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Abstract

We study problems in extremal graph theory with respect to edge-colorings, independent
sets, and cycle spectra. In Chapters 2 and 3, we present results in Ramsey theory, where we
seek Ramsey host graphs with small maximum degree. In Chapter 4, we study a Ramsey-
type problem on edge-labeled trees, where we seek subtrees that have a small number of
path-labels. In Chapter 5, we examine parity edge-colorings, which have connections to
additive combinatorics and the minimum dimension of a hypercube in which a tree embeds.
In Chapter 6, we prove results on the chromatic number of circle graphs with clique number
at most 3. The tournament analogue of an independent set is an acyclic set. In Chapter 7, we
present results on the size of maximum acyclic sets in k-majority tournaments. In Chapter 8,
we prove a lower bound on the size of the cycle spectra of Hamiltonian graphs.
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Chapter 1

Overview

People have a natural fascination with everyday objects that are extreme with respect to
some property like height or speed. In much the same way, the mathematical objects that
achieve the minimum or maximum value of a parameter are often interesting. Extremal
problems have also inspired the development of deep techniques, such as the probabilistic
method and the regularity method.

Extremal problems have applications beyond discrete mathematics. For example, the
problem of register allocation in computer science can be cast as a graph coloring problem.
The existence of certain extremal structures have important consequences for algorithmic
performance guarantees, such as the time complexity of matrix multiplication.

Extremal problems come in many di�erent �avors. Chapters 2 through 5 discuss extremal
problems involving edge-colorings of graphs. Chapter 6 explores an extremal problem in-
volving proper colorings of circle graphs, where the vertices are partitioned into independent
sets. Acyclic sets in tournaments are analogous to independent sets in graphs; in chapter
7, we study the size of maximum acyclic sets in a special class of tournaments. Chapter 8
discusses an extremal problem involving the number of distinct lengths of cycles that occur
in Hamiltonian graphs with a speci�ed number of edges.

The following sections give detailed overviews of the remaining chapters. Background
material and basic de�nitions about graphs and digraphs are provided in Section 1.8.

1.1 Degree Ramsey theory

Ramsey theory consists of a diverse array of results that have a common theme: large
objects must contain smaller parts that are highly structured. Consider the classic context
of Ramsey's Theorem. Let H be a �host� graph, and let G be a �target� graph. If every
s-edge-coloring of H contains a monochromatic copy of G as a subgraph, then we write
H

s→ G. When s = 2, we omit the superscript and simply write H → G. For example,
K3 → P3 because a 2-edge-coloring of the triangle K3 uses the same color on two of its three
edges. Here Kn is the complete graph with n vertices, and Pn is the path with n vertices.

Ramsey's Theorem implies that for every graph G and every s, there exists an n such
that Kn

s→ G. More generally, when the host graph is large enough and dense enough, a
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monochromatic copy of the target graph is forced in every s-edge-coloring of the host's edges.
The Ramsey number of a graph G, denoted R(G), is min{|V (H)| : H → G}; similarly,
we de�ne R(G; s) to be min{|V (H)| : H s→ G}. The Ramsey number is a classic graph
parameter and has been studied extensively. The principal question is, given a graph G,
how large does the host graph H need to be before H s→ G?

We examine a related question. If we are willing to allow the host graph H to have
arbitrarily many vertices, how much degree is needed at vertices in H before in order to
have H s→ G? If H has small maximum degree, then H is sparse. The degree Ramsey
number of a graph G, denoted R∆(G), is min{∆(H) : H → G}, and we de�ne R∆(G; s) to
be min{∆(H) : H

s→ G}.
The degree Ramsey number has been established for some graphs. Burr, Erd®s, and

Lovász [21] showed that R∆(Kn) = R(Kn)−1 for each n. More recently, Kurek and Ruci«ski
[73] proved the stronger statement that if H → Kn, then H contains a subgraph with average
degree at least R(Kn) − 1. Burr, Erd®s, and Lovász [21] also characterized the set of host
graphs H such that H → K1,n, where K1,n consists of n edges with one common endpoint.
Their characterization immediately implies that R∆(K1,n) is 2n−2 when n is even and 2n−1

when n is odd. In Section 2.2, we generalize this by obtaining the degree Ramsey number
of the double-star Sa,b, which is the tree that consists of two adjacent vertices u and v with
a− 1 and b− 1 leaf neighbors respectively. Note that K1,n = S1,n.

In studying the size of monochromatic components of 2-edge-colored graphs, Alon et al. [4]
gave a short argument that impliesR∆(Pn) ≤ 4 for all n. On the other hand, Thomassen [109]
proved that every graph with maximum degree at most 3 can be 2-edge-colored so that all
monochromatic components are subgraphs of P6. Consequently, R∆(Pn) = 4 for n ≥ 7.

The most intriguing problem about the degree Ramsey parameter is whether R∆(G; s)

is bounded by a function of ∆(G) and s. Jiang observed that the argument of Alon et al.
extends to show that R∆(T ; s) ≤ 2s∆(T ) for each tree T ; a tree is a connected graph with
no cycles. In Section 2.3, we extend this to prove the following (joint with Jiang and West).

Theorem ([60]). Let F be the family of graphs that can be obtained from a tree T by replacing
each vertex in T with an independent set and each edge in T with a complete bipartite graph.
There exists a function f such that R∆(G) ≤ f(∆(G)) for each graph G in F .

In Section 2.4, we specialize these techniques to the n-vertex cycle Cn.

Theorem ([60]). If n is even, then R∆(Cn) ≤ 96. For all n, R∆(Cn) ≤ 3458.

Previously, a result of Haxell et al. [58] implicitly showed that R∆(Cn) is bounded;
because their proof uses Szemerédi's regularity lemma, their bound is very large.
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1.2 Online degree Ramsey theory

Traditional Ramsey theory can be viewed as a game between two players called Builder and
Painter. Builder presents a host graph H to Painter, and then Painter colors the edges of
H. Builder wins if the coloring contains a monochromatic copy of some target graph G;
otherwise Painter wins. The statement R(G) ≤ k is equivalent to the statement that when
G is the target graph, Builder has a winning strategy that presents only graphs with at most
k vertices.

An online variant in which Builder and Painter take turns was introduced by Grytczuk,
Haªuszczak, and Kierstead [53]. The host graph H starts empty. Builder selects a pair {u, v}
of non-adjacent vertices (one or both of which may be new) and adds the edge uv to H.
Painter responds by coloring uv red or blue. We require Builder to keep the presented graph
in a speci�ed family H. Builder wins if Painter ever completes a monochromatic copy of the
target graph G, and Painter wins otherwise. This de�nes the online Ramsey game (G,H).
The fundamental problem of online Ramsey theory is to characterize the games (G,H) in
which Builder has a winning strategy.

Each parameter Ramsey number corresponding to a monotone parameter has an online
analogue. The online degree Ramsey number, denoted R̊∆(G), is min{k : builder wins (G,Hk)},
where Hk is the family of graphs with maximum degree at most k. Butter�eld, Grauman,
Kinnersley, Milans, Stocker, and West [22] studied the online degree Ramsey number of trees
and cycles.

Theorem ([22]). If T is a tree, then R̊∆(T ) ≤ 2∆(T )− 1, with equality whenever T has an
adjacent pair of vertices with maximum degree.

In Section 3.6, we obtain the following result for cycles (joint with Butter�eld, Grauman,
Kinnersley, Stocker, and West).

Theorem ([22]). For each n, R̊∆(Cn) ∈ {4, 5}. If n is even, n = 3, 337 ≤ n ≤ 514, or
n ≥ 689, then R̊∆(Cn) = 4.

The lower bound R̊∆(Cn) > 3 follows from our characterization of the graphs G with
online degree Ramsey number at most 3. Recently, Rolnick [97] proved that R̊∆(Cn) = 4

always. It would be interesting to know if the online degree Ramsey number is bounded by a
function of the maximum degree. Of course, if the (o�ine) degree Ramsey number is bounded
by a function of the maximum degree, then so is the online degree Ramsey number. It is
known that the online degree Ramsey number of graphs with maximum degree 2 is bounded.

Theorem ([22]). If ∆(G) ≤ 2, then R̊∆(G) ≤ 6.
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1.3 Subtrees with few labeled paths

One goal in computability theory is to �nd algorithmic solutions to combinatorial problems,
and solutions to problems in computability theory often require combinatorial proofs. Conse-
quently, computability theory and combinatorics enjoy a history of successful collaboration.
We consider a question from computability theory that led to a Ramsey-type problem of
�nding highly structured binary subtrees in large ternary trees; the resulting problem is of
independent combinatorial interest.

A rooted tree is complete if all leaves have the same distance from the root, and the depth
of a complete tree is the common distance between the leaves and the root. A rooted tree
is q-ary if all non-leaves have q children. If T is a complete tree of depth n in which each
edge is labeled with 0 or 1, then reading the edge labels along a path from the root to a leaf
yields a path-label in {0, 1}n. Let L(T ) be the set of all path-labels that occur along such
paths in T .

When T is a complete ternary tree of depth n and S is a complete binary tree of depth n
contained in T , we write S @ T . Given a {0, 1}-edge-labeled complete ternary tree T , we seek
a binary subtree S with as few path-labels as possible. Let f(T ) = min {|L(S)| : S @ T}.
Of course, since L(S) ⊆ {0, 1}n, always f(T ) ≤ 2n. We de�ne

f(n) = max {f(T ) : T is a {0, 1} -edge-labeled complete ternary tree of depth n} .

The computability theory application requires that limn→∞ f(n)/2n = 0. In fact, we prove
the following.

Theorem ([30]). There exist positive constants c1, c2, c3 such that c12
1

log2 3
n ≤ f(n) ≤

c22n−c3
√
n for each n.

A relatively simple argument shows that limn→∞ (f(n))1/n exists; our bounds on f(n)

yield 1.548 ≤ 2
1

log2 3 ≤ limn→∞ (f(n))1/n ≤ 2.

1.4 Parity edge-colorings of graphs

A parity walk in an edge-colored graph is a walk that traverses each color an even number of
times. An edge-coloring is a strong parity edge-coloring if every parity walk is closed (starts
and ends at the same vertex). A strong parity edge-coloring is optimal if it uses as few
colors as possible. The strong parity edge-chromatic number of a graph G, denoted p̂(G), is
the number of colors in an optimal strong parity edge-coloring.

Although Bunde, Milans, West, and Wu [19] introduced the strong parity edge-chromatic
number as a general graph parameter, related concepts were studied earlier. A 1972 result

4



of Havel and Movárek [57] essentially implies when T is a tree, p̂(T ) is the minimum k such
that T is a subgraph of the k-dimensional hypercube.

Complete graphs admit strong parity edge-colorings with nice structure. Let Fk2 denote
the k-dimensional vector space over the �eld with 2 elements, and let A ⊆ Fk2. The canonical
edge-coloring of the complete graph K(A) with vertex set A assigns each edge uv the color
u + v. The canonical edge-coloring is a strong parity edge-coloring. Indeed, if u0, . . . , ut
are the vertices of a walk in which the jth edge has color cj, then u0 +

∑t
j=1 cj = u0 +∑t

j=1(uj−1 + uj) = ut. Also, if u0, . . . , ut is a parity walk, then
∑t

j=1 cj = 0. Hence, every
parity walk is closed.

The canonical edge-coloring of K(A) does not use the vector ~0. Consequently, if n is
an integer and m is the smallest power of 2 that is at least n, then p̂(Kn) ≤ m − 1. In
Section 5.3, we prove that equality holds (joint work with Bunde, West, and Wu).

Theorem ([20]). For each n, p̂(Kn) = 2dlog2 ne − 1. In fact, every optimal strong parity
edge-coloring of Kn is isomorphic to the canonical edge-coloring of K(A) for some A ⊆ Fk2,
where k = dlog2 ne.

These results strengthen a special case of Yuzvinsky's Theorem from additive combina-
torics. For each r, s ≥ 1, the Hopf�Stiefel function r ◦ s is the minimum integer n such that
(x+ y)n is in the ideal of F2[x, y] generated by xr and ys. Equivalently, r ◦ s is the minimum
integer n such

(
n
k

)
is even for each k with n − s < k < r. Yuzvinsky [113] proved that if

A,B ⊆ Fk2 with |A| = r, |B| = s, and C = {a+ b | a ∈ A and b ∈ B}, then |C| ≥ r ◦ s;
furthermore, this bound on |C| is sharp. When A = B, Yuzvinsky's Theorem states that
the set of colors {a+ b | a, b ∈ A and a 6= b} used by the canonical edge-coloring of K(A) has
size at least (r ◦ r)−1. Because r ◦ r = 2dlog2 re and the family of strong parity edge-colorings
is more general than the family of canonical edge-colorings, our result strengthens this case
of Yuzvinsky's Theorem.

Canonical edge-colorings extend to complete bipartite graphs in a natural way. If A,B ⊆
Fk2, then the canonical edge-coloring of the complete bipartite graph K(A,B) with partite
sets A and B assigns each edge uv the color u + v. The set of colors used by the canonical
edge-coloring of K(A,B) is {a+ b | a ∈ A and b ∈ B}. In its full generality, Yuzvinsky's
Theorem states that the canonical edge-coloring of K(A,B) uses r ◦ s colors, where r = |A|
and s = |B|. We conjecture that every strong parity edge-coloring of K(A,B) also needs
r ◦ s colors, or equivalently that p̂(Kr,s) = r ◦ s, where Kr,s denotes the complete bipartite
graph with partite sets of sizes r and s. Proving this conjecture would strengthen all cases
of Yuzvinsky's Theorem.
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1.5 Chromatic number of circle graphs

A clique is a set of vertices that are pairwise adjacent, and the clique number of a graph G,
denoted ω(G), is the maximum size of a clique in G. The chromatic number of a graph G,
denoted χ(G), is the minimum size of a partition of the vertices into independent sets called
color classes. Because the vertices of a clique must be placed into distinct color classes, it
follows that χ(G) ≥ ω(G) for every graph. While χ(G) may be arbitrarily large even when
ω(G) = 2, there are a number of interesting classes of graphs in which χ(G) is bounded by
a function of ω(G).

A circle graph is a graph G whose vertices are chords of a circle drawn in the plane,
with chords u and v adjacent if they cross. Kostochka and Kratochvíl [69] showed that
χ(G) ≤ 50 · 2ω(G) − 32ω(G) − 64 for each circle graph G and Kostochka [70] showed that
there are circle graphs with ω(G) = k and χ(G) ≥ c·k log k for a constant c. The exponential
gap between the two bounds has been open for over a decade. More is known when the clique
number is small. If G is a circle graph with ω(G) = 2, then χ(G) ≤ 5 [63], and this bound
is best possible [1]. In Section 6.3, we investigate the case ω(G) ≤ 3 (joint work with
Kostochka).

Theorem ([71]). If G is a circle graph with ω(G) ≤ 3, then χ(G) ≤ 44.

Prior to our work, the best known bound for the case ω(G) ≤ 3 was χ(G) ≤ 120,
which follows from an earlier result of Kostochka [69]. Our proofs use a lemma stating
that when G belongs to the subfamily of circle graphs not containing a certain structure,
χ(G) ≤ 2ω(G)− 1.

1.6 Acyclic sets in k-majority tournaments

Let Π be a set of linear orders of a ground set X. The majority digraph of Π is the directed
graph D on vertex set X such that uv ∈ E(D) if more than half of the orders in Π rank u
before v. If Π has size k, then D is a k-majority digraph. When k is odd, D is an orientation
of a complete graph, and so D is a k-majority tournament. A dominating set in D is a set S
of vertices such that for each vertex v ∈ V (D), either v ∈ S or uv ∈ E(D) for some vertex
u ∈ S. The domination number of D, denoted γ(D), is the smallest size of a dominating set
in D. Alon et al. [3] introduced k-majority tournaments and showed that there is a constant
c such that γ(D) ≤ ck log k for every k-majority tournament D. Moreover, they construct a
family of k-majority tournaments {Dk} such that γ(Dk) ≥ c′k/ log k for some constant k.

Let a(D) denote the maximum size of an acyclic set in D, and let fk(n) be the minimum
of a(D) over all n-vertex k-majority tournaments D. In Section 7.2, we prove the following
(joint with Schreiber and West).
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Theorem ([78]). For each n, f3(n) ≥
√
n. When n is a perfect square, f3(n) ≤ 2

√
n− 1.

We also show f5(n) ≥ n1/4 and prove the following for general k.

Theorem ([78]). If ck = 3−(k−1)/2 and dk = O(log log k/ log k), then nck ≤ fk(n) ≤ ndk .

Because adding a permutation and its reverse to Π does not change the majority digraph,
the construction for 3-majority tournaments yields fk(n) ≤ 2

√
n− 1 whenever k ≥ 3 and n

is a perfect square. This bound is the best known when k = 5.

1.7 Cycle spectra of Hamiltonian graphs

The cycle spectrum of a graph G is the set of lengths of cycles in G. A graph on n ver-
tices is pancyclic if its cycle spectrum contains all lengths from 3 to n. Let s(G) denote
the size of the cycle spectrum of G. In 1960, Ore [87] showed that every n-vertex graph in
which every pair of non-adjacent vertices has degree sum at least n is Hamiltonian. Subse-
quently, Bondy [17] showed that every graph satisfying Ore's condition is pancyclic unless
it is Kn/2,n/2. On this basis, Bondy proposed the meta-conjecture that natural su�cient
conditions for Hamiltonicity are often also su�cient for pancyclicity.

When G is n/2-regular, Bondy's result shows that G is pancyclic or is Kn/2,n/2. Condi-
tions that are not strong enough to imply pancyclicity may nevertheless imply a large cycle
spectrum. Jacobson and Lehel asked how small the cycle spectrum can be when G is a
k-regular Hamiltonian graph. For n divisible by 2k, they constructed k-regular Hamiltonian
graphs G with s(G) = k−2

2k
n+ k. Jacobson and Lehel, and independently Jiang, proved (but

did not publish) the result that s(G) ≥
√
a(m− n) when G is an n-vertex Hamiltonian

graph with m edges, where a is a positive constant. It follows that s(G) ≥
√

a
2
n when G is a

3-regular Hamiltonian graph. Neither Jacobson and Lehel nor Jiang attempted to optimize
the constant a.

Using ideas from a paper of Faudree et al. [42], we prove the following in Section 8.3
(joint with Rautenbach, Regen, and West).

Theorem ([77]). If G is a Hamiltonian graph with n vertices and m edges, then s(G) ≥√
4
7
(m− n).

On the other hand, if n is even and G = Kn/2,n/2, then s(G) ≤
√
m− n+ 1. Hence, the

largest constant a such that s(G) ≥
√
a(m− n) − O(1) satis�es 4/7 ≤ a ≤ 1. When G is

3-regular, our lower bound yields the following corollary.

Corollary ([77]). If G is a 3-regular Hamiltonian graph, then s(G) ≥
√

2
7
n.
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It is believed that a linear lower bound exists, matching the order of growth in the
example of Jacobson and Lehel. However, obtaining better bounds in the case that G is 3-
regular or even k-regular with 3 < k < n/2 will require di�erent ideas from those developed
in our paper. This question is a direction for future research.

1.8 Background material

This section provides a brief introduction to common terms and concepts.

Graphs

A graph G consists of a set V (G) of vertices and a set E(G) of edges ; each edge is an
unordered pair of vertices. Two vertices are adjacent if together they form an edge. Unless
otherwise stated, all graphs are �nite. To improve readability, when u and v are adjacent
vertices in G, we write uv ∈ E(G) or vu ∈ E(G) instead of {u, v} ∈ E(G). The neighborhood
of a vertex u in a graph G, denoted NG(u) (or N(u) when G is clear from context), is the set
of all vertices adjacent to u. The degree of u in G, denoted dG(u) (or d(u) when G is clear
from context), is |N(u)|. The closed neighborhood of u, denoted N [u], is N(u) ∪ {u}. The
maximum degree of a graph G, denoted ∆(G), is the maximum among all vertex degrees
in G; similarly, the minimum degree is denoted by δ(G). If all vertices in G have degree k,
then we say that G is k-regular or simply regular.

A graph F is a subgraph of G if there is an injection f : V (F ) → V (G) such that
uv ∈ E(F ) implies that f(u)f(v) ∈ E(G). We say that F is a spanning subgraph if f is also
a bijection. If f has the stronger property that uv ∈ E(F ) if and only if f(u)f(v) ∈ E(G),
then F is an induced subgraph of G.

Another name for a spanning subgraph of G is a factor. A k-factor of G is a k-regular
spanning subgraph of G. A matching in G is a subgraph with maximum degree at most 1.
A perfect matching in G is a 1-factor.

An isomorphism from a graph G to a graph H is a bijection f : V (G)→ V (H) such that
uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We say that G and H are isomorphic if there is
an isomorphism from G to H. Note that isomorphism de�nes an equivalence relation on the
class of all graphs. We often use the same notation for a graph and its isomorphism class.
When G denotes an isomorphism class, we say that G is a subgraph of a graph H if some
member of G is a subgraph of H.

A path with n vertices is a graph whose vertices can be labeled v1, . . . , vn so that the edge
set is {vivi+1 : 1 ≤ i < n}. We specify a path with vertices v1, . . . , vn in order as 〈v1, . . . , vn〉.
The endpoints of 〈v1, . . . , vn〉 are v1 and vn; the other vertices are internal vertices. We use
Pn to denote the isomorphism class of n-vertex paths. A cycle with n vertices is a graph
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whose vertices can be labeled v1, . . . , vn so that the edge set is {vivi+1 : 1 ≤ i < n}∪ {vnv1}.
We specify a cycle with vertices v1, . . . , vn in order as [v1, . . . , vn]. We use Cn to denote
the isomorphism class of n-vertex cycles. An n-vertex graph is Hamiltonian if it contains a
spanning subgraph that is a cycle. The length of a path or cycle is the number of edges it
contains. A graph is acyclic if it does not contain a cycle as a subgraph.

A walk W in a graph G is a list u1, . . . , uk of vertices (not necessarily distinct) such that
ujuj+1 is an edge in G for 1 ≤ j < k. We say that the walk u1, . . . , uk traverses the edges
of the form ujuj+1. A u, v-walk is a walk that starts at u and ends at v. The length of a
walk is one less than the length of its list. A walk is open if it starts and ends at di�erent
vertices and is closed otherwise. A circuit is a closed walk. An Eulerian circuit is a circuit
that traverses each edge in G exactly once.

A graph G is connected if for all u, v ∈ V (G), there is a u, v-walk in G. The components of
G are the maximal connected subgraphs of G. If u and v are vertices in the same component
of G, the distance between u and v, denoted dist(u, v), is the length of a shortest u, v-walk
in G. Note that a shortest u, v-walk does not repeat vertices and is therefore a path. The
diameter of a connected graph G, denoted diam (G), is max{dist(u, v) : u, v ∈ V (G)}. When
G contains a cycle as a subgraph, the girth of G is the length of a shortest cycle in G.

A vertex u is a leaf in G if u has degree 1. When u is a leaf, its neighborhood consists
of one vertex v, and uv is called a pendant edge. A tree is an acyclic connected graph.

The complete graph Kn is the graph on n vertices in which each of the
(
n
2

)
unordered

pairs forms an edge. A graph G is bipartite if the vertices can be partitioned into two sets
X and Y (possibly empty) such that each edge has an endpoint in X and an endpoint in Y .
When we want to name the vertex partition, we may introduce G as an X, Y -bigraph. The
complete bipartite graph Km,n, or biclique, is the X, Y -bigraph with |X| = m and |Y | = n

such that x and y are adjacent whenever x ∈ X and y ∈ Y .
An independent set in a graph is a set of pairwise nonadjacent vertices. A graph G is

r-partite if the vertices can be partitioned into r (possibly empty) independent sets. Note
that a graph is bipartite if and only if it is 2-partite. The complete r-partite graph Kn1,...,nr

consists of r disjoint independent sets X1, . . . , Xr with |Xj| = nj such that x and y are
adjacent whenever x and y are not contained in the same set.

The chromatic number of G, denoted χ(G), is the least r such that it is possible to color
the vertices of G with r colors so that adjacent vertices receive di�erent colors. Equivalently,
χ(G) is the least r such that G is an r-partite graph. An s-edge-coloring is a function that
assigns to each edge a color from a set of size s.

A clique in a graph is a set of pairwise adjacent vertices. Cliques and independent sets
are complementary objects. The clique number of G, denoted ω(G), is the size of a largest
clique in G, and the independence number, denoted α(G), is the size of a largest independent
set in G.
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Graph Operations

It is often useful to construct new graphs by modifying speci�ed graphs in particular ways.
The more common modi�cations have special notation. The complement of G, denoted G,
is the graph with the same vertex set as G such that uv is an edge in G if and only if u and
v are non-adjacent in G.

If G is a graph and R ⊆ V (G), then the graph obtained from G by deleting R, denoted
G−R, is the subgraph of G with vertex set V (G)−R and edge set {xy ∈ E(G) : {x, y}∩R =

∅}. When R is a singleton {v}, we use G − v for G − {v}. If S ⊆ V (G), then the graph
obtained by deleting the vertices outside of S from G is the subgraph of G induced by S,
denoted G[S].

When e is an edge, the graph obtained from G by deleting e, denoted G − e, has the
same vertex set and has edge set E(G)− {e}. Note that a graph F is a subgraph of G if it
is obtainable from G by deleting vertices and/or edges, F is an induced subgraph of G if it
is obtainable by deleting only vertices, and F is a spanning subgraph if it is obtainable from
G by deleting only edges.

When G1 and G2 are graphs, the union G1∪G2 is the graph with vertex set V (G1)∪V (G2)

and edge set E(G1)∪E(G2). The disjoint union G1 +G2 is the union of disjoint copies of G1

and G2. A decomposition of a graph G is a family of edge-disjoint subgraphs whose union is
G.

An automorphism of a graph G is an isomorphism from G to itself. An automorphism
is an expression of a symmetry in the graph; if the vertices of G are unlabeled and f is
an automorphism, then u and f(u) are indistinguishable in the sense that every statement
about u applies equally well to f(u). We say that G is edge-transitive if, for every pair of
edges e1 and e2, there is an automorphism of G that maps the vertex set of e1 to the vertex
set of e2.

If G is edge-transitive and e ∈ E(G), then the isomorphism class of G−e does not depend
on e. In this case, we write G− for G − e. Similarly, when G is edge-transitive, adding an
edge uv when u and v are non-adjacent yields a graph whose isomorphism class does not
depend on the choice of the pair. This graph is denoted by G+.

Directed Graphs

A directed graph (or digraph) D consists of a set V (D) of vertices and a set E(D) of edges.
Each edge is an ordered pair of vertices. When (u, v) ∈ E(D), we say that uv is an edge from
u to v, and we write uv ∈ E(D) instead of (u, v) ∈ E(D), for readability. An orientation of
a graph G is a directed graph obtained from G by replacing each edge uv in G with either
uv or vu in D. A tournament is an orientation of a complete graph.

In the context of directed graphs, a path with n vertices is a digraph whose vertices can be
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labeled v1, . . . , vn so that the edge set is {vivi+1 : 1 ≤ i < n}. As with undirected graphs, we
specify a path with vertices v1, . . . , vn in order as 〈v1, . . . , vn〉. The endpoints of 〈v1, . . . , vn〉
are v1 and vn; the other vertices are internal vertices. A cycle with n vertices is a digraph
whose vertices can be labeled v1, . . . , vn so that the edge set is {vivi+1 : 1 ≤ i < n}∪ {vnv1}.
We specify a cycle with vertices v1, . . . , vn in order as [v1, . . . , vn]. We use Cn to denote the
isomorphism class of n-vertex cycles. A digraph is acyclic if it does not contain a cycle as a
subgraph.

Other Conventions and Notation

We use lg(x) for log2(x). It is often useful to compare the order of growth of real-valued
functions; a common convention for expressing these relationships is called �Big-Oh notation�.
If f and g are functions, we write f(x) = O(g(x)) if there are positive constants c and x0

such that |f(x)| ≤ c|g(x)| whenever x ≥ x0. This is a common abuse of notation, since
technically O(g(x)) represents a set of functions. Similarly, we write f(x) = Ω(g(x)) if
there are positive constants c and x0 such that |f(x)| ≥ c|g(x)| whenever x ≥ x0. When
f(x) = O(g(x)) and f(x) = Ω(g(x)), we write f(x) = Θ(g(x)). We write f(x) = o(g(x)) if
limx→∞ |f(x)|/|g(x)| = 0.

Computational complexity theory is the study of how much of a resource (such as time
or memory) is needed to solve a computational problem. The complexity class P is the set
of all decision problems that can be solved in time that is bounded by a polynomial function
of the size of the input. The complexity class NP is the set of all decision problems that
can be solved with a non-deterministic algorithm in time that is bounded by a polynomial
function of the size of the input. A nondeterministic algorithm is a (deterministic) algorithm
A(x, s) that takes as input a problem instance x and a seed s and returns either �YES� or
�NO�. The seed is a bitstring; typically, a nondeterministic algorithm interprets the seed as
an encoding of some object, such as a graph or the prime factorization of an integer. A
nondeterministic algorithm solves a problem A if

• x is a �YES� instance of A implies that A(x, s) outputs �YES� for some seed s, and

• x is a �NO� instance of A implies that A(x, s) outputs �NO� for every seed s.

A nondeterministic algorithm solves a problem in polynomial time ifA(x, s) runs in time that
is bounded by a polynomial in the sizes of x and s, and, whenever x is a �YES� instance, there
is a seed s whose size is bounded by a polynomial function of the size of x such that A(x, s)

outputs �YES�. Since a deterministic algorithm A(x) lifts to a nondeterministic algorithm
A′(x, s) that makes no use of its seed, it is clear that P ⊆ NP. Most researchers believe the
inclusion is proper. It remains a fundamental problem to determine whether P = NP.

A problem A is NP-hard if a polynomial-time algorithm for A can be used to obtain
polynomial-time algorithms for each problem in NP. Since most researchers believe P 6=
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NP, a proof that a problem is NP-hard is considered to be strong evidence that it does
not admit a polynomial-time algorithm for its solution. If A is also in NP, then A is
NP-complete. Cook [27] proved that a particular problem in NP, called SAT, is NP-
complete. Hence, to resolve the question of P = NP, it su�ces to determine if SAT admits
a polynomial-time algorithm. Since Cook's groundbreaking result, many interesting and
natural problems have been shown to be NP-complete. In the context of graph theory, for
example, the problem of deciding if a given graph has chromatic number at most 3 is NP-
complete. The most commonly used technique for establishing that a problem A is NP-hard
is to reduce a problem B that is already known to be NP-hard to A, meaning that there is
a polynomial-time algorithm for B that uses a hypothetical polynomial-time algorithm for
A as a subroutine. When A is NP-complete, showing that A is in NP is typically (although
not always) easier than showing that A is NP-hard.

A partially ordered set (or poset) is a set X on which a binary relation ≤ is de�ned that
is re�exive (x ≤ x for all x ∈ X), antisymmetric (x ≤ y and y ≤ x imply x = y), and
transitive (x ≤ y and y ≤ z imply x ≤ z). Elements x and y are comparable if x ≤ y

or y ≤ x, and they are incomparable otherwise. A chain is a set of pairwise comparable
elements, and an antichain is a set of pairwise incomparable elements. The height of a poset
is the size of a largest chain, and the width is the size of a largest antichain. We sometimes
use the terminology partial order in preference to �partially ordered set�. A pre-partial order
is a set X on which a binary relation ≤ is de�ned that is re�exive and transitive.

Let X be a ground set. A partition of X is a family of nonempty disjoint subsets whose
union is X. When F1 and F2 are partitions of X, we say that F1 is a re�nement of F2 if
each A ∈ F1 is contained in some B ∈ F2. We also say that F1 re�nes F2 when F1 is a
re�nement of F2.
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Chapter 2

Degree Ramsey Theory

Ramsey theory is the study of the principle that large objects must contain smaller highly
structured objects. This principle holds in a surprisingly diverse set of contexts, and accord-
ingly Ramsey theory is an active area of research in several di�erent areas of mathematics.

In classical graph Ramsey theory, we are given a target graph G and seek a graph H

such that every 2-edge-coloring of H produces a monochromatic copy of G, in which case
we write H → G and say that H arrows or forces G and that H is a Ramsey host for G. (A
2-edge-coloring of H assigns one of two colors, traditionally red and blue, to each edge in
H.) More generally, when every s-edge-coloring of E(H) produces a monochromatic copy
of G, we write H s→ G; when some s-edge-coloring of E(H) avoids monochromatic copies of
G, then we write H s9 G.

Ramsey's Theorem guarantees for every G that such a graph H exists. For a �xed target
G, we seek Ramsey hosts that are extremal with respect to a particular property. Classical
Ramsey theory asks for a host with as few vertices as possible. In �size Ramsey theory�,
host graphs are sought with as few edges as possible. We focus on �degree Ramsey theory�,
where we seek host graphs with small maximum degree.

This chapter is based on joint work with B. Kinnersley and D. B. West that appears in
[67] and joint work with T. Jiang and D. B. West that appears in [60].

2.1 Introduction

The Ramsey number R(G) (or R(G; s)) is the smallest number of vertices in a graph H such
that H → G (or H s→ G). Exact Ramsey numbers are known only for a handful of graphs.
Obtaining bounds on the Ramsey number of the complete graph Kn is a classic problem. It
is known that Ω(n2n/2) < R(Kn) < (4 + o(1))n, and improving the base of the exponential
function in either bound would constitute a major advance. The growth of R(G) is quite
di�erent when the maximum degree of vertices in G, denoted ∆(G), is bounded. Chvatál,
Rödl, Szemerédi, and Trotter [24] proved that for each k, there exists a constant ck such
that for each n-vertex target graph G with ∆(G) ≤ k, the Ramsey number of G satis�es
R(G) ≤ ckn.

The size Ramsey number of a graphG, denoted R̂(G), is min {|E(H)| : H → G}. Clearly,

13



R̂(G) ≤
(
R(G)

2

)
for each graph G. In a paper by Erd®s, Faudree, Rousseau, and Schelp [37],

a proof credited to Chvatál shows that equality holds when G is a complete graph. Beck [9]
showed that R̂(Pn) ≤ cn, where c is a constant and Pn is the path on n vertices. Beck
then asked whether the size Ramsey number of graphs of bounded maximum degree grows
linearly, analogously to the Ramsey number. This is the case for trees [48] and for cycles [58].
However, Rödl and Szemerédi [95] answered Beck's question in the negative by exhibiting
an in�nite family F of graphs with maximum degree 3 such that if G is an n-vertex graph
in F , then R̂(G) ≥ c1n(log n)c2 , where c1 and c2 are positive constants. (See [10, 29, 96] for
further results on size Ramsey number.)

More generally, given a graph parameter ρ, the ρ-Ramsey number, denoted Rρ(G; s), is
min{ρ(H) : H

s→ G}. Folkman [46] proved that in the 2-color setting, the clique Ramsey
number of a graph G equals its clique number ω(G), and Ne²et°il and Rödl [85] extended
this to s colors. Burr, Erd®s, and Lovász [21] showed that the chromatic Ramsey number
Rχ(G) equals the Ramsey number of the family of homomorphic images of G, where the
Ramsey number of a family G is the minimum number of vertices in a graph H such that
every 2-coloring of E(H) produces a monochromatic copy of some graph in G. Since every
homomorphic image of Kn contains Kn, it follows that Rχ(Kn) = R(Kn). They also con-
jectured that min{Rχ(G; s) : χ(G) = k} equals the easy lower bound ks + 1. When s = 2,
Zhu [112] proved this for k ≤ 5, but otherwise it remains open.

In this chapter, we study the degree Ramsey number R∆, where ∆(G) denotes the max-
imum degree of G. Note that R∆(G) is min {∆(H) : H → G}. Establishing the degree
Ramsey number of a graph appears to be a more di�cult problem than establishing its
Ramsey number. Indeed, for each graph G and each integer k, it is a �nite problem to check
whether R(G) > k. By contrast, deciding if R∆(G) > k may not even be a computable
problem.

Nevertheless, the degree Ramsey number is known for some graphs. The result of Burr,
Erd®s, and Lovász [21] about Rχ implies that R∆(Kn) = R(Kn)− 1. More recently, Kurek
and Ruci«ski [73] proved the stronger statement that ifH → Kn, thenH contains a subgraph
with average degree at least R(Kn)− 1. Burr, Erd®s, and Lovász [21] also characterized the
set of graphs H such that H → K1,n. Their characterization immediately implies that
R∆(K1,n) is 2n− 2 when n is even and 2n− 1 when n is odd. In Section 2.2, we generalize
this by obtaining the degree Ramsey number of the double-star Sa,b, the tree with adjacent
vertices u and v of degrees a and b and no other non-leaf vertices. The graph K1,n arises as
S1,n.

In studying the size of monochromatic components of 2-edge-colored graphs, Alon, Ding,
Oporowski, and Vertigan [4] gave a short argument that proves R∆(Pn; 2s) ≤ 2s for all n.
In Section 2.2, we present a simple extension of the upper bound to show that R∆(T ; s) ≤
2s(∆(T ) − 1) for each tree T . On the other hand, Thomassen [109] proved that every

14



graph with maximum degree at most 3 can be 2-edge-colored so that all monochromatic
components are subgraphs of P6. Consequently, R∆(Pn) = 4 for all n ≥ 7. In establishing
the linearity of the size Ramsey numbers of cycles [58], Haxell et al. also showed that R∆(Cn)

is at most a constant c, where Cn denotes the cycle on n vertices. Because their proof uses
Szemerédi's Regularity Lemma, c is quite large. In Section 2.4, we show that R∆(Cn) ≤ 96

when n is even and R∆(Cn) ≤ 3458 in general. For small cycles, exact results are known. It
follows from [21] that R∆(C3) = 5, and R∆(C4) = 5 [67].

When G is a tree or a cycle, the degree Ramsey number of G is bounded by a function
of ∆(G). It is natural to ask about other families in which the degree Ramsey number is
bounded by a function of the maximum degree. In Section 2.3, we explore this question.

2.2 Trees

Burr, Erd®s, and Lovász [21] began the study of R∆ by characterizing the set of all Ramsey
hosts for the star K1,m, and they applied their characterization to obtain the degree Ramsey
numbers of stars. We extend these results in two ways: �rst to multiple colors, and second
to double-stars.

Multicolored Stars

Burr, Erd®s, and Lovász [21] proved that H → K1,m if and only if ∆(H) ≥ 2m − 1 or H
is (2m− 2)-regular with an odd number of edges; it follows that R∆(K1,m) is 2m− 2 when
m is even and 2m− 1 otherwise. When m is odd, the characterization of Ramsey hosts for
stars extends naturally to the s-color setting.

Proposition 2.2.1. If m is odd, then H s→ K1,m if and only if ∆(H) ≥ s(m− 1) + 1.

Proof. By the pigeonhole principle, ∆(H) ≥ s(m − 1) + 1 implies that H s→ K1,m. For
the converse, suppose that m is odd and ∆(H) ≤ s(m − 1). Construct a graph H ′ that
contains H as a subgraph and is s(m−1)-regular. We claim that H ′ s9 K1,m. By Petersen's
Theorem [88], H ′ decomposes into 2-factors. Group the 2-factors into s sets of size (m−1)/2,
and use one color for the edges of the 2-factors in a single group. Because each color class is
(m− 1)-regular, no monochromatic copy of K1,m occurs.

While the characterization of multicolor Ramsey hosts for K1,m appears more di�cult
when m is even, computing the multicolor degree Ramsey number of stars is easy.

Proposition 2.2.2. If s ≥ 2, then R∆(K1,m; s) =

s(m− 1) if m is even

s(m− 1) + 1 if m is odd.

15



a

. . .

b

. . .

Figure 2.1: The double-star Sa,b.

Proof. When m is odd, the result follows from Proposition 2.2.1. Suppose that m is even.
First, we show that R∆(K1,m; s) > s(m−1)−1. Let H be a graph with ∆(H) ≤ s(m−1)−1;
we show that H s9 K1,m. By Vizing's Theorem [110], H decomposes into a family of
matchings M1, . . . ,Mt where t ≤ ∆(H) + 1 = s(m − 1). Group the matchings into s sets
of size at most m − 1, and color edges of H according to the parts. Because the subgraph
induced by each color class has maximum degree at most m− 1, no monochromatic copy of
K1,m occurs.

Bollobás, Saito, and Wormwald proved that if t is odd and r > t, then there are r-regular
graphs that do not have a t-factor [15]. Let H be an s(m− 1)-regular graph that does not
contain an (m − 1)-factor. An s-edge-coloring of H that avoids a monochromatic copy of
K1,m requires that every vertex have degree m − 1 in each color. Hence, each color class
would yield an (m− 1)-factor of H, which is impossible. It follows that H s→ K1,m.

Double-Stars

The double-star Sa,b is the tree whose non-leaves are adjacent vertices of degrees a and b; see
Figure 2.1. Because K1,m = S1,m, the family of double-stars generalizes the family of stars.
Our second extension of the star result of Burr, Erd®s, and Lovász [21] is the determination
of the degree Ramsey number of double-stars. Our upper bound requires the concept of a
graph blowup.

De�nition 2.2.3. A graph G′ is a blowup of G if G′ is obtained from G by replacing the
vertices of G with independent sets and replacing the edges of G with complete bipartite
graphs. The independent sets in G′ that replace vertices of G are called clusters. If each
vertex in G is replaced by an independent set of size k, then we say that G′ is the k-blowup
of G.

Theorem 2.2.4. If a ≤ b, then R∆(Sa,b) =

2b− 2 if a < b and b is even

2b− 1 otherwise.

Proof. Because K1,b is a subgraph of Sa,b, it follows that R∆(Sa,b) ≥ R∆(K1,b). By Propo-
sition 2.2.2 with s = 2, we have that R∆(K1,b) is 2b − 2 when b is even and 2b − 1 when
b is odd. This su�ces for the lower bound except when a = b and b is even. Let H be a
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connected graph with ∆(H) ≤ 2b− 2, and let H ′ be a (2b− 2)-regular connected graph that
contains H. Because H ′ is a connected graph in which every vertex has even degree, H ′

contains an Eulerian circuit C. Starting with an arbitrary vertex v, color the edges of H ′

by alternating red and blue along C. If u is a vertex in H ′ and u 6= v, then di�erent colors
are assigned when entering and leaving u, so u is incident to b− 1 red edges and b− 1 blue
edges. Similarly, except at the beginning and end of C, di�erent colors are assigned when
entering and leaving v. If H ′ has an even number of edges, di�erent colors are assigned to
the �rst and last edges in C, and v also has b− 1 incident red edges and b− 1 incident blue
edges. If H ′ has an odd number of edges, then the �rst and last edges are both colored red,
and v is incident to b red edges and b − 2 blue edges. Because every vertex except v has
degree at most b− 1 in each color, it follows that H ′ 6→ Sb,b.

For the upper bound, we �rst show that R∆(Sa,b) ≤ 2b − 1. Let H be the complete
bipartite graph K2b−1,2b−1 with bipartition (X, Y ). We claim that H → Sa,b; in fact, we
show that H → Sb,b. Suppose for a contradiction that there is a {red, blue}-edge-coloring of
H that does not contain a monochromatic copy of Sb,b. We label the vertices of H red or
blue according to the majority color of incident edges. We claim that X does not contain
vertices of di�erent colors. Indeed, if u ∈ X has at least b incident red edges and v ∈ X has
at least b incident blue edges, then because |Y | = 2b− 1, there is a vertex w ∈ Y such that
uw is red and vw is blue. If w is red, then uw is the center edge in a red copy of Sb,b, and
if w is blue, then vw is the center edge of a blue copy of Sb,b. It follows that all vertices in
X have the same color, say red. Therefore more than half the edges in H are red, and Y
contains at least one red vertex w. Now each red edge incident to w is the center edge of a
red copy of Sb,b, a contradiction.

When a < b and b is even, we improve the upper bound. Let H be the (b − 1)-blowup
of an odd cycle of length at least 5. Let A1, . . . , At be the clusters of H, indexed in order
around the cycle. Note that H is 2(b − 1)-regular. We claim that H → Sa,b. Suppose for
a contradiction that some {red, blue}-edge-coloring of H avoids a monochromatic copy of
Sa,b. Each vertex v in G is labeled red (if v is incident to at least b red edges), blue (if v is
incident to at least b blue edges), or tied (if v has incident to b−1 edges of each color). Note
that not all vertices are tied, because then the red subgraph of H would be (b− 1)-regular
with an odd number of vertices, which is impossible since b− 1 is odd.

Because H does not contain triangles, if uv is red when u is red and v is red or tied,
then uv is the center edge of a red copy of Sa,b. Therefore if uv is red and u is red, it follows
that v is blue. Because each cluster has size b− 1 and a red vertex has b incident red edges,
it follows that if cluster Aj contains a red vertex, then both neighboring clusters Aj−1 and
Aj+1 contain at least one blue vertex. After following the clusters around the cycle, it follows
that some cluster Aj contains a red vertex u and a blue vertex v. Because u has at least b
incident red edges, v has at least b incident blue edges, and the common neighborhood of all
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vertices in Ai has size 2b− 2, there exists a vertex w such that uw is red and vw is blue. If
w is red or tied, then uw is the center of a red copy of Sa,b. If w is blue or tied, then vw is
the center of a blue copy of Sa,b. The contradiction implies that H → Sa,b.

The multicolor degree Ramsey number of double-stars is studied in [67].

Paths

Paths have maximum degree 2. As the length of a path grows, how does the required degree
in a Ramsey host grow? As it turns out, the required degree in the host graph is bounded
by a constant in terms of the number of colors.

Alon et al. proved that R∆(Pn; s) = 2s when n is su�ciently large in terms of s [4].
The upper bound R∆(Pn; s) ≤ 2s holds for all n; we present a generalization to trees in
Theorem 2.2.10. In fact, almost every graph with maximum degree at most 2s is an s-color
Ramsey host for a long path.

Theorem 2.2.5. Let s and m be �xed integers, let Gn be the set of all labeled, n-vertex
graphs with maximum degree at most 2s, and let Fn be the set of all graphs H ∈ Gn such
that H s9 Pm. As n→∞, the ratio |Fn|/|Gn| tends to zero.

Proof. We obtain a lower bound on |Gn| and an upper bound on |Fn| in terms of auxiliary
families.

Let A be the set of nonempty subsets of [2s], and let Hn be the family of all labeled
n-vertex A-edge-colored graphs with maximum degree at most 2s. First, we give a lower
bound on |Hn| when n is even. Fix a ground set X of size n. For each 2s-tuple (M1, . . . ,M2s)

of matchings on X, we obtain a graph H in Hn by adding an edge uv to H whenever uv
is an edge in some matching and coloring uv with the set {j : uv ∈ Mj}. It follows that
|Hn| ≥ z2s, where z is the number of perfect matchings on X. It is well known that
z =

∏n/2
j=1(2j − 1) = n!

2n/2(n/2)!
, so z ∼

√
2
(
n
2e

)n/2 by Stirling's formula. Hence |Hn| ≥ z2s ≥
esn ln(n/2e) for su�ciently large n. Moreover, |Hn| ≤ |Gn||A|ns because each graph in Hn is
uniquely obtained by selecting a graph in Gn and choosing a color from A for each edge, and
there are at most ns edges. It follows that

|Gn| ≥
|Hn|
|A|ns

≥ esn ln(n/2e)

4s2n
≥ esn ln(n/2e)−(s2 ln 4)n ≥ esn lnn−αn,

where α is a constant.
Next, we give an upper bound on |Fn|. When the maximum degree is bounded, the

diameter of a graph must grow with the number of vertices. Let c be the maximum number
of vertices in a graph with maximum degree at most 2s and diameter less than m− 1. For
each graph H ∈ Fn, there is an s-edge-coloring of H witnessing H s9 Pm. It follows that
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every monochromatic component contains at most c vertices, or else some monochromatic
component has diameter at least m− 1 and therefore contains Pm.

We use the small monochromatic components to assign distinct codes to each graph in
Fn. The code of a graph H ∈ Fn is an s-tuple (H1, . . . , Hs), where each Hj is a spanning
subgraph of H whose components have at most c vertices. Moreover, the Hj are chosen so
that their union is H, implying that distinct graphs in Fn are assigned distinct codes. Let
Q be the set of all graphs on X with maximum degree at most 2s whose components have
at most c vertices. We have |Fn| ≤ |Q|s.

We assign distinct codes to graphs in Q. Let H ′ ∈ Q. The �rst part of the code for H ′

is a composition of n that records the sizes of the components of H ′. A composition of n is
a list (n1, . . . , nk) of positive integers where n =

∑
nj. Fix an indexing {v1, . . . , vn} of X.

Given H ′, we obtain its composition by indexing the components C1, . . . , Ck in order of the
least indexed vertex they contain, and set nj = |V (Cj)|. It is well known that there are 2n−1

compositions of n.
The second part of the code for H ′ records the distribution of vertices to components

using a single list of n−k vertices. The list begins with all vertices in C1 except for the least
indexed vertex in C1, followed by all vertices in C2 except for the least index vertex in C2,
and continues until all components are recorded. The �rst and second parts of the code for
H ′ are su�cient to recover the partition of X into vertex sets of components of H ′. There
are at most nn−k possible choices for the second part of the code. Moreover, each component
has size at most c, so k ≥ n/c. It follows that there are at most e(1−1/c)n lnn choices for the
second part.

The third part of the code for H ′ records the edge relation. For each vertex v in H ′, we
record a 2s-tuple (u1, . . . , u2s) where each uj is either one of at most c− 1 other vertices in
the same component as v (indicating that vuj is an edge in H ′) or a special indicator value
designed to �ll coordinates when v has degree less than 2s. There are at most c2s possible
2s-tuples for each vertex, and therefore at most c2sn possible codes for the third part.

Multiplying all choices for the three parts together, we have

|Q| ≤ 2n−1 · e(1−1/c)n lnn · c2sn ≤ e(n−1) ln 2+(1−1/c)n lnn+2sn ln c,

and it follows that |Fn| ≤ e(1−1/c)sn lnn+βn, where β is a constant. Combining our bounds on
|Gn| and |Fn|, we have

|Fn|
|Gn|

≤ e(1−1/c)sn lnn+βn

esn lnn−αn ≤ e(α+β)n−(s/c)n lnn.

The bound tends to zero as n grows.

For the lower bound R∆(Pn; s) ≥ 2s, Alon et al. [4] proved that for each s, there exists
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(a) (b) (c) (d) (e)

Figure 2.2: Petersen graph as a Ramsey host for P3, P4, and P5. Red edges are thick, and
blue edges are dashed.

a constant c such that whenever ∆(H) ≤ 2s − 1, there is an s-edge-coloring of H in which
every monochromatic component has at most c edges. When s = 2, more precise results
are known. Thomassen [109] showed that if ∆(H) ≤ 3, then there is a 2-edge-coloring of H
in which every monochromatic component is a subgraph of P6. Consequently, R∆(Pn) = 4

when n ≥ 7. Combining the results of [4] and [109] with some observations about the
Petersen graph, we �nd R∆(Pn) exactly for all paths except P6.

Theorem 2.2.6. R∆(Pn) =


n− 1 n ≤ 4

3 n ∈ {4, 5}
4 n ≥ 7.

Proof. The results for n ≤ 3 are clear. For n ≥ 7, the result follows from the theorems of
Alon et al. [4] and Thomassen [109]. For n ∈ {4, 5}, the lower bound R∆(Pn) ≥ 3 holds
because if ∆(H) ≤ 2, then H is the disjoint union of paths and cycles, and therefore H can
be 2-edge-colored so that monochromatic components are subgraphs of P3.

It remains to show that R∆(Pn) ≤ 3 for n ∈ {4, 5}. In fact, we prove that the Petersen
graph (see Figure 2.2a) is a Ramsey host for P4 and P5. Let H be the Petersen graph. Note
that H is Pk-transitive for each k ∈ {1, 2, 3, 4}, meaning that if G1 and G2 are copies of Pk
in H, then there is an automorphism that restricts to an isomorphism from G1 to G2. This
is well known and is easy to prove using the algebraic description of H as the disjointness
graph on

(
[5]
2

)
.

First, we show that H → P4. Consider a {red, blue}-edge-coloring of H, and suppose for
a contradiction there is no monochromatic copy of P4. Because H contains cycles of odd
length, it has a monochromatic copy of P3, which we may assume is red. Because H is P3-
transitive, we may assume that the red copy of P3 is at the top of the outer 5-cycle. The red
P3 extends to a red P4 unless the edges incident to its endpoints are blue (see Figure 2.2b).
Now the blue copies of P3 extend to a blue P4 unless the edges incident to its endpoints
on the outer cycle are red, but this forces a red P4 (see Figure 2.2c). It follows that every
{red, blue}-edge-coloring of H contains a monochromatic copy of P4.
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Next, we show that H → P5. Consider a {red, blue}-edge-coloring of H, and suppose
for a contradiction there is no monochromatic copy of P5. We have seen that there is a
monochromatic copy of P4. Because H is P4-transitive, we may assume it occurs in red
as shown in Figure 2.2d. The red P4 extends to a red P5 unless the edges incident to
its endpionts are blue, but this forces a blue P5 (see Figure 2.2e). It follows that every
{red, blue}-edge-coloring of H contains a monochromatic copy of P5.

It remains open whether R∆(P6) is 3 or 4. A graph H is subcubic if ∆(H) ≤ 3. Let H
be a subcubic graph. Thomassen's proof that H admits a 2-edge-coloring in which every
monochromatic component is a subgraph of P6 is long. Here, we give a short proof of the
weaker result that H has a 2-edge-coloring in which every monochromatic component has
at most 32 vertices.

Lemma 2.2.7. Let F be the graph obtained from P7 by adding a pendant leaf to the center
vertex. If G is a subcubic bipartite graph, then there is a 2-edge-coloring of G under which
all monochromatic components are subgraphs of F .

Proof. Because every bipartite graph with maximum degree k is a subgraph of a k-regular
bipartite graph, we may assume that G is 3-regular. Because G is a 3-regular bipartite
graph, Hall's Theorem implies that G contains a perfect matching M . Let X and Y be
the partite sets of G, with X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, indexed so that
M = {xjyj : 1 ≤ j ≤ m}.

Let H = G −M . Because H is 2-regular, it consists of disjoint cycles. We 2-color the
edges of H as follows. If C is a cycle with length divisible by four, then we color the edges of
C so that the monochromatic components are copies of P3 with endpoints at vertices in Y .
Otherwise, if C has length 4k + 2, then we color the edges of C so that the monochromatic
components are copies of P3 with endpoints at vertices in Y , except that one monochromatic
component is a copy of P5 with endpoints at vertices in Y .

We extend the edge-coloring of H to an edge-coloring of G as follows. Consider a vertex
xj ∈ X. By construction, both edges in H incident to xj receive the same color; we assign
the opposite color to xjyj. Monochromatic components in H may only grow to larger
monochromatic components in G via edges in M , which can only add pendant leaves to
vertices in Y . Hence, monochromatic copies of P3 can grow to copies of P4 or P5, and
monochromatic copies of P5 can grow to as large as F if it grows at each vertex in Y in the
copy of P5. Hence each monochromatic component is a subgraph of F .

Theorem 2.2.8. If G is a subcubic graph, then there is a 2-edge-coloring of G in which each
monochromatic components has at most 32 vertices.

Proof. We may assume that G is connected. It follows from Brooks' Theorem that χ(G) ≤ 4,
with equality only if G = K4. If G = K4, then there is a 2-edge-coloring of G in which each
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monochromatic component is a copy of P4. Hence, we may assume that χ(G) ≤ 3. By
Lemma 2.2.7, we may assume that χ(G) = 3.

Let V1, V2, V3 be a partition of V (G) into three independent sets such that if u ∈ Vj and
i < j, then u has a neighbor in Vi. Hence, each vertex u ∈ V3 has a neighbor u1 ∈ V1 and a
neighbor u2 ∈ V2. Let H be the graph on V1∪V2 obtained from G by deleting V3 and adding
the edges of the form u1u2 for u ∈ V3 that are not already present in G. Because H is a
subcubic bipartite graph, Lemma 2.2.7 implies that there is a 2-edge-coloring f of H such
that each monochromatic component is a subgraph of the graph F speci�ed in the lemma.

We color the edges of G as follows. Edges in [V1, V2] are given the same color they have
under f . It remains to color edges incident to vertices in V3. If u ∈ V3, then we color uu1

and uu2 in G with the same color as u1u2 in H, and we use the opposite color on a third
edge incident to u, if present in G.

In progressing from H to G, monochromatic components may grow via edges incident to
vertices in V3. Note that for each vertex u ∈ V3, our coloring only assigns the same color,
say red, to a pair of edges {uu1, uu2} incident to u if u1u2 is a red edge in H. Therefore
monochromatic components in H can grow to become a monochromatic component in G

either by attaching pendant leaves to vertices in H or by adding a common neighbor to
vertices that were adjacent in H. In particular, no two components of H having the same
color can combine in G. Because each vertex in H has at most three neighbors in V3, the
monochromatic component in G corresponding to a monochromatic component of H with
k vertices has at most 4k vertices. Because each monochromatic component in H has order
at most 8, it follows that each monochromatic component in G has at most 32 vertices.

General Trees

T. Jiang observed that the argument of Alon et al. generalizes to give upper bounds on
the degree Ramsey numbers of trees. We include this short proof due to Jiang because we
will extend these ideas to give upper bounds on the degree Ramsey numbers of cycles in
Section 2.4. We need a short, well-known lemma.

Lemma 2.2.9. If r is an integer with r ≥ 2, and H has average degree at least 2(r − 1),
then H contains a subgraph with minimum degree at least r.

Theorem 2.2.10 ([60]). If T is a tree and H is a graph with average degree at least
2s(∆(T )− 1) and girth larger than 2|V (T )|, then H s→ T .

Proof. Let r = ∆(T ), and consider an s-edge-coloring of H. By the pigeonhole principle,
some color class has average degree at least 2(r − 1), and by Lemma 2.2.9, H contains a
monochromatic subgraph H ′ with minimum degree at least r. Let u be a vertex in H ′.
Because H ′ has minimum degree at least r and girth larger than 2|V (T )|, the subgraph of
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H ′ induced by {v : distH′(v, u) ≤ |V (T )|} is a complete r-ary tree of depth |V (T )|. Hence
H ′ contains a monochromatic copy of T .

Corollary 2.2.11 ([60]). If T is a tree, then R∆(T ; s) ≤ 2s(∆(T )− 1).

Proof. For each k and each g, there is a k-regular graph with girth at least g [39].

The result of Alon et al. [4] that R∆(Pn; s) = 2s shows that Corollary 2.2.11 is sharp
when T is a path. In [67], it is shown that for each ε > 0, there is an s such that for all
su�ciently large k, there exists a tree T with ∆(T ) = k such that R∆(T ; s) ≥ (2−ε)s(k−1).

By Corollary 2.2.11, within the family of trees, the degree Ramsey number is bounded
by a function of the number of colors and the maximum degree. In Section 2.3, we consider
generalizations to larger families.

2.3 R∆-bounded Families

Perhaps the most interesting question about the degree Ramsey parameter is the following.

Question 2.3.1. Is R∆(G; s) is bounded by some function of ∆(G) and s?

Question 2.3.1 seems di�cult. We have seen that when G is restricted to the family
of trees, the answer is yes. By way of analogy with Gyárfás' concept of χ-bounded graph
families, we introduce R∆-bounded families. A family G of graphs is R∆-bounded if there is
a function f such that R∆(G; s) ≤ f(∆(G), s) for each G ∈ G, and G is weakly R∆-bounded
if there is a function f such that R∆(G) ≤ f(∆(G)) for each G ∈ G. By Corollary 2.2.11,
the family of trees is R∆-bounded. Question 2.3.1 is equivalent to asking whether the family
of all graphs is R∆-bounded.

Which other graph families are R∆-bounded? In other words, which graph families have
sparse Ramsey hosts? Positive progress toward Question 2.3.1 is made by proving that a
larger graph family is R∆-bounded. Alternately, Question 2.3.1 can be refuted by exhibiting
a single family that fails to be R∆-bounded.

First, we adapt the proof of Burr et al. on the chromatic Ramsey number [21] to show
that the family of all blowups of graphs in an R∆-bounded family is R∆-bounded. (See
De�nition 2.2.3 for the de�nition of d-blowup.) We need a bipartite version of Ramsey's
Theorem: for each d and s, there is an m such that Km,m

s→ Kd,d. Let Bs(d) be the
minimum m such that Km,m

s→ Kd,d. Currently, the best known bound for s = 2 is that
B(d) ≤ (1 + o(1))2d+1 log2 d [26].

Let Bk
s be the iterated composition of Bs with itself k times. For example, B2

s (d) =

Bs(Bs(d)) and B0
s (d) = d.

Theorem 2.3.2. If k = R∆(G; s) and G′ is the d-blowup of G, then R∆(G′; s) ≤ kBk+1
s (d).
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Proof. Let H be a graph with ∆(H) = k such that H s→ G, let mj = Bj
s(d) for j ≥ 0, and

let H ′ be the mk+1-blowup of H. We show that H ′ s→ G′. Fix an s-edge-coloring of H ′. By
Vizing's Theorem [110], the edges ofH can be partitioned into k+1 matchingsM1, . . . ,Mk+1.
Each edge uv in H corresponds to a copy of Kmk+1,mk+1

in H ′. Because mk+1 = Bs(mk),
each s-edge-coloring of Kmk+1,mk+1

contains a monochromatic copy of Kmk,mk . For each edge
uv inMk+1, �nd a monochromatic copy of Kmk,mk and delete all vertices in the u-cluster and
v-cluster that are not involved. For each vertex w in H not saturated by Mk+1, arbitrarily
select a set of mk vertices and delete the others. After processing Mk+1, all clusters contain
mk vertices. Iterate this process for the remaining matchings to obtain a blowup H ′0 of H in
which each cluster contains d vertices and the bicliques joining clusters are monochromatic.

Construct an s-edge coloring of H by assigning to uv the common color of the biclique
joining the u-cluster and v-cluster in H ′0. Because H s→ G, a monochromatic copy of G
occurs, and this copy lifts to a monochromatic copy of G′ in H ′0. It follows that H

′ s→ G′.

Corollary 2.3.3. Let F be a family of graphs, and let G be the family of blowups of graphs
in F . If F is R∆-bounded, then so is G. If F is weakly R∆-bounded, then so is G.

Proof. Let G ∈ G be a blowup of a graph F ∈ F . Because adding isolated vertices does
not change the degree Ramsey number, we may assume that G and F contain no isolated
vertices. Note that if d is the maximum size of a cluster in G, then G is a subgraph of
the d-blowup G′ of F . Because F has no isolated vertices, ∆(G′) ≥ d. By Theorem 2.3.2,
R∆(G; s) ≤ R∆(G′; s) ≤ kBk+1

s (d) ≤ kBk+1
s (∆(G′)), where k = R∆(F ; s).

With Corollary 2.2.11 and Corollary 2.3.3, we obtain the following result.

Corollary 2.3.4. The family of blowups of trees is R∆-bounded.

While Corollary 2.3.4 provides a general family of graphs that is R∆-bounded, every
graph in the family is bipartite. Establishing R∆-boundedness for families of non-bipartite
graphs seems challenging. In Section 2.4, we show that the family of all cycles is weakly
R∆-bounded.

The iterated bipartite Ramsey number Bk
s (d) grows very rapidly with k and d, and the

bounding function obtained for the family of blowups of trees in Corollary 2.3.4 depends
on the iterated bipartite Ramsey numbers. Adapting the strategy of Corollary 2.2.11 yields
better bounds in this case. We need the following well-known lemma.

Lemma 2.3.5. For each g and k, there is a k-regular bipartite graph with girth at least g.

Theorem 2.3.6. Let T be a tree, and let G be the d-blowup of T . If m = Bs(d), then
R∆(G; s) ≤ 2sm

(
m
d

)2
(∆(T )− 1).
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Figure 2.3: The grid P6 � P10.

Proof. Let H0 be an (X, Y )-bigraph with girth larger than 2|V (T )| that is regular of degree
2s
(
m
d

)2
(∆(T ) − 1). Let H be the m-blowup of H0. For each cluster U in H corresponding

to a vertex u in H0, we �x an arbitrary indexing {u1, . . . , um} of U .
We claim that H s→ G. Consider an s-edge-coloring of H. We construct an s

(
m
d

)2-edge-
coloring of H0. Let uv be an edge in H0. Note that uv in H0 corresponds to a complete
(U, V )-bigraph in H, where U and V are the clusters of size m in H corresponding to u and
v in H0. Because m = Bs(d), there are subsets U0 ⊆ U and V0 ⊆ V of size d that induce a
monochromatic copy of Kd,d. We color uv in H0 with a 3-tuple. The �rst coordinate records
the color in which Kd,d appears; there are s possibilities. The second and third coordinates
record the the subsets U0 and V0. Assuming without loss of generality that u ∈ X and
v ∈ Y , we record the set {j : uj ∈ U0} in the second coordinate and the set {j : vj ∈ V0} in
the third. Since H0 is regular of degree 2s

(
m
d

)2
(∆(T )− 1) and has girth larger than 2|V (T )|,

Theorem 2.2.10 implies that every s
(
m
d

)2-edge-coloring of H0 contains a monochromatic copy
of T . Using the monochromatic bicliques encoded in the s

(
m
d

)2-edge-coloring ofH0, we obtain
a monochromatic copy of G in H.

A grid is the Cartesian product Pm � Pn of two paths (see Figure 2.3). Each grid in the
family {Pn � Pn : n ∈ N} has maximum degree 4, but these graphs do not all appear as
subgraphs of d-blowups of trees for any �xed d. Consequently, Theorem 2.3.6 does not give
a constant upper bound on the degree Ramsey number of grids.

Question 2.3.7. Is the family of grids R∆-bounded or even weakly R∆-bounded?

2.4 Cycles

The proof of a result on the size Ramsey number due to Haxell, Kohayakawa, and �uczaket al. [58]
describes Ramsey hosts with few edges that force cycles. Because these Ramsey hosts
have bounded degree, it follows from their work that there exists a constant c such that
R∆(Cn) ≤ c for every cycle Cn. Their proof uses Szemerédi's Regularity Lemma [107], and
thus the value c that they obtain is very large.
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K−3,3 Red edges are thick; blue edges are dashed

Figure 2.4: K−3,3

The even cycle C2n is a subgraph of the 2-blowup of Pn+1. Because B2(2) = 5 [12], it
follows from Theorem 2.3.6 that R∆(C2n) ≤ 20

(
5
2

)2
= 2000. In this section, we improve

the upper bound for even cycles to R∆(C2n) ≤ 96. We also show that R∆(Cn) ≤ 3458 for
general n.

Even Cycles

The main improvement to our upper bound on R∆(C2n) results from the observation that, in
the argument of Theorem 2.3.6, we do not need the full strength of obtaining monochromatic
copies ofK2,2 joining the clusters. It su�ces to obtain monochromatic copies of P4, and paths
are easier to force than K2,2. Recall that if G is an edge-transitive graph, then G− denotes
the graph obtained from G by deleting an edge.

Lemma 2.4.1. K−3,3 → P4.

Proof. Let H be a {red, blue}-edge-colored copy of K−3,3 with bipartition (X, Y ) and missing
edge joining x3 ∈ X and y3 ∈ Y (see Figure 2.4 left).

We say that a vertex is red if it is incident to at least two red edges, and blue if it is
incident to at least two blue edges. Note that if two vertices u and v in X are red, then
they have a common neighbor y ∈ Y that is red. Hence, uyv is a red copy of P3, which
extends to a red copy of P4 using the other red edge incident to v. Therefore we obtain a
monochromatic copy of P4 unless {x1, x2} contains one red vertex and one blue vertex, and,
by symmetry, {y1, y2} contains one red vertex and one blue vertex. Assume without loss
of generality that x1 and y1 are red, and x2 and y2 are blue. If x1y1 is red, then this edge
extends to a red copy of P4 using the other red edges at x1 and y1, so x1y1 must be blue.
By symmetry, x2y2 is red. Since x2 is blue, the other two edges incident to x2 are blue (see
Figure 2.4 right). Now x1y1x2y3 is a blue copy of P4.

Lemma 2.4.1 is sharp in the sense that if H is a proper subgraph of K−3,3, then H 6→ P4.
In passing from a graph to its 3-blowup, each edge expands to a copy of K3,3; the maximum
degree triples. Our arguments that bound the degree Ramsey number of cycles require only
that edges expand to copies of K−3,3. If F is an (X, Y )-bigraph with |X| = |Y | = d, we say
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that H is an F -blowup of a graph G if H is obtained from G by replacing each vertex in G
with an independent set of size d and replacing each edge in G with a copy of F .

In general, a graph can have many di�erent K−3,3-blowups, depending on the selection of
which edges are deleted from copies of K3,3 to obtain copies of K−3,3. Our next lemma shows
how to distribute the deleted edges evenly to save on the maximum degree.

Lemma 2.4.2. If G is a k-regular graph and 18 divides k, then there is a 8
3
k-regular K−3,3-

blowup of G.

Proof. Because k is even, Petersen's Theorem [88] implies that G decomposes into 2-factors.
Group these into nine sets of size k/18 to obtain a decomposition of G into nine k/9-
factorsthere is a copy of P4. Index them as Fij for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3.

Let G′ be the 3-blowup of G, and for each vertex u in G, �x an arbitrary indexing of
the cluster {u1, u2, u3} in G′ corresponding to u. Obtain a graph H from G′ by removing
one edge from each copy of K3,3 as follows. For each edge uv in G that belongs to Fij, we
remove uivj from G′. Note that G′ is 3-regular and that each vertex in G′ is incident to
exactly 3 · k/9 removed edges. It follows that H is a (3− 1

3
)k-regular K−3,3-blowup of G.

To obtain even cycles, it su�ces to obtain a P4-blowup of a path.

Lemma 2.4.3. If H is a P4-blowup of Pt+1, then H contains C2t.

Proof. Denote the path by 〈z1, . . . , zt+1〉 with corresponding clusters Z1, . . . , Zt+1 in H. Note
that joining Zj and Zj+1, there is a copy of P4 and hence a matching of size 2. Linking these
matchings from Z2 through Zt yields two vertex-disjoint copies of Pt−1. Because there is a
copy of P4 joining Z1 and Z2, some vertex in Z1 is adjacent to both vertices in Z2. Similarly,
some vertex in Zt+1 is adjacent to both vertices in Zt. These vertices extend the copies of
Pt−1 to a cycle with 2t vertices.

Our next lemma shows how to obtain monochromatic P4-blowups of long paths.

Lemma 2.4.4. Let H0 be a 36-regular (X, Y )-bigraph with girth more than 2t, and let H
be a K−3,3-blowup of H0. If H is {red, blue}-edge-colored, then H contains a monochromatic
P4-blowup of a path in H0 on t vertices.

Proof. We use the {red, blue}-edge-coloring of H to construct an 18-edge-coloring of H0. For
each vertex u in H0, �x an arbitrary indexing {u1, u2, u3} of the cluster in H corresponding
to u. Each edge uv in H0 corresponds to a copy of K−3,3 with bipartition (U, V ) in H. By
Lemma 2.4.1, a monochromatic copy of P4 occurs. We color uv with a 3-tuple. The �rst
coordinate records the color in which the copy of P4 occurs (red or blue). The second and
third coordinates record the subsets U0 of U and V0 of V contained in the monochromatic P4.
Without loss of generality, assume that u ∈ X and v ∈ Y . We use the second coordinate to
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record the set U0 and we use the third coordinate to record the set V0. There are two choices
for the �rst coordinate and three choices for the second and third coordinates, yielding 18

colors in total.
Since H0 has girth larger than 2t, Theorem 2.2.10 implies that H0

18→ Pt, and a monochro-
matic copy of Pt in H0 lifts to a monochromatic P4-blowup of Pt in H.

Theorem 2.4.5. R∆(C2n) ≤ 96.

Proof. LetH0 be a 36-regular bipartite graph with girth more than 2(n+1). By Lemma 2.4.2,
there is a 96-regular K−3,3-blowup H of H0. We claim that H → C2n. Consider a {red, blue}-
edge-coloring of H. By Lemma 2.4.4, H contains a monochromatic P4-blowup of Pn+1. By
Lemma 2.4.3, it follows that H contains a monochromatic copy of C2n.

Odd Cycles

Here, we prove a general bound of R∆(Cn) ≤ 3458. We need a simple proposition, again
about K−3,3 and P4.

Proposition 2.4.6. If H is obtained from K−3,3 by deleting one vertex from each part of the
bipartition, then P4 is a subgraph of H.

Proof. Deleting one vertex from each part yields K2,2 or K−2,2. Each contains P4 as a sub-
graph.

To complete our proof for odd cycles, we need two lemmas that adapt Lemma 2.4.3 to
produce odd cycles.

Lemma 2.4.7. Let H be a P4-blowup of a path 〈z1, . . . , zt〉, where each vertex zj expands to
z1
j and z2

j in H. If z1
1z

2
1 is an edge in H, then H contains cycles of every odd length from 3

to 2t− 1.

Proof. Let Zj = {z1
j , z

2
j }. Note that there is a copy of P4 joining Zj and Zj+1, and hence

they are joined by a matching of size two. Choose k ∈ [t− 1]. Linking these matchings from
Z1 through Zk yields two vertex-disjoint copies of Pk. Because there is a copy of P4 joining
Zk and Zk+1, some vertex in Zk+1 is adjacent to both vertices in Zk, linking the two copies
of Pk to form a copy of P2k+1 with both endpoints in Z1. The edge z1

1z
2
1 completes a copy of

C2k+1.

Lemma 2.4.8. Let H be a P4-blowup of a path 〈z1, . . . , zt〉, where each vertex zj expands to
a set Zj of two vertices in H. If H contains an edge joining Z1 and Z3, then H contains
cycles of every odd length from 7 to 2t− 3.
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Proof. Note that there is a copy of P4 joining Zj and Zj+1, and hence they are joined by a
matching of size two. Linking these matchings from Z1 through Zt yields two vertex-disjoint
copies of Pt. Index the elements of each Zj as {z1

j , z
2
j } so that 〈z1

1 , . . . , z
1
t 〉 and 〈z2

1 , . . . , z
2
t 〉

are paths in H.
Let l be an odd integer with 7 ≤ l ≤ 2t − 3; we show that H contains an l-cycle. For

3 ≤ k ≤ t− 1, some vertex in Zk+1 is adjacent to both vertices in Zk and completes a path
Qk of length 2k − 4 with 〈z1

3 , . . . , z
1
k〉 and 〈z2

3 , . . . , z
2
k〉.

We consider two cases. First, suppose that the edge joining Z1 and Z3 has endpoints
with di�erent superscripts; we may assume that it is z1

1z
2
3 . Let k = (l + 1)/2, and note that

4 ≤ k ≤ t − 1. Now the path 〈z1
3 , z

1
2 , z

1
1 , z

2
3〉 has length 3 and connects the endpoints of Qk

to complete a cycle of length 2k − 1.
Otherwise, we may assume that the edge is z1

1z
1
3 . Because there is a copy of P4 joining Z1

and Z2, either z1
1z

2
2 or z1

2z
2
1 is an edge in H; we consider both subcases. Suppose that z1

1z
2
2 is

an edge. With k = (l+1)/2, the path 〈z1
3 , z

1
1 , z

2
2 , z

2
3〉 has length 3 and connects the endpoints

of Qk to complete a cycle of length 2k − 1. Otherwise, z1
2z

2
1 is an edge. Let k = (l − 1)/2,

and note that 3 ≤ k ≤ t − 2. The path 〈z1
3 , z

1
1 , z

1
2 , z

2
1 , z

2
2 , z

2
3〉 has length 5 and connects the

endpoints of Qk to complete a cycle of length 2k + 1.

Theorem 2.4.9. R∆(Cn) ≤ 3458.

Proof. If n is even, the result follows from Theorem 2.4.5. If n ∈ {3, 5}, then n is small
enough so that a complete graph with su�ciently small maximum degree is a Ramsey host
for Cn. We assume that n is odd and at least 7.

Let H0 be a 36-regular (X0, Y0)-bigraph with girth at least 2t, where t is su�ciently large
in terms of n. Let H1 be the graph on V (H0) where a pair of vertices is adjacent if they
are at distance at most 2 in H0; this graph is called the square of H0 and is denoted by
H2

0 . Observe that H1 contains H0 as a subgraph. Because H0 is bipartite, the extra edges
in H1 have both endpoints in the same part of the bipartition (X0, Y0) of H0. Note that
each vertex in H1 is incident to 36 edges that cross the bipartition and to exactly 36 · 35

edges inside its partite set because H0 has large girth. Therefore, H1 is 1296-regular. By
Lemma 2.4.2, there is a 3456-regular K−3,3-blowup H2 of H1. We construct a 3458-regular
graph H from H2 by adding a triangle inside each cluster in H2.

Let X be the set of vertices in H that are members of clusters in H2 corresponding to
vertices in X0, and let Y be the set of vertices in H that are members of clusters in H2

corresponding to vertices in Y0. Note that X and Y form a partition of V (H), and the
subgraph of H given by the cut [X, Y ] is a K−3,3-blowup of H0.

We claim that H → Cn. Consider a {red, blue}-edge-coloring of H. Apply Lemma 2.4.4
to the cut [X, Y ] to obtain a monochromatic P4-blowup of a path 〈z1, . . . , zt〉 in H0 that
alternates between X0 and Y0. Without loss of generality, we assume that the P4-blowup
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occurs in red. For each zj, let Zj be the corresponding cluster of three vertices in H, let z1
j

and z2
j be the corresponding vertices in the P4-blowup, and let Z ′j = {z1

j , z
2
j }.

Because each Zj induces a complete graph, z1
j z

2
j is an edge in H. We call these internal

edges. Also, because zj and zj+2 are at distance 2 in H0, it follows that zjzj+2 is an edge
in H1 and hence the corresponding clusters Zj and Zj+2 are joined by a copy of K−3,3 in H.
By Proposition 2.4.6, there is a (not necessarily monochromatic) copy of P4 joining Z ′j and
Z ′j+2. We call the edges in these copies of P4 skip edges.

If there is a red internal edge in Z ′j, then we apply Lemma 2.4.7 to whichever of 〈zj, . . . , zt〉
and 〈zj, . . . , z1〉 is longer to obtain a red copy of Cn. If there is a red skip edge joining Z ′j
and Z ′j+2, then we apply Lemma 2.4.8 to whichever of 〈zj, . . . , zt〉 and 〈zj+2, . . . , z1〉 is longer
to obtain a red copy of Cn.

Finally, if each internal edge and each skip edge is blue, then H contains a blue P4-blowup
of the path 〈z1, z3, z5, . . . , zn〉. Because internal edges are blue, Lemma 2.4.7 gives a blue
copy of Cn.

Theorem 2.4.9 and Corollary 2.3.3 yield the following result.

Theorem 2.4.10. The family of cycles is weakly R∆-bounded.

We presently lack a proof that the family of cycles is R∆-bounded, but we believe it to
be true.

Conjecture 2.4.11. The family of cycles is R∆-bounded.
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Chapter 3

Online Degree Ramsey Theory

This chapter is based on joint work with J. Butter�eld, T. Grauman, B. Kinnersley, C.
Stocker, and D. B. West that appears in [22].

3.1 Introduction

Interesting combinatorial questions can arise when two players compete to achieve opposing
goals. In this chapter, we combine the notion of degree Ramsey numbers from Chapter 2
with a game version of Ramsey theory. This model was introduced by Beck [11] and was
explored in several contexts by Grytczuk, Haªuszczak, and Kierstead [53]. We describe it
using two colors, but the game extends naturally to s colors.

Two players, Builder and Painter, play a game with a target graph G. During each
round, Builder presents a new edge uv to Painter (u and/or v may be a vertex not yet used).
Painter must color uv red or blue, and Painter's choice is permanent. Builder wins if a
monochromatic copy of G arises. Painter wins if Builder cannot force this.

When Builder's moves are unrestricted, Ramsey's Theorem implies that Builder wins by
presenting a large complete graph. As in parameter Ramsey theory, we may want to require
Builder to keep the presented graph within a restricted class H. This de�nes the online
Ramsey game (G,H). Given G and H, the question is which player has a winning strategy.

We say that (G,H) is played on H. Grytczuk, Haªuszcak, and Kierstead [53] showed
that Builder wins on the class of k-colorable graphs when G is k-colorable. Also, Builder
wins on the class of forests when G is a forest. They also showed for G = K3 that Painter
wins on outerplanar graphs but Builder wins on planar 2-degenerate graphs. On planar
graphs, Builder wins when G is a cycle or is a 4-cycle plus one chord (a slight extension is
that Builder can force any �xed cycle plus chords at any one vertex). They conjectured that
on planar graphs, Builder wins if and only if G is outerplanar; this remains wide open.

For any graph parameter ρ, we de�ne the online ρ-Ramsey number R̊ρ of G to be the
least k such that Builder has a winning strategy to force G when playing on the family
{H : ρ(H) ≤ k}. Because Builder has more power when Painter must color edges as they
are presented, always R̊ρ(G; s) ≤ Rρ(G; s). The online ρ-Ramsey number can be much
smaller than the corresponding ρ-Ramsey number. For example, the main result of [53] is
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that R̊χ(G) = χ(G) for every graph. This implies that R̊χ(Kn) = n, but a theorem in [21]
implies that Rχ(Kn) = R(Kn).

The notation r̃(G) has been used for the online size Ramsey number. Grytczuk, Kier-
stead, and Praªat [54] proved that r̃(Pn) ≤ 4n − 7 for n ≥ 2 (and found the exact val-
ues for n ≤ 6; see [92, 94, 93] for additional exact results on paths). They also proved
r̃(G) ≥ 1

2
b(∆(G)−1) +m when G has m edges and vertex cover number b. Using the latter,

they proved that the maximum of r̃(G) over trees with m edges is Θ(m2).
Kierstead and Konjevod [66] studied an extension of online Ramsey games to s-uniform

hypergraphs. A variant of online Ramsey games in which Builder is replaced with a sequence
of random edges is studied in [47].

Online Ramsey theory on directed graphs has also been studied, even though the scope
of non-trivial questions is limited in this context. If the target graph contains a directed
cycle, then Painter easily avoids producing a copy of the target graph by �xing an arbitrary
ordering of the vertices (new vertices can be inserted anywhere), using red for edges whose
heads have a lower index than their tails, and using blue for other edges.

Nonetheless, when the target graph is acyclic, interesting questions arise. Ferrara and
Tennenhouse considered a modi�cation to the online Ramsey game where Builder presents
an undirected edge, and Painter chooses the orientation. Ferrara and Tennenhosue [44]
observed that Builder can force a directed path on n vertices by playing only O(n log n)

edges. No superlinear lower bound on the number of edges Builder needs is known.
Here, we study the online degree Ramsey number R̊∆(G). Let Sk be the class of graphs

with maximum degree at most k; R̊∆(G) is the least k such that Builder wins (G,Sk).
Table 3.1 compares 2-color results for online degree Ramsey number of trees and cycles with
the corresponding results for degree Ramsey number. The results on R̊∆ for stars and large
odd cycles appear here and in [22]; we provide citations for other results. The double-star
Sa,b is the tree with a+ b vertices having adjacent vertices of degrees a and b.

The value of R̊∆(G) is not known for any connected graph G that is not a tree or a cycle.
The smallest such graphs are the graphs C+

4 and K+
1,3 obtained by adding one edge to the

4-cycle or the claw. It is proved in [22] that R̊∆(C+
4 ) ∈ {5, 6, 7} and R̊∆(K+

1,3) ∈ {4, 5}; we
present a proof of the former in Section 3.2.

In most of our results, the lower bounds rely on �greedy� strategies for Painter, in which
Painter makes an edge red if and only if it keeps the red graph within a speci�ed class, such
as Sk or the class of linear forests. Greedy Painters of both types are used to prove that
R̊∆(G) ≤ 3 if and only if each component of G is a path or each component is a subgraph
of the claw K1,3 (Theorem 3.3.2). Another wrinkle in this proof is that when Builder wins
(G1,H) and (G2,H), it does not follow that Builder wins (G1 + G2,H), where G1 + G2 is
the disjoint union of G1 and G2. For example, R̊∆(P4) = R̊∆(K1,3) = 3, but Builder cannot
force P4 +K1,3 in S3 (see Theorem 3.3.2).
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G R̊∆(G) R∆(G)

Path Pn 3, for n ≥ 4 [22] 4, for n ≥ 7; [109] and [4] combined

Star K1,m m

{
2m− 1; m odd
2m− 2; m even

[21]

Double-star Sa,b a+ b− 1 [22]

{
2b− 1; a = b odd
2 max{a, b} − 2; otherwise

[67]

Tree G ≤ 2∆(G)− 1 (sharp) [22] ≤ 4∆(G)− 4 [60]

Even cycle C2k 4 [22]

{
5; k = 2 [67]
≤ 96; k ≥ 2 [60]

Odd cycle C2k+1

{
≤ 5; always [22]

4; k ≥ 344

{
≥ 5; [67]
≤ 3458; [60]

Table 3.1: Results for online degree and degree Ramsey numbers.

Upper bounds require strategies for Builder. The upper bounds in Table 3.1 for paths,
stars, and triangles follow by direct arguments involving induction and/or the pigeonhole
principle. To obtain the more di�cult upper bounds, we simplify the search for a Builder
strategy. We prove (Theorem 3.5.6) that Builder may assume that Painter plays �consis-
tently�, meaning that the color Painter assigns to an edge depends only on the components
of the current edge-colored graph containing its endpoints. This reduction applies to the
Ramsey game (G,H) whenever H is monotone and additive (closed under taking subgraphs
or disjoint unions).

The main open question in online degree Ramsey theory is the natural online analogue
of the big question in degree Ramsey theory.

Question 3.1.1. Is there a function f such that R̊∆(G) ≤ f(k) when ∆(G) ≤ k?

The only progress toward this question is that R̊∆(G) ≤ 6 when ∆(G) ≤ 2 (see [22]).
The question remains wide open even for graphs with maximum degree at most 3.

3.2 The greedy Painter, stars, and kites

In this section, we begin our study of online degree Ramsey numbers by presenting bounds
for some simple graphs. Our �rst proposition is particularly simple and establishes the online
degree Ramsey number of stars.

Proposition 3.2.1. R̊∆(K1,m) = m.
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Proof. Because K1,m contains a vertex of degree m, Builder needs at least degree m in the
host graph.

For the upper bound, we use induction on m. For m > 1, Builder �rst plays on Sm−1 to
force 2m− 1 disjoint monochromatic copies of K1,m−1. By the pigeonhole principle, at least
m copies share a color. Builder then plays a star K1,m whose leaves are the centers of those
copies. The resulting graph is in Sm, and K1,m is forced.

Upper bounds on R̊∆(G) arise from strategies for Builder. Lower bounds arise from
strategies for Painter. In general, it is more di�cult to obtain lower bounds. Nevertheless,
a simple greedy strategy provides tight lower bounds in some cases.

De�nition 3.2.2. Let F be a family of graphs. The greedy F-Painter colors each new edge
red if the resulting red graph lies in F ; otherwise, the edge is colored blue.

When k = ∆(G)− 1, the greedy Sk-Painter establishes a useful general lower bound.

Theorem 3.2.3. For every graph G, R̊∆(G) ≥ ∆(G)− 1 + maxuv∈E(G) min{d(u), d(v)}.

Proof. Let k = ∆(G) − 1, and let t = maxuv∈E(G) min{d(u), d(v)}. The greedy Sk-Painter
never makes a red G, because no vertex ever receives ∆(G) incident red edges. To force
a blue G, Builder must force a blue copy of an edge xy such that min{dG(x), dG(y)} = t.
Making this edge blue requires k red edges already at at least one endpoint. In the blue G,
each endpoint has at least d edges. Hence at x or y at least k+ t edges have been played.

Theorem 3.2.3 yields the lower bounds for trees in Table 3.1. The greedy Sk-Painter also
easily yields the lower bound in [54] for the online size Ramsey number (r̃(G) ≥ 1

2
bk +m

when G has m edges, maximum degree k + 1, and vertex cover number b). Theorem 3.2.3
also provides a tight lower bound for the online degree Ramsey number of paths. We include
its short proof for completeness.

Proposition 3.2.4 (Butter�eld et al. [22]). R̊∆(Pn) = 3.

Proof. The lower bound is a special case of Theorem 3.2.3. For the upper bound, we prove
by induction on n that Builder playing on S3 can force a monochromatic path with at least
n vertices such that no other edges have been played at the endpoints; the single edge has
this property for n = 2. For n ≥ 3, Builder �rst plays on S3 to force n− 2 such paths of the
same color having at least n − 1 vertices each; let �red� be this color. Builder then plays a
path Q with n vertices using one endpoint of each of these paths plus two new vertices as
the endpoints of Q. If any edge of Q is red, then the desired path arises in red; if they are
all blue, then Q becomes the desired path.

We conclude this section with bounds on the online degree Ramsey number of the kite
C+

4 which is obtained from C4 by adding an edge.
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Theorem 3.2.5. 5 ≤ R̊∆(C+
4 ) ≤ 7.

Proof. Let G = C+
4 . By Theorem 3.2.3, R̊∆(G) ≥ 5. For the upper bound, Builder �rst

obtains a monochromatic copy of K1,4, say in red, in which each vertex has degree at most
4 (see Proposition 3.2.1). Let w be its center and x1, x2, x3, x4 be its leaves.

Using new vertices, Builder next presents K1,7 with center u; let E be its set of edges. If
Painter colors �ve edges in E blue, then Builder presents K5 on those �ve neighbors of u; let
E ′ be its edge set. If Painter gives blue to two incident edges in E ′, then a blue kite arises.
Otherwise, at most two edges in E ′ are blue and a red kite arises, since E ′ now contains a
copy of K4 in which at most one edge is not red. Hence Painter must make three edges in
E red; let the neighbors of u in this red claw be v1, v2, and v3.

Next, Builder presents the claw with center w and leaves v1, v2, v3. Now w has total degree
7 and each vi has total degree 2. If this claw is all blue, then Builder wins by presenting the
triangle on {v1, v2, v3}. Hence we may assume that wv1 is red.

Next, Builder presents the edges {v1xi : 1 ≤ i ≤ 4} giving degree 6 to v1 and degree
(at most) 5 to each xi. If Painter makes two of these edges red, then they form a red kite
with w. Otherwise, we have a red claw and a blue claw with three common leaves among
{x1, x2, x3, x4}. Builder now wins by presenting a triangle on those three vertices (giving
them degree 7).

In fact, Builder can force C+
4 on S5 against the S2-greedy Painter (start with 4 copies of

P3, which Painter colors red, and then play C+
4 on the internal vertices of the paths). To

improve the lower bound, we must �nd a better Painter strategy.

3.3 Graphs with small online degree Ramsey number

When Builder is limited to host graphs that have very small maximum degree, it is possible to
analyze the online Ramsey game exactly. First, note that R̊∆(G) ≤ 2 is easily characterized,
and it is trivial that R̊∆(G) ≤ 1 if and only if G is a matching.

Proposition 3.3.1. R̊∆(G) ≤ 2 if and only if each component of G is a subgraph of P3.

Proof. If R̊∆(G) ≤ 2, then ∆(G) ≤ 2. By Theorem 3.2.3, the vertices with degree 2 are
nonadjacent. Hence each component of G is a subgraph of P3. Conversely, Builder forces
any such graph by presenting enough disjoint triangles.

For C3, Theorem 3.2.3 yields only R̊∆(C3) ≥ 3, but R̊∆(C3) = 4 (see [22] for the upper
bound). To improve the lower bound, we use a di�erent greedy Painter to characterize the
graphs that Builder can force when playing on S3; the triangle is not among them.

Theorem 3.3.2. R̊∆(G) ≤ 3 if and only if each component of G is a path or each component
of G is a subgraph of the claw K1,3.
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Proof. By Proposition 3.2.1 and Proposition 3.2.4, Builder can force the claw or any path
on S3. By the pigeonhole principle, Builder can thus force any disjoint union of subgraphs
of K1,3. Also Builder can force a path long enough to contain any speci�ed disjoint union of
paths.

For necessity, suppose that R̊∆(G) ≤ 3. Hence Builder can force a monochromatic copy
of G in S3. Consider a greedy L-Painter, where L is the family of linear forests (disjoint
unions of paths). If G appears in red, then each component of G is a path.

Suppose that G appears in blue. A vertex v with degree 3 in G has three incident blue
edges and hence no incident red edges, since Builder is playing in S3. For the greedy L-
Painter to make these edges blue, each neighbor already has two incident red edges. Hence
a blue claw must be a full component of the blue graph.

Next suppose that the blue G contains P5 centered at a vertex v; we have shown that
the maximum degree in such a blue component is 2. Let u1 and u2 be the neighbors of v on
the path. Since the red degree at each of u1, v, w2 is at most 1, the condition that prevented
uiv from being red must be that there is already a red path from ui to v. Since v already
has three incident edges, the paths from u1 and u2 must merge before reaching v, but this
contradicts the red graph being a linear forest.

It remains to show that Builder cannot force a graph containing both P4 and K1,3 in S3.
Since such a graph G has maximum degree at least 3 and has an edge with both endpoints
having degree at least 2, Theorem 3.2.3 implies that R̊∆(G) ≥ 4.

Theorem 3.3.2 shows that Builder can force P4 or K1,3 in S3 but not their disjoint union.
That is, the family of weighted graphs that Builder can force on the class of all graphs is
not closed under disjoint union. It would be interesting to characterize the graphs with
R̊∆(G) ≤ 4.

3.4 Weighted graphs

Strategies for Builder playing on Sk often involve keeping track of how many edges have
been played incident to each vertex. The argument we gave for paths (Proposition 3.2.4)
had this �avor; to facilitate the induction we needed to maintain degree 1 at the leaves of
the monochromatic path, but we could allow degree 3 at internal vertices. We can view the
allowed degree at each vertex as a �capacity�.

De�nition 3.4.1. A c-weighted graph is a graph G equipped with a nonnegative integer
capacity function c on V (G). A copy of a c-weighted graph G exists in a graph H if G
embeds as a subgraph of H via an injection f such that dH(f(v)) ≤ c(v) for all v ∈ V (G).

When the capacity function is constant, say c(v) = k for all v ∈ V (G), we simply refer
to the c-weighted graph G as a k-weighted graph. The statement that Builder wins (G,Sk)
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is equivalent to the statement that Builder can force the k-weighted graph G when playing
on the unrestricted family of all graphs. Vertices that acquire more than k incident edges
are forbidden from the desired monochromatic copy of G when Builder is restricted to Sk.

It is easy to characterize the weighted stars that can be forced.

Proposition 3.4.2. Builder can force a weighted star with m edges if and only if the center
has capacity at least 2m− 1 or if each vertex has capacity at least m.

Proof. For su�ciency, the pigeonhole principle su�ces when the center has capacity 2m−1,
and R̊∆(K1,m) ≤ m (Proposition 3.2.1) su�ces when each vertex has capacity at least m.

For necessity, consider a strategy for Builder to force a weighted star withm edges against
the greedy Sm−1-Painter. As in the proof of Theorem 3.2.3, Builder must force a blue K1,m,
and for each edge of this star one of the endpoints has m−1 incident red edges. If the center
of the blue K1,m has m− 1 incident red edges, then its degree is at least 2m− 1. Otherwise,
each leaf has one incident blue edge and m − 1 incident red edges, and hence each vertex
has degree at least m.

In the proof of Proposition 3.2.4, we see that for each n0, Builder can force a path on
n0 or more vertices whose endpoints have degree 1 in the host graph. When Builder wishes
to force cycles, it is convenient to obtain paths of speci�ed lengths whose endpoints have
small degree. Our next theorem shows that this is generally not possible. Painter can avoid
providing Builder with a monochromatic path on 4 vertices whose endpoints have degree 1.

Theorem 3.4.3. Builder cannot force a weighted 4-vertex path whose endpoints have unit
capacity.

Proof. We allow any degree on the central vertices; only the endpoints are restricted. We
provide a strategy for Painter to avoid this weighted subgraph. Refer to vertices of degree 1

in the played graph H as leaves and vertices of degree at least 2 as non-leaves.
Painter maintains a partition of the nonisolated vertices of H into �ve sets. Sets S,R′, B′

will partition the leaves, and the non-leaves will lie in R or B. Let S consist of the vertices
incident to isolated edges (which Painter makes all red). Other leaves lie in R′ if the incident
edge is red and in B′ if it is blue. The non-leaves are partitioned into R and B so that edges
with both endpoints in R are red, edges with both endpoints in B are blue, the neighbor of
each vertex in R′ is in B, and the neighbor of each vertex in B′ is in R. Edges joining R to
B may have either color.

If Painter can maintain this partition, then no monochromatic 4-vertex path arises with
endpoints of degree 1. The color would force the endpoints to be both in R′ or both in B′.
In the former case, the central vertices both would be in B, but then the edge joining them
would be blue. The latter case is symmetric.
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When the game begins, the sets are empty and the partition is valid. We show how
Painter responds to each move by Builder. Whenever a vertex of R′ receives another incident
edge, it moves to R; since it already has an incident red edge to a vertex of B, this change
causes no problem. Similarly, a vertex of B′ receiving another incident edge moves to B.
Once a vertex enters R or B, it does not move again.

Now consider edges that introduce a new vertex w with neighbor v. If v is new, then vw
becomes red and both vertices enter S. If v ∈ S ∪R′ ∪B′, then let u be the other neighbor
of v. If v ∈ S, then vw is made red, v moves to B, and both w and u move to R′. If v ∈ R′,
then vw becomes blue and w enters B′ (v moves to R). Similarly, if v ∈ B′, then vw becomes
red and w enters R′ (v moves to B). If v ∈ R, then vw becomes blue and w enters B′. If
v ∈ B, then vw becomes red and w enters R′.

In the remaining cases, neither endpoint is new. Again we add wv; suppose that w ∈ S,
and let u be the other neighbor of w. Wherever v is, vw is made blue, w moves to B, and
u moves to R′. If v ∈ S, then v moves to B and the other neighbor of v moves to R′. If
v ∈ R′ ∪ B′, then v is �promoted� to R ∪ B as described above. No change is made for v if
v ∈ R ∪B. In all cases, making vw blue causes no problem since w ∈ B.

Hence we may assume that both endpoints of the new edge lie in R′ ∪ B′ ∪ R ∪ B. An
endpoint lying in R′∪B′ is promoted to R∪B by removing the �prime�; as remarked earlier,
this causes no trouble for its old incident edge. After making the promotion(s), it su�ces to
make the color of the new edge agree with the set label on at least one of its endpoints.

3.5 The consistent Painter

Strategies for Builder often involve pigeonholing arguments. Pigeonholing also applies to
2-edge-colored graphs. When Builder presents m edges, Painter can produce at most 2m

distinguishable 2-edge-colored graphs. By presenting isomorphic copies of the graph formed
by these m edges, Builder can force many copies of some single pattern. Nevertheless, when
strategies become more complicated and repeated copies of larger patterns are needed, citing
the pigeonholing argument becomes unwieldy. Arguments simplify if Builder can assume that
Painter plays �consistently�.

De�nition 3.5.1. A Painter strategy is consistent if the color Painter chooses for an edge
uv depends only on the 2-edge-colored component(s) containing u and v when uv arrives.

For example, a consistent Painter always colors an isolated triangle in the same way. If
there are nonisomorphic ways to order the edges of a graph (such as K4), then a consistent
Painter may produce di�erent colorings depending the order in which the edges arrive.

Our aim is to reduce the problem of proving that Builder wins to proving that Builder
wins against consistent Painters. The argument can be given for the s-color model, but we
state it only for two colors, red and blue. We need several technical notions.
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De�nition 3.5.2. Given a monotone additive family H, an H-strategy speci�es a color for
each pair (H, e) such that H is a 2-edge-coloring of a graph in H and e is an edge not in H
(either or both endpoints of e may be new vertices). An H-list is an ordering of the edges of
some graph in H; every initial segment of an H-list forms a graph in H. For each H-list E
and each H-strategy A, let A(E) denote the edge-colored graph that results when Builder
presents E to A. An edge-colored graph F contains another such graph F ′ if there is an
injection of V (F ′) into V (F ) that preserves edges and preserves their colors.

To reduce the Builder problem to winning against consistent Painters, we will show that
for every Painter strategy there is a consistent strategy that does at least as well for Painter.
That is, when A is an H-strategy, there is a consistent H-strategy A′ such that any 2-edge-
colored graph Builder can force against A′ can also be forced against A. A special set of
2-edge-colored graphs will enable us to produce A′.

De�nition 3.5.3. A uv-augmentation of a 2-edge-colored graphH with nonadjacent vertices
u and v is obtained by adding uv to H with color red or blue. Let H be a monotone additive
family. A class C of connected 2-edge-colored graphs is H-coherent if it contains K1 and
satis�es the following augmentation property: If H is a 2-edge-colored copy of a graph H ′ in
H, and H ′ has nonadjacent vertices u and v such that H ′ + uv is a connected graph in H
and the component(s) of H are in C, then C contains a uv-augmentation of H.

An H-coherent class C yields a consistent H-strategy A′ as follows. When an edge uv
is added to the current 2-colored graph H, A′ consults C to �nd which color on uv yields
a uv-augmentation in C for the component(s) of H containing the endpoints of the added
edge. When both colors yield uv-augmentations, A′ always chooses the same one, say red.

De�nition 3.5.4. Let C be the class of connected 2-edge-colored (unlabeled) graphs; every
2-edge-coloring of a graph in H is a multiset of elements of C having �nitely many distin-
guishable components, each with �nite multiplicity. Given anH-strategy A, a 2-edge-colored
graph H is A-realizable if for some H-list E, the outcome A(E) contains H. A family C ⊆ C

is A-plentiful if, for every �nite subset C ⊆ C and every positive integer n, the 2-edge-colored
graph consisting of n components isomorphic to each element of C is A-realizable.

In order to be H-coherent for some monotone additive family H, a family C contained in
C must somehow be �large enough�. In order to be A-plentiful for some H-strategy A, the
family C must somehow be �small enough�. We seek a family achieving both properties. We
use Zorn's Lemma in the following form: if every chain in a partial order P has an upper
bound, then P has a maximal element.

Lemma 3.5.5. If H is a monotone additive family of graphs, and A is an H-strategy, then
some family C is both H-coherent and A-plentiful.
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Proof. Note �rst that {K1} is A-plentiful. Also, if C1, C2, . . . are A-plentiful families with
C1 ⊆ C2 ⊆ · · · , then the union of these families is also A-plentiful, because the de�nition of
A-plentiful requires A-realizability only of repeated copies of �nite subsets, and each �nite
subset appears in some Cj. It follows from Zorn's Lemma that there is a maximal A-plentiful
family C containing K1. We claim that C is H-coherent.

By construction, K1 ∈ C. Consider a �xed 2-edge-colored graph H in C, and let H ′ be
its underlying uncolored graph in H. Let u and v be nonadjacent vertices in H ′ such that
H ′uv ∈ H. Let H1 and H2 be the possible uv-augmentations of H (using red or blue on
uv). If neither lies in C, then by the maximality of C, both C ∪ {H1} and C ∪ {H2} are not
A-plentiful. Hence there are positive integers t1 and t2 and �nite sets C1, C2 ⊆ C such that
the 2-edge-colored graphs t1(C1 ∪ {H1}) and t2(C2 ∪ {H2}) are not A-realizable, where for
C ⊆ C we use qC to denote the 2-edge-colored graph with q copies of each element of C as
components.

Let D = C1∪C2∪{H}. Since D is a �nite subset of C, and C is A-plentiful, 2(t1+t2−1)D

is A-realizable via some H-list E. When E is presented, A(E) contains at least 2(t1 + t2−1)

disjoint copies of H.
Since H is additive, the list E ′ formed by adding to E the copies of uv in 2(t1 + t2 − 1)

components isomorphic to H ′ is an H-list; Builder may legally present these edges after E.
Consider the �rst t1 + t2 − 1 of the added edges. Either A colors at least t1 of them red, or
A colors at least t2 of them blue. In the �rst case, t1(C1 ∪ {H1}) is A-realizable: we have
obtained t1 copies of H1, and at least t1 + t2 − 1 copies of H remain (needed if H ∈ C1). In
the second case, t2(C2 ∪ {H2}) is similarly A-realizable. The contradiction implies that C
contains a uv-augmentation of H.

Essentially the same argument shows that C contains a uv-augmentation of H when H
consists of two 2-edge-colored components, each containing one of u and v.

Theorem 3.5.6. If H is a monotone additive family of graphs, and A is an H-strategy for
Painter, then there is a consistent H-strategy A′ such that for every H-list E ′, there is an
H-list E such that A(E) ⊇ A′(E ′). That is, Builder can force against A any monochromatic
target that Builder can force against A′.

Proof. By Lemma 3.5.5, there is an H-coherent, A-plentiful family C ⊆ C. As described
after De�nition 3.5.3, from the H-coherence of C we de�ne a consistent H-strategy A′.

Whenever A′ is given a new edge uv, the de�nition of C being H-coherent implies that
the uv-augmentation chosen by A′ for the component being formed is in C. Thus every
component of A′(E ′) is in C. Since C is A-plentiful, it now follows that A′(E ′) ⊆ A(E) for
some H-list E.

To show that Builder wins (G,H), it now su�ces to show that Builder can force a
monochromatic G against any consistent H-strategy for Painter. In particular, if some H-
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list results in a particular 2-edge-colored component, then Builder can recreate another copy
of that component by playing an isomorphic list of edges on a new set of vertices.

As mentioned earlier, the argument applies to any monotone additive family H. For
example, to prove su�ciency in the conjecture in [53], one need only show that Builder can
force any outerplanar graph when playing on planar graphs against a consistent Painter.
In [22], the consistent Painter is invoked to simplify the Builder's strategy for obtaining
monochromatic trees.

3.6 Large odd cycles

In this section, we examine the online degree Ramsey number of cycles. From Theorem 3.3.2,
it follows that R̊∆(Cn) ≥ 4 for each n. In [22], we prove that R̊∆(Cn) = 4 when n is even,
large, or n = 3. Here, we present the proof that R̊∆(Cn) = 4 when n is large and odd. We
begin with two lemmas that describe how Builder can extend given strategies to force larger
structures.

Lemma 3.6.1 (Butter�eld et al. [22]). Against a consistent Painter, let F be a weighted
graph Builder can force in red, with u ∈ V (F ) having capacity c. Form F ′ from F + F by
adding an edge joining the two copies of u and changing the capacity at its endpoints to c+2.
If n is odd, then Builder can force a red F ′ or a blue t-weighted n-cycle, where t = c+ 2.

Proof. Builder forces n copies of F in red, respecting capacities. Builder then plays an n-
cycle on the copies of u. If these edges are all blue, then they form a blue t-weighted n-cycle.
Otherwise, a red F ′ arises.

Lemma 3.6.2. Against a consistent Painter, let F be a weighted graph Builder can force
in red, with u ∈ V (F ) having capacity c. Let F ′ be the weighted graph obtained from F by
changing the capacity at u to c+ 2 and adding a new vertex v with capacity 2 adjacent only
to u. Let t = max{c+ 2, 4}. If n is odd, then Builder can force a red F ′ or a monochromatic
t-weighted n-cycle.

Proof. Builder forces n(n − 1)/2 red copies of F against this Painter. Next, Builder plays
an n(n− 1)-cycle, alternating between copies of u and new vertices. Using red on any such
edge produces a red copy of F ′; otherwise, there is a blue n(n− 1)-cycle in which alternate
vertices have degree 2. This cycle decomposes into n paths P1, . . . , Pn, each consisting of
n−1 consecutive edges. Since each path has even length, we may assume that the endpoints
of each path have degree 2.

Next, for each path Pj, Builder plays the edge joining its two endpoints. Using blue for
any such edge creates a blue n-cycle (respecting capacities). Otherwise, these edges form a
red n-cycle in which every vertex has degree 4.
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Lemma 3.6.3. Every tree T has a vertex w such that each component of T −w contains at
most half the leaves of T . Moreover, if T is not a path, then some such vertex has degree at
least 3.

Proof. Construct a directed graph D on V (T ) as follows. If uv is an edge in T and the
component of T − u containing v has more than half the leaves of T , then we include an
edge from u to v in D. Since D cannot have both uv and vu, it is acyclic. For each vertex
w having outdegree zero in D, each component of T − w has at most half the leaves in T .

If w has degree 2 in T , then let P be a maximal path in T whose internal vertices all
have degree 2 in T . If T is not a path, then at least one endpoint of P has degree at least 3.
Let w′ be such an endpoint of P . The components of T − w′ yield a partition of V (T ) that
re�nes the partition given by components of T − w, so we can use w′ instead of w.

Our next lemma shows that if Builder can force monochromatic trees with many leaves
and small diameter, then Builder can force monochromatic odd cycles. We will need Dirac's
Theorem [28], which states that every n-vertex graph with minimum degree at least n/2 has
a spanning cycle.

Lemma 3.6.4. Let T be a weighted tree whose leaves have capacity 2 and non-leaves have
capacity 4. Let d = diam (T ), and let l be the number of leaves in T . Let G be a 4-weighted
n-cycle with n odd. If 2d+ 1 ≤ n ≤ l and Builder can force T , then Builder can force G.

Proof. If l > n, then we iteratively delete leaves to obtain a subtree T̂ of T with n leaves;
since diam (T̂ ) ≤ diam (T ), we have 2diam (T̂ ) + 1 ≤ n. If Builder can force T , then Builder
can force T̂ . Hence we may assume that l = n.

Since n ≥ 3, T is not a path. Hence there is a vertex w in T with degree at least 3

such that every component of T − w has at most half of the leaves, by Lemma 3.6.3. Since
diam (T ) ≤ (n− 1)/2, each leaf has distance at most (n− 1)/2 from w. Construct a tree T ′

from T as follows. For every leaf u of T having distance less than (n− 1)/2 from w, append
a path at u to reach a new leaf with distance (n − 1)/2 from w. The resulting tree T ′ has
the same number of leaves as T , and every leaf has distance (n − 1)/2 from w. Weight T ′

by giving capacity 2 to each leaf and capacity 4 to each non-leaf.
Against a consistent Painter, we may assume that Builder can force T in red. Note that

T ′ arises from T by repeatedly increasing the capacity of a leaf to 4, appending an edge
there, and giving the new leaf capacity 2. By repeated application of Lemma 3.6.2, Builder
can force a red T ′ or a monochromatic G.

If Painter avoids the monochromatic G, then a red T ′ results. By construction, each
leaf of T ′ has distance (n − 1)/2 from w, so the distance in T ′ between leaves belonging to
di�erent components of T ′ − w is n − 1. There are dT (w) such components, each with at
most n/2 leaves. Create an auxiliary graph F whose vertices are the n leaves of T ′; two such
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vertices are adjacent in F if they lie in di�erent components of T ′−w. Since each component
has at most n/2 leaves, Dirac's Theorem [28] implies that F has a spanning cycle.

Builder now plays the edges of the spanning cycle in F . Using red for one of these edges
completes a red n-cycle in which every vertex has degree at most 4. Otherwise, there is a
4-weighted n-cycle in blue.

Next, we show how Builder can use Lemma 3.6.1 to force trees with many leaves and
small diameter, permitting the application of Lemma 3.6.4. We use distG(x, y) to denote
the distance between vertices x and y in a graph G.

Lemma 3.6.5. Let G be a 4-weighted cycle. For each r ≥ 0, there is a weighted tree Tr with
leaves of capacity 2 and non-leaves of capacity 4 such that Builder can force a monochromatic
graph in {Tr, G} and

1. Tr has 2(4r + 1) leaves,

2. diam (Tr) ≤ 11 · 2r − 8, and

3. Tr has disjoint pairs {x,y} and {x′,y′} of leaves such that distTr(x,y) = distTr(x
′,y′) = 2.

Proof. We use induction on r. For r = 0, let T0 be the 6-vertex double-star S3,3, with
capacity 2 on leaves and capacity 4 on non-leaves. Against a consistent Painter, we may
assume that every isolated triangle yields a red 2-weighted P3. It follows from Lemma 3.6.1
that Builder can force a red T0 when Painter avoids G. Also, T0 satis�es the other speci�ed
properties.

For r ≥ 1, we construct Tr from Tr−1. Let x and y be leaves in Tr−1 with distTr−1(x, y) = 2.
Form a tree T from two copies of Tr−1 by adding an edge joining the two copies of x. By
Lemma 3.6.1, Builder can force a red T . In T , let y∗ be one of the two copies of y. Form
Tr from two copies of T by adding an edge joining the two copies of y∗. By Lemma 3.6.1,
Builder can force a red Tr. The construction of T1 from T0 is shown in the �gure below.

With each of the two steps in the construction of Tr from Tr−1, we doubled the number
of leaves and then killed two leaves. Hence if Tr−1 has l leaves, then Tr has 4l − 6 leaves.

Let d = diam (Tr−1). Since every vertex of Tr−1 has distance at most d from x, every
vertex in T has distance at most d + 1 from each copy of x. Since y∗ has distance 2 in T
from one copy of x, the distance in Tr from each vertex to one speci�ed copy of y∗ is at most
d+4. By the triangle inequality, diam (Tr) ≤ 2d+8. Hence diam (Tr) ≤ 2[11 ·2r−1−8]+8 =

11 · 2r − 8.
Finally, note that each copy of Tr−1 has two disjoint pairs of leaves at distance 2. The

construction of T destroys one pair from each copy, so T has two such pairs. These pairs in
both copies of T survive in Tr.

We now have the tools to prove our main result about odd cycles.
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Theorem 3.6.6. If n is odd and 337 ≤ n ≤ 514 or n ≥ 689, then R̊∆(Cn) = 4.

Proof. By Theorem 3.3.2, R̊∆(Cn) > 3.
For any r, Lemma 3.6.5 implies that Builder can force a graph in {Tr, G}, where G is

the 4-weighted Cn. If 2(11 · 2r − 8) + 1 ≤ n ≤ 2(4r + 1), then by Lemma 3.6.4 Builder can
force G. The theorem now follows by showing that⋃

r≥0

{2(11 · 2r − 8) + 1, . . . , 2(4r + 1)} = {337, . . . , 514} ∪ {689, . . .}.

The interval of suitable values of n is empty when r ≤ 3. For r = 4, the interval is
{337, . . . , 514}. The interval for r = 5 begins at 689. For r ≥ 5, the end of the interval for
r is after the beginning of the interval for r + 1, so all larger values are covered.

Theorem 3.6.6 and results in [22] imply that the online degree Ramsey number of every
cycle is 4, with the possible exception of a �nite number of odd cycles that have online degree
Ramsey number 5. Recently, Rolnick [97] proved that R̊∆(Cn) = 4 for each n.
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Chapter 4

Subtrees with Few Labeled Paths

In this chapter, we prove several quantitative Ramseyan results involving ternary complete
trees with {0, 1}-labeled edges where we attempt to �nd a complete binary subtree with as
few labels as possible along its paths. One of these is used to answer a question of Simpson's
in computability theory.

This chapter is based on joint work with R. G. Downey, N. Greenberg, and C. G. Jockusch
that appears in [30].

4.1 Introduction

There have been many fruitful interactions between combinatorics and computability theory.
Examples include new combinatorial proofs of classical results such as Mileti's proof of the
canonical Ramsey theorem [79], Montalbán's newly devised invariants for in�nite linear
orderings [81], Kierstead's online version of Dilworth's Theorem [65], and Füredi et al. on
inverting the di�erence operator [49]. This work is another example of such an interaction.

We study edge-labelings of rooted trees. A tree is ternary if each non-leaf has 3 children
and binary if each non-leaf has 2 children. A tree is complete if all leaves are at the same
distance from the root, and the depth of a complete tree is the distance between the root
and a leaf. The level of an edge is the depth of the endpoint farthest from the root. If T
is a complete ternary tree of depth n, we de�ne B(T ) to be the set of all binary subtrees of
T that are complete with depth n. A tree T is edge-labeled if each edge in T is assigned a
label from the set {0, 1}. We de�ne Tn to be the set of all ternary, complete, edge-labeled
trees of depth n.

If T ∈ Tn, r is the root of T , and σ is a leaf in T , then reading the elements along the
path from r to σ in T gives a path-label x ∈ {0, 1}n, and we say that σ has path-label x. We
de�ne L(T ) to be the set of all path-labels in T . Given T ∈ Tn, we wish to �nd a subtree
S ∈ B(T ) that minimizes |L(S)|. For each T ∈ Tn, let f(T ) = min{|L(S)| : S ∈ B(T )}, and
for each n, let f(n) = max{f(T ) : T ∈ Tn}.

The combinatorial thrust of this chapter is to study the behavior of f(n) as n grows. In
Section 4.2, we show that limn→∞(f(n))1/n exists; our bounds on f(n) imply that this limit
has a value between 21/ lg 3 ≈ 1.548 and 2. In Section 4.3, we show that if c <

√
lg(4/3) ≈
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0.644, then there is a constant γ such that f(n) ≤ γ2n−c
√
n. Consequently, the ratio f(n)/2n

tends to zero as n grows. This result has the following Ramsey interpretation: for large n,
every edge-labeled complete ternary tree of depth n admits a complete binary subtree of
depth n whose path-labels constitute an arbitrarily small fraction of the space of all possible
path-labels. In Section 4.4, we prove that f(n) ≥ 2(n−3)/ lg 3. Our techniques lead to a
solution of a problem in computability theory and e�ective randomness.

In his survey paper [101] on mass problems and randomness, Simpson asked whether
for all k ≥ 3, the Medvedev degree of DNRk bounds the Medvedev degree of every Π0

1

class of positive measure. We give precise de�nitions in Section 4.5, but the gist of the
question concerns comparing the computational di�culty of diagonalization with a constant
bound with that of constructing a set which is e�ectively random. The full background and
motivation for this question, which we answer in the negative in this chapter, can be found
in Section 4.5.

4.2 Some facts and a question about f

We begin by collecting a few simple facts about f(n). The following recursive bounds on
f(n) are instructive.

Proposition 4.2.1.

1. If n is a positive integer, then f(n+ 1) ≤ 2f(n).

2. If r and s are positive integers, then f(r + s) ≥ f(r)f(s).

Proof. To prove (1), let T ∈ Tn+1 be a tree with root r, and let T0 and T1 be subtrees of
T rooted at two children of r. Since T0, T1 ∈ Tn, by induction each Ti has a binary subtree
Si ∈ B(Ti) containing at most f(n) path-labels, and combining these subtrees with the root
of T yields a binary subtree of T with at most 2f(n) path-labels.

To prove (2), let R ∈ Tr be a tree in which each R′ ∈ B(R) contains at least f(r) path-
labels, and let S ∈ Ts be a tree in which each S ′ ∈ B(S) contains at least f(s) path-labels.
Obtain T ∈ Tr+s by attaching a copy of S at each leaf in R. Each binary subtree of T
contains at least f(r)f(s) labels.

It is instructive to consider the behavior of f when n is small. It is clear that f(1) = 1.
It is also straightforward to establish the value of f(2).

Proposition 4.2.2. f(2) = 2.

Proof. By Proposition 4.2.1, it follows that f(2) ≤ 2f(1) = 2. For the lower bound, see
Figure 4.1.
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0 0 1

0 0 0 1 1 1 0 0 0

Figure 4.1: An example of a tree T ∈ T2 with f(T ) = 2.

The following proposition about trees T of depth 2 that achieve equality in f(T ) ≤ 2 is
useful in establishing more values of f(n).

Proposition 4.2.3. If T ∈ T2 and f(T ) = 2, then there exists X ⊆ {0, 1}2 with |X| = 3

such that for each Y ⊆ X with |Y | = 2, there is a binary subtree S ∈ B(T ) with L(S) = Y .

Proof. Let T ∈ T2 with f(T ) = 2 and root r. Let T1, T2, and T3 be the subtrees of T rooted
at the children of r, and let xj be a path-label in {0, 1}2 such that at least two leaves in Tj
have path-label xj. Note that the xj are distinct since f(T ) = 2. The proposition follows
with X = {x1, x2, x3}.

Given two trees T1 and T2, it is also useful to �nd binary subtrees S1 ∈ B(T1) and
S2 ∈ B(T2) such that L(S1) ∪ L(S2) is small.

Proposition 4.2.4. If T1, T2 ∈ T2, then either min{f(T1), f(T2)} = 1 or there are binary
subtrees Sj ∈ B(Tj) such that |L(S1) ∪ L(S2)| ≤ 2.

Proof. We may assume that f(T1) = f(T2) = 2. Apply Proposition 4.2.3 to T1 and again
to T2 to obtain X1 and X2 respectively. Because |X1| = |X2| = 3 and X1, X2 ⊆ {0, 1}2, we
have that |X1 ∩ X2| ≥ 2. Choose Y ⊆ X1 ∩ X2 so that |Y | = 2. Proposition 4.2.3 implies
that there exist Sj ∈ B(Tj) with L(Sj) = Y .

Corollary 4.2.5. If T1, T2 ∈ T2, then there are binary subtrees Sj ∈ B(Tj) such that |L(S1)∪
L(S2)| ≤ 3.

Proof. By Proposition 4.2.2, f(T1) ≤ 2 and f(T2) ≤ 2. If min{f(T1), f(T2)} = 1, then there
are binary subtrees Sj with |L(S1)|+|L(S2)| ≤ 3, which su�ces. Otherwise Proposition 4.2.4
implies that there are binary subtrees Sj with |L(S1) ∪ L(S2)| ≤ 2.

Proposition 4.2.6. f(3) = 3.

Proof. Let T ∈ T3 with root r. Let v1, v2, v3 be the children of r; we may assume that rv1

and rv2 have the same edge-label. Let T1 and T2 be the subtrees of T of depth 2 rooted at v1

and v2 respectively. Corollary 4.2.5 implies that there are binary subtrees Sj ∈ B(Tj) such
that |L(S1) ∪ L(S2)| ≤ 3. Combining S1 and S2 with r, we obtain a binary subtree S of T
with |L(S)| ≤ 3. It follows that f(3) ≤ 3. For the lower bound, see Figure 4.2.
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Figure 4.2: An example of a tree T ∈ T3 with f(T ) = 3.

Next, we examine the structure of trees T ∈ T3 that achieve equality in f(T ) ≤ 3.

Proposition 4.2.7. Let T be a tree in T3 with root r and f(T ) = 3, and let v1, v2, v3 be the
children of r. The edges rv1, rv2, and rv3 do not all have the same label.

Proof. Suppose for a contradiction that rv1, rv2, and rv3 all have edge-label 0. Let Tj be
the subtree of T of depth 2 rooted at vj. Each Tj has a binary subtree Sj in which the
edges incident to the root of Tj have the same edge-label. At least two of S1, S2, and S3

have the same edge-label on all 4 edges at level 1. Combining these with r yields a subtree
S ∈ B(T ) in which all path-labels share the �rst 2 coordinates. It follows that |L(S)| ≤ 2,
contradicting that f(T ) = 3.

Proposition 4.2.8. Let T be a tree in T3 with root r and f(T ) = 3. Let v1, v2, v3 be
the children of r, indexed so that rv1 and rv2 have the same edge-label, and rv3 has the
opposite edge-label. For j ∈ {1, 2, 3}, let Tj be the subtree of T rooted at vj. We have
min{f(T1), f(T2)} = 1 and max{f(T1), f(T2)} = f(T3) = 2.

Proof. If f(T1) = f(T2) = 2, then Proposition 4.2.4 implies that there are binary subtrees
Sj ∈ B(Tj) such that |L(S1) ∪ L(S2)| = 2. Combining these with r would yield a binary
subtree S ∈ B(T ) with |L(S)| ≤ 2. It follows that min{f(T1), f(T2)} = 1. We may assume
that f(T1) = 1.

It follows that f(T2) = f(T3) = 2. Indeed, if f(Tj) = 1 for some j ∈ {2, 3}, then a
binary subtree of Tj with one path-label and a binary subtree of T1 with one path-label
would combine with r to produce a binary subtree S ∈ B(T ) with |L(S)| ≤ 2.

Lemma 4.2.9. Let T1, T2 ∈ T3. There are binary subtrees Sj ∈ B(Tj) such that |L(S1) ∪
L(S2)| ≤ 4.

Proof. We may assume that f(T1) = 3, since the Proposition readily follows when both
f(T1) ≤ 2 and f(T2) ≤ 2. For j ∈ {1, 2}, let rj be the root of Tj, and let vj,1, vj,2, vj,3 be the
children of rj. By Proposition 4.2.7, we may index v1,1, v1,2, and v1,3 so that r1v1,1 and r1v1,2

have the same edge-label, which we may assume is 0, and r1v1,3 has the opposite edge-label
1. By Proposition 4.2.8, we may assume that f(T1,1) = 1 and f(T1,2) = f(T1,3) = 2.
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Consider the labels on edges incident to r2. If at least two of these are 0, then there
are subtrees Sj ∈ B(Tj) such that all 4 edges at level 1 have label 0, which implies that
|L(S1) ∪ L(S2)| ≤ 4. Hence we may assume that r2v2,1 and r2v2,2 have edge-label 1.

Apply Corollary 4.2.5 to obtain binary subtrees S2,j ∈ B(T2,j) with |L(S2,1) ∪ L(S2,2)| ≤
3. Note that there is a path-label x ∈ {0, 1}2 such that x 6∈ L(S2,1) ∪ L(S2,2). Because
f(T1,3) = 2, Proposition 4.2.3 implies that there exists S1,3 ∈ B(T1,3) such that x 6∈ L(S1,3).
It follows that |L(S1,3) ∪ L(S2,1) ∪ L(S2,2)| ≤ 3.

Choose S1,1 ∈ B(T1,1) so that |L(S1,1)| = 1. Combine S1,1 and S1,3 with r1 to form S1,
and combine S2,1 and S2,2 with r2 to form S2. Because r1v1,1 has edge-label 0 and r1v1,3,
r2v2,1, and r2v2,2 have edge-label 1, we have that |L(S1) ∪ L(S2)| = |L(S1,1)| + |L(S1,3) ∪
L(S2,1) ∪ L(S2,2)| ≤ 4.

Lemma 4.2.10. f(4) = 4.

Proof. Let T ∈ T4 with root r. Let v1, v2, v3 be the children of r; we may assume that rv1

and rv2 have the same edge-label. Let T1 and T2 be the subtrees of T of depth 3 rooted at
v1 and v2 respectively. Lemma 4.2.9 implies that there are binary subtrees Sj ∈ B(Tj) such
that |L(S1) ∪ L(S2)| ≤ 4. Combining S1 and S2 with r, we obtain a binary subtree S of T
with |L(S)| ≤ 4. It follows that f(3) ≤ 3. By Proposition 4.2.1 and Proposition 4.2.2, we
have that f(4) ≥ f(2)f(2) = 4.

Summarizing our lemmas, we obtain the following.

Theorem 4.2.11. If n ≤ 4, then f(n) = n. Also, 6 ≤ f(5) ≤ 8.

Proof. Proposition 4.2.2, Proposition 4.2.6, and Lemma 4.2.10 imply the �rst statement.
For the second, note that Proposition 4.2.1 implies that f(5) ≥ f(3)f(2) = 6 and f(5) ≤
2f(4) = 8.

The exact value of f(n) is unknown when n ≥ 5. Proposition 4.2.1 has further conse-
quences. First, the upper bound f(n + 1) ≤ 2f(n) shows that f(n)/2n is a non-increasing
sequence, and because f(n) ≥ 0, it follows that limn→∞ f(n)/2n exists. Indeed, we shall see
that this limit is zero. Another consequence of Proposition 4.2.1 is that limn→∞ (f(n))1/n

exists.

Proposition 4.2.12. If an = (f(n))1/n and β = sup {an}, then lim an = β.

Proof. Note that β ≤ 2 since f(n) ≤ 2n. Fix ε > 0 and choose m so that am ≥ β − ε/2.
Let n be large, and divide n by m to get a quotient q and remainder r. Iteratively applying
Proposition 4.2.1, we have that

f(n) ≥ (f(m))q f(r) = (am)mqf(r) ≥ (am)n−r.
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Hence, we have that an ≥ (am)1−r/n. Because (am)1−r/n → am as n → ∞, it follows that
there exists n0 such that n ≥ n0 implies that an ≥ am− ε/2. Therefore, for each n ≥ n0, we
have that β − ε ≤ an ≤ β.

This result can also be proved by noting that g(n) = log f(n) is a superadditive function,
i.e. g(m+ n) ≥ g(m) + g(n) for all positive integers m,n. Also g(n)/n is bounded. It then
follows from a result known as Fekete's Lemma (see [91], #98, page 23, solution on page
198) that limn g(n)/n exists and equals sup g(n)/n. Restating this in terms of f completes
the proof.

It follows from Proposition 4.2.12 and f(3) = 3 that

lim
n→∞

(f(n))1/n ≥ (f(3))1/3 =
3
√

3 ≥ 1.442.

We shall see in Corollary 4.4.4 that

lim
n→∞

(f(n))1/n ≥ 2
1

lg 3 ≥ 1.548.

On the other hand, the best known upper bound is the trivial bound

lim
n→∞

(f(n))1/n ≤ 2.

This leads to the main open problem regarding bounds on f(n).

Question 4.2.13. What is limn→∞ (f(n))1/n?

4.3 An upper bound on f (n)

We begin collecting results needed to establish our upper bound on f(n). The following
proposition is central to the task at hand. It is implicit in the proof of Theorem 6 of [61],
which is a sort of forerunner of our Theorem 4.5.2. It was also stated explicitly by Robert
Goldblatt in [50] (bottom of page 561) where it was applied to solve a problem in modal
logic. We include its short proof for completeness.

Proposition 4.3.1. Let T be a complete ternary tree of depth n. If each leaf in T is colored
red or blue, then there exists S ∈ B(T ) such that all leaves in S share a common color.

Proof. Let r be the root of T and let T1, T2, and T3 be the subtrees of T rooted at the
children of r. By induction, each tree Tj contains a subtree Sj ∈ B(Tj) in which all leaves
share a common color. By the pigeonhole principle, at least two of the Sj contain leaves of
the same color. Combining these with the root of T , we obtain S ∈ B(T ) as required.
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Proposition 4.3.1 has a very useful consequence. When X ⊆ {0, 1}n, we let X be the
complementary set {0, 1}n \X.

Corollary 4.3.2. If T ∈ Tn and X is a subset of {0, 1}n, then there exists S ∈ B(T ) such
that either L(S) ⊆ X or L(S) ⊆ X.

Proof. Label a leaf σ in T red if the path-label from the root of T to σ is in X and blue
otherwise. By Proposition 4.3.1, there exists S ∈ B(T ) such that all leaves share a common
color. If this color is red, then L(S) ⊆ X. Otherwise, L(S) ⊆ X.

Our strategy to bound f(n) from above is as follows. We prove our bound by induction.
To prove that f(n) is small, we use that f(m) is small for a carefully chosen number m that
is less than n.

Consider T ∈ Tn. We �rst �nd a complete binary subtree S ′ of depth m such that
|L(S ′)| ≤ f(m). For each leaf σ in S ′, let Tσ be the subtree of T rooted at σ. Note that each
Tσ is a member of Tn−m. To extend S ′ to a complete binary subtree of depth n, we wish
to �nd a family of complete binary subtrees Sσ ∈ B(Tσ) such that |

⋃
σ L(Sσ)| is as small as

possible.
The key for this process is arguing that given a family of edge-labeled ternary trees, we

can �nd binary subtrees of each such that the total number of path-labels used in all of
the binary subtrees is small. Corollary 4.3.2 gives some control over the path-labels that
appear in the binary subtrees. In order to �nd the binary subtrees, we apply Corollary 4.3.2
numerous times with di�erent subsets of {0, 1}n. We are particularly interested in applying
Corollary 4.3.2 to families of subsets of {0, 1}n with a certain structure.

De�nition 4.3.3. Let α ∈ [0, 1], and let Υ be a ground set. Two partitions {X,X} and
{Y, Y } of Υ are α-orthogonal if all four of the cross intersections (X ∩ Y , X ∩ Y , X ∩ Y ,
and X ∩ Y ) have size at least α|Υ|/4. A family of partitions X is α-orthogonal if each pair
of distinct partitions in X is α-orthogonal.

While we construct large α-orthogonal families for an arbitrary ground set Υ, we apply
our construction in the case Υ = {0, 1}n. Note that if α < 1 and X and Y are chosen inde-
pendently and uniformly at random from all subsets of a large ground set, then {X,X} and
{Y, Y } are α-orthogonal with high probability. This suggests a natural way of constructing
large α-orthogonal families. We use Cherno�'s inequality.

Theorem (Cherno�'s Inequality (See [82, Theorem 4.2].)). Let Z1, Z2, . . . , Zt be mutually
independent random indicator variables where Zl = 1 with probability pl and Zl = 0 with
probability 1 − pl, let Z =

∑t
l=1 Zl, and let µ = E[Z] =

∑t
l=1 pl. If 0 ≤ δ ≤ 1, then

Pr[Z < (1− δ)µ] < e−µδ
2/2.
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Lemma 4.3.4. Let α ∈ (0, 1), and Υ be a ground set of size t. There exists a family of
pairwise α-orthogonal partitions of Υ of size at least⌊√

2

2

(
e

(1−α)2

16

)t⌋
.

Proof. Let r =
⌊√

2
2
e

(1−α)2

16
t
⌋
. For each 1 ≤ j ≤ r, choose a subset Xj ⊆ Υ uniformly and

independently at random. We claim that with positive probability, {Xi, Xi} and {Xj, Xj}
are α-orthogonal when i 6= j. In particular, this implies that with positive probability, the
partitions are all distinct and that

{{
Xj, Xj

}
: 1 ≤ j ≤ r

}
is an α-orthogonal family of size

r, which implies that some such family exists. Let X =
{{
Xj, Xj

}
: 1 ≤ j ≤ r

}
.

For each pair {i, j} with 1 ≤ i < j ≤ r, let Aij be the event that one of the four cross
intersections between

{
Xi, Xi

}
and

{
Xj, Xj

}
has size less than α t

4
, and let A =

⋃
ij Aij, so

that A is the event that X is not an α-orthogonal family. We show that Pr[A] < 1.
Of course Pr[A] ≤

∑
ij Pr[Aij]. Similarly, we have that Pr[Aij] ≤ 4p, where p is the

probability that |X ∩ Y | < α t
4
where X ⊆ Υ and Y ⊆ Υ are chosen uniformly and indepen-

dently at random. For each x ∈ Υ, let Zx be the random indicator variable for the event
that x ∈ X ∩ Y , and let Z =

∑
x Zx, so that Z = |X ∩ Y |. Note that the Zx are mutually

independent random indicator variables and Zx = 1 with probability 1/4. By Cherno�'s
inequality,

p = Pr

[
Z < α

t

4

]
< e−(t/4)(1−α)2/2 = e−

(1−α)2

8
t.

It follows that

Pr[A] ≤
∑
ij

Pr[Aij] ≤
∑
ij

4p = 4

(
r

2

)
p < 2r2e−

(1−α)2

8
t ≤ 1

and hence Pr[A] < 1 as required.

It is possible to construct larger α-orthogonal families using more sophisticated proba-
bilistic tools, such as the Lovász Local Lemma, but this does not give a substantial improve-
ment to our bounds on f(n).

Lemma 4.3.5. Let ε > 0 and let k = lg(ε−2 ln 4). If T1, . . . , Tr ∈ Tn and n ≥ lg(r) +k, then
there are binary subtrees Sj ∈ B(Tj) such that∣∣∣∣∣⋃

j

L(Sj)

∣∣∣∣∣ ≤
(

3

4
+ ε

)
2n.

Proof. Let α = 1 − 4ε, so α < 1. By Lemma 4.3.4, there is a family X of pairwise α-
orthogonal partitions of {0, 1}n of size
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⌊
2−1/2eε

22n
⌋
≥
⌊
2−1/2eε

2(rε−2 ln 4)
⌋

=
⌊
2−1/2er ln 4

⌋
=
⌊
22r−1/2

⌋
> 2r

Fix an arbitrary linear ordering on {0, 1}n. For each {X,X} ∈ X , we apply Corollary 4.3.2 to
each of the trees T1, . . . , Tr. Let D{X,X} be the subset of {T1, . . . , Tr} consisting of those trees
T for which Corollary 4.3.2 produces a binary subtree S ∈ B(T ) where L(S) ⊆ min{X,X},
where the minimization is with respect to the chosen ordering on {0, 1}n.

Because |X | > 2r, there exist distinct partitions {X,X} and {Y, Y } in X with D{X,X} =

D{Y,Y }. Let D = D{X,X}. For each Tj, we select Sj ∈ B(Tj) as follows. If Tj ∈ D, then we
may choose Sj ∈ B(Tj) such that L(Sj) ⊆ min{X,X}. Alternately, if Tj 6∈ D, then we may
choose Sj ∈ B(Tj) such that L(Sj) ⊆ max{Y, Y }.

Note that none of the Sj contains a path-label in Z = max{X,X}∩min{Y, Y }. Moreover,
because X is α-orthogonal, we have that |Z| ≥ (α/4)2n. It follows that∣∣∣∣∣⋃

j

L(Sj)

∣∣∣∣∣ ≤ 2n − (α/4)2n ≤
(

3

4
+ ε

)
2n.

We remark that the hypothesis n ≥ lg(r) + k cannot be relaxed beyond reducing k.
Indeed, suppose that r = 2n and index the ternary trees by vectors in {0, 1}n. If each Tx
is edge-labeled so that L(Tx) = {x}, then L(S) = {x} for each S ∈ B(Tx). Consequently,
regardless of which subtrees are chosen,

⋃
x L(Sx) = {0, 1}n.

Our main result (Theorem 4.3.7 below) asserts that for su�ciently small constants c > 0

the function f is O(2n−c
√
n). We now brie�y outline the proof of this result. Using induction,

assume the result for some m < n (which we will now need to pick carefully, given n), and
given T , pick a complete binary subtree S ′ of depth m such that |L(S ′)| is bounded by
γ2m−c

√
m for an appropriate choice of the constant γ.

Now we have two kinds of path-labels in S ′: those that occur often (in the proof, at
least 2c

√
m many times), and those that do not. If a path-label x appears often, it doesn't

matter how we choose to extend S ′ at leaves σ with path-label x, because the total number
of path-labels for all leaves of S extending any such σ will be limited. And if a label x does
not appear often, then we can apply Lemma 4.3.5 to obtain trees Sσ extending all the leaves
of S ′ which are labeled by x, with a bounded total number of labels.

53



Our next lemma is technical and determines how we choose the depth m of subtree on
which we apply induction. Because we apply Lemma 4.3.5 to a collection of 2m trees of
depth n−m, we need n−m to be large. On the other hand, we will replace

√
m with

√
n

in some of our bounds, so we want
√
m to be close to

√
n.

Lemma 4.3.6. Let c > 0 and k > 0. If n is a su�ciently large integer, then there exists an
integer m with 1 ≤ m < n such that n−m ≥ c

√
m+ k and

√
n−
√
m ≤ c.

Proof. For positive x ∈ R, let y(x) = x − c
√
x − (k + 1). We have y(x) → ∞, so for large

enough real x, we can let h(x) =
√
x −

√
y(x). Algebraic manipulation yields h(x) = n(x)

d(x)
,

where n(x) = c + (k + 1)/
√
x and d(x) = (1 +

√
1− c/

√
x+ (k + 1)/x), for all su�ciently

large x. Hence h(x)→ c/2 as x grows. Therefore h(x) ≤ c when x is su�ciently large. Let
n be large enough so that h(n) ≤ c and y(n) > 0, and let m = dy(n)e. Note that m < n

since y(n) < n− 1. Because m− 1 < y(n) ≤ m, we have that

n−m = n− (m− 1)− 1 ≥ n− y(n)− 1 = c
√
n+ k ≥ c

√
m+ k.

Similarly, we have
√
n−
√
m ≤

√
n−
√
y(n) = h(n) ≤ c. Finally, note that because y(n) > 0,

we have that 1 ≤ m.

Theorem 4.3.7. If 0 ≤ c <
√

lg(4/3) ≈ 0.644, then there is a constant γ such that
f(n) ≤ γ2n−c

√
n.

Proof. Because 2c
2
< 4/3, we may choose δ ∈ (3/4, 1/2c

2
). Let ε = δ − 3/4, let k =

lg(ε−2 ln 4) as in Lemma 4.3.5, and let n0 be large enough so that for all n ≥ n0 there is
some m as in Lemma 4.3.6. Note that because δ2c

2
< 1, we may choose γ to be large enough

so that (1 + γδ)2c
2 ≤ γ holds and f(n) ≤ γ2n−c

√
n holds for all n < n0. We prove that the

bound holds for all n by induction.
Let n ≥ n0, apply Lemma 4.3.6 to obtain m, and consider T ∈ Tn with root r. Let T ′

be the complete ternary subtree of T rooted at r with depth m. By induction, there exists
a complete S ′ ∈ B(T ′) with |L(S ′)| ≤ γ2m−c

√
m.

For each x ∈ {0, 1}m, let Ax be the set of leaves of S ′ with path-label x. We say that
x ∈ {0, 1}m is frequent if |Ax| ≥ 2c

√
m, and we say that x is infrequent otherwise. Let α be

the number of frequent labels, and let β be the number of infrequent labels.
For each leaf σ of T ′, let Tσ be the complete ternary subtree of T rooted at σ of depth

n −m. For each leaf σ in S ′, we extend S ′ at σ by selecting some Sσ ∈ B(Tσ). The choice
for Sσ depends on whether the path-label of σ in S ′ is frequent or not.

If x is frequent, then for each σ ∈ Ax, we choose Sσ ∈ B(Tσ) arbitrarily. Otherwise,
suppose that x is infrequent, and let σ1, . . . , σr be the leaves in S ′ with path-label x. Because
x is infrequent, we have r ≤ 2c

√
m. Moreover, each Tσ has depth n − m and n − m ≥

c
√
m+ k ≥ lg(r) + k. Therefore Lemma 4.3.5 implies that there exist Sσ ∈ B(Tσ) such that
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∣∣⋃
σ∈Ax L(Sσ)

∣∣ ≤ δ2n−m. Gluing together all the trees Sσ yields S ∈ B(T ). We bound |L(S)|
as follows.

First, we bound the number of path-labels in L(S) that extend frequent path-labels. Note
that by the de�nition of �frequent,� α2c

√
m ≤ 2m. If x ∈ {0, 1}m, then the total number of

path-labels in L(S) which extend x is at most 2n−m. Hence the total number of path-labels
in L(S) which extend a frequent path-label is at most α2n−m ≤ 2n−c

√
m.

Next, we bound the number of path-labels in L(S) that extend infrequent path-labels.
If x is not frequent, then the number of path-labels in L(S) that extend x is at most δ2n−m.
Note that β ≤ |L(S ′)| ≤ γ2m−c

√
m. Hence the number of path-labels in L(S) that extend an

infrequent path-label is at most βδ2n−m ≤ γ2m−c
√
mδ2n−m = γδ2n−c

√
m.

Adding these two bounds, we have that

|L(S)| ≤ (1 + γδ) 2n−c
√
m

= (1 + γδ) 2c(
√
n−
√
m)2n−c

√
n

≤ (1 + γδ) 2c
2

2n−c
√
n

≤ γ2n−c
√
n

as required.

4.4 A lower bound on f (n)

Our strategy for bounding f(n) from below is to construct edge-labeled ternary trees in
which each path-label occurs along a limited number of paths, and then extend these trees
slightly.

Lemma 4.4.1. De�ne a sequence {am} of integers via a0 = 1 and am = d3am−1/2e for
m ≥ 1. For each m, there exists Tm ∈ Tm such that for each x ∈ {0, 1}m, the set Ax of all
leaves in Tm with path-label x satis�es |Ax| ≤ am.

Proof. By induction on m. If m = 0, the statement holds trivially. For m ≥ 1, the inductive
hypothesis implies that there is Tm−1 ∈ Tm−1 in which each path label occurs at most am−1

times. We extend Tm−1 to a complete ternary tree of depth m as follows. Consider a path-
label x ∈ {0, 1}m−1. At each vertex u in Ax, add three children v1, v2, v3 adjacent to u. Of
the 3|Ax| new edges, arbitrarily label d3|Ax|/2e with label 0 and label the others with label
1. Repeating for each x ∈ {0, 1}m−1 yields Tm.

It is straightforward to argue by induction that (3/2)m ≤ am ≤ 2(3/2)m− 1. Solving the
recurrence exactly has received some study. Odlyzko and Wilf showed that am = bK(3/2)nc
where K ≈ 1.6222 [86]; see also [45]. The sequence appears in the On-Line Encyclopedia of
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Integer Sequences with sequence identi�er A061419. Our application requires only the easy
upper bound am ≤ 2(3/2)m. By extending the trees provided in Lemma 4.4.1, we obtain a
lower bound on f(n).

Lemma 4.4.2. If m ≥ 0 and s = dlg 2(3/2)me, then f(m+ s) ≥ 2m.

Proof. Obtain Tm as in Lemma 4.4.1, and let s = dlg 2(3/2)me. We obtain a tree T ∈ Tm+s

by extending Tm as follows. Fix some x ∈ {0, 1}m, and let Ax be the set of all leaves in Tm
with path-label x. Because |Ax| ≤ 2(3/2)m, we may choose distinct labels θ(σ) ∈ {0, 1}s for
each σ ∈ Ax. Extend Tm at σ by attaching the tree Tσ ∈ Ts with L(Tσ) = {θ(σ)}. Following
the same extension procedure for each label in {0, 1}m yields T .

Consider S ∈ B(T ) and let σ1, . . . , σr be the vertices of S at depth m. For each σj, let
τj be a leaf in S that is a descendant of σj. Because no two distinct leaves τi, τj share a
common path-label, we have that |L(S)| ≥ r = 2m, as required.

Lemma 4.4.2 yields a lower bound on f(n) only when n is of a special form; however,
we claim that for each n, either n or n − 1 is of a form to which Lemma 4.4.2 applies. Let
bm = m+ dlg 2(3/2)me, and note that for m ≥ 1, we have that

bm − bm−1 = 1 + dlg 2(3/2)me −
⌈
lg 2(3/2)m−1

⌉
< 2 + lg 3/2 < 3.

Because bm − bm−1 is an integer, we have that bm − bm−1 ≤ 2. We obtain the following
general lower bound.

Theorem 4.4.3. For each n, we have f(n) ≥ 2
n−3
lg 3 ≥ (0.269) · (1.548)n.

Proof. Let m be an integer such that either n or n − 1 is equal to m + dlg 2(3/2)me.
Lemma 4.4.2 implies that f(n) ≥ f(m+ dlg 2(3/2)me) ≥ 2m. Note that

n− 1 ≤ m+ dlg 2(3/2)me ≤ m+ (lg 2(3/2)m) + 1 = (lg 3)m+ 2

and therefore m ≥ (n− 3)/ lg 3.

Corollary 4.4.4. We have that limn→∞ (f(n))1/n ≥ 2
1

lg 3 ≥ 1.548.

A generalization of f

Our techniques partially extend to a natural generalization of f , where the branching factor
the host tree is an integer q and we seek subtrees where each non-leaf has p children. A tree
is q-ary if every non-leaf has q children. Let T (q,t)

n be the set of all complete {0, . . . , t− 1}-
edge-labeled q-ary trees of depth n. For 2 ≤ t ≤ p < q and T ∈ T (q,t)

n , consider the problem
of �nding a p-ary subtree of T with few path-labels; we have focused on the case (t, p, q) =
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(2, 2, 3). When T ∈ T (q,t)
n and S is a complete p-ary subtree of depth n, we write S @p T .

Let f(T ; p) = min{|L(S)| : S @p T}, and de�ne f(n; t, p, q) = max{f(T ; p) : T ∈ T (q,t)
n }.

While the behavior of f(n; t, p, q)/tn remains largely unexplored, we are able to prove the
following.

Theorem 4.4.5.

lim
n→∞

f(n; t, p, q)

tn
=

0 if p < 1
2
q + 1

1 if p ≥ t−1
t
q + 1

Proof (sketch). Suppose that p < q/2 + 1, or equivalently, 2p − 1 ≤ q. In this case, a
modi�ed version of Proposition 4.3.1 holds. If T is a complete q-ary tree of depth n whose
leaves are all colored red or blue, then there is a p-ary subtree S with S @p T such that the
leaves of S are monochromatic. We then extend Lemma 4.3.5 in the natural way, so that if
T1, . . . , Tr ∈ T (q,t)

n and n is su�ciently large in terms of r, then there are p-ary subtrees Sj of
Tj such that

⋃
j L(Sj) contains at most a constant fraction of the total space of path-labels

{0, . . . , t − 1}n. We �nd a p-ary subtree with few path-labels by iteratively applying this
lemma at the leaves of the current p-ary subtree. Each application results in a constant
factor reduction of the fraction of used path-labels.

If p ≥ t−1
t
q + 1, then in fact f(n; t, p, q) = tn. Let k = bq/tc, and let T ∈ T (q,t)

n be a tree
in which each of the t edge-labels is used on at least k of the q descendant edges of each
non-leaf vertex. Because p is an integer, we have p ≥

⌈
t−1
t
q + 1

⌉
=
⌈
t−1
t
q
⌉

+ 1, and therefore
p >

⌈
t−1
t
q
⌉

= dq − q/te = q − k. Let u be a non-leaf in T and let j ∈ {0, . . . , t − 1}. Since
p + k > q, every choice of p children at u includes at least one child v such that uv has
edge-label j. It follows that L(S) = {0, . . . , t− 1}n for each S with S @p T .

Theorem 4.4.5 determines the limiting behavior of f(n; t, p, q)/tn as n→∞ when t = 2.
The �rst unknown case is (t, p, q) = (3, 3, 4).

4.5 An application to computability theory

In this section, we present a result in computability theory. Computability theory tradition-
ally borrows much of its notation from set theory. When A and B are sets, we use BA to
denote the set of functions from A to B. Let ω = {0, 1, . . . , }. The set ωω is called Baire
space.

A fundamental goal of computability theory is to understand which functions in Baire
space are computable. Informally, a function f : ω → ω is computable if there is a procedure
which, when given a number n ∈ ω as input, outputs f(n) after a �nite number of steps. A
partial function from A to B is a function from a subset A′ of A to B; we write φ : A→ B

when φ is a partial function from A to B. When n ∈ A′, we say that φ(n) is de�ned or
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converges, and we write φ(n) ↓. When n ∈ A but n 6∈ A′, we say that φ(n) is unde�ned
or diverges, and we write φ(n) ↑. When A′ = A, we say that φ is total. A partial function
φ : ω → ω is partial computable if there is a procedure which, when given a number n ∈ ω as
input, outputs φ(n) after a �nite number of steps if φ(n) ↓ and does not terminate if φ(n) ↑.

There are several di�erent mathematical models of procedures, such as Turing Machines
and functions in lambda calculus. The de�nitions of �computable� and �partial computable�
are robust in that they do not depend on the model chosen. We use the Turing Machine
model. Here, we describe the Turing Machine model informally; for a formal de�nition,
see [103, 102]. A Turing Machine M consists of a �nite set of states, a transition function,
and a one-way in�nite tape for data storage. The tape is divided into cells c1, c2, . . . and each
cell is blank or contains a 0 or a 1. A tape head which is positioned over one of the cells on
the tape, which is called the current cell. One of the states is designated as the �start state�,
and another is designated the �halt state�. Based upon the current state and the contents
of the current cell, the transition function speci�es the next state, potentially overwrites the
contents of current cell, and optionally moves the tape head left or right.

To runM on an input n ∈ ω, the number n is �rst written on the tape in binary, starting
at the left end (other cells are initially blank), and the current state of M is set to the start
state. If M enters the halt state after a �nite number of steps, then we write M(n) ↓, we
say that M(n) converges or halts, and we use M(n) to denote the contents of the tape. If
M never enters the halt state, we write M(n) ↑ and we say that M(n) diverges.

One crucial property of Turing Machines is that each admits a �nite description. Conse-
quently, the set of all Turing Machines is countable. Let M1,M2, . . . be a reasonable1 list of
Turing Machines. Each Turing MachineMe computes a computable partial function ϕe, and
conversely every computable partial function is computed by some Turing Machine. Hence,
the set of partial computable functions is a countable subset of ωω.

One common variant of the Turing Machine is the oracle Turing Machine. An oracle
Turing Machine has all the components of a Turing Machine, plus an additional one-way
in�nite tape called the oracle tape and an oracle query state. The oracle tape has its own
head which operates independently of the data tape head. An oracle Turing Machine M is
run with respect to an oracle f ∈ ωω. When the oracle Turing Machine enters the oracle
query state, the contents of the oracle tape are interpreted as the binary representation of
a number n and are replaced with the binary representation of f(n). When M is run with
respect to f on an input n, we extend the notions of divergence, convergence, and output
using the notationM f (n) in place ofM(n). The Turing functional Φ corresponding to oracle
Turing Machine M is the function from ωω to the set of partial functions from ω to ω where
Φ(f) is the partial function computed by M f . Hence, the notation Φ(f)(n) is the same as

1Here, �reasonable� means that there is a computable way of passing from the combinatorial description
of Me to e and conversely. It is helpful to think of e as being the �source code� for the Turing Machine Me.
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M f (n) when Φ is the Turing functional corresponding to M .
Our application requires a generalization to partial edge-labelings of the in�nite ternary

tree. A ternary sequence is a �nite sequence of 0's, 1's, and 2's. The full ternary tree is the
collection of all ternary sequences, ordered by sequence extension. This partial ordering can
also be viewed as a (connected, acyclic) graph where two sequences are joined by an edge if
one is an immediate extension of the other, that is, the one extends the other by one digit.
The empty sequence is the root of the tree. The set of vertices at depth k is {0, 1, 2}k.

We consider partial edge-labelings of the full ternary tree. Recall that if στ is an edge
in the full ternary tree and τ extends σ by one character, then the level of στ is the depth
of τ . Hence, edges incident to the root are at level 1. Let U be an in�nite set of positive
integers, which will indicate a set of levels of the full ternary tree; let u1, u2, u3, . . . be an
increasing enumeration of the elements of U . A U-edge-labeling of the full ternary tree is an
assignment of a label in {0, 1} to each edge at every level in U . As before, reading the labels
along edges in the path from the root to a vertex σ gives a path-label, and reading the labels
along the edges of an in�nite path starting at the root gives a path-label in {0, 1}ω, where
ω = {0, 1, 2, . . .}. A binary subtree S of the full ternary tree is complete if it is nonempty
and has no leaves. (Note that we are considering subtrees in the graph-theoretic sense. In
particular, such an S is �2-bushy� in the sense that every node at depth n has two children at
depth n+ 1.) For such a subtree S, let L(S) be the set of path-labels of paths through S, as
before. Also as before, our object is to �nd such an S with L(S) �small.� However, it is easily
seen that it is not possible in general to choose such an S with L(S) countable. Instead,
we ensure that L(S) has measure 0 in the usual fair-coin measure on 2ω. This amounts to
choosing S so that limn |L(Sun)|/2n = 0, where Sk is the set of nodes and vertices of S with
depth at most k.

A set U ⊆ N is computable if there is an algorithm which, given n ∈ N, decides if n ∈ U .
A U -edge-labeling is computable if there is an algorithm which, given an edge στ in the full
ternary tree, outputs the label on στ . A full binary subtree S of the full ternary tree is
computable if there is an algorithm that, given a ternary sequence σ, decides if σ is a vertex
in S. For our application to computability theory, we also need the proof to be e�ective in
the sense that we can choose S to be computable if T and U are computable.

Theorem 4.5.1. Let U be an in�nite set of positive integers, and let T be a U-edge-labeling
of the full ternary tree. Then there is a complete binary subtree S of T such that L(S) has
measure 0 as a subset of {0, 1}ω. Furthermore, if U and T are computable, we may require
S to be computable.

Proof. We prove the computable version of the result, and of course the other version follows
by the same argument, omitting all mention of computability. Let r be the root of T . We
obtain S by computing a sequence S0, S1, . . . of �nite, complete binary subtrees rooted at r.
Each tree Sj is a proper subtree of Sj+1 and L(Sj) has size at most (3/4)j · 2n, where n is
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the length of the path-labels in Sj. We set S =
⋃
j Sj. Note that S is a full binary subtree

of T and L(S) has measure 0. Moreover, S is computable; to see if σ is a vertex in S, simply
compute Sj for large enough j so that path-labels in Sj have length at least as long as σ and
test if σ is in Sj.

Let S0 be the binary subtree of depth 0 rooted at r. Given Sj, we show how to compute
Sj+1. We obtain Sj+1 by gluing trees of the same depth to the leaves of Sj. These trees are
obtained from a modi�ed version of Lemma 4.3.5. This modi�ed version is explained next.

The argument of Lemma 4.3.5 easily extends to the partial edge-labeling case when the n
of the lemma is replaced by the length of the path-labels in the given partially edge-labeled
trees. In fact, the argument becomes easier because we are no longer trying to establish a
delicate upper bound on the number of labels. The key to applying the pigeon-hole principle
in the proof of Lemma 4.3.5 is that |X | > 2r, where X is a family of pairwise α-orthogonal
partitions of {0, 1}n. If we now set α = 1 and require n > 2r, we now achieve this easily by
taking X = {{Xi, Xi} : 1 ≤ i ≤ n}, where Xi is the set of binary words of length n with a
1 in the ith bit, so that X is a 1-orthogonal family of partitions of {0, 1}n. (This avoids the
use of Cherno�'s Inequality to construct a large α-orthogonal family, at the cost of making
n much larger than in the original version of Lemma 4.3.5 .) Since now α = 1, the �rst
inequality in the �nal line of the proof of Lemma 4.3.5 yields |

⋃
j L(Sj)| ≤ (3/4)2n.

Let m be the length of the path-labels in Sj, and let A be the set of all leaves in Sj. Let
n = 2|A|+1. For each σ in A, let Tσ be the complete ternary subtree rooted at σ whose leaves
have depth um+n in T . Note that by construction, the path-labels in Tσ all have length n.

Therefore, by the modi�ed version of Lemma 4.3.5 discussed above, for each σ ∈ A, there
exists a complete binary subtree Sσ of Tσ of full depth such that |

⋃
σ∈A L(Sσ)| ≤ (3/4)2n.

Because A is �nite and there are only a �nite number of candidates for each Sσ, we may
compute such a collection of subtrees using brute force. Let Sj+1 be the binary subtree
obtained by gluing Sσ at each leaf σ in Sj. Note that Sj+1 has depth um+n and the path-
labels in Sj+1 have length m+ n.

For each x ∈ L(Sj), there are at most (3/4)2n path-labels in L(Sj+1) that extend x. It
follows that |L(Sj+1)| ≤ (3/4)2n · |L(Sj)| = (3/4)2n(3/4)j2m = (3/4)j+12m+n, as required.

Equip ω with the discrete topology. The product space ωω, also known as Baire space, is a
universal Polish space (a separable, completely metrizable space). Medvedev [76] considered
subsets of Baire space to be �mass problems,� where the idea is that the elements of a set
A are the solution of the �problem.� For example, if A is a singleton {f}, then the problem
A is the problem of computing f . For another example, if A consists of all functions whose
range is some nonempty set X, then A is the problem of enumerating the elements of X.

When is one mass problem at least as di�cult as another? Medvedev [76] introduced a
reducibility on mass problems which is now often called Medvedev reducibility. Namely, B is
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Medvedev reducible to A, denoted B ≤M A, if there is a uniform way to compute a solution
for B given any solution for A. Formally, this means there is a Turing functional Φ such that
Φ(f) ∈ B for all f ∈ A. In other words, there is a �xed oracle Turing machine which, given
any function f ∈ A as oracle, computes a function g ∈ B, which must of course be a total
function. Note that Medvedev reducibility extends Turing reducibility in the sense that for
f, g ∈ ωω, g is Turing reducible to f if and only if {g} is Medvedev reducible to {f}.

The relation ≤M is a pre-partial ordering on Baire space. We call two mass problems
Medvedev equivalent if each is Medvedev reducible to the other, and Medevedev equivalence
is an equivalence relation. The equivalence classes are calledMedvedev degrees ; the collection
of degrees is turned into a degree structure by adding the induced partial ordering. In fact,
this degree structure is a distributive lattice, where the least upper bound is induced by
pairwise e�ective join

A× B = {f ⊕ g : f ∈ A & g ∈ B} 2

and greatest lower bound given by e�ective disjoint union

A t B = {0f : f ∈ A} ∪ {1g : g ∈ B}.

The Medvedev degrees have a least element 0 which consists of all mass problems that
contain a computable function. The greatest element, the degree of the empty set, is usually
ignored. The Medvedev degree of a mass problem A is denoted by degM(A) or sometimes
simply a.

Medvedev reducibility is also known as strong reducibility. This is because Muchnik [83]
later introduced a weaker version of Medvedev reducibility, the di�erence being that uniform
computation is no longer required: a mass problem B is Muchnik (or weakly) reducible to
a mass problem A if, for each f ∈ A, there is a Turing functional Φ such that Φ(f) ∈ B.
Here, the order of quanti�ers allows for a di�erent functional Φ for each f ∈ A, and so the
behavior of the reduction is no longer uniform over the functions in A. The corresponding
degree structure is isomorphic to the sublattice of the power set of the Turing degrees,
consisting of all the sets of Turing degrees which are closed upwards, i.e. are unions of cones.

Now recall that Baire space ωω is actually a topological space with basis {Oτ : τ ∈ ω<ω},
where ω<ω =

⋃
n≥0 ω

n and the basic open set Oτ is given by Oτ = {f ∈ ωω : f extends τ}.
Because τ is a �nite list of numbers, algorithms can output the basic open set Oτ implicitly
by referring to τ .

The topological notions of open and closed sets can be re�ned using computability theory.
We say that an open set O ⊆ ωω is e�ectively open (or Σ0

1) if the collection of basic open
subsets of O is computably enumerable. The complement of an e�ectively open set is
e�ectively closed, or Π0

1. We note that a set is e�ectively closed if and only if it is the set of

2Where (f ⊕ g)(2n) = f(n) and (f ⊕ g)(2n + 1) = g(n).
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in�nite paths through a computable subtree of ω<ω.
Of particular interest are e�ectively closed sets which are computably bounded, in other

words, are subsets of the subspace∏
n≥0

{0, 1, . . . , h(n)− 1}

of ωω, for some computable function h. These closed sets are the sets of paths through trees
which are �nitely branching, and so are compact subsets of ωω; the extra e�ectiveness condi-
tion implies that in some sense these sets are �e�ectively compact.� Computably bounded Π0

1

classes have occurred as the set of solutions to problems in logic, combinatorics, and algebra
and other areas; for a survey of this aspect of Π0

1 classes, see [23], for example. If A is a
computably bounded Π0

1 class, then the Medvedev degree of A contains a Π0
1 class B such

that B is contained in Cantor space {0, 1}ω. Hence, we may study the computably bounded
Π0

1 classes via their Cantor space representatives. Much research was devoted to studying
the Medvedev and Muchnik degrees of e�ectively closed subsets of Cantor space; see [101] for
more details. Both substructures of the full degree structures are again distributive lattices,
as the lattice operations, applied to e�ectively closed sets, yield e�ectively closed sets.

Let PM be the lattice of Medevedev degrees of e�ectively closed subsets of Cantor space.
In the lattice PM there is a greatest element 1, which is the degree of the set of all consistent
completions of Peano arithmetic, viewed as a mass problem via standard coding. Another
Π0

1 mass problem in 1 is the set DNR2 of {0, 1}-valued diagonally nonrecursive functions.
A function f ∈ ωω is called diagonally nonrecursive if for all e we have f(e) 6= ϕe(e), where
{ϕe}e∈ω is an e�ective list of all partial computable functions. Here f(e) 6= ϕe(e) means that
either ϕe(e) is unde�ned, or it is de�ned with a value unequal to f(e).

The set DNR of all diagonally nonrecursive functions is e�ectively closed, but is not
recursively bounded, indeed is not compact. However, we let, for every k < ω, DNRk be the
set of all diagonally nonrecursive functions

f : ω → {0, 1, 2, . . . , k − 1},

i.e., k-valued diagonally nonrecursive functions. These sets are Π0
1 and are recursively

bounded, hence their Medvedev degrees lie in PM . As mentioned,

degM(DNR2) = 1

is the greatest degree in PM . However, Jockusch [61, Theorem 6] showed that if we let
dk = degM(DNRk), then

d2 > d3 > d4 > . . .

62



is a strictly decreasing sequence. This contrasts with Jockusch's result [61, Theorem 5])
that the Muchnik (weak) degrees of all of the classes DNRk coincide, i.e., the classes
DNR2,DNR3, . . . are all Muchnik equivalent.

If the classes DNRk are �high�, or close to 1, then classes of positive measure should be
considered �fat�, and so �low�, or close to 0. The measure we use is the product probability
measure, using the fair coin measure on {0, 1}. Simpson [101, Corollary 7.11] showed a
non-join result: if a ∈PM is the Medvedev degree of a Π0

1 class of positive measure, k ≥ 2,
and b ∈PM is not above dk, then the join a∨ b is not above dk either. Thus Π0

1 classes of
positive measure are so weak, that they cannot help any other Π0

1 class compute bounded
diagonally nonrecursive functions. Simpson asked [101, Remark 7.12] if the reason for this
is that all Π0

1 classes of positive measure are Medvedev reducible to each DNRk. Here we
answer Simpson's question in the negative:

Theorem 4.5.2. There is a Π0
1 class P ⊆ 2ω of positive measure which is not Medvedev

reducible to DNR3.

In fact, we prove a stronger result. Measure and Π0
1 classes are closely tied to notions of

e�ective randomness. For more background see [101]; here we just mention that every Π0
1

class of positive measure contains a tail of every Martin-Löf random set3 (Ku£era [74]), and
that since the collection of Martin-Löf random sets is a Σ0

2 set (an e�ective Fσ set), there are
nonempty Π0

1 classes, necessarily of positive measure, which contain only Martin-Löf random
sets. Thus in the Muchnik (weak) degrees, the degree of the set of Martin-Löf random sets
is the same as the degree of any Π0

1 class which contains only Martin-Löf random sets, is
the greatest degree of Π0

1 classes of positive measure. In the Medvedev degrees, the picture
is not as tidy; the Medvedev degree r of the set of Martin-Löf random sets is not in PM ,
and in fact there is no greatest Medvedev degree of Π0

1 classes of positive measure (Terwijn
[108]). However, trivially, if P is a Π0

1 class which only contains Martin-Löf random sets,
then the identity functional witnesses that r ≤ degM(P ), and so Theorem 4.5.2 follows from
the following theorem, which answers a question raised by J. Miller.

Theorem 4.5.3. r � d3.

Indeed, we prove a little more. Recall that a set X ∈ 2ω is Kurtz random (or weakly
1-random) if it is not a member of any null Π0

1 subset of 2ω. This is a notion of randomness
which is much weaker than Martin-Löf randomness. We prove the following, which implies
Theorem 4.5.3:

3Recall that a sequence X ∈ 2ω is Martin-Löf random if whenever 〈Un〉 is an e�ective sequence of
e�ectively open subsets of 2ω such that the measure of each Un is at most 2−n, we have X /∈

⋂
n Un.

Equivalently, the initial segments of X are incompressible, in the sense that there is a constant c such that
for all n, K(X � n) ≥ n − c; here K denotes pre�x-free Kolmogorov complexity. See, for example, [31] for
more details on e�ective randomness.
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Theorem 4.5.4. The set of Kurtz random sets is not Medvedev reducible to DNR3.

We note that in contrast, recently Greenberg and J. Miller [52] showed that the set of
reals which have e�ective Hausdor� dimension 1 is Medvedev reducible to each DNRk.

Proof. Suppose for a contradiction that Φ is a Turing functional that witnesses that DNR3

is Medvedev reducible to the Kurtz random sets. Hence, for each f ∈ DNR3, we have that
Φ(f) is the characteristic function of a Kurtz random set and is thus total (i.e. given an
input, returns a value after a �nite amount of time). Without loss of generality, we may
assume that for all f ∈ 3ω, Φ(f) is total and {0, 1}-valued. We do this by replacing Φ by a
modi�ed Turing functional which, with oracle f ∈ 3ω and input n, simulates Φ until either
Φ(f)(n) converges or it is discovered by a systematic search that f(e) = ϕe(e) for some e,
so f /∈ DNR3. One of these events must occur since Φ(f) is total for all f ∈ DNR3. If
the former occurs �rst, the modi�ed functional outputs Φ(f)(n), and otherwise it outputs 0

(say).
By compactness, and bu�ering the use of Φ-computations, we can obtain an e�ective

increasing sequence u1 < u2 < u3 < . . . such that for all n ≥ 1, for all X ∈ 3ω, the X-use of
computing Φ(X) � n is exactly un. Let U = {u1, u2, u3, . . . }. Thus Φ yields a computable
U -edge labeling of the full ternary tree 3<ω: for σ ∈ {0, 1, 2}un , we let Φ(σ) ∈ {0, 1}n be the
result of applying Φ to the oracle σ, and so we label the parent edge incident to σ in the
full ternary tree with the last bit of Φ(σ). That is, the path-label of σ is exactly Φ(σ) for
all σ ∈

⋃
n≥1{0, 1, 2}un , and hence for all f ∈ 3ω, Φ(f) is the path-label of f .

By Theorem 4.5.1, there is a computable full binary subtree S of 3<ω such that L(S) is
null in Cantor space. We show that L(S) is e�ectively closed by enumerating the basic open
subsets of its complement {0, 1}ω −L(S). For each n ≥ 1, compute un and compute the set
A of all vertices in S at depth un. Next, for each σ ∈ A, compute the path-label of σ. In
the enumeration, output all basic open sets Oτ such that τ ∈ {0, 1}n is not the path-label
of some σ ∈ A. It follows that L(S) is a null Π0

1 class.
Let T be the subtree of 3<ω induced by the vertices τ such that DNR3 contains an

extension of τ . Note that if τ is in T , then because τ has three children in 3<ω and at most
one violates the diagonally non-recursive condition, at least two of its children are in T . It
follows that T and S contain a common in�nite path f ∈ {0, 1, 2}ω. Because f is an in�nite
path in T , we have that f is in DNR3. Because f is an in�nite path in S, we have that
Φ(f) ∈ L(S), and so Φ(f) is a member of a null Π0

1 class, which implies that Φ(f) is not
Kurtz random. Hence f ∈ DNR3 but Φ(f) is not Kurtz random, and so Φ fails to witness
that the class of Kurtz random sets is Medvedev-reducible to DNR3, as required.
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Chapter 5

Parity Edge-Colorings of Graphs

A parity walk in an edge-coloring of a graph is a walk along which each color is used an
even number of times. Let p(G) be the least number of colors in an edge-coloring of G
having no parity path (a parity edge-coloring). Let p̂(G) be the least number of colors in
an edge-coloring of G having no open parity walk (a strong parity edge-coloring). Always
p̂(G) ≥ p(G) ≥ χ′(G). We prove that p̂(Kn) = 2dlgne − 1 for all n. The optimal strong
parity edge-coloring of Kn is unique when n is a power of 2, and the optimal colorings are
completely described for all n.

This chapter is based on joint work with D. P. Bunde, D. B. West, and H. Wu [19, 20].

5.1 Introduction

Our work began by studying which graphs embed in the hypercube Qk, the graph with vertex
set {0, 1}k in which vertices are adjacent when they di�er in exactly one coordinate. Color-
ing each edge with the position of the bit in which its endpoints di�er yields two necessary
conditions for the coloring inherited by a subgraph G:

1) every cycle uses each color an even number of times,

2) every path uses some color an odd number of times.

Existence of a k-edge-coloring satisfying conditions (1) and (2) is also su�cient for a con-
nected graph G to be a subgraph of Qk. This characterization of subgraphs of Qk appeared
in 1972 (Havel and Morávek [57]). The problem was studied as early as 1953 (Shapiro [100]).

Let the usage of a color on a walk be the parity of the number of times it appears along
the walk. A parity walk is a walk in which the usage of every color is even. Condition (1)
above states that every cycle is a parity walk, and (2) states that no path is a parity walk.

In general, a parity edge-coloring is an edge-coloring with no parity path, and a strong
parity edge-coloring (spec) is an edge-coloring with no open parity walk (that is, every parity
walk is closed). Some graphs embed in no hypercube, but giving the edges distinct colors
produces a spec for any graph. Hence the parity edge-chromatic number p(G) and the strong
parity edge-chromatic number p̂(G), de�ned respectively to be the minimum numbers of
colors in a parity edge-coloring of G and in a spec of G, are well de�ned.

65



5.2 Trees, hypercubes, paths, and cycles

In this section, we present elementary results about parity edge-colorings. Some of these
were obtained previously by authors whose aim was to study related concepts; we include
proofs for completeness and to emphasize the connections with parity edge-colorings.

Remark 5.2.1. For every graph G, p̂(G) ≥ p(G) ≥ χ′(G), and the parameters p̂ and p are
monotone under the subgraph relation.

Proof. We have p(G) ≥ χ′(G) by considering paths of length 2, and p̂(G) ≥ p(G) since closed
walks are not paths. For H ⊆ G, a pec or spec of G restricts to such an edge-coloring on H,
since every parity walk in the restriction to H is a parity walk in the coloring on G.

When G is a forest, every pec is also a spec, so p(G) = p̂(G). Edge-coloring the hypercube
by coordinates shows that p(Qk) ≤ p̂(Qk) ≤ k. Hence p(G) ≤ k if G ⊆ Qk. For trees, we
prove the converse.

Given a k-edge-coloring f and a walk W , we use π(W ) to denote the parity vector of W ,
recording the usage of each color as 0 or 1. When walks W and W ′ are concatenated, the
parity vector of the concatenation is the vector binary sum π(W ) + π(W ′). The weight of a
vector is the number of nonzero positions.

Theorem 5.2.2 ([57]). A tree T embeds in the k-dimensional hypercube Qk if and only if
p(T ) ≤ k.

Proof. We have observed necessity. Conversely, let f be a parity k-edge-coloring of T (there
may be unused colors if p(T ) < k). Fix a root vertex r in T . De�ne φ : V (T ) → V (Qk) by
setting φ(v) = π(W ), where W is the r, v-path in T .

When uv ∈ E(T ), the r, u-path and r, v-path in T di�er in one edge, so φ(u) and φ(v)

are adjacent in Qk. It remains only to check that φ is injective. The parity vector for the
u, v-path P in T is φ(u)+φ(v), since summing the r, u-path and r, v-path cancels the portion
from r to P . Since f is a parity edge-coloring, φ(P ) is nonzero, and hence φ(u) 6= φ(v).

When k is part of the input, recognizing subgraphs of Qk is NP-complete [72], and this
remains true when the input is restricted to trees [111]. Therefore, computing p(G) or p̂(G)

is NP-hard even when G is a tree. Perhaps there is a polynomial-time algorithm for trees
with bounded degree or bounded diameter.

The Havel�Movárek characterization [57] of subgraphs of Qk follows easily from Theo-
rem 5.2.2 (they also proved statements equivalent to Theorem 5.2.2 and Corollary 5.2.5.)
Their proof is essentially the same as ours, but our organization is di�erent in the language
of pecs.

Corollary 5.2.3 ([57]). A graph G is a subgraph of Qk if and only if G has a parity k-edge-
coloring in which every cycle is a parity walk.
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Proof. We have observed necessity. For su�ciency, choose a spanning tree T . Since p(T ) ≤
p(G) ≤ k, Theorem 5.2.2 implies that T ⊆ Qk. Map T into Qk using φ as de�ned in the
proof of Theorem 5.2.2. For each xy ∈ E(G)−E(T ), the cycle formed by adding xy to T is
given to be a parity walk. Hence the x, y-path in T has parity vector with weight 1. This
makes φ(x) and φ(y) adjacent in Qk, as desired.

Mitas and Reuter [80] later gave a lengthier proof motivated by studying subdiagrams
of the subset lattice. They also characterized the graphs occurring as induced subgraphs
of Qk as those having a k-edge-coloring satisfying properties (1) and (2) and (3), where
property (3) essentially states that that if the parity vector of a walk W has weight 1, then
the endpoints of W are adjacent.

Spanning trees yield a general lower bound on p(G), which holds with equality for paths,
even cycles, and connected spanning subgraphs of Qk.

Corollary 5.2.4. If G is connected, then p(G) ≥ dlg n(G)e.

Proof. If T is a spanning tree of G, then p(G) ≥ p(T ). Since T embeds in the hypercube of
dimension p(T ), we have n(G) = n(T ) ≤ 2p(T ) ≤ 2p(G).

Corollary 5.2.5. For all n, p(Pn) = p̂(Pn) = dlg ne. For even n, p(Cn) = p̂(Cn) = dlg ne.

Proof. The lower bounds follow from Corollary 5.2.4. The upper bounds hold because Qk

contains cycles of all even lengths up to 2k.

A result equivalent to p(Pn) = p̂(Pn) = dlg ne appears in [57] (without de�ning either
parameter). When n is odd, Cn needs an extra color beyond dlg ne. To prove this, we begin
with simple observations about adding an edge.

Lemma 5.2.6. (a) If e is an edge in a graph G, then p(G) ≤ p(G− e) + 1.
(b) If also G− e is connected, then p̂(G) ≤ p̂(G− e) + 1.

Proof. (a) Put an optimal parity edge-coloring on G− e and add a new color on e. There is
no parity path avoiding e, and any path through e uses the new color exactly once.

(b) Put an optimal spec on G − e and add a new color on e. Let P be a u, v-path in
G− e, where u and v are the endpoints of e. Suppose that there is an open parity walk W .
Note that W traverses e an even number of times, since no other edge has the same color as
e. Form W ′ by replacing each traversal of e by P or its reverse, depending on the direction
of traversal of e. Every edge is used with the same parity in W ′ and W , and the endpoints
are unchanged, so W ′ is an open parity walk in G− e. This is a contradiction.

Lemma 5.2.6(b) does not hold when G− e is disconnected (see Example 5.2.8).

Theorem 5.2.7. If n is odd, then p(Cn) = p̂(Cn) = dlg ne+ 1.
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Proof. Lemma 5.2.6(b) yields the upper bound, since p̂(Pn) = dlg ne.
For the lower bound, we show �rst that p̂(Cn) = p(Cn) (this and Lemma 5.2.6(a) yield an

alternative proof of the upper bound). Let W be an open walk, and let W ′ be the subgraph
formed by the edges with odd usage in W . The sum of the usage by W of edges incident to
a vertex x is odd if and only if x is an endpoint of W . Hence W ′ has odd degree precisely
at the endpoints of W . Within Cn, this requires W ′ to be a path P joining the endpoints of
W . Under a parity edge-coloring f , some color has odd usage along P , and this color has
odd usage in W . Hence f has no open parity walk, and every parity edge-coloring is a spec.

It now su�ces to show that p̂(Cn) ≥ p(P2n). Given a spec f of Cn, we form a parity
edge-coloring g of P2n with the same number of colors. Let v1, . . . , vn be the vertices of Cn
in order, and let u1, . . . , un, w1, . . . , wn be the vertices of P2n in order. De�ne g by letting
g(uiui+1) = g(wiwi+1) = f(vivi+1) for 1 ≤ i ≤ n− 1 and letting g(unw1) = f(vnv1).

Each path in P2n corresponds to an open walk in Cn or to one trip around the cycle.
There is no parity path of the �rst type, since f is a spec. There is none of the second type,
since Cn has odd length.

The �unrolling� technique of Theorem 5.2.7 leads to an example G with p̂(G) > p(G),
which easily extends to generate in�nite families.

Example 5.2.8. Form a graph G by identifying a vertex of K3 with an endpoint of P8.
Since p(K3) = p(P7) = 3, adding the connecting edge yields p(G) ≤ 4 (see Lemma 5.2.6(a)).

We claim that p̂(G) ≥ p(P18) = 5. We copy a spec f of G onto P18 with the path edges
doubled. Beginning with the vertex of degree 1 in G, walk down the path, once around the
triangle, and back up the path. This walk has length 17; copy the colors of its edges in order
to the edges of P18 in order to form an edge-coloring g of P18.

Each path in P18 corresponds to an open walk in G or a closed walk that traverses the
triangle once. There is no parity path of the �rst type, since f is a spec. There is none of
the second type, since such a closed walk has odd length. This proves the claim.

Since p̂(K3) = p̂(P7) = 3, this graph G also shows that adding an edge can change p̂ by
more than 1 when G is disconnected.

We know of no bipartite graph G with p̂(G) > p(G). Nevertheless, it is not true that
every optimal parity edge-coloring of a bipartite graph is a spec.

Example 5.2.9. Let G be the graph obtained from C6 by adding two pendant edges at one
vertex. Let W be the spanning walk that starts at one pendant vertex, traverses the cycle,
and ends at the other pendant vertex. Let f be the 4-edge-coloring that colors the edges of
W in order as a, b, a, c, b, d, c, d. Although f is an optimal parity edge-coloring (∆(G) = 4),
it uses each color twice on the open walk W , so it is not a spec. Changing the edge of color
d on the cycle to color a yields a strong parity 4-edge-coloring.
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5.3 Complete graphs

When n is a power of 2, we will prove that the complete graph Kn has a unique optimal spec
(up to isomorphism), which will help us determine p̂(Kn) for all n. With a suitable naming
of the vertices, we call this edge-coloring of Kn the �canonical� coloring.

De�nition 5.3.1. For A ⊆ Fk2, let K(A) be the complete graph with vertex set A. The
canonical coloring of K(A) is the edge-coloring f de�ned by f(uv) = u + v, where u + v is
binary vector addition. When n = 2k, letting A = Fk2 yields the canonical coloring of Kn.

Lemma 5.3.2. For A ⊆ Fk2, the canonical coloring of K(A) is a spec. Consequently, if
n = 2k, then p̂(Kn) = p(Kn) = χ′(Kn) = n− 1.

Proof. If W is an open walk, then its endpoints di�er in some bit i. Thus in the canonical
coloring the total usage of colors �ipping bit i along W is odd, and hence some color has
odd usage on W . The canonical coloring of K(Fk2) uses 2k − 1 colors (the color 0k is not
used). The lower bound follows from p̂(G) ≥ p(G) ≥ χ′(G) ≥ ∆(G).

Since every complete graph is a subgraph of the next larger complete graph, we obtain
p̂(Kn) ≤ 2dlgne − 1. In this section, we prove that this upper bound is exact. Our proof is
expressed using linear subspaces of binary vector spaces.

Parity edge-coloring relates to a less restrictive problem. A walk of length 2k is repetitive
if the ith and (k + i)th edges have the same color, for 1 ≤ i ≤ k. A Thue coloring is an
edge-coloring with no repetitive path, and the Thue number t(G) is the minimum number of
colors in a Thue coloring of G. Every parity edge-coloring is a Thue coloring, so t(G) ≤ p(G).
Alon, Grytczuk, Haªuszczak, and Riordan [5] observed that the canonical coloring yields
t(Kn) ≤ 2dlgne − 1. It seems no good lower bounds on t(Kn) are known. Our lower bound
on p̂(Kn) shows that a Thue coloring of Kn better than the canonical coloring must contain
an open parity walk.

We use the closure of linear spaces under addition to prove that p̂(Kn) ≥ 2dlgne − 1.
The main idea is to introduce an additional vertex without needing additional colors until
a power of 2 is reached. We begin by proving that every optimal spec of Kn is a canonical
coloring when n is a power of 2.

De�nition 5.3.3. An edge-coloring f of a graph G satis�es the 4-constraint if whenever
f(uv) = f(xy) and vx ∈ E(G), also uy ∈ E(G) and f(uy) = f(vx).

Lemma 5.3.4. If f is a parity edge-coloring in which every color class is a perfect matching,
then f satis�es the 4-constraint.

Proof. Otherwise, given f(uv) = f(xy), the edge of color f(vx) incident to u forms a parity
path of length 4 with uv, vx, and xy.
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Theorem 5.3.5. If f is a parity edge-coloring of Kn in which every color class is a perfect
matching, then f is a canonical coloring and n is a power of 2.

Proof. Every edge is a canonically colored K2. Let R be a largest vertex set such that |R|
is a power of 2 and f restricts to a canonical coloring on R. De�ne j by |R| = 2j−1. Let φ
be a bijection from R to Fj−1

2 under which f is the canonical coloring. We prove the claim
by showing that if |R| < n, then f canonically colors a subgraph twice as big.

Since f is canonical on R, every color used within R by f is used on a perfect matching
of R. The vertices of R have other neighbors in Kn, so there is a color c not used within
R. Since c is used on a perfect matching, c matches R to some set U . Let R′ = R ∪ U .
De�ne φ′ : R′ → Fj2 as follows: for x ∈ R, obtain φ′(x) by appending 0 to φ(x); for x ∈ U
obtain φ′(x) by appending 1 to φ(x′), where x′ is the neighbor of x in color c. Within R′,
we henceforth refer to the vertices by their names under φ′.

By Lemma 5.3.4, the 4-constraint holds for f . The 4-constraint copies the coloring from
the edges within R to the edges within U . That is, consider x′, y′ ∈ U arising from x, y ∈ R,
with f(xx′) = f(yy′) = c. Now f(x′y′) = f(xy) = x + y = x′ + y′, using the 4-constraint,
the fact that f is canonical on R, and the de�nition of φ′. Hence f is canonical within U .

Finally, let u be the name of the color on the edge 0ju, for u ∈ U . For any v ∈ R,
let w = u + v; note that w ∈ U . Both 0jv and uw have color v, since f is canonical
within R and within U . By applying the 4-constraint to {v0j, 0jw,wu}, we conclude that
f(uv) = f(0jw) = w. Since w = u + v, this completes the proof that f is canonical on
R′.

For a proper edge-coloring of Kn, the 4-constraint is equivalent to the property that the
six edges on any four vertices receive three colors or six colors. Independently of our proof,
Keevash and Sudakov [64] proved that if that property holds for a proper edge-coloring with
n−1 colors (one where every color class is a perfect matching), then n is a power of 2. They
also observed that the canonical coloring has this property. Their proof appears also in [13].

In connection with the uniqueness result, Mubayi asked whether a stability property
holds. That is, when n is a power of 2, does there exist a parity edge-coloring or a spec of
Kn that has only (1 + o(1))n colors but is �far� from the canonical coloring?

The main result needs several algebraic observations. Relative to any k-edge-coloring f ,
the parity space Lf is the set of parity vectors of closed walks. We note that Lf is a linear
subspace of Fk2.

Lemma 5.3.6. If f is an edge-coloring of a connected graph G, then Lf is a binary vector
space.

Proof. Since Lf ⊆ Fk2, it su�ces to show that L is closed under addition. Given a u, u-
walk W and a v, v-walk W ′, let P be a u, v-path in G, and let P be its reverse. Following
W,P,W ′, P in succession yields a u, u-walk with parity vector π(W ) + π(W ′).
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For a vector space L, let w(L) be the least number of nonzero coordinates of a nonzero
vector in L (set w(L) = ∞ if L = {0}). For an edge-coloring f of Kn, w(Lf ) determines
whether f is a spec. Let the weight of a vector in Fk2 be the number of nonzero entries.

Lemma 5.3.7. If an edge-coloring f of a graph G is a spec, then w(Lf ) ≥ 2. The converse
holds when G = Kn.

Proof. If the parity vector of a closed walk W has weight 1, then one color has odd usage in
W (say on edge e). Now W − e is an open parity walk, and f is not a spec.

If f is not a spec, then π(W ′) = 0 for some open walk W ′. In Kn, the ends of W ′ are
adjacent, and adding that edge yields a closed walk whose parity vector has weight 1.

In fact, the minimum weight of a non-zero vector in the parity space of an optimal spec
is at least three.

Lemma 5.3.8. If f is an optimal spec of Kn, then w(Lf ) ≥ 3.

Proof. If W is a closed walk having odd usage for colors a and b only, then form f ′ by
merging the colors a and b into a single color a′. We use Lemma 5.3.7 repeatedly. Since f is
optimal, there is a closed walk Z on which f ′ has odd usage for only one color c. If c = a′,
then f has odd usage on Z for only a or b; hence c 6= a′. Now since f has odd usage for
at least two colors on Z, both a and b must also have odd usage on Z. Now in Lf we have
π(W ) + π(Z) with weight 1.

Lemma 5.3.9. For any colors a and b in an optimal spec f of Kn, there is some closed walk
W on which the colors having odd usage are a, b, and one other.

Proof. We use Lemma 5.3.7 repeatedly. Since f is optimal, merging the colors a and b into a
single color a′ yields an edge-coloring f ′ that is not a spec. Hence under f ′ there is a closed
walk W on which f ′ has odd usage for only one color c. Also c 6= a′, since otherwise f has
odd usage on W for only a or b. With c 6= a′ and the fact that f has odd usage for at least
two colors on W , both a and b also have odd usage on W , and W is the desired walk.

The same idea as in Lemma 5.3.9 shows that w(Lf ) ≥ 3 when f is an optimal spec of
Kn, but we do not need this observation. We note, however, that the condition w(Lf ) ≥ 3 is
the condition for Lf to be the set of codewords for a 1-error-correcting code. Indeed, when
n = 2k and f is the canonical coloring, Lf is a perfect 1-error-correcting code of length n−1.

A dominating vertex in a graph is a vertex adjacent to all others. We use dH(v) and
NH(v) to denote the degree and neighborhood of a vertex v in a graph H.

Lemma 5.3.10. If f is an edge-coloring of a graph G with a dominating vertex v, then Lf
is the span of the parity vectors of triangles containing v.
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Proof. By de�nition, the span is contained in Lf . Conversely, consider any π(W ) ∈ Lf . Let
S be the set of edges with odd usage in W , and let H be the spanning subgraph of G with
edge set S. Since the total usage at each vertex of W is even, H is an even subgraph of G.
Hence H decomposes into cycles, which are closed walks, and π(W ) is the sum of the parity
vectors of these cycles.

It therefore su�ces to show that S is the set of edges that appear in an odd number of
the triangles formed by v with edges of H− v. Each edge of H− v is in one such triangle, so
we need consider only edges involving v. An edge vw lies in an odd number of these triangles
if and only if dH−v(w) is odd, which occurs if and only if w ∈ NH(v), since dH(w) is even.
By de�nition, vw ∈ E(H) if and only if vw has odd usage in W and hence lies in S.

Lemma 5.3.11. If f is an optimal spec of Kn that uses some color fewer than n/2 times,
then f extends to a spec of Kn+1 using the same colors.

Proof. View Kn+1 as arising from Kn by adding a vertex u. Let a be a color used fewer than
n/2 times by f , and let v be a vertex of Kn at which a does not appear.

We use f to de�ne f ′ on E(Kn+1). Let f ′ agree with f on E(Kn), and let f ′(uv) = a.
To de�ne f ′ on each remaining edge uw, �rst let b = f(vw). By Lemma 5.3.9, there is a
closed walk W with odd usage precisely for a and b and some third color c under f . Let
f ′(uw) = c.

Note that f ′ uses the same colors as f . It remains only to show that f ′ is a spec. To do
this we prove that w(Lf ′) ≥ 2, by showing that Lf ′ ⊆ Lf . By Lemma 5.3.10, it su�ces to
show that π(T ) ∈ Lf when T is a triangle in Kn+1 containing v.

Triangles not containing u lie in the original graph and have parity vectors in Lf . Hence
we consider the triangle T formed by {u, v, w}. Now π(T ) = π(W ) ∈ Lf , where W is the
walk used to specify f ′(uw).

Theorem 5.3.12. p̂(Kn) = 2dlgne − 1.

Proof. If some color class in an optimal spec is not a perfect matching, then p̂(Kn) =

p̂(Kn+1), by Lemma 5.3.11. This vertex absorption cannot stop before the number of vertices
reaches a power of 2, because when every color class is a perfect matching the coloring is
canonical, by Theorem 5.3.5. It cannot continue past 2dlgne vertices, since the maximum
degree is a lower bound on χ′ and p̂. Hence p̂(Kn) = p̂(K2dlgne) = 2dlgne − 1.

Corollary 5.3.13. If f is an optimal spec of Kn, then f is obtained by deleting vertices
from the canonical coloring of K2dlgne.

Proof. By Lemma 5.3.11, we may extend f to an optimal spec f ′ ofK2dlgne ; by Theorem 5.3.5,
f ′ is the canonical coloring.

72



One may ask whether every edge-coloring of Kn that satis�es the 4-constraint is a spec
or a parity edge-coloring. Examples show that the answer is no. Similarly, not every parity
edge-coloring of Kn is a spec. Nevertheless, it may be that every optimal parity edge-coloring
is a spec. We o�er the following conjecture, which in [19] we proved for n ≤ 16.

Conjecture 5.3.14. p(Kn) = p̂(Kn) for every positive integer n.

5.4 Complete bipartite graphs

To further motivate our focus on complete graphs, we show that our main result strengthens
a special case of Yuzvinsky's Theorem on sums of binary vectors. To state it, we need the
Hopf�Stiefel function from the theory of quadratic forms.

De�nition 5.4.1 (Hopf [59], Stiefel [105]). For positive integers r and s, de�ne r ◦ s to be
the least integer n such that (x+ y)n is in the ideal of F2[x, y] generated by xr and ys.

In non-algebraic language, the de�nition has the following equivalent phrasing: r ◦ s is
the least n such that

(
n
k

)
is even for each k with n − s < k < r. The condition becomes

vacuous if n ≥ r + s− 1, so trivially r ◦ s ≤ r + s− 1.

Theorem 5.4.2 (Yuzvinsky [113]). For A,B ⊆ Fk2, let C = {a + b : a ∈ A, b ∈ B}. If
|A| = r and |B| = s, then |C| ≥ r ◦ s.

Generalizations and alternative proofs of Yuzvinsky's Theorem appear in [2], [14], [32].
The theorem is related to our results via a simple formula for the Hopf�Stiefel function
recently proved by Plagne [89]. Subsequently, Károlyi [63] gave a short inductive proof.
See [33] for a thorough survey of alternative formulas, related results, and generalizations.

Theorem 5.4.3 (Plagne [89], Károlyi [63]). r ◦ s = mink∈N
{

2k
(⌈

r
2k

⌉
+
⌈
s

2k

⌉
− 1
)}
.

When A = B and both have size r, the minimization yields r ◦ r = 2dlg re. Yuzvinsky's
Theorem for this case says that every canonical coloring of Kr uses at least 2dlg re− 1 colors.
Our result shows that in the more general family of strong parity edge-colorings, it remains
true that at least 2dlg re − 1 colors are needed.

The canonical coloring extends to complete bipartite graphs in a natural way: if A,B ⊆
Fk2 and K(A,B) is the complete bipartite graph with partite sets A and B, then the edge-
coloring de�ned by f(ab) = a + b is a spec. The bound in Yuzvinsky's Theorem is always
tight (see [32]); that is, for r, s ≤ 2k there exist A,B ⊆ Fk2 with |A| = r, |B| = s, and
|C| = r ◦ s. Consequently, p̂(Kr,s) ≤ r ◦ s. We conjecture that equality holds. A direct proof
in the graph-theoretic setting would strengthen all cases of Yuzvinsky's Theorem.

Conjecture 5.4.4. p̂(Kr,s) = r ◦ s.
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Yuzvinsky's Theorem as stated describes a bipartite situation, with the application to
complete graphs as a special case. This relationship extends to specs, which means that
proving the special case of Conjecture 5.4.4 for r = s = n also implies that on Kn. That
implication uses the following proposition.

Proposition 5.4.5. p̂(Kn,n) ≤ p̂(Kn) + 1.

Proof. Let f be a spec of Kn with vertex set u1, . . . , un. Given Kn,n with partite sets
v1, . . . , vn and w1, . . . , wn, let f ′(viwj) = f(uiuj) when i 6= j, and give a single new color to
all viwi with 1 ≤ i ≤ n. A parity walk W ′ under f ′ starts and ends in the same partite set.
Let W be the walk obtained by mapping it back to Kn, which collapses vi and wi into ui,
for each i. The edges that had the new color disappear; this number of edges is even, since
W ′ was a parity walk. Hence W is a parity walk under f .

Since f is a spec, W is a closed walk in Kn. Hence W ′ starts and ends at vertices in the
same partite set that have the same index. Since Kn,n has only one vertex with each index
in each partite set, W ′ is closed. Hence f ′ is a spec of Kn,n.

Proposition 5.4.5 and canonical colorings of Kn imply that p̂(Kn,n) ≤ 2dlgne for all n, and
Conjecture 5.4.4 requires that equality holds. Toward this special case of the conjecture, we
o�er the following.

Proposition 5.4.6. If some optimal spec of Kn,n uses a color on at least n− 1 edges, then
p̂(Kn,n) = p̂(Kn) + 1 = 2dlgne. If a color is used n− r times, then p̂(Kn,n) ≥ 2dlgne −

(
r
2

)
.

Proof. We prove the general statement. Let f be such a spec, and let c be such a color. Let
U be one partite set, with vertices u1, . . . , un. Whenever color class c is incident to at least
one of distinct vertices ui, uj ∈ U , let Pi,j be a ui, uj-path of length 2 in which one edge has
color c under f . Choose these so that Pj,i is the reverse of Pi,j. When c appears at neither
ui nor uj, leave Pi,j unde�ned.

Let G be the graph obtained from Kn with vertex set v1, . . . , vn by deleting the edges
vivj such that Pi,j is unde�ned; there are

(
r
2

)
such edges. De�ne a coloring f ′ on G by letting

f(vivj) be the color other than c on Pi,j.
We claim that f ′ is a spec. Given a parity walk W ′ under f ′, de�ne a walk W in Kn,n as

follows. For each edge vivj in W ′, follow Pi,j. By construction, the usage in W of each color
other than c is even. Hence also the usage of c is even. Hence W is a parity walk under f
and therefore is closed. Since W starts and ends at the same vertex ui ∈ U , also W ′ starts
and ends at the same vertex vi.

We have proved that every parity walk under f ′ is closed, so f ′ is a spec. Hence f ′ has
at least p̂(G) colors, and f has at least one more. By Lemma 5.2.6(b) and Theorem 5.3.12,
p̂(G) ≥ 2dlgne − 1−

(
r
2

)
, which completes the proof of the lower bound.

Corollary 5.4.7. p̂(Kn,n) ≥ maxr min{2dlgne −
(
r
2

)
, n2

n−r−1
}.
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Proof. If E(Kn,n) has a spec with s colors, where s < 2dlgne−
(
r
2

)
, then by Proposition 5.4.6

no color can be used at least n − r times, and hence n2/s ≤ n − r − 1. Thus p̂(Kn,n) ≥
min{2dlgne −

(
r
2

)
, n2/(n− r − 1)}.

With r = 1, we conclude that p̂(Kn,n) ≥ 2k when n > 2k − 3 − 4/(n − 2), since then
n2/(n− 2) > 2k − 1. Thus p̂(K5,5) = 8, and p̂(Kn,n) = 16 for 13 ≤ n ≤ 16. Using r = 2, we
obtain 14 ≤ p̂(K9,9) ≤ 16. Our last result obtains p̂(K2,n) exactly.

Theorem 5.4.8. p̂(K2,n) = p(K2,n) = 2 dn/2e.

Proof. The upper bound follows from p̂(K2,n) ≤ 2 ◦ n = 2 dn/2e. For the lower bound, since
∆(K2,n) = n for n ≥ 2, it su�ces to show that n must be even when f is a parity edge-
coloring of K2,n with n colors. Let {x, x′} be the partite set of size 2. Each color appears at
both x and x′. If color a appears on xy and x′y′, then f(xy′) = f(x′y), since otherwise the
colors a and f(xy′) form a parity path of length 4.

Hence y and y′ have the same pair of incident colors. Making this argument for each
color partitions the vertices in the partite set of size n into pairs. Hence n is even.

5.5 Open problems

Many interesting questions remain about parity edge-coloring and strong parity edge-coloring.
We have already mentioned several and collect them here with additional questions.

In [19], we prove the �rst conjecture for n ≤ 16. Here and in [19], we prove various
special cases of the second conjecture, which yield further special cases of the �rst.

Conjecture 5.5.1. p(Kn) = 2dlgne − 1 for all n.

Conjecture 5.5.2. p(Kn,n) = p̂(Kn,n) = 2dlgne for all n.

For complete bipartite graphs in general, the full story would be given by proving Con-
jecture 5.5.3, which we restate here for completeness.

Conjecture 5.5.3. p̂(Kr,s) = r ◦ s for all r and s.

We have exhibited families of graphs G such that p̂(G) > p(G) (see Example 5.2.8), but
the di�erence is only 1, and the graphs we obtained all contain odd cycles.

Question 5.5.4. What is the maximum of p̂(G) when p(G) = k?

Conjecture 5.5.5. p(G) = p̂(G) for every bipartite graph G.

The lower bound in Corollary 5.2.4 naturally leads us to ask which graphs achieve equal-
ity. Every spanning subgraph of a hypercube satis�es p(G) = lg n(G); is the converse true?
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Question 5.5.6. Which connected graphs G satisfy p(G) = dlg n(G)e? Which satisfy
p̂(G) = dlg n(G)e?

Motivated by the uniqueness of the optimal spec of K2k , Dhruv Mubayi suggested study-
ing the �stability� of the result.

Question 5.5.7. Does there exist an parity edge-coloring of K2k with (1 + o(1))2k colors
that is �far� from the canonical coloring?

Since the factors can be treated independently in constructing a spec, p̂ is subadditive
under Cartesian product. Note that p̂(P2�P2) = 2 = p̂(P2) + p̂(P2).

Question 5.5.8. For what graphs G and H does equality hold in p̂(G�H) ≤ p̂(G) + p̂(H)?
What can be said about p(G�H) in terms of p(G) and p(H)?

Finally, the de�nitions of parity edge-coloring and spec extend naturally to directed
graphs: the parity condition is the same but is required only for directed paths or walks.
Hence p(D) ≤ p(G) and p̂(D) ≤ p̂(G) when D is an orientation of G.

For a directed path ~Pm, the constraints are the same as for an undirected path. More
generally, if D is an acyclic digraph, and m is the maximum number of vertices in a path in
D, then p(D) = p̂(D) = dlgme. The lower bound is from any longest path.

For the upper bound, give each vertex x a label l(x) that is the maximum number of
vertices in a path ending at x (sources have label 0). Write each label as a binary dlgme-
tuple. By construction, l(v) > l(u) whenever uv is an edge. To form a spec of D, use a color
ci on edge uv if the ith bit is the �rst bit where l(u) and l(v) di�er. All walks are paths.
Any x, y-path has odd usage of ci, where the ith is the �rst bit where l(x) and l(y) di�er,
since no edge along the path can change an earlier bit.

Thus the parameters equal dlg ne for the n-vertex transitive tournament, which contains
~Pn. This suggests our �nal question.

Question 5.5.9. What is the maximum of p(T ) or p̂(T ) when T is an n-vertex tournament?
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Chapter 6

The Chromatic Number of Circle Graphs

The intersection graph of a family of sets has a vertex for each set in the family, with vertices
adjacent if and only if the corresponding sets intersect. A circle graph is the intersection
graph of a family of chords of a circle. Given a circle graph G, a family of chords of a circle
whose intersection graph is G is a circle representation of G. In this chapter, we study the
chromatic number of circle graphs that are K4-free. This chapter is based on joint work with
A. V. Kostochka that appears in [71].

6.1 Introduction

Recall that the chromatic number of a graph G, denoted χ(G), is the minimum size of a
partition of V (G) into independent sets. A clique is a set of pairwise adjacent vertices, and
the clique number of G, denoted ω(G), is the maximum size of a clique in G.

Vertices in a clique must receive distinct colors, so χ(G) ≥ ω(G) for every graph G.
In general, χ(G) cannot be bounded above by any function of ω(G). Indeed, there are
triangle-free graphs with arbitrarily large chromatic number [84].

When graphs have additional structure, it may be possible to bound the chromatic num-
ber in terms of the clique number. A family of graphs G is χ-bounded if there is a function f
such that χ(G) ≤ f(ω(G)) for each G ∈ G. Some families of intersection graphs of geometric
objects have been shown to be χ-bounded (see [68]). In particular, the family of circle graphs
is χ-bounded. Gyárfás [55, 56] proved that χ(G) ≤ k22k(2k−2) when G is a circle graph with
clique number k. Kostochka [70] subsequently improved the bound to χ(G) ≤ k(k + 2)2k.
For large k, the best known upper bound is due to Kostochka and Kratochvíl [69], who
proved that χ(G) ≤ 50 · 2k − 32k − 64. This latter bound holds even in the larger family
of intersection graphs of polygons inscribed on a circle. (Circle graphs arise by expanding
one endpoint of each chord in a circle representation to form a thin triangle.) Conversely,
Kostochka [70, 68] constructed circle graphs with clique number k and chromatic number at
least 0.5k(ln k − 2). The exponential gap has remained open for 25 years.

Exact results are known only for circle graphs with clique number at most 2. Kara-
petyan [62] showed that χ(G) ≤ 8 when G is a triangle-free circle graph. Kostochka [70]
showed that χ(G) ≤ 5, and Ageev [1] constructed a triangle-free circle graph with chromatic
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number 5. When G is a circle graph with ω(G) = 3, the general bound in [70] implies that
χ(G) ≤ 120. In this chapter, we improve the bound to χ(G) ≤ 44.

Two sets overlap if they have non-empty intersection and neither is contained in the
other. For a family X of closed intervals on the real line, the overlap graph of X, denoted
G(X), is the graph with vertex set X in which x and y are adjacent if and only if they
overlap. The family of circle graphs is the same as the family of overlap graphs. Given a
family of chords on a circle, cutting the circle at a point and unrolling gives the corresponding
overlap representation. We study circle graphs via their overlap representations.

We may assume that intervals in X have distinct endpoints. Indeed, let a be a real num-
ber, index the intervals with right endpoint a as x1, . . . , xs so that l(x1) < · · · < l(xs), and
index the intervals with left endpoint a as y1, . . . , yt so that r(y1) < · · · < r(yt). Perturbing
the endpoints at a within a small range does not change the overlap relation between any
pair of intervals, unless both intervals in the pair had an endpoint at a. If the perturbation
is performed so that l(yt) < · · · l(y1) < r(xs) < · · · < r(x1), then the overlap relation of all
pairs is preserved.

De�nition 6.1.1. An interval [a, b] is a left-neighbor of [c, d] if a < c < b < d. We use
LX(u) to denote the set of all left-neighbors of an interval u in a family X, or simply L(u)

when X is clear from context. Similarly, [a, b] is a right-neighbor of [c, d] if c < a < d < b,
and RX(u) denotes the set of all right-neighbors of u. We also de�ne the closed left and
right neighborhoods via LX(u) = LX(u)∪ {u} and RX(u) = RX(u)∪ {u}. For each interval
u, we use l(u) to denote the left endpoint of u and r(u) to denote the right endpoint of u.

The inclusion order is de�ned by containment. The endpoint order is de�ned by putting
x ≤ y if and only if l(x) ≤ l(y) and r(x) ≤ r(y). Note that x ≤ y in the endpoint order if
and only if x comes before y in both the left-endpoint order and the right-endpoint order.
Note that any two distinct intervals are comparable in exactly one of the inclusion order and
the endpoint order.

6.2 Clean circle graphs

Kostochka [70] constructed circle graphs having clique number k and chromatic number as
large as Ω(k log k). In this section, we show that if a circle graph G satis�es particular
additional properties, then χ(G) ≤ 2k − 1.

De�nition 6.2.1. If S is a set of intervals, then the center of S is the intersection of the
intervals in S. A family of intervals X is clean if no interval is contained in the intersection
of two overlapping intervals in X. A circle graph is clean if it is the overlap graph of a clean
family of intervals.
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A set S of vertices in a graph G is a cutset if G− S is disconnected. When S is a cutset
in G, the graphs induced by the union of S and the vertices of a component of G − S are
S-lobes. To color G, it su�ces to color the S-lobes so that the colorings agree on S. To
ensure that S is colored in the same way in all S-lobes, our inductive hypothesis prescribes
the way in which S is colored.

De�nition 6.2.2. A subset A of a poset P is a down-set if y ∈ A whenever y ≤ x for some
x ∈ A. For an element z ∈ P , we use D[z] to denote the down-set {y ∈ P : y ≤ z} and D(z)

to denote the down-set {y ∈ P : y < z}. The height of an element x ∈ X is equal to the
size of a maximum chain in D[x]; note that minimal elements have height 1. When X is a
family of intervals, we de�ne hX(x) (or simply h(x) when X is clear from context) to be the
height of x in the endpoint order on X. The canonical coloring of a family X of intervals
assigns h(x) to each interval x ∈ X. A coloring f of a family X of intervals is canonical,
and we say that f is canonical on X, if the color classes of f form the same partition of X
as the color classes of the canonical coloring.

Note that the canonical coloring is a proper coloring; if x and y overlap, then they are
comparable in the endpoint order, and therefore h(x) 6= h(y). In what follows, we develop
the tools needed to construct proper colorings of clean circle graphs that are canonical on
every right neighborhood.

Proposition 6.2.3. In a clean family of intervals, let x be an interval with h(x) ≥ 2. If y
is chosen from D(x) to maximize l(y), then h(x) = h(y) + 1.

Proof. Let k = h(x); we use induction on k. When k = 2, the statement is trivial. Suppose
k ≥ 2. Since h(y) < h(x), it su�ces to show that h(y) ≥ h(x) − 1. Since h(x) = k, there
is a chain z1, . . . , zk with zk = x. We may assume that y 6= zk−1, so the choice of y yields
l(zk−1) < l(y). Therefore l(zk−2) < l(zk−1) < l(y). Consider the order of r(y) and r(zk−2).
If r(y) < r(zk−2), then y is contained in zk−1 ∩ zk−2, contradicting that the family is clean.
Otherwise, r(y) > r(zk−2); now y > zk−2 and h(y) ≥ k − 1.

Remark 6.2.4. Proposition 6.2.3 requires that the family of intervals is clean.

Proposition 6.2.5. Let X be a clean family, and let x be an interval in X that contains
another interval in X. If Y = X − {x}, then hY (u) = hX(u) for all u ∈ Y .

Proof. Let z be an interval in X that is contained in x. Because X is clean, y < x implies
y < z, and y > x implies y > z. Therefore, if C is a chain containing x in the endpoint
order on X, then substituting z for x in C yields another chain of the same size. Hence
hY (u) ≥ hX(u) for all u ∈ Y , and the other inequality holds since Y ⊆ X.
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Proposition 6.2.6. If X is a family of intervals that share a common point a, and the
overlap graph G(X) has clique number k, then the canonical coloring on X uses exactly k
colors.

Proof. Because the canonical coloring is proper, it uses at least k colors. For the other
direction, if the canonical coloring uses r colors, then there is a chain C of size r in the
endpoint order on X. It follows that C is an independent set in the inclusion order on X.
Hence, no two intervals in C are related by containment. However, C is pairwise intersecting
because every member of X contains a. It follows that the intervals in C pairwise overlap,
and so k ≥ r.

Proposition 6.2.7. If f is canonical on X, and Y is a down-set of X in the endpoint order,
then f is canonical on Y .

Proof. Because Y is a down-set in X, we have hX(x) = hY (x) for each x ∈ Y .

Let X be a family of intervals and let u ∈ X be an interval that is not inclusion-minimal,
where u = [a, b]. We de�ne the subordinate of u to be the interval with the rightmost right
endpoint among all intervals contained in u. Let v be the subordinate of u, where v = [c, d],
and de�ne the modi�ed subordinate to be the interval v′, where v′ = [c, b]. The right-push
operation on u produces the families Y and Y ′ and a map φ : Y → Y ′, where Y = X − u,
Y ′ = Y − v + v′, and φ(x) = x for x 6= v and φ(v) = v′.

Lemma 6.2.8. Let X be a family of intervals, let u ∈ X be an interval that is not inclusion-
minimal, and let Y , Y ′, and φ : Y → Y ′ be produced by the right-push operation on u. If
X is clean, then the following hold:

1. The map φ preserves the order of the left endpoints and right endpoints. That is,
l(x) < l(y) if and only if l(φ(x)) ≤ l(φ(y)) for each x, y ∈ Y . Similarly, r(x) < r(y) if
and only if r(φ(x)) < r(φ(y)).

2. Y and Y ′ are clean.

3. The clique numbers of Y and Y ′ are both at most the clique number of X.

4. For each w ∈ Y with w 6= v, we have φ(RY (w)) = RY ′(φ(w)).

5. φ(RY (v)) ⊆ RY ′(φ(v)) and φ(RY (v)) is a lower subset of RY ′(φ(v)) in the endpoint
order.

Proof. De�ne a, b, c, d so that u = [a, b] and v = [c, d].
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1. Note that no interval in X has its right endpoint strictly between d and b. Indeed, if
there were such an interval w, then either w is contained in u, in which case v is not
the subordinate of w, or {w, u} is a 2-clique whose center contains v, contradicting
that X is clean. In passing from Y to Y ', the right endpoint of v is moved from d to
b to form a new interval v′. Doing so preserves the order of the left endpoints and the
right endpoints.

2. Because Y ⊆ X and X is clean, we have that Y is clean. Note that x is contained in
the center of a 2-clique with {y, z} with y ≤ z if and only if l(y) < l(z) < l(x) and
r(x) < r(y) < r(z). Hence, the property of being clean is determined by the order of
the left endpoints and the order of right endpoints. Because φ preserves these orders,
Y ′ is also clean.

3. Let k be the clique number of X. Because Y ⊆ X, the clique number of Y is at
most k. Let {x1, . . . , xt} be a clique S in Y ′ with x1 < · · · < xt, and note that
l(x1) < · · · < l(xt) < r(x1) < · · · < r(xt). Suppose for a contradiction that t > k. We
have that xj = v′ for some j, or else S is a clique in Y . If j > 1, then xj−1 cannot
have its right endpoint between d and b. Because d < b and r(xj) = b, it follows that
r(xj−1) < d < r(xj). But d = r(v), and so S − v′ + v is a clique of size t in Y , a
contradiction. Hence it must be that j = 1. Recalling that r(x1) = r(u) = d, we
have that l(u) < l(x2) < · · · < l(xt) < r(u) < r(x2) < · · · < r(xt), which implies that
S − v′ + u is a clique of size t in X, another contradiction.

4. If x ∈ RY (w), then passing from x to φ(x) leaves the left endpoint �xed and possibly
increases the right endpoint. Because w 6= v and φ(w) = w, it follows that φ(x) ∈
RY ′(φ(w)) and so φ(RY (w)) ⊆ RY ′(φ(w)). Conversely, if φ(x) ∈ RY ′(φ(w)), then
passing from φ(x) to x leaves the left endpoint �xed and possibly decreases the right
endpoint. However, right endpoint must remain above the right endpoint of φ(w), and
so x ∈ RY (w). It follows that RY ′(φ(w)) ⊆ φ(RY (w)).

5. Passing from v to v′ increases the right endpoint of v, but in doing so, the right endpoint
never crosses the right endpoint of another interval. Hence, each right-neighbor of v in
Y is a right-neighbor of v′ in Y ′, and therefore φ(RY (v)) ⊆ RY ′(φ(v)). Suppose that
φ(x), φ(y) ∈ RY ′(v

′), φ(x) ≤ φ(y), and y ∈ RY (v). It follows that l(v) = l(v′) < l(x) <

l(y) < r(v) < r(v′) < r(x) < r(y), and hence x ∈ RY (v) also.

Note that because the endpoint order onX only depends on the order of the left endpoints
and the order of the right endpoints, a consequence of Lemma 6.2.8 is that φ is a poset
isomorphism from Y to Y ′ under the endpoint order.
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De�nition 6.2.9. A coloring f of a family of intervals X is good if, for each w ∈ X, f is
canonical on R(w).

Note that if f is a good coloring of X, then it follows that f is a proper coloring. While
some families of intervals do not admit good colorings with any number of colors, clean
families have good colorings.

Proposition 6.2.10. Let X be a clean family of intervals and let u ∈ X be a non-minimal
element in the inclusion order. If v is chosen from {w ∈ X : w ⊆ u} to minimize the left
endpoint, then hX(u) = hX(v).

Proof. We argue that w < u if and only if w < v. If w < u, then also w < v or else {w, u}
is a 2-clique with v in the center, contradicting that X is clean. Conversely, if w < v, then
the extremality of v implies that w < u.

Lemma 6.2.11. If X is a clean family and f is the canonical coloring on X, then f is good.

Proof. Let z ∈ X and let S = RX(z), and let hS (resp hX) be the height function on the
endpoint order on S (resp X). We show that for each u, v ∈ S, it holds that hS(u) = hS(v)

if and only if hX(u) = hX(v). For each k ≥ 0, let Tk = {w ∈ S : hS(w) = k}. Because
all elements in Tk have the same height, they are not comparable in the endpoint order,
and therefore T is a chain in the inclusion-order. Index the elements of T as u1, . . . , un so
that u1 ( u2 ( · · · ( un, and �x j < n. We claim there are no intervals in X whose left
endpoint is between l(uj) and l(uj+1). Indeed, if there are such intervals, then let v be one
that minimizes the left endpoint. Note that v ( uj+1, or else {uj+1, v} is a 2-clique with uj
in the center. Also v 6∈ S, or else applying Proposition 6.2.10 to uj+1 and v in the family
S would give that hS(v) = hS(uj+1) = k, and hence v ∈ Tk, a contradiction because no
interval in Tk has left endpoint between the left endpoints of uj and uj+1. But now v 6∈ S
implies that v is in the center of the 2-clique {z, uj+1}, a contradiction. A �nal application
of Proposition 6.2.10 to uj+1 and uj in X gives that hX(uj+1) = hX(uj). It follows that all
intervals in Tk have the same height in X.

For the converse, suppose that Tk and Tk′ with k < k′ have the property that all elements
in Tk∪Tk′ have the same height in the endpoint order on X. Fix u ∈ Tk′ . Because hS(u) = k′

and k < k′, there is an interval v ∈ S with v < u and hS(v) = k. It follows that v ∈ Tk. But
now v and u are comparable in the endpoint order, so they cannot have the same height in
X.

Lemma 6.2.12. Let X be a clean family of intervals, let u be a non-minimal element in the
inclusion order on X, and obtain Y, Y ′, and φ from the right-push operation on u. If g′ is a
good coloring of Y ′, then g′ ◦ φ is a good coloring of Y .
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Proof. Consider w ∈ Y . Because g′ is good on Y ′, we have that g′ is canonical on RY ′(φ(w)).
By Lemma 6.2.8, we have that φ(RY (w)) is a down set of RY ′(φ(w)) in the endpoint order
(even equality holds when w 6= v). By Proposition 6.2.7, we have that g′ is canonical on
φ(RY (w)). But φ : Y → Y ′ is an isomorphism of the endpoint orders on Y and Y ′, so g′ ◦φ
is canonical on RY (w).

If a ∈ R, then Xa denotes the subfamily of X consisting of all intervals that contain a
in their interior, X>a denotes the subfamily of X consisting of all intervals that are entirely
to the right of a, and X<a denotes the subfamily of X consisting of all intervals that are
entirely to the left of a.

Proposition 6.2.13. Let f be a good coloring of X, let α and β be colors, let a be a point
on the real line, and suppose that f(u) 6∈ {α, β} for each u ∈ Xa. If f ′ is the coloring of X
obtained from f by interchanging α and β on the intervals in X>a, then f ′ is also good.

Proof. Let w ∈ X and de�ne c, d so that w = [c, d]. If d > a, then every interval in RX(w)

with a color in {α, β} is in X>a, and so the change in colors does not alter the partition
on RX(w) given by the color classes of f . Similarly, if d < a, then every interval in RX(w)

with a color in {α, β} is in X<a, and so none of these intervals change colors. If d = a, then
increase a by a small amount and apply the proposition again.

Theorem 6.2.14. If X is a clean family of intervals with clique number k ≥ 1, then there
is a good coloring f of X using at most 2k − 1 colors.

Proof. By induction on |X|; we may assume |X| ≥ 1 and k ≥ 2. Let x be the interval in X
which minimizes l(x). If R(x) = ∅, then x has no neighbors. Let Y = X−x, apply induction
to Y to obtain good coloring g of Y , and extend g to a coloring f of X by assigning an
arbitrarily chosen color to x. Clearly, f is canonical on each right-neighborhood.

Therefore, we may assume that x has right-neighbors. Choose y ∈ R(x) to mini-
mize l(y), and de�ne a and b so that y = [a, b]. Let Y1 = {z ∈ X : l(z) ≤ b} and Y2 =

{z ∈ X : r(z) ≥ b}. Note that x 6∈ Y2 and therefore Y2 ( X. If also Y1 ( X, then we
may apply induction to Y1 and Y2 to obtain respective good colorings g1 and g2. Note that
Y1 ∩ Y2 = {z ∈ X : l(z) ≤ b ≤ r(z)}, and because y is inclusion-maximal, Y1 ∩ Y2 = RX(y).
Consequently, all right-neighbors of y survive in Y1 and Y2, and hence RX(y) = RY1(y) =

RY2(y), which implies that g1 and g2 are canonical on Y1 ∩ Y2. Hence, after relabeling the
color names, we obtain a coloring g of X that is a common extension of g1 and g2. Clearly, g
uses at most 2k−1 colors; it remains to show that g is canonical on each right-neighborhood.
Consider u ∈ X. If r(u) ≤ b, then RX(u) ⊆ Y1 and so RX(u) = RY1(u), which implies that
g is canonical on RX(u). Otherwise, RX(u) ⊆ Y2, and so RX(u) = RY2(u), which again
implies that g is canonical on RX(u).
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Hence, we may assume X = Y1. Next, we consider the case that x is not inclusion-
minimal. Let v be the subordinate of x, let v′ be the modi�ed subordinate of x, and obtain
Y, Y ′, and φ from the right-push operation on x. By Lemma 6.2.8, we have that Y and
Y ′ are clean with clique number at most k. By induction and Lemma 6.2.12, obtain good
colorings g′ of Y ′ and g0 = g′ ◦φ of Y using at most 2k− 1 colors. Extend g0 to a coloring g
of X by de�ning g(w) = g0(w) for w 6= x and g(x) = g0(v) = g′(v′). Clearly, g uses at most
2k− 1 colors. We claim that g is a good coloring. First, note that because x minimizes l(x),
we have that x ∈ RX(w) implies that w = x. Therefore g inherits the canonical coloring
of g0 on RX(w) whenever w 6= x. Finally, note that because X is clean, we have that
RX(x) = RY ′(v

′) and hence g inherits the canonical coloring on RX(x) from the canonical
coloring of g′ on RY ′(v

′).
Hence, we may assume that x is inclusion-minimal; it follows that y ∈ RX(w) implies

that w ∈ {x, y}. Next, we consider the case that y is not inclusion-minimal. Let v be the
subordinate of y, let v′ be the modi�ed subordinate, and obtain Y, Y ′ and φ from the push
operation. By Lemma 6.2.8, we have that Y and Y ′ are clean with clique number at most
k. By induction and Lemma 6.2.12, obtain good colorings g′ of Y ′ and g0 = g′ ◦φ of Y using
at most 2k − 1 colors. We use g0 to construct a good coloring of X. Because Y = X − x,
to extend a good coloring of Y to a good coloring of X, we must assign a color to y so that
the coloring remains canonical on each closed right-neighborhood. Because y is only in the
closed right-neighborhood of x and y, we need only verify that the coloring is canonical on
RX(x) and RX(y).

We consider two subcases. First, suppose that y is inclusion-minimal in RX(x). Because y
is chosen from RX(x) to minimize l(y), it follows that x < y < z for every z ∈ RX(x)−{x, y}.
With Z1 = RX(x) and Z2 = RY (x) = RX(x)− {y}, this implies that two elements have the
same height in Z2 if and only if they have the same height in Z1, and y is the only element
of height 1 in Z1. Consequently, an extension of g0 to X is canonical on RX(x) if and only if
it assigns y a color that is not used on any other interval in RX(x). Similarly, y < z for each
z ∈ RX(y) − {y} and hence an extension of g0 to X is canonical on RX(y) if and only if y
is assigned a color that is not used on any other interval in RX(y). Because g0 is canonical
on RY (x) and the clique number of RY (x) is at most k − 1 (indeed, every maximal clique
in RX(x) contains y), it follows that g0 uses at most k− 1 colors on RY (x). Also, g′ uses at
most k colors on RY ′(v

′), and hence g0 uses at most k − 1 colors on RX(y) (indeed, g′(v′) is
used on v′ ∈ RY ′(v

′) but is not used on any interval in RX(y)). Because 2k − 1 colors are
available and at most 2k− 2 provide con�icts, one color remains available for assignment to
y.

The second subcase is that y is not inclusion-minimal in RX(x). Let z be the interval
that minimizes l(z) among all intervals in RX(x) that are contained in y. Note that z is
also the interval that minimizes l(z) among all that are contained in y. Let α = g0(z). By
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Proposition 6.2.10, the height of y and the height of z are the same in all subsets of X
containing z and y. By induction, we have that g0 is canonical on RX(x) − y. Applying
Proposition 6.2.5 to RX(x), an extension of g0 to X is canonical on RX(x) if and only if y
is assigned color α. Also, an extension of g0 to X is canonical on RX(y) if and only if y
is assigned a color di�erent from every other interval in RX(y). If α is not used on RX(y),
then we may assign α to y. Otherwise, we �rst modify g0 before extending to X. Note that
z is inclusion-maximal in Y , and let a be a point slightly to the right of r(z). Because z is
inclusion-maximal in Y , every interval in Y that contains a is in RY (z). Let A be the set
of colors that g0 uses on intervals containing a. Because g0 is canonical on RY (z), at most
k colors are used on these intervals; because g0 uses α on z ∈ RY (z), we have α 6∈ A and
hence |A| ≤ k − 1. Let B be the set of colors that g0 uses on intervals in RX(y). Because
g′ is canonical on RY ′(v

′), RX(y) = RY ′(v
′)−{v′}, and v′ overlaps with every other interval

in RY ′(v
′), we have that |B| ≤ k − 1. Let β be a color that g0 uses but is not contained

in A ∪ B. Obtain g1 from g0 by applying Proposition 6.2.13 with colors {α, β} at point a.
Note that because β 6∈ B, we have that g1 does not use α on any interval in RX(y). Also,
g1(z) = α and an extension of g1 to X is canonical on RX(x) if and only if y is assigned
color α. Therefore, we obtain a good coloring of X from g1 by assigning y the color α.

Hence, we may assume that both x and y are inclusion-minimal. By Lemma 6.2.11, the
canonical coloring on X is good. Because X−x = RX(y) and Proposition 6.2.6 implies that
the canonical coloring uses at most k colors on RX(y), the canonical coloring on X uses at
most k + 1 colors in total.

Theorem 6.2.15. For each k ≥ 1, there is a clean circle graph G with ω(G) = k such that
every good coloring of G uses at least 2k − 1 colors.

Proof. We construct G in stages; see Figure 6.1 for the �rst stage. Our construction uses a
set of k− 1 intervals V that induce a clique in the overlap graph and a set of k− 1 intervals
V ′ that form a chain under inclusion. Let V = {v1, . . . , vk−1} and let V ′ = {v′1, . . . , v′k−1},
indexed so that v1 < · · · < vk−1 and v′1 ⊇ · · · ⊇ v′k−1. The left endpoint of v

′
j is placed slightly

to the left of l(vj), and the right endpoints of intervals in V ′ satisfy r(v′1) ≥ · · · ≥ r(v′k−1).
Next, add v0 so that v0 is a left-neighbor of all intervals in V ∪ V ′, and add v′0 so that v′0 is
a right-neighbor of all intervals in V but contained in all intervals in V ′.

Because a good coloring must be canonical on R(v0), it follows that a good coloring
assigns the same color to vj and v′j for j ≥ 1, and hence k− 1 distinct colors are assigned to
intervals in V ′. Since v′0 is a right-neighbor of each interval in V , it follows that k distinct
colors are assigned to intervals in V ′ ∪ {v′0}. These intervals form an independent set in the
overlap graph.

In the second stage, we add a set S of k−1 pairwise overlapping intervals such that each
interval in S overlaps with intervals in V ′ ∪ {v′0} and no others. A good coloring must use
k − 1 new colors on S, and hence at least 2k − 1 colors in total.
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Figure 6.1: Construction in Theorem 6.2.15.

6.3 Chromatic number of K4-free circle graphs

In this section, we study the chromatic number of circle graphs with clique number at most
3. Our �rst task is to explore the structure of segments. A segment of a family X is an
inclusion-maximal interval in the set of all centers of 2-cliques in X.

Lemma 6.3.1. Let X be a family of intervals. If [a, b] and [c, d] are overlapping segments
of X with a < c < b < d, then there exists x ∈ X with l(x) ∈ [a, c) and r(x) ∈ (b, d].

Proof. Let y1 and y2 be overlapping intervals in X with y1 < y2 and center [a, b]. Let z1

and z2 be overlapping intervals in X with z1 < z2 and center [c, d]. Note that l(y2) = a

and r(z1) = d. We claim that either r(y2) ∈ (b, d] or l(z1) ∈ [a, c). Because r(y2) > b and
l(z1) < c, failure requires r(y2) > d and l(z1) < a. But then we have l(z1) < l(y2) = a < d =

r(z1) < r(y2) which implies that z1 and y2 are overlapping intervals in X with center [a, d],
contradicting that [a, b] and [c, d] are segments. Hence, either y2 or z1 is as required.

Lemma 6.3.2. Let X be a family of intervals. If u1, . . . , ut are overlapping segments of X
with u1 < u2 < · · · < ut, then [l(ut), r(u1)] is the center of a (t+ 1)-clique in X.

Proof. For 1 ≤ j < t, apply Lemma 6.3.1 to the segments uj and uj+1 to obtain zj ∈ X with
l(zj) ∈ [l(uj), l(uj+1)) and r(zj) ∈ (r(uj), r(uj+1)]. Of the overlapping pair of intervals in X
whose center is u1, let z0 be the leftmost in the endpoint order. Similarly, of the overlapping
pair of intervals in X whose center is ut, let zt be the rightmost in the endpoint order. It
follows that l(z0) < l(z1) < · · · < l(zt) < r(z0) < r(z1) < · · · < r(zt) and so {z0, . . . , zt} is a
(t+ 1)-clique in X with center [l(ut), r(u1)].

As a consequence of Lemma 6.3.2, if X has clique number k and Y is the set of all
segments of X, then Y has clique-number at most k − 1. Moreover, by de�nition, each
interval in Y is inclusion-maximal. Hence the endpoint order on Y is a chain. Index Y as

86



{y1, . . . , yt} so that yj < yj+1. If X has clique number at most 3, the structure of Y is highly
constrained: each component in the overlap graph of Y is a path.

To �nd a proper coloring of a family of intervals X with clique number at most 3, we �rst
partition X into distance levels. Let x be the interval in X that minimizes l(x). For each
j ≥ 0, let Si = {y ∈ X : dist(x, y) = i}, where dist(x, y) is the distance between x and y in
G(X). When G(X) is connected, we say that X is connected. Each Si is called a level of X.
When X is connected, the levels partition X. Note that if u ∈ Si, v ∈ Sj, and |i− j| ≥ 2,
then u and v do not overlap. Thus, if χ(G(Si)) ≤ t for each level Si, then χ(G(X)) ≤ 2t by
using one palette of t colors for S0∪S2∪ · · · and another palette of t colors for S1∪S3∪ · · · .
The following lemma is crucial.

Lemma 6.3.3 ([69, 55]). Let X be a connected family of intervals with levels Sj de�ned as
above. Let i ≥ 1, let [a, b] be an interval such that [a, b] ⊆

⋃
y∈Si y. If z ∈ Si−1 and one

endpoint of z is in [a, b], then the other endpoint of z is outside [a, b].

One common application of Lemma 6.3.3 is the following.

Lemma 6.3.4 ([69, 55]). Let X be a connected family of intervals with levels Si de�ned as
above. Let i ≥ 1, let y ∈ Si, and let T be the set of all intervals in Si that contain y. There
is an interval z ∈ Si−1 such that z overlaps every interval in T .

Fix a level Si and let S ′i be the vertices of a component in G(Si). We partition S ′i
into sublevels. Let x be the interval in S ′i that minimizes l(x) and, for each j ≥ 0, de�ne
Si,j = {y ∈ S ′i : dist(x, y) = j}. We say that Si,j is a sublevel of S ′i. In the following, we will
often apply Lemma 6.3.4 twice; �rst, with with respect to a component S ′i and its sublevels
Si,j, and next with respect to X and its levels Si.

Let X be a family of intervals with clique number at most 3, and let S ′i be a component
in level Si. For each segment u of the sublevel Si,j in S ′i, we de�ne the left-pin of u to
be the point max {r(w) : w ∈ Si,j−1, w < u, and w overlaps u} when this set is nonempty;
otherwise, the left-pin of u is unde�ned. Similarly, we de�ne the right-pin of u to be the
point min {l(w) : w ∈ Si,j−1, w > u, and w overlaps u} when this set is nonempty. We need
the following facts about pins.

Proposition 6.3.5. Let X be a family of intervals with clique number at most 3 with a
level Si, a component S ′i of Si, and sublevels Si,j of S ′i. If u is a segment of Si,j with two
well-de�ned pins, a is the left-pin of u, and b is the right-pin of u, then a < b.

Proof. First, note that a = b is impossible because all intervals in X have distinct endpoints.
Suppose for a contradiction that a > b. Let x and y be overlapping intervals in Si,j with
x < y and center u. Obtain w1 ∈ Si,j−1 with r(w1) = a and w2 ∈ Si,j−1 with l(w2) = b.
Applying Lemma 6.3.3 to [l(x), r(y)], we have that l(w1) < l(x) < l(y) < l(w2) < r(w1) <

r(x) < r(y) < r(w2), which implies that {w1, x, y, w2} is a 4-clique in X, a contradiction.

87



Proposition 6.3.6. Let X be a family of intervals with clique number at most 3 with a level
Si, a component S ′i of Si, and sublevels Si,j. If u is a segment of Si,j and z ∈ Si,j is contained
in u, then z contains a (well-de�ned) pin of u.

Proof. Let x and y be overlapping intervals in Si,j with x < y and center u. Because
|Si,j| > 1, we have that i ≥ 1 and j ≥ 1. Applying Lemma 6.3.4 to S ′i and its sublevels Si,j,
obtain w ∈ Si,j−1 such that w overlaps x, y, and z. By Lemma 6.3.3, it follows that w has
one endpoint inside z and another outside [l(x), r(y)].

Suppose that l(w) ∈ z. Then u has a right-pin b, and b ≤ l(w). We claim that l(z) ≤ b.
Indeed, if b < l(z), then there is an interval w′ ∈ Si,j−1 with l(w′) = b. By Lemma 6.3.3, we
have that w′ contains z and overlaps x and y. Thus, {x, y, w′} is a 3-clique in Si whose center
contains z. A �nal application of Lemma 6.3.4 yields an interval v ∈ Si−1 which overlaps x,
y, and w′. Therefore {x, y, w′, v} is a 4-clique in X, a contradiction. Hence l(z) ≤ b, and
therefore l(z) ≤ b ≤ l(w) ≤ r(z), which implies that z contains the pin b.

The case that r(w) ∈ z is similar and implies that u has a well de�ned right-pin a and
that z contains a.

Proposition 6.3.7. Let X be a family of intervals with clique number at most 3, a level Si,
a component S ′i of Si, and sublevels Si,j. If u and v are overlapping segments of Si,j, then
no pin is in the center of {u, v}.

Proof. By Lemma 6.3.2, there is a 3-clique {x1, x2, x3} in Si,j whose center is the same as
the center of {u, v}. If there is a pin in the center of {x1, x2, x3}, then there exists z ∈ Si,j−1

with one endpoint in the center of {x1, x2, x3}. By Lemma 6.3.3, the other endpoint of z is
outside x1∪x2∪x3, and so z overlaps each of interval in {x1, x2, x3}. Therefore {x1, x2, x3, z}
is a 4-clique in X, a contradiction.

We now have the tools available to prove an upper bound on the chromatic number of a
circle graph with clique number at most 3.

Theorem 6.3.8. If X is a family of intervals and ω(G(X)) ≤ 3, then χ(G(X)) ≤ 44.

Proof. We may assume that X is connected. We argue that χ(G(Si)) ≤ 22 for each level
Si. Fix a level Si, and let S ′i be the vertices of a component of G(Si). We argue that
χ(G(S ′i)) ≤ 22. Let Si,j be the sublevels of S ′i. It su�ces to show that χ(G(Si,j)) ≤ 11.

Let A be the set of all intervals in Si,j that are contained in the center of a 2-clique in
Si,j and let B = Si,j − A. Note that B is a clean family, and hence by Theorem 6.2.14, we
have that χ(G(B)) ≤ 5. We use 5 colors for intervals in B.

It remains to show that χ(G(A)) ≤ 6. Let p1, . . . , ps be the pins of the segments of Si,j,
indexed so that p1 < · · · < ps. Each interval x ∈ A is contained in a segment of Si,j and
therefore contains at least one pin by Proposition 6.3.6. We claim that each interval x ∈ A
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contains at most two pins. Proposition 6.3.7 implies that each pin is contained in exactly
one segment; hence each segment contains at most two pins. The claim now follows.

For 1 ≤ k ≤ s, let Tk be the set of intervals in A that contain pk and no smaller pin.
Since each interval contains a pin, {T1, . . . , Ts} is a partition of A. Note that if x and y are
overlapping intervals in A with x ∈ Tk and y ∈ Tk′ , then |k − k′| ≤ 2, since each interval
contains at most two pins. Hence we may use the same set of colors on Tk and Tk′ whenever
k and k′ are congruent modulo 3. Therefore it su�ces to show that χ(G(Tk)) ≤ 2 for each
Tk.

Note that each Tk has clique number at most 2. Indeed, if Tk contained a 3-clique, then
the interval in Si,j−1 with endpoint pk would complete a 4-clique in X. By Proposition 6.2.6,
we have χ(G(Tk)) ≤ 2 via the canonical coloring.
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Chapter 7

Acyclic Sets in k-majority Tournaments

A k-majority tournament is a model of the consensus preferences of a group of k individuals.
When Π is a set of linear orders on a ground set X, the majority digraph of Π has vertex set
X and has an edge from u to v if and only if a majority of the orders in Π rank u before v.
When Π has size k and k is odd, the majority digraph is a k-majority tournament. In this
chapter, we explore the maximum size of an acyclic set in k-majority tournaments.

This chapter is based on joint work with D. Schreiber and D. B. West that appears
in [78].

7.1 Introduction

In studying generalized voting paradoxes, McGarvey [75] showed that every n-vertex tour-
nament is realizable as a k-majority tournament with k = 2

(
n
2

)
. Erd®s and Moser [38]

improved this by showing that k = O(n/ log n) always su�ces, and Stearns [104] showed
that k = Ω(n/ log n) is sometimes necessary.

A dominating set in a digraph is a set of vertices S such that for each vertex v not in S,
there is a vertex u ∈ S such that uv is an edge. The domination number of a directed graph
D, denoted γ(D), is the minimum size of a dominating set in D. In general, Erd®s [36]
showed that n-vertex tournaments can have domination number Ω(log n). However, the
domination number is bounded within the family of k-majority tournaments; Alon et al. [3]
proved that every k-majority tournament has domination number at most O(k log k) and
constructed k-majority tournaments with domination number at least Ω(k/ log k).

In this chapter, we study the extremal problem for acyclic sets in k-majority tournaments.
Let a(D) denote the maximum size of an acyclic set in D. Erd®s and Moser [38] showed that
if T is an n-vertex tournament, then a(T ) ≥ blg nc+1, and they showed that almost every n-
vertex tournament T satis�es a(T ) ≤ 2blg nc+ 1, using a probabilistic argument. A similar
argument shows that almost every n-vertex graph has clique number and independence
number logarithmic in n.

Acyclic sets in tournaments are an analogue of cliques and independent sets in graphs.
Given any linear ordering of the vertices of T , form a graph G on V (T ) by making vertices
adjacent if the edge joining them in T is in increasing order. Cliques and independent
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sets in G are acyclic in T . Hence, a(T ) is at least max{α(G), ω(G)}, where α(G) is the
independence number of G and ω(G) is the clique number of G. On the other hand, we will
see that a(T ) ≤ (max{α(G), ω(G)})2.

Although tournaments may have only logarithmically large acyclic sets, k-majority tour-
naments always have polynomially sized acyclic sets. Let

fk(n) = min{a(T ) : T is an n-vertex k-majority tournament}.

We prove that f3(n) ≥
√
n and f3(n) ≤ 2

√
n− 1 when n is a perfect square. We also prove

that f5(n) ≥ n1/4. For general k, we prove that nck ≤ fk(n) ≤ ndk , where ck = 3(k−1)/2 and
dk = (ln ln k)+2

(ln k)−1
(1 + ln k

n
). We make heavy use of the Erd®s�Szekeres Theorem.

Theorem (Erd®s�Szekeres [40]). Every list of more than (r − 1)(s − 1) distinct integers
contains a monotonically increasing sublist of length r or a monotonically decreasing sublist
of length s.

Let Π be a set of linear orderings of a ground set X. A set of elements of X is Π-
consistent if it appears in the same order in each member of Π. When Π has even size, a
set S of elements of X is Π-neutral if for all distinct u, v ∈ S, element u appears before
element v in exactly half the members of Π. Note that if S is {π1, π2}-neutral, then π1 ranks
the elements of S in reverse order from π2. In the following, we apply the Erd®s�Szekeres
Theorem in the following form.

Theorem (Erd®s�Szekeres [40]). If π1 and π2 are linear orderings of a ground set X and
|X| > (r− 1)(s− 1), then there is a {π1, π2}-consistent set of size r or a {π1, π2}-neutral set
of size s.

Proof. Rename the elements of X so that π1 is the identity ordering (1, . . . , n), and apply
the Erd®s�Szekeres Theorem to π2.

Another elementary fact that we will use repeatedly is the following well-known charac-
terization of acyclic tournaments. A triangle in a tournament is a (directed) 3-cycle.

Fact 7.1.1. Let T be a tournament. The following are equivalent:

1. T is acyclic.

2. The vertices of T can be indexed as v1, . . . , vn so that vivj is an edge in T if and only
if i < j. The sequence v1, . . . , vn is called the transitive order of T .

3. T does not contain any triangles.
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Of course, when S is an acyclic subset of T , Fact 7.1.1 applies to the subtournament of T
induced by S, and S has a transitive order.

The Erd®s�Szekeres Theorem allows us to justify our comment that a(T ) ≤ max{α(G), ω(G)})2

when G is the graph obtained from a linear order on V (T ) by making vertices adjacent when
the edge joining them is increasing in the order on V (T ). For any acyclic set S in T , let
π1 be the restriction to S of the given linear order on V (T ), and let π2 be the transitive
order on S. Now α(G) is the maximum size of a {π1, π2}-neutral set, and ω(G) is the max-
imum size of a {π1, π2}-consistent set. Hence, the Erd®s�Szekeres Theorem implies that
max{α(G), ω(G)} ≥

√
|S|.

7.2 Small odd k

In this section, we prove bounds on fk(n) when k is 3 or 5. When k = 3, our bounds di�er
only by a factor of 2.

The case k = 3

Beame and Huynh-Ngoc [8] gave a simple argument that if Π is a set of three orderings of
a ground set of n elements, then there is a {πi, πj}-consistent set of size n1/3. When |Π| is
�xed, this is asymptotically best possible. Beame, Blais, and Huynh-Ngoc [7] proved that
for integers n and k with k ≥ 3 and n ≥ k2, there is a set Π of k orderings of an n-set in
which no two orderings have a consistent set of size greater than 16(nk)1/3.

This implies that that f3(n) ≥ n1/3 using only sets that are consistent in two of the
orders. By considering also acyclic sets that are neutral in the �rst two orders, we obtain a
better lower bound. The proof uses the Erd®s�Szekeres Theorem.

Proposition 7.2.1. f3(n) ≥
√
n.

Proof. Let T be an n-vertex 3-majority tournament realized by {π1, π2, π3}. By the Erd®s�
Szekeres Theorem, there is a {π1, π2}-consistent set of size at least

√
n or a {π1, π2}-neutral

set of size at least
√
n. In the �rst case, this set is an acyclic set.

Otherwise, let S be a {π1, π2}-neutral set of size at least
√
n. Since S is {π1, π2}-neutral,

it follows that S induces a transitive subtournament of T with vertices in the same order as
in π3. Hence S is an acyclic set.

While Proposition 7.2.1 is simple, it is within a constant factor of the true value of f3(n).

Theorem 7.2.2. If n is a perfect square, then f3(n) ≤ 2
√
n− 1.

Proof. Let n = r2, and let X = [r] × [r]. View X as integer points in the �rst quadrant in
the plane. We describe three orderings of X and argue that they realize a tournament in
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which every acyclic set has size at most 2r − 1. De�ne linear orderings π1, π2, and π3 as
follows:

(u1, u2) <1 (v1, v2) ⇐⇒ u2 < v2 or (u2 = v2 and u1 < v1)

(u1, u2) <2 (v1, v2) ⇐⇒ u2 > v2 or (u2 = v2 and u1 < v1)

(u1, u2) <3 (v1, v2) ⇐⇒ u1 > v1 or (u1 = v1 and u2 < v2).

Note that these are all lexicographic orderings up to symmetries of the r-by-r grid, and
hence they are linear orderings.

Let T be the 3-majority tournament realized by {π1, π2, π3}. Consider distinct vertices
u and v, where u = (u1, u2) and v = (v1, v2). If u and v di�er in both coordinates, then
uv ∈ E(T ) if and only if u1 > v1. Indeed, {u, v} is {π1, π2}-neutral, and π3 brakes the tie
by listing the vertex with larger �rst coordinate before the other. However, if u2 = v2, then
uv ∈ E(T ) if and only if u1 < v1. Finally, if u1 = v1, then uv ∈ E(T ) if and only if u2 < v2.

For each i ∈ [r], let Ri be the row {(u1, u2) ∈ X : u2 = i} and let Cj be the column
{(u1, u2) ∈ X : u1 = j}. Let S be an acyclic subset of T . We show that |S| ≤ 2r − 1

by exhibiting an injection from S to the set {Ri : i ∈ [r] − {1}} ∪ {Cj : j ∈ [r]}. For each
column Cj, when S contains a vertex in Cj, we map the vertex in S∩Cj with smallest second
coordinate to Cj. For every other vertex u in S, we map u to the row Ri that contains u.
Note that no vertex is mapped to R1, because this vertex would have the smallest second
coordinate in its column.

By construction, no two vertices are mapped to the same column. Hence, if the map fails
to be an injection, there are two vertices u and v that are mapped to the same row Ri. It
follows that u = (u1, i) and v = (v1, i); we may assume that u1 < v1. Because u is mapped
to row Ri, it follows that there is a vertex w in S that is in the same column as u but has
a smaller second coordinate. Hence, w = (u1, k) for some k < i. It follows that uvw is a
directed triangle in S, contradicting that S is acyclic.

Proposition 7.2.1 and Theorem 7.2.2 combine to give the following general bounds on
f3(n).

Theorem 7.2.3.
√
n ≤ f3(n) < 2

√
n+ 1.

Proof. The lower bound is Proposition 7.2.1. For the upper bound, let n′ be the smallest
perfect square that is at least as large as n. Note that

√
n′−
√
n < 1. Using the monotonicity

of f and Theorem 7.2.2, it follows that f3(n) ≤ f3(n′) ≤ 2
√
n′ − 1 < 2

√
n+ 1.

The case k = 5

Because adding a linear ordering and its reverse to Π does not change the majority digraph,
every k-majority tournament is a (k + 2)-majority tournament. It follows that fk+2(n) ≤
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fk(n). Currently, our best upper bound on f5(n) is f5(n) ≤ f3(n) < 2
√
n+ 1.

Theorem 7.2.4. f5(n) ≥ n1/4.

Proof. Let T be an n-vertex 5-majority tournament realized by {π1, . . . , π5}. Apply the
Erd®s�Szekeres Theorem to π1 and π2 to obtain a {π1, π2}-consistent or a {π1, π2}-neutral
set S of size at least

√
n. Let r = |S|. If S is {π1, π2}-neutral, then the subtournament

on S is an r-vertex 3-majority tournament realized by {π3, π4, π5}. By Proposition 7.2.1, S
contains an acyclic set of size

√
r, and therefore T contains an acyclic set of size n1/4.

Otherwise, S is {π1, π2}-consistent. Let P be the poset that is the intersection of the
orders in {π3, π4, π5}, so u <P v if and only if all three orders list u before v. Let P ′ be the
subposet of P induced by S. If P has no chain with more than t elements, then iteratively
stripping o� the antichain of maximal elements yields a partition of P into at most t chains.
Hence P ′ contains a chain or an antichain of size at least

√
r. The elements of any chain of

size at least
√
r in P ′ form a {π3, π4, π5}-consistent set, and this set is acyclic in T .

If there is no such chain, then P ′ has an antichain A of size at least
√
r. Any two elements

in A appear ordered each way among the members of {π3, π4, π5}. Therefore, A is acyclic in
T , with transitive order given by the common order in which they appear in π1 and π2.

7.3 General odd k

In this section, we present bounds on fk(n) for general k. Our bounds are far apart when k
is large, but they do show that fk(n) has polynomial growth for all k, and the degree of the
polynomial tends to zero as k grows.

For a family Π of linear orders, a set S is Π-homogeneous if there is a linear order on
S and an integer α such that exactly α members of Π list u before v whenever u <L v.
Relative to this linear order, we say that α is the signature of S. Our lower bound �nds a
Π-homogeneous set inductively.

Theorem 7.3.1. Let k be an odd integer. For any family Π of k linear orders of an n-set,
there is a Π-homogeneous set of size at least nck , where ck = 3−(k−1)/2.

Proof. The proof is by induction on k. For k = 1, the claim is trivial. Suppose that k ≥ 3,
and let Π = {π1, . . . , πk}. By the Erd®s�Szekeres Theorem, there is a {πk−1, πk}-consistent
set of size r, where r ≥ n2/3, or a {πk−1, πk}-neutral set of size s, where s ≥ n1/3.

Suppose that S is a {πk−1, πk}-neutral set of size s. For each j ∈ [k], let π′j be the
restriction of πj to S. By the induction hypothesis, there is a {π′1, . . . , π′k−2}-homogeneous set
S ′ of size at least sck−2 . Because S is {πk−1, πk}-neutral, it follows that S ′ is Π-homogeneous.
Note that S ′ has size at least nck−2/3, and ck−2/3 = ck.

If there is no such set, then we obtain a {πk−1, πk}-consistent set S of size r, where
r ≥ n2/3. For each j ∈ [k], let π′j be the restriction of πj to S. By the induction hypothesis,
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there is a {π′1, . . . , π′k−2}-homogeneous set S ′ of size q, where q ≥ rck−2 . Let L1 be the
ordering of S ′ under which S ′ is {π′1, . . . , π′k−2}-homogeneous, and let L2 be the common
ordering of S ′ in πk−1 and πk. Apply the Erd®s�Szekeres Theorem to L1 and L2 to obtain
an {L1, L2}-consistent or {L1, L2}-neutral set S ′′ of size at least

√
q.

Let α be the signature of S ′ relative to L1. Whether S ′′ is {L1, L2}-consistent or {L1, L2}-
neutral, S ′′ is Π-homogeneous with signature α+2 or α−2 relative to L1, respectively. Note
that |S ′′| ≥ √q ≥ rck−2/2 ≥ nck−2/3 = nck .

Because a Π-homogeneous set is acyclic in the majority tournament, we immediately
obtain the following.

Corollary 7.3.2. fk(n) ≥ nck , where ck = 3−(k−1)/2.

Our upper bound on fk(n) for general odd k uses the following strategy. We begin with
a k-vertex tournament having no large acyclic set; it is a k-majority tournament. We will
compose this tournament with itself to obtain larger k-majority tournaments whose acyclic
sets are small.

If T1 and T2 are tournaments, the composition of T1 and T2, denoted T1 ◦ T2, is the
tournament T obtained by replacing each vertex u in T1 with a copy T2(u) of T2 and replacing
each edge uv in T1 with an orientation of a biclique so that all edges are directed from T2(u) to
T2(v). Formally, if V (T1) = [r] and V (T2) = [s], then V (T1◦T2) = [r]× [s] and (x1, x2)(y1, y2)

is an edge in T1 ◦ T2 if and only if x1y1 ∈ E(T1) or x1 = y1 and x2y2 ∈ E(T2).

Proposition 7.3.3. If T1 and T2 are k-majority tournaments, then T1 ◦ T2 is a k-majority
tournament.

Proof. Let T1 and T2 be k-majority tournaments with vertex sets [r] and [s] respectively.
Suppose that T1 is realized by {π1, . . . , πk} and T2 is realized by {σ1, . . . , σk}. We construct
a realizer {τ1, . . . , τk} for T1 ◦ T2 in the natural way by letting τt be the linear ordering of
[r] × [s] obtained by replacing the occurrence of i ∈ [r] in the list πt with the sequence
(i, σt(1)), (i, σt(2)), . . . , (i, σt(s))}, where σt(j) is the jth element listed in σt.

Suppose that (x1, x2)(y1, y2) is an edge in T1 ◦ T2. If x1 6= y1, then x1y1 ∈ E(T1)

and therefore more than half of the linear orders in {π1, . . . , πk} list x1 before y1. The
corresponding orders in {τ1, . . . , τk} list all elements with �rst coordinate x1 before elements
with �rst coordinate y1. If x1 = y1, then x2y2 ∈ E(T2) and therefore more than half of the
linear orders in {σ1, . . . , σk} list x2 before y2. The corresponding orders in {τ1, . . . , τk} list
(x1, x2) before (y1, y2). It follows that {τ1, . . . , τk} realizes T1 ◦ T2.

Our next proposition is a simple modi�cation of well-known product theorems.

Proposition 7.3.4. a(T1 ◦ T2) = a(T1)a(T2).
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Proof. If Sj is an acyclic set in Tj, then S1 × S2 is acyclic in T1 ◦ T2. Therefore a(T1 ◦ T2) ≥
a(T1)a(T2). Let S be an acyclic set in T1 ◦ T2. The projection of S onto V (T1) is the set
{u ∈ V (T1) : (u, v) ∈ S for some v ∈ V (T2)}. Let S1 be the projection of S onto V (T1).
Note that S1 is acyclic in T1, because a cycle induced by S1 lifts to a cycle induced by S.
Also, for each u ∈ V (T1), the set of all vertices in S with �rst coordinate u has size at most
a(T2). It follows that a(T1 ◦ T2) ≤ |S1|a(T2) ≤ a(T1)a(T2).

Proposition 7.3.5. Let T1 be a tournament on n1 vertices, and for each j > 1, let Tj =

Tj−1 ◦ T1. If α = a(T1) and nj = |V (Tj)|, then a(Tj) = n
lnα
lnn1
j .

Proof. Note that nj = nj1. Since αj lnn1 = nj lnα
1 , Proposition 7.3.4 yields a(Tj) = αj =

n
lnα
lnn1
j .

Proposition 7.3.5 provides a way of building larger k-majority tournaments from an ini-
tial k-majority tournament T1; when a(T1) is small, the k-majority tournaments produced
by Proposition 7.3.5 have no large acyclic set. A randomized construction produces a tour-
nament with a given number of vertices that has no large acyclic set, but not every such
tournament is a k-majority tournament. Nevertheless, when the given number of vertices
is at most (k − 1)/2, every tournament is a k-majority tournament. Stronger results are
known, but our result only needs the following simple proposition.

Proposition 7.3.6. Every n-vertex tournament is a (2n− 1)-majority tournament.

Proof. Let T be an orientation of Kn. It is well known that Kn is n-edge-colorable. Let
M1, . . . ,Mn be a decomposition of Kn into matchings. We �rst construct a realizer Π of
T with |Π| = 2n. Each matching contributes two linear orders to Π. If uv is an edge in
Mj, then u is listed immediately before v in both orders generated by Mj. The edges are
listed arbitrarily in the �rst order contributed by Mj and in reverse in the second order. If
uv ∈ E(T ), then u appears before v exactly n+ 1 times. Hence Π realizes T . Furthermore,
deleting any one member of Π leaves u appearing before v at least n times out of the
remaining 2n− 1 orders.

We now have the tools needed to prove our upper bound on fk(n) for general k.

Theorem 7.3.7. fk(n) ≤ ndk , where dk =
ln(3 lg k+1

2 )
ln k+1

2

(
1 +

ln k+1
2

lnn

)
.

Proof. Let n1 = (k+1)/2. Erd®s and Moser [38] proved that there is an n1-vertex tournament
T1 with a(T1) ≤ 3 lg n1. Let α = a(T1). By Proposition 7.3.6, T1 is a k-majority tournament.
Let n be a positive integer, and let n′ be the least power of n1 that is at least as large as n.
Note that n′ ≤ nn1. By Proposition 7.3.5, there is an n′-vertex k-majority tournament T
with a(T ) = n

′ lnα
lnn1 . It follows that

fk(n) ≤ fk(n
′) ≤ (n′)

lnα
lnn1 = (nn1)

lnα
lnn1 = n

lnα
lnn1

(1+
lnn1
lnn ) = ndk ,
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as required.

Theorem 7.3.7 implies the weaker but algebraically simpler bound fk(n) ≤ nd
′
k , where

d′k = (ln ln k)+2
(ln k)−1

(1 + ln k
n

). Erd®s and Moser [38] also proved that every n-vertex tournament is
a k-majority tournament for k = O(n/ log n); equivalently, there is a constant c such that
every tournament on ck log k vertices is a k-majority tournament. Thus we could let T1 be
a tournament with ck log k vertices such that a(T1) = 3 lg(ck log k). This would produce a
very slight improvement in our bound.
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Chapter 8

Cycle Spectra of Hamiltonian Graphs

In this chapter, we prove that every Hamiltonian graph with n vertices and m edges has

cycles of at least
√

4
7
(m− n) di�erent lengths. The coe�cient 4/7 cannot be increased above

1, since when m = n2/4 there are
√
m− n+ 1 cycle lengths in Kn/2,n/2. For general m and

n there are examples having at most 2
⌈√

2(m− n+ 1)
⌉
di�erent cycle lengths.

This chapter contains joint work with D. Rautenbach, F. Regen, and D. B. West [77].

8.1 Introduction

The cycle spectrum of a graph G is the set of lengths of cycles in G. A cycle containing
all vertices of G is a spanning or Hamiltonian cycle, and a graph having such a cycle is a
Hamiltonian graph. An n-vertex graph is pancyclic if its cycle spectrum is {3, . . . , n}. All
our graphs have no loops or multiple edges. Let dG(x) denote the degree in G of a vertex x
(its number of neighbors). A graph is k-regular if every vertex has degree k.

Interest in cycle spectra arose from Bondy's �Metaconjecture� (based on [17]) that suf-
�cient conditions for existence of Hamiltonian cycles usually also imply pancyclicity, with
possibly a small family of exceptions. For example, Bondy [17] showed that the su�cient
condition on n-vertex graphs due to Ore [87] (dG(x) + dG(y) ≥ n whenever x and y are
nonadjacent vertices) implies also that G is pancyclic or is the complete bipartite graph
Kn

2
,n
2
. Schmeichel and Hakimi [98] showed that if a spanning cycle in an n-vertex graph G

has consecutive vertices with degree-sum at least n, then G is pancyclic or bipartite or lacks
only n− 1 from the spectrum, with the latter cases occurring only when the degree-sum is
exactly n. Bauer and Schmeichel [6] used this to give uni�ed proofs that the conditions for
Hamiltonian cycles due to Bondy [18], Chvátal [25], and Fan [41] also imply pancyclicity,
with a small family of exceptions. Further results about the cycle spectrum under degree
conditions on selected vertices in a spanning cycle appear in [43] and [99].

At the 1999 conference �Paul Erd®s and His Mathematics�, Jacobson and Lehel proposed
the opposite question: When su�cient conditions for spanning cycles are relaxed, how small
can the cycle spectrum be if the graph is required to be Hamiltonian? For example, consider
regular graphs. Bondy's result [17] implies that dn/2e-regular graphs other than Kn

2
,n
2
are
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both Hamiltonian and pancyclic. On the other hand, 2-regular Hamiltonian graphs have
only one cycle length. For 3 ≤ k ≤ dn/2e − 1, Jacobson and Lehel asked for the minimum
size of the cycle spectrum of a k-regular n-vertex Hamiltonian graph, particularly when
k = 3.

Let s(G) be the size of the cycle spectrum of a graph G. At the SIAM Meeting on
Discrete Mathematics in 2002, Jacobson announced that he, Gould, and Pfender had proved
s(G) ≥ ckn

1/2 for k-regular graphs with n vertices. Others later independently obtained
similar bounds, without seeking to optimize ck. For an upper bound, Jacobson and Lehel
constructed the 3-regular example below with only n/6 + 3 distinct cycle lengths (when
n ≡ 0 mod 6 and n > 6), and they generalized it to the upper bound n

2
k−2
k

+ k for k-regular
graphs.

Example 8.1.1. When k = 3 and 6 divides n, take n/6 disjoint copies of K3,3 in a cyclic
order, with vertex sets V1, . . . , Vn/6. Remove one edge from each copy and replace it by an
edge to the next copy to restore 3-regularity. A cycle of length di�erent from 4 or 6 must
visit each Vi, and in each Vi it uses 4 or 6 vertices. Hence the cycle lengths are 4, 6, and
each even integer from 2n/3 through n. For the generalization, use Kk,k instead of K3,3.

A related problem is the conjecture of Erd®s [34] that s(G) ≥ Ω
(
db(g−1)/2c) when G

has girth g and average degree d. Erd®s, Faudree, Rousseau, and Schelp [35] proved the
conjecture for g = 5. Sudakov and Verstraëte [106] proved the full conjecture in a stronger
form, obtaining 1

8

(
db(g−1)/2c) consecutive even integers in the cycle spectrum for graphs with

�xed girth g and average degree 48(d + 1). Gould, Haxell, and Scott [51] proved a similar
result: for c > 0, there is a constant kc such that for su�ciently large n, the cycle spectrum of
every n-vertex graph G having minimum degree cn and longest even cycle length 2l contains
all even integers from 4 up to 2l − kc (see also [16]).

Prior arguments for lower bounds on s(G) when G is regular and Hamiltonian used only
the number of edges, m, not regularity. The complete bipartite graphKn/2,n/2 shows that the
coe�cient c in a lower bound of the form

√
c(m− n) cannot exceed 1. We give constructions

for general m and n when m is above or below n2/4; they are far from regular.

Example 8.1.2. For m ≤ n2/4, consider the graph G formed by replacing one edge of Kt,t

with a path having n− 2t internal vertices; there are n vertices and t2 − 2t+ n edges. The
cycle spectrum of G consists of the t − 1 even numbers {4, . . . , 2t} and the t − 1 numbers
from n − 2t + 4 to n having the same parity as n. Letting m be the number of edges, this
construction yields s(G) ≤ 2(t− 1) = 2

√
m− n+ 1.

Deleting edges cannot enlarge the cycle spectrum. Hence when we specify m as the
number of edges, we can let m′ be the next larger value such that m′ − n + 1 is a square
and apply the construction above for m′ edges to obtain an upper bound. After discarding
m′ −m edges, we obtain s(G) ≤ 2

⌈√
m− n+ 1

⌉
.
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The two parts of the spectrum remain separate when n > 4(t − 1), which holds for
m < n2/16 + n − 1. When n is even and m ≥ n2/16 + n, the two parts overlap; in fact,
s(G) =

√
m− n+ 1 when m = n2/4.

For m > n2/4, consider the graph G formed by replacing one edge of Kt with a path
having n−t internal vertices; there are n vertices and t(t−3)/2+n edges. The cycle spectrum
of G consists of the t−2 numbers {3, . . . , t} and the t−2 numbers {n−t+3, . . . , n}. In terms
of the number of edges, m, we have t =

√
2(m− n) + 9/4 + 3/2. Thus s(G) ≤ 2(t − 2) <

2
√

2
√
m− n+ 1. The coe�cient declines from 2

√
2 toward

√
2 as m increases toward

(
n
2

)
.

The worst case for the construction, in terms of m − n, occurs when m = n2/4 + 1. Again
we can interpolate for other values of m by inserting a ceiling function on the expression for
t in terms of m and n, obtaining a general construction with s(G) ≤ 2

⌈√
2(m− n+ 1)

⌉
.

Our main result is that s(G) ≥
√

4
7
(m− n) when G is an n-vertex Hamiltonian graph

with m edges. A crucial tool is a lemma of Faudree, Flandrin, Jacobson, Lehel, and
Schelp [42, Lemma 3]. We need a stronger version than their proof yields; we obtain this in
Section 8.2. Section 8.3 applies it to s(G).

8.2 Chords of a spanning path

A path with endpoints x and y is an x, y-path. A chord of a path (or cycle) P in a graph
is an edge of the graph not in P whose endpoints are in P , and the length of the chord is
the distance in P between its endpoints. Throughout this section, and in the hypotheses of
its results, we let the graph G consist of the spanning x, y-path P plus q chords of the same
length l, and we let r be the number of di�erent lengths of x, y-paths in G. The vertices of
P are v1, . . . , vn in order, with v1 = x and vn = y. As de�ned above, the length of a chord
vivj of P is |j − i|. Two chords vavc and vbvd overlap if a < b < c < d. When va and vb are
vertices of P , we use P [va, vb] to denote the va, vb-path contained in P .

Lemma 3 in [42] claims that in this setting, always r ≥ q/3 + 1. However, the argument
in [42] produces only q/6 + 1 path lengths in the following example.

Example 8.2.1. Let G be obtained from the 3-regular graph in Example 8.1.1 by deleting
one edge that lies in no 6-cycle. Here n = 6k = 2q, and the endpoints x and y of the spanning
path P are the endpoints of the deleted edge. The graph is bipartite, so all x, y-paths have
odd length. All q chords have length 3, and they group into k sets of three overlapping
chords. Each such set occupies six consecutive vertices along P , and an x, y-path visits
exactly four or six vertices in each such group. Hence the lengths of x, y-paths are all odd
numbers from n − 1 down to 2n/3 − 1; there are q/3 + 1 of them. The argument in [42]
discards half of these groups of three chords on six vertices and thus guarantees only q/6 + 1

path lengths.
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Theorem 8.2.4 below will provide a lower bound on r that is always at least as large as
q/3 + 1. The graph in Example 8.2.1 demonstrates sharpness.

Lemma 8.2.2. If the chords other than the one nearest vn pairwise overlap, then r ≥ q− 1,
with equality possible only when l is odd.

Proof. Let the chords be e1, . . . , eq, indexed in order of the indices of their lower endpoints
among v1, . . . , vn (eq is nearest to vn. Suppose �rst that eq overlaps e1. For 2 ≤ j ≤ q, let
Pj be the v1, vn-path using the chords e1 and ej and no other chords. There is exactly one
such path; if e1 = vavc and ej = vbvd, then Pj contains P [v1, va], P [vb, vc], and P [vd, vn]. The
length of Pj is n+ 1− (b− a)− (d− c). As j increases, b and d increase, so P2, . . . , Pq have
distinct lengths. Furthermore, the v1, vn-path Q that contains e1 and no other chord has
length n− l. Since P2, . . . , Pq have distinct lengths, r ≥ q − 1. If l is even, then the length
of Q has opposite parity from the lengths of P2, . . . , Pq (since (b− a) + (d− c) is even), and
hence r ≥ q.

Now suppose that eq does not overlap e1. Let P ′ be the v1, vn-path using e1 and eq and
no other chords; it has length n+ 1− 2l. Furthermore, this path is shorter than any of the
paths P2, . . . , Pq−1 or Q constructed as in the previous case for G− eq.

Proposition 8.2.3. Let G be a graph with a distinguished spanning x, y-path P , let Q1, . . . , Qt

be pairwise edge-disjoint subpaths of P , and let Hj be the subgraph of G induced by V (Qj).
If Hj has rj lengths of paths joining the endpoints of Qj, then G has x, y-paths with at least
1 +

∑t
j=1(rj − 1) di�erent lengths.

Proof. Starting with a v1, vn-path that uses Q1, . . . , Qt (actually, this is P ), one can itera-
tively shorten the path

∑t
j=1(rj − 1) times.

Theorem 8.2.4. If G is a graph consisting of a spanning path P with vertices v1, . . . , vn
and q chords of length l, then the number r of v1, vn-paths in G is at least

max

{
q

2
− n− 1

2l
+ 1,

q

3
+ 1

}
.

Moreover, if l is even, then there are at least q/2 + 1 such paths.

Proof. Choose chords e1, . . . , ek as follows. Let e1 be the chord with lowest-indexed endpoint.
Having chosen e1, . . . , ej−1, let ej be the chord with lowest endpoint that overlaps none of
e1, . . . , ej−1; do this until no further chord can be added. Note that every chord of G coincides
with or overlaps at least one of the chosen chords.

Let zj and z′j be the lower and upper endpoints of chord ej, respectively. Let z0 = v1

and z′k+1 = vn. For 0 ≤ j ≤ k, let Qj = P [zj, z
′
j+1], let Hj be the subgraph of G induced by

V (Qj), and let rj be the number of zj, z′j+1-paths in Hj. Note that Qj is a spanning path in
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Hj. Since ej is a chord in Hj and Hj−1 for 1 ≤ j ≤ k and every other chord of G belongs
to exactly one of these subgraphs,

∑k
j=0 qj = q + k, where qj is the number of chords in Hj.

Each Hj has the form discussed in Lemma 8.2.2; hence rj ≥ qj − 1 for 1 ≤ j ≤ k. For H0

we need the better value r0 = q0 + 1 = 2 (there is only one chord).
The odd-indexed graphs in H0, . . . , Hk are pairwise disjoint, as are the even-indexed

graphs. By applying Proposition 8.2.3 separately to the even and odd pieces and summing
the resulting two inequalities, we obtain

2r ≥ 2 +
k∑
j=0

(rj − 1) ≥ 2 + q0 +
k∑
j=1

(qj − 2) = 2 + q − k,

and thus r ≥ (q − k)/2 + 1. Since e1, . . . , ek are pairwise non-overlapping, n− 1 ≥ kl, so

r ≥ q

2
− n− 1

2l
+ 1. (8.1)

Furthermore, the chords e1, . . . , ek by themselves yield r ≥ 1 + k, and hence

r ≥ max

{
1 + k,

q − k
2

+ 1

}
.

Optimizing k yields r ≥ q/3 + +11.
If l is even, then Lemma 8.2.2 yields ri ≥ ci for 1 ≤ i ≤ k, and hence

2r ≥ 2 +
k∑
i=0

(ri − 1) ≥ 2 + c0 +
k∑
i=1

(ci − 1) = 2 + q.

Thus r ≥ q/2 + 1 in this case.

Example 8.2.1 shows that the inequality r ≥ q/3 + 1 is sharp; the example having n− 3

chords of length 3 also achieves equality. Similarly, a path with q+2 vertices having q chords
of length 2 shows that r ≥ q/2 + 1 is best possible when l is even.

Corollary 8.2.5. In the setting of Theorem 8.2.4, if l ≤ n/2, then

r ≥ q

3

(
1 +

l

n

)
.

Proof. By using (8.1) to re�ne the second bound in Theorem 8.2.4, we have r ≥ max{f1(q), f2(q)},
where f1(x) = x

2
− n

2l
+ 1 and f2(x) = x

3
+ 1.

Note that f1 and f2 are linear functions of x that intersect at a point (x0, y0) =
(

3n
l
, n
l

+ 1
)
.

Since f1(0) < 0 < f2(0), the line y = x
3

(
1 + l

n

)
that passes through (0, 0) and (x0, y0) pro-

vides a uniform lower bound on max{f1(x), f2(x)}.
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8.3 Cycle lengths in Hamiltonian graphs

In this section, G is a graph G with n vertices, m edges, and a distinguished Hamiltonian
cycle C. A chord of length l is an edge uv in E(G) − E(C) such that dC(u, v) = l. The
length of any chord is at least 2 and at most bn/2c. Let the normalized length of a chord uv
be dC(u,v)

n/2
. Two chords uv and xy cross if their endpoints are ordered u, x, v, y along C.

The next two lemmas give lower bounds on s(G) (the size of the cycle spectrum of G).
The �rst is strong when the average length of the chords is large, and the second is strong
when the average length is small. The two bounds together imply our main result.

Let ω(G) and α(G) denote the clique number and independence number of a graph G;
these are the maximum sizes of sets of pairwise adjacent or pairwise nonadjacent vertices,
respectively. A graph H is perfect if for every induced subgraph H ′ the vertices can be
partitioned into ω(H ′) independent sets (and hence ω(H)α(H) ≥ |V (H)|).

Lemma 8.3.1. Let G be an n-vertex graph having m edges and a Hamiltonian cycle C. If
the average normalized length of the chords of C is β, then s(G) ≥

√
β(m− n).

Proof. We seek a large set of chords in one of two special con�gurations. If C has q pairwise
noncrossing chords, then s(G) ≥ q + 1 (starting with C, we can iteratively obtain a shorter
cycle q times). If C has q pairwise crossing chords, then s(G) ≥ q− 1 (starting with a short
cycle using two �closest� among the q crossing chords, we can iteratively obtain a longer
cycle q − 2 times by replacing one of them).

To obtain a large set of pairwise noncrossing chords or a large set of pairwise crossing
chords, we seek a large set of chords crossing a single diameter. With C drawn on a circle,
let S be the vertex set of a path along C, with S = V (G) − S. Let p be the number of
chords of C having endpoints in S and S. Let H be the graph whose vertex set is this set
of p chords, with vertices being adjacent when the chords cross. It is well known ([90], for
example) that a graph generated in this way is a perfect graph (speci�cally, a �permutation
graph�). Since H is perfect, ω(H)α(H) ≥ p. Hence ω(H) ≥ √p+ 1 or α(H) ≥ √p− 1.

Choose a random set S of bn/2c consecutive vertices along C, with the n such sets being
equally likely. The probability that a chord of length l has exactly one endpoint in S is
exactly 2l

n
, which equals the normalized length of the chord. The expected number of chords

with one endpoint in S is thus the sum of the normalized lengths, which equals β(m − n).
For some choice of S, there are at least β(m − n) such chords. As argued above, there are
thus at least

√
β(m− n) distinct cycle lengths in G.

Lemma 8.3.2. Let G be an n-vertex graph having m edges and a Hamiltonian cycle C. If
the average normalized length of the chords of C is β, then

s(G) ≥

√
2

3

(
1− β

4

)
(m− n).
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Proof. Every chord of length l completes with C a cycle of length l+ 1 and a cycle of length
n− l+1; these are both shorter than C, and they have the same length if and only if l = n/2.
Letting t be the number of di�erent lengths of chords of C, we �nd that C together with
such cycles yields s(G) ≥ 2t.

When t is small, many chords have equal length. Let w(l) = (1 + l/n)/3. To make use
of the extra factor w(l) in Corollary 8.2.5, assign each chord of C with length l the weight
w(l). For an edge uv of C chosen uniformly at random, let P = C − uv; we treat P as a
distinguished Hamiltonian path of G. A chord of C is also a chord of P ; let the P -length of a
chord xy of C be dP (x, y). For a chord of length l, the P -length is equal to l with probability
1 − l/n. Let W be the expectation (over the choice of uv) of the total weight of all chords
whose length and P -length coincide. Letting al be the number of chords with length l, the
expected number of chords of length l that contribute to W is al(1− l/n). Thus

W =
∑
l≥2

1

3

(
1 +

l

n

)
al

(
1− l

n

)
=

1

3

∑
l≥2

al

(
1− l2

n2

)

=
1

3

(∑
l≥2

al −
1

4

∑
l≥2

al

(
l

n/2

)2
)
≥ 1

3

(
(m− n)− 1

4

∑
l≥2

al
l

n/2

)

=
1

3

(
(m− n)− 1

4
β(m− n)

)
=

1

3
(m− n)

(
1− β

4

)
.

For some choice of uv along C, the actual total weight of the chords whose length and
P -length coincide is at least W . With t di�erent chord lengths, some particular length
contributes at least W/t to this total. Let l be this length. We have al ≥ W/(tw(l)), and
hence by Corollary 8.2.5 the chords of this length contribute at least W/t lengths of cycles.

We now have

s(G) ≥ max

{
2t,

(m− n)

3t

(
1− β

4

)}
≥

√
2

3

(
1− β

4

)
(m− n),

where the �nal inequality chooses t to minimize the maximum.

Theorem 8.3.3. If G is a n-vertex Hamiltonian graph withm edges, then s(G) ≥
√

4
7
(m− n).

Furthermore, there is such a graph G with s(G) ≤ 2
⌈√

2(m− n+ 1)
⌉
, and when m = n2/4

there is such a graph with s(G) =
√
m− n+ 1.

Proof. By Lemmas 8.3.1 and 8.3.2, s(G) ≥
[
(m− n) max{β, 2

3
(1− β

4
)}
]1/2

. Choosing β =

4/7 minimizes the larger lower bound. Example 8.1.2 provides the construction.
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