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ABSTRACT 

Optimizing Highway Reconstruction and Rehabilitation Projects 

The nation’s transportation networks including its roads, highways and bridges are 

aging and deteriorating at an increasing and rapid rate.  The vulnerability of these aging 

networks of roads and bridges is exacerbated when they are subjected to natural 

disasters such as earthquakes and hurricanes which often cause severe disruption of 

the level of service provided by these transportation networks.  Significant financial and 

construction resources are needed to complete the highway reconstruction and 

rehabilitation projects required to repair these aging and damaged transportation 

networks and bringing them to acceptable levels.  The lack of sufficient resources to 

complete these highway construction projects concurrently requires effective and 

efficient utilization of these limited financial and construction resources in order to 

satisfy multiple and often conflicting objectives.  Accordingly, there is a pressing need 

for new decision support models that are capable of: (1) analyzing the impact of 

reconstruction/rehabilitation efforts on the performance of transportation networks; (2) 

optimizing post-disaster  reconstruction efforts of damaged transportation networks in 

order to simultaneously minimize reconstruction costs and network service disruption; 

and (3) optimizing highway rehabilitation of deficient transportation networks in order 

identify optimal program(s) that maximize net societal benefits while minimizing the level 

of service disruption experienced by travelers during the construction efforts. 

First, a highway service disruption model is developed to support measuring and 

evaluating the expected disruption in the level of service provided by aging and 
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damaged transportation networks during highway reconstruction and rehabilitation 

projects.  The model considers the impact of construction projects and their dynamic 

nature on the functional performance of aging and damaged transportation networks 

during reconstruction and rehabilitation efforts.  The capabilities of the developed model 

in assessing the service disruption in aging and damaged transportation networks, 

include: (1) considering the dynamic nature of construction operations and activities and 

identifying their expected impact on the functional performance of aging and damaged 

transportation networks during reconstruction and rehabilitation efforts; (2) accounting 

for the rationality of travelers in choosing which route/detour to use to reach their 

destinations; and (3) evaluating the overall loss/savings in network travel time of the 

aging and damaged transportation networks during highway reconstruction and 

rehabilitation efforts.  These new and unique capabilities of the developed model should 

prove useful to decision makers and planners in departments of transportation (DOTs) 

and should contribute to planning and optimizing highway reconstruction and 

rehabilitation efforts. 

Second, resource utilization model and multi-objective optimization models are 

developed to enable an efficient and effective reconstruction process for damaged 

transportation networks in the aftermath of natural disasters.  The developed models 

provide a number of new and unique capabilities in generating optimal tradeoffs 

between network service disruption and reconstruction cost.  These capabilities include: 

(1) considering the impact of the limited availability of resources on scheduling the 

reconstruction efforts for damaged transportation networks; (2) evaluating the service 

disruption in the damaged transportation network during the reconstruction efforts; and 
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(3) optimizing the utilization of reconstruction resources to minimize the network service 

disruption of damaged transportation networks while keeping the reconstruction costs to 

a minimum.  These new and unique capabilities of the developed models should prove 

useful to decision makers and planners in emergency management agencies and 

should contribute to enhancing the planning of reconstruction efforts for damaged 

transportation networks after natural disasters. 

Third, a highway rehabilitation planning and optimization model is developed to enable 

efficient and effective rehabilitation of aging transportation networks.  This model 

incorporates four new modules that provide new capabilities in generating optimal 

tradeoffs between maximizing net rehabilitation benefits and minimizing network service 

disruption.  These capabilities are demonstrated in the ability of the developed 

rehabilitation planning and optimization model to consider a number of practical 

highway rehabilitation requirements, including: (1) considering the impact of the limited 

availability of funding on planning rehabilitation efforts for aging transportation networks; 

(2) evaluating the expected service disruption and road user savings during and after 

completion of rehabilitation efforts; (3) estimating the expected net benefits of 

rehabilitation programs; and (4) optimizing the allocation of financial resources to 

maximize net rehabilitation benefits and minimize network service disruption.  These 

new and unique capabilities of the research developments presents in this chapter 

should prove useful to decision makers and planners in departments of transportation 

(DOTs) and should contribute to enhancing the planning of rehabilitation efforts for 

aging transportation networks. 
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The main research developments of this study are expected to contribute to the 

advancement of current practices in highway construction planning and optimization 

and can lead to: (1) accelerating the completion of highway reconstruction and 

rehabilitation projects and minimizing the service disruption experienced by travelers 

during the construction work; (2) optimizing the allocation of limited budgets and 

financial resources to competing highway projects; and (3) improving the utilization 

efficiency of construction resources in highway projects and therefore increasing their 

productivity.
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CHAPTER 1                                                          
INTRODUCTION 

1.1 Overview 

The American Society of Civil Engineers (ASCE) estimates that a total investment of 

$930 billion is required over a period of five years to substantially improve the current 

conditions of the nation’s aging surface transportation infrastructure (ASCE 2009).  This 

includes repairing more than 26% of the nation’s bridges that are rated structurally 

deficient or functionally obsolete and one-third of the major roads that are in poor or 

mediocre condition (ASCE 2009).  The vulnerability of these aging highways and 

bridges are exacerbated when they are subjected to natural disasters such as 

earthquakes and hurricanes which often cause severe disruption of the level of service 

provided by these transportation networks (Housner and Thiel 1995). 

This service disruption in aging and/or damaged transportation networks leads to 

significant social and economic losses to local communities.  For example, travelers on 

the nation’s poor roads spend about 4.2 billion hours a year stuck in traffic at a cost of 

$72.8 billion to the economy, and pay an annual cost of $67 billion in repairs and 

operating costs (ASCE 2009).  Similarly, the 1994 Northridge earthquake forced the 

closure of Interstate-10 for months causing severe service disruption to an average 

daily traffic (ADT) of 341,000, which in turn led to an estimated daily loss of $1 million to 

Californians for lost wages, added fuel cost, and depressed business activity (Chang 

and Nojima 2001; Zamichow and Ellis 1994).  In order to control and minimize these 

adverse impacts on society, decision makers in departments of transportation (DOTs) 
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need to carefully plan both the post-disaster reconstruction efforts of damaged networks 

and the rehabilitation efforts of deficient networks.  Planning these reconstruction or 

rehabilitation efforts involves deploying and utilizing limited construction and financial 

resources to restore damaged transportation networks to their pre-disaster conditions or 

improve the performance of deficient networks to acceptable levels.  This is a 

challenging task mainly due to the limited availability of these construction and financial 

resources.  For example, only limited reconstruction resources are typically available for 

competing post-disaster reconstruction projects of damaged civil infrastructure systems 

(Augusti et al. 1998).  Similarly, there is a projected shortfall of $550 billion in federal 

investments that are required to repair the nation’s transportation networks and bring 

them up to acceptable levels (ASCE 2009).  These limited construction and financial 

resources would allow only a few of the competing reconstruction/rehabilitation projects 

to proceed concurrently.  In addition, inadequate planning of construction efforts could 

significantly increase the service disruption experienced by travelers.  Therefore, 

decision makers need to create and implement reconstruction/rehabilitation plans that 

deploy and utilize the limited resources available in such an optimal and cost-effective 

manner to maximize societal benefits. 

In order to enhance and optimize highway reconstruction and rehabilitation plans, 

decision makers need to decide on: (1) the selection of reconstruction/rehabilitation 

projects from a pool of competing projects; (2) the priority of each of these selected 

projects; (3) the procurement method to adopt in each project; (4) the assignment of 

these projects to interested contractors; and (5) the overtime policy to adopt in each 

project.  These decision variables have a direct and significant impact on the important 
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and conflicting construction planning objectives of: (1) maximizing the overall social 

benefit; (2) minimizing the service disruption experienced by travelers during the 

reconstruction and rehabilitation projects; and (3) minimizing public expenditures on 

highway reconstruction and rehabilitation efforts.   

In order to illustrate the complexity of this decision-making process, Table  1-1 shows an 

example for planning post-disaster reconstruction efforts for a damaged transportation 

network with two contractors competing for three reconstruction projects.  Each 

contractor has submitted a bid on project duration and cost for each of the three 

projects, as shown in Table  1-1.  Each of these reconstruction projects is planned to 

restore the disrupted service for a number of travelers represented by the average daily 

traffic (ADT), as shown in Table  1-1.  Each contractor has construction resources that 

are adequate to work on only one project at the same time. 

Table  1-1 Example bids for reconstruction projects after a natural disaster 

Reconstruction 
Projects 

CONTRACTOR (1) CONTRACTOR (2) ADT 
Duration 
(weeks) 

Construction 
Costs ($) 

Duration 
(weeks) 

Construction 
Costs ($) 

(Vehicle/day) 

Project 1 6 3,726,000 4.5 5,510,000 150,000 

Project 2 8 4,940,000 6 7,284,000 100,000 

Project 3 4 2,512,000 3 3,705,000 300,000 

The DOT decision makers in this example need to decide on the optimal project 

prioritization and contractor assignment that simultaneously minimize construction costs 

and service disruption to travelers.  Figure  1-1 shows three out of 48 possible different 

alternatives of project prioritization and contractor assignment combinations, each 

providing a unique tradeoff between construction costs and service disruption.  On the 
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one hand, alternative (a) in Figure  1-1 minimizes the total construction costs to 

approximately $11 million by assigning all the projects to contractor (1) who submitted 

the lowest construction costs on all three projects, as shown in Figure  1-1.  This 

alternative however extends the reconstruction duration to 18 weeks, which in turn 

leads to a huge disruption to the level of service provided by the damaged 

Figure  1-1 Impact of project prioritization and contractor 
assignment on planning objectives 
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transportation network to travelers who cumulatively lose almost 32 million vehicle-days 

in disrupted service over the reconstruction period, as shown in Figure  1-1.  On the 

other hand, alternative (b) minimizes the service disruption to almost 19 million vehicle 

days at total construction costs of approximately $15 million (31.6% higher than 

alternative (a)).  This was possible by: (1) assigning two projects to contractor (2) who 

submitted the shortest project durations; and (2) giving priority to projects 1 and 3 which 

have higher impact on service disruption, as shown in Figure  1-1.  In between these two 

extremes, alternative (c) provides a balanced tradeoff between minimizing total 

construction costs and service disruption.  This alternative reduces the service 

disruption by 31.7% at additional construction costs of $1.8 million (16%) compared to 

alternative (a), as shown in Figure  1-1. 

The above simple example emphasizes the complexity and multi-objective nature of 

identifying the project prioritization and contractor assignment for only a few 

reconstruction projects.  In real life problems however this level of complexity increases 

multifold as the DOTs in charge of planning and implementing the 

reconstruction/rehabilitation efforts need to: (1) consider other decision variables in 

addition to the project prioritization and contractors assignment, such as project 

selection, procurement methods and overtime policy; (2) examine the impact of limited 

resource utilization on the recovery/upgrade efforts; (3) analyze the impact of the 

recovery/upgrade efforts on the level of service disruption experienced by travelers on 

the damaged/deficient transportation network; and (4) investigate significantly larger 

problems that involve analysis and evaluation of several reconstruction/rehabilitation 

projects and various combinations of construction and financial resources.  This 
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highlights the significance and substantial challenges in handling the task of effectively 

and efficiently planning the reconstruction and rehabilitation efforts for damaged and 

aging transportation networks.  This critical and challenging planning task needs to be 

carefully analyzed by the DOTs in charge of the recovery/upgrade efforts.  Accordingly, 

there is a pressing need for new decision support models that are capable of (Figure 

 1-2): (1) analyzing the impact of reconstruction/rehabilitation efforts on the performance 

of transportation networks; (2) optimizing post-disaster  reconstruction efforts of 

damaged transportation networks in order to simultaneously minimize reconstruction 

costs and network service disruption; and (3) optimizing highway rehabilitation of 

deficient transportation networks in order identify optimal program(s) that maximize net 

(2) OPTIMIZING HIGHWAY POST-DISASTER 

RECONSTRUCTION PROJECTS

RESOURCE UTILIZATION

NETWORK PERFORMANCE 

LOSS MEASUREMENT

MULTI-OBJECTIVE OPTIMIZATION MODEL

DECISION VARIABLES
PROJECT PRIORITY, CONTRACTOR ASSIGNMENT, 

AND OVERTIME POLICY

PLANNING OBJECTIVES

MINIMIZE
CONSTRUCTION COST

MINIMIZE
PERFORMANCE LOSS

(3) OPTIMIZING HIGHWAY REHABILITATION PROJECTS

COST ESTIMATING AND 

SCHEDULING MODULE

NETWORK PERFORMANCE 

AND USER SAVINGS MODULE

BENEFIT–COST ANALYSIS 

MODULE

MULTI-OBJECTIVE OPTIMIZATION MODULE

DECISION VARIABLES
PROJECT SELECTION, ORDER, AND 

PROCUREMENT METHODS

OPTIMIZATION CONSTRAINTS
LIMITED REHABILITATION FUNDING

PLANNING OBJECTIVES

MINIMIZE
SERVICE DISRUPTION

MAXIMIZE
NET BENEFITS

(1) ASSESSING 

NETWORK 

PERFORMANCE

ANALYSIS OF 

HIGHWAY 

CONSTRUCTION 

SCHEDULE

MEASUREMENT OF 

NETWORK 

FUNCTIONAL 

PERFORMANCE

Figure  1-2 Planning reconstruction/rehabilitation works for transportation 
networks 
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rehabilitation benefits while minimizing the level of service disruption experienced by 

travelers during the construction efforts. 

1.2 Problem Statement 

In order to enable the development of the aforementioned models for planning 

transportation reconstruction/rehabilitation efforts, this study will thoroughly investigate 

thee important domain problems: (1) evaluating the impact of reconstruction and 

rehabilitation efforts on the functional performance of damaged and aging transportation 

networks; (2) optimizing the utilization of limited resources in post-disaster 

reconstruction projects of damaged transportation network; and (3) optimizing the 

rehabilitation efforts of deficient transportation networks in order to identify optimal 

rehabilitation programs that simultaneously maximize social benefit while minimizing 

service disruption. 

First, reconstruction/rehabilitation efforts have a significant impact on the functional 

performance of damaged/deficient transportation networks. For example, the closure of 

a major transportation artery for an extended period results in significant disruption to 

the level of service provided by the local transportation network.  It is therefore essential 

for decision makers to be able to evaluate the impact of various reconstruction and 

rehabilitation plans on the functional performance of the damaged and aging 

transportation networks during the construction period.  Existing research in the area of 

measuring performance of transportation networks focus on: (1) estimating the actual 

performance of functioning transportation networks (Bell 2000; Chen et al. 2001); (2) 

developing flow-independent metrics for measuring post-disaster performance of 
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damaged transportation networks (Chang and Nojima 1998; Chang and Nojima 2001); 

and (3) forecasting the impact of natural disasters on the functional performance of 

transportation networks (Nojima and Sugito 2000; Chen and Eguchi 2003).  Despite the 

significant contributions of these research studies to the body of knowledge, there is a 

research gap in studying the dynamic nature of the reconstruction/rehabilitation efforts 

and its impact on the performance of damaged/deficient transportation networks over 

the construction period.  Therefore, there is a pressing need for innovative models for 

measuring the performance of transportation networks that are capable of analyzing 

and quantifying the impact of reconstruction/rehabilitation efforts on the level of service 

disruption experienced by travelers. 

Second, optimizing the reconstruction efforts of damaged transportation networks in the 

aftermath of natural disasters is a challenging and complex task due in large part to the 

limited availability of construction resources in post-disaster conditions; and the 

conflicting planning objectives that need to be considered during the reconstruction 

phase.  Accordingly, limited reconstruction resources must be deployed and utilized in 

an optimal way in order to effectively and efficiently satisfy the post-disaster societal 

needs of: (1) minimizing the overall disruption in the level of service provided by the 

damaged transportation network during the reconstruction efforts; and (2) minimizing 

the total public expenditures on reconstruction efforts.  Mitigating the adverse impacts of 

natural disasters on transportation networks has been investigated in a number of 

research studies that focused on: (1) measuring the performance of damaged 

transportation networks in post-disaster environments (Chang and Nojima 1998; Chang 

and Nojima 2001; Chen and Eguchi 2003; Nojima and Sugito 2000); (2) analyzing 
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recovery planning strategies and developing post-event recovery planning models 

(Farris and Wilkerson 2001; Kozin and Zhou 1990; Lambert et al. 1999; Opricovic and 

Tzeng 2002); (3) evaluating pre-disaster mitigation policies and developing pre-event 

mitigation planning models (Gunes and Kovel 2000; Masri and Moore II 1995); and (4) 

investigating the role of public agencies in post-disaster environments (Kovel and 

Kangari 1995; Lambert and Patterson 2002).  In addition, existing resource utilization 

studies focus on: (1) allocating limited resources to a single construction project (Leu 

and Yang 1999; Leu and Hung 2002; Kim and de la Garza 2003; Senouci and Eldin 

2004); (2) optimizing resource utilization for repetitive construction projects (El-Rayes 

and Moselhi 1996; El-Rayes and Moselhi 2001; Zhang et al. 2006); (3) scheduling 

multiple distributed construction projects (Hegazy et al. 2004); (4) optimizing resource 

allocation and leveling problems simultaneously (Hegazy 1999); (5) optimizing resource 

utilization in individual construction operations (Hegazy and Kassab 2003); and (6) 

planning multiple facility management projects (East and Liu 2006).  Despite the 

significant contributions of these research studies, there is no reported research that 

focused on planning the utilization of limited resources in order to optimize post-disaster 

reconstruction efforts of damaged transportation networks.  Decision makers need to 

create and implement resource utilization plans that (Figure  1-2): (1) prioritize the 

competing reconstruction projects (Fwa and Chan 1991; Hegazy et al. 2004); (2) award 

these projects to interested and qualified contractors; and (3) identify the overtime policy 

suitable for each project.  Accordingly, there is a need for new resource utilization 

models that are capable of allocating limited reconstruction resources to competing 

projects and optimizing the reconstruction efforts in order to identify optimal resource 
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utilization plans that simultaneously minimize both service disruptions during the 

reconstruction efforts and the reconstruction costs. 

Third, the nation’s aging and deteriorating civil infrastructure systems, including 

transportation networks, are in urgent need for immediate rehabilitation efforts in order 

to preserve them and improve their performance (ASCE 2009).  These efforts require 

an annual federal funding of $186 billion to improve the surface conditions of 

transportation infrastructure (ASCE 2009); however, the government was unable to 

increase funding for transportation improvement (ASCE 2009; Weiss 2008).  

Accordingly, there is a need to optimize rehabilitation programs under budget 

constraints in order to maximize net rehabilitation benefits and minimize service 

disruption.  These rehabilitation programs should provide the capability of (Figure  1-2): 

(1) identifying rehabilitation projects that maximize net benefits to the traveling public 

which can be represented by the difference between the savings in road user costs due 

to the rehabilitation efforts and the construction and maintenance costs; (2) prioritize the 

identified rehabilitation projects; and (3) determine the most suitable procurement 

method for each project (Soloway 2005; Tuttle et al. 2006).  Each of these decision 

variables has a significant impact on the important and conflicting planning objectives of 

maximizing net social benefits and minimizing service disruption.  Accordingly, there is a 

pressing need for an innovative model for planning highway rehabilitation efforts that 

are capable of generating rehabilitation plans that provide optimal tradeoffs between 

maximizing net social benefits and minimizing disruption in the level of service provided 

by deficient transportation networks. 



 

11 

1.3 Research Objectives 

The main goal of this study is to  develop novel models for planning the 

reconstruction/rehabilitation efforts of damaged/deficient transportation networks.  In 

order to accomplish this goal, the objectives of this study are identified along with their 

pertinent research questions and hypotheses as follows: 

Objective 1: 

To model the impact of highway construction work on the functional performance of 

transportation networks and develop a model to measure service disruption during 

construction efforts. 

Research Questions: 

(a) What are the factors that affect the functional performance of transportation 

networks during reconstruction/rehabilitation efforts? (b) What is the impact of 

reconstruction/rehabilitation work on the level of service disruption experienced by 

travelers? and (c) How can the overall service disruption during 

reconstruction/rehabilitation efforts be objectively measured in order to support decision 

making in highway construction projects? 

Hypothesis: 

Measuring the service disruption experienced by travelers during highway construction 

can support decision makers in evaluating and minimizing these service disruptions 

during highway reconstruction/rehabilitation projects. 
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Objective 2: 

To develop a novel multi-objective optimization model for post-disaster reconstruction of 

damaged transportation networks that is capable of (a) allocating limited construction 

resources to competing recovery projects; and (b) simultaneously minimizing network 

service disruption and reconstruction costs.  

Research Questions: 

(a) What are the decision variables that need to be considered in post-disaster 

reconstruction of damaged transportation networks? (b) How can the planning 

objectives of minimizing service disruption and reconstruction costs be evaluated and 

measured? (c) How can this multi-objective optimization model be implemented in order 

to identify optimal tradeoffs between these conflicting planning objectives? (d) What is 

the impact of reconstruction project prioritization on post-disaster recovery duration and 

cost? (e) What is the impact of double shifts and nighttime construction on the 

reconstruction efforts? and (f) How to best share limited reconstruction resources 

among competing recovery projects? 

Hypothesis: 

New post-disaster recovery planning models can support the analysis of alternative 

highway reconstruction plans and identifying optimal solutions that provide tradeoffs 

between minimizing network service disruption and reconstruction costs.  In addition, 

new post-disaster resource utilization models can help construction planners allocate 

limited reconstruction resources among competing recovery projects for damaged civil 

infrastructure systems taking into consideration the prioritization of these projects, 



 

13 

assignment of projects to interested qualified contractors and the overtime policy 

adopted for each project. 

Objective 3: 

To develop a new multi-objective optimization model for the rehabilitation efforts of 

aging transportation networks that is capable of maximizing net social benefits and 

minimizing network service disruption simultaneously. 

Research Questions: 

(a) What are the decision variables that affect highway rehabilitation projects? (b) What 

is the impact of these decision variables on the rehabilitation program cost and 

schedule? (c) What are the costs and benefits of highway rehabilitation programs to 

society? (d) How can the impact of rehabilitation programs on the net social benefits be 

measured and quantified? (e) How can the impact of different rehabilitation programs on 

road user costs be estimated? and (f) How can optimal tradeoffs between maximizing 

net social benefits and minimizing service disruption during highway rehabilitation 

programs be generated under budget constraints? 

Hypothesis: 

New highway rehabilitation planning models can provide the capabilities of searching for 

and identifying optimal highway rehabilitation programs that maximize the net social 

benefit while simultaneously minimizing highway service disruption. 
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TASK 4: OPTIMIZING HIGHWAY 

REHABILITATION PROJECTS

4.1 Identify and model all relevant decision 
variables in highway rehabilitation efforts

4.2 Develop and implement a model for 
allocating limited rehabilitation funding

4.5 Develop and implement a rehabilitation 
multi-objective optimization model

4.6 Evaluate and refine the performance of 
the developed models

4.3 Investigate and analyze the cost and 
benefits of rehabilitation to stakeholders

4.4 Formulate and implement a road user 
savings estimation model

TASK 2: SERVICE DISRUPTION MODEL

2.1 Develop an algorithm to estimate deterministic traffic 
assignment at user equilibrium

2.2 Investigate and model the impact of highway construction on 
transportation service disruption

2.3 Design and implement a model to measure service disruption 
caused by highway construction projects

2.4 Evaluate and refine the model performance

TASK 1: LITERATURE REVIEW

1.1 Review research studies focusing on evaluating transportation performance

1.2 Examine existing construction resource allocation models

1.3 Investigate relevant studies focusing on  post-disaster highway reconstruction efforts

1.4 Survey existing highway rehabilitation research studies

TASK 3: OPTIMIZING POST-DISASTER 

RECONSTRUCTION PROJECTS

3.1 Investigate post-disaster highway 
reconstruction and model all relevant 

decision variables

3.2 Design and implement tracking sheets 
for limited reconstruction resources

3.3 Develop and implement a utilization 
model for limited reconstruction resources

3.4 Develop and implement a multi-
objective optimization model to minimize 

service disruption and reconstruction cost

3.5 Evaluate and refine the performance of 
the developed models

Figure  1-3 Research tasks 
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1.4 Research Methodology 

In order to achieve the aforementioned objectives, the research work in this study is 

organized into four main research tasks that are designed to: (1) conduct a 

comprehensive literature review of the latest research developments in planning and 

optimization of transportation reconstruction/rehabilitation efforts; (2) model the impact 

of construction progress on the performance of transportation networks and measure 

the service disruption caused by implementing specific construction plans; (3) develop 

models to plan and optimize post-disaster reconstruction works for damaged 

transportation networks; and (4) formulate a model to plan and optimize transportation 

rehabilitation efforts, as shown in Figure  1-3. 

1.4.1 Task 1: Conducting a Comprehensive Literature Review 

The objective of this task is to investigate the latest research developments in planning 

and optimizing highway reconstruction/rehabilitation projects in order to identify the 

research gaps that need to be addressed by this study.  This task is subdivided into the 

following four sub-tasks: 

1- Review research studies focusing on measuring and evaluating the functional 

performance of transportation networks especially in post-disaster situations. 

2- Examine existing construction resource utilization models and their capabilities in 

terms of sharing limited reconstruction resources among competing post-disaster 

recovery projects. 

3- Investigate relevant research studies focusing on post-disaster reconstruction of 

damaged transportation networks. 



 

16 

4- Survey existing highway rehabilitation research studies and examine their 

capabilities in maximizing net social benefit of rehabilitation programs. 

1.4.2 Task 2: Measuring Service Disruption of Highway Projects 

The main objective of this task is to evaluate and model the transportation networks 

service disruption during highway reconstruction/rehabilitation projects.  In order to 

achieve this objective, the work in this research task is subdivided into the following four 

sub-tasks: 

1- Develop an algorithm to estimate deterministic traffic assignment at user 

equilibrium. 

2- Investigate and model the impact of highway reconstruction/rehabilitation 

projects on service disruption in transportation networks. 

3- Design and implement a model to measure the level of service disruption 

experienced by travelers during construction. 

4- Evaluate and refine the performance of the developed service disruption model. 

1.4.3 Optimizing Highway Post-Disaster Reconstruction Projects 

The task is aimed at developing a new post-disaster reconstruction planning model for 

damaged transportation networks that is capable of: (1) sharing limited reconstruction 

resources among competing projects; and (2) optimizing the reconstruction efforts in 

order to simultaneously minimize service disruption and reconstruction costs.  This task 

is subdivided into the following five sub-tasks: 
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1- Investigate post-disaster highway reconstruction and model all decision variables 

that have direct and significant impact on planning post-disaster reconstruction 

works of damaged transportation networks. 

2- Design and implement resource tracking sheets to monitor the movement and 

deployment of resources at activity and project levels. 

3- Develop and implement a utilization model to allocate limited resources to 

competing projects. 

4- Develop and implement a multi-objective optimization model for post-disaster 

highway reconstruction efforts that simultaneously minimizes network service 

disruption and reconstruction costs. 

5- Evaluate and refine the performance of the developed resource utilization and 

multi-objective optimization models. 

1.4.4 Task 4: Optimizing Highway Rehabilitation Projects 

The objective of this task is to optimize highway rehabilitation efforts under funding 

constraints with the objective of identifying the rehabilitation program(s) that provide 

optimal tradeoffs between maximizing net social benefits and minimizing network 

service disruption.  The work in this research task is subdivided into the following six 

sub-tasks: 

1- Identify and model all decision variables that have a direct impact on highway 

rehabilitation efforts. 

2- Develop and implement a model to allocate limited funding to competing highway 

rehabilitation projects. 
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3- Investigate and analyze the costs and benefits of highway rehabilitation 

programs to different stakeholders. 

4- Formulate and implement a model to analyze and estimate expected road user 

savings for selected rehabilitation programs. 

5- Develop and implement a multi-objective optimization model for highway 

rehabilitation efforts that simultaneously maximizes net social benefit and 

minimizes network service disruption. 

6- Evaluate and refine the performance of the developed models. 

1.5 Research Significance 

This research study is designed to support and enhance decision making in highway 

reconstruction and rehabilitation projects.  The research developments described in this 

dissertation are expected to have a significant impact on: (1) accelerating the 

completion of highway reconstruction and rehabilitation projects and minimizing the 

service disruption experienced by travelers during the construction work; (2) optimizing 

the allocation of limited budgets and financial resources to competing highway projects; 

and (3) improving the utilization efficiency of construction resources in highway projects 

and therefore increasing their productivity.  Accordingly, these developments hold a 

strong promise to provide significant benefits to society, departments of transportation 

(DOTs) and contractors. 

- Benefit to society: 

These research developments hold a strong promise to provide significant 

benefits to society.  Accelerating the completion of highway reconstruction and 
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rehabilitation projects and minimizing their related service disruption provides 

many benefits, including: (i) generating savings in road user costs by minimizing 

traffic congestions and decreasing vehicle operating and repair costs; (ii) 

reducing the hazardous impacts of highway work zones on the traveling public; 

and (iii) minimizing the adverse impacts of highway construction work and its 

related disruptions on local businesses.  Similarly, optimizing the allocation of 

construction and financial resources to competing highway projects can lead to 

maximizing societal benefits and ensure the cost-effectiveness of investing 

taxpayers’ money in these national assets. 

- Benefit to DOTs: 

The research developments also hold a strong promise to support and enhance 

decision-making in state departments of transportation (DOTs) in a number of 

critical and challenging areas, including: (i) designing and implementing long and 

short-term plans for highway construction projects and operations; (ii) allocating 

limited financial and construction resources to competing highway construction 

projects; (iii) ensuring that taxpayers’ money are allocated in a cost-effective and 

transparent manner; and (iv) improving the resiliency of transportation networks. 

- Benefit to contractors: 

Contractors working on highway projects are also expected to benefit from these 

research developments mainly due to the strong promise to increase the 

utilization efficiency of construction resources, which will in turn lead to an 

increase in construction productivity and profits. 
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1.6 Dissertation Organization 

The organization of this dissertation and its relation to the main research tasks of this 

study are described as follows: 

Chapter 2 presents a comprehensive literature review that studies all relevant research 

that focused on measuring the performance of transportation networks; examines the 

capabilities of existing resource utilization models; reviews existing research studies on 

planning and optimizing post-disaster reconstruction efforts of damaged transportation 

networks; and investigates existing research studies on optimizing rehabilitation efforts 

of deficient transportation networks. 

Chapter 3 discusses measuring the functional performance of transportation networks 

during highway reconstruction and rehabilitation projects.  First, the chapter presents an 

analysis of the impact of highway construction operations and activities on the level of 

service disruption experienced by travelers.  Second, the chapter presents the design 

and development of a new service disruption model for highway reconstruction and 

rehabilitation efforts.  This model uses deterministic traffic assignment to evaluate the 

impact of a given construction plan on the performance of a transportation network  

throughout the construction duration and assess the total service disruption experienced 

by travelers during this period. 

Chapter 4 discusses optimizing post-disaster reconstruction efforts of damaged 

transportation network in order to identify the reconstruction plan(s) that minimize both 

network service disruption and public expenditures on reconstruction costs 
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simultaneously.  To this end, this chapter presents the development of a new model for 

utilizing and sharing limited reconstruction resources among competing recovery 

projects.  This chapter also presents the design and development of a new multi-

objective optimization model that uses genetic algorithms to identify the optimal/near 

optimal post-disaster recovery plans and their associated impact on network 

performance and public expenditures on reconstruction efforts. 

Chapter 5 discusses planning and optimizing rehabilitation efforts of aging 

transportation network in order to identify the rehabilitation program(s) that provide 

optimal tradeoffs between maximizing net rehabilitation benefits and minimizing network 

service disruption during rehabilitation efforts.  To this end, this chapter presents the 

development and implementation of innovative algorithms capable of: (1) calculating the 

cost and schedule of rehabilitation programs while considering the allocation of limited 

financial resources to competing highway rehabilitation projects; (2) identifying the 

impact of implementing specific rehabilitation programs on the performance of aging 

transportation networks and the expected saving in road user costs; (3) analyzing the 

benefits and costs associated with rehabilitation programs; and (4) generating optimal 

rehabilitation programs that simultaneously maximize net rehabilitation benefits and 

minimize network service disruption. 

Chapter 6 presents a summary and the conclusions of the research developments, 

states the contributions of this research study, and lists recommendations for future 

research. 
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CHAPTER 2                                                               
LITERATURE REVIEW 

2.1 Introduction 

This chapter introduces a comprehensive literature review of the latest research 

developments relevant to planning and optimizing highway reconstruction and 

rehabilitation projects.  This review is aimed at identifying the research gaps that need 

to be addressed by this study.  This task is subdivided into the following five sub-tasks: 

(1) review research studies focusing on measuring and evaluating the functional 

performance of transportation networks especially in post-disaster situations; (2) 

examine existing construction resource utilization models and their capabilities in terms 

of sharing limited reconstruction resources among competing post-disaster recovery 

projects; (3) investigate relevant research studies focusing on post-disaster 

reconstruction of damaged transportation networks; and (4) survey existing highway 

rehabilitation research studies and examine their capabilities in maximizing net benefits 

of rehabilitation programs. 

2.2 Measurement of Transportation Networks Performance 

Many research studies focused on measuring different metrics for the performance of 

transportation networks (e.g. reliability, comfort, travel time …etc.).  There is however 

little or no reported studies focusing on: (1) measuring the performance of damaged 

transportation networks in post-disaster situations; and (2) studying the impact of 

dynamic changes in the status of transportation networks (e.g. progress in construction 

efforts) on the network’s expected performance. 
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2.2.1 Post-Disaster Measurement of Transportation Performance 

Transportation systems have been identified as the most important lifeline (Du and 

Nicholson 1997) in the event of a disaster (e.g., earthquakes, floods, tornadoes, 

hurricanes, landslides …etc.).  This is mainly due to the dependency of restoring 

normalcy to any damaged lifeline system on the moving of people and equipment.  

Some research studies focused on measuring the performance of damaged 

transportation networks in post-disaster environments.  These studies provided two 

main type of metrics to measure post-disaster the level of service disruption 

experienced by travelers on damaged transportation networks: (1) flow-independent 

(Chang and Nojima 1998; Chang and Nojima 2001); and (2) flow-dependent (Nojima 

and Sugito 2000).  

Flow-Independent Metrics 

Chang and Nojima (1998) proposed four alternative flow-independent measures to 

estimate the performance of transportation networks in post-disaster environments. 

These measures are simple ratios, ranging from 0 (system non-functional) to 1 (system 

fully functional), of the post-disaster to pre-disaster conditions of: (1) total number of 

highway sections open ( N ); (2) total length of highway open ( L ); (3) total connected 

length of highway open (C ); and (4) total weighted connected length of highway open (

W ).  Measure ( N ) simply estimates the percentage of highway open segments 

compared to the pre-disaster conditions.  Measure ( L ) is similar but for the length of 

highway open.  Measure (C ) identifies the degree of connectivity of highway open.  
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Finally, measure (W ) is similar to measure (C ) but takes into consideration the relative 

importance of different highway segments. 

In another research study, Chang and Nojima (2001) revisited the aforementioned flow-

independent performance measures and introduced another three performance 

measures for evaluating network performance in terms of coverage and transport 

accessibility.  These measures are: (1) total length of network open ( L ); (2) total 

distance-based accessibility ( D ); and (3) areal distance-based accessibility ( _D S ).  

Similar to their predecessors, each of these measures is estimated as a ratio of post-

disaster to pre-disaster conditions and ranges from 0 (system non-functional) to 1 

(system fully functional).  Measures ( L ) and ( D ) are concerned with the overall 

performance of the system, while measure ( _D S ) is specific to individual subareas 

within the study region.  These measures are time-specific.  Measure ( L ) reflects the 

length of the network that is open to traffic at any time and is defined as a ratio to the 

pre-disaster length open.  Measure ( D ) is based on minimum network travel distances 

and takes into account both the extent and the location of damage.  It measures 

changes in accessibility at all nodes on the network.  Measure ( _D S ) is similar to ( D ) 

but is concerned with accessibility in a specific subarea ( S ).  These measures are 

designed to be applied simply and use commonly available data. 

Although the above measures are simple and can be applied using commonly available 

data, they are only adequate for a rough estimate of network performance.  These 
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measures therefore cannot be reliably used to plan for and optimize post-disaster 

reconstruction of damaged transportation networks, mainly due to: 

- The use of empirical equations that depend on arbitrarily defined multipliers can lead 

to significant variance in the estimated values for these measures. 

- The application of flow-independent metrics does not take into account the 

preferences of trip makers when choosing which of the available routes to use. 

- The disregard of the dynamic changes in the capacity of damaged road segments 

depending on their state (i.e. open, closed, or partially open) throughout the 

reconstruction period.  

- The inefficiency of these measures in terms of comparing different reconstruction 

plans to select the plan that maximizes the societal benefits. 

Flow-Dependent Metrics 

Nojima and Sugito (2000) developed a flow-dependent model for simulating and 

evaluating post-disaster functional performance of a highway transportation network.  

This model is based on a combination of Monte Carlo simulation and a modified version 

of the incremental assignment method (MIAM) and is developed in three major steps: 

(1) using Monte Carlo simulation to generate a large number of damage patterns; (2) 

using the MIAM to load the network with O-D trips; and (3) evaluating the performance 

of the network in terms of traffic volumes, trip length, and travel time at various levels of 

the network.  Despite the significant contributions of this research study, it focuses 

mainly on preparing for the impact of expected disasters on fully functioning 

transportation networks and does not consider the impact of reconstruction efforts on 

the functional performance of damaged networks. 
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2.2.2 Impact of Changes of Transportation Network Status 

Highway construction projects and operations have a significant impact on the 

functional performance of damaged and aging transportation networks.  It is therefore 

important to capture this impact and measure the expected levels of service disruption 

associated with construction projects and operations.  Only a few research studies 

addressed this important research point and they focused mainly on: (1) analyzing 

highway rehabilitation and reconstruction projects scheduling; (2) minimizing duration of 

highway construction projects; and (3) planning highway construction under innovative 

contracting methods. 

First, a knowledge-based model was designed to analyze highway rehabilitation and 

reconstruction projects scheduling (Lee et al. 2005; Lee and Ibbs 2005).  The main 

objective of this model is to calculate the schedule and cost of pavement rehabilitation 

projects; however, the model can be interfaced with traffic simulation tools to evaluate 

the impact of rehabilitation on highway service disruption and road user cost (Lee et al. 

2005; Lee and Ibbs 2005). 

Second, several research studies focused on optimizing the utilization of construction 

resources in highway projects with the objective of minimizing project durations, which 

in turn can result in controlling and minimizing network service disruption due to 

highway construction projects and operations (El-Rayes and Moselhi 1998; El-Rayes 

and Kandil 2005; Hyari and El-Rayes 2006; Kandil and El-Rayes 2006; Ipsilandis 2007). 
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Finally, some research studies focused on planning and optimizing highway projects 

delivered under innovative contracting methods which aim to minimize projects duration 

and network service disruption (El-Rayes 2001; Shr and Chen 2003; Shr and Chen 

2004; Shr et al. 2004). 

Despite the significant contributions of the aforementioned research studies, they are 

inadequate to depicting the behavior of transportation networks during highway 

construction projects or measuring the expected level of service disruption experienced 

by travelers. 

2.3 Utilization of Construction Resources in Highway Projects 

Proper utilization of construction resources is critical to the success of highway projects, 

especially in post-disaster reconstruction situations.  The lack of adequate construction 

resources places a great burden on decision makers to make a prudent use of these 

scarce resources in an efficient and effective manner.  This includes deployment of 

limited resources to competing highway projects in such a way that minimizes the 

impact of construction works on network service disruption and construction costs.  The 

literature is rich of research studies that addressed utilization of construction resources 

and they focused on two types of optimization problems: (1) single-objective 

optimization, and (2) multi-objective optimization. 

2.3.1 Single-Objective Optimization 

Many research studies focused on planning and optimizing the utilization of resources in 

construction projects with the objectives of either: (1) minimizing fluctuations in resource 
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requirements (resource leveling); or (2) resolving conflicts between activities/projects 

competing for the same resources (resource allocation). 

First, a number of research studies tried to minimize the fluctuations in resource 

requirements and the negative impact these fluctuations have on construction 

productivity and cost.  These studies used different optimization tools including: (1) 

heuristic methods (Ahuja 1976; Akpan 2000; Burgess and Killebrew 1962; Harris 1978); 

(2) linear programming (Easa 1989; Mattila and Abraham 1998); (3) integer 

programming (Son and Mattila 2004); (4) dynamic programming (Bandelloni et al. 

1994); (5) simulated annealing (Son and Skibniewski 1999); (6) mathematical method 

(Senouci and Adeli 2001); and (7) genetic algorithms (Chan et al. 1996; Chua et al. 

1996; Hegazy 1999; Leu and Yang 1999; Senouci and Eldin 2004). 

Second, different research and optimization methods were utilized in an effort to 

allocate limited resources among activities/projects competing for the same type of 

resource, such as: heuristics, genetic algorithms (GA), dynamic programming, and 

particle swarm.  Heuristic methods were used in several research studies to resolve 

conflicts between competing activities of a single project, especially in highway projects 

(Ahuja 1976; Bell and Han 1991; Boctor 1990; Sampson and Weiss 1993; El-Rayes and 

Moselhi 1998).  Similarly, GAs are extensively used in the literature to: (1) optimize 

resource allocation with the single objective of minimizing project durations (Chan et al. 

1996; and Chua et al. 1996);  (2) solve large-scale resource allocation problems (Kim 

and Ellis 2008); (3) suggest modifications to genetic operators to better suit resource 

allocation problems (Sou-Sen Leu 1999); and (3) compare the use of GAs to other 
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optimization methods such as simulated annealing (Lee and Y. Kim 1996).  Also, El-

Rayes (2001) used a dynamic programming approach to develop a resource utilization 

optimization model for highway that utilize A+B bidding method with the objective of 

minimizing the total bid cost.  Finally, Zhang et al. (2006) used particle swarm 

optimization to solve the same problem of minimizing project durations under resource 

constraints. 

Despite the significant contributions of the above research studies, the resource 

utilization metrics and models developed are inadequate to deal with sharing limited 

resources among competing highway construction resource, especially in post-disaster 

situations.  This is mainly due to the following characteristics of highway post-disaster 

reconstruction projects: (1) unusual large scope of work; (2) similarity of reconstruction 

resources and therefore high demand for specific types of resources; and (2) spatial 

dispersion of reconstruction projects over a large geographical area. 

2.3.2 Multi-Objective Optimization 

Genetic algorithms (GAs) have been extensively used in multi-objective optimization of 

resource utilization in construction, especially in highway projects.  The planning 

objectives of these optimization problems include: (1) minimizing construction time and 

cost; (2) minimizing construction time and cost while maximizing quality; and (3) 

minimizing construction time and maximizing crew work continuity. 

First, several research studies used GAs to perform construction time-cost trade-off 

analyses.  For example, Feng et al. (1997) developed a GA-based spreadsheet for 
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analyzing time and cost of construction projects.  Similarly, Marzouk and Moselhi (2004) 

used GAs with discrete event simulation and object-oriented programming to optimize 

earthmoving operations with the objective of simultaneously minimizing project cost and 

duration.  Zheng et al. (2004) developed a GA-based multi-objective model for solving 

the time-cost trade-off problem, which uses a fitness function that factors in the values 

of time and cost of each chromosome using weights that adjust at every generation.  In 

a following paper, Zheng and Ng (2005) integrated risk and uncertainty to the previous 

model to develop a stochastic approach to multi-objective optimization of time and cost 

in construction projects. 

In addition to the use of GAs, ant colony optimization has also been used to solve time-

cost tradeoff problems.  Xiong and Kuang (2008) combined ant colony optimization with 

the modified adaptive weight approach proposed by Zheng et al. (2004) in order to 

generate optimal tradeoffs between project time and cost.  Using the exact problems 

analyzed by Feng et al. (1997) and Zheng et al. (2004), ant colony optimization 

provided comparable if not better results that those generated by GAs (Xiong and 

Kuang 2008) 

Second, El-Rayes and Kandil (2005) added a new dimension to the traditional time-cost 

tradeoff analysis in construction projects by trying to maximize construction quality.  In 

this study, a multi-objective GA-based optimization model was developed to identify the 

optimal combination(s) of construction method, crew formation, and crew overtime 

policy that minimizes construction duration and cost while maximizing quality in highway 

construction projects, simultaneously (El-Rayes and Kandil 2005).  In an effort to 
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facilitate analyzing large-scale projects, parallel computing was utilized to reduce the 

computational time requirements for the GA-based time-cost-quality tradeoff analysis 

(Kandil and El-Rayes 2006a; Kandil and El-Rayes 2006b). 

Finally, Hyari and El-Rayes (2006) developed a multi-objective optimization model to 

plan and schedule construction repetitive projects.  This model is aimed at identifying 

the combination(s) of crew formation and crew interruption vectors that provide the 

optimal tradeoff between minimizing project duration and maximizing crew work 

continuity, simultaneously. 

2.3.3 Limitation of Existing Research 

Despite the significant contributions and practical features of the aforementioned 

research studies, further research is needed to cover the following needs in relation to 

allocating limited resources to competing post-disaster reconstruction projects: 

- allocating multiple types of resource among competing reconstruction projects; 

- taking into account that reconstruction resources are available from different sources 

(e.g. contractors) and at different times; 

- studying the impact of project prioritization on reconstruction duration and cost; 

- identifying a practical methodology to assign highway post-disaster reconstruction 

projects to qualified interested contractors; and 

- considering the impact of working for extended hours and/or multiple shift on 

productivity and therefore on highway construction duration and cost in post-disaster 

situations. 
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2.4 Post-Disaster Reconstruction of Transportation Networks 

Planning the recovery and reconstruction efforts of infrastructure systems in post-

disaster situations has been the focus of many research studies that employed various 

methodologies and had different objectives.  These research studies focused on: (1) 

developing pre-event recovery planning models; (2) simulating post-disaster restoration 

of damaged lifelines; (3) using GIS for allocating limited reconstruction resources 

among competing post-disaster lifeline restoration projects; and (4) developing a multi-

criteria model to facilitate comparing a number of reconstruction plans that are 

developed before the natural disaster occurs. 

First, Masri and Moore II (1995) introduced a disaster mitigation planning information 

system called Disaster Policy Analysis System (DPAS).  DPAS integrates the use of 

relevant knowledge, theory, methods, and technology to evaluate different disaster 

mitigation policies based on a cost-benefit analysis.  DPAS is however a pre-event 

planning system that lacks important capabilities in critical decision-making such as: 

dispatching of emergency response services; generating backup mitigation plans in 

case the disaster obstructed execution of some or all elements original plan; and 

defining priority of responding under the conditions of inadequacy of resources (Masri 

and Moore II 1995). 

Second, Kozin and Zhou (1990) used simulation to model the restoration of damaged 

lifelines in post-earthquake episode.  They used a discrete-state, discrete-time Markov 

process to consider the limited availability of reconstruction resources in the simulation 

of damaged lifelines reconstruction.  The deployment of these limited resources was 
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optimized by means of dynamic programming with the single objective of minimizing the 

total loss caused by damaged lifelines failure.  This research study assumes only two 

predominant factors that can influence the restoration efforts, the initial damage 

probability state and immediate economic return and therefore suggests restoration 

priority setting rules (Kozin and Zhou 1990). This assumption is not completely accurate 

since it overlooks the different nature of different lifelines and the indirect economic 

losses. 

Third, Gunes and Kovel (2000) developed a GIS-based decision support system for 

emergency management in Douglas County, Kansas (DCEMA).  The main objective of 

this system is to aid Douglas County in preparing for, mitigating, and responding to 

floods.  The system consists of three main databases in a GIS frame.  The first 

database is for disaster data and is supposed to provide a damage overlay.  The 

second database stores critical facilities data and is designed to identify and evaluate 

key public facilities that are expected to be damaged.  The third and last database 

stores resource data and is designed to include all construction and engineering 

resources that can support response operations (Gunes and Kovel 2000).  Despite the 

significant contributions of this research study, it is not practical for use in planning post-

disaster reconstruction of damaged transportation networks mainly due to the enormous 

effort required for data collection and maintenance, which might be infeasible especially 

for the resources database.  Additionally, this research study lacks any optimization of 

resource utilization in such a way that meets the societal needs of minimizing service 

disruption and reconstruction costs. 
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Finally, Opricovic and Tzeng (2002) developed a multi-criteria model to analyze the 

planning of recovery strategies for areas affected by natural disasters.  This model is 

aimed at helping decision makers choose among various mitigation strategies rating 

highly on reducing social and economic costs.  The model assumes the existence of 

scenarios of sustainable hazard effects mitigation in the form of comprehensive 

reconstruction plans.  These alternatives are designed to consider redevelopment of 

urban areas and infrastructures; multi-purpose land use; and restrictions on building in 

hazardous areas.  The model comprises criteria that capture relevant hazard impacts in 

appropriate and representative units.  These criteria represent public safety, 

sustainability, social environment, economy, culture, and politics.  The mitigation 

alternatives are evaluated against each criterion from the set of established criteria and 

are ranked using a compromise ranking method developed by one of the authors in an 

earlier research study (Opricovic 1998). 

2.5 Rehabilitation of Aging Transportation Networks 

Several research studies investigated optimizing and planning highway rehabilitation 

efforts.  These studies focused on: (1) allocating limited highway rehabilitation and 

maintenance funds to district agencies and highway assets; (2) planning and scheduling 

highway construction and rehabilitation projects; and (3) identifying the scope of 

highway rehabilitation work. 

2.5.1 Allocating Limited Funding 

Chan et al. (2003) properly assume that fund allocation decisions should account for the 

planning goals of regional highway agencies, which can differ from one district to the 
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other, as well as the planning goals of the central highway agency.  They therefore 

utilized a two-staged genetic-algorithm to optimize fund allocation for highway 

rehabilitation projects across different regional highway agencies under the jurisdiction 

of a central highway agency (Chan et al. 2003).  In the first stage, the developed model 

identifies the road repair projects that best satisfies the regional planning objectives of 

each district at different funding levels.  The results of the first stage are used together 

with the planning goals of the central agency in the second stage to identify the optimal 

levels of fund allocation to each district under budget constraints (Chan et al. 2003).   

Cook (1984) developed models that are capable of identifying highway maintenance 

strategies that can achieve the decision maker's specified pavement serviceability 

levels.  In order to achieve this objective, a two-phase priority planning methodology 

was adopted (Cook 1984).  In phase 1, a financial planning model is used to determine 

the minimal level of funding required to achieve specified pavement serviceability 

standards.  Following, these funding levels are used as a constraint in phase 2 that 

employs a goal programming model to select maintenance strategies that prioritize 

pavement rehabilitation efforts in such a way that satisfies the target serviceability levels 

specified by the user.  In order to facilitate this process, historical data is utilized to 

forecast the expected pavement performance resulting from applying specific 

maintenance treatments (Cook 1984). 

Gharaibeh et al. (2006) developed a model that employs multi-attribute utility (MAU) 

theory to measure the decision maker's risk attitude towards the impact of fund 

allocation on the performance of transportation infrastructure assets such as pavement, 
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bridges and roadway signs.  The MAU function is developed by combining single-

attribute utility functions that are developed for each asset class based on the decision 

maker's risk attitude toward infrastructure poor performance (Gharaibeh et al. 2006).  

The developed MAU function is then used to evaluate the decision maker's risk attitude 

in different fund allocation alternatives and the alternative with the maximum MAU, i.e. 

lowest risk of infrastructure failure, is selected.  This study lists four potential funding 

alternatives each maximizing a factor that is important to decision makers and the public 

including: utility, infrastructure efficiency, adequacy, and a by choice alternative 

according to the user's preferences (Gharaibeh et al. 2006). 

Despite of the significant contributions of the above studies, they have a number of 

major drawbacks that limits their usefulness in planning and optimizing highway 

rehabilitation projects, including: 

- the inability to identify the highway projects that maximize the total net benefits of 

rehabilitation programs; 

- not considering the important and practical rehabilitation decision variables of project 

selection, project prioritization, and procurement methods; 

- not considering the impact of the rehabilitation efforts on the level of service 

provided by transportation networks to travelers; 

- considering only specific types of rehabilitation or maintenance works; 

- the inaccurate assumption of availability of unlimited funding; 

- the inadequacy of some of these research studies for planning and optimizing 

rehabilitation efforts for large-scale transportation networks; and 
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- the utilization of subjective approaches that depends solely on the risk attitude of 

decision makers which can vary from one person to the other and does not provide 

the optimum rehabilitation alternatives that satisfies the societal needs. 

2.5.2 Planning and Scheduling Highway Projects 

Hassanein and Moselhi (2004) developed a model to plan and schedule highway 

construction operations.  This model stores project templates for new and rehabilitation 

highway reconstruction operations in order to enable the automatic generation of the 

work breakdown structure (WBS) and activity precedence information for highway 

projects (Hassanein and Moselhi 2004).  The main objective this model is to optimize 

the resource utilization in highway projects in order to minimize the total bid cost 

including construction cost and duration (Hassanein and Moselhi 2004).  In order to 

achieve this objective, this model employs a dynamic programming-based resource-

driven scheduling algorithm that also takes into consideration the impact of inclement 

weather on the productivity of construction crews.  In addition, the model incorporates 

three databases for storing weather, soil and resource data (Hassanein and Moselhi 

2004). 

Construction Analysis for Pavement Rehabilitation Strategies (CA4PRS) is a 

knowledge-based model that is designed to analyze highway rehabilitation and 

reconstruction projects scheduling (Lee et al. 2005; Lee and Ibbs 2005).  CA4PRS is 

developed to calculate the schedule and cost of highway pavement rehabilitation 

projects for different pavement strategies (Lee and Ibbs 2005).  The pavement 

strategies considered in CA4PRS include: reconstruction with concrete; overlay with 
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asphalt concrete; and full-depth replacement with asphalt concrete (Lee at al. 2005).  

The scheduling of pavement rehabilitation work that can be completed using each of 

these strategies depends on: the pavement materials used; the highway closure 

schedule adopted; and the availability of the contractor's resources (Lee and Ibbs 

2005).  In order to analyze each of these pavement rehabilitation strategies, CA4PRS 

evaluates the constructability and productivity of a number of "what-if" scenarios 

selected by the user (Lee et al. 2005; Lee and Ibbs 2005).  In addition, CA4PRS 

employs Monte-Carlo simulation to account for the uncertainty in the decision variables 

and can also be interfaced with traffic simulation tools to evaluate the impact of 

rehabilitation on highway service disruption and road user cost (Lee et al. 2005; Lee 

and Ibbs 2005). 

Despite the significant contributions of the aforementioned research studies, they are 

insufficient for planning and optimizing highway rehabilitation programs mainly due to 

the following limitations: 

- not accounting for limited availability of highway rehabilitation funding ; 

- not considering the impact of rehabilitation efforts on the level of service provided by 

transportation networks during and after the implementation of highway rehabilitation 

programs; 

- do not seek to search for and implement rehabilitation program(s) that maximize net 

rehabilitation benefits to the society 

- implementing "what-if" scenarios in the selection of the rehabilitation projects, which 

does not guarantee finding the optimal solution 
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2.5.3 Identifying Scope of Highway Rehabilitation 

Khan et al. (1994) developed 4RSCOPE which is a knowledge-based computer 

program for use by California Department of Transportation (Caltrans) to identify the 

scope of work of highway rehabilitation projects.  The main objective of this expert 

system is to assist engineers in early identification of some project features that may be 

overlooked during the design phase and can cause cost overruns and schedule delays 

if introduced later in the process (Khan et al. 1994).  In order to achieve this objective, 

4RSCOPE integrates a relational database module for storing rehabilitation data and an 

expert system module that reasons about rehabilitation needs to identify project scope 

of work.  The database module stores data pertaining to features and design of previous 

projects and design needs of upcoming projects (Khan et al. 1994).  The expert system 

module then analyzes these data and the suggested rehabilitation strategy for new 

projects in order to identify the design features that need to be added, removed or 

modified (Khan et al. 1994). 

Despite the significant contributions of 4RSCOPE, it is not capable of evaluating the 

impact of rehabilitation efforts on service disruption in transportation networks or the net 

rehabilitation benefits mainly due to: (1) its concern only with identifying the scope of 

work in highway rehabilitation projects rather than prioritizing and implementing these 

projects; and (2) its methodology that only takes into consideration cost-effective 

selection of design features that increase highway safety. 
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2.6 Summary 

This chapter presented an extensive review of existing literature on latest developments 

in the areas of: (1) measuring the functional performance of transportation networks; (2) 

utilizing limited reconstruction resources in highway construction projects; (3) planning 

and optimizing post-disaster reconstruction of damages transportation networks; and (4) 

planning and optimizing rehabilitation efforts of aging transportation networks.  This 

literature review shows that there is a pressing need for further research to cover 

important gaps in each of the aforementioned areas in order to plan for and optimize 

highway reconstruction and rehabilitation projects in an effective and efficient manner.  

The aforementioned research needs include: 

(1) developing innovative models for measuring the performance of transportation 

networks that are capable of analyzing and quantifying the impact of reconstruction 

and rehabilitation efforts on network service disruption; 

(2) formulating new models that are capable of sharing limited reconstruction resources 

among competing projects, and optimizing post-disaster reconstruction efforts in 

order to identify optimal resource utilization plans that simultaneously minimize both 

network service disruption and reconstruction costs; and 

(3) developing and implementing innovative models for planning highway rehabilitation 

efforts that are capable of generating rehabilitation plans that provide optimal 

tradeoffs between maximizing net social benefits and minimizing disruption in the 

level of service provided by deficient transportation networks. 
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CHAPTER 3                                                               
MEASURING SERVICE DISRUPTION OF HIGHWAY 

CONSTRUCTION PROJECTS 

3.1 Introduction 

The main objective of this chapter is to develop a new service disruption model for 

highway reconstruction and rehabilitation efforts that is capable of: (1) analyzing the 

impact of highway construction projects on service disruption in damaged and aging 

transportation networks during reconstruction and rehabilitation efforts; and (2) 

identifying the level of service disruption experienced by road users as a result of 

implementing specific reconstruction or rehabilitation plans.  These capabilities enable 

decision makers to compare different highway construction plans in terms of their 

impact on the functional performance of transportation networks.  Accordingly, the 

following sections in this chapter focus on: (1) measuring network service disruption 

during highway construction projects; (2) developing a new service disruption model 

due to highway construction; and (3) evaluating the performance of the model and 

demonstrating its capabilities by analyzing two application examples. 

3.2 Impact of Highway Construction on Service Disruption 

In order to evaluate the service disruption in transportation networks during 

reconstruction or rehabilitation efforts, there is a need to analyze the impact of highway 

construction work on the functional performance of these networks, as shown in Figure 

 3-1.  There are a number of metrics used to measure the functional performance of 

transportation networks including: travel time, distance, direct cost, reliability and 
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comfort (Bell and Iida 1997).  In the present model, travel time is used to measure 

transportation networks performance because it is often considered to be the most 

important factor affecting travelers on damaged or aging networks.  This is especially 

true when road users need to travel longer detours or their original routes but with 

significantly reduced speeds.  Accordingly, service disruption is represented in this 

model by the net change in total travel time, measured in .vehicle hours , experienced 

by travelers on the transportation network throughout the duration of the construction 

work, as shown in Figure  3-1.  Since travel time is a flow-dependent metric, it requires 

the estimation of the traffic flow on each of the network links.  This is a challenging task 

due to two main reasons: (1) the challenge in identifying the route preferences of 

individual travelers; and (2) the dynamic nature of the progress in construction work, as 

shown in Figure  3-1. 

First, travelers are often reported to choose routes that they perceive to have the least 

travel time (Bell and Iida 1997).  Accordingly, travel routes that are perceived to be 

faster attract larger traffic volumes.  These routes can then experience traffic volumes 

that exceed their capacities, creating traffic congestions and increased travel times that 

Figure  3-1 Impact of highway construction planning on network service disruption 
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in turn cause travelers to consider other faster alternatives.  These dynamic changes in 

traveler preferences make it difficult to estimate the volume of traffic on each link in the 

network accurately.  This problem gets even more challenging in larger networks which 

may include thousands of links.  Second, the dynamic nature of the progress in 

construction work also adds to the complexity of estimating the traffic flow using each of 

the network links.  This is true because as the reconstruction and rehabilitation efforts 

progress, the functional status of different road segments can dynamically alternate 

between open, partially closed and closed based on the construction schedule, as 

shown in Figure  3-1. 

Therefore, these two factors can have a significant and dynamic impact on the change 

in network total travel during reconstruction and rehabilitation efforts.  In case of post-

disaster reconstruction of damaged transportation networks, the total change in network 

travel time is usually negative representing a loss in the total travel time compared to 

pre-disaster levels.  The maximum loss in travel time is experienced immediately after 

Figure  3-2 Change in network total travel time during highway reconstruction and 
rehabilitation efforts 
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the disaster and diminishes at the end of the recovery duration when all reconstruction 

works are completed and the damaged network is restored to its pre-disaster 

conditions, as shown in Figure  3-2.  However, in the case of highway rehabilitation 

efforts, the change in the network total travel time can alternate between losses and 

savings depending on the varying road closure conditions throughout the duration of 

rehabilitation efforts, as shown in Figure  3-2.  Nevertheless, it is expected that 

rehabilitation work would bring about savings in network total travel time compared to 

the pre-rehabilitation levels towards the end of any rehabilitation program, as shown in 

Figure  3-2. 

3.3 Service Disruption Model Development 

In order to overcome the two aforementioned main challenges in estimating the traffic 

flow on the network links, the service disruption model is designed to assess the 

functional performance of aging transportation networks during construction works in 

three main phases: (1) initialization; (2) deterministic traffic assignment; and (3) service 

disruption assessment, as shown in Figure  3-3. 

3.3.1 Initialization 

This phase is designed to initialize the required data for the service disruption model. 

This initialization process is performed in three main steps: (1) input the transportation 

network data; (2) integrate the construction plan data which will be described in more 

detail in the following chapters; and (3) identify the frequency of performance analysis, 

as shown in Figure  3-3. 
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Figure  3-3 Flowchart for service disruption model 
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Input transportation network data 

This data is needed in the service disruption model to represent the traffic data and 

topology of the transportation network.  The traffic data include: (1) the traffic demand 

on the network which can be described by the origin-destination (OD) pair flows; (2) the 

capacity of the road segments; (3) the free flow speed for each road on the network; 

and (4) the functions used to estimate the travel time on the different routes of the 

network based on the capacities of these routes and their traffic flow.  For simplicity, the 

present model assumes that the OD pair flows are static which indicates that there are 

no changes in the traffic demand on the network during different hours of the day, days 

of the week, or seasons of the year.  Similarly, the network topology include data on: (1) 

the nodes which represent the traffic loading/unloading points to/from the network such 

as cities, intersections, and exits; (2) the links which represent the road segments 

connecting different nodes; and (3) the incidence information which identifies the 

relationship between nodes and links and the direction of traffic flow on each link.  

Integrate construction plan data 

Construction plan data are generated by the multi-objective optimization models for 

reconstruction and rehabilitation efforts as will be described in the following chapters.  

This data is integrated in this service disruption model in order to account for the 

expected impact of progress in the construction works on the functional performance of 

different road segments.  This set of data includes: (1) the estimated construction 

duration ( D ); (2) the schedule of the reconstruction or rehabilitation projects and the 

planned road closures during construction efforts; and (3) the prioritization of these 

highway construction projects.  The purpose of analyzing this data is to identify the 
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status (i.e., open, partially open, or closed) of the road segments in the network at 

different stages of the construction efforts. 

Identify frequency of performance analysis  

This step in the initialization phase is designed to identify the frequency of performing 

the computational steps in the deterministic traffic assignment and the service disruption 

assessment phases. These computational steps need to be repeated in an iterative 

process to account for the dynamic nature of the construction efforts and its impact on 

the losses or savings in the travel time on the transportation network being analyzed. 

This iterative process is repeated at important milestones ( 1 to m M ) during the 

construction duration ( D ), as shown in Figure  3-3.  The number of these milestones (

M ) and their distribution over the construction duration is identified based on the 

construction schedule that is calculated in the other models.  Each of these milestones 

represents the start or completion of a significant portion of highway construction work 

and therefore bringing about changes to the state of the network.  These changes can 

for example include the reopening of highway segment(s) of the network that were 

previously closed to travelers and/or close other segment(s).  As shown in Figure  3-2, 

the network performance is assumed to be fixed between each two successive 

milestones such as ( 1m  ) and ( m ). 

3.3.2 Deterministic Traffic Assignment 

In order to overcome the earlier described challenges in identifying the route 

preferences of travelers, the traffic demand need to be loaded on the network in a way 

that reflects the perception of individual travelers of the routes with least travel time.  
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This is based on an individualistic rationality which requires travelers to pursue their 

own interests individually (Bell and Iida 1997).  This individualistic rationality assumption 

in traffic assignment is known as Wardrop’s first principle (Wardrop 1952) in which a 

user equilibrium state is achieved when all alternative travel routes have equal travel 

times and no single traveler can reduce his/her travel time by unilaterally changing their 

travel route.  Accordingly, the main objective of this step of the performance loss model 

is to identify the volume of traffic on each link of the network at equilibrium at each 

construction milestone ( m ).  Although the network might not fully reach the equilibrium 

state due to the frequency of change in the network status (Yang and Liu 2007), a 

deterministic traffic assignment algorithm is utilized in this model due to its adequate 

accuracy to estimate the flow on the network links and to avoid the heavy computational 

overhead of stochastic traffic assignment algorithms.  

As mentioned earlier, the traffic demand is assumed to be static throughout the 

construction duration.  Accordingly, the present problem is a deterministic traffic 

assignment problem which can be solved using the Frank-Wolfe algorithm for 

deterministic user equilibrium assignment.  Frank-Wolfe is a very effective and widely 

used algorithm for estimating the link flows at equilibrium (Bell and Iida 1997).  The 

Frank-Wolfe algorithm employed in the present model is executed using the following 

eight steps (Figure  3-3): 

1. Determine the status of the network links at construction milestone ( m ) based on the 

network and construction plan data identified in the initialization phase. 
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2. Identify the paths with least travel time (i.e. fastest) for each OD pair using the 

Dijkstra’s algorithm (Dijkstra 1959) and considering an empty network condition 

which assumes free flow speeds on all the open links in the network. 

3. Estimate an initial set of link flows (
0

v ) by loading the traffic demand for each OD 

pair on its associated shortest path. 

4. Calculate the travel time on each link using the travel time function adopted in this 

model (
1

f( )
a

tc v


 ) and based on the current set of link flows (
1a

v


) and capacities. 

5. Identify the new set of shortest paths for each OD pair based on the new travel times 

( tc ) using Dijkstra’s algorithm. 

6. Estimate a set of auxiliary link flows ( *
v ) by load the traffic demand for each OD pair 

on the new set of shortest paths identified in step 5. 

7. Estimate a new current set of link flows (
a

v ) by averaging (
1a

v


) and ( *
v ) as shown 

in Equation ( 3-1).  This is a single objective optimization problem that can be solved 

using linear optimization for the value of the multiplier ( ). 

*

1
M in f( (1 ))

a a
v v v 


     ( 3-1) 

Where 

a
v  = set of link flows at iteration step ( a ); 

1a
v


 = set of link flows at iteration step ( 1a  ); 

*
v  = set of auxiliary link flows for shortest paths estimated at step ( a ); and 

  = averaging multiplier 
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8. Check convergence of the set of link flows (
a

v ) to the true solution at equilibrium as 

shown in Equation ( 3-2).  If convergence occurs, (
a

v ) is the set of link flows at 

equilibrium at construction milestone ( m ) and the algorithm stops; otherwise, 

counter ( a ) is incremented by 1 and steps 4 through 7 are repeated until 

convergence. 

1 1
M ax(( ) / )

a a a
v v v eps

 
   ( 3-2) 

Where 

eps  = the maximum permissible error. 

3.3.3 Service Disruption Assessment 

The main objective of this phase is to evaluate the overall service disruption of the 

transportation network undergoing reconstruction or rehabilitation works as a result of 

implementing the recommended highway construction plan.  This objective is achieved 

in this model by: (1) calculating the change (i.e. losses or savings) in total network travel 

time at each construction milestone ( m ) based on the links flows (
m

v ) calculated in the 

deterministic traffic assignment phase; and (2) integrating the change in travel time at 

different milestones during the construction duration ( D ) to estimate the overall 

network service disruption ( P ).  In order to complete this service disruption evaluation, 

the following five steps are used (Figure  3-3): 

1. Obtain the link flows at equilibrium (
m

v ) for construction milestone ( m ) from the 

deterministic traffic assignment phase, as described above. 
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2. Estimate the travel time on each link (
l

tc ) by dividing its length by the speed of 

traveling on this link, as shown in Equation ( 3-3).  This travel speed is flow-

dependent and is function of both the link flow and capacity.  The present model 

uses Equation ( 3-4) to calculate these travel speeds (Highway Capacity Manual, 

2000). 

/
l l l

tc len s  ( 3-3) 

1 ( / )

l

l

l l

FS
s

v c






 ( 3-4) 

Where 

l
tc  = travel time on link ( l ); 

l
len  = length of link ( l ); 

l
s  = travel speed on link ( l ); 

l
FS  = free flow speed on link ( l ); 

l
v  = traffic flow on link ( l ); 

l
c  = capacity of link ( l ); and 

 and    = scalar parameters that depend on the type of the link. 

3. Estimate the overall travel time for all travelers (
m

tt ) at equilibrium for construction 

milestone ( m ) using the travel time on each individual link (
l

tc ), as shown in 

Equation ( 3-5). 

1 0

( ).

mvL

m l

l y

tt tc y dy

 

    ( 3-5) 
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Where 

m
tt  = overall travel time on the network at construction milestone ( m ); 

L  = number of the transportation network links; and 

m
v  = set of link flows at construction milestone ( m ) 

4. Estimate the change in travel time (
m

tt ) for all travelers on the network at milestone 

( m ), as shown in Equation ( 3-6).  It should be noted that as described previously, 

the value and tendency of change in (
m

tt ) depends on the progress of construction 

efforts.  On one hand, the incremental post-disaster restoration of repaired links in 

the network over the reconstruction duration ( D ) leads to a gradual reduction in the 

additional travel time (
m

tt ) until full restoration of pre-disaster conditions (
e

tt ) at the 

end of the construction duration ( D ), as shown in Figure  3-2.  On the other hand, 

the dynamic nature of rehabilitation efforts causes the change in travel time (
m

tt ) to 

fluctuate over the duration of the rehabilitation program as the status of network links 

alternates between open, partially open and closed, as shown in Figure  3-2.  Steps 1 

through 4 are repeated to estimate (
m

tt ) for all construction milestones (

1 to m M ). 

1m e m
tt tt tt


    ( 3-6) 

Where 

m
tt  = additional travel time at construction milestone ( m ); and 

0
T  = overall travel time before the start of construction efforts. 
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5. Calculate the overall service disruption (i.e., total change in total network travel time 

in .vehicle hours ) during the construction efforts by integrating the change in 

network travel time (
m

tt ) at different construction milestones ( 1 to m M ) which is 

represented by the area under the curve of (
m

tt ), as shown in Figure  3-2.  This 

area under the curve is estimated as shown in Equation ( 3-7). 

1

M

m m

m

P tt dur


    ( 3-7) 

Where 

P  = the overall network service disruption; 

m
tt  = change in network travel time at construction milestone ( 1m  ); 

M  = number of construction milestones; and 

m
dur  = the length of time between construction milestones ( 1m  ) and ( m ). 

3.4 Evaluation of Model Performance 

Two application examples are analyzed to illustrate the use of the service disruption 

model and demonstrate its capabilities in analyzing the impact of highway construction 

efforts on the functional performance of transportation networks and measuring the 

overall network service disruption experienced by travelers during highway 

reconstruction and rehabilitation projects.  One of these application examples seeks to 

analyze the impact of post-disaster reconstruction efforts on the functional performance 

of the damaged transportation network, while the other example seeks to analyze the 

impact of implementing a highway rehabilitation program on the level of service 

provided by the transportation network. 
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3.4.1 Example 1: Post-Disaster Highway Reconstruction Efforts 

In this application example, the developed service disruption model is used to evaluate 

the impact of post-disaster reconstruction efforts on the performance of a damaged 

transportation networks and measure the expected service disruption during recovery.  

The application example seeks to analyze the performance of the transportation 

Figure  3-4 Map of the damaged transportation network (Memphis, TN) 
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network in Memphis, Tennessee that is assumed to have suffered varying levels of 

structural damages to seven bridges at different locations in the aftermath of an 

earthquake, as shown on the map in Figure  3-4.  The topology of this transportation 

network and the traffic demand are shown in Table  3-1 and Table  3-2, respectively.  

The reconstruction efforts for this damaged transportation network is estimated to 

complete in 180 days and includes eight important milestones at which there is a 

significant change to the status of the damaged transportation network, as shown in 

Table  3-3.  The first milestone (
0

t ) is immediately after the occurrence of the 

earthquake, which caused closure of 14 links on the transportation network during to the 

structural damages in the bridges (Table  3-3).  At each subsequent reconstruction 

milestone, one of the bridges is repaired and the two associated links (in both 

directions) is reintroduced to the network until all links are fully functional at the end of 

the reconstruction duration (
180

t ), as shown in Table  3-3.  The aforementioned data 

were analyzed using the developed model, which was able to evaluate the expected 

impact of reconstruction work (Table  3-3) on the disruption in the level of service 

provided by the damaged transportation network during the post-disaster recovery 

efforts, as shown in Figure  3-5.  The highest level of service disruption is experienced 

immediately after the occurrence of the earthquake and gradually decreases as bridge 

repair efforts progress and closed links are reintroduced to the transportation network 

(Figure  3-5).  For example, the repair of the bridge on links 9 and 55 (east and west 

bounds of US-64) is scheduled to complete on (
20

t ) and the reopening of these roads to
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Table  3-1 Topology of the transportation network in Memphis, TN 

Link Start Node Finish Node 
Speed 
(mph) α β 

Length 
(mile) 

Capacity 
(veh/day) 

0 25 33 45 0.15 4  5.256  33,600 
1 1 32 45 0.15 4  2.808  33,600 
2 22 0 55 0.15 4  6.487  64,800 
3 10 1 45 0.15 4  10.450  33,600 
4 21 10 45 0.15 4  5.904  33,600 
5 24 25 45 0.15 4  11.299  33,600 
6 22 31 45 0.15 4  7.692  33,600 
7 10 22 45 0.15 4  3.499  33,600 
8 19 24 45 0.15 4  3.431  33,600 
9 13 9 45 0.15 4  6.168  33,600 

10 13 11 45 0.15 4  6.894  33,600 
11 14 2 45 0.15 4  1.578  33,600 
12 15 29 45 0.15 4  0.694  33,600 
13 29 14 45 0.15 4  0.447  33,600 
14 2 27 45 0.15 4  5.223  33,600 
15 27 11 55 0.15 4  6.066  64,800 
16 11 30 45 0.15 4  14.795  33,600 
17 6 29 45 0.15 4  3.125  33,600 
18 28 6 45 0.15 4  7.304  33,600 
19 7 27 55 0.15 4  4.048  64,800 
20 26 27 45 0.15 4  7.458  33,600 
21 4 23 55 0.15 4  2.920  64,800 
22 25 1 55 0.15 4  14.396  38,400 
23 24 23 55 0.15 4  1.298  38,400 
24 23 21 55 0.15 4  5.049  64,800 
25 8 22 55 0.15 4  7.242  64,800 
26 21 9 55 0.15 4  3.565  64,800 
27 12 19 45 0.15 4  0.814  33,600 
28 19 4 55 0.15 4  1.083  64,800 
29 20 19 55 0.15 4  1.579  64,800 
30 16 6 55 0.15 4  1.029  64,800 
31 18 7 55 0.15 4  5.750  64,800 
32 17 15 55 0.15 4  0.573  64,800 
33 16 15 55 0.15 4  3.077  64,800 
34 14 12 45 0.15 4  1.170  33,600 
35 3 13 45 0.15 4  2.740  33,600 
36 12 3 45 0.15 4  1.244  33,600 
37 8 11 55 0.15 4  3.672  64,800 
38 9 10 45 0.15 4  4.620  33,600 
39 8 9 55 0.15 4  0.242  64,800 
40 7 2 55 0.15 4  4.092  64,800 
41 7 6 55 0.15 4  1.866  64,800 
42 0 5 55 0.15 4  2.620  64,800 
43 3 4 55 0.15 4  0.813  64,800 
44 2 3 55 0.15 4  0.503  64,800 
45 0 1 55 0.15 4  2.390  38,400 
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Table  3-1 Topology of the transportation network in Memphis, TN (continued) 

Link Start Node Finish Node 
Speed 
(mph) α β 

Length 
(mile) 

Capacity 
(veh/day) 

46 33 25 45 0.15 4  5.256  33,600 
47 32 1 45 0.15 4  2.808  33,600 
48 0 22 55 0.15 4  6.487  64,800 
49 1 10 45 0.15 4  10.450  33,600 
50 10 21 45 0.15 4  5.904  33,600 
51 25 24 45 0.15 4  11.299  33,600 
52 31 22 45 0.15 4  7.692  33,600 
53 22 10 45 0.15 4  3.499  33,600 
54 24 19 45 0.15 4  3.431  33,600 
55 9 13 45 0.15 4  6.168  33,600 
56 11 13 45 0.15 4  6.894  33,600 
57 2 14 45 0.15 4  1.578  33,600 
58 29 15 45 0.15 4  0.694  33,600 
59 14 29 45 0.15 4  0.447  33,600 
60 27 2 45 0.15 4  5.223  33,600 
61 11 27 55 0.15 4  6.066  64,800 
62 30 11 45 0.15 4  14.795  33,600 
63 29 6 45 0.15 4  3.125  33,600 
64 6 28 45 0.15 4  7.304  33,600 
65 27 7 55 0.15 4  4.048  64,800 
66 27 26 45 0.15 4  7.458  33,600 
67 23 4 55 0.15 4  2.920  64,800 
68 1 25 55 0.15 4  14.396  38,400 
69 23 24 55 0.15 4  1.298  38,400 
70 21 23 55 0.15 4  5.049  64,800 
71 22 8 55 0.15 4  7.242  64,800 
72 9 21 55 0.15 4  3.565  64,800 
73 19 12 45 0.15 4  0.814  33,600 
74 4 19 55 0.15 4  1.083  64,800 
75 19 20 55 0.15 4  1.579  64,800 
76 6 16 55 0.15 4  1.029  64,800 
77 7 18 55 0.15 4  5.750  64,800 
78 15 17 55 0.15 4  0.573  64,800 
79 15 16 55 0.15 4  3.077  64,800 
80 12 14 45 0.15 4  1.170  33,600 
81 13 3 45 0.15 4  2.740  33,600 
82 3 12 45 0.15 4  1.244  33,600 
83 11 8 55 0.15 4  3.672  64,800 
84 10 9 45 0.15 4  4.620  33,600 
85 9 8 55 0.15 4  0.242  64,800 
86 2 7 55 0.15 4  4.092  64,800 
87 6 7 55 0.15 4  1.866  64,800 
88 5 0 55 0.15 4  2.620  64,800 
89 4 3 55 0.15 4  0.813  64,800 
90 3 2 55 0.15 4  0.503  64,800 
91 1 0 55 0.15 4  2.390  38,400 
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Table  3-2 Traffic demand (OD pairs) for the transportation network in Memphis, TN (in hundreds, vehicles/day) 

T/F 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

0 0 1 5 5 5 1 4 4 3 3 2 3 5 4 5 5 4 5 2 5 5 3 2 4 4 2 2 3 2 5 1 1 1 1 
1 1 0 5 5 5 1 4 4 3 3 2 3 5 4 5 5 4 5 2 5 5 3 2 4 4 2 2 3 2 5 1 1 1 1 
2 5 5 0 25 25 5 20 20 15 15 10 15 25 20 25 25 20 25 10 25 25 15 10 20 20 10 10 15 10 25 5 5 5 5 
3 5 5 25 0 25 5 20 20 15 15 10 15 25 20 25 25 20 25 10 25 25 15 10 20 20 10 10 15 10 25 5 5 5 5 
4 5 5 25 25 0 5 20 20 15 15 10 15 25 20 25 25 20 25 10 25 25 15 10 20 20 10 10 15 10 25 5 5 5 5 
5 1 1 5 5 5 0 4 4 3 3 2 3 5 4 5 5 4 5 2 5 5 3 2 4 4 2 2 3 2 5 1 1 1 1 
6 4 4 20 20 20 4 0 16 12 12 8 12 20 16 20 20 16 20 8 20 20 12 8 16 16 8 8 12 8 20 4 4 4 4 
7 4 4 20 20 20 4 16 0 12 12 8 12 20 16 20 20 16 20 8 20 20 12 8 16 16 8 8 12 8 20 4 4 4 4 
8 3 3 15 15 15 3 12 12 0 9 6 9 15 12 15 15 12 15 6 15 15 9 6 12 12 6 6 9 6 15 3 3 3 3 
9 3 3 15 15 15 3 12 12 9 0 6 9 15 12 15 15 12 15 6 15 15 9 6 12 12 6 6 9 6 15 3 3 3 3 

10 2 2 10 10 10 2 8 8 6 6 0 6 10 8 10 10 8 10 4 10 10 6 4 8 8 4 4 6 4 10 2 2 2 2 
11 3 3 15 15 15 3 12 12 9 9 6 0 15 12 15 15 12 15 6 15 15 9 6 12 12 6 6 9 6 15 3 3 3 3 
12 5 5 25 25 25 5 20 20 15 15 10 15 0 20 25 25 20 25 10 25 25 15 10 20 20 10 10 15 10 25 5 5 5 5 
13 4 4 20 20 20 4 16 16 12 12 8 12 20 0 20 20 16 20 8 20 20 12 8 16 16 8 8 12 8 20 4 4 4 4 
14 5 5 25 25 25 5 20 20 15 15 10 15 25 20 0 25 20 25 10 25 25 15 10 20 20 10 10 15 10 25 5 5 5 5 
15 5 5 25 25 25 5 20 20 15 15 10 15 25 20 25 0 20 25 10 25 25 15 10 20 20 10 10 15 10 25 5 5 5 5 
16 4 4 20 20 20 4 16 16 12 12 8 12 20 16 20 20 0 20 8 20 20 12 8 16 16 8 8 12 8 20 4 4 4 4 
17 5 5 25 25 25 5 20 20 15 15 10 15 25 20 25 25 20 0 10 25 25 15 10 20 20 10 10 15 10 25 5 5 5 5 
18 2 2 10 10 10 2 8 8 6 6 4 6 10 8 10 10 8 10 0 10 10 6 4 8 8 4 4 6 4 10 2 2 2 2 
19 5 5 25 25 25 5 20 20 15 15 10 15 25 20 25 25 20 25 10 0 25 15 10 20 20 10 10 15 10 25 5 5 5 5 
20 5 5 25 25 25 5 20 20 15 15 10 15 25 20 25 25 20 25 10 25 0 15 10 20 20 10 10 15 10 25 5 5 5 5 
21 3 3 15 15 15 3 12 12 9 9 6 9 15 12 15 15 12 15 6 15 15 0 6 12 12 6 6 9 6 15 3 3 3 3 
22 2 2 10 10 10 2 8 8 6 6 4 6 10 8 10 10 8 10 4 10 10 6 0 8 8 4 4 6 4 10 2 2 2 2 
23 4 4 20 20 20 4 16 16 12 12 8 12 20 16 20 20 16 20 8 20 20 12 8 0 16 8 8 12 8 20 4 4 4 4 
24 4 4 20 20 20 4 16 16 12 12 8 12 20 16 20 20 16 20 8 20 20 12 8 16 0 8 8 12 8 20 4 4 4 4 
25 2 2 10 10 10 2 8 8 6 6 4 6 10 8 10 10 8 10 4 10 10 6 4 8 8 0 4 6 4 10 2 2 2 2 
26 2 2 10 10 10 2 8 8 6 6 4 6 10 8 10 10 8 10 4 10 10 6 4 8 8 4 0 6 4 10 2 2 2 2 
27 3 3 15 15 15 3 12 12 9 9 6 9 15 12 15 15 12 15 6 15 15 9 6 12 12 6 6 0 6 15 3 3 3 3 
28 2 2 10 10 10 2 8 8 6 6 4 6 10 8 10 10 8 10 4 10 10 6 4 8 8 4 4 6 0 10 2 2 2 2 
29 5 5 25 25 25 5 20 20 15 15 10 15 25 20 25 25 20 25 10 25 25 15 10 20 20 10 10 15 10 0 5 5 5 5 
30 1 1 5 5 5 1 4 4 3 3 2 3 5 4 5 5 4 5 2 5 5 3 2 4 4 2 2 3 2 5 0 1 1 1 
31 1 1 5 5 5 1 4 4 3 3 2 3 5 4 5 5 4 5 2 5 5 3 2 4 4 2 2 3 2 5 1 0 1 1 
32 1 1 5 5 5 1 4 4 3 3 2 3 5 4 5 5 4 5 2 5 5 3 2 4 4 2 2 3 2 5 1 1 0 1 
33 1 1 5 5 5 1 4 4 3 3 2 3 5 4 5 5 4 5 2 5 5 3 2 4 4 2 2 3 2 5 1 1 1 0 
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Table  3-3 Impact of post-disaster reconstruction on transportation network status 

Reconstruction 
Milestone Link Route 

Capacity 
(vehicle/day) Speed (mph) 

1 
0

t  

9 US-64 0 0 
14 US-78 0 0 
15 I-240 0 0 
24 I-40 0 0 
26 I-240 0 0 
37 I-240 0 0 
39 I-240 0 0 
55 US-64 0 0 
60 US-78 0 0 
61 I-240 0 0 
70 I-40 0 0 
72 I-240 0 0 
83 I-240 0 0 
85 I-240 0 0 

2 
20

t  
9 US-64 33,600 45 

55 US-64 33,600 45 

3 
50

t  
37 I-240 64,800 55 
83 I-240 64,800 55 

4 
75

t  
39 I-240 64,800 55 
85 I-240 64,800 55 

5 
90

t  
24 I-40 64,800 55 
70 I-40 64,800 55 

6 
120

t  
15 I-240 64,800 55 
61 I-240 64,800 55 

7 
145

t  
26 I-240 64,800 55 
72 I-240 64,800 55 

8 
180

t  
14 US-78 33,600 45 
60 US-78 33,600 45 

traffic is expected to ease the service disruption by almost 90% (from 14.94 to 1.46 

.vehicle hour vehicle ), as shown in Figure  3-5.  The analysis of this example also 

shows that the expected service disruption towards the end of the reconstruction efforts 

is very small compared to the pre-disaster conditions.  For example, travelers are 

expected to suffer an additional travel time of only 0.04 .vehicle hour vehicle  (slightly 

more than two minutes per day on average for each traveler) after 120 days (
120

t ), 

which further decreases to only one minute per day on average for each traveler from    
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(
145

t ) onward, as shown in Figure  3-5.  Finally, the model was able to estimate that a 

total of about 457 million .vehicle hours in overall service disruption is expected to be 

experienced by travelers on this transportation network during the recovery efforts. 

3.4.2 Example 2: Highway Rehabilitation Efforts 

In this application example, the developed service disruption model is used to evaluate 

the impact of a highway rehabilitation program on the functional performance of an 

aging transportation network and measure the expected service disruption during 

rehabilitation efforts.  The application example seeks to analyze the performance of the 

transportation network in Sioux Falls, South Dakota that is assumed to require a 

rehabilitation program of ten projects to upgrade the surface conditions of aging roads.  

Figure  3-6 shows a schematic of this aging network and the location of the links which  
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Figure  3-6 Schematic map of the aging transportation network (Sioux Falls, SD) 
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Table  3-4 Topology of the transportation network in Sioux Falls, SD 

Link Start Node Finish Node 
Speed 
(mph) α β 

Length 
(mile) 

Capacity 
(veh/day) 

1 1 2 60 0.15 4  6.000  25,900 
2 1 3 60 0.15 4  4.000  23,403 
3 2 1 60 0.15 4  6.000  25,900 
4 2 6 60 0.15 4  5.000  4,958 
5 3 1 60 0.15 4  4.000  23,403 
6 3 4 60 0.15 4  4.000  17,111 
7 3 12 60 0.15 4  4.000  23,403 
8 4 3 60 0.15 4  4.000  17,111 
9 4 5 60 0.15 4  2.000  17,783 

10 4 11 60 0.15 4  6.000  4,909 
11 5 4 60 0.15 4  2.000  17,783 
12 5 6 60 0.15 4  4.000  4,948 
13 5 9 60 0.15 4  5.000  10,000 
14 6 2 60 0.15 4  5.000  4,958 
15 6 5 60 0.15 4  4.000  4,948 
16 6 8 60 0.15 4  2.000  4,899 
17 7 8 60 0.15 4  3.000  7,842 
18 7 18 60 0.15 4  2.000  23,403 
19 8 6 60 0.15 4  2.000  4,899 
20 8 7 60 0.15 4  3.000  7,842 
21 8 9 60 0.15 4  10.000  5,050 
22 8 16 60 0.15 4  5.000  5,046 
23 9 5 60 0.15 4  5.000  10,000 
24 9 8 60 0.15 4  10.000  5,050 
25 9 10 60 0.15 4  3.000  13,916 
26 10 9 60 0.15 4  3.000  13,916 
27 10 11 60 0.15 4  5.000  10,000 
28 10 15 60 0.15 4  6.000  13,512 
29 10 16 60 0.15 4  4.000  4,855 
30 10 17 60 0.15 4  8.000  4,994 
31 11 4 60 0.15 4  6.000  4,909 
32 11 10 60 0.15 4  5.000  10,000 
33 11 12 60 0.15 4  6.000  4,909 
34 11 14 60 0.15 4  4.000  4,877 
35 12 3 60 0.15 4  4.000  23,403 
36 12 11 60 0.15 4  6.000  4,909 
37 12 13 60 0.15 4  3.000  25,900 
38 13 12 60 0.15 4  3.000  25,900 
39 13 24 60 0.15 4  4.000  5,091 
40 14 11 60 0.15 4  4.000  4,877 
41 14 15 60 0.15 4  5.000  5,128 
42 14 23 60 0.15 4  4.000  4,925 
43 15 10 60 0.15 4  6.000  13,512 
44 15 14 60 0.15 4  5.000  5,128 
45 15 19 60 0.15 4  3.000  14,565 
46 15 22 60 0.15 4  3.000  9,599 
47 16 8 60 0.15 4  5.000  5,046 
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Table 3-4 Topology of the transportation network in Sioux Falls, SD (continued) 

Link Start Node Finish Node 
Speed 
(mph) α β 

Length 
(mile) 

Capacity 
(veh/day) 

48 16 10 60 0.15 4  4.000  4,855 
49 16 17 60 0.15 4  2.000  5,230 
50 16 18 60 0.15 4  3.000  19,680 
51 17 10 60 0.15 4  8.000  4,994 
52 17 16 60 0.15 4  2.000  5,230 
53 17 19 60 0.15 4  2.000  4,824 
54 18 7 60 0.15 4  2.000  23,403 
55 18 16 60 0.15 4  3.000  19,680 
56 18 20 60 0.15 4  4.000  23,403 
57 19 15 60 0.15 4  3.000  14,565 
58 19 17 60 0.15 4  2.000  4,824 
59 19 20 60 0.15 4  4.000  5,003 
60 20 18 60 0.15 4  4.000  23,403 
61 20 19 60 0.15 4  4.000  5,003 
62 20 21 60 0.15 4  6.000  5,060 
63 20 22 60 0.15 4  5.000  5,076 
64 21 20 60 0.15 4  6.000  5,060 
65 21 22 60 0.15 4  2.000  5,230 
66 21 24 60 0.15 4  3.000  4,885 
67 22 15 60 0.15 4  3.000  9,599 
68 22 20 60 0.15 4  5.000  5,076 
69 22 21 60 0.15 4  2.000  5,230 
70 22 23 60 0.15 4  4.000  5,000 
71 23 14 60 0.15 4  4.000  4,925 
72 23 22 60 0.15 4  4.000  5,000 
73 23 24 60 0.15 4  2.000  5,079 
74 24 13 60 0.15 4  4.000  5,091 
75 24 21 60 0.15 4  3.000  4,885 
76 24 23 60 0.15 4  2.000  5,079 

need to be upgraded (highlighted in red dashed lines), while the topology and traffic 

demand of the network are shown in Table  3-4 and Table  3-5, respectively.  The roads 

are assumed to be partially open for traffic during rehabilitation efforts, as one lane will 

be closed at a time and speed limits will be decreased to maximize the safety of work 

zones.  This rehabilitation program is expected to take 24 months to complete and 

includes 12 important milestones at which significant changes to the status of the 

network occur, as shown in Table  3-6.  The first milestone (
0

t ) is at the onset of the  
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Table  3-5 Traffic demand (OD pairs) for the transportation network in Sioux Falls, SD (vehicles/day) 

T/F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 0 100 100 500 200 300 500 800 500 1300 500 200 500 300 500 500 400 100 300 300 100 400 300 100 

2 100 0 100 200 100 400 200 400 200 600 200 100 300 100 100 400 200 0 100 100 0 100 0 0 

3 100 100 0 200 100 300 100 200 100 300 300 200 100 100 100 200 100 0 0 0 0 100 100 0 

4 500 200 200 0 500 400 400 700 700 1200 1400 600 600 500 500 800 500 100 200 300 200 400 500 200 

5 200 100 100 500 0 200 200 500 800 1000 500 200 200 100 200 500 200 0 100 100 100 200 100 0 

6 300 400 300 400 200 0 400 800 400 800 400 200 200 100 200 900 500 100 200 300 100 200 100 100 

7 500 200 100 400 200 400 0 1000 600 1900 500 700 400 200 500 1400 1000 200 400 500 200 500 200 100 

8 800 400 200 700 500 800 1000 0 800 1600 800 600 600 400 600 2200 1400 300 700 900 400 500 300 200 

9 500 200 100 700 800 400 600 800 0 2800 1400 600 600 600 900 1400 900 200 400 600 300 700 500 200 

10 1300 600 300 1200 1000 800 1900 1600 2800 0 4000 2000 1900 2100 4000 4400 3900 700 1800 2500 1200 2600 1800 800 

11 500 200 300 1500 500 400 500 800 1400 3900 0 1400 1000 1600 1400 1400 1000 100 400 600 400 1100 1300 600 

12 200 100 200 600 200 200 700 600 600 2000 1400 0 1300 700 700 700 600 200 300 400 300 700 700 500 

13 500 300 100 600 200 200 400 600 600 1900 1000 1300 0 600 700 600 500 100 300 600 600 1300 800 800 

14 300 100 100 500 100 100 200 400 600 2100 1600 700 600 0 1300 700 700 100 300 500 400 1200 1100 400 

15 500 100 100 500 200 200 500 600 1000 4000 1400 700 700 1300 0 1200 1500 200 800 1100 800 2600 1000 400 

16 500 400 200 800 500 900 1400 2200 1400 4400 1400 700 600 700 1200 0 2800 500 1300 1600 600 1200 500 300 

17 400 200 100 500 200 500 1000 1400 900 3900 1000 600 500 700 1500 2800 0 600 1700 1700 600 1700 600 300 

18 100 0 0 100 0 100 200 300 200 700 200 200 100 100 200 500 600 0 300 400 100 300 100 0 

19 300 100 0 200 100 200 400 700 400 1800 400 300 300 300 800 1300 1700 300 0 1200 400 1200 300 100 

20 300 100 0 300 100 300 500 900 600 2500 600 500 600 500 1100 1600 1700 400 1200 0 1200 2400 700 400 

21 100 0 0 200 100 100 200 400 300 1200 400 300 600 400 800 600 600 100 400 1200 0 1800 700 500 

22 400 100 100 400 200 200 500 500 700 2600 1100 700 1300 1200 2600 1200 1700 300 1200 2400 1800 0 2100 1100 

23 300 0 100 500 100 100 200 300 500 1800 1300 700 800 1100 1000 500 600 100 300 700 700 2100 0 700 

24 100 0 0 200 0 100 100 200 200 800 600 500 700 400 400 300 300 0 100 400 500 1100 700 0 
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Table  3-6 Impact of rehabilitation program on transportation network status 

Rehabilitation Milestone Link 
Capacity 

(vehicle/day) 
Speed 
(mph) 

1 
0

t  Month 0 
20 6,958 45 
26 3,921 45 
29 2,428 45 

2 
6

t  Month 6 
19 7,842 60 
20 2,450 45 

3 
7

t  Month 7 
25 13,916 60 
26 6,958 45 

4 
8

t  Month 8 
29 4,855 60 
48 2,428 45 

5 
10

t  Month 10 19 4,899 60 

6 
11

t  Month 11 74 2,546 45 

7 
12

t  Month 12 25 13,916 60 

8 
13

t  Month 13 17 3,921 45 

9 
15

t  Month 15 
39 4,855 60 
48 2,546 45 

10 
20

t  Month 20 
16 5,092 60 
17 7,842 60 
74 2,450 45 

11 
22

t  Month 22 39 5,092 60 

12 
24

t  Month 24 16 4,899 60 

rehabilitation program when upgrade efforts start for links 20, 26 and 29 bringing about 

significant changes to the capacity and speed limit of these roads (Table  3-6).  The 

subsequent milestones bring about similar changes to the status of the transportation 

network until upgrade works are completed for all links at (
24

t ), which represents the 

end of the 24th month of the rehabilitation program, as shown in Table  3-6. 

These network and rehabilitation data were analyzed using the newly developed service 

disruption model that was able to evaluate the expected impact of the rehabilitation 

schedule (Table  3-6) on the disruption in the level of service provided by this aging 

transportation network during the rehabilitation efforts, as shown in Figure  3-7.  The 
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analysis of this example shows that the level of service disruption experienced by 

travelers is expected to fluctuate over the duration of the rehabilitation program with the 

changes in the status of the transportation network at each milestone (Figure  3-7).  For 

example, the highest level of service disruption is expected to occur during months 9 

and 10 of the rehabilitation program when surface upgrade works are planned for links 

19, 25 and 48.  Similarly, working on only one road (link 16) during the last two months 

(23 and 24) of the rehabilitation program is expected to yield the lowest travel delay, as 

shown in Figure  3-7.  Finally, the model was able to estimate that a total of about 14.5 

million .vehicle hours  in travel delay is expected to be experienced by travelers on this 

aging transportation network over two years of rehabilitation efforts. 
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Figure  3-7 Performance of the transportation network during post-disaster 
reconstruction efforts 
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3.5 Summary 

A highway service disruption model was developed to support measuring and 

evaluating the expected disruption in the level of service provided by aging 

transportation networks during highway reconstruction and rehabilitation projects.  The 

model is capable of analyzing the impact of construction projects and their dynamic 

nature on the functional performance of aging transportation networks during 

reconstruction and rehabilitation efforts.  This model also incorporates a deterministic 

travel assignment algorithm in order to facilitate considering the impact of individualistic 

rationality of travelers in selecting which route/detour to use at different phases of the 

construction efforts.  The developed model is therefore capable of portraying the 

functional performance of aging transportation and identifying level of service disruption 

experienced by road users as a result of implementing specific reconstruction plans or 

rehabilitation programs.  In order to evaluate the performance of the developed model, 

two application examples are analyzed to illustrate the use of the model and 

demonstrate its capabilities in analyzing the impact of highway construction on the 

functional performance of transportation networks.  The analysis of these application 

examples illustrate the capabilities of the developed model in assessing the service 

disruption in aging transportation networks, including: (1) considering the dynamic 

nature of construction operations and activities and identifying their expected impact on 

the functional performance of aging transportation networks during reconstruction and 

rehabilitation efforts; (2) accounting for the individualistic rationality of travelers in 

choosing which route/detour to use to reach their destinations; and (3) evaluating the 

overall loss/savings in network travel time of the aging transportation network during 
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highway reconstruction and rehabilitation efforts.  These new and unique capabilities of 

the developed model should prove useful to decision makers and planners in 

departments of transportation (DOTs) and should contribute to planning and optimizing 

highway reconstruction and rehabilitation efforts, as will be described in the following 

chapters of this study. 
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CHAPTER 4                                                                
OPTIMIZING POST-DISASTER RECONSTRUCTION OF 

DAMAGED HIGHWAYS 

4.1 Introduction 

This chapter discusses planning and optimizing post-disaster reconstruction efforts of 

damaged transportation network in order to identify the reconstruction plan(s) that 

minimize both network service disruption and public expenditures on reconstruction 

costs simultaneously.  To this end, this chapter presents the development of two new 

models for planning reconstruction efforts that are capable of: (1) allocating limited 

reconstruction resources to competing recovery projects; and (2) generating optimal 

recovery plans that simultaneously minimize network service disruption and 

reconstruction cost.  The following sections describe the development of these two 

models and the analysis of an application example to evaluate their performance. 

4.2 Resource Utilization Model 

The main purpose of this model is to allocate limited reconstruction resources to 

competing projects and generate a schedule for the reconstruction efforts of the 

damaged transportation network.  The model is designed to take into consideration the 

potential change in resource availability levels over time.  The allocation process 

therefore utilizes two sets of data: (1) reconstruction data, including the scope of 

reconstruction work needed and the available reconstruction resources; and (2) a 

specified set of decision variables, including the prioritization of reconstruction projects, 

assignment of projects to interested contractors, and overtime policy adopted in each 
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project, as shown in Figure  4-1.  In order to achieve this objective, the model allocates 

the limited reconstruction resources among the competing projects using a three-level 

allocation process: (1) contractor level; (2) project level; and (3) activity level, as shown 

in Figure  4-1. 

4.2.1 Contractor Level 

The main purpose of this level in the resource utilization model is to organize the scope 

of reconstruction work data and resource availability data into a set of smaller and more 

manageable work packages, as shown in Figure  4-2.  The number of these work 

packages is lesser than or equal to the number of interested qualified contractors ( X ), 

to which these packages are assigned according to the specified contractor assignment.  

The data integrated in each work package ( x ) from the reconstruction data includes the 

projects assigned to contractor ( x ) and the reconstruction resources data which are 

available in the contractor’s resource pool, as shown in Figure  4-2.  These 

reconstruction data include: (1) scope of work which represents the planned 

RESOURCE UTILIZATION 

MODEL

Contractor Level

Project Level

Activity Level

RECONSTRUCTION DATA

Scope of Work

Available Resources

INPUT

DECISION VARIABLES

Project Prioritization

Contractor Assignment

Overtime Policy

OUTPUT

RECOVERY SCHEDULE

US-67

I-240 WB

I-40 EB

I-240 EB

I-40 WB

0 30 60 90 120 150 180 210

P1

P2

P3

P4

P5

Figure  4-1 Resource utilization model 
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reconstruction activities in each project, their job logic, and resource requirements; and 

(2) available resources data which specifies the resources availability dates, productivity 

rates, and unit costs (see Figure  4-2). 

4.2.2 Project Level 

The main purpose of the project-level resource utilization is to assign the reconstruction 

resources available in work package ( x ) to the competing projects assigned to 

contractor ( x ).  This resource assignment process is performed according to the 

following set of rules and assumptions: 

 reconstruction resources are deployed to projects according to the priorities of 

these projects; 

 reconstruction projects can start with fewer resources than required and obtain 

their full requirements at a later stage as additional resources become available; 

 reconstruction projects cannot be interrupted once started to avoid the high 

Figure  4-2 Contractor-level resource utilization 

RECONSTRUCTION DATA

SCOPE OF WORK

PLANNED ACTIVITIES

JOB LOGIC

RESOURCE REQUIREMENTS

AVAILABLE RESOURCES

RESOURCE AVAILABILITY

PRODUCTIVITY RATES

RESOURCE UNIT COSTS

DECISION VARIABLES

CONTRACTOR
ASSIGNMENT

CONTRACTOR-LEVEL RESOURCE UTILIZATION

Package (X)

Project 3

Project 6

Project N

Contractor X
Resource Pool

Package (…)

Project ...

Project ...

Project ...

Contractor ...
Resource Pool

Package (2)

Project 1

Project 5

Project n

Contractor 2
Resource Pool

Package (1)

Project 2

Project 4

Project 7

Contractor 1
Resource Pool



 

72 

mobilization and demobilization costs of moving construction resources between 

post-disaster reconstruction projects that are typically spread over a large 

geographical area; 

 activity durations, and hence project durations, can extend or shrink based on the 

number and availability of the resources assigned to each activity; and 

 resources are released from a project once they are no longer needed. 

The resource utilization model uses the four-step procedure outlined in Figure  4-3 to 

perform the resource utilization process at the project-level.  These steps are as follows: 

1. Select the unscheduled project with highest priority ( n ) from the reconstruction 

projects of work package ( x ). 

2. Deploy to project ( n ) its resource requirements from the resource pool of work 

Project-Level Resource Utilization

Start

End

Select the
unscheduled project with 

highest priority (n)

Deploy available 
resources to project (n)

Activity-Level Resource Utilization

Assign activity ranks (a) based on 

precedence information of project (n)

a = 1

Stage (1) – Create resource profile for 
resource needed for activity (a)

Stage (2) – Hold earliest crews of 
resource needed for activity (a)

Stage (3) – Schedule activity (a) by 

identifying STa, da, and FTa (Figs. 4,5,6)

Stage (4) – Release held crews after 
completion of activity (a)

a = a + 1a = A

Last 
Project

Calculate
schedule for project (n)

Redeploy resources 
assigned to project (n)

(1)

(2)

(3)

(4)

Yes No
Yes

No

Figure  4-3 Project- and activity-level resource utilization 
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package ( x ) based on the availability of these resources.  If the required resources 

are not immediately available, the related reconstruction work is suspended until 

resources are released from other ongoing projects. 

3. Calculate the schedule of project ( n ), which involves the utilization of the resources 

deployed to project ( n ) at the activity level, as shown in Figure  4-3 and described 

later in the activity level section. 

4. Redeploy the resources assigned to project ( n ) after they complete their work on 

the project to the resource pool of work package ( x ). These released resources are 

then made available to other projects in the same package.  

This procedure is repeated until all the reconstruction projects of work package ( x ) are 

scheduled.  However, in order to facilitate the application of this procedure and to satisfy 

the above rules and assumptions, the deployment and utilization of the available 

resources among the reconstruction projects of work package ( x ) need to be 

accurately planned and monitored.  This includes the ability to identify the location and 

availability of each of these resources at any time.  Accordingly, the present utilization 

model monitors the movement of each resource using a separate tracking sheet for 

each resource, as shown in Figure  4-4.  These tracking sheets enable the model to 

identify the location and availability times of each crew for different resources.  

4.2.3 Activity Level 

The main purpose of the activity-level resource utilization is to calculate the schedule of 

each reconstruction project ( n ).  This is achieved by assigning the available resources 

to the individual activities of this project and calculating their schedule accordingly.  To 
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clarify this process, Figure  4-4 illustrates how the activity-level resource utilization is 

used to schedule an example activity ( a ) that has a total quantity of 8740 CY of bulk 

excavation and needs to be completed using a maximum number of four crews of B-

12F.  The activity scheduling procedure is shown in Figure  4-3 and described as 

Stage (1) – Creating resource profile:

1 2 3 4 5 6 7

37 21 25 41 29 33 21

Crew 
Number

Day 
Available

Day

Crew Count

Crew 
Number

Interval

21 25 29 33 37 41

2 1 1 1 1 1

2 3 5 6 1 4

7

1 2 3 4 5

Stage (2) – Holding needed crews:

1 2 3 4 5 6 7

37 -- -- 41 -- 33 --

Crew 
Number

Day 
Available

Day

Crew Count

Crew 
Number

Interval

21 25 29 33 37 41

2 1 1 1 1 1

2 3 5 6 1 4

7

1 2 3 4 5

Stage (3) – Calculating activity duration (da):

3 3 3 3 3

5
257 257 257 257 514

S
h

if
t 
1

Output

α1=1.0

Alloc. 

Crews

S
h

if
t 
2

Output

α2=0.71
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2
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2
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2
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720 720 720 720 720 720 720 720 720 720

Day 21 22 23 24 25 26 27 28 29 30

FS

0

STa

FTa

STa-1

FTa-1

a

30

21

a-1
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12

Stage (4) – Releasing held crews:

1 2 3 4 5 6 7

37 31 30 41 30 33 31

Crew 
Number

Day 
Available

Day

Crew Count

Crew 
Number

Interval

30 31 33 37 41

2 2 1 1 1

3 2 6 1 4

5

1 2 3 4

7

Seven crews are available from 

this resource
Bulk Excavation
Qty: 8740 CY

Need: 4 crews of B-12F

Activity (a)
Hydraulic Excavator (0.75 CY)

and 2 Equipment Operators
Productivity: 360 CY / day

Resource (B-12F)

Figure  4-4 Resource tracking sheet and example of activity scheduling 
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follows: 

 Assign a rank ( 1 to a A ) to each activity in project ( n ) to represent its order of 

execution based on the precedence relationships and job logic in the project.  If 

two or more activities can be executed concurrently; their ranks are assigned by 

giving lower ranks (i.e., earlier execution order) to activities with the earliest late 

start.  If a tie still exists, activity ordering will be based on subsequent priority 

rules such as least total float and the alphanumeric order of their IDs. 

 Deploy the available resources to the project activities according to their ranks 

and calculate the schedule of these activities.  The resource tracking sheets 

described above are used to monitor the deployment and redeployment of 

resources among the activities.  In order to complete this task, the four-stage 

process shown in Figure  4-3 is used for each activity ( a ), as follows: 

Stage (1) – Create resource profile 

The resource tracking sheet is used to create a resource profile for the available crews 

needed for activity ( a ).  The purpose of this resource profile is to facilitate the 

processes of holding and releasing the required crews by grouping these crews based 

on their availability dates.  For example, Figure  4-4 shows the tracking sheet for the 

seven available crews of resource B-12F which can be used for the execution of the 

bulk excavation of activity ( a ).  The earliest availability date for this resource is day 21 

when crews number 2 and 7 become available; whereas the remaining crews become 

available between days 25 and 41, as shown in Figure  4-4. 
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Stage (2) – Hold needed crews 

In this stage, a hold is placed on the earliest available crews of the resource needed for 

the completion of activity ( a ) based on the resource requirements of this activity.  For 

example, if activity ( a ) needs two crews per shift and is planned to work for two 10-hour 

shifts per day, this adds up to a total of four crews required for this activity per day.  

Accordingly, the present model places a hold on crew numbers 2, 7, 3 and 5, which are 

planned to become available on days 21, 25, and 29 of the reconstruction efforts, as 

shown in Figure  4-4. 

Stage (3) – Schedule the current activity 

The calculation of activity ( a ) schedule should consider a number of factors that have a 

direct impact on identifying when to start the activity and how long it takes to finish this 

activity.  These factors include: (1) the quantity of reconstruction work needed to 

complete this activity (
a

q ); (2) the availability of the reconstruction crews held for 

activity ( a ); and (3) the overtime policy adopted.  As described earlier, the availability of 

reconstruction crews can vary over time and therefore the number of crews available at 

da(k+1)durationk

t

t0 tk-1 tk+1 tK

STa (activity start date)

tk

Interval (k)

1

1

S

ak a aks s

s

S

ak aks

s

r p nc

nc nc






 







Crews Productivity during interval (k)

profilek

FTa (activity finish date)

qa (activity quantity)

da(k+1)

x

rk+1

ncak (number of crews available 
during interval (k))

 da (activity duration)

Figure  4-5 Activity scheduling process 
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the start date (
a

ST ) of an activity can be fewer than its requirements and increase over 

time until full resource requirements become available, as shown in Figure  4-5.  

Similarly, the overtime policy adopted for each reconstruction project imposes different 

productivity rates for the crews working in different shifts.  In order to account for these 

varying productivity levels due to resource availability and adopted overtime policy, the 

resource utilization model employs a newly developed process to identify the three 

scheduling variables for each activity ( a ): start date (
a

ST ), duration (
a

d ), and finish 

date (
a

FT ), as shown in Figure  4-5.  In this process, the activity duration (
a

d ) is 

estimated to cover a number of resource availability intervals ( 1 to k K ) that 

represent varying levels of resource availability over the activity duration, where the 

number of available crews at each interval ( k ) can be represented by (
ak

nc ), as shown 

in Figure  4-5.  This process then estimates and accumulates the amount of 

reconstruction work that can be completed during each interval until the total activity 

quantity (
a

q ) has been completed.  Figure  4-6 shows a flowchart for this process, which 

can be described as follows: 

1. Identify the activity start date (
a

ST ) which is calculated as the latest of: (i) the earliest 

start date imposed by the job logic and the precedence relationships in the project; 

and (ii) the earliest availability date of the crews held for activity ( a ) as described in 

the previous stage.  According to the job logic of the example shown in Figure  4-4, 

activity ( a ) can start immediately after activity ( 1a  ) finishes on day 18; however, 

the start date (
a

ST ) of this activity is set to day 21 when crews 2 and 7 become 

available. 
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2. Initialize the estimating of activity duration (
a

d ) by setting all variables to their initial 

values, including current interval ( 1k  ) and initial duration ( 0
a

d  ). 

3. Identify the total number of crews available for activity ( a ) during the current interval 

(
ak

nc ) by adding the number of crews that became available at the beginning of 

interval ( k ) according to the resource profile (see Figure  4-5): 

( 1)ak a k k
nc nc profile


   ( 4-1) 

where, 

ak
nc   = number of crews allocated to activity ( a ) during interval ( k ) 

( 1)a k
nc


 = number of crews allocated to activity ( a ) during interval ( 1k  ) 

k
profile  = number of crews that become available during interval ( k ) 

4. Estimate the duration of current interval ( k ), i.e. how long these crews (
ak

nc ) would 

be available  before the availability changes: 

1k k

k

t t
duration




 


if ( )

if ( )

k K

k K




 ( 4-2) 

where, 

k
duration  = duration of interval ( k ) 

1k
t

  
= start date of interval ( 1k  ) 

k
t  = start date of interval ( k ) 

K  = total number of intervals in the crew availability profile 
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5. Allocate the total number of available crews (
ak

nc ) to the shifts working on activity    

( a ) during interval ( k ) while giving priority to regular shifts in order to maximize 

productivity and minimize overtime costs. 

6. Estimate the total productivity (
ak

r ) of the crews allocated in step (5): 

Start

End

Yes

Calculate finish time (FTa)

k = k +1
(10)

qa ≤ 0

Update (da) and (qa)

No

(9)

(11)

Identify start date (STa)(1)

Identify available crews (ncak)

(4)
k = K durationk = durationk = tk+1 - tk

YesNo

Allocate (ncak) to working shifts

Estimate productivity (rak)

Estimate remaining duration (dak)

(8)
dak ≥ durationk

dak = durationk

Yes

(7)

(6)

(3)

(5)

Initialize duration calculation (da)(2)

No

Figure  4-6 Flowchart for calculating activity schedule 
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1

S

ak a aks s

s

r p nc 


   ( 4-3) 

1

S

ak aks

s

nc nc


 
 

( 4-4) 

where, 

ak
r  = total productivity of crews allocated to activity ( a ) during interval ( k ) 

a
p  = productivity of resources assigned to activity ( a ) during regular shifts 

aks
nc  = number of crews allocated to shift ( s ) of activity ( a ) during interval ( k ) 

s
  = productivity adjustment factor for crews working on shift ( s ) 

S  = total number of shifts working on activity ( a ) 

7. Estimate the remaining duration required to complete activity ( a ) based on the 

productivity of allocated crews during interval ( k ): 

ak a ak
d q r  ( 4-5) 

where, 

ak
d  = remaining duration required to complete activity ( a ) based on the 

productivity of crews allocated during interval ( k ) 

a
q  = remaining quantity of work needed to complete activity ( a ) 

8. Compare (
ak

d ) and (
k

duratrion ) to identify the length of interval ( k ) duration that 

should be included in activity duration (
a

d ):  

ak k

ak k

d duration
d duration

 
 



False

True go to step (9)
 ( 4-6) 

9. Update the activity duration and remaining quantity: 
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a a ak ak
q q d r    ( 4-7) 

a a ak
d d d   ( 4-8) 

where, 

a
d  = duration of activity ( a ) 

10. Check the remaining quantity to complete activity ( a ): 

1
0

a

k k
q

  
 



False repeat steps (3) through (10)

True go to step (11)
 ( 4-9) 

11. Calculate the finish date of activity ( a ): 

a a a
FT ST d   ( 4-10) 

Stage (4) – Release held crews 

The reconstruction crews held in stage (2) for the completion of activity ( a ) are 

released in this stage for further deployment in the successor activities.  In order to 

release these crews, the present model updates the tracking sheet of these crews 

according to the finish date (
a

FT ) of activity ( a ) estimated in previous stage.  In the 

example shown in Figure  4-4, activity ( a ) is planned to finish on day 30 of the 

reconstruction efforts and accordingly the availability dates of the held crews are 

updated to day 31 for crews 2 and 7, and day 30 for crews 3 and 5 on both the resource 

tracking sheet and resource profile.   

In order to complete the scheduling process, the present resource utilization model 

calculates the schedule of each reconstruction project and integrates all project 
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schedules into an overall recovery schedule.  This includes: (1) performing CPM 

calculations for each recovery project according to its job logic; (2) calculating activity 

total and free floats; (3) identifying the critical paths on both the project and global 

levels; and (4) estimating recovery project durations (
n

d ). It should be noted that these 

project schedules are calculated in working days and accordingly they need to be 

converted to calendar days to facilitate their utilization by planners.  In this model, the 

working days duration of a recovery project ( n ) are converted to calendar days using 

Equation ( 4-11). Similarly, Equation ( 4-11) can be used to convert start and finish dates 

of recovery projects from working to calendar dates.  It should be noted that estimating 

these schedule information facilitates identifying all significant completion milestones 

that may have an impact on the functional performance of damaged transportation 

networks during the reconstruction process.  This reconstruction schedule and its 

important milestones are input to the service disruption model to analyze the behavior of 

the transportation network during the reconstruction phase and estimate the expected 

loss in total network travel time over the same period, as described in the previous 

chapter. 

   int 7 mod
c

n n n n n
d d W d W    ( 4-11) 

where, 

c

n
d  = duration of project ( n ) in calendar days 

n
d  = duration of project ( n ) in working days 

n
W  = number of working days per week for project ( n ) 
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4.3 Multi-Objective Optimization Model 

The main objective of this model is to optimize post-disaster reconstruction efforts in 

order to satisfy the societal needs of minimizing network service disruption and 

reconstruction costs.  In order to achieve this objective, the model is designed to identify 

the three main decision variables of: (1) prioritizing the recovery projects; (2) awarding 

these projects to interested qualified contractors; and (3) identifying an overtime policy 

for each of these recovery projects.  As described earlier in the resource utilization 

model, each of these important decision variables has a significant impact on the 

recovery schedule and therefore on the network service disruption and reconstruction 

costs.  Accordingly, this model is designed to generate the optimal project prioritization, 

contractor assignment, and overtime policy combination(s) that simultaneously 

minimizes: (1) the overall disruption to the level of service provided by the damaged 

transportation network during post-disaster reconstruction efforts; and (2) the public 

expenditures on reconstruction efforts. 

The reconstruction costs considered in the present study are the direct ( DC ) and 

indirect ( IC ) costs, as shown in Equation ( 4-12).  The direct costs include the costs of 

construction resources used to complete the reconstruction works, as shown in 

Equation ( 4-13).  The overtime policy adopted in each recovery project has a significant 

impact on the direct costs since working for extended hours and/or multiple shifts 

requires payment of premiums and can affect the productivity of crews which in turn has 

a significant impact on effective labor cost, as shown in Equation ( 4-14).  Similarly, the 

indirect costs include the time-dependent cost such as site overhead, which depends on 
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the duration of each recovery project and the contractor’s indirect cost rates, and can be 

calculated using Equation ( 4-15). 

1

N

n n

n

C DC IC


   ( 4-12) 

1 1 1

A A A

n a a a a a a

a a a

DC m mc d lc d ec
  

         ( 4-13) 

1

S

a a a s

s

lc nc c 


  
 

( 4-14)

 

n n n
IC D ic 

 

( 4-15) 

where, 

C  = reconstruction cost 

n
DC  = direct reconstruction costs of project ( n ) 

n
IC  = indirect reconstruction costs of project ( n ) 

a
m  = quantity of material required for activity ( a ) 

a
m c  = unit cost of material required for activity ( a ) 

a
d  = duration of activity ( a ) 

a
lc  = daily labor cost rate for the crew(s) assigned to activity ( a ) 

a
ec  = daily equipment cost rate for the crew(s) assigned to activity ( a ) 

a
nc  = number of crews assigned to activity ( a ) 

a
c  = cost of labor for a single crew assigned to activity ( a ) during regular shift 
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s
  = cost adjustment factor for shift ( s ) which accounts for additional overtime 

costs, if any  

n
ic  = daily indirect costs rate for project ( n ) 

This optimization model is equipped with a multi-objective genetic algorithm (Deb et al 

2001) that operates as an engine for the optimization of the post-disaster reconstruction 

planning process.  The main purpose of this multi-objective genetic algorithm (GA) is to 

identify the set(s) of relevant reconstruction planning variables that provide the 

optimal/near optimal pairs of reconstruction duration and cost.  Each of these variable 

sets represents a solution to the current problem and identifies: (1) the project 

prioritization, (2) contractor assignment, and (3) overtime policy.  The GA starts by 

generating a population of (Y ) random solutions and pass them to the resource 

utilization model in order to calculate the recovery schedule and estimate the 

reconstruction duration for each solution ( y ), as shown in Figure  4-7.  These recovery 

schedules are used to estimate: (1) the expected disruption to the service provided by 

the damaged transportation network for each schedule, as described in the previous 

chapter and using Equation ( 3-7); and (2) the total reconstruction costs for each solution 

( y ) using Equation ( 4-12).  The GA uses the fitness of each solution in the population, 

in terms of satisfying the planning objectives of minimizing both the network service 

disruption and reconstruction costs, to rank and sort these solutions, as shown in Figure 

 4-7.  The genetic operations of selection, crossover and mutation are then applied on 

the best solutions to generate a new population of solutions that are closer to the 

optimal solution (see Figure  4-7).  This series of operations are iteratively repeated for a 
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predefined number of generations until convergence to the optimal solution and the 

optimal/near optimal set of planning variables is extracted from the final population. 

4.4 Performance Evaluation 

An application example is analyzed to evaluate the performance of the developed 

models, illustrate their use, and demonstrate their capabilities in allocating the 

reconstruction resources to competing recovery projects and optimizing the 

reconstruction efforts of damaged transportation networks after natural disasters.  The 

example seeks to optimize the reconstruction work for a damaged transportation 

network after an earthquake.  In order to evaluate the performance of the developed 
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Figure  4-7 Multi-objective optimization model for post-disaster reconstruction efforts 
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models in a real-life setting, the transportation data analyzed by the application example 

are based on the real transportation network data of Shelby County, Tennessee, as 

shown in Figure  3-4.  The damage data is assumed to model the potential damage that 

may occur in this transportation network following an earthquake.  Figure  3-4 shows the 

topology of the transportation network including the main traffic loading/unloading points 

and the road segments connecting them; and the locations of seven bridges which are 

assumed to suffer varying levels of damages ranging from moderate to severe/collapse.  

In this example, the developed resource utilization and multi-objective optimization 

models are used to support decision makers and planners in identifying three key 

reconstruction decisions: (1) project prioritization; (2) contractor assignment; and (3) 

overtime policy.  The two main planning objectives in this problem are: (1) minimizing 

the network service disruption of the damaged transportation network during the 

reconstruction period and (2) minimizing the total reconstruction costs.  The model 

requires the user to specify and input the following data: (1) the reconstruction projects 

data including planned activities, quantities, number and type of crews required, and the 

closed links and their average daily traffic (ADT), as shown in Table  4-1; (2) the 

available resource data submitted by interested contractors including the number of 

crews available for each resource, normal productivity rates, normal labor and 

equipment cost rates, indirect cost rates for each project, and material costs for each 

project, as shown in Table  4-2; (3) the overtime policy options including the number of 

working hours for each option, the number of daily shifts, and the impact of each option 

on construction productivity and cost, as shown in Table  4-3; (4) the topology data of 

the damaged transportation network, as shown in Figure  3-4 and Table  3-1; and (5) the
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Table  4-1 Project resource requirements 

   
Project 1 Project 2 Project 3 Project 4 Project 5 Project 6 Project 7 

IDS of closed links 18, 19 28, 29 30, 31 48, 49 52, 53 74, 75 78, 79 

Affected ADT (veh/day) 40,605 55,844 91,196 102,630 49,524 57,138 80,931 

Number of activities 12 6 12 6 4 12 5 

Activity Resource Unit Qty 
# 

Crews Qty 
# 

Crews Qty 
# 

Crews Qty 
# 

Crews Qty 
# 

Crews Qty # Crews Qty 
# 

Crews 

A B-8 CY 4,060 1 
  

1,280 1 
  

    6,600 1     

B B-10M CY 11,150 1 
  

3,520 1 
  

    18,150 1     

C B-19A LF 700 1 
  

220 1 
  

    1,140 1     

D B-12F CY 9,640 5 
  

3,050 2 
  

    15,700 5     

E B-43 Each 20 1 
  

6 1 
  

    33 1     

F C-14C CY 5,770 2 
  

1,820 1 
  

    9,400 3     

G C-14A CY 1,000 2 1,720 1 320 1 1,300 1     1,620 2     

H C-14A CY 440 2 760 1 140 1 580 1     720 2 620 1 

I C-14B CY 1,180 2 2,040 1 370 1 1,540 1 1,810 1 1,920 2 1,650 1 

J B-26 SY 2,580 1 4,450 1 820 1 3,360 1 3,960 1 4,200 1 3,610 1 

K B-78 LF 200 1 350 1 60 1 260 1 310 1 330 1 280 1 

L C-2A LF 200 1 350 1 60 1 260 1 310 1 330 1 280 1 
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Table  4-2 Resources availability and cost rates 

    Contractor 1 Contractor 2 Contractor 3 

    Material Costs ($) 
Indirect Costs 

($/day) 
Material Costs ($) 

Indirect Costs 
($/day) 

Material Costs ($) 
Indirect Costs 

($/day) 

Project 1   1,708,256.00 1,800.00 1,708,256.00 1,800.00 1,708,256.00 1,800.00 

Project 2   1,679,200.00 600.00 1,679,200.00 600.00 1,679,200.00 600.00 

Project 3   539,809.00 500.00 539,809.00 500.00 539,809.00 500.00 

Project 4   1,268,642.00 600.00 1,268,642.00 600.00 1,268,642.00 600.00 

Project 5   532,244.00 600.00 532,244.00 600.00 532,244.00 600.00 

Project 6   2,781,041.00 2,300.00 2,781,041.00 2,300.00 2,781,041.00 2,300.00 

Project 7   659,217.00 600.00 659,217.00 600.00 659,217.00 600.00 

Resource Unit Avail. 
Productivity 

(/day) 

Equipment 
Cost 

($/day) 

Labor 
Cost 

($/day) 
Avail. 

Productivity 
(/day) 

Equipment 
Cost 

($/day) 

Labor 
Cost 

($/day) 
Avail. 

Productivity 
(/day) 

Equipment 
Cost 

($/day) 

Labor 
Cost 

($/day) 

B-8 CY 1 11,700.00 3,027.46 1,737.55 1 11,700.00 2,578.07 1,131.05 1 11,700.00 1,584.68 2,016.22 

B-10M CY 1 2,220.00 985.92 260.68 1 2,220.00 1,365.91 284.07 1 2,220.00 1,068.08 270.70 

B-19A LF 1 160.00 1,590.13 2,078.59 1 160.00 1,832.10 2,003.68 1 160.00 2,160.50 1,741.52 

B-12F CY 6 70.00 488.05 518.93 5 70.00 533.54 587.21 4 70.00 405.33 386.92 

B-43 Each 1 5.50 2,505.80 1,334.66 1 5.50 1,664.30 1,142.28 1 5.50 1,496.00 949.90 

C-14C CY 3 40.00 28.88 3,596.28 4 40.00 35.72 3,909.00 3 40.00 34.58 2,470.49 

C-14A CY 6 20.00 760.14 6,505.04 5 20.00 828.12 4,981.34 5 20.00 469.68 4,981.34 

C-14B CY 3 20.00 741.60 5,658.12 3 20.00 432.60 5,658.12 2 20.00 747.78 4,441.32 

B-26 SY 1 1,760.00 2,251.39 3,014.84 1 1,760.00 2,251.39 1,609.43 1 1,760.00 1,940.22 3,060.18 

B-78 LF 1 3,660.00 454.93 1,050.17 1 3,660.00 445.55 1,240.09 1 3,660.00 492.45 1,463.53 

C-2A LF 1 110.00 0.00 1,463.62 1 110.00 0.00 1,612.69 1 110.00 0.00 1,626.24 
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Table  4-3 Overtime policy options 

Option 
Working 
Hours 

 
Shifts/Day 

Productivity 
Adjustment Factor 

Cost 
Adjustment Factor 

1 8 hours/5days 1 100.00% 100.00% 

2 12 hours/5days 1 76.25% 133.30% 

3 24 hours/5days 2 68.75% 153.30% 

4 8 hours/7days 1 88.75% 128.60% 

5 12 hours/7days 1 68.75% 152.40% 

6 24 hours/7days 2 62.00% 175.25% 

traffic demand on this network which can be represented by the OD trip data ( see 

Table  3-2).  The cost data in this example are estimated using the cost rates in the 

Means (2008) and the scope and type of work in each reconstruction project. 

The model was used to analyze the above input data and was able to generate a set of 

optimal reconstruction plans, where each provides an optimal and non-dominated 

tradeoff between minimizing the network service disruption and the reconstruction costs 

(see Figure  4-8).  The results of this analysis confirm that more public expenditures are 

often required to control and minimize the additional travel time during the duration of 

post-disaster reconstruction efforts, as shown in Figure  4-8.  This tradeoff exists 

because minimizing the network service disruption can be accomplished by accelerating 

the reconstruction work in bridges that are used by higher average daily traffic.  This 

acceleration is often associated with additional reconstruction costs due to overtime 

premiums and reduced productivity during overtime hours and/or additional shifts, as 

shown in Table  4-3.  Figure  4-9 shows the significant impact of this acceleration on 

recovering the pre-disaster levels of service of the damaged transportation networks.  

For example, working for multiple shifts per day and changing the priorities of recovery 

projects and their contractor assignments accelerated the reopening of important roads 
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to the public, which in turn reduced network performance loss by 75.76% from 944.512 

veh. hr/veh in Solution 2 to only 228.993 veh. hr/veh in Solution 1 (see Figure  4-9). 

Figure  4-10 shows three solutions from the wide range of optimal solutions generated 

by the model and their associated reconstruction schedules.  Solution 1 provided the 

minimum network service disruption by minimizing the total additional travel time spent 

by travelers on the damaged transportation network compared to pre-disaster levels.  

This was possible by (1) minimizing the duration of all the reconstruction projects by 

working two 12 h shifts per day, as shown in Figure  4-10 and (2) giving higher priority to 

projects that accelerate the completion of bridges that are used by higher ADT.  This 

solution however has the highest reconstruction costs due to the overtime premiums 

and the adverse impact of overtime on construction productivity.  On the other end of 
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the optimal front, Solution 2 provided the lowest possible reconstruction costs by (1) 

avoiding the use of overtime hours or multiple shifts and (2) awarding all the recovery 

projects to contractor 3, which has significantly lower costs than the other competitors.  

This solution however provides the maximum network service disruption mainly due to 

longer reconstruction durations, as shown in Figure  4-10. 

In addition to the two extreme optimal solutions of 1 and 2, the model generated a set of 

optimal reconstruction plans that provide a wide range of tradeoffs between the two 

analyzed optimization objectives, as shown in Figure  4-8.  Planners can analyze these 

optimal solutions and select a reconstruction plan that strikes an optimal balance 

between reducing the network service disruption and the reconstruction costs such as 

Solution 3.  This solution provides a reduction of 72.81% in the network service 

disruption compared to Solution 2 with an increase of only 9.20% in the reconstruction 

Figure  4-9 Recovery of network performance 
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costs.  Similarly, Solution 3 provides a savings of 29.93% in the reconstruction costs 

with an increase of 12.15% in network service disruption compared to Solution 1. 

The analysis of this application example emphasizes the unique and practical 

capabilities of the present models in facilitating the procedure of selecting and 

implementing the reconstruction plan(s) that best serve the societal requirements in the 

aftermath of natural disasters.  It illustrates how these models can be effectively used to 

search for and identify a wide range of optimal plans for reconstructing damaged 

transportation networks in the aftermath of natural disasters.  Each of these plans 

provides a unique and optimal tradeoff between the network service disruption and the 

reconstruction costs, as shown in Figure  4-10.  Decision makers can evaluate these 

generated optimal tradeoffs and select an optimal reconstruction plan that satisfies the 

specific requirements of the reconstruction efforts being planned. 
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4.5 Summary and Conclusions 

Resource utilization and multi-objective optimization models were developed to enable 

an efficient and effective reconstruction process for damaged transportation networks in 

the aftermath of natural disasters.  The newly developed resource utilization model is 

capable of assigning reconstruction resources to the competing reconstruction projects 

according to the project priorities, contractor assignment, and overtime policy.  This 

model is also capable of estimating both the reconstruction duration and cost of various 

optimal reconstruction plans.  In addition, the GA-based multi-objective optimization 

model is capable of optimizing the post-disaster reconstruction efforts in such a way that 

simultaneously minimizes network service disruption and reconstruction cost.  An 

application example is analyzed to evaluate the performance of the developed models, 

illustrate their use and demonstrate their capabilities in generating optimal tradeoffs 

between network service disruption and reconstruction cost.  These capabilities are 

demonstrated in the ability of the developed models to consider a number of practical 

post-disaster reconstruction planning requirements, including: (1) considering the 

impact of the limited availability of resources on scheduling the reconstruction efforts for 

damaged transportation networks; (2) evaluating the service disruption in the damaged 

transportation network during the reconstruction efforts; and (3) optimizing the utilization 

of reconstruction resources to minimize the network service disruption in transportation 

networks while keeping the reconstruction costs to a minimum.  These new and unique 

capabilities of the developed models should prove useful to decision makers and 

planners in emergency management agencies and should contribute to enhancing 

planning of post-disaster reconstruction efforts for damaged transportation networks. 
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CHAPTER 5                                                                
OPTIMIZING HIGHWAY REHABILITATION PROJECTS 

5.1 Introduction 

This chapter focuses on planning and optimizing highway rehabilitation efforts of aging 

transportation networks in order to simultaneously (a) maximize the net rehabilitation 

benefits which can be represented by the difference between the savings in road user 

costs and the construction and maintenance costs; and (b) minimize the impact of 

highway construction on network service disruption.  To this end, this chapter presents 

the development and implementation of a new model for planning and optimizing 

highway rehabilitation projects that consists of four main modules that focus on: (1) 

estimating the cost and schedule of rehabilitation programs; (2) measuring the impact of 

rehabilitation efforts on network  performance and road user savings; (3) analyzing the 

expected benefits and costs of rehabilitation; and (4) optimizing the rehabilitation efforts 

to identify optimal programs that simultaneously maximize the net rehabilitation benefits 

and minimize network service disruption (see Figure  5-1).  The following sections 

describe these four modules in detail and present an evaluation of their performance. 

COST ESTIMATING AND 

SCHEDULING MODULE

NETWORK PERFORMANCE 

AND USER SAVINGS MODULE

BENEFIT–COST ANALYSIS 

MODULE

MULTI-OBJECTIVE OPTIMIZATION MODULE

DECISION VARIABLES
PROJECT SELECTION (PS)

PROJECT ORDER (PO)
PROCUREMENT METHODS (PM)

OPTIMIZATION CONSTRAINTS
LIMITED REHABILITATION FUNDING (AF)

PLANNING OBJECTIVES

MINIMIZE

SERVICE DISRUPTION

MAXIMIZE NET 

REHABILITAION BENEFITS

Figure  5-1 Highway rehabilitation planning and optimization model 
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5.2 Cost Estimating and Scheduling Module  

The objectives of this module are to estimate the construction cost and calculate the 

schedule of a selected highway rehabilitation program.  The cost estimating and 

scheduling module is designed to consider the impact of three main decision variables: 

(1) the selected rehabilitation projects; (2) the order of these projects; and (3) the 

procurement method adopted for each project, as shown in Figure  5-2.  The project 

selection ( PS ) variable is a binary one that can be true for selected projects or false for 

unselected ones.  Similarly, the project order ( PO ) variable depicts the order of 

execution of the competing rehabilitation projects, where projects with lower order 

values should be scheduled to start before projects with higher order values.  Finally, 

the procurement method ( P M ) variable identifies the type of contract to be used in 
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each rehabilitation project.  In this model, three procurement methods are considered 

including: (1) least cost (traditional) bidding; (2) bidding for cost and time (A+B); and (3) 

lane rental contracts, as shown in Figure  5-2.  The procurement method selected for 

each project has a significant impact on the project cost, duration and service 

disruption.  For example, utilizing A+B contracts is expected to deliver projects faster 

than traditional contracts but at relatively higher costs.  Similarly, lane rental contracts 

typically cause less service disruption compared to other procurement methods.  These 

three decision variables are discussed in more detail later in the multi-objective 

optimization module. 

The main challenge in this module is to develop a schedule for the rehabilitation 

program that satisfies the budget constraints (overall available funding and allowable 

monthly expenditures).  Figure  5-2 shows an example list of ten rehabilitation projects 

that are identified to improve the surface conditions of a transportation network.  The 

example shows the selection, order and procurement variables for each of the ten 

suggested rehabilitation projects.  Due to budget constraints, only seven of these ten 

projects can be rehabilitated (see Figure  5-2).  If the decision maker selects to proceed 

with all seven selected projects concurrently, the total monthly investment required 

would exceed the level of available funding represented by the dashed line (case (a) in 

Figure  5-2).  Therefore, an algorithm is developed to schedule these selected 

rehabilitation projects according to their order of execution in such a way that maintains 

the total monthly investment requirements at or below the level of available funding 

(case (b) in Figure  5-2).  This scheduling algorithm is designed to identify: (1) the 

schedule of the rehabilitation program; (2) the total construction cost of this program; 



 

98 

and (3) the main construction milestones of the rehabilitation program that have a direct 

impact on the functional behavior of the transportation network, as shown in Figure  5-3. 

The Figure shows a flowchart for the developed scheduling algorithm that consists of 

the following eight steps: 

1. Identify the projects selected to be funded according to the project selection 

variables (
p

PS ) of the rehabilitation program. For example, only projects 1, 2, 4, 5, 

6, 7 and 10 of the example rehabilitation program shown in Figure  5-2 will be 

included in steps 2 through 7 which are repeated for each of these projects. 

2. Select the next unscheduled project with the lowest order of execution (
n

PO ) from 

the rehabilitation projects identified in step 1.  In the example rehabilitation program 

shown in Figure  5-2, the projects identified in step 1 will be scheduled in the 

following order: 7, 6, 2, 10, 4, 5 and 1. 

3. Identify the cost and duration of the current project ( n ) based on the project’s 

procurement method (
n

P M ).  In the illustrated program, (
7

3PM  ); therefore, the 

rehabilitation cost and duration of lane rental contracts is used for project 7. 

4. Check whether project ( n ) can be scheduled during planning interval ( 1 to i I ) 

without exceeding the maximum allowable funds for that interval. If the project can 

be scheduled while complying with the limited availability of funds, proceed to step 6; 

otherwise, continue to step 5.  For example, scheduling project 2 cannot be 

scheduled in the first interval ( 1i  ) after scheduling projects 7 and 6 since it will 

exceed the maximum allowable funding limit.  On the other hand, project 10 can be 

scheduled in the second interval ( 2i  ) following the scheduling of projects 7, 6 and 

2 (see Figure  5 4). 
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Figure  5-3 Rehabilitation program scheduling algorithm 
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5. Add a new interval at the end of the fund allocation profile ( 1I I  ).  The length 

and height of this interval are equal to the duration and monthly cost identified in 

step 3 for project ( n ).  For example, the length and height of the interval added to 

hold project 2 ( 2i  ) are 24 months and $5 million/month as identified in step 3 (see 

Figure  5-4). 

6. Calculate start and finish dates of project ( n ) based on the allocation process 

completed in steps 4 and 5 and using the following equations: 

 Start date of the interval holding project ( )
n

S n  ( 5-1) 

n n n
F S d   ( 5-2) 

where, 

n
F  = Finish date of project ( n ) 
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Figure  5-4 Allocation procedure for rehabilitation funds 
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n
S  = Start date of project ( n ) 

n
d  = Duration of project ( n ) 

7. Update the fund allocation profile to reflect the processes completed in the previous 

steps by reorganizing the intervals and updating their start and finish dates.  This 

includes splitting intervals that have varying levels of committed funding such as 

splitting interval ( 2i  ) into two intervals ( 2i   and 3i  ) with the processing of 

project 10 (see Figure  5-4). 

8. Calculate the overall schedule and final cost of the rehabilitation program and 

identify the important milestones ( 1 to m M ) at which there is a significant change 

to the status of the transportation network (see Figure  5-5). 
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5.3 Network Performance and Road User Savings Module 

The main objectives of this module are to: (1) evaluate the impact of rehabilitation 

programs on the functional performance of transportation networks and estimate the 

expected network service disruption during rehabilitation efforts; and (2) estimate the 

expected savings in road user costs as a result of implementing these rehabilitation 

programs. 

5.3.1 Impact of Rehabilitation on Network Performance 

As described earlier in Chapter 3, the existing total network travel time before the start 

of the rehabilitation program (
e

tt ) is used as a benchmark to measure the impact of 

construction activities on the functional performance of aging transportation networks, 

as shown in Figure  5-5.  To this end, an increase in the total network travel time 

indicates a reduction in performance (i.e. service disruption); while a decrease in the 

total network travel time indicates an improved performance (see Figure  5-5).  

Inherently, while travelers might experience substantial disruption to the level of service 

provided by the aging transportation network at the start of the rehabilitation program, 

this disruption is expected to significantly improve towards the end of the program (see 

Figure  5-5).  The service disruption model presented in chapter 3 is used to measure 

the expected network service disruption.  To this end, it is expected that significant 

changes in the status of the transportation network will occur at the rehabilitation 

milestones ( 1 to m M ) that were identified in the previous section and shown in 

Figure  5-5.  The total network travel time at the end of each of these completion 

milestones (
m

tt ) is measured and compared to the pre-rehabilitation total network travel 
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time (
e

tt ) in order to estimate the total change in performance ( P ) during the 

implementation of the rehabilitation program.  Figure  5-6 shows a six-step procedure 

that is developed to estimate ( P ), as follows: 

1. Estimate the existing (pre-rehabilitation) total network travel time (
e

tt ), represented 

Start

End

m = 0

m = m + 1

IS
m = M?

Estimate total network travel time at 

start of rehabilitation program (tt0)

Calculate the total change in 

performance during rehabilitation



  
1

M

m

m

P P

Yes

No

Estimate existing total network travel 

time (tte)
1

2

Calculate the expected change in daily 

total travel time during interval (m)

∆ttm = tte – ttm-1

3

Calculate the change in network 

performance during interval (m)

∆Pm = durationm x ∆ttm

4

Estimate total network travel time at end 

of current interval (ttm)
5

6

Figure  5-6 Evaluation process of the change in network 
performance during rehabilitation 
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by the horizontal dotted line in Figure  5-5, using the network service disruption 

model presented in Chapter 3. 

2. Estimate the total network travel time (
0

tt ) immediately after the start of the 

rehabilitation program (at time 
0

t , as shown in Figure  5-5), which represents the 

expected service disruption caused by the implementation of the rehabilitation 

project(s) scheduled to start first.  Steps 3 through 5 are repeated at the end of each 

interval ( 1 to m M ) separating the rehabilitation milestones (Figure  5-5). 

3.   Calculate the expected change in the daily total travel time (
m

tt ) during interval     

( m ), as follows (see Figure  5-5): 

1m e m
tt tt tt


    ( 5-3) 

where, 

1m
tt


 = Total network travel time at the end of interval ( 1m  ) 

4. Calculate the change in the performance of the transportation network (
m

P ) during 

interval ( m ) using the expected daily change calculated in step 3 (see Figure  5-5): 

m m m
P duration tt     ( 5-4) 

where, 

m
duration  = Duration of interval ( m ) 

5. Estimate the total network travel time at the end of the current interval (
m

tt ) based on 

the rehabilitation activities to be completed by milestone ( m ).  The estimation of       

(
m

tt ) is needed to estimate the expected change in daily travel time (step 3) during 

interval ( 1m  ), if applicable. 
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6. Calculate the total change in the functional performance of the transportation 

network ( P ), due to the implementation of the rehabilitation program, by summing 

the change in performance across all the intervals. 

1

M

m

m

P P


    ( 5-5) 

5.3.2 Savings in Road User Costs 

Estimating the expected savings in road user costs resulting from the implementation of 

rehabilitation efforts is essential in evaluating and comparing candidate rehabilitation 

programs.  In this study, two types of daily road user costs are considered: direct and 

indirect costs.  The direct cost accounts for the vehicle operating costs per mile (VOC), 

which takes into consideration both the distance traveled and the condition of the road 

(Archondo-Callao 1993; Dewan and Smith 2002).  The indirect travel cost measures the 

cost of time incurred by truckers to reach their destination (Herbsman et al. 1995).  

Therefore, the traveling distance, time and road conditions between each origin-

destination (OD) pair on the network after the conclusion of the rehabilitation program 

need to be analyzed and compared to pre-rehabilitation conditions in order to identify 

the net change (i.e. savings) in daily road user cost due to the rehabilitation efforts.  

This module also takes into consideration any deterioration or upgrades in road 

conditions throughout the lifecycle of the network.  The flowchart in Figure  5-7 shows a 

five-step procedure for calculating the post-rehabilitation savings in road user cost, as 

follows: 
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1. Estimate the network traffic assignment at equilibrium before the implementation of 

the rehabilitation program using the Frank-Wolfe algorithm for deterministic user 

equilibrium assignment (Bell and Iida 1997). 

2. Estimate the network traffic assignment at equilibrium after the completion of the 

lc = 1

Start

od = od + 1
IS

od = OD?

End

Yes

No

od = 1

IS
lc = LC? lc = lc + 1

Estimate the network equilibrium at pre-rehabilitation conditions (Epre)1

Estimate the network equilibrium at post-rehabilitation conditions (Epost)2

No

Yes

Calculate the change in indirect (travel time difference) cost

   
od od od t

TTC tt nt ttc
3

Calculate the change in direct (per mile VOC) cost
4        0 0

( ) ( )
p t p t

lc lc l

od od od od od od od
DTC postl np voc nt voc prel np voc nt voc

Calculate the total change in daily road user cost in year (lc) after 
rehabilitation



 
1

lc

od

OD
lc

od

od

DRUS DTC TTC
5

Figure  5-7 Post-rehabilitation road user savings calculation 
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rehabilitation program.  Steps 3, 4 and 5 of this procedure are then repeated in two 

nested loops to estimate the daily change in road user costs for all drivers traveling 

between each OD pair ( 1 to od OD ) for each year ( lc ) of the network’s lifecycle   

( 1 to lc LC ) using the flow data of the traffic assignment estimated in steps 1 and 

2. 

3. Calculate the post-rehabilitation change in travel time (indirect) cost for the time 

saved/lost by truck drivers traveling between the current OD pair loading points 

compared to the pre-rehabilitation travel times (Herbsman et al. 1995), as follows: 

od od od t
TTC tt nt ttc     ( 5-6) 

where, 

od
TTC  = Indirect traveling cost on route between loading points ( o ) and ( d ) 

od
tt  = Post-rehabilitation change in time for traveling on the route between 

loading points ( o ) and ( d ) 

t
ttc  = Indirect traveling cost (cost of time) rate for truck drivers 

4. Calculate the post-rehabilitation change in direct travel cost that represents the road 

user savings or losses in vehicle operating costs (VOC) per mile for traveling 

between the current OD pair loading points in year ( lc ) compared to pre-

rehabilitation travelling distances (Archondo-Callao 1993; Dewan and Smith 2002), 

as follows: 

0 0
( )

( )

lc

od od od p od t

lc lc

od od p od t

DTC prel np voc nt voc

postl np voc nt voc

   

   
 ( 5-7) 

( (100 ))lca b PCIlc
voc e

 


 
( 5-8) 
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where, 

lc

od
DTC  = Direct traveling cost on route between ( o ) and ( d ) in year ( lc ) 

od
postl  = Post-rehabilitation traveling distance between loading points ( o ) and ( d ) 

od
prel  = Pre-rehabilitation traveling distance between loading points ( o ) and ( d ) 

od
np  = Number of passenger vehicles traveling between points (o ) and ( d ) 

od
nt  = Number of trucks traveling between loading points ( o ) and ( d ) 

lc

p
voc  = Passenger vehicle operating cost in year ( lc ) 

lc

t
voc  = Truck vehicle operating cost in year ( lc ) 

0

p
voc  = Pre-rehabilitation vehicle operating cost for passenger cars 

0

t
voc  = Pre-rehabilitation vehicle operating cost for trucks 

lc
PC I  = Road pavement condition index in year ( lc ) 

,a b  = Constants that are function of vehicle type 

5. Calculate the daily change (i.e. savings or losses) in road user cost in year ( lc ) after 

rehabilitation by summing the direct and indirect costs estimated in steps 3 and 4 for 

all OD pairs, as follows: 

1

OD

lc lc

od od

od

DRUS DTC TTC


   ( 5-9) 

where, 

lc
DRUS  = Daily change (savings) in road user cost in year ( lc ) after rehabilitation 
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5.4 Benefit-Cost Analysis Module 

The main objective of this module is to estimate all the benefits expected from the 

implementation of a rehabilitation program and compare them with the costs associated 

with this program.  Since both benefits and costs of rehabilitation can occur at different 

times during the lifespan of the transportation network, it is important to perform a 

lifecycle assessment for the investigated aging transportation network in order to 

analyze the net benefits of rehabilitation accurately, (see Figure  5-8).  The costs and 

benefits analyzed in this research study include: cost of initial rehabilitation construction 

works, cost of the required periodic maintenance activities, and savings in road user 

costs, as shown in Figure  5-8.  The following subsections briefly describe each of these 

costs and benefits. 

Rehabilitation Cost ( RC ) – is the initial cost of the rehabilitation program as described 

earlier in this chapter.  It includes all direct and indirect costs of the planned 

rehabilitation projects.  Depending on the length of the rehabilitation program and the 

decision maker’s preference, this rehabilitation cost can either be included as a single 

cost incurred at time (0) of the network lifecycle or divided into a number of costs for 

which the decision maker identifies the frequency and size.  For example, (RC) is 

included as a single initial payment in the cash flow in Figure  5-8. 

Maintenance Cost ( M T ) – is a periodic cost required to cover maintenance and 

preservation activities aimed at extending the life expectancy of the transportation 

network.  DOTs typically apply these maintenance cycles in order to restore road 

conditions and delay deterioration, as shown in Figure  5-8.  Decision makers identify the 
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number and size of maintenance cycles needed to keep the road condition index within 

acceptable cutoff values before new network rehabilitation efforts are deemed essential 

(Peshkin et al. 2004).  For example, the cash flow in Figure  5-8 assumes that four 

maintenance cycles are planned every five years to preserve the transportation network 

being analyzed. 

Road User Savings ( RUS ) – is the expected saving in public cost of travel on the 

investigated transportation network as a result of implementing the rehabilitation 

program.  There are a number of sources for these cost savings for the traveling public, 

including: (1) spending less commuting time on the transportation network as a direct 

result of easing traffic delays and congestions; (2) traveling shorter distances compared 

to pre-rehabilitation because of the availability of new travel alternatives; and (3) 

incurring less vehicle repair and operating costs because of traveling on roads with 

better quality.  In this study, these cost savings are assumed to be continuous and tend 
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to decrease over the lifespan of the transportation network as road conditions 

deteriorate and new rehabilitation efforts are needed, as shown in Figure  5-8.  The 

monthly road user savings (
lc

RUS ) in any year after rehabilitation in the benefit-cost 

analysis is estimated by multiplying the daily savings in road user costs (
lc

DRUS ) 

estimated in Equation ( 5-9) for this year ( lc ) by 30 days. 

The rehabilitation net benefits ( NB ) are estimated to be the net present value of the 

above benefits and costs at the discount rate selected by the decision maker:  

1

1

( | , ,12)( | , , )

( | , , 12)

LC

lc

lc

C

c

N B RU S P A ir P F ir lc

RC M T P F ir c cl







    





 ( 5-10) 

where, 

NB  = Net benefit of the rehabilitation program 

ir  = Discount rate used for the rehabilitation benefit-cost analysis 

c  = Number of required maintenance cycles 

cl  = Frequency of highway maintenance cycles 

5.5 Multi-Objective Optimization Module 

The main objective of this module is to optimize rehabilitation efforts of aging 

transportation networks in order to satisfy the societal needs of maximizing net 

rehabilitation benefits while minimizing network service disruption.  In order to achieve 

this objective, the model is designed to identify the three main decision variables of: (1) 
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selecting which highway rehabilitation projects should be funded; (2) prioritizing the 

selected projects; and (3) identifying the procurement method to be used for each 

rehabilitation project.  Each of these important decision variables has a significant and 

direct impact on: (1) the rehabilitation planning objectives of maximizing net benefits 

and minimizing network service disruption; and (2) the observation of funding 

constraints on highway rehabilitation efforts, as shown in Figure  5-1.  Accordingly, this 

model is designed to generate optimal rehabilitation program(s) each providing a unique 

combination of project selection, prioritization and procurement method that 

simultaneously: (1) maximizes net rehabilitation benefits; and (2) minimizes the 

expected service disruption of aging transportation networks during rehabilitation efforts.  

To this end, the following subsections provide a brief description of the impact of the 

aforementioned decision variables on the optimization planning objectives and 

constraints, and the optimization engine used in this research study to generate the 

optimal rehabilitation program(s). 

5.5.1 Project Selection (
n

ps ) 

Highway rehabilitation projects have dissimilar characteristics and could therefore have 

a significantly different impact on society.  For example, choosing to upgrade a road that 

serves a high average daily traffic (ADT) can reduce the road user costs for travelers 

using this road upon the project completion; however, this project is expected to cause 

significant travel delays during rehabilitation efforts.  Similarly, while undertaking huge 

and ambitious highway rehabilitation projects can substantially improve the cost, quality 

and safety of travel on aging transportation networks, these projects usually require 
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enormous amounts of public expenditures.  Decision makers need to carefully analyze 

and optimize the impact of these project selection decisions. 

5.5.2 Project Prioritization (
n

po ) 

The time at which each highway rehabilitation project is executed and the number and 

characteristics of projects that are constructed concurrently have a significant impact on 

the planning objectives and constraints considered in this research study.  For example, 

the start time and duration of a rehabilitation project is important to identify when the 

funding required need to be available for this project and evaluate its impact on travel 

cost and quality.  Similarly, the concurrent execution of highway rehabilitation projects 

has a direct and significant impact on the extent of network service disruption and the 

required monthly funding.  Decision makers therefore need to prioritize rehabilitation 

projects in such a way that: (1) minimize the network service disruption during 

rehabilitation; and (2) comply with monthly funding limits. 

5.5.3 Procurement Method (
n

pm ) 

The procurement method used in highway projects also has a significant impact on the 

size of the rehabilitation programs and the extent of network service disruption.  This 

research study considers three main procurement methods: least cost (traditional) 

bidding, cost and time (A+B) bidding, and lane rental contracts.  Traditional bidding 

leads to minimizing rehabilitation costs at the expense of longer construction durations 

and therefore extended disruption to the level of service provided by the transportation 

network.  Bidding on cost and time however can enable reducing projects durations but 

at an additional cost premium to allow for accelerating highway construction activities 
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and roads under construction will still be closed to traffic.  Finally, lane rental contracts 

can significantly contribute to limiting the impact of highway rehabilitation efforts on 

network service disruption through minimizing road closures but it usually causes 

construction costs to increase significantly.  It is therefore important for decision makers 

to select and implement a combination of procurement methods for the different 

rehabilitation projects that strikes an optimal balance between minimizing both the cost 

of the rehabilitation program and network service disruption. 

5.5.4 Optimization Engine 

This optimization module utilizes multi-objective genetic algorithm NSGA-II (Deb et al 

2001) to optimize highway rehabilitation efforts.  NSGA-II was selected as the 

optimization engine in this model due to: (1) the multi-objective nature of the problem; 

(2) the non-continuous planning objective functions; and (3) the efficiency and 

effectiveness of NSGA-II in generating near optimal solutions for similar multi-objective 

optimization problems (Jeong and Abraham 2009; El-Rayes and Kandil 2005; Kandil 

and El-Rayes 2006; Khalafallah and El-Rayes 2006; Orabi et al. 2009).  The main 

purpose of using NSGA-II in the multi-objective optimization model is to identify the 

set(s) of relevant rehabilitation planning variables that provide optimal/near optimal pairs 

of net rehabilitation benefits and network service disruption.  Each of these variable sets 

represents a solution to the current problem and identifies the following rehabilitation 

project decisions: (1) project selection, (2) project prioritization, and (3) procurement 

method.  The GA starts by generating a population of random solutions and pass them 

to the aforementioned cost estimating and scheduling module; network performance 

and road user savings module; and benefit-cost analysis module in order to analyze the 
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net rehabilitation benefits and networks service disruption associated with each of these 

solutions using Equations ( 5-5) and ( 5-10), respectively.  The GA uses the fitness of 

each solution in the population, in terms of satisfying the planning objectives of 

maximizing net rehabilitation benefits and minimizing network service disruption, to rank 

and sort these solutions.  The genetic operations of selection, crossover and mutation 

are then applied on the best solutions to generate a new population of solutions that are 

closer to the optimal solution.  This series of operations are iteratively repeated for a 

predefined number of generations until convergence to the optimal solution and the 

optimal/near optimal set of planning variables is extracted from the final population. 

5.6 Model Evaluation 

An application example is analyzed to evaluate the performance of the developed 

highway rehabilitation planning and optimization model and demonstrate its capabilities 

in planning and optimizing the rehabilitation efforts of aging transportation networks.  

The example seeks to plan and optimize the rehabilitation efforts for the transportation 

network in Sioux Falls, South Dakota.  The topology and traffic data of this network 

example are summarized in Figure  3-7, Table  3-4 and Table  3-5.  This transportation 

network is assumed to be deteriorating and need rehabilitation work at many locations 

throughout the network.  The decision maker identified and estimated construction data 

for 30 rehabilitation projects to bring this aging transportation network to acceptable 

levels.  These projects are designed to improve the pavement condition index (PCI) of 

many road segments that are in poor conditions and add a new lane to segments that 

are suffering from traffic congestion.  The data of these suggested rehabilitation projects 
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is summarized in Table  5-1 and it includes: (1) the road segments that need to be 

rehabilitated; (2) the current pavement condition index (PCI) of each segment; (3) the 

added capacity for each road segment, if applicable; and (4) the cost and duration of 

each rehabilitation project under the three main procurement methods considered in this 

research study.  The funding available for this rehabilitation program is assumed to be 

$70 million with a maximum allowable monthly expenditure of two million dollars.  The 

next rehabilitation efforts for the selected road segments are planned to be performed 

after 35 years.  In order to facilitate analyzing the benefits of the selected rehabilitation 

program(s) over the lifecycle of the network, it is assumed that four maintenance cycles 

(every seven years) are applied to the rehabilitated road segments at a cost equal to 

$14 million for each cycle.  In this example, decision makers and planners need to 

identify and implement the rehabilitation program(s) that provide optimal or near optimal 

tradeoffs between maximizing rehabilitation benefits and minimizing service disruption 

during highway construction operations.  These rehabilitation programs identify three 

main decisions: (1) the selection of rehabilitation projects; (2) the order of execution of 

the selected projects; and (3) the procurement method of each project. 

The developed highway rehabilitation planning model was used to analyze the above 

input data and was able to generate a set of optimal rehabilitation programs, where 

each provides an optimal and non-dominated tradeoff between maximizing rehabilitation 

benefits and minimizing the network service disruption during highway construction 

operations, as shown in Figure  5-9.  The results of this analysis illustrate that 

maximizing the benefits of rehabilitation efforts often leads to higher levels of service 

disruption, as shown in Figure  5-9.  This is mainly due to the extended scope of
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Table  5-1 Suggested rehabilitation projects 

Project Link PCI 
ADT 

(veh/day) 

Added 
Capacity 
(veh/day) 

Traditional A+B Lane Rental* 

Cost 
($,mil) 

Duration 
(months) 

Cost 
($,mil) 

Duration 
(months) 

Cost 
($,mil) 

Duration 
(months) 

1 8 34  14,055   -    5.64 9 5.80 6 6.77 10 
2 11 53  18,051   -    3.01 5 3.03 3 3.94 6 
3 12 45  8,792   5,052  8.72 11 8.81 7 N/A N/A 
4 13 32  15,796   -    3.22 5 3.24 3 N/A N/A 
5 16 52  12,490   5,101  4.59 4 4.69 3 N/A N/A 
6 21 32  6,884   -    5.45 9 5.53 7 N/A N/A 
7 22 33  8,382   -    3.00 6 3.03 4 N/A N/A 
8 23 33  15,811   -    3.22 5 3.31 3 N/A N/A 
9 25 31  21,757   -    1.65 4 1.66 3 N/A N/A 

10 28 53  23,133   -    3.80 8 3.88 5 N/A N/A 
11 32 43  17,606   5,000  9.95 9 10.06 6 N/A N/A 
12 34 34  9,779   5,123  8.95 12 9.19 8 N/A N/A 
13 35 46  10,003   -    4.89 8 5.02 6 5.69 9 
14 37 48  12,322   -    5.63 10 5.69 7 6.64 12 
15 38 31  12,412   -    6.35 8 6.49 5 7.12 9 
16 41 49  9,037   4,872  11.61 11 11.93 7 N/A N/A 
17 43 50  23,198   4,488  13.62 11 13.87 8 N/A N/A 
18 44 45  9,080   4,872  11.74 10 11.80 6 N/A N/A 
19 46 51  18,397   5,401  7.25 6 7.46 5 N/A N/A 
20 47 36  8,400   -    3.20 6 3.27 4 N/A N/A 
21 48 53  11,070   5,145  9.04 9 9.26 6 N/A N/A 
22 52 51  11,668   4,770  4.25 5 4.31 3 N/A N/A 
23 57 49  19,119   -    1.55 3 1.56 2 N/A N/A 
24 60 33  19,018   -    5.59 11 5.67 8 7.70 13 
25 61 40  8,705   4,997  8.96 10 9.19 7 N/A N/A 
26 62 49  6,304   -    3.13 8 3.15 5 N/A N/A 
27 64 37  6,246   -    3.37 7 3.44 6 N/A N/A 
28 67 37  18,374   5,401  6.71 6 6.75 4 N/A N/A 
29 73 51  7,902   -    1.12 3 1.15 2 N/A N/A 
30 76 46  7,862   -    1.06 2 1.07 1 N/A N/A 

                                            
* Not available for all rehabilitation projects due to constructability and/or traffic restrictions 
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highway construction work that is needed to maximize the net benefits of rehabilitation 

efforts.  Table  5-2 lists the scope of highway construction work for all 19 optimal 

tradeoffs and their corresponding rehabilitation programs that were generated by the 

model.  At one end of the spectrum of generated optimal solutions, the rehabilitation 

program of Solution 1, which consists of only ten projects and rehabilitates a total length 

of 39 miles, provides the least network service disruption of -0.38 veh.hr/veh (i.e. 

introduces approximately 23 minutes in travel time savings for each traveler), as shown 

in Figure  5-9.  At the other end of the spectrum, Solution 19 provides more than double 

the rehabilitation benefits compared to Solution 1 (See Figure  5-9).  This was possible 

by including 26 highway miles (i.e. 67%) more than Solution 1, as shown in Table  5-2.  

However, this rehabilitation program causes disruption to about 83% more vehicles at 

an average of 5.23 veh.hr/veh in additional service disruption compared to Solution 1.  
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In addition to these two rehabilitation programs, the model generated another 17 

optimal rehabilitation programs that provide a wide range of tradeoffs between 

minimizing service disruption and maximizing rehabilitation benefits, as shown in Figure 

 5-9.  Planners can analyze these optimal solutions and select a rehabilitation program 

that strikes an optimal balance between reducing the network service disruption and 

increasing the rehabilitation benefits based on the conditions of the specific network. 

The analysis of this example illustrates the unique and practical capabilities of the 

developed highway rehabilitation planning model in identifying a wide range of optimal 

rehabilitation programs for aging transportation networks.   Each of these plans provides 

Table  5-2 Scope of highway construction works of optimal rehabilitation programs 

Solution 
# 

Projects 

Length of 
Rehabilitated 
Roads (miles) 

Affected 
Average Daily 
Traffic (veh) 

Pre-Rehabilitation 
Daily Direct 

Travel Cost ($) 

Pre-Rehabilitation 
Vehicle Operating 

Costs ($/mile) 

1 10 39  129,390   12,941  2.82 

2 12 53  138,715   15,912  3.89 

3 12 49 137,476 13,874 3.53 

4 12 53 135,919 14,411 3.80 

5 13 55 143,821 14,796 3.93 

6 12 49 148,652 14,530 3.55 

7 12 51 134,169 14,666 3.71 

8 13 53 142,071 15,051 3.84 

9 13 54 153,287 16,084 3.91 

10 13 54 156,913 16,707 3.97 

11 12 52 148,064 16,121 3.81 

12 14 49 187,198 17,051 3.53 

13 15 65 205,915 22,099 4.69 

14 13 56 188,392 20,644 4.12 

15 14 62 207,560 22,976 4.53 

16 15 68 213,864 23,911 4.94 

17 15 61 221,656 23,081 4.43 

18 16 63 229,518 23,479 4.57 

19 17 65 237,420 23,863 4.70 
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a unique and optimal tradeoff between the rehabilitation benefits and network service 

disruption, as shown in Figure  5-9.  Decision makers can evaluate these generated 

optimal tradeoffs and select the highway construction plan that satisfies the specific 

requirements of the rehabilitation efforts being planned. 

5.7 Summary and Conclusions 

A highway rehabilitation planning and optimization model was developed to enable an 

efficient and effective rehabilitation process for aging transportation networks.  This 

model incorporates four new modules that bring in an array of capabilities in highway 

rehabilitation planning and optimization.  First, the newly developed cost estimating and 

scheduling module is capable of calculating the schedule of a given rehabilitation 

program and estimating its costs under both overall and monthly budget constraints.  

Second, the network performance and road user savings module is capable of 

evaluating the impact of rehabilitation programs on the functional performance of 

transportation networks; estimating the expected network service disruption during 

rehabilitation efforts; and estimating the expected savings in road user costs resulting 

from the implementation of these rehabilitation programs.  Third, the benefit-cost 

analysis module performs an analysis of all benefits and costs associated with 

rehabilitation programs in order to identify the net rehabilitation benefits.  Finally, the 

GA-based multi-objective optimization module is capable of optimizing highway 

rehabilitation efforts in order to simultaneously maximize net rehabilitation benefits and 

minimize network service disruption.  An application example is analyzed to evaluate 

the performance of the developed model, illustrate its use and demonstrate its 
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capabilities in generating optimal tradeoffs between net rehabilitation benefits and 

network service disruption.  These capabilities are demonstrated in the ability of the 

developed rehabilitation planning and optimization model to consider a number of 

practical highway rehabilitation requirements, including: (1) considering the impact of 

the limited availability of funding on planning rehabilitation efforts for aging 

transportation networks; (2) evaluating the expected service disruption and road user 

savings during and after completion of rehabilitation efforts; (3) estimating the expected 

net benefits of rehabilitation programs; and (4) optimizing the allocation of financial 

resources to maximize net rehabilitation benefits and minimize network service 

disruption.  These new and unique capabilities should prove useful to decision makers 

and planners in departments of transportation (DOTs) and should contribute to 

enhancing the planning of rehabilitation efforts for aging transportation networks. 
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CHAPTER 6                                                                  
CONCLUSIONS 

6.1 Conclusions 

The research study presented in this dissertation focused on optimizing highway 

reconstruction and rehabilitation projects.  In order to achieve this goal, a number of 

research developments were introduced to support decision making in planning 

highway construction works, including: (1) a service disruption model that assesses the 

impact of highway construction projects and operations on the functional performance of 

damaged and aging transportation networks; (2) models for planning and optimizing 

post-disaster reconstruction of damaged transportation networks; and (3) a planning 

and optimization model for the rehabilitation efforts of aging transportation networks. 

First, a highway service disruption model was developed to support measuring and 

evaluating the expected disruption in the level of service provided by aging 

transportation networks during highway reconstruction and rehabilitation projects.  The 

model is capable of analyzing the impact of construction projects and their dynamic 

nature on the functional performance of damaged and aging transportation networks 

during reconstruction and rehabilitation efforts.  This model also incorporates a 

deterministic travel assignment algorithm in order to consider the impact of 

individualistic rationality of travelers in selecting which route/detour to use at different 

phases of the construction efforts.  Accordingly, the developed model is capable of 

analyzing the functional performance of aging transportation networks and identifying 

the level of service disruption experienced by road users as a result of implementing 
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specific reconstruction plans or rehabilitation programs.  These new and unique 

capabilities of the service disruption model should prove useful to decision makers and 

planners in departments of transportation (DOTs) and should contribute to improving 

the planning and optimization of highway reconstruction and rehabilitation efforts. 

Second, resource utilization and multi-objective optimization models were developed to 

enable the optimization of the reconstruction efforts for damaged transportation 

networks in the aftermath of natural disasters.  The newly developed resource utilization 

model is capable of assigning reconstruction resources to competing reconstruction 

projects according to the project priorities, contractor assignment, and overtime policy.  

The resource utilization model is also capable of estimating both the reconstruction 

duration and cost of various optimal reconstruction plans.  In addition, the multi-

objective optimization model provides the capability of optimizing post-disaster 

reconstruction efforts in order to simultaneously minimize network service disruption 

and reconstruction cost.  These new and unique capabilities of the developed models 

should prove useful to decision makers and planners in emergency management 

agencies and should contribute to enhancing the planning of post-disaster 

reconstruction efforts for damaged transportation networks. 

Third, a highway rehabilitation planning and optimization model was developed to 

enable the optimization of the rehabilitation work for aging transportation networks.  This 

model incorporates four new modules that provide new capabilities in highway 

rehabilitation planning and optimization.  First, the newly developed cost estimating and 

scheduling module is capable of calculating the schedule of a given rehabilitation 
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program and estimating its costs under both overall and monthly budget constraints.  

Second, the network performance and road user savings module is capable of 

evaluating the impact of rehabilitation programs on the functional performance of 

transportation networks; estimating the expected network service disruption during 

rehabilitation efforts; and estimating the expected savings in road user costs resulting 

from the implementation of these rehabilitation programs.  Third, the benefit-cost 

analysis module performs an analysis of all benefits and costs associated with 

rehabilitation programs in order to identify the net rehabilitation benefits.  Fourth, the 

GA-based multi-objective optimization module is capable of optimizing highway 

rehabilitation efforts in order to simultaneously maximize net rehabilitation benefits and 

minimize network service disruption.  These new and unique capabilities should prove 

useful to decision makers and planners in departments of transportation (DOTs) and 

should contribute to enhancing the planning of rehabilitation efforts for aging 

transportation networks. 

The aforementioned research developments contribute to the advancement of current 

practices in highway construction planning and can lead to: (1) accelerating the 

completion of highway reconstruction and rehabilitation projects and minimizing the 

service disruption experienced by travelers during the construction work; (2) optimizing 

the allocation of limited budgets and financial resources to competing highway projects; 

and (3) improving the utilization efficiency of construction resources in highway projects 

and therefore increasing their productivity.  Accordingly, these developments hold a 

strong promise to provide significant benefits to society, departments of transportation 

(DOTs) and contractors. 



 

125 

6.2 Research Contributions 

The contributions of this research include: 

1. Developing an innovative service disruption model that is capable of capturing the 

functional behavior of aging and damaged transportation networks during 

rehabilitation and reconstruction projects, respectively.  The model provides also the 

capability of estimating the total disruption to the level of service provided by these 

networks during highway construction projects. 

2. Formulating a resource utilization model that is capable of sharing limited 

reconstruction resources among competing post-disaster reconstruction projects for 

damaged transportation networks. 

3. Developing a novel multi-objective optimization model for post-disaster highway 

reconstruction projects that is capable of minimizing network service disruption and 

reconstruction costs, simultaneously. 

4. Formulating new highway construction scheduling algorithms that are capable of: (i) 

considering the impact of limited budgets and financial resources; (ii) estimating 

expected road user savings; and (iii) analyzing the benefits-costs of rehabilitation 

programs for aging transportation networks. 

5. Developing a new multi-objective optimization model for highway rehabilitation 

projects that is capable of simultaneously maximizing total net benefits and 

minimizing network service disruption of rehabilitation programs. 
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6.3 Recommendation for Future Research 

This research study has presented new models for planning and optimizing highway 

construction projects.  These models are effective and efficient and can be used in 

enhancing the planning process for highway reconstruction and rehabilitation projects.  

However, a number of future research areas are recommended in order to enhance the 

research developments of this study and expand their potential applications, including: 

(1) measuring the service disruption of highway construction projects; (2) planning post-

disaster reconstruction of damaged transportation networks; (3) planning the 

rehabilitation efforts of aging transportation networks; and (4) reducing the 

computational efforts of optimizing highway construction projects. 

6.3.1 Measuring the Service Disruption of Highway Projects 

This research study was able to analyze and measure the impact of highway 

construction projects on the network service disruption for damaged and aging 

transportation networks.  Future research is however needed in order to enhance the 

efficiency and accuracy of service disruption measurement, including: 

1. Time series forecasting can be used to predict travel behavior during highway 

construction based on collected data from live traffic cameras.  These forecasted 

traffic behaviors can be used in a dynamic traffic assignment approach to 

improve the reliability of estimating link flows compared to the current study that 

assumes static traffic demand. 

2. Transportation networks may not reach the user equilibrium state following major 

events that change the network status (Yang and Liu 2007).  Accordingly, future 
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research can investigate the use of alternative methods to user equilibrium in 

estimating link flows. 

6.3.2 Planning Post-Disaster Reconstruction of Damaged Networks 

The resource utilization model presented in Chapter 4 of this study is capable of 

allocating limited resources to competing reconstruction projects based on the set of 

optimal decision variables identified, which provided for effective sharing of resources 

among competing reconstruction projects.  This effective resource utilization can be 

improved by: (1) relaxing the assumption that limits the interruption of projects once 

they are started to enable further optimization of projects cost and duration; and (2) 

integrating the optimization of resource utilization at the activity level for all 

reconstruction projects with the optimization of resource utilization among competing 

projects in order to optimize the cost and duration of individual projects as well as for 

the entire reconstruction efforts. 

6.3.3 Planning the Rehabilitation Efforts of Aging Networks 

The highway rehabilitation planning modules presented in Chapter 5 of this research 

study are capable of providing new and unique capabilities in planning rehabilitation 

efforts of aging transportation networks.  The potential applications of these planning 

modules can be expanded in the future by: 

1. Expanding the scope of rehabilitation benefits to include business growth, job 

creation and other relevant socioeconomic benefits. 

2. Including additional procurement methods for highway construction project such 

as nighttime construction and A+B with incentives to the three methods already 
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considered in this study.  This can be accomplished by introducing these 

methods as additional alternatives, or by redesigning the existing alternatives to 

accommodate the special conditions of these other procurement methods.  For 

example, lane rental bidding and be remodeled to include nighttime construction. 

6.3.4 Reducing the Computational Cost of Optimizing Highway Projects 

This research study was capable of optimizing reconstruction and rehabilitation efforts 

of damaged and aging transportation networks and generating highway construction 

plans that provide optimal tradeoffs between minimizing network service disruption and 

maximizing the societal benefits.  These optimization models however require long 

computational time mainly due to the time required to analyze transportation networks.  

This computational time increases as the size of the analyzed transportation network 

increases.  Accordingly, future research can investigate the following methods that can 

be used to reduce the aforementioned computational time: 

1. Develop and implement the research developments presented in this study in a 

parallel computing framework that can combine the computing capabilities of 

several personal computers to help reduce the computational time (Kandil and 

El-Rayes 2006b). 

2. Design and apply new data processing and storage structures that allows for 

optimizing data handling among the different modules in order to minimize the 

computational overhead.  For example, the storage and handling of solution data 

in the NSGA-II optimization engine can be redesigned to prevent reprocessing 

and analysis of previously evaluated solutions. 
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