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ABSTRACT

Statistical decision-making procedures are used in a wide range of contexts

varying from communication receiver design to environment monitoring sys-

tems. Although such procedures have been studied for a long time, much of

the focus has been restricted to systems where the underlying probabilistic

model is known accurately. In this thesis we consider the setting where there

is some uncertainty about the probabilistic model. We focus on two different

problems and present approaches to dealing with statistical uncertainty in

each of these cases.

For the problem of universal hypothesis testing, we study tests that im-

prove upon the known optimal solution in two different aspects. Firstly,

we study the generalized likelihood ratio test (GLRT) that exploits partial

knowledge about the alternate distribution to improve finite-sample perfor-

mance over the Hoeffding test. Although the Hoeffding test is universally

optimal in an asymptotic sense, we show that it suffers from high bias and

variance which leads to a poor performance over finite observation lengths.

The performance degradation of the Hoeffding test is particularly significant

for the testing of large alphabet distributions. We also show that the test

statistic used in the GLRT is a relaxation of the Kullback-Leibler divergence

statistic used in the Hoeffding test. We present results on the asymptotic

behavior of the two test statistics to explain the advantage of the GLRT.

We then study robust procedures for universal hypothesis testing when there

is uncertainty about the null hypothesis. We present new results on the

asymptotic behavior of the proposed test statistic which can be used to ob-

tain procedures for setting thresholds in these tests for a target false alarm

requirement.

We also study the problem of quickest change detection under statistical

uncertainty. We formulate a new problem in robust quickest change detec-

tion, in which one seeks to minimize the worst-case delay over all possible
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instances of the uncertain distributions subject to false alarm constraints.

We adopt Huber’s robust approach and identify sufficient conditions under

which change detection procedures designed for certain least-favorable distri-

butions are robust to uncertainties in a minimax sense. These robust tests

are simple to implement and give significant performance improvement over

some benchmark procedures that are known to be optimal in an asymptotic

sense.
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CHAPTER 1

INTRODUCTION

Statistical decision-making refers to the process of making statistical deci-

sions between a number of alternatives based on observations that are mod-

eled by random variables. It is a well-studied problem with the earliest results

[1] dating over seventy years ago. However, most of the research in this area

has focussed on problems where it is assumed that the decision-makers have

perfect knowledge about the distributions of the observations under the dif-

ferent hypotheses. The focus of this dissertation is on problems in which

perfect statistical knowledge about the observations is not available. We

study methods to cope with uncertain statistics in two specific problems -

universal hypothesis testing (also called goodness-of-fit testing) and quickest

change detection.

1.1 Motivation

The problem of hypothesis testing under statistical uncertainty arises nat-

urally in several practical contexts. A simple example is the problem of

anomaly detection in which one is interested in testing whether or not the

system is in a normal state based on observations of certain key parame-

ters. One may have a good model for the normal behavior of a system but

little or no knowledge about the anomalous behavior of the system. Such

problems are usually posed as universal hypothesis testing problems, where

one assumes that the system behavior in the anomalous state is completely

unknown.

Another natural example where one has to deal with uncertain statistics

is the problem of fault-onset detection. Just as in the problem of anomaly

detection, one often has a good model for the normal behavior of the sys-

tem and little information of the system behavior in faulty state. A similar
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situation arises in intrusion detection, where again one has a good model of

system behavior only prior to the intrusion.

In such problems with statistical uncertainty, standard approaches to decision-

making cannot be directly used as they can lead to arbitrarily poor perfor-

mances as argued in the seminal work of Huber [2]. This calls for a new theory

that explicitly addresses issues of statistical uncertainty in decision-making

problems.

1.2 Existing Results and Known Approaches

There are several known approaches for dealing with statistical uncertainty.

In some problems it is possible to obtain the same performance as the optimal

test with known statistics. We refer to such schemes as universal schemes

since they universally achieve optimal performance for all values of the un-

known statistics. Examples include the Hoeffding test [3] and the general-

ized likelihood ratio test [4] for hypothesis testing problems involving infinite

sequences of observations. These tests are known to achieve the same perfor-

mance in terms of error-exponents as tests that have perfect knowledge of the

distributions of the observations. We will study these examples in detail in

Chapter 2. A simpler example is the following Neyman-Pearson hypothesis

testing problem involving a simple null hypothesis and a composite Gaussian

alternate hypothesis for the distribution of the observations variable Y :

H0 : Y ∼ N (0, 1)

H1 : Y ∼ N (θ, 1), θ ≥ 1.

Here N (a, b) denotes a Gaussian distribution with mean a and variance b.

In this example one seeks to minimize the probability of error under H1

subject to an upper bound on the probability of error under H0. For this

problem it can be easily shown (see e.g., [5], [6]) that the optimal test does

not require any knowledge about the value of θ. Hence, the uncertainty about

the parameter θ does not affect the performance of the hypothesis test in this

example.

A different approach to dealing with uncertain statistics in decision-making

is the robust approach introduced by Huber [2] (see also [7]). Contrary to
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universal schemes that seek to achieve the same performance as the schemes

with perfect knowledge, these robust schemes have a more modest aim of

optimizing the worst-case performance from all possible realizations of the

unknown distributions. This approach was introduced in the context of bi-

nary hypothesis testing by Huber [2] and Huber and Strassen [8, 9]. A survey

of robust techniques can be found in [10] and a more recent survey in [11].

One of the drawbacks of adopting a robust approach is that the perfor-

mance obtained can be much poorer than the performance with perfect sta-

tistical knowledge. In some problems it might be feasible to overcome statis-

tical uncertainty by learning the unknown statistics online. This is especially

true in dynamic problems involving optimization of rewards accrued over re-

peated experiments. A classical example is the problem of adaptive control

[12] where one seeks to control a dynamic system with uncertain parameters.

Schemes that adapt the control strategies using estimates of the unknown pa-

rameters typically perform better than robust control schemes [13] that are

designed to optimize worst-case performance. An example of such a problem

was the one we studied in [14]. This paper addresses the problem of uncer-

tainties in the received signal statistics in the context of dynamic spectrum

access. In [14] it was shown that a robust scheme that optimizes the worst-

case performance tends to perform poorly for more favorable realizations of

the signal statistics. A learning-based scheme, however, is shown to partially

recover this cost of uncertainty by learning the parameters online.

1.3 Contribution of This Thesis

In this thesis we study approaches to deal with uncertain statistics in two

different contexts. We first study the problems of universal and composite

hypothesis testing and some known solutions to these problems - viz. the

Hoeffding test and the generalized likelihood ratio test. We identify a new

relaxation of the Kullback-Leibler divergence which we call the mismatched

divergence that plays an important role in these tests. We obtain guidelines

for setting thresholds in these tests and results on asymptotic optimality of

these tests. We then study a different version of the universal hypothesis

testing problem where there is added uncertainty about the null hypothesis.

We obtain guidelines for setting thresholds in such problems as well.

3



The second problem we study is the problem of quickest change detec-

tion in the presence of uncertainty about the pre-change and post-change

distributions. We obtain a robust solution to this problem under various

formulations following an approach similar to Huber’s approach to robust

hypothesis testing [2].

1.4 Outline

In Chapter 2 we study the problems of universal and composite hypothesis

testing for finite alphabet distributions. We then study a robust version of

the universal hypothesis testing problem in Chapter 3 which is relevant when

there is uncertainty in the observation statistics under the null hypothesis.

In Chapter 4 we provide robust solutions to the quickest change detection

problem under uncertainty in the observation statistics. In order to improve

readability, we have relegated the proofs of many of the results to the ap-

pendix. We conclude in Chapter 5.
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CHAPTER 2

UNIVERSAL AND COMPOSITE

HYPOTHESIS TESTING VIA

MISMATCHED DIVERGENCE

2.1 Introduction and Background

This chapter is concerned with the following hypothesis testing problem:

Suppose that the observations Z = {Zt : t = 1, . . .} form an i.i.d. sequence

evolving on a set of cardinality N , denoted by Z = {z1, z2, . . . , zN}. Based on

observations of this sequence we wish to decide if the marginal distribution of

the observations is a given distribution π0, or some other distribution π1 that

is either unknown or known only to belong to a certain class of distributions.

When the observations have distribution π0 we say that the null hypothesis

is true, and when the observations have some other distribution π1 we say

that the alternate hypothesis is true.

A decision rule is characterized by a sequence of tests φ := {φn : n ≥
1}, where φn : Zn 7→ {0, 1} with Zn representing the n-th order Cartesian-

product of Z. The decision based on the first n elements of the observation

sequence is given by φn(Z1, Z2, . . . , Zn), where φn = 0 represents a decision

in favor of accepting π0 as the true marginal distribution.

The set of probability measures on Z is denoted P(Z). The relative entropy

(or Kullback-Leibler divergence) between two distributions ν1, ν2 ∈ P(Z) is

denoted D(ν1‖ν2), and for a given µ ∈ P(Z) and η > 0 the divergence ball

of radius η around µ is defined as

Qη(µ) := {ν ∈ P(Z) : D(ν‖µ) < η}. (2.1)

The empirical distribution or type of the first n observations from Z is a

random variable Γn taking values in P(Z):

Γn(z) =
1

n

n∑

i=1

I{Zi = z}, z ∈ Z (2.2)
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where I denotes the indicator function.

In the general universal hypothesis testing problem, the null distribution π0

is known exactly, but no prior information is available regarding the alternate

distribution π1. Hoeffding proposed in [3] a generalized likelihood-ratio test

(GLRT) for the universal hypothesis testing problem, in which the alternate

distribution π1 is unrestricted — it is an arbitrary distribution in P(Z), the

set of probability distributions on Z. Hoeffding’s test sequence is given by

φH

n = I{ sup
π1∈P(Z)

1

n

n∑

i=1

log
π1(Zi)

π0(Zi)
≥ η}. (2.3)

It is easy to see that the test (2.3) can be rewritten as follows:

φH

n = I{ 1

n

n∑

i=1

log
Γn(Zi)

π0(Zi)
≥ η}

= I{
∑

z∈Z

Γn(z) log
Γn(z)

π0(z)
≥ η}

= I{D(Γn‖π0) ≥ η}

= I{Γn /∈ Qη(π
0)}.

(2.4)

We refer to the above test as the Hoeffding test.

If we have some prior information on the alternate distribution π1, a dif-

ferent version of the GLRT is used. In particular, suppose it is known that

the alternate distribution lies in a parametric family of distributions of the

following form:

Eπ0 := {π̌r : r ∈ R
d}

where π̌r ∈ P(Z) are probability distributions on Z parameterized by a pa-

rameter r ∈ R
d. The specific form of π̌r is defined later in the chapter. In this

case, the resulting composite hypothesis testing problem is typically solved

using a GLRT (see [4] for results related to the present problem, and [15] for

a more recent account) of the following form:

φMM

n = I{ sup
π1∈E

π0

〈Γn, log
π1

π0
〉 ≥ η} (2.5)

where 〈Γn, log π1

π0 〉 =
∑
z∈Z Γn(z) log π1(z)

π0(z)
. We show that this test can be
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interpreted as a relaxation of the Hoeffding test of (2.4). In particular we

show that

φMM

n = I{DMM(Γn‖π0) ≥ η} (2.6)

where DMM is a relaxation of the K-L divergence. We refer to this quantity

as the mismatched divergence and the test (2.6) as the mismatched test. The

mismatched divergence is a lower bound based on a relaxation of the K-

L divergence in the sense that DMM(µ‖π) ≤ D(µ‖π) for any µ, π ∈ P(Z).

We illustrate various properties of the mismatched divergence later in the

chapter. Most of the results in this chapter were published in [16] and [17].

The terminology is borrowed from the mismatched channel (see Lapidoth

[18] for a bibliography). The mismatched divergence described here is a

generalization of the relaxation introduced in [19]. In this way we embed

the analysis of the resulting universal test within the framework of Csiszár

and Shields [20]. The mismatched test statistic can also be viewed as a

generalization of the robust hypothesis testing statistic introduced in [21, 22].

When the alternate distribution satisfies π1 ∈ Eπ0, we show that, under

some regularity conditions on Eπ0, the mismatched test of (2.6) and Hoeffd-

ing’s test of (2.4) have identical asymptotic performance in terms of error

exponents. A consequence of this result is that the GLRT is optimal in dif-

ferentiating a particular distribution from others in an exponential family of

distributions. We also establish that the proposed mismatched test has a

significant advantage over the Hoeffding test in terms of finite sample size

performance. This advantage is due to the difference in the asymptotic vari-

ances of the two test statistics under the null hypothesis. In particular, we

show that the variance of the K-L divergence grows linearly with the alpha-

bet size, making the test impractical for applications involving large alphabet

distributions. We also show that the variance of the mismatched divergence

grows linearly with the dimension d of the parameter space, and can hence

be controlled through a educated choice of the function class defining the

mismatched divergence.

The remainder of the chapter is organized as follows. We begin in Sec-

tion 2.2 with a description of mismatched divergence and the mismatched

test, and describe their relation to other concepts including robust hypothe-

sis testing, composite hypothesis testing, reverse I-projection, and maximum

likelihood (ML) estimation. Formulae for the asymptotic mean and variance

7



of the test statistics are presented in Section 2.3. Section 2.3 also contains a

discussion interpreting these asymptotic results in terms of the performance

of the detection rule. Proofs of the main results are provided in Appendix A.

Conclusions and directions for future research are contained in Section 2.5.

2.2 Mismatched Divergence

We adopt the following compact notation in the chapter: For any function

f : Z → R and π ∈ P(Z) we denote the mean
∑
z∈Z f(z)π(z) by π(f), or by

〈π, f〉 when we wish to emphasize the convex-analytic setting. At times we

will extend these definitions to allow functions f taking values in a vector

space. For z ∈ Z and π ∈ P(Z), we still use π(z) to denote the probability

assigned to element z under measure π. The meaning of such notation will

be clear from context.

The logarithmic moment generating function (log-MGF) is denoted

Λπ(f) = log(π(exp(f)))

where π(exp(f)) =
∑
z∈Z π(z) exp(f(z)) by the notation we introduced in

the previous paragraph. For any two probability measures ν1, ν2 ∈ P(Z) the

relative entropy is expressed,

D(ν1‖ν2) =





〈ν1, log(ν1/ν2)〉 if ν1 ≺ ν2

∞ else

where ν1 ≺ ν2 denotes absolute continuity. The following proposition recalls

a well-known variational representation. This can be obtained, for instance,

by specializing the representation in [23] to an i.i.d. setting. An alternate

variational representation of the divergence is utilized in [24].

Proposition 2.2.1. The relative entropy can be expressed as the convex dual

of the log moment generating function: For any two probability measures

ν1, ν2 ∈ P(Z),

D(ν1‖ν2) = sup
f

(
ν1(f) − Λν2(f)

)
(2.7)

where the supremum is taken over the space of all real-valued functions on

Z. Furthermore, if ν1 and ν2 have equal supports, then the supremum is
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achieved by the log likelihood ratio function f ∗ = log(ν1/ν2).

Outline of proof. Although the result is well known, we provide a simple

proof here since similar arguments will be reused later in the chapter.

For any function f we have,

D(ν1‖ν2) = 〈ν1, log(ν1/ν2)〉
= 〈ν1, log(ν/ν2)〉 + 〈ν1, log(ν1/ν)〉

where ν = ν2 exp(f − Λν2(f)). That is,

D(ν1‖ν2) = ν1(f) − Λν2(f) +D(ν1‖ν) ≥ ν1(f) − Λν2(f).

If ν1 and ν2 have equal supports, then the above inequality holds with equal-

ity for f = log(ν1/ν2) which would lead to ν = ν1. This proves that (2.7)

holds whenever ν1 and ν2 have equal supports. The proof for general distri-

butions is similar and is omitted here. ⊓⊔

The representation (2.7) is the basis of the mismatched divergence. We fix

a set of functions denoted by F , and obtain a lower bound on the relative

entropy by taking the supremum over the smaller set as follows:

DMM(ν1‖ν2) := sup
f∈F

{
ν1(f) − Λν2(f)

}
. (2.8)

If ν1 and ν2 have full support, and if the function class F contains the log-

likelihood ratio function f ∗ = log(ν1/ν2), then it is immediate from Propo-

sition 2.2.1 that the supremum in (2.8) is achieved by f ∗, and in this case

DMM(ν1‖ν2) = D(ν1‖ν2). Moreover, since the objective function in (2.8) is

invariant to shifts of f , it follows that even if a constant scalar is added to

the function f ∗, it still achieves the supremum in (2.8).

In this chapter the function class is assumed to be defined through a finite-

dimensional parametrization of the form

F = {fr : r ∈ R
d}. (2.9)

Further assumptions will be imposed in our main results. In particular, we

will assume that fr(z) is differentiable as a function of r for each z.

9



We fix a distribution π ∈ P(Z) and a function class of the form (2.9). For

each r ∈ R
d the twisted distribution π̌r ∈ P(Z) is defined as

π̌r := π exp(fr − Λπ(fr)). (2.10)

The collection of all such distributions parameterized by r is denoted

Eπ := {π̌r : r ∈ R
d}. (2.11)

2.2.1 Applications

The applications of mismatched divergence include those applications sur-

veyed in Section 3 of [15] in their treatment of generalized likelihood ra-

tio tests. Here we list potential applications in three domains: Hypothesis

testing, source coding, and nonlinear filtering. Other applications include

channel coding and signal detection, following [15].

Hypothesis testing

The primary motivation for our research is to improve the finite sample size

performance of Hoeffding’s universal test (2.3). The difficulty we address

is the large variance of this test statistic when the alphabet size is large.

Theorem 2.2.2 makes this precise:

Theorem 2.2.2. Let π0, π1 ∈ P(Z) have full supports over Z.

(i) Suppose that the observation sequence Z is i.i.d. with marginal π0.

Then the normalized Hoeffding test statistic sequence {nD(Γn‖π0) : n ≥
1} has the following asymptotic bias and variance:

lim
n→∞

E[nD(Γn‖π0)] = 1
2
(N − 1) (2.12)

lim
n→∞Var [nD(Γn‖π0)] = 1

2
(N − 1) (2.13)

where N = |Z| denotes the size (cardinality) of Z. Furthermore, the

following weak convergence result holds:

2nD(Γn‖π0)
d.−−−→

n→∞
χ2
N−1 (2.14)

10



where the right hand side denotes the chi-squared distribution with N−1

degrees of freedom.

(ii) Suppose the sequence Z is drawn i.i.d. under π1 6= π0. We then have

lim
n→∞

E

[
n
(
D(Γn‖π0) −D(π1‖π0)

)]
= 1

2
(N − 1).

⊓⊔

The bias result of (2.12) follows from the unpublished report [25] and the

weak convergence result of (2.14) follows from the result of [26]. All the

results of the theorem, including (2.13), also follow from Theorem 2.3.2. We

elaborate on this in Section 2.3.

We see from Theorem 2.2.2 that the bias of the divergence statisticD(Γn‖π0)

decays as N−1
2n

, irrespective of whether the observations are drawn from dis-

tribution π0 or π1. One could argue that the problem of high bias in the

Hoeffding test statistic can be addressed by setting a higher threshold. How-

ever, we also notice that when the observations are drawn under π0, the

variance of the divergence statistic decays as N−1
2n2 , which can be significant

when N is of the order of n2. This is a more serious flaw of the Hoeffding

test for large alphabet sizes, since it cannot be addressed as easily. The high

variance indicates that the Hoeffding test is not reliable in situations where

the alphabet size is of the order of the square of the sequence length.

The weak convergence result in (2.14) and other such results established

later in this chapter can be used to set thresholds for a finite sample test,

subject to a constraint on the probability of false alarm (see for example, [20,

p. 457]). As an application of (2.12) we propose the following approximation

for the false alarm probability in the Hoeffding test defined in (2.4):

pFA := Pπ0

{
φH

n = 1
}
≈ P

{N−1∑

i=1

W 2
i ≥ 2nη

}
(2.15)

where {Wi} are i.i.d. N(0, 1) random variables. In this way we can obtain a

simple formula for the threshold to approximately achieve a given constraint

on pFA. For moderate values of the sequence length n, the χ2 approxima-

tion gives a more accurate prediction of the false alarm probabilities for the

Hoeffding test compared to those predicted using Sanov’s theorem as we

demonstrate below.

11



Consider the application of (2.15) in the following example. We used

Monte Carlo simulations to approximate the false alarm probability of the

Hoeffding test described in (2.4), with π0 the uniform distribution on an

alphabet of size 20. Shown in Figure 2.1 is a semi-log plot comparing three

quantities: the probability of false alarm pFA, estimated via simulation; the

approximation (2.15) obtained from the Central Limit Theorem; and the

approximation obtained from Sanov’s Theorem, log(pFA) ≈ −nη. It is clearly

seen that the approximation based on the weak convergence result of (2.15)

is far more accurate than the approximation based on Sanov’s theorem.
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Figure 2.1: Approximations for the false alarm probability in universal
hypothesis testing. The false alarm probability of the Hoeffding test is
closely approximated by the approximation (2.15).

One approach to addressing the implementation issues of the universal test

is through clustering (or partitioning) the alphabet as in [27], or smoothing

in the space of probability measures as in [28, 29] to extend the Hoeffding

test to the case of continuous alphabets. The mismatched test proposed

here is a generalization of a partition in the following sense. Suppose that

{Ai : 1 ≤ i ≤ Na} are disjoint sets satisfying ∪Ai = X, and let Y (t) = i

if X(t) ∈ Ai. Applying (2.13), we conclude that the Hoeffding test using

Y instead of X will have asymptotic variance equal to 1
2
(Na − 1), where

Na < N for a non-trivial partition. We have:
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Proposition 2.2.3. Suppose that the mismatched divergence is defined with

respect to the linear function class (2.26) using ψi = IAi
, 1 ≤ i ≤ Na. In

this case the mismatched test (2.5) coincides with the Hoeffding test using

observations Y . ⊓⊔

The advantage of the mismatched test (2.5) over a partition is that we

can incorporate prior knowledge regarding alternate statistics, and we can

include non-standard ‘priors’ such as continuity of the log-likelihood ratio

function between the null and alternate distributions.

Source coding with training

Let π denote a source distribution on a finite alphabet Z. Suppose we do

not know π exactly and we design optimal codelengths assuming that the

distribution is µ: For letter z ∈ Z we let ℓ(z) = − log(µ(z)) denote Shannon’s

codeword length. The expected codelength is thus

E[ℓ] =
∑

z∈Z

ℓ(z)π(z) = H(π) +D(π‖µ)

where H denotes the entropy, −∑z∈Z π(z) log(π(z)). Let ℓ∗ := H(π) denote

the optimal (minimal) expected codelength.

Now suppose it is known that under π the probability of each letter z ∈ Z

is bounded away from zero. That is, we assume that for some ǫ > 0,

π ∈ Pǫ := {µ ∈ P(Z) : µ(z) > ǫ, for all z ∈ Z}.

Further suppose that a training sequence of length n is given, drawn under

π. We are interested in constructing a source code for encoding symbols from

the source π based on these training symbols. Let Γn denote the type of the

observations based on these n training symbols. We assign codeword lengths

to each symbol z according to the following rule:

ℓ(z) =





log 1
Γn(z)

if Γn ∈ Pǫ/2

log 1
πu(z)

else

where πu is the uniform distribution on Z.

For such a system, the conditional expected codelength conditioned on the
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training symbols denoted by T satisfies

E[ℓn|T ] =




ℓ∗ +D(π‖Γn) if Γn ∈ Pǫ/2

ℓ∗ +D(π‖πu) else.

We study the behavior of E[ℓn − ℓ∗|T ] as a function of n. We argue in

Appendix A that a modification of our results from Theorem 2.3.2 can be

used to establish the following relations:

2n(E[ℓn|T ] − ℓ∗)
d.−−−→

n→∞
χ2
N−1

E[n(ℓn − ℓ∗)] −−−→
n→∞

1
2
(N − 1) (2.16)

Var [nE[ℓn|T ]] −−−→
n→∞

1
2
(N − 1)

where N is the cardinality of the alphabet Z. Comparing with Theorem 2.2.2

we conclude that the asymptotic behavior of the excess codelength is identical

to the asymptotic behavior of the Hoeffding test statistic D(Γn‖π) under π.

Methods such as those proposed in this chapter can be used to reduce high

variance, just as in the hypothesis testing problem emphasized in this chapter.

Filtering

The recent paper [30] considers approximations for the nonlinear filtering

problem. Suppose that X is a Markov chain on R
n, and Y is an associated

observation process on R
p of the form Y (t) = γ(X(t),W (t)), where W is an

i.i.d. sequence. The conditional distribution ofX(t) given {Y (0), . . . , Y (t)} is

denoted Bt — it is known as the belief state in this literature. The evolution

of the belief state can expressed in the recursive form,

Bt+1 = φ(Bt, Yt+1), t ≥ 0.

For some mapping φ : B(Rn) × R
p → B(Rn).

The approximation proposed in [30] is based on a projection of Bt onto an

exponential family of densities over R
n, of the form

pθ(x) = p0(x) exp(θTψ(x) − Λ(θ)), θ ∈ R
d.

14



They consider the reverse I-projection,

B̺ = arg min
µ∈E

D(B‖µ)

where the minimum is over E = {pθ}. From the definition of divergence this

is equivalently expressed,

B̺ = arg max
θ

∫ (
θTψ(x) − Λ(θ)

)
B(dx). (2.17)

A projected filter is defined by the recursion,

B̂t+1 = [φ(B̂t, Yt+1)]
̺, t ≥ 0. (2.18)

The techniques in the current chapter provide algorithms for computation

of this projection, and suggest alternative projection schemes, such as the

robust approach described in Section 2.2.6.

2.2.2 Basic structure of mismatched divergence

The mismatched test is defined to be a relaxation of the Hoeffding test de-

scribed in (2.4). We replace the divergence functional with the mismatched

divergence DMM(Γn‖π0). Thus the mismatched test sequence is given by

φMM

n = I{DMM(Γn‖π0) ≥ η} = I{Γn /∈ QMM

η (π0)} (2.19)

where QMM

η (π0) is the mismatched divergence ball of radius η around π0

defined analogously to (2.1):

QMM

η (µ) = {ν ∈ P(Z) : DMM(ν‖µ) < η}. (2.20)

The next proposition establishes some basic geometry of the mismatched

divergence balls. For any function g we define the following hyperplane and

half-space:

Hg := {ν : ν(g) = 0}
H−
g := {ν : ν(g) < 0}.

(2.21)

Proposition 2.2.4. The following hold for any ν, π ∈ P(Z), and any collec-

tion of functions F :
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(i) For each η > 0 we have QMM

η (π) ⊂ ⋂H−
g , where the intersection is

over all functions g of the form,

g = f − Λπ(f) − η (2.22)

with f ∈ F .

(ii) Suppose that η = DMM(ν‖π) is finite and non-zero. Further suppose

that for ν1 = ν and ν2 = π, the supremum in (2.8) is achieved by

f ∗ ∈ F . Then Hg∗ is a supporting hyperplane to QMM

η (π), where g∗ is

given in (2.22) with f = f ∗.

Proof. (i) Suppose µ ∈ QMM

η (π). Then, for any f ∈ F ,

µ(f) − Λπ(f) − η ≤ DMM(µ‖π) − η < 0.

That is, for any f ∈ F , on defining g by (2.22) we obtain the desired inclusion

QMM

η (π) ⊂ H−
g .

(ii) Let µ ∈ Hg∗ be arbitrary. Then we have:

DMM(µ‖π) = sup
r

(
µ(fr) − Λπ(fr)

)

≥ µ(f ∗) − Λπ(f
∗) = Λπ(f

∗) + η − Λπ(f
∗) = η.

Hence it follows that Hg∗ supports QMM

η (π) at ν.

⊓⊔

2.2.3 Asymptotic optimality of the mismatched test

The asymptotic performance of a binary hypothesis testing problem is typ-

ically characterized in terms of error exponents. We adopt the following

criterion for performance evaluation, following Hoeffding [3] (and others, no-

tably [28, 29]). Suppose that the observations Z = {Zt : t = 1, . . .} form an

i.i.d. sequence evolving on Z. For a given π0, and a given alternate distri-

bution π1, the type I and type II error exponents are denoted respectively
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by

J0
φ := lim inf

n→∞
−1

n
log(Pπ0{φn = 1}),

J1
φ := lim inf

n→∞
−1

n
log(Pπ1{φn = 0})

(2.23)

where in the first limit the marginal distribution of Zt is π0, and in the second

it is π1. The limit J0
φ is also called the false-alarm error exponent, and J1

φ

the missed-detection error exponent.

For a given constraint η > 0 on the false-alarm exponent J0
φ, an optimal

test is the solution to the asymptotic Neyman-Pearson hypothesis testing

problem,

β∗(η) = sup{J1
φ : subject to J0

φ ≥ η} (2.24)

where the supremum is over all allowed test sequences φ. While the exponent

β∗(η) = β∗(η, π1) depends upon π1, Hoeffding’s test we described in (2.4)

does not require knowledge of π1, yet achieves the optimal exponent β∗(η, π1)

for any π1. The optimality of Hoeffding’s test established in [3] easily follows

from Sanov’s theorem.

While the mismatched test described in (2.6) is not always optimal for

(2.24) for a general choice of π1, it is optimal for some specific choices of the

alternate distributions. The following corollary to Proposition 2.2.4 captures

this idea.

Corollary 2.2.5. Suppose π0, π1 ∈ P(Z) have equal supports. Let ̺ ∈ (0, 1)

be chosen so as to guarantee D(π̌‖π0) = η where π̌ is the twisted distribution

defined by π̌ = κ(π0)1−̺(π1)̺ with κ a normalizing constant. Further suppose

that there exists τ ∈ R and r ∈ R
d such that

̺L(z) + τ = fr(z) a.e. [π0],

where L is the log likelihood-ratio function L := log(π1/π0). Then the mis-

matched test is optimal in the sense that the constraint J0
φMM ≥ η is satisfied

with equality, and under π1 the optimal error exponent J1
φMM = β∗(η) is

achieved.

Proof. Suppose that the conditions stated in the corollary hold. Consider

the twisted distribution π̌ It is known that the hyperplane HLLR := {ν :

ν(L) = π̌(L)} separates the divergence balls Qη(π
0) and Qβ∗(π1) at π̌. This

geometry, which is implicit in [28], is illustrated in Figure 2.2.
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From the form of π̌ it is also clear that

log
π̌

π0
= ̺L− Λπ0(̺L).

Hence it follows by Proposition 2.2.1 that the supremum in the variational

representation of D(π̌‖π0) is achieved by ̺L. Furthermore, since ̺L+ τ ∈ F
for some τ ∈ R we have

DMM(π̌‖π0) = D(π̌‖π0) = η = π̌(̺L+ τ) − Λπ0(̺L+ τ) = π̌(̺L) − Λπ0(̺L).

This means that HLLR = {ν : ν(̺L−Λπ0(̺L)− η) = 0}. Hence, by applying

Proposition 2.2.4 (ii) it follows that the hyperplane HLLR separates QMM

η (π0)

and Qβ∗(π1). This in particular means that the sets QMM

η (π0) and Qβ∗(π1)

are disjoint. This fact, together with Sanov’s theorem proves the corollary.

⊓⊔

π̌

Qη(π0)

π
0

π
1

Qβ∗(π
1)

HLLR

Figure 2.2: Geometric interpretation of the log likelihood ratio test. The
exponent β∗ = β∗(η) is the largest constant satisfying
Qη(π

0) ∩Qβ∗(π1) = ∅. The hyperplane HLLR := {ν : ν(L) = π̌(L)} separates
the convex sets Qη(π

0) and Qβ∗(π1).

The corollary indicates that while using the mismatched test in practice,

the function class might be chosen to include approximations to scaled ver-

sions of the log-likelihood ratio functions of the anticipated alternate distri-

butions {π1} with respect to π0.

The mismatched divergence has several equivalent characterizations. We

first relate it to an ML estimate from a parametric family of distributions.
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2.2.4 Mismatched divergence and ML estimation

On interpreting fr − Λπ(fr) as a log-likelihood ratio function we obtain in

Proposition 2.2.6 the following representation of mismatched divergence:

DMM(µ‖π) = sup
r∈Rd

(
µ(fr) − Λπ(fr)

)
= D(µ‖π) − inf

ν∈Eπ

D(µ‖ν). (2.25)

The infimum on the RHS of (2.25) is known as reverse I-projection [20].

Proposition 2.2.7 that follows uses this representation to obtain other inter-

pretations of the mismatched test.

Proposition 2.2.6. The identity (2.25) holds for any function class F . The

supremum is achieved by some r∗ ∈ R
d if and only if the infimum is at-

tained at ν∗ = π̌r
∗ ∈ Eπ. If a minimizer ν∗ exists, we obtain the generalized

Pythagorean identity,

D(µ‖π) = DMM(µ‖π) +D(µ‖ν∗).

Proof. For any r we have µ(fr) − Λπ(fr) = µ(log(π̌r/π)). Consequently,

DMM(µ‖π) = sup
r

(
µ(fr) − Λπ(fr)

)

= sup
r
µ

(
log

(
µ

π

π̌r

µ

))

= sup
r

{D(µ‖π) −D(µ‖π̌r)} .

This proves the identity (2.25), and the remaining conclusions follow directly.

⊓⊔

The representation of Proposition 2.2.6 invites the interpretation of the op-

timizer in the definition of the mismatched test statistic in terms of an ML es-

timate. Given the well-known correspondence between maximum-likelihood

estimation and the generalized likelihood ratio test (GLRT), Proposition 2.2.7

implies that the mismatched test is a special case of the GLRT analyzed in

[4].

Proposition 2.2.7. Suppose that the observations Z are modeled as an i.i.d.

sequence, with marginal in the family Eπ. Let r̂n denote the ML estimate of
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r based on the first n samples,

r̂n ∈ arg max
r∈Rd

Pπ̌r{Z1 = a1, Z2 = a2, . . . , Zn = an} = arg max
r∈Rd

Πn
i=1π̌

r(ai)

where ai indicates the observed value of the i-th symbol. Assuming the max-

imum is attained we have the following interpretations:

(i) The distribution π̌r̂
n

solves the reverse I-projection problem,

π̌r̂
n ∈ arg min

ν∈Eπ

D(Γn‖ν).

(ii) The function f ∗ = fr̂n achieves the supremum that defines the mis-

matched divergence, DMM(Γn‖π) = Γn(f ∗) − Λπ(f
∗).

Proof. The ML estimate can be expressed r̂n = arg maxr∈Rd〈Γn, log π̌r〉, and

hence (i) follows by the identity

arg min
ν∈Eπ

D(Γn‖ν) = arg max
ν∈Eπ

〈Γn, log ν〉, ν ∈ P.

Combining the result of part (i) with Proposition 2.2.6 we get the result of

part (ii). ⊓⊔

From conclusions of Proposition 2.2.6 and Proposition 2.2.7 we have

DMM(Γn‖π) = 〈Γn, log
π̌r̂

n

π
〉

= max
ν∈Eπ

〈Γn, log
ν

π
〉

= max
ν∈Eπ

1

n

n∑

i=1

log
ν(Zi)

π(Zi)
.

In general when the supremum in the definition of DMM(Γn‖π) may not be

achieved, the maxima in the above equations are replaced with suprema and

we have the following identity:

DMM(Γn‖π) = sup
ν∈Eπ

1

n

n∑

i=1

log
ν(Zi)

π(Zi)
.

Thus the test statistic used in the mismatched test of (2.6) is exactly the

generalized likelihood ratio between the family of distributions Eπ0 and π0
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where

Eπ0 = {π0 exp(fr − Λπ0(fr)) : r ∈ R
d}.

As an immediate consequence of this result and Corollary 2.2.5 we obtain

the following sufficient condition for optimality of the GLRT.

Theorem 2.2.8. Let π0 be some probability distribution over a finite set Z

and η a positive constant. Let F be a function class and Eπ0 be the associated

parameterized family of distributions defined in (2.11). Suppose that for every

π1 ∈ Eπ0, we have π̌ ∈ Eπ0 where π̌ is the twisted probability distribution

defined by π̌ = κ(π0)1−̺(π1)̺ with κ a normalizing constant.

Consider the generalized likelihood ratio test (GLRT) between π0 and Eπ0

defined by the following sequence of decision rules:

φGLRT

n = I{ sup
ν∈E

π0

1

n

n∑

i=1

log
ν(Zi)

π0(Zi)
≥ η}.

The GLRT solves the composite hypothesis testing problem (2.24) for all π1 ∈
Eπ0 in the sense that the constraint J0

φGLRT ≥ η is satisfied with equality, and

under π1 the optimal error exponent β∗(η) is achieved for all π1 ∈ Eπ0; i.e.,

J1
φGLRT = β∗(η).

Proof. From the earlier discussion, we know that the GLRT between π0 and

Eπ0 is identical to the mismatched test based on F . The conclusion of the

theorem then follows directly from Corollary 2.2.5 from the straightforward

equivalence relation:

π̌ ∈ Eπ0

m
∃τ ∈ R, r ∈ R

d such that ̺L(z) + τ = fr(z) a.e. [π0]

where L(z) = log π1(z)
π0(z)

. ⊓⊔

The sufficient condition established above is a restatement of [4, Thm 2,

p. 1600] and our approach provides an alternate proof for this result.

More structure can be established when the function class is linear.

21



2.2.5 Linear function class and I-projection

The mismatched divergence introduced in [19] was restricted to a linear

function class. Let {ψi : 1 ≤ i ≤ d} denote d functions on Z. Let ψ =

(ψ1, . . . , ψd)
T and let fr = rTψ in the definition (2.9):

F =
{
fr =

d∑

i=1

riψi : r ∈ R
d
}
. (2.26)

A linear function class is particularly appealing because the optimization

problem 2.8 used to define the mismatched divergence becomes a convex

program and hence is easy to evaluate in practice. Furthermore, for such

a linear function class, the collection of twisted distributions Eπ defined in

(2.11) forms an exponential family of distributions.

Eπ = {π exp(rTψ − Λπ(r
Tψ)) : r ∈ R

d}. (2.27)

A special case of such an exponential family is a graphical model for binary

vector distributions considered in [31].

Proposition 2.2.6 expresses DMM(µ‖π) as a difference between the ordinary

divergence and the value of a reverse I-projection infν∈Eπ
D(µ‖ν). The next

result establishes a characterization in terms of a (forward) I-projection. For

a given vector c ∈ R
d we let P denote the moment class

P = {ν ∈ P(Z) : ν(ψ) = c} (2.28)

where ν(ψ) = (ν(ψ1), ν(ψ2), . . . , ν(ψd))
T.

Proposition 2.2.9. Suppose that the supremum in the definition of DMM(µ‖π)

is achieved at some r∗ ∈ R
d. Then,

(i) The distribution ν∗ := π̌r
∗ ∈ Eπ satisfies

DMM(µ‖π) = D(ν∗‖π) = min{D(ν‖π) : ν ∈ P}

where P is defined using c = µ(ψ) in (2.28).

(ii) DMM(µ‖π) = min{D(ν‖π) : ν ∈ Hg∗}, where g∗ is given in (2.22)

with f = r∗Tψ, and η = DMM(µ‖π).
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Proof. Since the supremum is achieved, the gradient must vanish by the first

order condition for optimality:

∇
(
µ(fr) − Λπ(fr)

)∣∣∣∣
r=r∗

= 0.

The gradient is computable, and the identity above can thus be expressed

µ(ψ)− π̌r
∗

(ψ) = 0. That is, the first order condition for optimality is equiv-

alent to the constraint π̌r
∗ ∈ P. Consequently,

D(ν∗‖π) = 〈π̌r∗, log
π̌r

∗

π
〉

= π̌r
∗

(r∗Tψ) − Λπ(r
∗Tψ)

= µ(r∗Tψ) − Λπ(r
∗Tψ) = DMM(µ‖π).

Furthermore, by the convexity of Λπ(fr) in r, it follows that the optimal r∗

in the definition of DMM(ν‖π) is the same for all ν ∈ P. Hence, it follows by

the Pythagorean equality of Proposition 2.2.6 that

D(ν‖π) = D(ν‖ν∗) +D(ν∗‖π), for all ν ∈ P.

Minimizing over ν ∈ P it follows that ν∗ is the I-projection of π onto P:

D(ν∗‖π) = min{D(ν‖π) : ν ∈ P}

which gives (i).

To establish (ii), note first that by (i) and the inclusion P ⊂ Hg∗ we have

DMM(µ‖π) = min{D(ν‖π) : ν ∈ P} ≥ inf{D(ν‖π) : ν ∈ Hg∗}.

The reverse inequality follows from Proposition 2.2.4 (i), and moreover the

infimum is achieved with ν∗. ⊓⊔

The geometry underlying mismatched divergence for a linear function class

is illustrated in Figure 2.3. Suppose that the assumptions of Proposition 2.2.9

hold, so that the supremum in (2.25) is achieved at r∗. Let η = DMM(µ‖π) =

µ(fr∗)−Λπ(fr∗), and g∗ = fr∗ −
(
η+Λπ(fr∗)

)
. Proposition 2.2.4 implies that

Hg∗ defines a hyperplane passing through µ, with Qη(π) ⊂ QMM

η (π) ⊂ H−
g∗ .

This is strengthened in the linear case by Proposition 2.2.9, which states that
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Qη(π) Q
MM

η (π)

Figure 2.3: Interpretations of the mismatched divergence for a linear
function class. The distribution π̌r

∗

is the I-projection of π onto a
hyperplane Hg∗ . It is also the reverse I-projection of µ onto the exponential
family Eπ.

Hg∗ supports Qη(π) at the distribution π̌r
∗

. Furthermore Proposition 2.2.6

asserts that the distribution π̌r
∗

minimizes D(µ‖π̌) over all π̌ ∈ Eπ.
As a special case of Theorem 2.2.8, it can be shown that the GLRT is

asymptotically optimal for an exponential family of distributions. For π1 ∈
Eπ0, where Eπ0 is an exponential family of the form in (2.27), it is clear

that any probability distribution of the form π̌ = κ(π0)1−̺(π1)̺ lies in the

exponential family Eπ0. Hence the requirement of Theorem 2.2.8 is satisfied

and the conclusion follows.

2.2.6 Log-linear function class and robust hypothesis

testing

In the prior work [21, 22] the following relaxation of entropy is considered:

DROB(µ‖π) := inf
ν∈P

D(µ‖ν) (2.29)

where the moment class P is defined in (2.28) with c = π(ψ), for a given

collection of functions {ψi : 1 ≤ i ≤ d}. The associated universal test solves

a min-max robust hypothesis testing problem.

We show here that DROB coincides with DMM for a particular function class.
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It is described as (2.9) in which each function fr is of the log-linear form,

fr = log(1 + rTψ) (2.30)

subject to the constraint that 1 + rTψ(z) is strictly positive for each z. We

further require that the functions ψ have zero mean under distribution π;

i.e., we require π(ψ) = 0.

Proposition 2.2.10. For a given π ∈ P(Z), suppose that the log-linear

function class F is chosen with functions {ψi} satisfying π(ψ) = 0. Suppose

that the moment class used in the definition of DROB is chosen consistently,

with c = 0 in (2.28). We then have for each µ ∈ P(Z),

DMM(µ‖π) = DROB(µ‖π).

Proof. For each µ ∈ P(Z), we obtain the following identity by applying

Theorem 1.4 in [22]:

inf
ν∈P

D(µ‖ν) = sup{µ(log(1 + rTψ)) : 1 + rTψ(z) > 0 for all z ∈ Z}.

Moreover, under the assumption that π(ψ) = 0 we obtain

Λπ(log(1 + rTψ)) = log(π(1 + rTψ)) = 0.

Combining these identities gives

DROB(µ‖π) := inf
ν∈P

D(µ‖ν)

= sup
{
µ(log(1 + rTψ)) − Λπ(log(1 + rTψ)) :

1 + rTψ(z) > 0 for all z ∈ Z

}

= sup
f∈F

{
µ(f) − Λπ(f)

}
= DMM(µ‖π).

⊓⊔

More properties of the mismatched divergence, including a generalization

of the Pinsker’s inequality can be found in [31].
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2.3 Asymptotic Statistics

In this section, we analyze the asymptotic statistics of the mismatched test.

We require some assumptions regarding the function class F = {fr : r ∈ R
d}

to establish these results. Note that the second and third assumptions given

below involve a distribution µ0 ∈ P(Z), and a vector s ∈ R
d. We will make

specialized versions of these assumptions in establishing our results, based

on specific values of µ0 and s. We use Zµ0 ⊂ Z to denote the support of µ0

and P(Zµ0) to denote the space of probability measures supported on Zµ0 ,

viewed as a subset of P(Z).

Assumptions

(A1) fr(z) is C2 in r for each z ∈ Z.

(A2) There exists an open neighborhood B ⊂ P(Zµ0) of µ0

such that for each µ ∈ B, the supremum in the definition of

DMM(µ‖µ0) in (2.8) is achieved at a unique point r(µ).

(A3) The vectors {ψ0, . . . , ψd} are linearly independent over

the support of µ0, where ψ0 ≡ 1, and for each i ≥ 1

ψi(z) =
∂

∂ri
fr(z)

∣∣∣∣
r=s
, z ∈ Z. (2.31)

The linear-independence assumption in (A3) is defined as follows: If there

are constants {a0, . . . , ad} satisfying
∑d
i=1 aiψi(z) = 0 a.e. [µ0], then ai = 0

for each i. In the case of a linear function class, the functions {ψi, i ≥ 1}
defined in (2.31) are just the basis functions in (2.26). Lemma 2.3.1 provides

an alternate characterization of Assumption (A3).

For any µ ∈ P(Z) define the covariance matrix Σµ via

Σµ(i, j) = µ(ψiψj) − µ(ψi)µ(ψj), 1 ≤ i, j ≤ d. (2.32)

We use Covµ(g) to denote the covariance of an arbitrary real-valued function

g under µ:

Covµ(g) := µ(g2) − µ(g)2. (2.33)

Lemma 2.3.1. Assumption (A3) holds if and only if Σµ0 > 0.
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Proof. We evidently have vTΣµ0v = Covµ0(vTψ) ≥ 0 for any vector v ∈ R
d.

Hence, we have the following equivalence: For any v ∈ R
d, on denoting

cv = µ0(vTψ),

vTΣµ0v = 0 ⇔
d∑

i=1

viψi(z) = cv a.e. [µ0].

The conclusion of the lemma follows. ⊓⊔

We now present our main asymptotic results. Theorem 2.3.2 identifies the

asymptotic bias and variance of the mismatched test statistic under the null

hypothesis, and also under the alternate hypothesis. A key observation is

that the asymptotic bias and variance does not depend on N , the cardinality

of Z.

Theorem 2.3.2. Suppose that the observation sequence Z is i.i.d. with

marginal π. Suppose that there exists r∗ satisfying fr∗ = log(π/π0). Further,

suppose that Assumptions (A1), (A2), (A3) hold with µ0 = π and s = r∗.

Then,

(i) When π = π0,

lim
n→∞

E[nDMM(Γn‖π0)] = 1
2
d (2.34)

lim
n→∞

Var [nDMM(Γn‖π0)] = 1
2
d (2.35)

2nDMM(Γn‖π0)
d.−−−→

n→∞
χ2
d

(ii) When π = π1 6= π0, we have with σ2
1 := Covπ1(fr∗),

lim
n→∞E[n(DMM(Γn‖π0) −D(π1‖π0))] = 1

2
d (2.36)

lim
n→∞

Var [n
1
2DMM(Γn‖π0)] = σ2

1 (2.37)

n
1
2 (DMM(Γn‖π0) −D(π1‖π0))

d.−−−→
n→∞ N (0, σ2

1). (2.38)

⊓⊔

In part (ii) of Theorem 2.3.2, the assumption that r∗ exists implies that

π1 and π0 have equal supports. Furthermore, if Assumption (A3) holds in

part (ii), then a sufficient condition for Assumption (A2) is that the function

V (r) := (−π1(fr) + Λπ0(fr)) be coercive in r. And, under (A3), the function
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V is strictly convex and coercive in the following settings: (i) If the function

class is linear, or (ii) the function class is log-linear, and the two distributions

π1 and π0 have common support. We use this fact in Theorem 2.3.3 for

the linear function class. The assumption of the existence of r∗ satisfying

fr∗ = log(π1/π0) in part (ii) of Theorem 2.3.2 can be relaxed. In the case of

a linear function class we have the following extension of part (ii).

Theorem 2.3.3. Suppose that the observation sequence Z is drawn i.i.d.

with marginal π1 satisfying π1 ≺ π0. Let F be the linear function class

defined in (2.26). Suppose the supremum in the definition of DMM(π1‖π0) is

achieved at some r1 ∈ R
d. Further, suppose that the functions {ψi} satisfy

the linear independence condition of Assumption (A3) with µ0 = π1. Then

we have

lim
n→∞

E[n(DMM(Γn‖π0) −DMM(π1‖π0))] = 1
2
trace(Σπ1Σ−1

π̌ )

lim
n→∞

Var [n
1
2DMM(Γn‖π0)] = σ2

1

n
1
2 (DMM(Γn‖π0) −DMM(π1‖π0))

d.−−−→
n→∞

N (0, σ2
1)

where in the first limit π̌ = π0 exp(fr1−Λπ0(fr1)), and Σπ1 and Σπ̌ are defined

as in (2.32). In the second two limits σ2
1 = Covπ1(fr1). ⊓⊔

Although we have not explicitly imposed Assumption (A2) in Theorem 2.3.3,

the argument we presented following Theorem 2.3.2 ensures that when π1 ≺
π0, Assumption (A2) is satisfied whenever Assumption (A3) holds. Further-

more, it can be shown that the achievement of the supremum required in

Theorem 2.3.3 is guaranteed if π1 and π0 have equal supports. We also note

that the vector s appearing in Eq. (2.31) of Assumption (A3) is arbitrary

when the parametrization of the function class is linear.

The weak convergence results in Theorem 2.3.2 (i) can be derived from

Clarke and Barron [25, 32] (see also [20, Theorem 4.2]), following the maximum-

likelihood estimation interpretation of the mismatched test obtained in Propo-

sition 2.2.7. In the statistics literature, such results are called Wilks phenom-

ena after the initial work by Wilks [26]. These results can be used to set

thresholds for a target false alarm probability in the mismatched test, just

like we did for the Hoeffding test in (2.15).
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Implications for Hoeffding test The divergence can be interpreted as a spe-

cial case of mismatched divergence defined with respect to a linear function

class. Using this interpretation, the results of Theorem 2.3.2 can also be

specialized to obtain results on the Hoeffding test statistic. To satisfy the

uniqueness condition of Assumption (A2), we require that the function class

should not contain any constant functions. Now suppose that the span of

the linear function class F together with the constant function f 0 ≡ 1 spans

the set of all functions on Z. This together with Assumption (A3) would

imply that d = N − 1, where N is the size of the alphabet Z. It follows from

Proposition 2.2.1 that for such a function class the mismatched divergence

coincides with the divergence. Thus, an application of Theorem 2.3.2 (i)

gives rise to the results stated in Theorem 2.2.2.

To prove Theorem 2.3.2 and Theorem 2.3.3 we need some lemmas, whose

proofs are given in the Appendix.

The following lemma will be used to deduce part (ii) of Theorem 2.3.2

from part (i).

Lemma 2.3.4. Let DMM

F denote the mismatched divergence defined using

function class F . Suppose π1 ≺ π0 and the supremum in the definition of

DMM

F (π1‖π0) is achieved at some fr∗ ∈ F . Let π̌ = π0 exp(fr∗ −Λπ0(fr∗)) and

G = F − fr∗ := {fr − fr∗ : r ∈ R
d}. Then for any µ satisfying µ ≺ π0, we

have

DMM

F (µ‖π0) = DMM

F (π1‖π0) +DMM

G (µ‖π̌) + 〈µ− π1, log(
π̌

π0
)〉. (2.39)

⊓⊔

Suppose we apply the decomposition result from Lemma 2.3.4 to the type

of the observation sequence Z, assumed to be drawn i.i.d. with marginal

π1. If there exists r∗ satisfying fr∗ = log(π1/π0), then we have π̌ = π1. The

decomposition becomes

DMM

F (Γn‖π0) = DMM

F (π1‖π0) +DMM

G (Γn‖π1) + 〈Γn − π1, fr∗〉. (2.40)

For large n, the second term in the decomposition (2.40) has a mean of order

n−1 and variance of order n−2, as shown in part (i) of Theorem 2.3.2. The

third term has zero mean and variance of order n−1, since by the Central
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Limit Theorem,

n
1
2 〈Γn − π1, fr∗〉 d.−−−→

n→∞ N (0,Covπ1(fr∗)). (2.41)

Thus, the asymptotic variance of DMM

F (Γn‖π0) is dominated by that of the

third term and the asymptotic bias is dominated by that of the second term.

Thus we see that part (ii) of Theorem 2.3.2 can be deduced from part (i).

Lemma 2.3.5. Let X = {X i : i = 1, 2, . . .} be an i.i.d. sequence with mean

x̄ taking values in a compact convex set X ⊂ R
m, containing x̄ as a relative

interior point. Define Sn = 1
n

∑n
i=1X

i. Suppose we are given a function

h : R
m 7→ R, that is continuous over X, and a compact set K containing x̄

as a relative interior point such that

1. The gradient ∇h(x) and the Hessian ∇2h(x) are continuous over a

neighborhood of K.

2. lim
n→∞

−1

n
log P{Sn /∈ K} > 0.

Let M = ∇2h(x̄) and Ξ = Cov(X1). Then,

(i) The normalized asymptotic bias of {h(Sn) : n ≥ 1} is obtained via

lim
n→∞

nE[h(Sn) − h(x̄)] = 1
2
trace(MΞ).

(ii) If in addition to the above conditions, the directional derivative sat-

isfies ∇h(x̄)T(X1 − x̄) = 0 almost surely, then the asymptotic variance

decays as n−2, with

lim
n→∞

Var [nh(Sn)] = 1
2
trace(MΞMΞ).

⊓⊔

Lemma 2.3.6. Suppose that the observation sequence Z is drawn i.i.d. with

marginal µ ∈ P(Z). Let h : P(Z) 7→ R be a continuous real-valued function

whose gradient and Hessian are continuous in a neighborhood of µ. If the

directional derivative satisfies ∇h(µ)T(ν − µ) ≡ 0 for all ν ∈ P(Z), then

2n(h(Γn) − h(µ))
d.−−−→

n→∞
W TMW (2.42)

where M = ∇2h(µ) and W ∼ N (0,ΣW ) with ΣW = diag(µ) − µµT. ⊓⊔
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Lemma 2.3.7. Suppose that V is an m-dimensional, N (0, Im) random vari-

able, and D : R
m → R

m is a projection matrix. Then ξ := ‖DV ‖2 is a

chi-squared random variable with K degrees of freedom, where K denotes the

rank of D. ⊓⊔

Before we proceed to the proofs of Theorem 2.3.2 and Theorem 2.3.3, we

recall the optimization problem (2.25) defining the mismatched divergence:

DMM(µ‖π0) = sup
r∈Rd

(
µ(fr) − Λπ0(fr)

)
. (2.43)

The first order condition for optimality is given by

g(µ, r) = 0 (2.44)

where g is the vector valued function that defines the gradient of the objective

function in (2.43):

g(µ, r) := ∇r

(
µ(fr) − Λπ0(fr)

)

= µ(∇rfr) −
π0(efr∇rfr)

π0(efr)
.

(2.45)

On letting ψr = ∇rfr we obtain

g(µ, r) = µ(ψr) − π̌r(ψr). (2.46)

The gradient ∇rg(µ, r) of g(µ, r) with respect to r is given by

∇rg(µ, r) = µ(∇2
rfr) − π̌r(∇2

rfr) − [π̌r(ψrψrT) − π̌r(ψr)π̌r(ψrT)] (2.47)

where the definition of the twisted distribution is as given in (2.10):

π̌r := π0 exp(fr − Λπ0(fr)).

In these formulae we have extended the definition of µ(M) for matrix-valued

functions M on Z via [µ(M)]ij := µ(Mij) =
∑
zMij(z)µ(z).

Proof of Theorem 2.3.2. Without loss of generality, we assume that π0 has

full support over Z. Suppose that the observation sequence Z is drawn
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i.i.d. with marginal distribution π ∈ P(Z). We have DMM(Γn‖π0)
a.s.−−−→
n→∞

DMM(π‖π0) by the law of large numbers.

1) Proof of part (i): We first prove the results concerning the bias and

variance of the mismatched test statistic. We apply Lemma 2.3.5 to the

function h(µ) := DMM(µ‖π0). The other terms appearing in the lemma are

taken to be X i = (Iz1(Zi), Iz2(Zi), . . . , IzN
(Zi))

T, X = P(Z), x̄ = π0, and

Sn = Γn. Let Ξ = Cov(X1). It is easy to see that Ξ = diag(π0) − π0π0T and

Σπ0 = ΨΞΨT, where Σπ0 is defined in (2.32), and Ψ is a d×N matrix defined

by

Ψ(i, j) = ψi(zj). (2.48)

This can be expressed as the concatenation of column vectors via Ψ =

[ψ(z1), ψ(z2), . . . , ψ(zN)].

We first demonstrate that

M = ∇2h(π0) = ΨT(Σπ0)−1Ψ (2.49)

and then check to make sure that the other requirements of Lemma 2.3.5 are

satisfied. The first two conclusions of Theorem 2.3.2 (i) will then follow from

Lemma 2.3.5, since

trace(MΞ) = trace((Σπ0)−1ΨΞΨT) = trace(Id) = d

and similarly trace(MΞMΞ) = trace(Id) = d.

We first prove that under the assumptions of Theorem 2.3.2 (i), there is

a function r : P(Z) 7→ R that is C1 in a neighborhood of π0 such that r(µ)

solves (2.43) for µ in this neighborhood. Under the uniqueness assumption

(A2), the function r(µ) coincides with the function given in (A2).

By the assumptions, we know that when µ = π0, (2.44) is satisfied by

r∗ with fr∗ ≡ 0. It follows that π0 = π̌r
∗

. Substituting this into (2.47), we

obtain ∇rg(µ, r)
∣∣∣∣

µ=π0

r=r∗

= −Σπ0 , which is negative-definite by Assumption (A3)

and Lemma 2.3.1. Therefore, by the Implicit Function Theorem, there is an

open neighborhood U around µ = π0, an open neighborhood V of r∗, and a

continuously differentiable function r : U → V that satisfies g(µ, r(µ)) = 0,

for µ ∈ U . This fact together with Assumptions (A2) and (A3) ensures that

when µ ∈ U ∩B, the vector r(µ) uniquely achieves the supremum in (2.43).
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Taking the total derivative of (2.44) with respect to µ(z) we get

∂r(µ)

∂µ(z)
= −

[
∇rg(µ, r(µ))

]−1∂g(µ, r(µ))

∂µ(z)
. (2.50)

Consequently, when µ = π0,

∂r(µ)

∂µ(z)

∣∣∣∣∣∣
µ=π0

= Σ−1
π0 ψ(z). (2.51)

These results enable us to identify the first and second order derivative of

h(µ) = DMM(µ‖π0). Applying g(µ, r(µ)) = 0, we obtain the derivatives of h

as follows:

∂

∂µ(z)
h(µ) = fr(µ)(z). (2.52)

∂2

∂µ(z)∂µ(z̄)
h(µ) = (∇rfr(µ)(z))

T
∂r(µ)

∂µ(z̄)
. (2.53)

When µ = π0, substituting (2.51) in (2.53), we obtain (2.49).

We now verify the remaining conditions required for applying Lemma 2.3.5:

(a) It is straightforward to see that h(π0) = 0.

(b) The function h is uniformly bounded since h(µ) = DMM(µ‖π0) ≤
D(µ‖π0) ≤ maxz log( 1

π0(z)
) and π0 has full support.

(c) Since fr(µ) = 0 when µ = π0, it follows by (2.52) that ∂
∂µ(z)

h(µ)

∣∣∣∣
µ=π0

=

0.

(d) Pick a compact K ⊂ U∩B so that K contains π0 as a relative interior

point, and K ⊂ {µ ∈ P(Z) : maxu |µ(u)−π0(u)| < 1
2
minu |π0(u)|}. This

choice of K ensures that limn→∞− 1
n

log P{Sn /∈ K} > 0. Note that

since r(µ) is continuously differentiable on U ∩ B, it follows by (2.52)

and (2.53) that h is C2 on K.

Thus the results on convergence of the bias and variance follow from Lemma

2.3.5.

The weak convergence result is proved using Lemma 2.3.6 and Lemma 2.3.7.

We observe that the covariance matrix of the Gaussian vector W given in
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Lemma 2.3.6 is ΣW = Ξ = diag(π0) − π0π0T. This does not have full rank

since Ξ1 = 0, where 1 is the N × 1 vector of ones. Hence we can write

Ξ = GGT

where G is an N × k matrix for some k < N . In fact, since the support of π0

is full, we have k = N − 1 (see Lemma 2.3.1). Based on this representation

we can write W = GV , where V ∼ N (0, Ik).

Now, by Lemma 2.3.6, the limiting random variable is given by U :=

W TMW = V TGTMGV , where M = ∇2
µD

MM(µ‖π0)

∣∣∣∣∣
π0

= ΨT(ΨΞΨT)−1Ψ.

We observe that the matrix D = GTMG satisfies D2 = D. Moreover, since

ΨΞΨT has rank d under Assumption (A3), matrix D also has rank d. Ap-

plying Lemma 2.3.7 to matrix D, we conclude that U ∼ χ2
d.

2) Proof of part (ii): The conclusion of part (ii) is derived using part (i) and

the decomposition in (2.40). We will study the bias, variance, and limiting

distribution of each term in the decomposition.

For the second term, note that the dimensionality of the function class G
is also d. Applying part (i) of this theorem to DMM

G (Γn‖π1), we conclude that

its asymptotic bias and variance are given by

lim
n→∞E[nDMM

G (Γn‖π1)] = 1
2
d, (2.54)

lim
n→∞

Var [nDMM

G (Γn‖π1)] = 1
2
d. (2.55)

For the third term, since Z is i.i.d. with marginal π1, we have

E[〈Γn − π1, fr∗〉] = 0, (2.56)

Var [n
1
2 〈Γn − π1, fr∗〉] = Covπ1(fr∗). (2.57)

The bias result (2.36) follows by combining (2.54), (2.56) and using the de-

composition (2.40). To prove the variance result (2.37), we again apply the
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decomposition (2.40) to obtain

lim
n→∞Var [n

1
2DMM

F (Γn‖π0)]

= lim
n→∞

{
Var [n

1
2DMM

G (Γn‖π1)] + Var [n
1
2 〈Γn − π1, fr∗〉]

+2E
[
n

1
2

(
DMM

G (Γn‖π1) − E[DMM

G (Γn‖π1)]
)
n

1
2 〈Γn − π1, fr∗〉

]}
.

(2.58)

From (2.55) it follows that the limiting value of the first term on the right

hand side of (2.58) is 0. The limiting value of the third term is also 0 by the

Cauchy-Bunyakovsky–Schwarz inequality. Thus, (2.58) together with (2.57)

gives (2.37).

Finally, we prove the weak convergence result (2.38) by again applying the

decomposition (2.40). By (2.54) and (2.55), we conclude that the second

term n
1

2DMM

G (Γn‖π1) converges in mean square to 0 as n → ∞. The weak

convergence of the third term is given in (2.41). Applying Slutsky’s theorem,

we obtain (2.38). ⊓⊔

Proof of Theorem 2.3.3. The proof of this result is very similar to that of

Theorem 2.3.2 (ii) except that we use the decomposition in (2.39) with µ =

Γn. We first prove the following generalization of (2.54) and (2.55) that

characterizes the asymptotic mean and variance of the second term in (2.39)

with µ = Γn:

lim
n→∞

E[nDMM

G (Γn‖π̌)] = 1
2
trace

(
Σπ1(Σπ̌)

−1
)

(2.59)

lim
n→∞

Var [nDMM

G (Γn‖π̌)] = 1
2
trace

(
Σπ1(Σπ̌)

−1Σπ1(Σπ̌)
−1
)

(2.60)

where G = F −fr1, and π̌ is defined in the statement of the proposition. The

argument is similar to that of Theorem 2.3.2 (i): We denote f̃r :=fr−fr1 , and

define h(µ) :=DMM

G (µ‖π̌) = supr∈Rd

(
µ(f̃r)−Λπ̌(f̃r)

)
. To apply Lemma 2.3.5,

we prove the following:

h(π1) = 0, (2.61)

∇µh(π
1) = 0, (2.62)

and M = ∇2
µh(π

1) = ΨT(Σπ̌)
−1Ψ. (2.63)

The last two inequalities (2.62) and (2.63) are analogous to (2.52) and (2.53).
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We can also verify that the rest of the conditions of Lemma 2.3.5 hold. This

establishes (2.59) and (2.60).

To prove (2.61), first note that the supremum in the optimization problem

defining DMM(π1‖π̌) is achieved by f̃r1 , and we know by definition that f̃r1 =

0. Together with the definition DMM(π1‖π̌) = π1(f̃r1) − Λπ̌(f̃r), we obtain

(2.61).

Redefine g(µ, r) := ∇r

(
µ(f̃r) − Λπ̌(f̃r)

)
. The first order optimality condi-

tion of the optimization problem defining DMM(µ‖π̌) gives g(µ, r) = 0. The

assumption that F is a linear function class implies that f̃r is linear in r.

Consequently ∇2
rf̃r = 0. By the same argument that leads to (2.47), we can

show that

∇rg(µ, r) = −



π̌
(
ef̃r∇rf̃r∇rf̃

T

r

)

π̌
(
ef̃r

) −
π̌
(
ef̃r∇rf̃r

)
π̌
(
ef̃r∇rf̃

T

r

)

(π̌
(
ef̃r

)
)2



 . (2.64)

Together with the fact that f̃r1 = 0 and ∇rf̃r = ∇rfr, we obtain

∇rg(µ, r)

∣∣∣∣µ=π1

r=r1

= −Σπ̌. (2.65)

Proceeding as in the proof of Theorem 2.3.2 (i), we obtain (2.62) and (2.63).

Now using similar steps as in the proof of Theorem 2.3.2 (ii), and noticing

that log( π̌
π0 ) = fr1 , we can establish the following results on the third term

of (2.39):

E[〈Γn − π1, log(
π̌

π0
)〉] = 0

Var [n
1
2 〈Γn − π1, log(

π̌

π0
)〉] = Covπ1(fr1)

n
1
2 〈Γn − π1, log(

π̌

π0
)〉 d.−−−→

n→∞ N (0,Covπ1(fr1)).

Continuing the same arguments as in Theorem 2.3.2 (i), we obtain the result

of Theorem 2.3.3. ⊓⊔
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2.3.1 Interpretation of the asymptotic results and
performance comparison

The asymptotic results established above can be used to study the finite

sample performance of the mismatched test and Hoeffding test. Recall that

in the discussion surrounding Figure 2.1 we concluded that the approximation

obtained from a Central Limit Theorem gives much better estimates of error

probabilities as compared to those suggested by Sanov’s theorem.

Suppose the log-likelihood ratio function log(π1/π0) lies in the function

class F . In this case, the results of Theorem 2.3.2 and Lemma 2.3.4 are

informally summarized in the following approximations: With Γn denoting

the empirical distributions of the i.i.d. process Z,

DMM(Γn‖π0) ≈





D(π0‖π0) + 1
2

1
n

∑d
k=1W

2
k , Zi ∼ π0

D(π1‖π0) + 1
2

1
n

∑d
k=1W

2
k + 1√

n
σ1U , Zi ∼ π1

(2.66)

where {Wk} is i.i.d., N(0, 1), and U is also N(0, 1) but not independent of

the Wk’s. The standard deviation σ1 is given in Theorem 2.3.2. These distri-

butional approximations are valid for large n, and are subject to assumptions

on the function class used in the theorem.

We observe from (2.66) that, for large enough n, when the observations

are drawn under π0, the mismatched divergence is well approximated by 1
2n

times a chi-squared random variable with d degrees of freedom. We also

observe that when the observations are drawn under π1, the mismatched

divergence is well approximated by a Gaussian random variable with mean

D(π1‖π0) and with a variance proportional to 1
n

and independent of d. Thus

we expect to see a better receiver operating characteristic (ROC) for a lower

value of d provided the log-likelihood ratio function log(π1/π0) lies in the

function class F . Since the mismatched test can be interpreted as a GLRT,

these results capture the rate of degradation of the finite sample performance

of a GLRT as the dimensionality of the parameterized family of alternate

hypotheses increases. We corroborate this intuitive reasoning through Monte

Carlo simulation experiments.

We estimated via simulation the performances of the Hoeffding test and

mismatched tests designed using a linear function class. We compared the

error probabilities of these tests for an alphabet size of N = 19 and sequence
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length of n = 40. We chose π0 to be the uniform distribution, and π1 to be

the distribution obtained by convolving two uniform distributions on sets of

size (N + 1)/2. We chose the basis function ψ1 appearing in (2.26) to be the

log-likelihood ratio between π1 and π0, viz.,

ψ1(zi) = log
π1(zi)

π0(zi)
, 1 ≤ i ≤ N

and the other basis functions ψ2, ψ3, . . . , ψd were chosen uniformly at ran-

dom. Figure 2.4 shows a comparison of the ROCs of the Hoeffding test and

mismatched tests for different values of dimension d. Plotted on the x-axis is

the probability of false alarm, i.e., the probability of misclassification under

π0; shown on the y-axis is the probability of detection, i.e., the probability

of correct classification under π1. The various points on each ROC curve are

obtained by varying the threshold η used in the Hoeffding test of (2.4) and

mismatched test of (2.19).

From Figure 2.4 we see that as d increases the performance of the mis-

matched tests degrades. This is consistent with the approximation (2.66)

which suggests that the variance of the mismatched divergence increases with

d. Furthermore, as we saw earlier, the Hoeffding test can be interpreted as a

special case of the mismatched test for a specific choice of the function class

with d = N − 1 and hence the performance of the mismatched test matches

the performance of the Hoeffding test when d = N − 1.

To summarize, the above results suggest that although the Hoeffding test

is optimal in an error-exponent sense, it is disadvantageous in terms of finite

sample error probabilities to blindly use the Hoeffding test if it is known a

priori that the alternate distribution belongs to some parameterized family

of distributions.

2.4 Approximate Implementation

Although the mismatched test has performance advantages over the Hoeffd-

ing test, it can be computationally complex to implement. The optimization

problem in (2.8) that needs to be solved to evaluate the mismatched diver-

gence DMM(Γn‖π0) can be complex, especially for non-linear function classes.

In this section, we propose an approximation to the mismatched divergence
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Figure 2.4: Comparisons of ROCs of Hoeffding and mismatched tests.

that can be computed easily and also gives good performance in terms of

error probabilities of the mismatched test that uses the approximation.

The approximation which we derive in Appendix A is based on a Taylor’s

approximation of the objective function in (2.8). Assuming that Assump-

tion (A1) holds, we let Φ denote the Hessian ∇2fr evaluated at r = r0 where

r0 satisfies fr0 = 0. The approximate mismatched divergence between any

distribution µ and π0 is then given by

D̂MM(µ‖π0) = 1
2
(µ− π0)TΨTM−1

µ Ψ(µ− π0) (2.67)

where Ψ is defined in (2.48) and Mµ = Σπ0 + π(Φ) − µ(Φ) is assumed to be

invertible.

The approximate mismatched test uses the following test statistic:

D̂MM(Γn‖π0) = 1
2
(Γn − π0)TΨTM−1

Γn Ψ(Γn − π0).

For the linear function class of (2.26), Φ is a null matrix and hence MΓn is

independent of Γn and always invertible provided Assumption (A3) holds.

The test statistic in this case is a quadratic function,

D̂MM(Γn‖π0) = 1
2
(Γn − π0)TΨTΣ−1

π0 Ψ(Γn − π0).
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Similarly, for the log-linear function class of (2.30), MΓn is given by

MΓn = Σπ0 + π(ψψT) − Γn(ψψT).

From the expression for the approximate mismatched divergence, it follows

that

D̂MM(π0‖π0) = 0

∇µD̂
MM(µ‖π0)

∣∣∣∣∣
µ=π0

= 0

∇2
µD̂

MM(µ‖π0)

∣∣∣∣∣
µ=π0

= ΨTM−1
π0 Ψ = ΨTΣ−1

π0 Ψ.

We see that D̂MM(µ‖π0) and DMM(µ‖π0) have the same gradient and Hessian

at µ = π0. Therefore, by following the same steps used in proving the

first part of Theorem 2.3.2 we conclude that the asymptotic behavior of

D̂MM(Γn‖π0) and DMM(Γn‖π0) are identical when the observation sequence

Z is drawn i.i.d. with marginal π0. We have

lim
n→∞E[nD̂MM(Γn‖π)] = 1

2
d (2.68)

lim
n→∞

Var [nD̂MM(Γn‖π)] = 1
2
d (2.69)

2nD̂MM(Γn‖π)
d.−−−→

n→∞
χ2
d. (2.70)

The weak convergence result above can be used to set thresholds for achieving

a target false alarm probability in the approximate mismatched test, just like

was done for the Hoeffding test in (2.15).

In order to justify the use of the approximate mismatched test, we simu-

lated its performance for the same parameters considered in the simulations of

Section 2.3.1. Figure 2.5 shows a comparison of the ROCs of the mismatched

tests and the approximate mismatched tests. We see that the performance of

the approximate test is quite close to that of the mismatched test and is sig-

nificantly better than the performance of the Hoeffding test, thus justifying

the practical usefulness of the approximation.
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2.5 Summary

The mismatched test studied in this chapter provides a solution to the uni-

versal hypothesis testing problem that can incorporate prior knowledge in

order to reduce variance. The main results of Section 2.3 show that the vari-

ance reduction over Hoeffding’s optimal test is substantial when the state

space is large.

The dimensionality of the function class can be chosen by the designer

to ensure that the the bias and variance are within tolerable limits. It is

in this phase of design that prior knowledge is required to ensure that the

error-exponent remains sufficiently large under the alternate hypothesis (see

e.g. Corollary 2.2.5). In this way the designer can make effective tradeoffs

between the power of the test and the variance of the test statistic.

The mismatched divergence provides a unification of several approaches

to robust and universal hypothesis testing. Although constructed in an i.i.d.

setting, the mismatched tests are applicable in very general settings, and

the performance analysis presented here can be easily generalized to any

stationary processes satisfying the Central Limit Theorem.
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CHAPTER 3

UNIVERSAL HYPOTHESIS TESTING

UNDER MODEL UNCERTAINTY

In the universal hypothesis testing problem studied in Chapter 2, we assumed

that the statistics of the observations under the null hypothesis are known

exactly. In this chapter we study the universal hypothesis testing problem

where there is uncertainty about the distribution under the null hypothe-

sis. We study adaptations to the popular Hoeffding test and Kolmogorov-

Smirnov (KS) test that ensure robustness to uncertainties in the model. The

KS test is a standard solution to the universal hypothesis testing problem

for infinite alphabets.

We first consider a robust version of the Hoeffding test that was studied in

[22]. Following our interpretation of the robust test statistic as a mismatched

divergence in Section 2.2.6 of Chapter 2, we show that our results on weak

convergence of the mismatched divergence can be used to set thresholds for

the robust test. Later in the chapter we propose a robust version of the KS

test and obtain new weak convergence results on the robust test statistic that

are also useful for setting thresholds in robust universal hypothesis testing

involving continuous distributions.

3.1 Robust Hoeffding Test

In the general universal hypothesis testing problem, we know the null dis-

tribution π0 exactly but we do not have any prior information about the

alternate distribution π1. In Chapter 2 we studied the Hoeffding test (2.4)

which optimizes the error exponents in the sense of (2.24). We now study a

robust version of the Hoeffding test that can be used when the null distribu-

tion π0 is not known exactly. We continue to use the notation we introduced

in Chapter 2. As before, we let Z = {Z1, Z2, . . .} denote the sequence of

observations based on which we have to make the decision about the hypoth-
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esis.

We saw in (2.14) that the test-statistic satisfies the following weak conver-

gence result under π0:

2nD(Γn‖π0)
d.−−−→

n→∞
χ2
N−1 (3.1)

where Γn is the empirical distribution of the first n observations, N is the

size of the support of distribution π0, and χ2
γ denotes a chi-square random

variable with γ degrees of freedom. This result enables us to set approximate

thresholds for large n using tables of the chi-square distribution.

In this section we study a robust version of the Hoeffding test that can be

used when the distribution of the observations under the null hypothesis is

not known exactly but is known to belong to an uncertainty class of distri-

butions P. The robust Hoeffding test proposed in [22] is based on a robust

version of the divergence defined as

DROB(µ‖P) := inf
π∈P

D(µ‖π).

The robust test statistic is given by DROB(Γn‖P). Thus the proposed test is

represented by the binary decision,

φROB

τ,n = I{DROB(Γn‖P) > τ} (3.2)

where τ is a threshold that must be chosen to meet the constraint on the

false alarm probability.

In the rest of this section we address the following question: Can we obtain

any convergence results for the worst case probability of error of the robust

Hoeffding test like those implied by the weak convergence result of (3.1)? For

the uncertainty class P considered in [22], and for any π ∈ P, we evaluate the

limiting value of

lim
n→∞

Pπ{2nDROB(Γn‖P) > δ} (3.3)

where the subscript of π in Pπ indicates that the observations are drawn

i.i.d. according to law π. Using such results we provide guidelines for setting

thresholds for the robust tests that guarantee a uniform false constraint over

all π ∈ P.

As we saw in Section 2.2.6, let P be an uncertainty class defined through
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the following moment constraints:

P := {π ∈ P(Z) : π(ψi) = 0, 1 ≤ i ≤ d}

where π(ψi) denotes the expected value
∑
z∈Z π(z)ψi(z) as in Chapter 2. Let

ψ denote the vector of functions (ψ1, ψ2, . . . , ψd)
T and Zπ denote the support

of distribution π. We make the following assumptions about the functions

{ψi : 1 ≤ i ≤ d}:

Assumptions

(B1) There is some distribution π0 ∈ P such that the functions

{ψi : 0 ≤ i ≤ d} are linearly independent over Zπ0 , where

ψ0 ≡ 1.

(B2) The origin 0 ∈ R
d is an interior point of the set of feasible

moment vectors, defined as

∆ := {x ∈ R
d : xi = ν(ψi), i = 1, . . . , d, for some ν ∈ P(Z)}.

The linear independence assumption of (B1) is identical to Assumption (A3)

introduced in Chapter 2.

We know from the results of [22] that the robust divergence with respect

to P can be expressed as the solution to the following optimization problem:

DROB(µ‖P) = sup
r∈R

µ(log(1 + rTψ)) (3.4)

where the supremum is taken over

R := {r ∈ R
d : 1 + rTψ(z) ≥ 0 for all z ∈ Z}.

We also saw in Section 2.2.6 that the robust divergence can be expressed as

a mismatched divergence defined with respect to a log-linear function class.

In the rest of this section, we argue that the results on weak convergence of

the mismatched divergence statistic from Theorem 2.3.2 can be used to set

thresholds for the robust hypothesis testing procedure.

The main result of this section is the following theorem. For any π ∈ P,

let dπ denote the number that is one lower than the maximal number of

functions in {ψi : 0 ≤ i ≤ d} that are linearly independent over Zπ. In other
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words, dπ + 1 is the dimension of the span of the functions {ψi : 0 ≤ i ≤ d}
when restricted to Zπ.

Theorem 3.1.1. Suppose assumptions (B1) and (B2) hold. Then, the fol-

lowing weak convergence result holds under π:

2nDROB(Γn‖P)
d.−−−→

n→∞
χ2
dπ
. (3.5)

Hence we have

sup
π∈P

lim
n→∞

Pπ{2nDROB(Γn‖P) > δ} = 1 − F (d, δ) (3.6)

where F (d, δ) is the cumulative distribution function of a chi-square distri-

bution with d degrees of freedom evaluated at δ. ⊓⊔

The second conclusion in the theorem above follows directly from the first,

using the fact that chi-square distributions are stochastically ordered accord-

ing to the number of degrees of freedom. Assumption (B1) ensures that the

supremum is achieved by π0 with dπ0 = d. The proof of the main result is

included in the Appendix B.

The result of (3.6) can be used to set thresholds for the robust Hoeffding

test. For a given n, suppose we choose τ in (3.2) such that τ = δ
2n

where δ

satisfies

1 − F (d, δ) = α.

By (3.6) this choice of threshold ensures that for large enough n, and for all

π ∈ P,

Pπ{φROB

τ,n (Z) = 1} ≤ α (3.7)

thus guaranteeing a uniform bound on the false alarm probability over all

distributions from P.

3.2 Robust Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test is a universal hypothesis test for testing the

null hypothesis that a sequence of observations are drawn according to a

probability law with distribution function F 0. The observations are assumed
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to be drawn from a closed interval Z ⊂ R. The distribution function F 0 takes

the role of π0 in Chapter 2. The test statistic used in the KS test is

Dn = sup
x∈Z

|Fn(x) − F 0(x)| (3.8)

where Fn represents the empirical distribution function of the observations

defined by

Fn(x) =
1

n

n∑

i=1

I{Zi ≤ x}

where I is the indicator function. In the KS test based on Z, the test statistic

Dn is compared to a threshold τ chosen so that the probability of error under

hypothesis H0 is less than some desired level. It is generally difficult to

compute the exact distribution of the statistic Dn for large sequence lengths

n. The typical practice is to use the following result by Kolmogorov for

approximating the distribution of Dn for large n. When the observations Z

are drawn i.i.d. from F 0, the following weak convergence result holds:

PF 0{√nDn > δ} d.−−−→
n→∞

P{ sup
t∈[0,1]

|K(t)| > δ} (3.9)

where K is the Brownian bridge [33, p. 335]. The subscript of F 0 in (3.9)

indicates that the observations were drawn from distribution F 0. Following

this result thresholds are usually set using look-up tables containing values

of the distribution function of supt∈[0,1]K(t), just as we did in (2.15).

While using the KS test in practice, one often faces the problem of over-

fitting. If the true underlying distribution is not exactly F 0 but some other

distribution close to F 0, then the KS-test will eventually reject hypothesis

H0 for n large enough.

In this work we propose a new robust version of the KS test that could

potentially address this issue. The idea is to enlarge the set of null hypotheses

beyond the singleton {F 0}. We define a new uncertainty class of distribution

functions as follows:

F = {G ∈ P(Z) : F−(x) ≤ G(x) ≤ F+(x), ∀x ∈ Z},

where P(Z) is the space of all probability distributions on Z and F− and

F+ are continuous probability distribution functions such that the nominal
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distribution F 0 ∈ F . The advantage of using such an uncertainty class, as

will become clear later, is that the resulting robust test is a simple modifi-

cation of the standard KS test, and also admits a straightforward confidence

approximation in the asymptotic setting. The distributions F+ and F− can

be chosen to control the size of the class F that are acceptable as being close

to F 0.

The proposed robust test uses the following robust test statistic:

En = min
F∈F

sup
x∈Z

|Fn(x) − F (x)| (3.10)

where Fn is the empirical distribution function. The binary decision is given

by

φROB

τ,n (Z) = I{En > τ}. (3.11)

Let F ∗ denote the minimizer in (3.10) and let x∗ denote the point at which

the supremum in (3.10) is achieved for F = F ∗. It is clear that if En > 0,

then F ∗ is either F+ or F−. By definition it is obvious that for any δ > 0,

the event {√nEn > δ} can be written as the union of two events as follows:

{√nEn > δ} = {sup
x∈Z

√
n(Fn(x) − F+(x)) > δ} ∪

{sup
x∈Z

√
n[−(Fn(x) − F−(x))] > δ}. (3.12)

The threshold used in (3.11) can be set using the following theorem that

studies the asymptotic behavior of

pn(δ) := max
G∈F

PG{
√
nEn > δ}.

Theorem 3.2.1. For n large enough, pn(δ) satisfies the following inequali-

ties:

p(δ) ≤ pn(δ) ≤ 2p(δ)

with p(δ) defined by p(δ) := P{supt∈[0,1]K(t) > δ} where K is the Brownian

bridge. ⊓⊔

We prove the theorem in Appendix B.

Theorem 3.2.1 suggests that if δ is chosen such that 2p(δ) = α, and the

threshold τ in the robust test (3.11) is chosen such that τ = δ√
n
, then for
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a large enough n, the test satisfies a uniform bound on the probability of

probability of false alarm over all distributions in F ; i.e., for n large enough,

max
G∈F

PG{φROB

τ,n (Z) = 1} ≤ α. (3.13)

Furthermore, for n large enough we are also guaranteed that

max
G∈F

PG{φROB

τ,n (Z) = 1} ≥ 1
2
α

which means that the maximum false alarm probability is within a factor of

0.5 from the desired level.

3.3 Summary

In this chapter we studied the problem of universal hypothesis testing when

there is uncertainty about the observation statistics under the null hypoth-

esis. We studied the robust Hoeffding test for finite alphabets that was

proposed in [22] and proposed a robust version of the Kolmogorov-Smirnov

test for infinite alphabets. We obtained weak-convergence results that enable

us to set thresholds for these robust universal hypothesis tests that are simi-

lar to the approaches for setting thresholds in ordinary universal hypothesis

tests.
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CHAPTER 4

MINIMAX ROBUST QUICKEST CHANGE

DETECTION

4.1 Introduction

The problem of detecting an abrupt change in a system based on observations

is a dynamic hypothesis testing problem with a rich set of applications. Such

problems of change detection were first studied by Page over fifty years ago

in the context of quality control [34]. In its standard formulation there is a

sequence of observations whose distribution changes at some unknown point

in time, referred to as the ‘change-point’. The goal is to detect this change

as soon as possible, subject to a false alarm constraint. Some applications of

change detection are intrusion detection in computer networks and security

systems, detecting faults in infrastructure of various kinds, and spectrum

monitoring for opportunistic access to wireless networks.

Most of the past work in the area of change detection has been restricted

to the setting where the distributions of the observations prior to the change

and after the change are known exactly (see, e.g., [35], [36], [37], [38]; for an

overview of the work in this area, see [39], [40] and [41]). The three most

popular criteria for optimizing the tradeoff between detection delay and false

alarm rate are the Lorden criterion [36] and the Pollak criterion, in which

the change-point is a deterministic quantity, and Shiryaev’s Bayesian formu-

lation [42], in which the change-point is modeled as a random variable with

a known prior distribution. In this chapter we study all these three versions

of change detection, under the setting where the pre-change and post-change

distributions are not known exactly but belong to known uncertainty classes.

We pose a minimax robust version of the standard quickest change detection

problem wherein the objective is to identify the change detection rule that

minimizes the maximum delay over all possible distributions. This mini-

mization should be performed while meeting the false alarm constraint for
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all possible values of the unknown distributions. We obtain a solution to

this problem when the uncertainty classes satisfy some specific conditions.

Under these conditions we can identify least favorable distributions (LFDs)

from the uncertainty classes, and the optimal robust change detection rule

is then the optimal (non-robust) change detection rule for the LFDs. These

conditions are similar to those given by Huber [43] for robust hypothesis test-

ing problems. We also discuss related results on robust sequential detection

[43] [44] later in the chapter. The results of this chapter were also published

in [45] and [46].

Although there has been some prior work on robust change detection, these

approaches are distinctly different from ours. The maximin approach of [47]

is similar in that they also identify LFDs for the robust problem. However,

their result is restricted to asymptotic optimality (as the false alarm con-

straint goes to zero) under the Lorden criterion. A similar formulation is

also discussed in [48, Sec.7.3.1]. Some other approaches to this problem (e.g.

[49], [50]) are aimed at developing algorithms for quickest change detection

with unknown distributions. These works study the asymptotic performance

of the proposed tests under different distributions but do not seek to guar-

antee minimax robustness over a given class of distributions.

A closely related problem is the composite quickest change detection prob-

lem. In general, these problems also address the setting where the pre-change

and post-change distributions are unknown. However, unlike the robust prob-

lem, in composite problems one seeks to identify a change detection procedure

that is simultaneously optimal under all possible values of the unknown dis-

tributions. Exact solutions to these problems are often intractable and hence

most results are restricted to asymptotic optimality. One such solution to

a composite change detection problem is discussed in [36] when only the

post-change distribution is unknown. In [36] a test is given that is asymp-

totically optimal under the Lorden criterion for all possible values of the

unknown post-change distribution in a one-dimensional exponential family

of distributions. This test is also referred to as the Generalized Likelihood

Ratio Test (GLR Test), and was also studied in [51] and [52]. An alternate

asymptotically optimal solution for the setting in which both pre-change and

post-change distributions are unknown was studied in [53].

We provide a performance comparison of our proposed robust test with

the GLR test. Although the GLR test asymptotically performs as well as
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the optimal test with known distributions, we show via simulations that our

robust test can give improved performance over the GLR test for moderate

values of the false alarm constraint. The GLR test is also often prohibitively

complex to implement in practice, while the proposed robust CUSUM test

admits a simple recursive implementation.

For the asymptotic version of the problem, we also provide an analytical

upper bound on the delay incurred by our robust test and use it to provide an

upper bound on the drop in performance of our test relative to the optimal

non-robust test.

The rest of the chapter is organized as follows. We first state the problem

that we are studying in Section 4.2. In Section 4.3 we describe the robust

solution and present some analysis. We discuss some examples in Section 4.4

and summarize the results of this chapter in Section 4.5.

4.2 Problem Statement

In the online quickest change detection problem we are given observations

from a sequence {Xn : i = 1, 2, . . .} taking values in a set X . There are

two known distributions ν0, ν1 ∈ P(X ) where P(X ) is the set of probability

distributions on X . Initially, the observations are drawn i.i.d. under distri-

bution ν0. Their distribution switches abruptly to ν1 at some unknown time

λ so that Xn ∼ ν0 for n ≤ λ−1 and Xn ∼ ν1 for n ≥ λ. This is illustrated in

Figure 4.1. The observations are stochastically independent conditioned on

the change-point. The objective is to identify the occurrence of change with

minimum delay subject to false alarm constraints. We use Eνm to denote the

expectation operator and Pνm to denote the probability law when the change

happens at m and the pre-change and post-change distributions are ν0 and

ν1 respectively. The symbols are replaced with Eν∞ and Pν∞ when the change

does not happen. Similarly, if the pre-change and post-change distributions

are some µ and γ, respectively, and the change happens at time m, we use

Eµ,γm to denote the expectation operator and Pµ,γm the probability law. We

further use Fm to denote the sigma algebra generated by (X1, X2, . . . , Xm).

A sequential change detection procedure is characterized by a stopping

time τ with respect to the observation sequence. The design of the quickest

change detection procedure involves optimizing the tradeoff between two per-
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X1, X2, . . . , Xλ−1︸ ︷︷ ︸

︷ ︸︸ ︷
Xλ, Xλ+1, . . .

i.i.d. ν0

i.i.d. ν1

Figure 4.1: Illustration of the change-point problem. Initial observations X1

through Xλ−1 have distribution ν0. Later observations have distribution ν1.

formance measures: detection delay and frequency of false alarms. There are

various standard mathematical formulations for the optimal tradeoff. In the

minimax formulation of [36] the change-point is assumed to be an unknown

deterministic quantity. The worst-case detection delay is defined as

WDD(τ) = sup
λ≥1

ess sup E
ν
λ[(τ − λ+ 1)+|Fλ−1]

where x+ = max(x, 0). This quantity captures the worst-case value of the

expected detection delay over all possible locations of the change-point and

all possible realizations of the pre-change observations. The false alarm rate

is defined as

FAR(τ) =
1

Eν∞[τ ]
.

Here Eν∞[τ ] can be interpreted as the mean time to false alarm. Under the

Lorden criterion, the objective is to find the stopping rule that minimizes the

worst-case delay subject to an upper bound on the false alarm rate:

Minimize WDD(τ) subject to FAR(τ) ≤ α (4.1)

It was shown by Moustakides [35] that the optimal solution to (4.1) is given

by a slightly modified version of the cumulative sum (CUSUM) test proposed

by Page [34]. We describe this test later in the chapter.

An alternate formulation of the change detection problem was studied

by Pollak [37]. Even here the change point is modeled as a deterministic

quantity. However the delay to be minimized is no longer the worst-case

delay but a worst-case average delay (also referred to as supremum average
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detection delay by some authors) defined by

JSRP(τ) = sup
λ≥1

E
ν
λ[τ − λ|τ ≥ λ].

The Pollak criterion of optimality of a stopping rule τ for change detection

is given by

Minimize JSRP(τ) subject to FAR(τ) ≤ α (4.2)

where the minimization is over all stopping times τ such that JSRP(τ) is well-

defined. Pollak [37] established the asymptotic optimality of the Shiryaev-

Roberts-Pollak (SRP) stopping rule for (4.2).

Another approach to change detection is the Bayesian formulation of [38,

42]. Here the change-point is modeled as a random variable Λ with prior

probability distribution, πk = P(Λ = k), k = 1, 2, . . .. The performance

measures are the average detection delay (ADD) and probability of false

alarm (PFA) defined by

ADD(τ) = E
ν [(τ − Λ)+], PFA(τ) = P

ν(τ < Λ)

where E
ν represents the expectation operator and P

ν the probability law when

the pre-change and post-change distributions are ν0 and ν1 respectively. For

a given α ∈ (0, 1), the optimization problem under the Bayesian criterion is:

Minimize ADD(τ) subject to PFA(τ) ≤ α. (4.3)

When the prior distribution on the change-point follows a geometric distri-

bution, the optimal solution to the above problem is given by the Shiryaev

test [42].

The robust versions of (4.1), (4.2) and (4.3) are intended to capture situ-

ations in which one or both of the distributions ν0 and ν1 are not known

exactly, but are known to belong to uncertainty classes of distributions,

P0,P1 ⊂ P(X ). The objective is to minimize the worst-case delay amongst

all possible values of the unknown distributions, while satisfying the false-

alarm constraint for all possible values of the unknown distributions. Thus

the robust version of the Lorden criterion is to identify the stopping rule that
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solves the following optimization problem:

min sup
ν0∈P0,ν1∈P1

WDD(τ) (4.4)

s.t. sup
ν0∈P0

FAR(τ) ≤ α.

Similarly, the robust version of the Pollak criterion is:

min sup
ν0∈P0,ν1∈P1

JSRP(τ) (4.5)

s.t. sup
ν0∈P0

FAR(τ) ≤ α

and the robust version of the Bayesian criterion is:

min sup
ν0∈P0,ν1∈P1

ADD(τ) (4.6)

s.t. sup
ν0∈P0

PFA(τ) ≤ α.

The optimal stopping rule τ under each of the robust criteria described

above has the following minimax interpretation. For any other stopping

rule τ ′ that guarantees the false alarm constraint for all values of unknown

distributions from the uncertainty classes, there is at least one pair of dis-

tributions such that the delay obtained under τ ′ will be at least as high as

the maximum delay obtained with τ over all pairs of distributions from the

uncertainty classes. In the rest of this chapter we provide solutions to the

robust problems (4.4), (4.5) and (4.6) when the uncertainty classes satisfy

some specific conditions.

4.3 Robust Change Detection

4.3.1 Least favorable distributions

The solution to the robust problem is simplified greatly if we can identify

least favorable distributions (LFDs) from the uncertainty classes such that

the solution to the robust problem is given by the solution to the non-robust

problem designed with respect to the LFDs. LFDs were first identified for

a simpler problem - the robust hypothesis testing problem - by Huber and
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Strassen in [43] and [54]. It was later shown in [55] that one can identify

these LFDs if the uncertainty classes satisfy a joint stochastic boundedness

condition. Before we introduce this condition, we need the following notation.

If X and X ′ are two real-valued random variables defined on a probability

space (Ω,F ,P) such that

P(X ≥ t) ≥ P(X ′ ≥ t), for all t ∈ R,

then we say that the random variable X is stochastically larger than [55]

the random variable X ′. We denote this relation via the notation X ≻ X ′.

Equivalently if X ∼ µ and X ′ ∼ µ′, we also denote µ ≻ µ′.

Definition 1 (Joint Stochastic Boundedness) [55]: Consider the pair (P0,P1)

of classes of distributions defined on a measurable space (X ,F). Let (ν0, ν1) ∈
P0 × P1 be some pair of distributions from this pair of classes such that ν1

is absolutely continuous with respect to ν0. Let L∗ denote the log-likelihood

ratio between ν1 and ν0 defined as the logarithm of the Radon-Nikodym

derivative log
dν1

dν0
. Corresponding to each νj ∈ Pj , we use µj to denote the

distribution of L∗(X) when X ∼ νj , j = 0, 1. Similarly we use µ0 (respec-

tively µ
1
) to denote the distribution of L∗(X) when X ∼ ν0 (respectively

ν1). The pair (P0,P1) is said to be jointly stochastically bounded by (ν0, ν1)

if for all (ν0, ν1) ∈ P0 ×P1,

µ0 ≻ µ0 and µ1 ≻ µ
1
. �

Loosely speaking, under the joint stochastic boundedness (JSB) condition,

the LFD from one uncertainty class is the distribution that is nearest to

the other uncertainty class. This notion can be made rigorous in terms of

Kullback-Leibler divergence and other Ali-Silvey distances between distribu-

tions in the uncertainty classes, as shown in [56, Corollary 1].

Huber and Strassen [54] have established a procedure to obtain robust

solutions to the Neyman-Pearson hypothesis testing problem provided the

uncertainty classes can be described in terms of 2-alternating capacities. As

pointed out in [55], any pair of uncertainty classes that can be described in

terms of 2-alternating capacities also satisfy the JSB condition (see [54, The-

orem 4.1]). This observation suggests that we can identify examples of uncer-

tainty classes which satisfy the joint stochastic boundedness condition using
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the results in [54], [55], and [6]. These include ǫ-contamination classes, to-

tal variation neighborhoods, Prohorov distance neighborhoods, band classes,

and p-point classes. In general it is difficult to identify the distributions ν0

and ν1. However, for ǫ-contamination classes, total variation neighborhoods,

and Lévy metric neighborhoods, the method suggested in [6, pp. 241-248]

can be used to identify these distributions.

We show that under certain assumptions on P0 and P1, the pair of distri-

butions (ν0, ν1) are LFDs for the robust change detection problem in (4.4),

(4.5) and (4.6). Thus the optimal stopping rules designed assuming known

pre-change and post-change distributions ν0 and ν1, respectively, are opti-

mal for the robust problems (4.4), (4.5) and (4.6). We use E
∗
m to denote the

expectation operator and P∗
m to denote the probability law when the change

happens at m and the pre-change and post-change distributions are ν0 and

ν1, respectively.

We need the following straightforward result. For completeness we provide

a proof in Appendix C.

Lemma 4.3.1. Suppose {Ui : 1 ≤ i ≤ n} is a set of mutually independent

random variables, and {Vi : 1 ≤ i ≤ n} is another set of mutually independent

random variables such that Ui ≻ Vi, 1 ≤ i ≤ n. Now let h : R
n 7→ R be a

continuous real-valued function defined on R
n that satisfies

h(x1, . . . , xi−1, a, xi+1, . . . , xn)

≥ h(x1, . . . , xi−1, xi, xi+1, . . . , xn)

for all xn1 ∈ R
n, a > xi, and i ∈ {1, . . . , n}. Then we have,

h(U1, U2, . . . , Un) ≻ h(V1, V2, . . . , Vn).

⊓⊔
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4.3.2 Lorden criterion

When the distributions ν0 and ν1 are known, the solution to (4.1) is given

by the CUSUM test [35]. The optimal stopping time is given by

τC = inf{n ≥ 1 : max
1≤k≤n

n∑

i=k

Lν(Xi) ≥ η} (4.7)

where Lν is the log-likelihood ratio between ν1 and ν0, and the threshold η

is chosen so that, Eν∞(τC) = 1
α
. The following theorem provides a solution to

the robust Lorden problem when the distributions are unknown.

Theorem 4.3.2. Suppose the following conditions hold:

(i) The uncertainty classes P0,P1 are jointly stochastically bounded by

(ν0, ν1).

(ii) All distributions ν0 ∈ P0 are absolutely continuous with respect to ν0;

i.e.,

ν0 ≪ ν0, ν0 ∈ P0. (4.8)

(iii) The function L∗(.), representing the log-likelihood ratio between ν1 and

ν0 is continuous over the support of ν0.

Then the optimal stopping rule that solves (4.4) is given by the following

CUSUM test:

τ ∗
C

= inf

{
n ≥ 1 : max

1≤k≤n

n∑

i=k

L∗(Xi) ≥ η

}
(4.9)

where the threshold η is chosen so that, E∗
∞(τ ∗

C
) = 1

α
. ⊓⊔

We prove the theorem in Appendix C. Two brief remarks are in order.

Firstly, the discussion in [48, p. 198] suggests that when LFDs exist under our

formulation, they also solve the asymptotic problem, as expected. Secondly,

the robust CUSUM test admits a simple recursive implementation similar to

the ordinary CUSUM test. Clearly,

Sn+1 = S+
n + L∗(Xn+1) (4.10)
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where Sn = max1≤k≤n
∑n
i=k L

∗(Xi) is the test statistic appearing in (4.9).

Thus it is easy to compute the test statistic recursively.

Asymptotic analysis of the robust CUSUM

In general, for any pair of pre-change and post-change distributions (ν0, ν1)

from the uncertainty classes, we expect the performance of the robust CUSUM

test to be poorer than that of the optimal CUSUM test designed with respect

to the correct distributions. The drop in performance can be interpreted as

the cost of robustness. Although it is not easy to characterize this cost in

general, some insight can be obtained by performing an asymptotic analysis

in the setting where the false alarm constraint α goes to zero. Our analysis

uses the result of [36, Theorem 2] (also see [48, Theorem 6.16]). We use

WDDν(τ ∗
C
) to denote the worst-case delay obtained by employing the stop-

ping rule τ ∗
C

when the pre-change and post-change distributions are given by

ν0 and ν1. Similarly, WDD∗(τ ∗
C
) is used to denote the same quantity when

the pre-change and post-change distributions are the LFDs.

As mentioned in the remark following Theorem 2 in [36], we can interpret

the robust CUSUM test as a repeated one-sided sequential probability ratio

test (SPRT) between ν1 and ν0. Let τSPRT denote the stopping rule of the

SPRT. We apply [36, Theorem 2] to τSPRT when the true distributions are the

LFDs. It follows that

E
∗
∞(τ ∗

C
) ≥ 1

α

where B = 1
α

is used as the upper threshold in the SPRT given by τSPRT.

From (C.8), we know that

E
ν
∞(τ ∗

C
) ≥ E

∗
∞(τ ∗

C
) ≥ 1

α
.

We again apply the theorem to τSPRT, but with the true distributions given

by any ν0 ∈ P0 and ν1 ∈ P1. We now have

WDDν(τ ∗
C
) ≤ E(τSPRT)

where the expression on the right-hand side denotes the expected stopping

time of the SPRT when the observations follow distribution ν1. Now, by

applying the well-known Wald’s identity [57] as suggested in the remark
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following [36, Theorem 2], we obtain

E(τSPRT) =
| logα|
Iν1

(1 + o(1)), as α→ 0

where o(1) → 0 as α→ 0 and

Iν1 =
∫
L∗(x)dν1(x) = D(ν1‖ν0) −D(ν1‖ν1).

Thus

WDDν(τ ∗
C
) ≤ | log(α)|(1 + o(1))

D(ν1‖ν0) −D(ν1‖ν1)
.

It is also known from [36, Theorem 3] that any stopping rule τ that satisfies

the false alarm constraint FAR(τ) ≤ α must satisfy the lower bound

WDDν(τ) ≥ | log(α)|(1 + o(1))

D(ν1‖ν0)

and that this lower bound is achieved by the optimal CUSUM test between

ν1 and ν0. Thus, the worst-case delay of the robust test is asymptotically

larger by a factor no more than

D(ν1‖ν0)

D(ν1‖ν0) −D(ν1‖ν1)

when compared with the delay incurred by the optimal test. This factor is

thus an upper bound on the asymptotic cost of robustness.

4.3.3 Pollak criterion

The SRP stopping rule is asymptotically optimal for (4.2). Let Rν
0 be a

random variable with distribution ψ supported on R+ and define

Rν
n = Lν(Xn)(1 +Rν

n−1), n ≥ 1. (4.11)

When the distributions ν0 and ν1 are known, the SRP stopping rule is given

by

τ ν,η,ψ
SRP

= inf {n ≥ 0 : Rν
n ≥ η} . (4.12)
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Asymptotic optimality property : The SRP test of (4.12) is asymptotically

optimal for (4.2) in the following sense [37]: For every 0 < α < 1 there

exists threshold η and probability measure ψη such that the stopping rule

τSRP := τ
ν,η,ψη

SRP satisfies FAR(τSRP) = α and for any other stopping rule τ that

satisfies the false alarm constraint FAR(τ) ≤ α, we have

JSRP(τ) ≥ JSRP(τSRP) + o(1) (4.13)

where o(1) → 0 as α→ 0.

The following theorem identifies a stopping rule that extends the above

asymptotic optimality property to the setting where the post-change distri-

bution is unknown.

Theorem 4.3.3. Suppose the following conditions hold:

(i) The uncertainty class P0 is a singleton P0 = {ν0} and the pair (P0,P1)

is jointly stochastically bounded by (ν0, ν1).

(ii) The function L∗(.), representing the log-likelihood ratio between ν1 and

ν0 is continuous over the support of ν0.

Let τ ∗
SRP

:= τ
ν∗,η,ψη

SRP denote the SRP stopping rule defined with respect to the

LFDs (ν0, ν1), with parameters η and ψη chosen such that the asymptotic

optimality property of (4.13) is satisfied. Then the stopping rule τ ∗
SRP

is also

asymptotically optimal for (4.5) in the following sense: For every 0 < α < 1

and for any stopping rule τ that satisfies the false alarm constraint FAR(τ) ≤
α, we have

sup
ν1∈P1

Jν
SRP

(τ) ≥ sup
ν1∈P1

Jν
SRP

(τ ∗
SRP

) + o(1) (4.14)

where o(1) → 0 as α→ 0. ⊓⊔

The result of (4.14) can be interpreted as follows: The difference between

the worst-case values of the delays incurred by the stopping rule τ ∗
SRP

and

any other stopping rule τ approaches zero as the false alarm constraint α

approaches zero.

Our proof, provided in Appendix C, is useful only when P0 is a singleton.

It is possible that the asymptotic optimality result may still hold even for

general P0, although the current proof is not applicable. We elaborate on
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this further in the discussion in the next section on the Bayesian criterion,

and also in Appendix C following the proof of the theorem.

We also note that in some cases our proof can be adapted to obtain tests

that are exactly optimal for the robust Pollak criterion of (4.5). Polunchenko

and Tartakovsky [58] study the Shiryaev-Roberts procedure (SR-r) which is

identical to the SRP procedure described earlier, except for the fact that R0 is

not random but fixed at some constant r. Theorem 2 of [58] shows the exact

non-asymptotic optimality of the SR-r procedure for detecting a change in

distribution from Exp(1) to Exp(2) where Exp(θ) refers to an exponential

distribution with mean θ−1. Using that result, the proof of Theorem 4.3.3 can

be adapted to obtain the exact robust solution to the optimization problem

in (4.5). In particular it can be shown that the SR-r procedure for detecting

change from Exp(1) to Exp(2) given in [58, Theorem 2] is also optimal for

(4.5) when P0 = {Exp(1)} and P1 = {Exp(θ) : θ ≥ 2}.

4.3.4 Bayesian criterion

When the distributions ν0 and ν1 are known and the prior distribution of the

change-point is geometric, the solution to (4.3) is given by the Shiryaev test

[42]. Denoting the parameter of the geometric distribution by ρ, we have

πk = ρ(1 − ρ)k−1, k ≥ 1.

The Shiryaev stopping rule is based on comparing the posterior probability

of change to a threshold η′

τS = inf {n ≥ 1 : P
ν(Λ ≤ n|Fn) ≥ η′} .

It can be equivalently expressed as

τS = inf

{
n ≥ 1 : log(

n∑

k=1

πk exp(
n∑

i=k

Lν(Xi))) ≥ η

}
(4.15)

where the threshold η is chosen such that PFA(τS) = Pν(τS < Λ) = α. The

following theorem, proved in Appendix C, identifies a solution to the robust

Shiryaev problem (4.6).

Theorem 4.3.4. Suppose the following conditions hold:
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(i) The uncertainty class P0 is a singleton P0 = {ν0} and the pair (P0,P1)

is jointly stochastically bounded by (ν0, ν1).

(ii) The prior distribution of the change-point is a geometric distribution.

(iii) The function L∗(.), representing the log-likelihood ratio between ν1

and ν0, is continuous over the support of ν0.

Then the optimal stopping rule that solves (4.6) is given by the following

Shiryaev test:

τ ∗
S

= inf

{
n ≥ 1 : log(

n∑

k=1

πk exp(
n∑

i=k

L∗(Xi))) ≥ η

}
(4.16)

where the threshold η is chosen so that P∗(τ ∗
S
< Λ) = α. ⊓⊔

We note that our results under the Bayesian and Pollak criteria are appli-

cable only when the pre-change distribution is known exactly and hence these

results are weaker than our result under the Lorden criterion. Suppose P0 is

not a singleton and (P0,P1) is jointly stochastically bounded by (ν0, ν1). In

this case, the stopping rule τ ∗
S

defined with respect to (ν0, ν1) is not optimal

for the robust Bayesian criterion (4.6). In particular, when the pre-change

distribution is ν0 6= ν0 and the post-change distribution is ν1 = ν1, it can

be shown that the average detection delay ADDν(τ ∗
S
) of the stopping rule

τ ∗
S

is in general higher than the average detection delay ADD∗(τ ∗
S
) when

the pre-change and post-change distributions are (ν0, ν1). This is because

the likelihood ratios of the pre-change observations appearing in (4.16) are

stochastically larger under ν0 than under ν0. This leads to a stopping time

that is stochastically smaller under (ν0, ν1) than under (ν0, ν1). Hence there

is no reason to believe that τ ∗
S

solves the robust problem (4.6).

Even in the case of the Pollak criterion studied in Section 4.3.3, our ro-

bust result holds only when P0 is a singleton and the JSB condition holds.

However, unlike in the Bayesian case, we do not have a simple explanation

for why the result cannot be extended to the setting where the pre-change

distribution is not known exactly. It is possible that for some specific choices

of the uncertainty classes, the stopping rule designed with respect to (ν0, ν1)

may be asymptotically optimal for the robust problem of (4.5), although we

do not expect this to be true in general.
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However, such a problem does not arise for the robust CUSUM test we

studied in Section 4.3.2, since the worst-case detection delay WDDν(τ ∗
C
) of the

robust CUSUM depends only on the support of the pre-change distribution

when post-change distribution is kept fixed at ν1 = ν1.

Comparison with robust sequential detection It is interesting to compare

our results with some known results on robust sequential detection. We have

shown that provided the JSB condition and other regularity conditions hold,

change detection tests designed with respect to the LFDs exactly solve the

minimax robust change detection problem under the Lorden and Bayesian

criteria. However, the known minimax optimality results in robust sequential

detection are all for the asymptotic settings - as error probabilities go to zero

[43] or as the size of the uncertainty classes diminishes [44]. Huber [43] showed

that an exact minimax result does not hold for the robust sequential detection

problem in general. He provided examples where the expected stopping times

of the SPRT designed with respect to the LFDs are not least favorable under

the LFDs. This is similar to the reason why the robust Shiryaev test is not

optimal for the Bayesian problem when P0 is not a singleton as explained

above.

4.4 Some Examples and Simulation Results

4.4.1 Gaussian mean shift

Here we consider a simple example to illustrate the results. Assume ν0 is

known to be a standard Gaussian distribution with mean zero and unit

variance, so that P0 is a singleton. Let P1 be the collection of Gaussian

distributions with means from the interval [0.1, 3] and unit variance.

P0 = {N (0, 1)}
P1 = {N (θ, 1) : θ ∈ [0.1, 3]} (4.17)

It is easily verified that (P0,P1) is jointly stochastically bounded by (ν0, ν1)

given by

ν0 ∼ N (0, 1), ν1 ∼ N (0.1, 1).
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Figure 4.2: Comparison of robust and non-robust Shiryaev tests for
α = 0.001 for the Gaussian mean shift example.

Bayesian criterion

We simulated the Bayesian and robust Bayesian change detection tests for

this problem assuming a geometric prior distribution for the change-point

with parameter 0.1 and a false alarm constraint of α = 0.001. From the

performance curves plotted in Figure 4.2, we can see that the robust Shiryaev

test gives the same average detection delay (ADD) as the optimal Shiryaev

test at ν1 which corresponds to θ = 0.1 in the figure. This is expected since

the robust test is identical to the optimal test at ν1. For all other values

of ν1 ∈ P1, the performance of the robust test is strictly better than the

performance at ν1 and hence this test is indeed minimax optimal. We also

see in Figure 4.2 that the average delays obtained with the robust test are

much higher than those obtained with the optimal test, especially at high

values of the mean θ. The probability of false alarm and average detection

were estimated via Monte Carlo simulations with a standard deviation of

0.1% for the estimates.

Lorden criterion and comparison with GLR test

Under the Lorden criterion, we compared the performances of three tests -

the optimal CUSUM test with known θ, the robust CUSUM test designed

with respect to the LFDs, and the CUSUM test based on the Generalized
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Figure 4.3: Comparison of various tests for false alarm rate of α = 0.001
for the Gaussian mean shift example.

Likelihood Ratio (GLR test) suggested in [36]. The stopping time under the

GLR test is given by

τGLR = inf{n ≥ 1 : max
1≤k≤n

sup
ν1∈P1

n∑

i=k

Lν(Xi) ≥ η} (4.18)

where η is chosen so that the false alarm constraint is met with equality.

The GLR test does not require knowledge of θ but still achieves the same

asymptotic performance as the optimal CUSUM test with known θ when the

false alarm constraint goes to zero for some choices of the uncertainty classes

including the example considered above.

Table 4.1: Delays obtained using various tests under the Lorden criterion
for a false alarm rate of α = 0.001.

θ Optimal CUSUM Robust CUSUM GLR test
0.1 242.7 242.7 496
0.2 111.5 116.8 184
0.4 43.2 55.6 57.2
0.6 23.5 36.3 28.6
1.0 10.5 21.5 12.35

Figure 4.3 and Table 4.1 show estimates of the worst-case detection delay

(WDD) obtained under the these tests designed for a false alarm constraint

65



of α = 0.001, for various values of θ. These values are estimated using Monte

Carlo simulations. The delay values have a standard deviation lower than

1% and the false alarm value has a standard deviation lower than 3%.

From the performance curves in Figure 4.3 and the values in Table 4.1 we

see that the GLR test gives better performance than our robust solution at

higher values of θ, and is close to optimal at these high values of θ. However,

the robust test gives much better performance than the GLR test at the low

values of θ. This is expected since the robust solution is minimax optimal

and hence is expected to perform better at the unfavorable values of θ.

An important difference between the two solutions is that although the

robust CUSUM test based on the LFDs admits a simple recursive implemen-

tation like we described in (4.10), the GLR test is in general very complex

to implement. This is because the supremum in (4.18) may be achieved

at different values of ν1 for different n. Furthermore, the optimization in

(4.18) may not be easy to solve for general uncertainty classes - particularly

non-parametric classes like the ǫ-uncertainty classes considered next.

4.4.2 ǫ-contamination classes

We now discuss an example in which the uncertainty class P0 is no longer a

singleton. For some scalar ǫ ∈ (0, 1), consider the following ǫ-contamination

classes:

P0 = {ν0 : ν0 = (1 − ǫ)N (0, 1) + ǫH0, H0 ∈ P(R)} (4.19)

P1 = {ν1 : ν1 = (1 − ǫ)N (1, 1) + ǫH1, H1 ∈ P(R)} (4.20)

where P(R) is the collection of all probability measures on R and N (µ, σ) de-

notes the probability measure corresponding to a Gaussian random variable

with mean µ and variance σ2. In other words, the distributions in uncer-

tainty class Pi are mixtures of a Gaussian distribution with mean i and unit

variance, and an arbitrary probability distribution on R with weights given

by 1 − ǫ and ǫ respectively.

Following the method outlined in [43], we identified LFDs for these uncer-

tainty classes and evaluated the performance of the robust test. Let pi denote

the density function of a N (µ, 1) random variable and let qi denote the den-

sity function of the least favorable distribution from Pi. It is established in
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[43] that the densities of the LFDs have the following structure:

q0(x) =





(1 − ǫ)p0(x) if L(x) ≤ b

1−ǫ
b
p1(x) if L(x) > b

(4.21)

q1(x) =





(1 − ǫ)p1(x) if L(x) > a

a(1 − ǫ)p0(x) if L(x) ≤ a
(4.22)

where L(x) = p1(x)
p0(x)

. The scalars a and b are identified by the following

relation:

(1 − ǫ)
∫

{x:L(x)≤b}
p0(x)dx+

1 − ǫ

b

∫

{x:L(x)>b}
p1(x)dx = 1

(1 − ǫ)
∫

{x:L(x)>a}
p1(x)dx+ a(1 − ǫ)

∫

{x:L(x)≤a}
p0(x)dx = 1.

In order to compare the performance of the robust test with that of the

optimal test we chose the following distributions for H0 and H1:

H0 = N (0, σ0), σ0 ∈ [0.1, 10] H1 = N (1, σ1), σ1 ∈ [0.1, 10].

Table 4.2 shows the values of the worst-case delay (WDD) obtained when σ0

is kept fixed at σ0 = 1 and σ1 is varied. Shown are the results obtained using

the robust CUSUM test as well as the optimal CUSUM test for ǫ = 0.05

and for ǫ = 0.005. We notice that the difference in performance between

the robust test and the optimal test is larger for larger values of ǫ. This

matches the intuition that the cost of robustness would be higher for a larger

uncertainty class of distributions. The delay values and false alarm rates were

estimated to have standard deviations lower than 0.1% and 1% respectively.

Table 4.3 shows the values of worst-case delay obtained under the optimal

CUSUM tests when σ1 is kept fixed at σ1 = 1 and σ0 is varied. The delay

values and false alarm rates were estimated to have standard deviations lower

than 0.1% and 1% respectively. We have not included the delays obtained

under the robust test, since the delay of the robust test is invariant with σ0.

The delay obtained under the robust test for ǫ = 0.05 and ǫ = 0.005 are

respectively 15.09 and 11.27 as shown in the third row of Table 4.2 corre-

sponding to σ1 = 1.
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Table 4.2: Delays obtained using various tests under the Lorden criterion
for ǫ-uncertainty classes with α = 0.001 and σ0 = 1.

ǫ = 0.05 ǫ = 0.005
Robust Optimal Robust Optimal

σ1 CUSUM CUSUM CUSUM CUSUM
0.1 14.77 9.17 11.27 10.38
0.5 14.86 9.12 11.27 10.39
1 15.09 9.08 11.27 10.35
5 15.52 8.78 11.29 10.33
10 15.59 8.65 11.29 10.34

Table 4.3: Delays obtained using the optimal CUSUM test for ǫ-uncertainty
classes with α = 0.001 and σ1 = 1.

σ0 Optimal CUSUM for ǫ = 0.05 Optimal CUSUM for ǫ = 0.005
0.1 10.56 10.55
0.5 10.50 10.52
1 10.44 10.56
5 10.02 10.58
10 9.85 10.59

4.5 Summary

In this chapter, we have shown that for uncertainty classes that satisfy some

certain stochastic boundedness conditions, the optimal change detectors de-

signed for the least favorable distributions are optimal in a minimax sense.

This is shown for the Lorden criterion, the Pollak criterion, and Shiryaev’s

Bayesian criterion. However, robustness comes at a potential cost. The opti-

mal stopping rule designed for the LFDs may perform quite sub-optimally for

other distributions from the uncertainty class when compared with the opti-

mal performance that can be obtained in the case where these distributions

are known exactly. Using an asymptotic analysis, we have also obtained an

analytic upper bound on this cost of robustness for the robust solution under

the Lorden criterion. Nevertheless for some parameter ranges our robust test

yields significant performance improvement over the CUSUM test designed

for the Generalized Likelihood Ratio statistic, which is a benchmark for the

composite quickest change detection problem. Our robust solution also has

the added advantage that it can be implemented in a simple recursive man-
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ner, while the GLR test does not admit a recursive solution in general, and

may require the solution to a complex non-convex optimization problem at

every time instant.
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CHAPTER 5

CONCLUSION

In this thesis, we have studied various approaches to decision-making under

statistical uncertainty. We have focussed on two specific problems, viz., the

universal hypothesis testing problem and the robust quickest change detec-

tion problem.

In the universal hypothesis testing problem studied in Chapter 2 we demon-

strated the improved error performance of the mismatched test over the Ho-

effding test when the alternate distribution is known to lie in a parameterized

set of distributions. The results suggest that it is important to make use of

any available information about the alternate distribution while designing

the hypothesis test. The advantage stems from the fact that the mismatched

divergence statistic used in the mismatched test has reduced variance com-

pared to the Kullback-Leibler divergence used in the Hoeffding test. We also

saw that in these tests, weak convergence results on the test statistic are

more accurate than large deviations results in terms of predicting the error

probability for finite numbers of samples.

In Chapter 3 we considered two special cases of the universal hypothesis

testing problem with uncertainty under the null hypothesis. For these prob-

lems, we obtained new weak convergence results that provide guidelines on

how to set thresholds that meet a desired false alarm requirement for large

sample sizes. These results are analogous to known results for universal

hypothesis testing problems without uncertainty under the null hypothesis.

We studied the related problem of quickest change detection under sta-

tistical uncertainty in Chapter 4. There we adopted a robust approach of

optimizing the worst-case performance. Following Huber [2], we showed that,

for some uncertainty classes, it is possible to identify least favorable distri-

butions (LFDs) such that designing the test for the LFDs is robust in a

minimax sense. We also demonstrated that for some values of the unknown

distributions, our robust test can give substantial performance improvement
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over the generalized likelihood ratio test which is the benchmark test for

change detection problems with composite hypotheses.

5.1 Extensions

The theoretical framework of mismatched divergence and mismatched tests

introduced in Chapters 2 and 3 can be extended in various directions. Al-

though we have restricted our attention to i.i.d observations from a finite

alphabet, the approach of mismatched testing is applicable in very general

settings, and the performance analysis presented here can be extended to any

stationary process satisfying the Central Limit Theorem.

One of the questions left unanswered in Chapter 2 is how to systematically

choose the function class F for specific applications. Some initial work on

selecting basis functions for a linear function class is reported in [59]. In

[59] the authors consider a finite set of alternate distributions and propose a

heuristic scheme for selecting basis functions that ensure good error perfor-

mance of the resulting mismatched test under all distributions from the set.

They do so by optimizing a weighted linear combination of lower bounds on

the error exponent corresponding to each alternate distribution from the set.

However, in any instance of a universal hypothesis test, one will encounter

only observations from one distribution. Hence the weighted optimization

scheme might perform poorly if the resultant test gives a poor exponent for

the encountered distribution. This can be addressed by adopting the robust

approach. The heuristic scheme can be adapted to optimize the worst-case

value of the lower bounds rather than a weighted combination of the lower

bounds. This robust scheme, however, may require a more complex opti-

mization algorithm.

An alternate direction for future work is the idea of adapting the function

class. One could adapt the function class F based on the length n of the

observation sequence. It would be interesting to see whether it is possible

to gradually increase the dimensionality d of the function class with n, to

obtain a test that gives good performance for all alternate distributions but

does not suffer from the high bias and variance of the Hoeffding test.

Another interesting direction for further exploration is to identify the con-

vergence rates of the asymptotic results established in Chapters 2 and 3. In
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these chapters we used results on weak convergence of the various test statis-

tics for setting test thresholds for meeting false alarm constraints. The accu-

racy of these schemes depends on how well the test statistic is approximated

by their weak limits, which in turn can be estimated from the convergence

rates and sequence length. The first step is to identify the rate of convergence

of the basic weak convergence result in Lemma 2.3.6. A potential approach

for accomplishing this is to combine Edgeworth expansions [60] that provide

rates of convergence of the empirical distribution function in the Central

Limit Theorem, with the Taylor’s expansion used in the proof of the lemma.

In Chapter 4 we considered the performance evaluation of the proposed

robust change detection rules only under the Lorden criterion. It would be

useful to obtain similar asymptotic results under the Pollak criterion and

Shiryaev’s Bayesian criterion as well. A starting point for obtaining such

results would be to study the asymptotic analysis of the SRP stopping rule

given in [37] and that of the Shiryaev stopping rule given in [61], and see if

these results can be extended to obtain performance bounds for the robust

version of these stopping rules.

The minimax optimality properties of the robust change detection pro-

cedures proposed in Chapter 4 hold only when the uncertainty classes sat-

isfy the JSB condition. There are several practically important uncertainty

classes that do not satisfy this condition. An important question that needs

to be addressed is whether one can design stopping rules that guarantee some

form of robustness in such problems. A potential approach is to use adaptive

change detection procedures that attempt to learn the unknown distributions

online (see, e.g., [62]).

Most solutions to decision-making under statistical uncertainty reported

in this thesis are of a theoretical nature. More work needs to be done to fine-

tune the various tests and stopping rules proposed in this thesis for specific

applications. The results of Chapter 2 were applied for problems in building

energy surveillance in [63].

The results of Chapters 3 and 4 are restricted to uncertainty classes that

satisfy strict conditions like joint stochastic boundedness. Further work needs

to be done to address more general classes of uncertainty that may be relevant

for specific applications.
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APPENDIX A

PROOFS OF CHAPTER 2

A.1 Excess Codelength for Source Coding with

Training

The results in Theorem 2.3.2 give us the asymptotic behavior of D(Γn‖π)

but what we need here is the behavior of D(π‖Γn). Define

h(µ) =





D(π‖µ) if µ ∈ Pǫ/2

D(π‖πu) else
.

It is clear that h is uniformly bounded from above by log 2
ǫ
. Although h is

not continuous at the boundary of Pǫ/2, a modified version of Lemmas 2.3.5

and 2.3.6 can be applied to the function h to establish the results of (2.16)

following the same steps used in proving Theorem 2.3.2. The Hessian matrix

M appearing in the statement of the lemmas is given by

M = ∇2h(π) = diag(π)−1.

Hence, trace(MΩ) = trace(MΩMΩ) = N − 1.

73



A.2 Proof of Lemma 2.3.4

Proof. In the following chain of identities, the first, third and fifth equalities

follow from relation (2.25) and Proposition 2.2.6.

DMM

F (µ‖π0) = D(µ‖π0) − inf{D(µ‖ν) : ν = π0 exp(f − Λπ0(f)), f ∈ F}
= D(µ‖π̌) + 〈µ, log(

π̌

π0
)〉

− inf{D(µ‖ν) : ν = π̌ exp(f − Λπ̌(f)), f ∈ G}
= DMM

G (µ‖π̌) + 〈µ, log(
π̌

π0
)〉

= DMM

G (µ‖π̌) + 〈µ− π1, log(
π̌

π0
)〉 +D(π1‖π0) −D(π1‖π̌)

= DMM

G (µ‖π̌) + 〈µ− π1, log(
π̌

π0
)〉 +DMM

F (π1‖π0).

⊓⊔

A.3 Proof of Lemma 2.3.5

The following simple lemma will be used in multiple places in the proof that

follows.

Lemma A.3.1. If a sequence of random variables {An} satisfies E[An] −−−→
n→∞

a and {E[(An)2]} is a bounded sequence, and another sequence of random

variables {Bn} satisfies Bn m.s.−−−→
n→∞

b, then E[AnBn] −−−→
n→∞

ab. ⊓⊔

Proof of Lemma 2.3.5. Without loss of generality, we can assume that the

mean x̄ is the origin in R
m and that h(x̄) = 0.

Since the Hessian is continuous over the set K, we have by Taylor’s theo-

rem:

n(h(Sn) −∇h(x̄)TSn)I{Sn∈K} = n[h(x̄) + 1
2
SnT∇2h(S̃n)Sn]I{Sn∈K}

=
n

2
SnT∇2h(S̃n)SnI{Sn∈K} (A.1)

where S̃n = γSn for some γ = γ(n) ∈ [0, 1]. By the strong law of large num-

bers we have Sn
a.s.−−−→
n→∞

x̄. Hence S̃n
a.s.−−−→
n→∞

x̄ and ∇2h(S̃n)
a.s.−−−→
n→∞

∇2h(x̄) = M
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since ∇2h is continuous at x̄. Now by the boundedness of the second deriva-

tive over K and the fact that

I{Sn∈K}
a.s.−−−→
n→∞

1

we have (∇2h(S̃n))i,jI{Sn∈K}
m.s.−−−→
n→∞

Mi,j .

Under the assumption that X is i.i.d. on the compact set X, we have

E[nSni S
n
j ] = Σi,j for all n

and E[(nSni S
n
j )2] converges to a finite quantity as n→ ∞. Hence the results of

Lemma A.3.1 are applicable with An = nSni S
n
j and Bn = ∇2h(S̃n)i,jI{Sn∈K},

which gives:

E[nSni S
n
j∇2h(S̃n)i,jI{Sn∈K}] −−−→

n→∞
Σi,jMi,j . (A.2)

Thus we have

E[n(h(Sn) −∇h(x̄)TSn)I{Sn∈K}] = E[
n

2
SnT∇2h(S̃n)SnI{Sn∈K}]

−−−→
n→∞

1
2
trace(MΞ). (A.3)

Since X is compact, h is continuous, and h is differentiable at x̄, it follows that

there are scalars h and x such that supx∈X
|h(x)| ≤ h and |∇h(x̄)TSn| < x.

Hence,

|E[n(h(Sn) −∇h(x̄)TSn)I{Sn /∈K}]| ≤ n(h + x)P{Sn /∈ K} −−−→
n→∞

0 (A.4)

where we use the assumption that the P{Sn /∈ K} decays exponentially in

n. Combining (A.3) and (A.4) and using the fact that Sn has zero mean, we

have

E[nh(Sn)] = E[n(h(Sn) −∇h(x̄)TSn)] −−−→
n→∞

1
2
trace(MΞ).

This establishes the result of (i).

Under the condition that the directional derivative is zero, (A.1) can be

written as

nf(Sn)I{Sn∈K} =
n

2
SnT∇2h(S̃n)SnI{Sn∈K}. (A.5)
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Now by squaring (A.5), we have

(nh(Sn)I{Sn∈K})
2 =

n2

4

∑

i,j,k,ℓ

Sni (∇2h(S̃n))i,jS
n
j S

n
k (∇2h(S̃n))k,ℓS

n
ℓ I{Sn∈K}.

(A.6)

As before, by the boundedness of the Hessian we have:

(∇2h(S̃n))i,j(∇2h(S̃n))k,ℓI{Sn∈K}
m.s.−−−→
n→∞

Mi,jMk,ℓ.

It can also be shown that

E[n2Sni S
n
j S

n
kS

n
ℓ ] =

Fi,j,k,l
n

+ Σi,jΣk,ℓ + Σj,kΣi,ℓ + Σi,kΣj,ℓ for all n

where Fi,j,k,l = E[X1
iX

1
jX

1
kX

1
ℓ ]. Moreover, E[(n2Sni S

n
j S

n
kS

n
ℓ )2] is finite for each

n and converges to a finite quantity as n → ∞ since the moments of X i are

finite. Thus we can again apply Lemma A.3.1 to see that

E[n2Sni ∇2h(S̃n)i,jS
n
j S

n
k∇2h(S̃n)k,ℓS

n
ℓ I{Sn∈K}]

−−−→
n→∞

(Σi,jΣk,ℓ + Σj,kΣi,ℓ + Σi,kΣj,ℓ)Mi,jMk,ℓ. (A.7)

Putting together terms and using (A.5) we obtain:

E[(nh(Sn))2
I{Sn∈K}] −−−→

n→∞
1
2
trace(MΞMΞ) + 1

4
(trace(MΞ))2.

Now similar to (A.4) we have:

|E[(nh(Sn))2
I{Sn /∈K}]| ≤ n2h

2
P{Sn /∈ K} −−−→

n→∞
0. (A.8)

Consequently

E[(nh(Sn))2] −−−→
n→∞

1
2
trace(MΞMΞ) + 1

4
(trace(MΞ))2

which gives (ii).

⊓⊔
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A.4 Proof of Lemma 2.3.6

We know from (2.2) that Γn can be written as an empirical average of i.i.d.

vectors. Hence, it satisfies the central limit theorem which says that

n
1
2 (Γn − µ)

d.−−−→
n→∞

W (A.9)

where the distribution of W is defined below (2.42).

Considering a second-order Taylor’s expansion and using the condition on

the directional derivative, we have

n(h(Γn) − h(µ)) = 1
2
n((Γn − µ)T∇2h(Γ̃n)(Γn − µ))

where Γ̃n = γΓn + (1 − γ)µ for some γ = γ(n) ∈ [0, 1]. We also know by

the strong law of large numbers that Γn and hence Γ̃n converge to µ almost

surely. By the continuity of the Hessian, we have

∇2h(Γ̃n)
a.s.−−−→
n→∞

∇2h(µ). (A.10)

By applying the vector-version of Slutsky’s theorem [64], together with (A.9)

and (A.10), we conclude that

2n((Γn − µ)T∇2h(Γ̃n)(Γn − µ))
d.−−−→

n→∞
W T∇2h(µ)W,

thus establishing the lemma.

A.5 Proof of Lemma 2.3.7

Proof. The assumption that D is a projection matrix implies that D2 = D.

Let {u1, . . . , um} denote an orthonormal basis, chosen so that the first K

vectors span the range space of D. Hence Dui = ui for 1 ≤ i ≤ K, and

Dui = 0 for all other i.

Let U denote the unitary matrix whose m columns are {u1, . . . , um}. Then

Ṽ = UV is also an N (0, Im) random variable, and hence DV and DṼ have

the same Gaussian distribution.

To complete the proof we demonstrate that ‖DṼ ‖2 has a chi-squared dis-
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tribution: By construction the vector Ỹ = DṼ has components given by

Ỹi =






Ṽi 1 ≤ i ≤ K

0 K < i ≤ m
.

It follows that ‖Ỹ ‖2 = ‖DṼ ‖2 = Ṽ 2
1 + · · ·+ Ṽ 2

K has a chi-squared distribution

with K degrees of freedom. ⊓⊔

A.6 Derivation of Approximate Mismatched

Divergence

We know that the mismatched divergence is given by,

DMM(µ‖π0) = sup
r
{µ(fr) − Λπ0(fr)}. (A.11)

Let fr0 = 0 be the function identically equal to zero. The log moment

generating function has the following gradient and Hessian at r = r0:

∇rΛπ0(fr)

∣∣∣∣∣
r=r0

= π0(ψ), ∇2
rΛπ0(fr)

∣∣∣∣∣
r=r0

= Σπ0 + π(Φ).

Applying a second-order Taylor approximation to the objective function in

(A.11), we have

µ(fr) − Λπ0(fr) ≈ (r − r0)T(µ(ψ) − π0(ψ)) − 1
2
(r − r0)TMµ(r − r0) (A.12)

where

Mµ = Σπ0 + (π(Φ) − µ(Φ)).

The approximate mismatched divergence D̂MM(µ‖π0) between µ and π0 is

defined as the maximum value of the expression on the right side of (A.12).

Assuming that Mµ is invertible we have

D̂MM(µ‖π) = sup
r∈Red

(r − r0)T(µ(ψ) − π0(ψ)) − 1
2
(r − r0)TMµ(r − r0)

= 1
2
(µ(ψ) − π0(ψ))TM−1

µ (µ(ψ) − π0(ψ))

= 1
2
(µ− π0)TΨTM−1

µ Ψ(µ− π0).
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APPENDIX B

PROOFS OF CHAPTER 3

B.1 Proof of Theorem 3.1.1

In order to prove the main result, we need the following lemma:

Lemma B.1.1. Suppose the functions {ψi : 0 ≤ i ≤ d} are linearly inde-

pendent over the support of π. If Zπ denotes the support of π ∈ P, then

there exists an open neighborhood B ⊂ P(Zπ) such that for all µ ∈ B, the

supremum in (3.4) is achieved at a unique point r(µ).

Proof. We verify that the proposition in the lemma holds for B = {µ ∈
P(Z) : |µ(z) − π(z)| < ǫ for all z ∈ Zπ, µ(y) = 0 for all y ∈ Z \ Zπ} where

ǫ = 1
2
minz∈Zπ

π(z). Clearly, for all µ ∈ B, the support of µ is equal to Zπ

and hence 0 ≤ DROB(µ‖P) ≤ D(µ‖π) <∞.

Now since the functions ψi are linearly independent over Zπ, and the value

of the the optimization problem in (3.4) is finite, it follows that we can restrict

the constraint set in (3.4) to a bounded subset of the closed set R. Thus

we can restrict the optimization in (3.4) to a compact set. Furthermore, the

objective function is strictly concave by the linear independence assumption

and hence the conclusion of the lemma follows. ⊓⊔

Proof of Theorem 3.1.1. Suppose dπ = d. We know by the discussion in

Section 2.2.6 that the robust divergence can be expressed as a mismatched

divergence defined with respect to a log-linear function class. I.e.,

DROB(µ‖P) = DMM(µ‖π) = sup
f∈F

{µ(f) − Λπ(f)}

where F is the log-linear function class

F = {log(1 + rTψ) : r ∈ R}.
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From the conclusions of Lemma B.1.1 it follows that the conditions of Theo-

rem 2.3.2(i) are satisfied with r∗ = 0 and hence the conclusion of (3.5) follows

when dπ = d.

Now, if dπ < d it is clear that we can define a new set of dπ functions

ψ′ = {ψ′
1, . . . , ψ

′
dπ
} such that the span of the functions in ψ′ over Zπ is

identical to that of the functions in ψ over Zπ, and further guaranteeing the

condition that {ψ0, ψ
′
1, . . . , ψ

′
dπ
} are linearly independent over Zπ. Hence for

all µ ∈ P(Zπ) the formula for the rate function in (3.4) is unaffected by this

transformation. Thus the result of (3.5) holds for a general π ∈ P, by the

same arguments as before. ⊓⊔

B.2 Proof of Theorem 3.2.1

Proof. We know from (3.12) that for any G ∈ F ,

PG{sup
x∈Z

√
n(Fn(x) − F+(x)) > δ}

≤ PG{
√
nEn > δ}

≤ PG{sup
x∈Z

√
n(Fn(x) − F+(x)) > δ}

+PG{sup
x∈Z

√
n[−(Fn(x) − F−(x))] > δ}.

Hence,

max
G∈F

PG{sup
x∈Z

√
n(Fn(x) − F+(x)) > δ}

≤ max
G∈F

PG{
√
nEn > δ}

≤ max
G∈F

PG{sup
x∈Z

√
n(Fn(x) − F+(x)) > δ}

+ max
G∈F

PG{sup
x∈Z

√
n[−(Fn(x) − F−(x))] > δ}
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which simplifies to:

PF+{sup
x∈Z

√
n(Fn(x) − F+(x)) > δ}

≤ max
G∈F

PG{
√
nEn > δ}

≤ PF+{sup
x∈Z

√
n(Fn(x) − F+(x)) > δ}

+PF−{sup
x∈Z

√
n[−(Fn(x) − F−(x))] > δ}. (B.1)

It is known by another result of Kolmogorov [33, p. 335] that

PF+{√n sup
x∈Z

(Fn(x) − F+(x)) > δ} −−−→
n→∞

p(δ).

Similarly it also follows that

PF−{√n sup
x∈Z

(F−(x) − Fn(x)) > δ} −−−→
n→∞

p(δ).

Taking limits in (B.1) and applying the above limiting results we arrive at

the claimed result. ⊓⊔

81



APPENDIX C

PROOFS OF CHAPTER 4

C.1 Proof of Lemma 4.3.1

We prove this claim by induction. For n = 1, the claim holds because if

h : R 7→ R is a non-decreasing continuous function, we have

P(h(U1) ≥ t) = P(U1 ≥ sup{x : h(x) < t}
≥ P(V1 ≥ sup{x : h(x) < t}
= P(h(V1) ≥ t).

Assume the claim is true for n = N and now consider n = N + 1. For

any fixed xN1 ∈ R
N , since the function h is non-decreasing in each of its

components, it follows by the proof for n = 1 that

h(x1, x2, . . . , xN , UN+1) ≻ h(x1, x2, . . . , xN , VN+1). (C.1)

We further have

P(h(U1, U2, . . . , UN+1) ≥ t)

=
∫
fUN

1
(xN1 )P(h(x1, x2, . . . , xN , UN+1) ≥ t)dxN1

≥
∫
fUN

1
(xN1 )P(h(x1, x2, . . . , xN , VN+1) ≥ t)dxN1 (C.2)

= P(h(Ũ1, Ũ2, . . . , ŨN , VN+1) ≥ t) (C.3)

=
∫
fVN+1

(y)P(h(Ũ1, Ũ2, . . . , ŨN , y) ≥ t)dy

≥
∫
fVN+1

(y)P(h(V1, V2, . . . , VN , y) ≥ t)dy (C.4)

= P(h(V1, V2, . . . , VN+1) ≥ t)

where (C.2) is obtained via (C.1). The variables Ũi appearing in (C.3) are
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random variables with exact same statistics as Ui and independent of Vi’s.

The inequality of (C.4) is obtained by using the induction hypothesis for

n = N . Thus we have shown that

h(U1, U2, . . . , UN+1) ≻ h(V1, V2, . . . , VN+1)

which proves the lemma by the principle of mathematical induction. ⊓⊔

C.2 Proof of Theorem 4.3.2

Proof. Suppose P0 and P1 satisfy the conditions of the theorem. Since the

CUSUM test is optimal for known distributions, it is clear that the test given

in (4.9) is optimal when the pre- and post-change distributions are ν0 and

ν1, respectively. Hence, it suffices to show that the values of WDD(τ ∗
C
) and

FAR(τ ∗
C
) obtained under any ν0 ∈ P0 and any ν1 ∈ P1, are no higher than

their respective values when the pre- and post-change distributions are ν0

and ν1. We use Y ∗
i to denote the random variable L∗(Xi) when the pre-

change and post-change distributions of the observations from the sequence

{Xi : i = 1, 2, . . .} are ν0 and ν1, respectively, and Y ν
i to denote the random

variable L∗(Xi) when the pre- and post-change distributions are ν0 and ν1,

respectively. We first prove the theorem for a special case.

Case 1: P0 is a singleton given by P0 = {ν0}.
Clearly, in this case ν0 = ν0 and (4.8) is met trivially. Furthermore, in this

case, the false alarm constraint is also met trivially since the false alarm rate

obtained by using the stopping rule τ ∗
C

is independent of the true value of the

post-change distribution. Fix the change-point to be λ. Now, to complete

the proof for the scenario where P0 is a singleton, we will show that for all

λ ≥ 1,

E
∗
λ[(τ

∗
C
− λ+ 1)+|Fλ−1] ≻ E

ν
λ[(τ

∗
C
− λ+ 1)+|Fλ−1] (C.5)

which will establish that the value of WDD(τ ∗
C
), obtained under any ν1 ∈ P1,

is no higher than the value when the true post-change distribution is ν1.

Since we now have ν0 = ν0, both Y ∗
i and Y ν

i have the same distributions

for i < λ and hence we assume without loss of generality that for all i < λ,
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Y ∗
i = Y ν

i with probability one. Under this assumption, we will show that for

all integers N ≥ 0, the following relation holds with probability one:

P
∗
λ((τ

∗
C
− λ+ 1)+ ≤ N |Fλ−1)

≤ P
ν
λ((τ

∗
C
− λ+ 1)+ ≤ N |Fλ−1)

(C.6)

which will then establish (C.5). Since τ ∗
C

is a stopping time, the event {(τ ∗
C
−

λ + 1)+ ≤ 0} is Fλ−1-measurable. Hence, with probability one, (C.6) holds

with equality for N = 0. Now it suffices to verify (C.6) for N ≥ 1. We know

by the stochastic ordering condition on P1 that

Y ν
i ≻ Y ∗

i , for all i ≥ λ (C.7)

Now we have the following equivalence between two events:

{τ ∗
C
≤ N} =

{
max

1≤n≤N
max
1≤k≤n

n∑

i=k

L∗(Xi) ≥ η

}

=

{
max

1≤k≤n≤N

n∑

i=k

L∗(Xi) ≥ η

}
.

It is easy to see that the function

f(x1, . . . , xN ) , max
1≤k≤n≤N

n∑

i=k

xi

is continuous and non-decreasing in each of its components as required by

Lemma 4.3.1. Hence for N ≥ 1, the following hold with probability one:

P
∗
λ((τ

∗
C
− λ+ 1)+ ≤ N |Fλ−1)

= P
∗
λ(τ

∗
C
≤ N + λ− 1|Fλ−1)

= Pλ(f(Y ∗
1 , . . . , Y

∗
N+λ−1) ≥ η|Fλ−1)

≤ Pλ(f(Y ν
1 , . . . , Y

ν
N+λ−1) ≥ η|Fλ−1)

= P
ν
λ(τ

∗
C
≤ N |Fλ−1)

= P
ν
λ((τ

∗
C
− λ+ 1)+ ≤ N |Fλ−1)

where the inequality follows from Lemma 4.3.1 and (C.7), using the fact that

f is a non-decreasing function with respect to its last N arguments and the

fact that Y ν
i = Y ∗

i for i < λ. Thus, for all integers N ≥ 0, (C.6) holds with
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probability one and hence (C.5) is satisfied. This proves the result for the

case where P0 is a singleton.

Case 2: P0 is any class of distributions satisfying (4.8).

Suppose that the change does not occur. Then we know by the stochastic

ordering condition on P0 that Y ∗
i ≻ Y ν

i for all i. It follows by Lemma 4.3.1

that

P
∗
∞(τ ∗

C
≤ N) = P∞(f(Y ∗

1 , . . . , Y
∗
N) ≥ η)

≥ P∞(f(Y ν
1 , . . . , Y

ν
N) ≥ η)

= P
ν
∞(τ ∗

C
≤ N).

Since the above relation holds for all N ≥ 1, we have

E
ν
∞(τ ∗

C
) ≥ E

∗
∞(τ ∗

C
) =

1

α
(C.8)

and hence the value of FAR(τ ∗
C
) is no higher than α for all values of ν0 ∈ P0

and ν1 ∈ P1.

Now suppose the change-point is fixed at λ. A useful observation is that for

any given stopping rule τ and fixed post-change distribution ν1, the random

variable E
ν0,ν1
λ [(τ − λ + 1)+|Fλ−1] is a fixed deterministic function of the

random observations (X1, . . . , Xλ−1), irrespective of the distribution ν0. Thus

the essential supremum of this random variable depends only on the support

of ν0. Applying this observation to the stopping rule τ ∗
C
, and using the

relation (4.8), we have for all ν0 ∈ P0, ν1 ∈ P1,

ess sup E
ν0,ν1
λ [(τ ∗

C
− λ+ 1)+|Fλ−1]

≤ ess sup E
ν0,ν1
λ [(τ ∗

C
− λ + 1)+|Fλ−1].

We also know from Case 1 above that for all ν1 ∈ P1,

ess sup E
ν0,ν1
λ [(τ ∗

C
− λ+ 1)+|Fλ−1]

≤ ess sup E
∗
λ[(τ

∗
C
− λ+ 1)+|Fλ−1].

Taking the supremum over λ ≥ 1, it follows from the above two relations that

the value of WDD(τ ∗
C
) under any pair of distributions (ν0, ν1) ∈ P0×P1 is no

larger than that under (ν0, ν1). Thus τ ∗
C

solves the robust problem (4.4). ⊓⊔
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C.3 Proof of Theorem 4.3.3

Proof. Let τ ∗
SRP

:= τ
ν∗,η,ψη

SRP denote the SRP stopping rule defined with respect

to the LFDs (ν0, ν1) satisfying the asymptotic optimality property of (4.13)

as mentioned in the statement of the theorem. It is easy to see that for any

integers λ ≥ 1 and N ≥ 1, we have

P
ν
λ(τ

∗
SRP

− λ ≤ N |τ ∗
SRP

≥ λ,R∗
0 = r)

=
Pνλ({τ ∗SRP

− λ ≤ N} ∩ {τ ∗
SRP

≥ λ}|R∗
0 = r)

Pνλ(τ
∗
SRP

≥ λ|R∗
0 = r)

where R∗
0 denotes the random variable with distribution ψη used for initial-

izing the iteration in (4.11). We follow the same steps as in the proof of

Theorem 4.3.2. Let Y ν
i denote the random variable L∗(Xi) when the pre-

change and post-change distributions are ν0 and ν1 respectively. Since τ ∗
SRP

is a stopping time the event {τ ∗
SRP

≥ λ} is measurable with respect to the

pre-change observations and hence we can represent this event as

{τ ∗
SRP

≥ λ} = {(Y ν
1 , Y

ν
2 , . . . , Y

ν
λ−1) ∈ T}

where T is the set of pre-change trajectories corresponding to the event

{τ ∗
SRP

≥ λ}. Now, for any r ∈ R+, let f(t|r) denote the conditional probabil-

ity density function of the random vector (Y ν
1 , Y

ν
2 , . . . , Y

ν
λ−1) evaluated at t

conditioned on R∗
0 = r. Then we can express the conditional distribution of

the delay as

P
ν
λ(τ

∗
SRP

− λ ≤ N |τ ∗
SRP

≥ λ,R∗
0 = r)

=

∫
T Pλ(ht(Y

ν
λ , Y

ν
λ+1, . . . , Y

ν
λ+N) ≥ g(t, N, η)|R∗

0 = r)f(t|r)dt
∫
T f(t|r)dt

(C.9)

such that for all t ∈ T , the function ht : R
N−λ+1 7→ R satisfies the require-

ments of Lemma 4.3.1, and g(t, N, η) is some real-valued function. The exact

form of function ht can be obtained from the iterations of (4.11) used to de-

fine the SRP stopping rule of (4.12). We note that in (C.9) the post-change

distribution ν1 affects only the first term under the integral in the numerator.
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Thus, it follows by applying Lemma 4.3.1 that

P
∗
λ(τ

∗
SRP

− λ ≤ N |τ ∗
SRP

≥ λ,R∗
0 = r)

≤ P
ν
λ(τ

∗
SRP

− λ ≤ N |τ ∗
SRP

≥ λ,R∗
0 = r)

(C.10)

for all ν1 ∈ P1. Hence it further follows that

sup
ν1∈P1

E
ν
λ(τ

∗
SRP

− λ|τ ∗
SRP

≥ λ) = E
∗
λ(τ

∗
SRP

− λ|τ ∗
SRP

≥ λ). (C.11)

We also observe that for any stopping rule τ that satisfies the false alarm

constraint FAR(τ) ≤ α, we have

sup
ν1∈P1

sup
λ≥1

E
ν
λ(τ − λ|τ ≥ λ)

≥ sup
λ≥1

E
∗
λ(τ − λ|τ ≥ λ)

≥ sup
λ≥1

E
∗
λ(τ

∗
SRP

− λ|τ ∗
SRP

≥ λ) + o(1)

= sup
ν1∈P1

sup
λ≥1

E
ν
λ(τ

∗
SRP

− λ|τ ∗
SRP

≥ λ) + o(1)

where the second relation follows from the fact that τ ∗
SRP

satisfies the asymp-

totic optimality of (4.13) when the true post-change distribution is ν1, and

the last equality follows from (C.11). This completes the proof of the theo-

rem. ⊓⊔

We note that if the robust SRP stopping rule τ ∗
SRP

is used when P0 is not

a singleton, the crucial step of (C.10) does not hold for ν0 6= ν0 and ν1 = ν1.

Thus our proof of optimality of the robust SRP stopping rule does not hold

when the pre-change distribution is unknown.

C.4 Proof of Theorem 4.3.4

Proof. The proof is very similar to that of Case 1 in Theorem 4.3.2. Since

the Shiryaev test is optimal for known distributions, it is clear that the test

given in (4.16) is optimal under the Bayesian criterion when the post-change

distribution is ν1. Also from the definition of PFA(τ ∗
S
) it is clear that the

probability of false alarm depends only on the pre-change distribution and
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hence the constraint in (4.6) is met by the stopping time τ ∗
S
. Hence, it suffices

to show that the value of ADD(τ ∗
S
) obtained under any ν1 ∈ P1, is no higher

than the value when the true post-change distribution is ν1.

Let us first fix Λ = λ. We know by the stochastic ordering condition that

conditioned on Λ = λ, for all i ≥ λ, we have Y ν
i ≻ Y ∗

i where Y ∗
i and Y ν

i are

as defined in the proof of Theorem 4.3.2. As before, the function,

f ′(x1, . . . , xN) , max
1≤n≤N

log

(
n∑

k=1

πk exp(
n∑

i=k

xi)

)

is continuous and non-decreasing in each of its components as required by

Lemma 4.3.1. Using these facts, we can show the following by proceeding

exactly as in the proof of Theorem 4.3.2: Conditioned on Λ = λ,

E
∗
λ((τ

∗
S
− λ)+|Fλ−1) ≻ E

ν
λ((τ

∗
S
− λ)+|Fλ−1).

Thus, we have E∗
λ((τ

∗
S
− λ)+) ≥ Eνλ((τ

∗
S
− λ)+) and by averaging over λ, we

get

E
∗((τ ∗

S
− Λ)+) ≥ E

ν((τ ∗
S
− Λ)+).

⊓⊔
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