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ABSTRACT 

 

In VLSI circuit design, graph algorithms are widely used and graph structure can model 

many problems. As technology continues to scale into nanometer design, the effects of process 

variation become more crucial and design parameters also change. Hence, taking stochastic 

variations into account, probability distributions are used as edge weights to form statistical 

graph structures. General applications in VLSI circuit design, such as timing analysis, buffer 

insertion, and maze routing, can be formulated as shortest path problems using a statistical graph 

model. The solution of any such graph problem will surely have a statistical distribution for its 

cost function value. The mean and variance, square of standard deviation, values are used as a 

pair of weight values on a graph to represent the stochastic distribution on each edge. For the 

stochastic shortest path problem, we observe that the objective functions can be formulated using 

mean and standard deviation values of the resulting probability distribution and general cost 

functions are nonlinear. To solve for the nonlinear cost function, we intentionally insert a 

constraint on the variance. Several candidate paths will be achieved by varying the bound value 

on the constraint. With fixed bound value, the Lagrangian relaxation method is applied to find 

the feasible solution to the constrained shortest path problem. During Lagrangian relaxation, a 

feasible solution close to the optimal is achieved through subgradient optimization. Among the 

candidate paths obtained, the best solution becomes the ultimate solution of our algorithm for the 

original cost function under parameter variation. The algorithm presented in this work can handle 

any graph structures, arbitrary edge weight distributions and general cost functions. 
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CHAPTER 1 

INTRODUCTION 

 

 Variation is inevitable in modern technology and many current research works focus 

on improving the design and analysis methods involving parameter variation. These existing 

works are great achievements, but they still possess some limitations. In this thesis, we 

introduce an efficient method to handle previous limitations and improve the processing speed 

further. 

 

1.1 Motivation 

Manufacturing a chip is a process that involves many variables. As technology 

continues to scale into nanometer design, parameter variations become major challenges for 

circuit performance [1]. On-chip-variation (OCV) may come from fabrication processes such 

as mask alignment, etching process, and optical proximity correction [2]. Supply voltage, 

temperature, and other systematic and random process variations have a great impact on 

circuit and microarchitecture performance and can possibly result in yield loss [1], [3]. For 

example, the increases in operating frequency result in high junction temperature and die 

temperature variation and this will affect the power consumption. An illustrative example of 

die temperature variation is displayed in Figure 1 [4]. Thus, continued increase of 

performance variability makes the problem probabilistic rather than deterministic and 
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emphasizes the importance of accurate circuit analysis. This will also help to avoid over-

pessimistic design. 

 

Figure 1 Die thermal map [4]. 

Graph algorithms are widely used in very large-scale integration (VLSI) computer 

aided design (CAD). Many different problems can be formulated as a shortest path problem, 

minimum spanning tree and so on. There has been much research on conventional graph 

algorithms with deterministic edge weights. Recently, the focus has been on shortest path 

problems using probabilistic edge weights. Probabilistic graphs have the same structure as 

general graphs, but have edge weights of the random variables with probability distributions. 

The shortest path on statistical graphs is a function of random events characterized by each 

probability distribution. For design and analysis under the parameter variation, graphs with 

probability distributions for edge weights should be used to model the uncertainty. Figure 2 

illustrates a statistical graph with arbitrary probability distributions for edge weights. 
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Figure 2 Statistical graph structure. 

 

1.2 Problem Formulation 

 In a probability distribution, the portion of the distribution can be described as a 

function of certain parameters that describe the distribution. In the case of a Gaussian 

distribution, or normal distribution, drawn in Figure 3, the six-sigma range, between      

and     , covers the majority (> 99%) of the probability distribution, where µ and σ are 

mean and standard deviation respectively. The cost function      is widely used to 

measure the performance and yield in processes defined by Gaussian distribution [5]. 

Similarly, any part of the arbitrary distribution can be formulated as      or     . Hence, 

mean and standard deviation, or variance σ
2
, values represent the corresponding probability 

distribution and can be used as edge weights on the graph instead of the original probability 

distribution. 
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Figure 3 Gaussian distribution (Six sigma range: yellow shaded area). 

 Given a graph G, the weight for edge i is a random variable forming a distribution 

with mean µi and variance σi
2
. The goal of the conventional shortest path problem is to 

minimize the total length on the path,       , for total mean value µp on the path p, from the 

given source node to target node. However, if we take variation into consideration, the path 

with smallest mean value,       , would not always correspond to the path with minimum 

of cost function with variation,             , for overall standard deviation σp on the path 

p. An example is shown in Figure 4. Figure 4(a) is the statistical graph with weight values 

with a pair of (µi, σi
2
) on every edge i. Figure 4(b) presents the solution using the traditional 

shortest path algorithm which minimizes the length, mean values only from the statistical 

graph, and Figure 4(c) is the resulting path under parameter variation. Thus, in the stochastic 

shortest path problem, the objective is to find a path p that minimizes the cost function 

      , where                
 

    for real number    .  
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Figure 4 Example indicating the difference of the solutions from conventional and statistical 

method. (a) Simplified statistical graph. (b) Path with shortest length, minimum mean value, 

of 7 (labeled with bold green lines). (c) The worst case shortest path,          , of 9.73 

assuming Gaussian distribution (labeled with bold blue lines). 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

2.1 Stochastic Shortest Path Problem 

 The shortest path problem is one of the most fundamental problems in graph theory. 

The objective of finding the path to minimize the cost function in the classical shortest path 

problem has been studied intensively. Various algorithms have been established for different 

implementations. A single-source, multiple-target algorithm has been developed by Dijkstra 

[6]. The Bellman-Ford algorithm is slower than Dijkstra’s algorithm, but it is applicable for 

graphs with negative edge weights [7]. Another interesting algorithm is the Floyd-Warshall 

algorithm which is used for multiple-source, multiple-target, or all-pair shortest path problems 

[8]. 

 Recently, variation has become an important factor in analysis and has become more 

crucial as technology scales down. Hence, many recent researches heavily focus on improving 

the method and algorithm for statistical analysis. However, there are still some limitations 

with current works. 

 Research on the shortest path problem in probabilistic graphs follows work by Frank 

[9]. In practical situations, the costs or time is often random. This work estimates the sum of 

the probability distributions of the shortest path through acyclic networks weighted with 

random lengths. Following Frank’s work, Sigal et al. [10] addressed a shortest path problem 
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through a directed, acyclic network where arc lengths are independent random variables. This 

work presented an analytic derivation of path optimality indices for directed, acyclic networks.  

 In addition, different types of cost functions on the stochastic shortest path problem 

have been studied. One of the works, by Loui [11], found computationally tractable 

formulations of stochastic and multidimensional optimal path problems. Similar problems 

with maximizing the expected cost with piecewise-linear concave utility function were 

studied by Murthy and Sarkar [12]. Lastly, Hall [13] and Fu and Rilett [14] studied the 

expected shortest path on stochastic shortest path problem. To combine the previous works, X. 

Ji proposed three models — expected shortest path, α-shortest path and the shortest path — 

and developed a hybrid intelligent algorithm combined with genetic algorithm to solve 

proposed models [15]. However, these early researches on the statistical shortest path problem 

were designed for directed acyclic graphs (DAG) with specific edge weight distributions, such 

as the Gaussian distribution. Moreover, the algorithms cannot handle the general cost function, 

which can be nonlinear. 

 To overcome the limitations of previous research, Deng and Wong found an exact 

algorithm [16] to find the optimal solution for the cost function        
   on the statistical 

shortest path problem. Unlike former works, this algorithm handles general graphs, arbitrary 

edge-weight distributions and general cost functions. To minimize the uncertainty in the final 

result of the statistical problem, Deng and Wong added the variance constraint      to the 

problem. The main idea of their algorithm is to expand graph G into a larger graph G’ by 

splitting each node into a number of nodes based on variance value. New edges are then 

added and mean values are assigned as edge weights. The expanded graph is guaranteed to be 

directed acyclic and the deterministic shortest path in G’ gives an optimal path in G. For one 
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of the implementations, Figure 5 shows the maze routing result using their algorithm. 

However, this method can only handle integer values for edge weights, and computational 

time increases significantly as the variance bound value B on constraint increases. 

 

Figure 5 Comparison the maze routing with and without considering the temperature 

variations. (a) Shortest path found by classical shortest path problem. (b) Result by solving 

statistical shortest path problem [16]. 

  

2.2 Constrained Optimization Problem 

 To overcome existing limitations, we intentionally add a constraint to formulate a 

constrained optimization problem. We take advantage of the large number of variance bound 

values from the constraint to sample many candidate paths. It is sufficient to solve for the 

formulated constrained shortest path problems with diverse bound values and compute for the 

nonlinear objective function regarding the obtained candidates. 

 One of the early works that brought up the constrained shortest path problem was 

completed by Aneja and Nair [17]. The algorithm presented in [17] is similar to the 

Lagrangian multiplier technique but it requires, on average, a number of iterations which are 

polynomially bounded. Cai et al. [18] also studied a different approach to the constrained 
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shortest path problem that is very similar to ours. The problem is formulated on a graph with 

two weight values — time and cost — on a directed graph with constraints. Three variants of 

the problem are examined: arbitrary waiting times, zero waiting times, and vertex-dependent 

upper bounds on the waiting times at each vertex.  

 The stochastic shortest path algorithm introduced in this thesis can handle any general 

graph, arbitrary probability distribution, general cost function and integers as well as other 

non-integer values. Finally, the computation runtime is very efficient compared to previous 

works. 



10 
 

CHAPTER 3 

STOCHASTIC GRAPH AND OBJECTIVE 

 

 To form a graph model with variation, statistical graph structure is constructed. A pair 

of representative values on a probability distribution are used in objective function, and hence, 

assigned for edge weights. The objective function of the shortest path problem with random 

variables is typically nonlinear. Our approach for the nonlinear cost function is to formulate 

the problem into a series of constrained optimization problems with various bound values. 

 

3.1 Statistical Graph 

 If the random variable on each edge forms a Gaussian distribution, then the overall 

distribution along the path, which results from adding the Gaussian distributions of each 

individual edge on the path, will also be Gaussian. To cover the majority of the path length 

distributions, the objective function may be to minimize         or to maximize       . 

If the goal is to minimize the worst case of statistical path length from the given source node 

to the target node, then the objective will be minimizing the cost function as              

for path p. For other general edge-weight probability distributions, the objective function can 

be set as Equation (1) due to Chebyshev’s inequality from Equation (2).  

              or              (1) 
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 From the above relation, any case of the given distribution can be considered by fixing 

the value of k. To solve for the stochastic shortest path problem, we only need mean μ and 

standard deviation σ values from the probability distribution. This allows us to simplify the 

statistical graph with two real numbers on each edge weight. Mean values of the cost function 

probability distribution are linear functions of mean values of each edge weight distribution. 

However, from the Equation (3), the function to compute the overall standard deviation from 

multiple probability distributions is nonlinear. Hence, the conventional shortest path 

algorithm cannot be directly applied. Instead, overall variance can be computed linearly as 

shown in Equation (4). Thus, instead of considering the entire random variation, we can 

simply represent the statistical distribution with mean and variance values for each edge 

weight on the statistical graph structure as shown in Figure 6. 

       
 

   

              (3) 

  
     

 

   

              (4) 

  

 

Figure 6 Simplified statistical graph with pair (µ, σ
2
) for each weight. 

              
 

  
                                            (2) 
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 Consider the case for minimizing the worst case of any Gaussian distribution, 

            . If there is an ideal path that has a minimum mean and minimum variance, 

then this path will always be the optimal solution for the objective function. However, the 

probability that both the minimum mean and minimum variance lie on the same path is very 

low. Therefore it is necessary to compare the value of the cost function between paths. To 

achieve the goal, it will be extremely time-consuming to compare all the paths as the graph 

grows larger. It is sufficient to sample several path candidates and compare the goal. 

Typically, the candidate paths will have a small mean value but a relatively large variance, a 

small variance but a relatively large mean value, or fairly small values for both mean and 

variance.  

 Similarly, for maximizing the reward function of the worst case of the variation, the 

possibility for the existence of an ideal path with both maximum mean and maximum 

variance is extremely low. There are some cases for which the number of paths from the 

source node to target node is unbalanced. For these special structured graphs, the ideal path is 

likely to exist; however, the greater part would not correspond to this rare case. Path 

candidates for the longest path will have either a large mean value but comparatively small 

variance, a large variance but small mean value, or both reasonably large mean value and 

variance. If we negate all mean values and variances, then the objective function becomes a 

minimizing problem. Then, we can sample paths with properties illustrated above by applying 

the same method to solve for minimizing the cost function. 
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3.2 Sampling Method Using Constraints 

 To sample the path candidates for the objective function, we will formulate the 

problem as a series of constrained shortest path problems shown in Equation (5). This 

problem finds a shortest path with minimum overall mean with respect to the variance 

constraint. As shown in Equation (6), varying the bound value B from the upper limit of 

variance to a lower limit creates a number of constrained optimization problems. Solutions for 

each constrained problem may result in different paths. 

    
   
 

    

               
   

  

(5) 

                        
     

 
    , and                              

   
 

  
       

 
  
                    (6) 

Initially, the bound value will be set as the upper limit of variance; therefore, the 

constraint is very loose. This problem considers all the paths to obtain the shortest path 

regardless of the value of variance as long as it meets the constraint. As the bound value gets 

smaller, i.e., tighter constraint, the feasible path will have a smaller variance; however, the 

mean value is likely to increase due to the narrower feasible set. All these path solutions target 

either minimizing the mean, variance or both; hence, these are eligible as the path candidates 

for the original objective. 

Depending on the value of the bound, some constrained problems might have the same 

solution path. To eliminate the redundancy, we set the bound value according to the variance 

of the current solution — for example assume    
  is the variance of the solution path to the 

constrained problem with bound value B1. Until the bound value reaches the variance of the 
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current solution,      
 , this path stays in the feasible set and it is the best solution. We set 

the next bound value to be slightly smaller than the variance of the current solution,   

   
    for small ε, in order to move this solution out of the feasible set. Then, a different 

solution path will be achieved for the newly formulated constrained shortest path problem. 
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CHAPTER 4 

STOCHASTIC SHORTEST PATH ALGORITHM 

 

 As the focus is on statistical design and analysis, we have worked on an efficient 

method to find a reasonable approximate solution for the stochastic shortest path problem. 

The shortest path problem under variation was modeled as a nonlinear optimization problem. 

To sample the feasible and promising candidate paths for the objective function, we have 

converted the problem to a series of constrained optimization problems. In this chapter, we 

introduce a Lagrangian relaxation based algorithm to solve for the stochastic shortest path 

problem. Our algorithm can handle any general graph structures and any arbitrary probability 

distributions with positive, negative or even floating point random variables for edge weights. 

In addition, our algorithm guarantees convergence and extremely efficient runtime. 

 

4.1 Lagrangian Relaxation 

 A well known approach for the constrained optimization problem is the Lagrangian 

relaxation method [19]. This method can also be applied for the shortest path problem with an 

additional side constraint. The basic concept of Lagrangian relaxation is to combine the 

constraint into the objective function by relaxing the constraint. Then, as shown in Equation 

(7), we can easily approach the constrained shortest path problem indirectly with the modified 

cost function without any constraints,        
    . 
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                      (7) 

 The Lagrangian relaxation problem is a function of λ, which is called the Lagrangian 

multiplier and it is also known as the Lagrangian multiplier problem. The Lagrangian 

multiplier problem is a dual problem to the primal problem, which is the constrained 

optimization problem [20]. One common property of the relationship between the primal and 

the dual problem is weak duality. Weak duality means the optimal objective function value g
*
 

of the Lagrangian multiplier problem in Equation (8) is always a lower bound on the optimal 

objective function value of the primal problem p
*
 from Equation (5), i.e.      . With 

respect to the weak duality property, the solution for the Lagrangian multiplier problem will 

give a lower bound value for the primal problem. In Equation (9), this weak duality 

relationship is manifested. 

      
   

          
   

   
   

        
                       (8) 

   
   

   
   

        
              

   
   

    

               
   

                  (9) 

With fixed constant B, the modified cost function,        
    , of the Lagrangian 

multiplier problem can be used as weights on the graph as drawn on Figure 7. The Graph in 

Figure 7 is converted from the example shown in Figure 4(a). Now, the graph has only single 

weight value and it has the conventional graph structure. On this graph, we can first apply the 

shortest path algorithm to solve the Lagrangian multiplier problem after fixing the Lagrangian 

multiplier value λ. For general graphs with positive weights, Dijkstra’s shortest path algorithm 

can be applied. Dijkstra’s algorithm is a graph search algorithm that solves the single-source 

shortest path problem for a graph with nonnegative edge path costs [6]. The algorithm finds 

the path with lowest cost between a given source vertex and every other vertex. In the case 
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with negative weights, the Bellman-Ford algorithm can be used or if the graph is directed and 

acyclic, the topological sort algorithm can be used for more efficient runtime. 

 

Figure 7 Graph with modified cost function as weight. 

The resulting solution of the modified cost function from the graph in Figure 7 will 

form a piecewise linear concave function over the Lagrangian multiplier λ. All the points on 

this minimum envelop of the Lagrangian function are lower bounds for the optimal solution 

of the original problem. Among the points, the supremum of the Lagrangian multiplier 

problem or dual problem, least upper bound g
*
 which is equal to the peak value of the 

concave function, is the closest to the optimal and will be the best lower bound for the primal 

problem. The relationship between the primal and the dual problem is shown in Figure 8. The 

supremum point of the dual problem can be obtained by maximizing the Lagrangian 

multiplier function. 



18 
 

 

Figure 8 Relationship between the primal and the dual problem. 

 

4.2 Subgradient Optimization 

 The Lagrangian multiplier problem, or the dual problem, is always a concave function 

but not necessarily differentiable. To account for this situation, the subgradient optimization 

technique has been implemented to maximize the Lagrangian multiplier problem, which is 

nondifferentiable. Subgradient optimization is a generalization of the steepest descent method, 

i.e. the gradient method. The idea of this optimization technique is to move to the direction d 

where directional derivative of function f is positive,         , with small enough step 

length. Equation (10) is derived from Equation (7) and since λ is the variable, the gradient of 

equation (10) is shown in Equation (11). To the positive gradient direction, we move the 

lambda value to reach to the best value. The equation to update lambda during iteration is 

stated in Equation (12). From this equation, step size θ should be carefully assigned in order 

to guarantee the convergence. Practitioners of the Lagrangian relaxation method often use the 

following heuristic for selecting the step length stated in Equation (13). 
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           (10) 

     

  
   

    (11) 

             
     (12) 

   
            

       
                              (13) 

 In the step size equation, the scalar vk is any number between 0 and 2. Throughout the 

iteration, it will be reduced by a factor of 2 whenever the best Lagrangian objective function 

value found so far has failed to improve in a specified number of iterations. UB is the upper 

bound of the optimal objective function. The initial upper bound can be any known feasible 

solution to the problem. During the subgradient iteration, the upper bound will be updated if a 

smaller feasible solution has been generated. A feasible path that provides the upper bound 

approaches the optimal path as the subgradient iteration converges. Several constrained 

problems formed with different bound value B will sample different feasible paths which are 

the solution candidates for the original objective function. The value of the goal will be 

calculated and compared among the candidate paths. Afterwards, the best result will be 

chosen as the solution of the Lagrangian relaxation based stochastic shortest path algorithm. 

 

4.3 Algorithm 

 Our stochastic shortest path algorithm based on the Lagrangian relaxation method 

described in previous sections is provided below. It is the global view of the algorithm, and 

the existing algorithm was implemented on shortest path. For the subgradient optimization, 
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the initial value of v is chosen as 0.8 after several experiments on convergence. We defined 

the convergence criterion to be when the error between previous and current λ values is small 

enough within 10 000 iterations. 

 

Begin 

Input given graph with (μi, σi
2
) as weight; 

Calculate      
  and      

 ; 

Let initial       of the any known path;  

Set initial        
   ; 

Set L(0) ←      ; 

Set v = 0.8, θ and λ using Equation (12)-(13); 

Repeat until B <      
 , 

Topological sort shortest path for            
     ; 

    
 

 ←   
  of shortest path for            

     ; 

     ←    of shortest path for            
     ; 

If converges, 

Set next B =     
   ; 

Set L(0) ←      ; 

Reset v = 0.8, θ and λ using Equation (12)-(13); 

Else, 

Update v ← v/2; 

Set θ and λ using Equation (12)-(13) with updated v; 

End if 

Calculate      of the sampled paths with different B; 

Obtain         or        ; 

End 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

 

5.1 Expected Results 

 With fixed bound B value, we can formulate a constrained problem and compute the 

feasible solution path. The outcome path of a certain constrained problem with fixed bound 

value is going to satisfy the following constrained problems with smaller bound value until 

the constraint becomes tighter and, hence, the path becomes infeasible. Therefore, we used the 

variance sum of the current solution path as the reference value for the bound for the next 

iteration. The bound value for the next constrained problem was set based on the variance of 

the current solution path. By repeating this procedure of varying bound value, numerous 

potential solutions can be expected. 

 Suppose the bound for constraint was       
   , and the output path had the 

minimum possible variance. Then, subsequent bound values will be less than the minimum 

variance and there will be no feasible solutions to the following constrained problems. Thus, 

only one path will be sampled for that graph, and it is the solution. However, this is a special 

case. Typically, if maximum variance was set for the bound, the problem becomes loose. The 

resulting path would have minimum mean but relatively large variance,    
 

  
. As the 

bound decreases and problem becomes stricter, and the resulting mean value will get larger, 

i.e., worse for minimization. The expected trend curves are illustrated in Figure 9. The curves 
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will have decreasing shape, but it will be hard to predict whether it will have convex, concave 

or linear structure. 

 

Figure 9 Expected sampled path curve. 

(Convex curve: blue solid line, concave curve: red dash line, linear: green dash dot line.) 

 From the curves in Figure 9, the solution depends on the sign of the coefficient of 

standard deviation from the objective function. For example, suppose the objective is 

            . Then, the entire sampled paths should be compared for the final best 

solution. However, if the objective function is             , it is clear that the path with 

the rightmost property on the minimization curve will be the solution since it has minimum 

mean value with maximum standard deviation. Similarly, for the maximization problem, the 

leftmost point will always be the solution for the problem with objective function         

    . For the objective             , all the candidate paths should be compared in order 

to find the actual best solution. 
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5.2 Minimization Problem 

 The stochastic shortest path problem is formulated as constrained minimization 

problem to apply our algorithm. For convenience, all the weight values on the graphs, which 

represent the mean and variance value of the probability distribution, were assigned for 

positive values. Therefore, any shortest path algorithm can be applied during Lagrangian 

relaxation. In this work, we applied Dijkstra’s algorithm for the minimization problem.  

 Maintaining the graph structure illustrated in Figure 10, three different sizes were 

generated and experimented. This balanced graph structure is generated to eliminate the 

effects of other irrelevant factors such as number of edges on the path from the source to 

target. If the graph is unbalanced, the effect of various ranges of mean and variance values on 

the edge weights is not going to be very apparent. The mean and the variance on each weight 

are randomly generated between the assigned ranges.  

 

Figure 10 Minimization problem graph structure example. 

 The result curve of bound B verses mean μ of the sampled path is shown in the blue 

line in Figure 11; the curve is decreasing convex as expected in Chapter 5.1. The solution of 

the initial constrained problem with the loosest bound was positioned at the rightmost point of 

the curve. As the constraint tightens, the mean value of the solution increases and the point 
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moves to the northwest. We can observe that the original optimal solution is not obvious 

among the sampled candidates. Some solutions have small variances with large mean values, 

while others have small mean values with large variances or middle range on both values. The 

calculated value of the cost function      is marked with red rectangles on the graph. The 

solution for the cost function      was calculated the same way and is marked as green 

circles. Finally, the path that minimizes       the most is marked as larger triangles. 

 

 

Figure 11 Result curve of minimization problem. (a) Graph 1. (b) Graph 2. (c) Graph 3. 

(Large triangles: the solution of the original objective function.) 



25 
 

 

Figure 11 (continued) 

 The summary of the result is shown in Table 1. Three sizes of the graphs were varied 

between graph examples and the mean and variance value range was differed to examine the 

effect of the variance. When the variance is as large as mean value, it is no longer negligible. 

From Table 1,   
  and   

  are the solution from our algorithm for             and 

             respectively. For comparison, we performed 10 000 iterations of Monte 

Carlo analysis and GMC is the solution of this method. During the Monte Carlo simulation, the 

probability distribution of random variables on each edge was assumed to be Gaussian. 

However, any arbitrary distribution, for example the uniform distribution, exponential 

distribution, etc., can also be applied in the stochastic shortest path algorithm and Monte 

Carlo analysis. Finally, the runtimes of the presented stochastic shortest path algorithm and 

Monte Carlo simulation are compared, and it is noticeable that our algorithm is more efficient. 
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Table 1 Minimization experiment results 

 Minimization 

Examples Graph 1 Graph 2 Graph 3 

Nodes 11 102 10002 

Edges 26 362 39602 

Weights (0-1, 0-1) (5-15, 0-1) (5-15, 0-1) 

Paths 2 8 39 

  
  5.97893 81.4558 643.31056 

  
  -4.0114 67.7991 600.2874 

Runtime 0 msec 1 msec 204 msec 

GMC 5.97893 81.4558 643.375 

Runtime_MC 3 msec 30 msec N/A 
 

 

5.3 Maximization Problem 

 The maximization problem is similar to the minimization problem. Instead of applying 

the longest path algorithm directly on the problem described in Equation (14), we transform 

the problem into a minimizing problem and apply shortest path algorithm. We negate both 

mean and the variance values to model Equation (14) as a minimization problem written in 

Equation (15). Since Dijkstra’s algorithm cannot deal with negative weights and the graph 

structure we constructed is directed acyclic, we applied the topological sort algorithm for 

finding the shortest path. The topological sort algorithm sorts the vertices in order and 

calculates the accumulated weight on each vertex. This algorithm is much faster in runtime 

than Dijkstra’s algorithm and able to handle any real number on the weight.  

 
   

 
  

              
   

  (14) 
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  (15) 

 We used the same graph structure as in the minimization problem. The result curve of 

the sampled path is illustrated in Figure 12 and it is a decaying concave shape. Unlike the 

minimization problem, the initial constraint is when the bound B value is the minimum 

variance and the path will lie at the leftmost position. The constraint tightens as the bound 

value increases and the points move to the southeast. Among those sampled paths, the 

objective value should be calculated to find the best solution. In the case of Figure 12, 

similarly, some solutions have small variances with large mean values, while others have 

small mean values with large variances or middle range on both values. The calculated value 

of the cost function      is marked with red rectangles on the graph and the path that 

maximizes the most is marked as larger red triangles. The solution for the cost function 

     is calculated in the same way and marked as green circles, and the best maximizing 

solution is larger green triangles. 

 

Figure 12 Result curve of maximization problem. (a) Graph 4. (b) Graph 5. (c) Graph 6. (d) 

Graph 7. (Large triangles: the solution of the original objective function.) 
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Figure 12 (continued) 
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Figure 12 (continued) 

 The experimental results are summarized in Table 2. Several different graph sizes 

have been generated and tested. The solution of the objective function            ) using 

our algorithm is indicated as   
  and   

 .  

Table 2 Maximization experiment results 

 Maximization 

Sample Graph 4 Graph 5 Graph 6 Graph 7 

Nodes 102 402 2502 10002 

Edges 362 1522 9802 39602 

Weights (5-15, 0-1) (0-1, 0-1) (0-1, 0-1) (0-1, 0-1) 

Paths 5 9 21 46 

  
  115.0886 27.9605 59.6816 108.2846 

  
  100.9114 7.4538 27.0330 63.7365 

Runtime (ms) 0 msec 6 msec 15 msec 265 msec 
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CHAPTER 6 

CONCLUSION 

 

 As the impact of process variation increases, we cannot rely on the results from 

conventional algorithms that assume variations are negligible. The solution of the traditional 

algorithms might be very different from the statistical problem considering the variations that 

form a probability distribution for edge weights on the graph. There were several researches 

on the statistical shortest path; however, previous algorithms were not very efficient in 

runtime and the majority of them had limitations on practical applications. In this work, we 

have introduced an efficient way to obtain a reasonable solution based on Lagrangian 

relaxation. We intentionally insert a constraint and formulate a series of constrained problems 

by varying the variance bound value and sample candidate solutions for each formulated 

problem. At the end, we compare the objective value of the sampled candidates and attain the 

best solution. 

 The method we proposed in this work can be used in various applications in 

nanometer design that potentially have high parameter variations that are significant. 

Common applications in nanometer designs include timing analysis, maze routing, and buffer 

insertion. For timing analysis, precise timing information is necessary for circuit optimization 

to meet the yield or avoid over design. Maze routing finds the shortest path in the grid routing 

problem. The parameter variations cause the edge weights to be a probability distribution, and 

the cost functions are mostly related to the variations. Buffer insertion is a commonly used 

interconnection optimization technique. The possible buffer inserting location can be 
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structured as nodes and the wire interconnection can be edges on the graph. Our algorithm can 

be implemented on the above listed nanometer circuit design applications to achieve efficient 

runtime.   
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