mi, ni]|2

= ej2δ zw.

The mean is thus

µ̄w =
1

2
∠z̄w

=
1

2
∠ ej2δ zw

=
1

2
[(2δ + ∠zw) (mod 2π)]

=
1

2
[(2(δ + µw)) (mod 2π)]

= (δ + µw) (mod π) . �
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Property 4.8 (Average Deviation from the Mean is Zero). The weighted

sum of the sine of the deviations from the mean is zero. Specifically

N∑

i=1

|g[mi, ni]|2 sin(2(θi − µw)) = 0.

Proof.

N∑

i=1

|g[mi, ni]|2 sin(2(θi − µw)) =
N∑

i=1

|g[mi, ni]|2
[

sin(2θi) cos(2µw)

− cos(2θi) sin(2µw)
]

= cos(2µw)
N∑

i=1

|g[mi, ni]|2 sin(2θi)

− sin(2µw)
N∑

i=1

|g[mi, ni]|2 cos(2θi)

= cos(2µw)ℑ{zw}
N∑

i=1

|g[mi, ni]|2

− sin(2µw)ℜ{zw}
N∑

i=1

|g[mi, ni]|2

= cos(2µw)|zw| sin(2µw)
N∑

i=1

|g[mi, ni]|2

− sin(2µw)|zw| cos(2µw)
N∑

i=1

|g[mi, ni]|2

= 0. �

Property 4.9 (Dispersion Monotonicity). The term 1−cos(2(θi−η)) in the

dispersion is a monotonically increasing function of the absolute difference

|θi − η| for −π
2
< θi − η ≤ π

2
.

Proof. The function cos(x) is a monotonically decreasing function of |x| for

−π < x ≤ π. Therefore, the function cos(2(θi − η)) is a monotonically

decreasing function of 2|θi − η| for −π < 2(θi − η) < π. This implies that

it is a monotonically decreasing function over the range −π
2
< θi − η ≤ π

2
.

Therefore, 1−cos(2(θi−η)) is a monotonically increasing function of 2|θi−η|
over the range −π

2
< θi − η ≤ π

2
. �
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Property 4.10 (Dispersion Invariance to Coordinate System). The disper-

sion is invariant to the choice of the zero direction. Specifically, if the dis-

persion of the set {θ1, . . . , θN} about the angle η is V w(η), then the disper-

sion of the set {(θ1 + δ) (mod π) , . . . , (θN + δ) (mod π)} about the angle

(η + δ) (mod π) is V w(η).

Proof. Let quantities which refer to the shifted coordinate system be denoted

with a bar. The dispersion becomes

V̄ w(η) =

∑N
i=1 |g[mi, ni]|2 [1 − cos (2 [(θi + δ) (mod π) − (η + δ) (mod π)])]

∑N
i=1 |g[mi, ni]|

.

As subtraction is a congruence relation for modulus, this can be written as

V̄ w(η) =

∑N
i=1 |g[mi, ni]|2 [1 − cos (2(θi − η) (mod π))]

∑N
i=1 |g[mi, ni]|2

=

∑N
i=1 |g[mi, ni]|2 [1 − cos ([2(θi − η)] (mod 2π))]

∑N
i=1 |g[mi, ni]|2

= V w(η) �

Lemma 4.11. An equivalent expression for the dispersion is V w(η) = 1 −
|zw| cos(2(µw − η)).

Proof. Expanding the definition of dispersion and introducing the mean pro-

vides

V w(η) =

∑N
i=1 |g[mi, ni]|2 [1 − cos(2(θi − η))]

∑N
i=1 |g[mi, ni]|2

=

∑N
i=1 |g[mi, ni]|2 [1 − cos(2(θi − µw + µw − η))]

∑N
i=1 |g[mi, ni]|2

=

∑N
i=1 |g[mi, ni]|2 [1 − cos(2(θi − µw)) cos(2(µw − η))]

∑N
i=1 |g[mi, ni]|2

− sin(2(µw − η))
∑N

i=1 |g[mi, ni]|2 sin(2(θi − µw))
∑N

i=1 |g[mi, ni]|2
.
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By Property 4.8, the second term is zero. Expanding the first term provides

V w(η) = 1 − cos(2(µw − η)) cos(2µw)

∑N
i=1 |g[mi, ni]|2 cos(2θi)

∑N
i=1 |g[mi, ni]|2

− cos(2(µw − η)) sin(2µw)

∑N
i=1 |g[mi, ni]|2 sin(2θi)
∑N

i=1 |g[mi, ni]|2

= 1 − cos(2(µw − η)) [cos(2µw)ℜ{zw} − sin(2µw)ℑ{zw}]
= 1 − cos(2(µw − η)) [cos(2µw)|zw| cos(2µw) + sin(2µw)|zw| sin(2µw)]

= 1 − |zw| cos(2(µw − η)). �

Property 4.12 (Bounded Variance). The variance satisfies 0 ≤ V w(µw) ≤
1.

Proof. By Lemma 4.11, the variance is written as V w(µw) = 1 − |zw|. As

|zw| ≥ 0, V w(µw) ≤ 1. Using the triangle inequality, the magnitude of the

complex resultant is bounded by

|zw| =

∣
∣
∣
∣
∣

∑N
i=1 |g[mi, ni]|2 ej2θi

∑N
i=1 |g[mi, ni]|2

∣
∣
∣
∣
∣

=

∣
∣
∣
∑N

i=1 |g[mi, ni]|2 ej2θi

∣
∣
∣

∑N
i=1 |g[mi, ni]|2

≤
∑N

i=1

∣
∣|g[mi, ni]|2 ej2θi

∣
∣

∑N
i=1 |g[mi, ni]|2

=

∑N
i=1 |g[mi, ni]|2| ej2θi |
∑N

i=1 |g[mi, ni]|2

= 1.

Therefore, V w(µw) ≥ 0. �

4.3 Edge Direction Estimation for Filter Selection and

Adaptive Segmentation

The directional mean provides an average measure of the gradient over an

image block Bt. As the mean has been weighted to minimize the effects of

noise, this provides a good estimate of the direction perpendicular to the edge.
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Therefore, the directional mean provides a mechanism to determine which

geometric filter from the geometric filter dictionary should be applied. Define

a function ψ(·) which maps an angle to its perpendicular direction. Since all

calculations are axial, ψ is a single-valued, invertible function. Define an

angular quantization function Q(·) which maps an angle to the direction of

the nearest directional filter. Therefore, the proper filter to apply for most

image blocks is the filter at angle Q(ψ(µw
t )).

The directional dispersion provides a measure of how consistently the gra-

dients of an image patch match a given direction. Specifically, the dispersion

about a filter direction provides a measure of how well the edge aligns with

that filter. If the dispersion is high, there is no consistent directional structure

and µw
t is nearly arbitrary. For these blocks, the smallest prediction residual

occurs if the filter is most localized. Therefore, if Vt(ψ
−1(Q(ψ(µw

t )))) ≥ 0.8,

apply direction seven.

The directional mean and dispersion also provide intuitive formulations for

the rate and distortion function in the adaptive segmentation. The adaptive

parameter αt is merely which filter from the geometric filter dictionary is

applied. This is equivalent to the quantized mean such that αt = Q(ψ(µw
t )).

The optimal rate is some encoding that accounts for the probability of each

filter from the geometric filter dictionary being applied. As this is not known,

we assume equal probabilities for the 12 filters and set r(αt) = log2(12).

The distortion function is a function of the dispersion as

d(f(Bt), αt) = V w(ψ−1(αt))
∑

m,n∈Bt

|g[m,n]|2. (4.7)

In order to be a valid distortion function, (4.7) must be nonnegative and

satisfy Property 3.1. As |zw| ≤ 1 as seen in the proof of Property 4.12 and

cos(·) ≤ 1, Lemma 4.11 implies that V w(η) ≥ 0. Therefore, the distortion

is nonnegative. The presence of the quantization function affects the ability

to prove Property 3.1. Therefore, we will prove it for the case of fine quan-

tization, i.e. ψ−1(Q(ψ(µw))) ≈ µw. This is equivalent to invoking the small

angle approximation on the term 2(µw − ψ−1(Q(ψ(µw)))).

Theorem 4.13. For fine quantization, the distortion metric defined in (4.7)

satisfies Property 3.1.

Proof. Express the quantized mean ψ−1(Q(ψ(µw
t ))) as µ̂w

t . By Lemma 4.11,
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the distortion can be written as

d(f(Bt), αt) = (1 − |zw|) cos(2(µw − µ̂w
t ))

∑

m,n∈Bt

|g[m,n]|2.

By the small angle approximation and the non-overlapping nature of the

blocks created by the children of node t, this becomes

d(f(Bt), αt) = (1 − |zw|)
∑

m,n∈Bt

|g[m,n]|2

=
∑

m,n∈Bt

|g[m,n]|2 −
∣
∣
∣
∣
∣

∑

m,n∈Bt

|g[m,n]|2 ej2θmn

∣
∣
∣
∣
∣

=
∑

m,n∈Bt

|g[m,n]|2 −

∣
∣
∣
∣
∣
∣

∑

t′∈T̃t

∑

m,n∈Bt′

|g[m,n]|2 ej2θmn

∣
∣
∣
∣
∣
∣

.

By the triangle inequality

d(f(Bt), αt) ≥
∑

m,n∈Bt

|g[m,n]|2 −
∑

t′∈T̃t

∣
∣
∣
∣
∣
∣

∑

m,n∈Bt′

|g[m,n]|2 ej2θmn

∣
∣
∣
∣
∣
∣

.

Using the definition of the complex resultant and simplifying

d(f(Bt), µ̂
w
t ) ≥

∑

m,n∈Bt

|g[m,n]|2 −
∑

t′∈T̃t

|zw
t′ |

∑

m,n∈Bt′

|g[m,n]|2

=
∑

t′∈T̃t

(1 − |zw
t′ |)

∑

m,n∈Bt′

|g[m,n]|2.

By the small angle approximation, we can insert cos(2(µ̂w
t′ − µw

t′ )) as

d(f(Bt), αt) ≥
∑

t′∈T̃t

(1 − |zw
t′ | cos(2(µ̂w

t′ − µw
t′ )))

∑

m,n∈Bt′

|g[m,n]|2

=
∑

t′∈T̃t

V w
t′ (µ̂w

t′ )
∑

m,n∈Bt′

|g[m,n]|2

=
∑

t′∈T̃t

d(f(Bt′), µ
w
t′ ). �

Furthermore, as neither the rate nor the distortion function depend upon

the output of any adaptive filter, the filters are able to use data from across

internal boundaries as described in Section 3.3.
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CHAPTER 5

RESULTS

Validation of the directional image representation described in Chapters 2–4

consists of two components. The first is to validate the direction estimation

and adaptive segmentation algorithms to ensure that the specified direc-

tion is reasonable and that the block size properly adapts to changes in the

dominant direction. The second is to use directional lifting in a nonlinear

approximation framework and compare the reconstruction PSNR with the

5/3 wavelet.

5.1 Direction Estimation and Adaptive Segmentation

The direction estimation and adaptive segmentation algorithms were verified

using two different tests. The first test was an objective test of the direction

estimation algorithm on a set of simple synthetic images. The second test was

a subjective test of both the direction estimation and adaptive segmentation

algorithms on both synthetic and real images.

5.1.1 Objective Test of Direction Estimation

The direction estimation algorithm was tested using the Monte Carlo method

over a set of simple synthetic images. The synthetic images were created

to consist of two regions separated by an edge at a random angle γ. In

each region, the image was a bilinear polynomial of class Π1,1. The two

polynomials were chosen randomly and independently. Therefore, there was

an arbitrary discontinuity along the edge. In addition, white Gaussian noise

with a variance of 0.05 was then added to each image. Some example test

images are shown in Figure 5.1.

A collection of 100 000 independent images of this type were created. For
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Figure 5.1: Typical test images consisting of two bilinear polynomials
separated by an edge at a random angle with added noise.

−1.5 −1 −0.5 0 0.5 1 1.5
0
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4000

6000
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10000

12000

Figure 5.2: Histogram of the error µw − γ over 100 000 independent trials.

each image, we calculated the weighted mean µw. The error between γ and µw

was computed for each image. Because this error is a difference between two

axial random variables, it is also an axial random variable. The histogram

of the error is shown in Figure 5.2. The circular variance V 2(µ2) of the error

is 0.058. As this is near zero, µw is a good estimate of γ.

5.1.2 Subjective Test of Direction Estimation and Adaptive
Segmentation

We then tested the direction estimation and adaptive segmentation algo-

rithms on various test images. The first image was a synthetic bilinear phan-

tom. This image was created by randomly defining a bilinear polynomial
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Figure 5.3: Example of bilinear phantom test image.

over each section of the modified Shepp-Logan phantom. As the polynomial

defined for each section is independent of all of the others, arbitrary discon-

tinuities are created along the edges. An example of this phantom is shown

in Figure 5.3.

The result for the direction estimation and adaptive segmentation algo-

rithm with λ = 0 in (3.1) is shown in Figure 5.4. If λ = 0.001, the result is

shown in Figure 5.5. In both cases, the estimated direction seems to align

with the edge directions. Furthermore, the segmentation uses larger blocks

in areas which contain fewer edges or have more consistent edges. When λ is

increased, the algorithm smoothly combines some blocks while ensuring that

the estimated direction still aligns with the edge. We see similar results for

the segmentation and direction estimation of Barbara in Figures 5.6 and 5.7.

5.2 Nonlinear Approximation

The entire algorithm was tested in a compression nonlinear approximation

framework. Both our directional representation and the 5/3 wavelet were

iterated six times. The image was then reconstructed from a subset of the

coefficients, where IM consists of the largest M coefficients. The first test

image was the bilinear phantom described above. Using the segmentation

shown in Figure 5.5, the nonlinear approximation curves for both our algo-
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Figure 5.4: Direction estimation and adaptive segmentation of the bilinear
phantom when λ = 0. The adaptive overhead for this segmentations is 2728
bits.

Figure 5.5: Direction estimation and adaptive segmentation of the bilinear
phantom when λ = 0.001. The adaptive overhead for this segmentation is
920 bits.
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Figure 5.6: Direction estimation and adaptive segmentation of Barbara
when λ = 0. The adaptive overhead for this segmentation is 5160 bits.

Figure 5.7: Direction estimation and adaptive segmentation of Barbara
when λ = 0.01. The adaptive overhead for this segmentation is 1816 bits.
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Figure 5.8: Nonlinear approximation of the bilinear phantom with six levels
of iteration.

rithm and the 5/3 wavelet are shown in Figure 5.8. Our algorithm outper-

formed the 5/3 wavelet by 2–4.5 dB over the entire range. In addition, the

edges are subjectively much sharper. Examples of the reconstruction with

approximately 3% of the coefficients used are shown in Figure 5.9.

The second test case was the standard test image Barbara. Using the

segmentation in Figure 5.7, the nonlinear approximation curves are shown

in Figure 5.10. For any reasonable reconstruction quality, the 5/3 wavelet

outperformed our algorithm by 0–2.5 dB. Subjectively, there is almost no

difference between the reconstruction results. An example reconstruction

from both algorithms with approximately 13% of the coefficients used is

shown in Figure 5.11.
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Figure 5.10: Nonlinear approximation of Barbara with six levels of iteration.
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CHAPTER 6

DIMENSIONAL DEGENERACY

6.1 Empirical Results

We designed prediction filters using the method of Section 2.3 for the fat filter

support shown in Figure 2.5. Whenever the predicted point and two of the

points used in the prediction were on the same scanline, the filter degenerated

to a one-dimensional filter along that scanline. This problem affected eight of

the twelve directions in phase one and phase two. As phase three points are

not on the same scanline as phase zero points, this problem does not affect

phase three. The filter supports for each filter, including both the points

which were available to the filter creation algorithm and the points that were

actually used, are shown in Figures 6.1–6.3. Additional filter diagrams for

the prediction filters along with the diagrams for the equivalent analysis and

synthesis filters are shown in Appendix A.

6.2 Theoretical Results

Recall from (2.3) that the filter response h must satisfy p = Rh where p is

the location of the predicted point and

R =









1 · · · 1

m1 · · · mN

n1 · · · nN

m1n1 · · · mNnN









=
[

r1 · · · rN

]

is the matrix of the locations of the N points used in the prediction.

Theorem 6.1. If a nondegenerate set of N points is used to form a bilinear

prediction such that all but two of the N points lie on the same scanline as
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the predicted point, the filter will degenerate to a one-dimensional filter.

Proof. Without loss of generality, assume that points 3, . . . , N are on the

same scanline as the predicted point. Let

W =
N

span
i=3

{ri}.

By assumption the first element and either the second or third element of

all of the vectors r3, . . . , rN are the same. Therefore, the dimension of W is

two. Let w1 and w2 be a basis of W . Because the system is not degenerate,

the rank of R is four. Because W is dimension two, the vectors r1 and r2

are independent of each other and the basis functions of W . Let hi refer to

the filter tap at location i. As p = Rh, we know that

0 = Rh − p

= h1r1 + h2r2 +
N∑

i=3

hiri − p.

As
N∑

i=3

hiri − p ∈W,

there exists h̄1 and h̄2 such that

N∑

i=3

hiri − p = h̄1w1 + h̄2w2.

Therefore, the above equation becomes

0 = r1h1 + r2h2 + h̄1w1 + h̄2w2.

As these four vectors are linearly independent, their coefficients must be zero.

Specifically, the filter taps h1 and h2 are zero. Since points 3, . . . , N lie on a

single scanline, the filter has degenerated to a one-dimensional filter. �

This theorem shows that filters designed using parallelograms as in Sec-

tion 2.2 are very likely to degenerate. As the length of the scanline vector

is only two pixels, there is likely to be a line of points down the middle of

the parallelogram complemented by one point on each acute corner. There-
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fore, a different paradigm for the creation of directional support is needed.

The hypotheses of Theorem 6.1 are contradicted by two conditions: either

the predicted point cannot lie on a scanline with two other points or there

must be more than two points off the scanline. As the first condition implies

the second, this can only be solved by forcing more points to not lie on the

scanline. Because of the constraints of a discrete grid, this will require a

compromise in either directionality or locality.
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CHAPTER 7

CONCLUSION

In this thesis we explored sparse representations for two-dimensional signals

using directional information and the issues encountered in adaptive direc-

tional transforms. Two-dimensional natural images are typically defined by

the presence of one-dimensional singularity curves in the signal. Current

sparse representations, such as wavelets, do not account for these singularity

curves. Geometric wavelets perform better by incorporating directionality,

but their frequency domain formulation forces their basis functions to have

long support. Separable directional lifting, on the other hand, has local sup-

port, but is only able to filter along one-dimensional lines.

We presented a formulation for a directional image representation using

nonseparable lifting. We proved that single-stage lifting schemes are incom-

patible with orthonormal filter banks except in trivial cases. Through the

lifting framework, we were able to maintain locality while designing nonsep-

arable, directional, biorthogonal filters. We designed filter support aligned

with many angular directions in order that the support would intersect edges

fewer times. From this support, we demonstrated a method to design predic-

tion filters with two vanishing moments which most closely matched a bilinear

polynomial and minimized the norm of the filter. Using an exhaustive search

algorithm over the set of realistic update filters and scaling constants, we

determined the proper parameters for the remainder of the lifting scheme

which minimized the divergence from orthonormality.

We applied various techniques from classification and directional statistics

to the problem of adaptive directional transforms. We presented the BFOS

tree pruning algorithm along with its necessary properties to ensure a valid

adaptive segmentation for block based transforms. We extended the equa-

tions for estimation of the directional mean and variance to robustly estimate

the dominant direction of an image block.

The results showed that the adaptive segmentation and direction estima-
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-4 0.167 0 -0.283 0 0
-3 0 0 0 0 0
-2 0 0 -0.233 0 0
-1 0 0 0 0 0
0 0 0 -0.183 1.000 0
1 0 0 0 0 0
2 0 0 -0.133 0 -0.333

-4 -3 -2 -1 0

Figure 7.1: Direction 2: Analysis filter for phase one. In the filter support
diagram, white indicates a nonzero coefficient, while black indicates a zero
coefficient. The exact values of the coefficients are enumerated in the
adjoining table.

tion algorithms robustly segmented an image into regions of directional bias

and estimated the direction of each region; however, the directional represen-

tation did not improve upon state-of-the-art transforms in image nonlinear

approximation. We feel that this result is caused by the combination of three

effects. First, geometric filters cannot be as compactly supported as filters

along the scanline. Because all data analysis happens on a discrete grid, pre-

diction along angles which are not aligned with the scanlines requires that

the data come from pixels which are farther away. This causes the approx-

imately locally linear assumption to break down, as the definition of local

must include pixels which are farther away. Second, if the directional sup-

port consists only of a collection of locations on the same scanline as the

predicted pixel and two pixels off that scanline, the filter degenerates to a

one-dimensional filter, as demonstrated in Chapter 6. Maintaining direc-

tional filters then requires the addition of additional filter locations, which

force the support to be less directional or less local. Third, the structure

of a single-stage lifting scheme forces the equivalent analysis filters to have

punctured support, for example, the equivalent analysis filters for direction

two shown in Figures 7.1–7.3 and additional examples in Appendix A. This

punctured support means that there are many pixels which are local and

align with the proper direction which are not used in the prediction.
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-4 -0.250
-3 0
-2 -0.250
-1 1.000
0 -0.250
1 0
2 -0.250

0

Figure 7.2: Direction 2: Analysis filter for phase two. The format is the
same as Figure 7.1.

-4 0.250 0 -0.475 0 0
-3 0 0 0 0 0
-2 0 0 -0.325 0 0
-1 0 0 0 1.000 0
0 0 0 -0.175 0 0
1 0 0 0 0 0
2 0 0 -0.025 0 -0.250

-4 -3 -2 -1 0

Figure 7.3: Direction 2: Analysis filter for phase three. The format is the
same as Figure 7.1.
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APPENDIX A

FILTER DIAGRAMS

For each geometric filter support shown in Figure 2.5, the prediction filters

were designed according to (2.2). The update filters were chosen to provide

two vanishing moments. According to [26], this implies that the update filters

are 1
4

the adjoint of the prediction filters. Using the relationship between a

lifting scheme and a filter bank, the equivalent analysis and synthesis filters

can be derived. This appendix demonstrates the filter support and filter

coefficients for the prediction, equivalent analysis, and equivalent synthesis

filters for each direction. In the filter support diagrams, white indicates a

nonzero coefficient, while black indicates a zero coefficient. The exact values

of the coefficients are enumerated in the adjoining table. The equivalent

analysis and synthesis filters for the 5/3 wavelet are presented in Figures A.1–

A.8, followed by the geometric filters for each direction in Figures A.9–A.140.
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-2 0.031 -0.063 -0.188 -0.063 0.031
-1 -0.063 0.125 0.375 0.125 -0.063
0 -0.188 0.375 1.125 0.375 -0.188
1 -0.063 0.125 0.375 0.125 -0.063
2 0.031 -0.063 -0.188 -0.063 0.031

-2 -1 0 1 2

Figure A.1: 5/3 Wavelet: Analysis filter for phase zero.

-1 -0.063 0.125 0.375 0.125 -0.063
0 0.125 -0.250 -0.750 -0.250 0.125
1 -0.063 0.125 0.375 0.125 -0.063

-2 -1 0 1 2

Figure A.2: 5/3 Wavelet: Analysis filter for phase one.

-2 -0.063 0.125 -0.063
-1 0.125 -0.250 0.125
0 0.375 -0.750 0.375
1 0.125 -0.250 0.125
2 -0.063 0.125 -0.063

-1 0 1

Figure A.3: 5/3 Wavelet: Analysis filter for phase two.

-1 0.125 -0.250 0.125
0 -0.250 0.500 -0.250
1 0.125 -0.250 0.125

-1 0 1

Figure A.4: 5/3 Wavelet: Analysis filter for phase three.

-1 0.125 0.250 0.125
0 0.250 0.500 0.250
1 0.125 0.250 0.125

-1 0 1

Figure A.5: 5/3 Wavelet: Synthesis filter for phase zero.
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-2 0.063 0.125 0.063
-1 0.125 0.250 0.125
0 -0.375 -0.750 -0.375
1 0.125 0.250 0.125
2 0.063 0.125 0.063

-1 0 1

Figure A.6: 5/3 Wavelet: Synthesis filter for phase one.

-1 0.063 0.125 -0.375 0.125 0.063
0 0.125 0.250 -0.750 0.250 0.125
1 0.063 0.125 -0.375 0.125 0.063

-2 -1 0 1 2

Figure A.7: 5/3 Wavelet: Synthesis filter for phase two.

-2 0.031 0.063 -0.188 0.063 0.031
-1 0.063 0.125 -0.375 0.125 0.063
0 -0.188 -0.375 1.125 -0.375 -0.188
1 0.063 0.125 -0.375 0.125 0.063
2 0.031 0.063 -0.188 0.063 0.031

-2 -1 0 1 2

Figure A.8: 5/3 Wavelet: Synthesis filter for phase three.
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0 0.500 0.500

-1 0

Figure A.9: Direction 1: Prediction filter for phase one.

-1 0.500
0 0.500

0

Figure A.10: Direction 1: Prediction filter for phase two.

-1 0.250 0.250
0 0.250 0.250

-1 0

Figure A.11: Direction 1: Prediction filter for phase three.

-2 -0.031 0 -0.188 0 -0.031
-1 0 0.125 0.250 0.125 0
0 -0.188 0.250 1.375 0.250 -0.188
1 0 0.125 0.250 0.125 0
2 -0.031 0 -0.188 0 -0.031

-2 -1 0 1 2

Figure A.12: Direction 1: Analysis filter for phase zero.

0 -0.500 1.000 -0.500

-2 -1 0

Figure A.13: Direction 1: Analysis filter for phase one.

-2 -0.500
-1 1.000
0 -0.500

0

Figure A.14: Direction 1: Analysis filter for phase two.
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-2 -0.250 0 -0.250
-1 0 1.000 0
0 -0.250 0 -0.250

-2 -1 0

Figure A.15: Direction 1: Analysis filter for phase three.

-1 0.125 0.250 0.125
0 0.250 0.500 0.250
1 0.125 0.250 0.125

-1 0 1

Figure A.16: Direction 1: Synthesis filter for phase zero.

-1 -0.031 -0.063 -0.063 -0.063 -0.031
0 -0.063 -0.125 0.875 -0.125 -0.063
1 -0.031 -0.063 -0.063 -0.063 -0.031

-1 0 1 2 3

Figure A.17: Direction 1: Synthesis filter for phase one.

-1 -0.031 -0.063 -0.031
0 -0.063 -0.125 -0.063
1 -0.063 0.875 -0.063
2 -0.063 -0.125 -0.063
3 -0.031 -0.063 -0.031

-1 0 1

Figure A.18: Direction 1: Synthesis filter for phase two.

-1 -0.016 -0.031 -0.031 -0.031 -0.016
0 -0.031 -0.063 -0.063 -0.063 -0.031
1 -0.031 -0.063 0.938 -0.063 -0.031
2 -0.031 -0.063 -0.063 -0.063 -0.031
3 -0.016 -0.031 -0.031 -0.031 -0.016

-1 0 1 2 3

Figure A.19: Direction 1: Synthesis filter for phase three.
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-2 -0.167 0.283 0
-1 0 0.233 0
0 0 0.183 0
1 0 0.133 0.333

-2 -1 0

Figure A.20: Direction 2: Prediction filter for phase one.

-2 0.250
-1 0.250
0 0.250
1 0.250

0

Figure A.21: Direction 2: Prediction filter for phase two.

-2 -0.250 0.475 0
-1 0 0.325 0
0 0 0.175 0
1 0 0.025 0.250

-2 -1 0

Figure A.22: Direction 2: Prediction filter for phase three.
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-6 0.059 0 -0.092 0 -0.056 0 0 0 0
-5 0 0 0 0 0 0 0 0 0
-4 0 0 -0.042 0 -0.150 0 0 0 0
-3 0 0 0 0.125 0.125 0.012 0 0 0
-2 0 0 0.008 0.167 -0.268 0.067 0 0 0
-1 0 0 0 0 0.125 0.087 0 0 0
0 0 0 0.058 0 1.469 0.092 0.058 0 0
1 0 0 0 0 0.125 0.162 0 0 0
2 0 0 0 0 -0.268 0.117 0.008 0 0
3 0 0 0 0 0.125 0.237 0 -0.125 0
4 0 0 0 0 -0.150 0.142 -0.042 -0.083 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 -0.056 0 -0.092 0 0.059

-4 -3 -2 -1 0 1 2 3 4

Figure A.23: Direction 2: Analysis filter for phase zero.

-4 0.167 0 -0.283 0 0
-3 0 0 0 0 0
-2 0 0 -0.233 0 0
-1 0 0 0 0 0
0 0 0 -0.183 1.000 0
1 0 0 0 0 0
2 0 0 -0.133 0 -0.333

-4 -3 -2 -1 0

Figure A.24: Direction 2: Analysis filter for phase one.
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-4 -0.250
-3 0
-2 -0.250
-1 1.000
0 -0.250
1 0
2 -0.250

0

Figure A.25: Direction 2: Analysis filter for phase two.

-4 0.250 0 -0.475 0 0
-3 0 0 0 0 0
-2 0 0 -0.325 0 0
-1 0 0 0 1.000 0
0 0 0 -0.175 0 0
1 0 0 0 0 0
2 0 0 -0.025 0 -0.250

-4 -3 -2 -1 0

Figure A.26: Direction 2: Analysis filter for phase three.

-4 -0.083 0 0.142 0 0
-3 -0.125 0 0.237 0.125 0
-2 0 0 0.117 0 0
-1 0 0 0.162 0.125 0
0 0 0 0.092 0.500 0
1 0 0 0.087 0.125 0
2 0 0 0.067 0 0.167
3 0 0 0.012 0.125 0.125

-3 -2 -1 0 1

Figure A.27: Direction 2: Synthesis filter for phase zero.
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-6 0.014 0 -0.018 0 -0.009 0 0 0 0
-5 0.021 0 -0.031 -0.021 -0.016 -0.008 0 0 0
-4 0 0 -0.012 0 -0.021 0 0 0 0
-3 0 0 -0.016 -0.021 -0.033 -0.020 0 0 0
-2 0 0 -0.006 -0.083 -0.033 -0.033 0 0 0
-1 0 0 0 -0.021 -0.048 -0.034 0 0 0
0 0 0 0.001 0 0.919 -0.046 0.001 0 0
1 0 0 0.016 -0.021 -0.093 -0.052 0.011 0.010 0
2 0 0 0 0 -0.033 -0.058 -0.006 0 0
3 0 0 0 0 -0.034 -0.044 0.002 0.010 0
4 0 0 0 0 -0.021 -0.071 -0.012 0.042 0
5 0 0 0 0 -0.014 -0.032 -0.007 0.010 0
6 0 0 0 0 -0.009 0 -0.018 0 0.014
7 0 0 0 0 -0.002 -0.018 -0.017 0.010 0.010

-3 -2 -1 0 1 2 3 4 5

Figure A.28: Direction 2: Synthesis filter for phase one.
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-6 0.010 0 -0.018 0 0
-5 0.016 0 -0.030 -0.016 0
-4 0.010 0 -0.032 0 0
-3 0.016 0 -0.050 -0.031 0
-2 0.010 0 -0.044 -0.062 0
-1 0.016 0 -0.061 -0.047 0
0 0.010 0 -0.052 -0.062 -0.021
1 0.016 0 -0.062 0.938 -0.016
2 0 0 -0.034 -0.062 -0.021
3 0 0 -0.033 -0.047 -0.016
4 0 0 -0.020 -0.062 -0.021
5 0 0 -0.012 -0.031 -0.016
6 0 0 -0.008 0 -0.021
7 0 0 -0.002 -0.016 -0.016

-3 -2 -1 0 1

Figure A.29: Direction 2: Synthesis filter for phase two.
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-6 0.010 0 -0.017 0 -0.002 0 0 0 0
-5 0.016 0 -0.028 -0.016 -0.003 -0.002 0 0 0
-4 0 0 -0.007 0 -0.014 0 0 0 0
-3 0 0 -0.009 -0.016 -0.023 -0.012 0 0 0
-2 0 0 0.002 -0.062 -0.034 -0.006 0 0 0
-1 0 0 0.009 -0.016 -0.054 -0.033 0 0 0
0 0 0 0.011 0 -0.093 -0.044 0.016 0 0
1 0 0 0.028 -0.016 0.878 -0.062 0.028 0.016 0
2 0 0 0 0 -0.048 -0.081 0 0 0
3 0 0 0 0 -0.054 -0.061 0.009 0.016 0
4 0 0 0 0 -0.033 -0.119 -0.016 0.063 0
5 0 0 0 0 -0.023 -0.050 -0.009 0.016 0
6 0 0 0 0 -0.016 0 -0.031 0 0.021
7 0 0 0 0 -0.003 -0.030 -0.028 0.016 0.016

-3 -2 -1 0 1 2 3 4 5

Figure A.30: Direction 2: Synthesis filter for phase three.
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-1 -0.250 0.583 0
0 0 0.333 0
1 0 0.083 0.250

-2 -1 0

Figure A.31: Direction 3: Prediction filter for phase one.

-2 0.083
-1 0.333
0 0.583

0

Figure A.32: Direction 3: Prediction filter for phase two.

-2 -0.125 0.250 0
-1 0 0.250 0
0 0 0.250 0.375

-2 -1 0

Figure A.33: Direction 3: Prediction filter for phase three.
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-4 0.055 0 -0.094 0 -0.080 0 0 0 0
-3 0 0 0 0 0 0 0 0 0
-2 0 0 -0.031 0.125 -0.285 0.042 0 0 0
-1 0 0 0 0.188 0.292 0.125 0 0 0
0 0 0 0.031 0 1.307 0.167 0.031 0 0
1 0 0 0 0 0.167 0.125 0 0 0
2 0 0 0 0 -0.285 0.292 -0.031 -0.125 0
3 0 0 0 0 0.042 0.125 0 -0.062 0
4 0 0 0 0 -0.080 0 -0.094 0 0.055

-4 -3 -2 -1 0 1 2 3 4

Figure A.34: Direction 3: Analysis filter for phase zero.

-2 0.250 0 -0.583 0 0
-1 0 0 0 0 0
0 0 0 -0.333 1.000 0
1 0 0 0 0 0
2 0 0 -0.083 0 -0.250

-4 -3 -2 -1 0

Figure A.35: Direction 3: Analysis filter for phase one.

-4 -0.083
-3 0
-2 -0.333
-1 1.000
0 -0.583

0

Figure A.36: Direction 3: Analysis filter for phase two.
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-4 0.125 0 -0.250 0 0
-3 0 0 0 0 0
-2 0 0 -0.250 0 0
-1 0 0 0 1.000 0
0 0 0 -0.250 0 -0.375

-4 -3 -2 -1 0

Figure A.37: Direction 3: Analysis filter for phase three.

-3 -0.062 0 0.125 0.042 0
-2 -0.125 0 0.292 0 0
-1 0 0 0.125 0.167 0
0 0 0 0.167 0.500 0
1 0 0 0.125 0.292 0.188
2 0 0 0.042 0 0.125

-3 -2 -1 0 1

Figure A.38: Direction 3: Synthesis filter for phase zero.
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-5 0.008 0 -0.013 -0.005 -0.005 -0.002 0 0 0
-4 0.016 0 -0.031 0 -0.012 0 0 0 0
-3 0 0 -0.005 -0.021 -0.026 -0.014 0 0 0
-2 0 0 0 -0.063 -0.056 -0.021 0 0 0
-1 0 0 0.003 -0.036 -0.094 -0.052 0.008 0.005 0
0 0 0 0.031 0 0.854 -0.083 0.031 0 0
1 0 0 0 0 -0.057 -0.097 -0.016 0.021 0
2 0 0 0 0 -0.056 -0.146 0 0.062 0
3 0 0 0 0 -0.036 -0.085 -0.039 0.036 0.023
4 0 0 0 0 -0.012 0 -0.031 0 0.016

-3 -2 -1 0 1 2 3 4 5

Figure A.39: Direction 3: Synthesis filter for phase one.

-3 0.018 0 -0.036 -0.012 0
-2 0.036 0 -0.085 0 0
-1 0.010 0 -0.057 -0.056 0
0 0.021 0 -0.097 -0.146 0
1 0.003 0 -0.063 0.885 -0.055
2 0.005 0 -0.052 -0.083 -0.036
3 0 0 -0.026 -0.056 -0.031
4 0 0 -0.014 -0.021 -0.021
5 0 0 -0.005 -0.012 -0.008
6 0 0 -0.002 0 -0.005

-3 -2 -1 0 1

Figure A.40: Direction 3: Synthesis filter for phase two.
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-3 0.012 0 -0.016 -0.008 -0.016 -0.005 0 0 0
-2 0.023 0 -0.039 0 -0.036 0 0 0 0
-1 0 0 -0.016 -0.031 -0.031 -0.026 0 0 0
0 0 0 -0.016 -0.094 -0.057 -0.062 0 0 0
1 0 0 -0.016 -0.055 0.914 -0.063 -0.016 0.003 0
2 0 0 0.008 0 -0.094 -0.063 0.003 0 0
3 0 0 0 0 -0.031 -0.057 -0.016 0.010 0
4 0 0 0 0 -0.026 -0.063 -0.005 0.031 0
5 0 0 0 0 -0.016 -0.036 -0.016 0.018 0.012
6 0 0 0 0 -0.005 0 -0.013 0 0.008

-3 -2 -1 0 1 2 3 4 5

Figure A.41: Direction 3: Synthesis filter for phase three.
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0 0.500 0.500

-1 0

Figure A.42: Direction 4: Prediction filter for phase one.

-1 0.500
0 0.500

0

Figure A.43: Direction 4: Prediction filter for phase two.

-2 -0.250 0
-1 0.750 0.250
0 0 0.250

-1 0

Figure A.44: Direction 4: Prediction filter for phase three.

-4 0.031 0 0 0 0
-3 0 0 0 0 0
-2 -0.062 0 -0.062 0 0
-1 0 0.125 0.250 0 0
0 -0.219 0.250 1.125 0.250 -0.219
1 0 0.125 0.250 0.375 0
2 0 0 -0.062 0 -0.062
3 0 0 0 -0.125 0
4 0 0 0 0 0.031

-2 -1 0 1 2

Figure A.45: Direction 4: Analysis filter for phase zero.

0 -0.500 1.000 -0.500

-2 -1 0

Figure A.46: Direction 4: Analysis filter for phase one.
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-2 -0.500
-1 1.000
0 -0.500

0

Figure A.47: Direction 4: Analysis filter for phase two.

-4 0.250 0 0
-3 0 0 0
-2 -0.750 0 -0.250
-1 0 1.000 0
0 0 0 -0.250

-2 -1 0

Figure A.48: Direction 4: Analysis filter for phase three.

-3 -0.125 0 0
-2 0 0 0
-1 0.375 0.250 0.125
0 0.250 0.500 0.250
1 0 0.250 0.125

-1 0 1

Figure A.49: Direction 4: Synthesis filter for phase zero.

-3 0.031 0 0.031 0 0
-2 0 0 0 0 0
-1 -0.094 -0.063 -0.125 -0.063 -0.031
0 -0.063 -0.125 0.875 -0.125 -0.063
1 0 -0.063 -0.031 -0.063 -0.031

-1 0 1 2 3

Figure A.50: Direction 4: Synthesis filter for phase one.
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-3 0.031 0 0
-2 0 0 0
-1 -0.062 -0.063 -0.031
0 -0.063 -0.125 -0.063
1 -0.094 0.875 -0.063
2 -0.063 -0.125 -0.063
3 0 -0.063 -0.031

-1 0 1

Figure A.51: Direction 4: Synthesis filter for phase two.

-3 0.016 0 0 0 0
-2 0 0 0 0 0
-1 -0.031 -0.031 0.031 0 0
0 -0.031 -0.063 -0.031 0 0
1 -0.047 -0.063 0.812 -0.094 -0.047
2 -0.031 -0.063 -0.125 -0.188 -0.094
3 0 -0.031 0.031 -0.062 -0.031
4 0 0 0.031 0.063 0.031
5 0 0 0 0.031 0.016

-1 0 1 2 3

Figure A.52: Direction 4: Synthesis filter for phase three.
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0 0.083 0.333 0.583

-2 -1 0

Figure A.53: Direction 5: Prediction filter for phase one.

-2 -0.250 0 0
-1 0.583 0.333 0.083
0 0 0 0.250

-1 0 1

Figure A.54: Direction 5: Prediction filter for phase two.

-2 -0.125 0 0
-1 0.250 0.250 0.250
0 0 0 0.375

-2 -1 0

Figure A.55: Direction 5: Prediction filter for phase three.
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-4 0.055 0 0 0 0 0 0 0 0
-3 0 0 0 0 0 0 0 0 0
-2 -0.094 0 -0.031 0 0.031 0 0 0 0
-1 0 0 0.125 0.188 0 0 0 0 0
0 -0.080 0 -0.285 0.292 1.307 0.167 -0.285 0.042 -0.080
1 0 0 0.042 0.125 0.167 0.125 0.292 0.125 0
2 0 0 0 0 0.031 0 -0.031 0 -0.094
3 0 0 0 0 0 0 -0.125 -0.063 0
4 0 0 0 0 0 0 0 0 0.055

-4 -3 -2 -1 0 1 2 3 4

Figure A.56: Direction 5: Analysis filter for phase zero.

0 -0.083 0 -0.333 1.000 -0.583

-4 -3 -2 -1 0

Figure A.57: Direction 5: Analysis filter for phase one.

-4 0.250 0 0 0 0
-3 0 0 0 0 0
-2 -0.583 0 -0.333 0 -0.083
-1 0 0 1.000 0 0
0 0 0 0 0 -0.250

-2 -1 0 1 2

Figure A.58: Direction 5: Analysis filter for phase two.

84



-4 0.125 0 0 0 0
-3 0 0 0 0 0
-2 -0.250 0 -0.250 0 -0.250
-1 0 0 0 1.000 0
0 0 0 0 0 -0.375

-4 -3 -2 -1 0

Figure A.59: Direction 5: Analysis filter for phase three.

-3 -0.063 -0.125 0 0 0 0
-2 0 0 0 0 0 0
-1 0.125 0.292 0.125 0.167 0.125 0.042
0 0.042 0 0.167 0.500 0.292 0
1 0 0 0 0 0.188 0.125

-3 -2 -1 0 1 2

Figure A.60: Direction 5: Synthesis filter for phase zero.
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0 0.250 0.250 0.250 0.250

-2 -1 0 1

Figure A.64: Direction 6: Prediction filter for phase one.

-2 -0.167 0 0 0
-1 0.283 0.233 0.183 0.133
0 0 0 0 0.333

-2 -1 0 1

Figure A.65: Direction 6: Prediction filter for phase two.

-2 -0.250 0 0 0
-1 0.475 0.325 0.175 0.025
0 0 0 0 0.250

-2 -1 0 1

Figure A.66: Direction 6: Prediction filter for phase three.
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0 -0.250 0 -0.250 1.000 -0.250 0 -0.250

-4 -3 -2 -1 0 1 2

Figure A.68: Direction 6: Analysis filter for phase one.

-4 0.167 0 0 0 0 0 0
-3 0 0 0 0 0 0 0
-2 -0.283 0 -0.233 0 -0.183 0 -0.133
-1 0 0 0 0 1.000 0 0
0 0 0 0 0 0 0 -0.333

-4 -3 -2 -1 0 1 2

Figure A.69: Direction 6: Analysis filter for phase two.
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-4 0.250 0 0 0 0 0 0
-3 0 0 0 0 0 0 0
-2 -0.475 0 -0.325 0 -0.175 0 -0.025
-1 0 0 0 1.000 0 0 0
0 0 0 0 0 0 0 -0.250

-4 -3 -2 -1 0 1 2

Figure A.70: Direction 6: Analysis filter for phase three.

-3 -0.083 -0.125 0 0 0 0 0 0
-2 0 0 0 0 0 0 0 0
-1 0.142 0.238 0.117 0.163 0.092 0.088 0.067 0.013
0 0 0.125 0 0.125 0.500 0.125 0 0.125
1 0 0 0 0 0 0 0.167 0.125

-4 -3 -2 -1 0 1 2 3

Figure A.71: Direction 6: Synthesis filter for phase zero.
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0 0.500 0.500

-1 0

Figure A.75: Direction 7: Prediction filter for phase one.

-1 0.500
0 0.500

0

Figure A.76: Direction 7: Prediction filter for phase two.

-1 0.250 0.250
0 0.250 0.250

-1 0

Figure A.77: Direction 7: Prediction filter for phase three.

-2 -0.031 0 -0.188 0 -0.031
-1 0 0.125 0.250 0.125 0
0 -0.188 0.250 1.375 0.250 -0.188
1 0 0.125 0.250 0.125 0
2 -0.031 0 -0.188 0 -0.031

-2 -1 0 1 2

Figure A.78: Direction 7: Analysis filter for phase zero.

0 -0.500 1.000 -0.500

-2 -1 0

Figure A.79: Direction 7: Analysis filter for phase one.

-2 -0.500
-1 1.000
0 -0.500

0

Figure A.80: Direction 7: Analysis filter for phase two.
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-2 -0.250 0 -0.250
-1 0 1.000 0
0 -0.250 0 -0.250

-2 -1 0

Figure A.81: Direction 7: Analysis filter for phase three.

-1 0.125 0.250 0.125
0 0.250 0.500 0.250
1 0.125 0.250 0.125

-1 0 1

Figure A.82: Direction 7: Synthesis filter for phase zero.

-1 -0.031 -0.063 -0.063 -0.063 -0.031
0 -0.063 -0.125 0.875 -0.125 -0.063
1 -0.031 -0.063 -0.063 -0.063 -0.031

-1 0 1 2 3

Figure A.83: Direction 7: Synthesis filter for phase one.

-1 -0.031 -0.063 -0.031
0 -0.063 -0.125 -0.063
1 -0.063 0.875 -0.063
2 -0.063 -0.125 -0.063
3 -0.031 -0.063 -0.031

-1 0 1

Figure A.84: Direction 7: Synthesis filter for phase two.

-1 -0.016 -0.031 -0.031 -0.031 -0.016
0 -0.031 -0.063 -0.063 -0.063 -0.031
1 -0.031 -0.063 0.938 -0.063 -0.031
2 -0.031 -0.063 -0.063 -0.063 -0.031
3 -0.016 -0.031 -0.031 -0.031 -0.016

-1 0 1 2 3

Figure A.85: Direction 7: Synthesis filter for phase three.
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0 0.250 0.250 0.250 0.250

-2 -1 0 1

Figure A.86: Direction 8: Prediction filter for phase one.

-1 0 0 0 0.333
0 0.283 0.233 0.183 0.133
1 -0.167 0 0 0

-2 -1 0 1

Figure A.87: Direction 8: Prediction filter for phase two.

-1 0 0 0 0.250
0 0.475 0.325 0.175 0.025
1 -0.250 0 0 0

-2 -1 0 1

Figure A.88: Direction 8: Prediction filter for phase three.
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0 -0.250 0 -0.250 1.000 -0.250 0 -0.250

-4 -3 -2 -1 0 1 2

Figure A.90: Direction 8: Analysis filter for phase one.

-2 0 0 0 0 0 0 -0.333
-1 0 0 0 0 1.000 0 0
0 -0.283 0 -0.233 0 -0.183 0 -0.133
1 0 0 0 0 0 0 0
2 0.167 0 0 0 0 0 0

-4 -3 -2 -1 0 1 2

Figure A.91: Direction 8: Analysis filter for phase two.
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-2 0 0 0 0 0 0 -0.250
-1 0 0 0 1.000 0 0 0
0 -0.475 0 -0.325 0 -0.175 0 -0.025
1 0 0 0 0 0 0 0
2 0.250 0 0 0 0 0 0

-4 -3 -2 -1 0 1 2

Figure A.92: Direction 8: Analysis filter for phase three.

-1 0 0 0 0 0 0 0.167 0.125
0 0 0.125 0 0.125 0.500 0.125 0 0.125
1 0.142 0.238 0.117 0.163 0.092 0.088 0.067 0.013
2 0 0 0 0 0 0 0 0
3 -0.083 -0.125 0 0 0 0 0 0

-4 -3 -2 -1 0 1 2 3

Figure A.93: Direction 8: Synthesis filter for phase zero.
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0 0.083 0.333 0.583

-2 -1 0

Figure A.97: Direction 9: Prediction filter for phase one.

-1 0 0 0.250
0 0.583 0.333 0.083
1 -0.250 0 0

-1 0 1

Figure A.98: Direction 9: Prediction filter for phase two.

-1 0 0 0.375
0 0.250 0.250 0.250
1 -0.125 0 0

-2 -1 0

Figure A.99: Direction 9: Prediction filter for phase three.

105



-4 0 0 0 0 0 0 0 0 0.055
-3 0 0 0 0 0 0 -0.125 -0.063 0
-2 0 0 0 0 0.031 0 -0.031 0 -0.094
-1 0 0 0.042 0.125 0.167 0.125 0.292 0.125 0
0 -0.080 0 -0.285 0.292 1.307 0.167 -0.285 0.042 -0.080
1 0 0 0.125 0.188 0 0 0 0 0
2 -0.094 0 -0.031 0 0.031 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0.055 0 0 0 0 0 0 0 0

-4 -3 -2 -1 0 1 2 3 4

Figure A.100: Direction 9: Analysis filter for phase zero.

0 -0.083 0 -0.333 1.000 -0.583

-4 -3 -2 -1 0

Figure A.101: Direction 9: Analysis filter for phase one.

-2 0 0 0 0 -0.250
-1 0 0 1.000 0 0
0 -0.583 0 -0.333 0 -0.083
1 0 0 0 0 0
2 0.250 0 0 0 0

-2 -1 0 1 2

Figure A.102: Direction 9: Analysis filter for phase two.
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-2 0 0 0 0 -0.375
-1 0 0 0 1.000 0
0 -0.250 0 -0.250 0 -0.250
1 0 0 0 0 0
2 0.125 0 0 0 0

-4 -3 -2 -1 0

Figure A.103: Direction 9: Analysis filter for phase three.

-1 0 0 0 0 0.188 0.125
0 0.042 0 0.167 0.500 0.292 0
1 0.125 0.292 0.125 0.167 0.125 0.042
2 0 0 0 0 0 0
3 -0.063 -0.125 0 0 0 0

-3 -2 -1 0 1 2

Figure A.104: Direction 9: Synthesis filter for phase zero.
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0 0.500 0.500

-1 0

Figure A.108: Direction 10: Prediction filter for phase one.

-1 0.500
0 0.500

0

Figure A.109: Direction 10: Prediction filter for phase two.

-1 0 0.250
0 0.750 0.250
1 -0.250 0

-1 0

Figure A.110: Direction 10: Prediction filter for phase three.

-4 0 0 0 0 0.031
-3 0 0 0 -0.125 0
-2 0 0 -0.062 0 -0.062
-1 0 0.125 0.250 0.375 0
0 -0.219 0.250 1.125 0.250 -0.219
1 0 0.125 0.250 0 0
2 -0.062 0 -0.062 0 0
3 0 0 0 0 0
4 0.031 0 0 0 0

-2 -1 0 1 2

Figure A.111: Direction 10: Analysis filter for phase zero.

0 -0.500 1.000 -0.500

-2 -1 0

Figure A.112: Direction 10: Analysis filter for phase one.
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-2 -0.500
-1 1.000
0 -0.500

0

Figure A.113: Direction 10: Analysis filter for phase two.

-2 0 0 -0.250
-1 0 1.000 0
0 -0.750 0 -0.250
1 0 0 0
2 0.250 0 0

-2 -1 0

Figure A.114: Direction 10: Analysis filter for phase three.

-1 0 0.250 0.125
0 0.250 0.500 0.250
1 0.375 0.250 0.125
2 0 0 0
3 -0.125 0 0

-1 0 1

Figure A.115: Direction 10: Synthesis filter for phase zero.

-1 0 -0.063 -0.031 -0.063 -0.031
0 -0.063 -0.125 0.875 -0.125 -0.063
1 -0.094 -0.063 -0.125 -0.063 -0.031
2 0 0 0 0 0
3 0.031 0 0.031 0 0

-1 0 1 2 3

Figure A.116: Direction 10: Synthesis filter for phase one.

112



-1 0 -0.063 -0.031
0 -0.063 -0.125 -0.063
1 -0.094 0.875 -0.063
2 -0.063 -0.125 -0.063
3 -0.062 -0.063 -0.031
4 0 0 0
5 0.031 0 0

-1 0 1

Figure A.117: Direction 10: Synthesis filter for phase two.

-3 0 0 0 0.031 0.016
-2 0 0 0.031 0.063 0.031
-1 0 -0.031 0.031 -0.062 -0.031
0 -0.031 -0.063 -0.125 -0.188 -0.094
1 -0.047 -0.063 0.812 -0.094 -0.047
2 -0.031 -0.063 -0.031 0 0
3 -0.031 -0.031 0.031 0 0
4 0 0 0 0 0
5 0.016 0 0 0 0

-1 0 1 2 3

Figure A.118: Direction 10: Synthesis filter for phase three.
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-1 0 0.083 0.250
0 0 0.333 0
1 -0.250 0.583 0

-2 -1 0

Figure A.119: Direction 11: Prediction filter for phase one.

-1 0.583
0 0.333
1 0.083

0

Figure A.120: Direction 11: Prediction filter for phase two.

-1 0 0.250 0.375
0 0 0.250 0
1 -0.125 0.250 0

-2 -1 0

Figure A.121: Direction 11: Prediction filter for phase three.
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-4 0 0 0 0 -0.080 0 -0.094 0 0.055
-3 0 0 0 0 0.042 0.125 0 -0.062 0
-2 0 0 0 0 -0.285 0.292 -0.031 -0.125 0
-1 0 0 0 0 0.167 0.125 0 0 0
0 0 0 0.031 0 1.307 0.167 0.031 0 0
1 0 0 0 0.188 0.292 0.125 0 0 0
2 0 0 -0.031 0.125 -0.285 0.042 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0.055 0 -0.094 0 -0.080 0 0 0 0

-4 -3 -2 -1 0 1 2 3 4

Figure A.122: Direction 11: Analysis filter for phase zero.

-2 0 0 -0.083 0 -0.250
-1 0 0 0 0 0
0 0 0 -0.333 1.000 0
1 0 0 0 0 0
2 0.250 0 -0.583 0 0

-4 -3 -2 -1 0

Figure A.123: Direction 11: Analysis filter for phase one.

-2 -0.583
-1 1.000
0 -0.333
1 0
2 -0.083

0

Figure A.124: Direction 11: Analysis filter for phase two.
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-2 0 0 -0.250 0 -0.375
-1 0 0 0 1.000 0
0 0 0 -0.250 0 0
1 0 0 0 0 0
2 0.125 0 -0.250 0 0

-4 -3 -2 -1 0

Figure A.125: Direction 11: Analysis filter for phase three.

-2 0 0 0.042 0 0.125
-1 0 0 0.125 0.292 0.188
0 0 0 0.167 0.500 0
1 0 0 0.125 0.167 0
2 -0.125 0 0.292 0 0
3 -0.062 0 0.125 0.042 0

-3 -2 -1 0 1

Figure A.126: Direction 11: Synthesis filter for phase zero.
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-4 0 0 0 0 -0.012 0 -0.031 0 0.016
-3 0 0 0 0 -0.036 -0.085 -0.039 0.036 0.023
-2 0 0 0 0 -0.056 -0.146 0 0.062 0
-1 0 0 0 0 -0.057 -0.097 -0.016 0.021 0
0 0 0 0.031 0 0.854 -0.083 0.031 0 0
1 0 0 0.003 -0.036 -0.094 -0.052 0.008 0.005 0
2 0 0 0 -0.063 -0.056 -0.021 0 0 0
3 0 0 -0.005 -0.021 -0.026 -0.014 0 0 0
4 0.016 0 -0.031 0 -0.012 0 0 0 0
5 0.008 0 -0.013 -0.005 -0.005 -0.002 0 0 0

-3 -2 -1 0 1 2 3 4 5

Figure A.127: Direction 11: Synthesis filter for phase one.

-4 0 0 -0.002 0 -0.005
-3 0 0 -0.005 -0.012 -0.008
-2 0 0 -0.014 -0.021 -0.021
-1 0 0 -0.026 -0.056 -0.031
0 0.005 0 -0.052 -0.083 -0.036
1 0.003 0 -0.063 0.885 -0.055
2 0.021 0 -0.097 -0.146 0
3 0.010 0 -0.057 -0.056 0
4 0.036 0 -0.085 0 0
5 0.018 0 -0.036 -0.012 0

-3 -2 -1 0 1

Figure A.128: Direction 11: Synthesis filter for phase two.
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-4 0 0 0 0 -0.005 0 -0.013 0 0.008
-3 0 0 0 0 -0.016 -0.036 -0.016 0.018 0.012
-2 0 0 0 0 -0.026 -0.063 -0.005 0.031 0
-1 0 0 0 0 -0.031 -0.057 -0.016 0.010 0
0 0 0 0.008 0 -0.094 -0.063 0.003 0 0
1 0 0 -0.016 -0.055 0.914 -0.063 -0.016 0.003 0
2 0 0 -0.016 -0.094 -0.057 -0.062 0 0 0
3 0 0 -0.016 -0.031 -0.031 -0.026 0 0 0
4 0.023 0 -0.039 0 -0.036 0 0 0 0
5 0.012 0 -0.016 -0.008 -0.016 -0.005 0 0 0

-3 -2 -1 0 1 2 3 4 5

Figure A.129: Direction 11: Synthesis filter for phase three.
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-1 0 0.133 0.333
0 0 0.183 0
1 0 0.233 0
2 -0.167 0.283 0

-2 -1 0

Figure A.130: Direction 12: Prediction filter for phase one.

-2 0.250
-1 0.250
0 0.250
1 0.250

0

Figure A.131: Direction 12: Prediction filter for phase two.

-2 0 0.025 0.250
-1 0 0.175 0
0 0 0.325 0
1 -0.250 0.475 0

-2 -1 0

Figure A.132: Direction 12: Prediction filter for phase three.
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-6 0 0 0 0 -0.056 0 -0.092 0 0.059
-5 0 0 0 0 0 0 0 0 0
-4 0 0 0 0 -0.150 0.142 -0.042 -0.083 0
-3 0 0 0 0 0.125 0.237 0 -0.125 0
-2 0 0 0 0 -0.268 0.117 0.008 0 0
-1 0 0 0 0 0.125 0.162 0 0 0
0 0 0 0.058 0 1.469 0.092 0.058 0 0
1 0 0 0 0 0.125 0.087 0 0 0
2 0 0 0.008 0.167 -0.268 0.067 0 0 0
3 0 0 0 0.125 0.125 0.012 0 0 0
4 0 0 -0.042 0 -0.150 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 0.059 0 -0.092 0 -0.056 0 0 0 0

-4 -3 -2 -1 0 1 2 3 4

Figure A.133: Direction 12: Analysis filter for phase zero.

-2 0 0 -0.133 0 -0.333
-1 0 0 0 0 0
0 0 0 -0.183 1.000 0
1 0 0 0 0 0
2 0 0 -0.233 0 0
3 0 0 0 0 0
4 0.167 0 -0.283 0 0

-4 -3 -2 -1 0

Figure A.134: Direction 12: Analysis filter for phase one.
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-4 -0.250
-3 0
-2 -0.250
-1 1.000
0 -0.250
1 0
2 -0.250

0

Figure A.135: Direction 12: Analysis filter for phase two.

-4 0 0 -0.025 0 -0.250
-3 0 0 0 0 0
-2 0 0 -0.175 0 0
-1 0 0 0 1.000 0
0 0 0 -0.325 0 0
1 0 0 0 0 0
2 0.250 0 -0.475 0 0

-4 -3 -2 -1 0

Figure A.136: Direction 12: Analysis filter for phase three.

-3 0 0 0.012 0.125 0.125
-2 0 0 0.067 0 0.167
-1 0 0 0.087 0.125 0
0 0 0 0.092 0.500 0
1 0 0 0.162 0.125 0
2 0 0 0.117 0 0
3 -0.125 0 0.237 0.125 0
4 -0.083 0 0.142 0 0

-3 -2 -1 0 1

Figure A.137: Direction 12: Synthesis filter for phase zero.
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-7 0 0 0 0 -0.002 -0.018 -0.017 0.010 0.010
-6 0 0 0 0 -0.009 0 -0.018 0 0.014
-5 0 0 0 0 -0.014 -0.032 -0.007 0.010 0
-4 0 0 0 0 -0.021 -0.071 -0.012 0.042 0
-3 0 0 0 0 -0.034 -0.044 0.002 0.010 0
-2 0 0 0 0 -0.033 -0.058 -0.006 0 0
-1 0 0 0.016 -0.021 -0.093 -0.052 0.011 0.010 0
0 0 0 0.001 0 0.919 -0.046 0.001 0 0
1 0 0 0 -0.021 -0.048 -0.034 0 0 0
2 0 0 -0.006 -0.083 -0.033 -0.033 0 0 0
3 0 0 -0.016 -0.021 -0.033 -0.020 0 0 0
4 0 0 -0.012 0 -0.021 0 0 0 0
5 0.021 0 -0.031 -0.021 -0.016 -0.008 0 0 0
6 0.014 0 -0.018 0 -0.009 0 0 0 0

-3 -2 -1 0 1 2 3 4 5

Figure A.138: Direction 12: Synthesis filter for phase one.
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-5 0 0 -0.002 -0.016 -0.016
-4 0 0 -0.008 0 -0.021
-3 0 0 -0.012 -0.031 -0.016
-2 0 0 -0.020 -0.062 -0.021
-1 0 0 -0.033 -0.047 -0.016
0 0 0 -0.034 -0.062 -0.021
1 0.016 0 -0.062 0.938 -0.016
2 0.010 0 -0.052 -0.062 -0.021
3 0.016 0 -0.061 -0.047 0
4 0.010 0 -0.044 -0.062 0
5 0.016 0 -0.050 -0.031 0
6 0.010 0 -0.032 0 0
7 0.016 0 -0.030 -0.016 0
8 0.010 0 -0.018 0 0

-3 -2 -1 0 1

Figure A.139: Direction 12: Synthesis filter for phase two.

123



-5 0 0 0 0 -0.003 -0.030 -0.028 0.016 0.016
-4 0 0 0 0 -0.016 0 -0.031 0 0.021
-3 0 0 0 0 -0.023 -0.050 -0.009 0.016 0
-2 0 0 0 0 -0.033 -0.119 -0.016 0.063 0
-1 0 0 0 0 -0.054 -0.061 0.009 0.016 0
0 0 0 0 0 -0.048 -0.081 0 0 0
1 0 0 0.028 -0.016 0.878 -0.062 0.028 0.016 0
2 0 0 0.011 0 -0.093 -0.044 0.016 0 0
3 0 0 0.009 -0.016 -0.054 -0.033 0 0 0
4 0 0 0.002 -0.062 -0.034 -0.006 0 0 0
5 0 0 -0.009 -0.016 -0.023 -0.012 0 0 0
6 0 0 -0.007 0 -0.014 0 0 0 0
7 0.016 0 -0.028 -0.016 -0.003 -0.002 0 0 0
8 0.010 0 -0.017 0 -0.002 0 0 0 0

-3 -2 -1 0 1 2 3 4 5

Figure A.140: Direction 12: Synthesis filter for phase three.
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