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Abstract

This dissertation consists of two distinct lines of research efforts. Chap-

ter 2 proposes a general methodology to seek robust solution to multi-stage

stochastic optimization problems. Chapters 3, 4 and 5 all deal with models

that arise from inventory management and dynamic pricing.

Chapter 2 introduces the Extended Affinely Adjustable Robust Counter-

part(EAARC). We first propose the general steps of extending affine decision

rules via re-parameterizing the uncertainty set, then propose the example of

splitting-based EAARC. We show that this approach extends the versatility

of affine decision rules beyond what has been proposed by Ben-Tal et al. [9],

while retaining tractability.

Chapter 3 looks at the classical joint inventory-and-pricing model (single

product periodic-review) with concave ordering cost. Concave cost structures

may often occur in settings with multiple sources of supply. For this model,

assuming additive demand uncertainty, we show that a generalized (s, S, p)

policy is optimal under certain conditions imposed on the distribution of the

random perturbation.

Chapter 4 and 5 focus on the reference price effect in which the price impact

on demand is no longer instantaneous, but history-dependent. Chapter 4

analyzes a joint inventory-and-pricing model with reference price effect. We

prove that a reference price dependent base-stock policy is optimal even

though the single period expected profit may not be concave. In the infinite

horizon case, we further show that in the optimal trajectory, reference price

converges to a steady state and provide a characterization. Finally, chapter 5

studies a continuous-time dynamic pricing problem under stochastic reference

price effect. Stochastic optimal control theory is applied to the problem to

derive an explicit solution. Various comparative statics are then conducted

to benchmark our model against a few simplified models.
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Chapter 1

Introduction

1.1 Motivations and Philosophy

The intention of this thesis is twofolds: to develop general methodologies for

multi-stage optimization problems under uncertainty; and to analyze specific

models that arise from an operations management context.

Chapter 2 describes the first line of our efforts. We look at optimiza-

tion problems under uncertainty, which means that certain parameters of

the problem formulation might not be known in exact value. In most situ-

ations, explicitly assuming uncertainty leads to more realistic models. Be-

cause uncertainties arise from nearly every step in the modeling process. As

an example, measurements from any physical process are subject to random

noise, hence the true value that they are trying to measure would always

be uncertain. Another example, the rainfall of a particular day in the fu-

ture is uncertain. The difference between this and the previous example

is that the true value for the rainfall will become revealed when that day

comes(ignorning uncertainties from measuring rainfall), whereas in the mea-

surement example, the true value will never be revealed. This difference will

be crucial in multi-stage problems.

There are two approaches to uncertainty in a model. The first approach

views any uncertain parameter as a random variable, with known probability

distribution. For example observations from physical processes are usually

assumed to be normally distributed, with some standard error implied by the

accuracy of the measuring tool. In this approach, the decision maker’s job is

then to make his decision (or decisions contingent to outcomes of some un-

certainties, if he is dealing with a multi-stage decision process) to maximize

his expected gain, or minimize his expected loss. Here the expectation is of

course taken over the random parameters. This approach, known as Stochas-
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tic Programming, has been a fruitful area of research. One can consult Birge

and Louveau [21] for an introductory treatment of the subject.

The second approach, to which our work belongs, takes a more conserva-

tive view of uncertainty. Namely it does not assume any known probability

distribution of the uncertain parameters. Rather, it only assume a range of

possible values for the uncertain parameter, usually in the form of an interval

centered around some nominal value. Given these assumptions the decision

maker’s task is to make a decision that optimizes his worst case outcome,

with respect to the ranged uncertainties. This approach is called Robust

Optimization, the word “robust” in its name naturally follows from the fact

that a decision maker is always trying to make a robust decision. The book

by Nemirovski et al. [7] is an excellent reference on the subject.

The previous discussion has alluded to the major difficulty of multi-stage

problems under uncertainty. When decision is made across time, those that

are made at a later time may benefit from some uncertainties being revealed

at that time (again, think of the rainfall example). Therefore decisions at

a later time should be contingent on uncertainties revealed to the decision

maker at that time. To be more precise, the decision maker would not be

choosing scalar quantities for his decision variables. He will be choosing

functions - functions of uncertainties that are realized before that decision

takes place (known as response functions). This exponentiates the complex-

ity of the decision process and, needless to say, is a daunting task. To regain

tractability, the approach generally taken is to assume that the response

functions take a certain form. Affin functions are common choices for this

purpose, because the task of choosing an affine function boils down to choos-

ing two quantities: the slope and the abscissas. Our approach takes one step

beyond affine functions, and propose methodologies that will provide more

versatile response functions, while retaining tractability.

Chapter 3 - 5 represent the second line of our efforts. In these chapters we

analyze models related to inventory management, dynamic pricing, and ref-

erence price effects. The main task of classical inventory management prob-

lems, is to make more informed inventory ordering decisions in the presense

of demand uncertainty, so that inventory cost is brought down, and drastic

overstocks or understocks are avoided. On the contrary, dynamic pricing

problems focus on the revenue side of profit. Dynamic pricing problems usu-

ally work around an established model for the price impact on demand. It
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then develops an optimal way to set different prices for a product across time,

and across consumer segments. This would ensure that the firm’s revenue is

maximized.

The pair of problems described above both serve the purpose of increasing

a firm’s bottomline - one through the cost side and one through the rev-

enue side. Traditionally, these two decisions are made separately. Marketing

decision is made first, and then a rough sales target is formed. Inventory

decisions are then made contingent on that sales target.

Recently there has been an increasing amount of work that tries to make

an integrated decision. The benefit of an integrated decision is obvious: it

is always better than two separate decisions, as it takes both sides into ac-

count simultaneously. This is especially important in the recent few decades,

when electronic-based retailing has devoured much of the traditional brick-

and-mortar stores, so that the complexities in product line, consumer de-

mographics, supply chain structure have all grown drastically. With such a

clear need for an integrated inventory-and-pricing decision process, there is

of course the cost: additional complexity in the models makes them harder

and harder to solve. That is why there is now a considerable amount of effort

in the research community seeking to find theoretically guaranteed structures

in optimal solution to these problems, so that the search for an optimal solu-

tion can be conducted on a smaller space, with complexity greatly reduced.

Chapter 3 of this thesis belongs to this stream of theoretical analysis. It

builds upon previously established results and generalize them to models

with more general cost structure. Literature review on those previous results

will be included in the next section and in later chapters.

Lastly, Chapter 4 and 5 focuses on what’s called the reference price effect

which was observed through empirical research in marketing science. The

effect, which will be defined more precisely in chapter 4, is roughly as fol-

lows: When consumers make their purchasing decision of a product, they

observe the current selling price, but they are usually aware of historical

prices charged on this product. Therefore they are very likely to form their

reference price based on those historical prices, and this reference price would

in turn influence their purchasing decision at the present time. The impli-

cation of this effect is that, when a firm sets its price for its products, the

price not only has impact on current demand, but also on future demands.

Thus to make the optimal dynamic pricing decisions, the firm must balance
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instantaneous effects with future consequences.

To understand the implications of this effect on dynamic pricing decisions,

chapter 4 analyzes a joint inventory-and-pricing model with reference price

effects. Chapter 5 looks at the effect with slightly more scrutiny: refer-

ence price is formed by consumers’ sentiments of historical prices, which is a

very subjective process. Therefore it should be natural to assume that the

evolution process of reference price is subject to randomness. By explicitly

modeling reference price as a stochastic process, chapter 5 aims at charac-

terizing the impact of this additional randomness on the optimal decision

process, and tries to arrive at a more realistic and trustworthy model.

1.2 Literature Review

Detailed literature review will be provided at the beginning of each chapter.

This section only describes in broad strokes some of the theories/methods

that are already in existant in the literature, and are closely related to this

thesis.

The book by Nemirovski et al. [7] contains most of the recent develop-

ments in robust optimization, together with some illustrative examples. The

methodology that we will describe in chapter 2 is closely related to the paper

by Ben-Tal et al. [9]. To deal with the explosive complexity in a multi-stage

robust optimization problem, Ben-Tal et al. [9] develops the Affinely Ad-

justable Robust Counterpart(AARC). In chapter 2 we will extended their

idea to include some non-affine response functions.

There is a vast pool of literature on the topic of joint inventory-and-pricing

models, which we will analyze in chapters 3 and 4. One can consult Chen and

Simchi-Levi [28] for a comprehensive review of this area. Some other excellent

resources include Elmaghraby and Keskinocak [34], Federgruen and Heching

[35] and Yano and Gilbert [59].

As for the topic of reference price effect, the majority of the literature

belongs to marketing science. Mazumdar et al. [46] gives a good review of

the many statistical models proposed for reference price effect. There are

a few seminal papers trying to solve the problem of dynamic pricing in the

presence of reference price effect. We will defer the introduction of those

works until chapter 4.
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1.3 Structure of the Thesis

Chapter 2 introduces our methodology to multi-stage robust optimization

problems - the EAARC. Section 2.2 illustrates the limitation of the AARC

and introduce the EAARC. Section 2.3 presents constraint reformulation of

EAARC. Then section 2.4 describes a particular scheme of EAARC - the

splitting based EAARC and identifies conditions under which the splitting

based EAARC improves upon the AARC. Numerical experiments are de-

scribed in section 2.5 and concluding remarks are given in section 2.6.

Chapter 3 describes our theoretical work on joint inventory-and-pricing

models with general concave cost. Section 3.2 presents our main theoretical

results with its proof included in Appendix A. Section 3.3 then applies the

theoretical results to the joint inventory-and pricing model.

Chapter 4 analyzes the joint inventory-and-pricing model with reference

price effects. Specifically section 4.2 presents the model for a finite horizon,

and proves optimality of the base-stock policy. Section 4.3 then presents

the model for infinite horizon and proves convergence results. Section 4.4

provides characterization of steady states and finally section 4.5 makes con-

cluding remarks.

Chapter 5 studies the dynamic pricing problem with stochastic reference

price effects. Section 5.2 presents the model. The optimal pricing policy

is analyzed in section 5.3 and section 5.4 provides numerical experiments.

Conclusions for this chapter are given in section 5.6.

Finally, Chapter 6 points out some potential directions for future research.
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Chapter 2

Uncertain Linear Programs: Extended Affinely
Adjustable Robust Counterparts

2.1 Introduction

Decision making under uncertainty is the key ingredient in many operations

research problems, for instance, supply chain management, revenue man-

agement and financial planning. One of the most important approaches for

optimization under uncertainty is stochastic programming, in which objec-

tives and constraints of optimization models are defined by averaging over

possible outcomes or considering probabilities of events of interest. Over the

past fifty years, a variety of stochastic programming theory and algorithms

have been developed and some successful stochastic programming applica-

tions have also been reported (see, e.g. Ruszczynski and Shapiro [51], Birge

and Louveau [21]).

However, despite its immense modeling potential, stochastic programming

faces two significant challenges. First, stochastic programs, especially multi-

stage problems, are notoriously difficult to solve to optimality and quite often,

even finding a feasible solution is already a hard problem. Second, stochas-

tic optimization problems require full distributional knowledge in each of

the uncertain data. Unfortunately, such information may rarely be available

in practice. The lack of tractable methodology and the full distributional

requirement have restricted the applicability of stochastic programming in

many practical settings.

To cope with some of the challenges faced by stochastic programming,

robust optimization received considerable attention in recent years as an al-

ternative approach to deal with optimization problems under uncertainty.

The first step in this direction was taken by Soyster [55] who proposed a

worst case model for linear optimization such that constraints are satisfied

under all possible perturbations of the uncertain data of the the underlying
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model. Recent developments in robust optimization focused on more elabo-

rate uncertainty sets of uncertain data in order to alleviate over-conservatism

in worst case models, as well as to maintain computational tractability of the

proposed approaches, (see, for example, Ben-Tal and Nemirovski [11, 12, 13],

El-Ghaoui and Lebret [32], El-Ghaoui et al. [33], Goldfarb and Iyengar [40],

Bertsimas and Sim [17, 18, 19, 20], Atamtürk [3]).

Most of the research on robust optimization focuses on static settings, in

which all decisions must be made before the actual realization of the uncertain

data (referred to as the primitive uncertainties). To extend the robust opti-

mization methodology to dynamic settings, Ben-Tal et al. [9] proposed the

Adjustable Robust Counterpart (ARC), in which the primitive uncertainties

are assumed to vary within an uncertainty set while some decisions (recourse

variables) can be made after the realization of the primitive uncertainties

and be adjusted to its actual realization. A closely related approach was

proposed by Bertsimas and Caramanis [14]. In this approach, they intro-

duced the concept of finite adaptability, which is based on the selection of a

finite number of (constant) contingency plans to incorporate the information

revealed over time. Bertsimas and Caramanis [15] applied it to model the

air traffic control. On the other hand, under the adjustable robust counter-

part framework, Atamtürk and Zhang [4] analyzed network design problems

under uncertainty.

Since the general adjustable robust counterpart is intractable, Ben-Tal et

al. [9] proposed a tractable approach for solving fixed recourse instances

using affine decision rules – restricting recourse variables as affine functions

of the realization of the primitive uncertainties, referred to as the Affinely

Adjustable Robust Counterpart (AARC). Even though the AARC has been

successfully applied to inventory management (Ben-Tal et al. [9]) and supply

contract problems (Ben-Tal et al. [8]), it is not surprising that the perfor-

mance of the AARC may not be satisfactory under situations in which the

recourse variables may exhibit high nonlinearity in terms of the primitive

uncertainties.

The goal of this chapter is to illustrate that the potential of the AARC

method is well beyond the one presented in Ben-Tal et al. [9]. Indeed, by

re-parameterizing the primitive uncertainties and then applying the AARC

method, we end up with a new model, which allows us to relax to certain

degree the linearity restriction imposed by the AARC. Specifically, in our

7



approach, we re-parameterize the primitive uncertainties by introducing aux-

iliary variables and represent the recourse variables as affine functions of the

auxiliary variables. By using these auxiliary variables, the model can now

capture certain nonlinear response of the recourse variables to the primitive

uncertainties. In the sequel, we refer to the AARC as the AARC method

directly applied on the primitive uncertainties while the Extended Affinely

Adjustable Robust Counterpart (EAARC) as the AARC method applied to

the re-parameterized model.

Since the primitive uncertainties can be re-parameterized in a variety of

different ways, the EAARC is rather flexible and encompasses a broad class

of decision rules. We analyze a specific EAARC - the splitting based EAARC

in depth. In a simple setting, the splitting based EAARC essentially intro-

duces auxiliary variables to represent the positive and negative parts of the

primitive uncertainties. We demonstrate both theoretically and computa-

tionally that the splitting based EAARC may significantly improve upon the

AARC.

The idea of re-parameterizing the original problem before applying the

robust counterpart has been used in several papers for different purposes.

For instance, to avoid the over-conservatism incurred by working directly on

the primitive uncertainties, Ben-Tal et al. [10] re-parameterized the original

multi-period portfolio selection problem and then apply the robust counter-

part approach. In Ben-Tal et al. [6], the authors used a re-parametrization

scheme in a linear control problem to avoid a non-convex robust counterpart.

It is also common in the robust optimization literature, including Ben-Tal

et al. [9] and our work here, to re-parameterize the uncertainty data by a

vector of perturbations, referred to as the primitive uncertainties, varying in

a nonempty convex compact perturbation set. Indeed, the AARC in Ben-Tal

et al. [9] first applies the affine decision rule on the uncertain data, which are

then re-parameterized in terms of the primitive uncertainties, while here we

first re-parameterize the primitive uncertainties and then apply the AARC,

which interestingly results in a more flexible AARC.

Our splitting based EAARC approach bears some similarity with the ap-

proach suggested by Chen et al. [24] and Chen et al. [25]. Specifically, both

approaches are built upon the splitting of the primitive uncertainties to their

negative parts and positive parts. In addition, the segregated linear decision

rule proposed in [25] also represents the recourse response as affine functions
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of these negative parts and positive parts. Moreover, both approaches end

up with second order conic programming problems.

However, the models analyzed in [24] and [25] are fundamentally different

from the one proposed here. Indeed, [24] and [25] started with a (chance-

constrained) stochastic program and proposed tractable (convex) approxima-

tions to the stochastic program, while here we start with an ARC and use the

EAARC to approximate the ARC. Therefore, in this chapter, the primitive

uncertainties are restricted to an uncertainty set and thus is non-stochastic,

while in [24] and [25], the primitive uncertainties are stochastic with possibly

known mean, support, and some deviation measures, which require totally

different techniques for the analysis. Finally, even though both approaches

end up with second order conic programming problems, the formulations are

different.

The rest of the paper is organized as follows. In Section 2.2, we illustrate

the limitation of the AARC and introduce the EAARC. In Section 2.3, we

present equivalent formulations for constraints derived from the EAARC. In

Section 2.4, we introduce and analyze the splitting based EAARC and iden-

tify conditions under which the splitting based EAARC improves upon the

AARC. We then conduct numerical experiments to demonstrate the advan-

tage of the splitting based EAARC over the AARC in Section 2.5. Finally,

we provide some concluding remarks in Section 2.6.

2.2 Extended Affinely Adjustable Robust Counterpart

Consider the following two-stage uncertain linear programming problem 1:

min c′x

s.t. Ax+By ≤ b,

where c ∈ Rn, A ∈ Rr×n, B ∈ Rr×m and b ∈ Rr are uncertain data, and

c′ denote the transpose of vector c. In this problem, decision variables are

classified into two groups. The first group, denoted by x, represents “here

and now” decisions, i.e., decisions made before the realization of uncertain

1The approach presented here can be straightforwardly extended to multi-stage uncer-
tain linear programming problems.
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data (c,A,B, b). The second group, denoted by y, represents “wait and see”

decisions, i.e., decisions that can be adjusted to the realization of uncertainty.

A framework for modeling the two-stage uncertain linear programs is two-

stage stochastic programming. In such a framework, some stochastic struc-

ture is imposed on the uncertain data (c,A,B, b) and the objective is to

minimize the expected cost such that the constraints are satisfied with high

probability. Unfortunately, multi-stage stochastic programs are generally

hard to solve to optimality. To make things worse, specifying the stochastic

structure of the uncertain data may not be realistic in practice.

An alternative approach for modeling two-stage uncertain linear programs

is the adjustable robust counterpart first introduced by Ben-Tal et al. [9].

In an ARC, the constraints are satisfied for all the uncertain data varying

in a given uncertainty set, while the second stage decisions can be tuned to

the realization of the uncertain data. Specifically, the two-stage ARC for the

uncertain linear program can be written as follows.

min c′x

s.t. ∀(A,B, b) ∈ U ∃y Ax+By ≤ b,
(2.1)

where U is the uncertainty set. Here without loss of generality, we assume

that the cost coefficient vector c is fixed.

If B is fixed in (2.1), then the above formulation defines the ARC to an

uncertain linear program with fixed recourse. From now on, we focus on

uncertain linear programs with fixed recourse. In particular, we assume that

B is fixed and the uncertainty set can be parameterized affinely in terms of

the primitive uncertainties z ∈ RN .

U =

{
(A, b) : ∃z ∈ Γ, (A, b) = (A0, b0) +

N∑
j=1

(∆Aj,∆bj)zj

}
,

where (Aj, bj) ∈ Rr×n×Rr, j = 0, 1, . . . , N , are given, and Γ is a nonempty

closed convex subset in RN . Notice that since B is fixed, we remove B from

the representation of the uncertainty set.

Define m0(x) = A0x− b0. For a given x, let M (x) be a matrix in Rr×N

with the jth column given by ∆Ajx − ∆bj. The feasible set of the first

stage decision in problem (2.1) can be written as
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X0 =
{
x : ∀z ∈ Γ,∃y,m0(x) +M (x)z +By ≤ 0

}
.

In general, the ARC problem (2.1) is intractable (See Ben-Tal et al. [9]).

To overcome this difficulty, Ben-Tal et al. [9] proposed the affinely adjustable

robust counterpart (AARC) assuming that the “wait and see” (or recourse)

variables are affinely dependent on the primitive uncertainties. That is,

y = y0 +
N∑
j=1

yjzj,

which will render the problem tractable. In this case, the feasible set X0

is approximated by

XAARC =

{
x : ∃y0,yj,m0(x) +M(x)z +By0 +

N∑
j=1

Byjzj ≤ 0 ∀z ∈ Γ

}
.

It is clear that XAARC ⊆ X0.

The AARC is motivated by the belief that the change in recourse variables

is often linear to small changes in data uncertainty. However, the AARC may

be too restrictive, particularly in cases where linear dependency fails to be a

good approximation, as illustrated in the following example.

Example 2.2.1. Consider the following ARC.

min x

∀‖z‖1 ≤ 1∃ y s.t. −yi ≤ zi,−yi ≤ −zi, i = 1, . . . , N∑N
i=1 yi ≤ x.

The example implies that |zi| ≤ yi and hence x ≥
∑N

i=1 yi ≥ ‖z‖1. There-

fore, the optimal objective value of the ARC is 1.

If we employ the linear decision rule y = y0 +
∑N

j=1 y
jzj, then the AARC

is as follows.

min x

s.t. −(y0
i +

∑N
j=1 y

j
i zj) ≤ zi,

−(y0
i +

∑N
j=1 y

j
i zj) ≤ −zi, i = 1, . . . , N, ∀‖z‖1 ≤ 1∑N

i=1(y0
i +

∑N
j=1 y

j
i zj) ≤ x.

11



The first two constraints imply that |zi| ≤ y0
i +
∑N

j=1 y
j
i zj for all ‖z‖1 ≤ 1.

In particular, it is true for z = ±ei where ei is the unit vector with 1 at its

ith component. Therefore,

1 ≤ y0
i + yii, 1 ≤ y0

i − yii,

which implies that y0
i ≥ 1. In addition, if we let z = 0, the last constraint

then implies that x ≥ N . Finally, if yj = 0 for j = 1, . . . , N and y0 = e

where e is the all ones vector, then we know the optimal objective value of

the AARC is N .

The purpose of this chapter is to relax the restriction of the AARC pro-

posed in Ben-Tal et al. [9], in which the recourse variables depend on the

primitive uncertainties in an affine manner. Specifically, we introduce auxil-

iary variables u ∈ RK for some dimension K, such that the recourse variables

can be represented as affine functions of the auxiliary variables u in addition

to the primitive uncertainties z.

y = y0 +
N∑
j=1

yjzj +
N+K∑
j=N+1

yjuj, (2.2)

where (z, u) ∈ Λ, uj is the jth component of u and Λ, referred to as the

extended uncertainty set, is a nonempty closed convex set in RN+K to be

specified later.

We now provide some motivation for using the above formulation (2.2). As

we illustrated in Example 2.2.1, it may be too restrictive in certain settings

to require the recourse variables to be affine functions of the realization of the

primitive uncertainties. By introducing the new variables u, we hope that

they would capture certain nonlinearity of the response functions. Ideally, it

would be nice to represent u as some nonlinear functions of z, say piecewise

linear functions of z, which, however, usually leads to intractable formula-

tions. Thus, instead of representing u directly as some nonlinear functions

of z, we impose the constraint (z, u) ∈ Λ.

Letting y take the form in (2.2), we can write down an approximation to

problem (2.1) as follows.
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min c′x

s.t. ∃y0,yj : m0(x) +M (x)z +By0 +
∑K

j=1By
jzj +

∑N+K
j=N+1By

juj

≤ 0 ∀(z, u) ∈ Λ.

(2.3)

We call the problem the extended affinely adjustable robust counterpart. In

this problem, the feasible set of the first stage decision is

XEAARC :=

{
x : ∃y0,yj,m0(x) +M (x)z +By0 +

K∑
j=1

Byjzj

+
N+K∑
j=N+1

Byjuj ≤ 0 ∀(z, u) ∈ Λ

}
,

which can be considered as an approximation of the feasible set X0. When

necessary, we will also use XEAARC(Λ) to emphasize the extended uncertainty

set Λ.

It is straightforward to show that if Γ ⊆ Projz(Λ), where Projz(Λ) is the

projection of Λ into the z space, then XEAARC ⊆ X0.

As there are many different ways of choosing the extended uncertainty set

Λ, the EAARC is rather flexible. For instance, the AARC is a special case

of the EAARC. On the other hand, if the uncertainty set Γ itself is defined

through some auxiliary variables, then there is a natural way of defining

the extended uncertainty set Λ. Specifically, consider the uncertainty set

analyzed in Ben-Tal et al. [9]:

Γ = {z : ∃U : Zz +Uu �K d},

where K is a nonempty convex cone and x � y if and only if y − x ∈ K.

In this case, it is natural to define

Λ = {(z,u) : Zz +Uu �K d}.

Finally, if we choose Λ appropriately, XEAARC may recover the feasible

set X0. Indeed, assume that the set Γ is a polytope with extreme points,

z1, . . . ,zM . That is,
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Γ =

{
z : z =

M∑
j=1

zjuj,

M∑
j=1

uj = 1, uj ≥ 0,∀j = 1, . . . ,M

}
. (2.4)

Choose K = M and let

Λ =

{
(z, u) : z =

M∑
j=1

zjuj,

M∑
j=1

uj = 1, uj ≥ 0,∀j = 1, . . . ,M

}
. (2.5)

In this case, we have

XEAARC =
{
x : ∃y0,yj,m0(x) +By0

+
M∑
j=1

(M(x)zj +Byj)uj ≤ 0 ∀e′u = 1,u ≥ 0

}
.

In this following, we show that XEAARC = X0.

Theorem 2.2.1. If Γ and Λ are given by (2.4) and (2.5) respectively, then

XEAARC = X0.

Proof. From the definition of Γ and Λ, we have Γ = Projz(Λ). Thus,

XEAARC ⊆ X0. It remains to show X0 ⊆ XEAARC .

Recall the definition ofX0 = {x : ∀z ∈ Γ,∃y,m0(x) +M(x)z +By ≤ 0 }.
Hence, for a given x ∈ X0, there exists yj such that

m0(x) +M(x)zj +Byj ≤ 0, ∀ j = 1, 2, . . . ,M,

which implies that

m0(x) +
M∑
j=1

(M (x)zj +Byj)uj ≤ 0, ∀e′u = 1,u ≥ 0.

Thus, x ∈ XEAARC and X0 ⊆ XEAARC .
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2.3 Constraint Reformulation

In the previous section, we show that the EAARC is rather flexible. In

fact, if we define the extended uncertainty set Λ using the extreme points of

the original uncertainty set Γ, we can recover the feasible set of the ARC.

Unfortunately, in general, for a polyhedral set defined by linear equalities

and inequalities, the number of extreme points is exponential in terms of

the number of constraints of the polyhedral set and we may end up with an

intractable formulation.

Since the EAARC is essentially the application of the AARC on a re-

parameterized model, all the theoretical results for the AARC method carry

over to the EAARC verbatim as long as the extended uncertainty set is

chosen appropriately. In the following, we present equivalent formulations

for the robust constraints when the extended uncertainty set Λ is defined as

follows:

Λ = {(z, u) : Zz + Uu ≤ d}.

Under this assumption and using the constraint reformulation result of

the AARC method (see Ben-Tal et al. [9] for more details), we have that

x ∈ XEAARC if and only if there existW ,y0,Y z ,Y u such that the following

linear inequalities hold.

m0(x) +By0 +Wd ≤ 0

WZ = M(x) +BY z

WU = BY u

W ≥ 0.

(2.6)

Thus, problem (2.2) can be equivalently reformulated as the following lin-

ear program.

min c′x

s.t. (2.6) holds.

If the set Λ has a polynomial size representation in terms of the input data,

then the above linear program and hence its associated EAARC is tractable.

In the remainder of this section, we derive the dual of the feasibility prob-

lem (2.6). This dual is useful when we compare the feasibility set based on
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the EAARC and the one based on the AARC for the extended uncertainty

sets proposed in the next section.

Lemma 2.3.1. The dual of problem (2.6) is given as follows:

min −〈m0(x),α〉 − 〈M(x),β〉
s.t. Zβ′ +Uγ ′ ≤ dα′

B′α = 0

B′β = 0

B′γ = 0

α ≥ 0,

(2.7)

where α ∈ Rr, β ∈ Rr×N and 〈·, ·〉 denotes the inner product (specifically,

〈M(x),β〉 = trace(M(x)′β) denotes the inner product of the two matrices).

In addition, x ∈ XEAARC if and only if the optimal value of (2.7) is 0.

Proof. Define the Lagrangian function of the feasibility problem (2.6):

L(y0,Y z ,W ,Y u,α,β,γ)

=〈−m0(x)−By0 −Wd,α〉+ 〈WZ −M(x)−BY z ,β〉

+ 〈WU −BY u,γ〉

=− 〈m0(x),α〉 − 〈M (x),β〉+ 〈W ,Zβ′ +Uγ′ − dα′〉

− 〈y0,B′α〉 − 〈Y z ,B′β〉 − 〈Y u,B′γ〉

Consider the dual function defined by

Q(α,β,γ) = max
W≥0,y0,Y z ,Y u

L(y0,Y z ,W ,Y u,α,β,γ).

The Lagrangian dual of the feasibility problem (2.6) is given as

min
α≥0,β,γ

Q(α,β,γ),

which is equivalent to (2.7). It is clear that the feasibility problem (2.6) is

feasible if and only if its dual has an optimal objective value zero.

The sets Γ and Λ can be extended to incorporate conic constraints. We

have a result parallel to Lemma 2.3.1. Since its proof is similar to the one
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for Lemma 2.3.1 and follows directly from the conic programming duality

theory, we omit its proof.

Lemma 2.3.2. Assume that

Λ = {(z, u) : Zz + Uu �K d},

and there exists (z, u) such that d − Zz − Uu lies in the interior of K.

Then, x ∈ XEAARC if and only if 0 is the optimal value of the following

problem

min −〈m0(x),α〉 − 〈M(x),β〉
s.t. Zβ′ +Uγ ′ �K dα′

B′α = 0

B′β = 0

B′γ = 0

α ≥ 0.

2.4 The Splitting Based EAARC

In this section, we propose one way of choosing the extended uncertainty

set Λ. To illustrate the basic idea, we consider a simple setting in which

the uncertainty set Γ is the intersection of a polyhedral set and a norm

constrained set, that is,

Γ = {z : Lz ≤ l} ∩ {z : ‖z‖ ≤ Ω}. (2.8)

for some norm ‖ · ‖. The idea is essentially to split z into two parts, which

can be thought of as the positive part and the negative part of z. Specifically,

we let u = (v′,w′)′ and z = v −w. That is, z is defined as the difference

of two auxiliary variables v and w, which represents the positive part and

the negative part of z respectively. The extended uncertainty set can be

naturally defined as

Λ = {(z,u) : Lz ≤ l} ∩ {(z,u) :

u = (v′,w′)′, z = v −w, ‖v +w‖ ≤ Ω,v ≥ 0,w ≥ 0}.
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Thus, instead of using affine decision rules in terms of z, we consider

decision rules that are affine in v and w (obviously the affine part in z is

automatically subsumed in this case), namely,

y = y0 +
N∑
j=1

(rjvj + sjwj),

where y0, rj and sj are vectors to be determined. The resulting EAARC

is referred to as the splitting based EAARC.

We now apply the splitting based EAARC to Example 2.2.1 to illustrate

that the EAARC may significantly improve upon the AARC.

Example 2.4.1. Consider the adjustable robust counterpart presented in Ex-

ample 2.2.1. In the EAARC decision rule, we have z = v−w,v ≥ 0,w ≥ 0

and y = y0 +
∑N

j=1(rjvj + sjwj). Then the EAARC is defined as follows:

min x

s.t. −(y0
i +

∑N
j=1(rji vj + sjiwj)) ≤ vi − wi,

−(y0
i +

∑N
j=1(rji vj + sjiwj)) ≤ −(vi − wi), i = 1, . . . , N,

∀‖v +w‖1 ≤ 1,v ≥ 0,w ≥ 0∑N
i=1(y0

i +
∑N

j=1(rji vj + sjiwj)) ≤ x.

The first two constraints imply that

|vi − wi| ≤ y0
i +

N∑
j=1

(rji vj + sjiwj).

It is clear that y =
∑N

j=1 e
j(vj + wj) satisfies the first two constraints.

Furthermore, in this case,

x ≥
N∑
i=1

(vi + wi) = ‖v +w‖1.

Hence the optimal objective value of the EAARC is 1. This is exactly the

optimal objective value of the ARC, while the optimal objective value of the

AARC is N .

Observe that in the above example, the optimal response function is yj(z) =

|zj|, which is nonlinear in z. By introducing the positive and negative parts
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of z, we are able to capture the nonlinearity in this specific example.

We now extend the splitting idea to more general uncertainty sets. Specif-

ically, we focus on the uncertainty set

Γ = {z : ∃((u1)′, . . . , (uτ )′)′ ∈ RK1 × . . .RKτ Zz +
τ∑
t=1

U tut ≤ d,

‖z‖(0) ≤ Ω0, ‖ut‖(t) ≤ Ωt, t = 1, . . . , τ},

where d ∈ R`, Z ∈ R`×N and U t ∈ R`×Kt . Here ‖ · ‖(t), t = 0, 1, . . . , τ are

vector norms. In this chapter, all the vector norms ‖ · ‖(t) in the uncertainty

set satisfy the following condition:

‖ut‖(t) = ‖|ut|‖(t),

where |ut| is the vector with the jth component equal to |uj| ∀j ∈ {1, . . . , N}.
For technical reasons, we assume that the Slater condition holds. That

is, there exists ut, t = 0, 1, . . . , τ , such that Zu0 +
∑τ

t=1U
tut ≤ d with

‖ut‖(t) < Ωt if ‖ · ‖(t) is not a polyhedral norm. This assumption would allow

us to employ Lemma 2.3.2 in the following analysis.

The representation of our uncertainty set is broad enough to include many

uncertainty sets commonly used in the robust optimization literature. Ob-

viously, the uncertainty set (2.8) is a special case. More importantly, it also

includes the intersection of several general ellipsoids as a special case.

We now propose a specific extended uncertainty set Λ by splitting (z,u)

into its positive and negative parts. Specifically, let v = ((v0)′, . . . , (vτ )′)′ ∈
RK0 × . . .RKτ , w = ((w0)′, . . . , (wτ )′)′ ∈ RK0 × . . .RKτ with K0 = N and

define the extended uncertainty set as follows.

Λ = {(z,v,w) : Zz +
τ∑
t=1

U t(vt −wt) ≤ d, z = v0 −w0,

vt ≥ 0,wt ≥ 0, ‖vt +wt‖(t) ≤ Ωt, t = 0, 1, . . . , τ}. (2.9)

Now instead of using affine decision rules in terms of the primitive uncer-

tainties z, we represent the recourse decision y affinely in v and w (again

the affine part in z is automatically subsumed in this case), i.e.,
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y = y0 +
τ∑
t=0

Kt∑
i=1

(rt,ivti + st,iwti). (2.10)

We now formulate the EAARC as an equivalent conic programming prob-

lem, whose proof follows from Theorem 3.2 in Ben-Tal et al. [9] and thus is

omitted.

Theorem 2.4.1. The splitting based EAARC with the extended uncertainty

set (2.9) and the affine decision rule (2.10) is equivalent to the following

conic programming problem.

min c′x

s.t. m0(x) +By0 −Φd ≤ 0

(µt)′ ≥ Ωt‖(ht)′‖∗(t), t = 0, 1, . . . , τ

H0 ≥ Br0 + ΦZ +M (x)

H0 ≥ Bs0 −ΦZ −M(x)

H t ≥ Brt + ΦU t, t = 1, 2, . . . , τ

H t ≥ Bst −ΦU t, t = 1, 2, . . . , τ

H t ≥ 0, t = 0, 1, . . . , τ

Φ ≥ 0,

(2.11)

where Φ ∈ Rr×`, H t ∈ Rr×Kt and µt ∈ Rr. In addition, ‖(H t)′‖∗(t) is an

r-dimensional row vector with its jth entry equal to the conjugate norm of

‖ · ‖(t) taken over the jth row of H t.

Note that when all the vector norms ‖·‖(t) are 2-norms, the above problem

(2.11)) becomes a second order conic program.

We are interested in identifying conditions under which XEAARC(Λ) im-

proves upon XAARC when Λ is given in (2.9). However, rather than directly

comparing XEAARC(Λ) and XAARC , we will compare XEAARC(Λ) and another

extended uncertainty set XEAARC(Λ0), where

Λ0 = {(z,u) : Zz +
τ∑
t=1

U tut ≤ d, ‖z‖(0) ≤ Ω0, ‖ut‖(t) ≤ Ωt, t = 1, 2, . . . , τ}

is the natural extension of the original uncertainty set.

Notice that Lemma 2.3.2 implies that x ∈ XEAARC(Λ0) if and only if 0 is

the optimal value of the following problem.
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min −〈m0(x),α〉 − 〈M(x),β〉
s.t. Zβ′ +

∑τ
t=1U

t(γt)′ ≤ dα′

B′α = 0

β = γ0

B′γt = 0, t = 0, 1, . . . , τ

‖(γt)′‖(t) ≤ Ωtα
′, t = 0, 1, . . . , τ

α ≥ 0.

(2.12)

Here α ∈ Rr, β ∈ Rr×N , γt ∈ Rr×Kt and ‖(γt)′‖(t) is an r dimensional

row vector with each entry equal to the norm of the corresponding column

in (γt)′.

Similarly, x ∈ XEAARC if and only if 0 is the optimal value of the following

problem.

min −〈m0(x),α〉 − 〈M(x),β〉
s.t. Zβ′ +

∑τ
t=1U

t(ηt − δt)′ ≤ dα′

B′α = 0

β = η0 − δ0

B′ηt = 0, t = 0, 1, . . . , τ

B′δt = 0, t = 0, 1, . . . , τ

‖(ηt)′ + (δt)′‖(t) ≤ Ωtα
′, t = 0, 1, . . . , τ

α,ηt, δt ≥ 0, t = 0, 1, . . . , τ.

(2.13)

Here ηt, δt ∈ Rr×Kt .

It is straightforward to see that for any given feasible solution (α,β,η, δ)

of problem (2.13), (α,β,γ) with γ ′ = η′ − δ′ is feasible for problem (2.12).

If in addition, for any given feasible solution (α,β,γ) of problem (2.12),

we can find (η, δ) such that (α,β,η, δ) is feasible for problem (2.13), then

XEAARC(Λ) = XEAARC(Λ0). However, if the projection of the feasible set

of problem (2.13) onto the (α,β) space is a true subset of the projection of

the feasible set of problem (2.12) onto the (α,β) space, then it is possible

that XEAARC(Λ0) and thus XAARC are true subsets of XEAARC(Λ). In the

following we compare the two sets under several different cases. First, we

assume that Ωt is finite. The following theorem illustrates that when we

use the infinity norm in the uncertainty set, the EAARC with the extended

uncertainty set Λ does not improve upon the EAARC with the extended
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uncertainty set Λ0.

Theorem 2.4.2. If ‖ · ‖(t) = ‖ · ‖∞ and Ωt < ∞ for all t = 0, 1, . . . , τ ,

then the projection of the feasible set of problem (2.13) onto the (α,β) space

coincides with the projection of the feasible set of problem (2.12) onto the

(α,β) space. Thus, in this case, XEAARC(Λ) = XEAARC(Λ0).

Proof. For any feasible solution (α,β,γ) of problem (2.12), we have that

‖(γt)′‖∞ ≤ Ωtα
′. Define for t = 0, 1, . . . , τ ,

ηt =
1

2
(Ωteα

′ + γt)

and

δt =
1

2
(Ωteα

′ − γt).

It is straightforward to check that (α,β,η, δ) is feasible for problem (2.13)

and gives the same objective value. Thus, XEAARC(Λ) = XEAARC(Λ0).

The above proof can be easily extended to the case in which Ωt = ∞ for

any t = 0, 1, . . . , τ .

Theorem 2.4.3. Assume Ωt = ∞ for all t = 0, 1, . . . , τ . If Λ0 is bounded,

then XEAARC(Λ) = XEAARC(Λ0).

We now present an example to show that Theorem 2.4.3 may fail if Λ0 is

not bounded.

Example 2.4.2. Let r = N = 2, Λ0 = {(z1, z2, u1, u2) : z1 − z2 ≤ 1, z = u}
and

B =

[
1 1

1 1

]
.

In this case, it is clear that B′α = 0,α ≥ 0 implies that α = 0. Thus,

problem (2.13) has a unique solution (α,β,η, δ) = 0. However, in addition

to the feasible solution (α,β,γ) = 0, problem (2.12) has a nonzero feasible

solution (α,β,γ), in which α = 0, β = γ and

β =

[
1 1

−1 −1

]
.
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Therefore, the feasible set of problem (2.12) is a strict subset of the feasible

set of problem (2.13) and thus Theorem 2.4.3 does not hold.

We now show that Theorem 2.4.2 fails if the norm is different from the

infinity norm. For this purpose, we need the following result.

Lemma 2.4.1. Given a norm ‖ · ‖ with the property that ‖u‖ = ‖|u|‖ for

any u,

‖u‖ ≤ ‖v‖, ∀ 0 ≤ u ≤ v.

Proof. Let ei be the unit vector with its ith component being one. It suffices

to show that

‖u‖ ≤ ‖v‖,

for any u ≥ 0 and v = u+ γei for any i and γ ≥ 0.

Define a new vector v̂ such that

v̂ = u− (2ui + γ)ei.

It is clear that ‖v̂‖ = ‖v‖. In addition, u lies within the line segment

between v̂ and v. Thus,

‖u‖ ≤ max{‖v̂‖, ‖v‖} = ‖v‖.

In the following, we further assume that the vector norms ‖ · ‖(t) satisfies

the following conditions:

‖ei‖(t) = 1,∀i.

Theorem 2.4.4. If ‖ · ‖(t) 6= ‖ · ‖∞ and Ωt is finite for some t, then

XEAARC(Λ) may be a true subset of XEAARC(Λ0). In this case, the EAARC

based on the extended uncertainty set Λ may provide a strict improvement

upon the AARC.

Proof. We prove this result by constructing an example. Specifically, we

construct an example in which for a feasible solution (α,β,γ) of problem
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(2.12), we cannot find (η, δ) such that (α,β,η, δ) is feasible for problem

(2.13). We consider the basic setting in which

Λ0 = {(z,u) : Lz ≤ l, z = u, ‖u‖ ≤ Ω}.

In this case, we have for a feasible solution (α,β,γ) of problem (2.12),

γ = β. Thus, it suffices to talk about the feasible solution (α,β) of problem

(2.12).

Let Ω = ‖[1 1]′‖. Choose B such that the null space of B′ is spanned by

α = [1 1 1 1 1]′, β1 and β2, where

β = [β1,β2] =


1 1

Ω 0

0 Ω

−Ω 0

0 −Ω

 .

It is easy to verify that (α,β) is feasible for problem (2.12). Now assume

that there exist η and δ such that (α,β,η, δ) is feasible for problem (2.13).

Since B′δ = 0, we have that

δj = ωjα+ µjβ
1 + νjβ

2, j = 1, 2,

for some scalars ωj, µj and νj. Since β′ = η′−δ′, we have that η = [η1 η2]

with

η1 = ω1α+ (1 + µ1)β1 + ν1β
2,

and

η2 = ω2α+ µ2β
1 + (1 + ν2)β2.

Thus, the jth column of η′ + δ′ is given by[
2ω1 + 2µ1β

1
j + 2ν1β

2
j + β1

j

2ω2 + 2µ2β
1
j + 2ν2β

2
j + β1

j

]
.

Since ‖η′j + δ′j‖ ≤ Ωαj and δ ≥ 0, letting j = 1 implies that

ωj + µj + νj = 0, for j = 1, 2.
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Similarly, letting j = 2, 3 implies that

ω1 + Ωµ1 = 0, ω2 + Ων2 = 0.

The above equalities imply that

ω1 = −Ωµ1, ν1 = (Ω− 1)µ1,

and

ω2 = −Ων2, µ2 = (Ω− 1)ν2.

Letting j = 4, 5, η ≥ 0 implies that −µ1 ≥ 1/2 and −ν2 ≥ 1/2. In

addition, we have that∥∥∥∥∥
[
−4µ1Ω− Ω

−2Ω2ν2

]∥∥∥∥∥ ≤ Ω,

∥∥∥∥∥
[
−2Ω2µ1

−4ν2Ω− Ω

]∥∥∥∥∥ ≤ Ω (2.14)

However, −4µ1Ω − Ω ≥ Ω and −2Ω2ν2 ≥ Ω2. The above inequalities

together with Lemma 2.4.1 imply that ‖[1 Ω]′‖ ≤ 1. Hence, Ω = 1 and

‖[1 1]′‖ = 1. Again, this together with Lemma 2.4.1 implies that ‖(u1, u2)′‖ =

1 if and only if ‖(u1, u2)′‖ = ‖(u1, u2)′‖∞ for any u1 and u2.

In the construction of the uncertainty set of the EAARC, we essentially

split the primitive uncertainty z and the auxiliary variable u to the positive

parts and negative parts. We may generalize the idea by further splitting u

to more parts as follows.

Λ(K) = {(z,v,w) : Zz +
τ∑
t=1

K∑
k=1

U t(vt,k −wt,k) ≤ d,

z =
K∑
k=1

(v0,k −w0,k)} ∩

(
τ⋂
t=0

Gt(K)

)

where vt = [(vt,1)′ . . . (vt,K)′]′,wt = [(wt,1)′ . . . (wt,K)′]′ and for t = 0, 1, . . . , τ ,
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Gt(K) = {(z,v,w) : ‖
K∑
k=1

(vt,k +wt,k)‖(t) ≤ Ωt,

0 ≤ vt,k ≤ at,k,0 ≤ wt,k ≤ bt,k, k = 1, . . . , K}.

One may conjecture that by introducing more flexibility into the uncer-

tainty set, we can make further improvement. For a fair comparison, we

require that for t = 0, 1, . . . , τ ,

{ξ =
K∑
k=1

(vt,k −wt,k) : (z,v,w) ∈ Gt(K)} = {ξ : ‖ξ‖(t) ≤ Ωt}. (2.15)

Unfortunately, under these assumptions, Λ(K) may not provide any im-

provement over Λ(1). To see this, we consider the dual associated with the

uncertainty set Λ(K), which can be written as follows.

P (K) : min −〈m0(x),α〉 − 〈M(x),β〉
s.t. Zβ′ +

∑τ
t=1

∑K
k=1U

t(ηt,k − δt,k)′ ≤ dα′

B′α = 0

β =
∑K

k=1(η0,k − δ0,k)

B′ηt,k = 0, t = 0, 1, . . . , τ, k = 1, 2, . . . , K

B′δt,k = 0, t = 0, 1, . . . , τ, k = 1, 2, . . . , K

‖
∑K

k=1((ηt,k)′ + (δt,k)′)‖(t) ≤ Ωtα
′, t = 0, 1, . . . , τ

0 ≤ ηt,k ≤ at,kα′, t = 0, 1, . . . , τ, k = 1, 2, . . . , K

0 ≤ δt,k ≤ bt,kα′, t = 0, 1, . . . , τ, k = 1, 2, . . . , K

α ≥ 0.

(2.16)

It is obvious that for any feasible solution of problem (2.16) for general

K, we can construct a feasible solution for problem (2.13) with the same

objective value.

On the other hand, since (2.15) holds, we claim that

K∑
k=1

at,k ≥ Ωte,
K∑
k=1

bt,k ≥ Ωte.
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Indeed, since ‖Ωte
i‖(t) = Ωt, there exist vt,k and wt,k such that

0 ≤ vt,k ≤ at,k,0 ≤ wt,k ≤ bt,k, ‖
K∑
k=1

(vt,k +wt,k)‖(t) ≤ Ωt,

and
∑K

t=1(vt,k −wt,k) = Ωte
i. Since vt,k,wt,k ≥ 0,

K∑
k=1

at,ki ≥
K∑
k=1

vt,ki ≥ Ωt.

Thus,
∑K

k=1 a
t,k ≥ Ωte. Similarly, we can show that

∑K
k=1 b

t,k ≥ Ωte. For

any feasible solution (α,β,η, δ) of problem (2.13), Lemma 2.4.1 implies that

0 ≤ (ηj)′ ≤ Ωα′,0 ≤ (δj)′ ≤ Ωα′.

Therefore, there exists ρik ≥ 0 and φik ≥ 0 such that

0 ≤ (ηt,ki )′ = ψt,ki (ηti)
′ ≤ ψt,ki Ωtα

′ ≤ at,ki α
′,

K∑
k=1

ψt,ki = 1,

and

0 ≤ (δt,ki )′ = φt,ki (δti)
′ ≤ φt,ki Ωtα

′ ≤ bt,ki α
′,

K∑
k=1

φt,ki = 1.

Hence, (α,β,η, δ) is feasible for problem (2.16) for general K, which im-

plies that further splitting (z,u) does not provide an improvement.

2.5 Numerical Experiment

In the previous section, we proposed one way of choosing the uncertainty

set in the EAARC and identified conditions under which the EAARC im-

proves upon the AARC. In this section, we conduct numerical experiments

to illustrate the improvement on a project management problem.

A project management problem can be represented by a directed graph

with m arcs and n nodes. Each node on the graph represents an event

marking the completion of a particular subset of activities. We denote the

set of directed arcs on the graph as E. Hence, an arc (i, j) ∈ E is an activity

that connects event i to event j. By convention, we use node 1 as the start
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event and the last node n as the end event.

We consider a project with several activities. The completion of activities

must satisfy precedent constraints. For example, activity e1 precedes activity

e2 if activity e1 must be completed before starting activity e2.

Each activity (i, j) ∈ E has an uncertain duration tij + zijεij in which tij

and εij are constants, and zij ∈ [−1, 1] is the primitive uncertainty. The

value of zij is realized after event i is completed. But before this realization,

certain resources can be allocated to the activity to shorten its duration.

Specifically, we assume that if yij units of resource is allocated to activity

(i, j) ∈ E, then the duration of activity (i, j) would become tij + zijεij − yij.
Let bij be the cost of using each unit of resource for the activity on the arc

(i, j). Our goal is to find a tradeoff of the completion time of the project and

the total cost of resource allocations.

Mathematically, our project management problem can be formulated as a

multi-stage uncertain linear program:

min
∑
ij

bijyij + Cxn

s.t. xj − xi + yij − zijεij ≥ tij ∀(i, j) ∈ E
yij ≥ 0 ∀(i, j) ∈ E
tij + zijεij − yij ≥Mij ∀(i, j) ∈ E
x1 = 0

xn ≤ D


,∀ zij.

In this model, C is the per unit cost on the completion time, and xi

denotes the completion time of event i. The first constraint implies that the

completion time of event j is no less than the completion time of event i plus

the completion time of activity (i, j). The third constraint requires that the

reduction of the completion time of an activity cannot be arbitrarily large.

In particular, in our experiment, we assume that the minimum duration of

project (i, j) ∈ E must be at least Mij. We also require that the completion

time of the entire project meets a strict deadline D.

If the distributional information of the uncertain data is available, one

would formulate the problem as a multi-stage stochastic programming prob-

lem. Unfortunately, analysis of the project management problem within the

stochastic programming framework, such as determining the expected com-

pletion time and quantile of completion time, is notoriously difficult (see

28



Hagstrom [42]). A tractable approximation is proposed in Chen et al. [24] to

a two-stage project management problem with uncertainty, which requires

mild distributional knowledge of the uncertain completion time tij.

In our experiment, instead of imposing distributional assumptions on the

uncertain data, we assume that the uncertain data are restricted within some

uncertainty set and formulate the project management problem within the

adjustable robust counterpart framework. Specifically, the uncertainty set Γ

is defined as follows:

Γ = {z = (zij)(i,j)∈E : −w̄ ≤ z ≤ v̄, ‖z‖2 ≤ Ω}.

We will compare the performance of the AARC and the splitting based

EAARC on the multi-stage project management problem. In the splitting

based EAARC, we define the uncertainty set Λ as follows:

Λ = {(z,v,w) = (zij, vij, wij)(i,j)∈E : z = v −w,

− w̄ ≤ v −w ≤ v̄, ‖v +w‖2 ≤ Ω, (v,w) ≥ 0}.

In addition, the decision variables xi and yij are represented as

xi = x0
i +

∑
(k,l)∈Ii

xkl,vi vkl +
∑

(k,l)∈Ii
xkl,wi wkl,

yij = y0
ij +

∑
(k,l)∈Ii

ykl,vij vkl +
∑

(k,l)∈Ii
ykl,wij wkl,

(2.17)

where vkl and wkl can be regarded as the positive part and negative part

of the primitive uncertainty zkl respectively. It is clear that when we impose

the constraints xkl,vi = −xkl,wi and ykl,vij = −ykl,wij , the EAARC reduces to the

AARC.

Note that in the above formulations, instead of summing (k, l) across all

arcs, we only take the summation in a selected set Ii. The set Ii is called

the information set for decision variable xi. By choosing the information

set properly, we ensure that at any stage of decision, the system only takes

into account information from previous realized uncertainties. Furthermore,

based on our assumption that resource on an arc is allocated before the

primitive uncertainty on that arc is realized, arc (i, j) should always have

the same information set as node i.
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Employing Theorem 2.4.1, the splitting based EAARC can be reformulated

as a second order conic program. However, it seems more convenient to carry

out the reformation using the following result which is shown in Chen et al.

[24].

Lemma 2.5.1. For a given scalar α and a vector a, the robust constraint

α + a′v + b′w ≤ 0, ∀(v,w) ∈ {(v,w) :

− w̄ ≤ v −w ≤ v̄, ‖v +w‖2 ≤ Ω, (v,w) ≥ 0}

can be equivalently written as

α + Ω‖u‖2 + r′v̄ + s′w̄ ≤ 0

uj ≥ aj − rj + sj,∀ j
uj ≥ bj + rj − sj,∀ j
u, r, s ≥ 0.

Since all the constraints in the EAARC have the same form as the robust

constraint in Lemma 2.5.1, they are referred to as robust constraints in the

sequel and we will use Lemma 2.5.1 to reformulate all the robust constraints

into their equivalent second order conic constraints. But before we do this,

note that any primitive uncertainty not in the information set should not

have an influence on the corresponding decision variable, therefore we have

the following constraints:

xkl,vi = xkl,wi = 0 ∀(k, l) /∈ Ii
ykl,vij = ykl,wij = 0 ∀(k, l) /∈ Iij

Similarly the constraint x1 = 0 means xkl,v0 = xkl,w0 = 0 ∀(k, l).
The objective of minimizing

∑
ij

bijyij + Cxn can be written as minimizing

a new variable τ , subject to the robust constraint τ ≥
∑
ij

bijyij +Cxn. Given

the representation of xi and yij in (2.17) and the extended uncertainty set

Λ, this robust constraint, together with the four other sets of robust con-

straints, is turned into their equivalent second order conic constraints. The

reformulations are presented below for convenience.

First set:
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τ ≥
∑
ij

bijyij + Cxn

becomes

τ ≥ Cx0
n +

∑
(i,j)∈E

bijy
0
ij + Ω‖t‖2 +

∑
(k,l)∈E

(tklv v̄kl + tklw w̄kl)

tkl ≥
∑

(i,j)∈E
bijy

kl,v
ij + Cxkl,vn − tklv + tklw ∀(k, l) ∈ E

tkl ≥
∑

(i,j)∈E
bijy

kl,w
ij + Cxkl,wn + tklv − tklw ∀(k, l) ∈ E

t, tr, tw ≥ 0.

where t = (tkl)(k,l)∈E, tv = (tklv )(k,l)∈E and tw = (tklw )(k,l)∈E.

Second set:

xj − xi + yij − zijεij ≥ tij ∀(i, j) ∈ E

becomes

x0
i − x0

j − y0
ij + tij + Ω‖γij‖2

+
∑

(k,l)∈E
(γklv,ij v̄kl + γklv,ijw̄kl) ≤ 0 ∀(i, j) ∈ E

γklij ≥ xkl,vi − xkl,vj − ykl,vij + εijδ
kl
ij − γklv,ij + γklw,ij ∀(i, j) ∈ E, (k, l) ∈ E,

γklij ≥ xkl,wi − xkl,wj − ykl,wij − εijδklij + γklv,ij − γklw,ij ∀(i, j) ∈ E, (k, l) ∈ E
γij,γv,ij,γw,ij ≥ 0 ∀(i, j) ∈ E,

where γij = (γklij )(k,l)∈E, γv,ij = (γklv,ij)(k,l)∈E, γw,ij = (γklw,ij)(k,l)∈E, and

δklij = 1 if (i, j) = (k, l) and 0 otherwise.

Third set:

yij ≥ 0 ∀(i, j) ∈ E

becomes
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−y0
ij + Ω‖αij‖2 +

∑
(k,l)∈E

(αklv,ij v̄kl + αklw,ijw̄kl) ≤ 0 ∀(i, j) ∈ E

αklij ≥ −y
kl,v
ij − αklv,ij + αklw,ij ∀(i, j) ∈ E, (k, l) ∈ E

αklij ≥ −y
kl,w
ij + αklv,ij − αklw,ij ∀(i, j) ∈ E, (k, l) ∈ E

αij,αv,ij,αw,ij ≥ 0 ∀(i, j) ∈ E,

where αij = (αklij )(k,l)∈E, αv,ij = (αklv,ij)(k,l)∈E and αw,ij = (αklw,ij)(k,l)∈E.

Fourth set:

tij + zijεij − yij ≥Mij ∀(i, j) ∈ E

becomes

y0
ij + Ω‖βij‖2 +

∑
(k,l)∈E

(βklv,ij v̄kl + βklw,ijw̄kl)

≤ tij −Mij ∀(i, j) ∈ E
βklij ≥ ykl,vij − εijδklij − βklv,ij + βklw,ij ∀(i, j) ∈ E, (k, l) ∈ E
βklij ≥ ykl,wij + εijδ

kl
ij + βklv,ij − βklw,ij ∀(i, j) ∈ E, (k, l) ∈ E

βij,βv,ij,βw,ij ≥ 0 ∀(i, j) ∈ E,

where βij = (βklij )(k,l)∈E, βv,ij = (βklv,ij)(k,l)∈E and βw,ij = (βklw,ij)(k,l)∈E.

Fifth set:

xn ≤ D

becomes

x0
n + Ω‖ψ‖2 +

∑
(k,l)∈E

(ψklv v̄kl + ψkls w̄kl) ≤ D

ψkl ≥ xkl,vn − ψklv + ψklw ∀(k, l) ∈ E
ψkl ≥ −xkl,wn + ψklv − ψklw ∀(k, l) ∈ E
ψ,ψv,ψw ≥ 0,

where ψ = (ψkl)(k,l)∈E,ψv = (ψklv )(k,l)∈E and ψw = (ψklw )(k,l)∈E.

Putting all the above together, we end up with a second order conic pro-

gram, for which we use CPLEX version 10 to solve. For our computational

experiment, we create a fictitious project with the activity network in the
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Figure 2.1: Project management grid with H = 3 and W = 5

form of a H by W grid (see Figure 2.1). There are a total of (H+1)×(W+1)

nodes, with the first node at the bottom left corner and the the last node at

the upper right corner. Each arc on the graph either points upwards or to

the right.

In an instance of the uncertain project management problem, the related

parameters tij,Mij, bij are generated randomly. Specifically, on horizontal

arcs, tij is generated from U [6, 10] (the uniform distribution in [6, 10]), the

minimum duration time Mij is generated from U [1, 5] and the resource unit

cost bij is generated from U [1, 10]. On the vertical arcs, tij is generated from

U [4, 6], Mij is generated from U [1, 3] and bij is generated from U [1, 5]. Let

εij = tij −Mij. We also fix C = 0.3 and let v̄ij = ρ+ and w̄ij = ρ− for some

positive constants ρ+ and ρ− (the exact values of ρ+ and ρ− will be specified

later). It is clear that ρ+ and ρ− measure the asymmetry of the primitive

uncertainties.

We use two difference criteria to compare the performance of the EAARC

and the AARC. In the first criterion, we measure the improvement of the

optimal objective value of the EAARC relative to the AARC. In the second

criterion, we compare the simulated average costs incurred using decision

rules (2.17) derived from the EAARC and the AARC. Here’s a precise de-

scription of how this is done:

• For an instance of the uncertain project management problem, we solve

the EAARC and AARC respectively to derive decision rules (2.17).

• Generate 100 samples of (zij)(i,j)∈E from U [−ρ−, ρ+] for the instance of

the uncertain project management problem.

• For each sample, compute the cost of the project management problem

when the decisions xi and yij are determined by the decision rules
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(2.17) derived from solving the EAARC and the AARC. The average

costs of the EAARC and the AARC are then defined as the average

of the corresponding costs of all samples. Since we assume that only

the primitive uncertainty z is observable, in the implementation of the

EAARC decision rule, we let vkl = max(zkl, 0) and wkl = max(−zkl, 0).

• Compute the percentage of improvement:

Percentage of Improvement =

(Average Cost of EAARC)− (Averaged Cost of AARC)

(Average Cost of AARC)
× 100%.

We now illustrate the impacts of the due date, the asymmetry property

of the primitive uncertainties, problem size, information set, and level of

robustness on the performance of the EAARC and the AARC.

Experiment 2.5.1 (Algorithm Improvement vs. due date constraint). We

use the 3 × 4 grid network. Let Ω = 3.0, ρ+ = 1 and ρ− = 0.7. We also

use the complete information set, i.e., for each event i, the information set

Ii consists of the realization of all past primitive uncertainties. We pick a

range of due dates D between 24 and 90. The percentage of improvement vs

due-date relation is shown in Figure 2.2.

Our experiment indicates that there is a lower bound l on the due date

(l = 24 in our example), below which the due-date constraint would become

so tight that both the EAARC and the AARC become infeasible. On the

other hand, when the due-date goes above an upper bound u (u = 85 in our

example), the time constraint becomes so loose that no project needs to be

shortened, and therefore, the EAARC and the AARC yield the same cost.

From Figure 2.2, we observe that the EAARC outperforms the AARC un-

der both criteria (simulated average or optimal value). We also observe that

the largest percentage of improvement always appears somewhere in the mid-

dle of l and u. While for due-dates near l or u, the costs derived from the

EAARC and the AARC are close. The explanation is as follows: when the

due-date is too loose or too tight, the problem becomes somewhat simplified,

i.e. all project must be shortened (in the tight case), or no project needs to
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Figure 2.2: Algorithm improvement vs. due-date
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ρ− 1 0.9 0.8 0.7 0.6 0.5
Optimal 0.0% 2.3% 3.7% 4.5% 4.8% 4.9%

Simulated 0.0% 2.1% 2.9% 3.4% 3.5% 3.5%
ρ− 0.4 0.3 0.2 0.1 0

Optimal 4.6% 3.9% 2.9% 0.5% 0%
Simulated 3.3% 2.9% 2.3% 1.4% 0%

Table 2.1: Algorithm Improvement vs Asymmetric Uncertainty

be shortened (in the loose case). In either case, the EAARC does not have a

big advantage over the AARC.

Around the mid-point of l and u, however, it is not immediately clear which

project to shorten and how much to shorten. This adds more variability to

the problem, which would in turn demand additional flexibility in the response

function. The seemingly erratic shape in the middle portion suggests that the

percentage of improvement is sensitive to due date. Especially we observe that

there is a big jump at a due date around 71 in the graph. One possible inter-

pretation is that when the due date becomes rather loose, the optimal costs of

both EAARC and AARC decrease rapidly and thus their ratio as well as the

percentage of improvement becomes unstable. This is in fact a common ob-

servation throughout our experiments. We also observe that not surprisingly

the percentage of improvement under the two criteria demonstrates a certain

degree of correlation. The percentage of improvement under the simulated

average cost criterion, however, appears to be more volatile than the other.

Experiment 2.5.2 (Algorithm Improvement vs. Asymmetric Uncertainty

Set). As described before, our primitive uncertainty set can model asymmet-

ric uncertainties by adjusting ρ+ and ρ−. We are interested in comparing the

performances of the EAARC and the AARC under different levels of asym-

metry. Without loss of generality, we fix ρ+ to be 1 and let ρ− change. We

set D = 60 and still use the 3 × 4 grid network with Ω set to 3.0. The

computational results are shown in Table 2.1.

Surprisingly, when ρ− = 1 (completely symmetric uncertainty set), the

EAARC and the AARC always give the same cost in our experiment. On the

other end, when ρ− = 0, which means the uncertainty set lies completely in

the positive orthant, and therefore EAARC reduces to AARC (and gives 0%

improvement). When ρ− takes value in the middle range, under both criteria,
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Size 3× 4 4× 4 4× 5
Optimal 1.3% 2.4% 3.8%

Simulated 2.6% 3.5% 5.1%

Table 2.2: Algorithm Improvement vs Problem Size

the percentage of improvement gets higher. And peaks at around ρ− = 0.5.

Experiment 2.5.3 (Algorithm Improvement vs. Problem Size). We now

evaluate the algorithm improvement with different problem size. To do this,

three grid networks are selected with size 2×3, 3×3, 3×4, respectively. The

due dates are set to be 25, 30, 35, respectively. Again, let Ω = 3.0, ρ+ = 1

and ρ− = 0.7.

The percentage of improvements are listed in Table 2.2. From this table,

it is clear that the improvements in both the optimal objective values and the

simulation averages of using the EAARC grow when the problem size grows.

Interestingly, the improvement of the simulated average cost outperforms that

of the optimal objective value.

Experiment 2.5.4 (Algorithm Improvement vs. Information Set). This

experiment is carried out on a 3 × 4 grid network with Ω = 3.0, D = 60,

ρ+ = 1 and ρ− = 0.7. In the experiment, we compare the performance of

the EAARC and the AARC using the complete information set, in which all

the past information is available, and the partial information set, in which

information too distant away in the past is “lost”.

To be more precise, we define the degree of information availability L as

follows: for arc (i, j) to be in the information set for node k, activity (i, j)

must complete before event k and there is a path from event i to event k using

no more than L arcs. In our experiment, we vary L from 0 (information

become lost immediately, e.g., no information available) to 7 (for 3× 4 grid

this means no information are lost).

Results are listed in Table 2.3 (”INF” stands for infeasible).

As we can easily observe, the percentage of improvement doesn’t change

much when information set shrinks. The explanation is as follows: the de-

cision on a node depends heavily on the most “recent” information. Even

though we’re shrinking the information set, the most recent ones are still

kept. Therefore, the performance doesn’t change much. When L = 0, there
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D 0 1 2 3 4 5 6 7
Optimal INF 3.1% 3.2% 3.2% 3.2% 3.2% 3.2% 3.2%

Simulated INF 4.4% 4.6% 4.6% 4.6% 4.6% 4.6% 4.7%

Table 2.3: Algorithm Improvement vs Information Set

Ω 2.0 2.5 3.0 3.5 4.0
Optimal 13.6% 8.1% 5.0% 3.2% 1.7%

Simulated 10.4% 6.3% 4.0% 4.5% 3.3%

Table 2.4: Algorithm Improvement vs Level of Robustness

are essentially no information available, and both the EAARC and the AARC

become infeasible easily.

To further justify our explanation, we’ve also tried information set that

includes all past information except the most recent ones. Both algorithms

become infeasible frequently under this information set. This further confirms

the intuition that for our project management problem, decision in each stage

relies mostly on recent information.

Experiment 2.5.5 (Algorithm Improvement vs. Level of Robustness(Ω)).

This experiment is conducted on the 3× 4 network with D = 60, ρ+ = 1 and

ρ− = 0.7. We vary the values for Ω to adjust the level of robustness, and

report the results in Table 2.4.

Clearly, the EAARC outperforms the AARC by larger percentages when Ω

is small. When Ω grows large, we essentially put more value on robustness:

both the EAARC and the AARC need to attain feasibility for a larger portion

of primitive uncertainties of the problem. In this situation, the flexibility of

the EAARC is confined, therefore the percentage of improvement decreases

as Ω grows.

In summary, the EAARC improves upon the AARC and its improvement

depends on the tightness of the due-date, the asymmetric property of the

uncertainty set, the information set, the size of the problem and the level

of robustness. Specifically, our experiment demonstrates that the EAARC

brings significant advantage over the AARC for due-dates that are not too

tight or too loose, information sets which include the most recent history,

larger problem size, and less stringent robustness. However, it is less clear
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how this improvement depends on the level of asymmetry of the uncertainty

sets.

2.6 Conclusion

In this chapter, we propose the extended affinely adjustable robust coun-

terpart to modeling and solving a class of multi-stage uncertain linear pro-

grams with fixed recourse. Our approach ends up with well structured conic

programming formulations, which are tractable and scalable to multi-stage

problems and allows for large scale implementation. We demonstrate both

theoretically and computationally that the splitting based extended affinely

adjustable robust counterpart may significantly improve upon the affinely

adjustable robust counterpart.

Our extended affinely adjustable robust counterpart is rather flexible. How-

ever, a significant challenge is how to choose an appropriate extended affinely

decision rule. Specifically, the following question is of great interest: for a

given constant ρ ≥ 1, can we construct a tractable EAARC such that

XEAARC ⊆ X0 ⊆ ρXEAARC?
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Chapter 3

Preservation of Quasi-K-Concavity and its
Application to Joint Inventory-Pricing Models

with Concave Ordering Costs

3.1 Introduction

The concept of quasi-K-concavity was introduced in Porteus [49] to prove

the optimality of a generalized (s, S) policy for inventory systems with con-

cave ordering costs. To apply this concept to characterize optimal inventory

policies, one relies heavily on some preservation properties under certain op-

timization operations. In this chapter, we provide a new preservation prop-

erty of quasi-K-concavity, which says that under mild technical conditions,

maxd[α(d) + β(y − d)] is quasi-K-concave if the one-dimensional functions

α(·) and β(·) are concave and quasi-K-concave respectively.

The preservation property plays a critical role in analyzing joint inventory-

pricing models with concave ordering costs. Specifically, consider a firm man-

aging an inventory system with concave ordering cost, which may arise when

the firm replenishes from a single supplier providing incremental quantity

discount or multiple suppliers with different fixed costs and variable costs.

Demand is random and depends on the selling price. Unsatisfied demand in

each period is fully backlogged. At the beginning of each period, the firm

makes pricing and inventory replenishment decisions simultaneously so as to

maximize the total expected discounted profit over a finite planning horizon.

For such a model, we show by employing the preservation property of quasi-

K-concavity that when demand is a deterministic function of the selling price

plus a random perturbation with a positive Pólya or uniform distribution, the

value functions belong to the class of quasi-K-concave functions and therefore

a generalized (s, S, p) policy is optimal. Under such a policy, inventory is

managed based on a generalized (s, S) policy. That is, there is a sequence

of reorder points si and order-up-to levels Si (both are increasing in i) such

that if the starting inventory level is lower than the reorder point si but
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higher than si+1, the firm places an order to raise its inventory level to Si.

The optimal price is set according to the inventory level after replenishment.

For the special case with two suppliers, one with only variable cost while

the other with both fixed and variable costs, we prove that the generalized

(s, S, p) policy is still optimal when the additive random component in the

demand function has a strongly unimodal density.

Our model falls within the growing research stream on inventory and pric-

ing coordination. Recently, significant progress has been made on analyzing

integrated inventory and pricing models with fixed ordering cost and stochas-

tic demand for both backlog (see Chen and Simchi-Levi [26, 27]; Huh and

Janakiraman [43]) and lost sales (see Chen et al. [22]; Huh and Janakiraman

[43]; Song et al. [54]) cases. For a recent review of this literature, readers

are referred to Chen et al. [28]. However, we are not aware of any paper

analyzing inventory and pricing models with concave ordering cost, which

may be partly due to the technical complexity involved.

Our paper is closely related to classical stochastic inventory models with

general concave ordering costs analyzed in Porteus [50, 49], who introduced

the concept of quasi-K-concavity to prove the optimality of generalized (s, S)

inventory policies when demand is a positive Pólya or uniform random vari-

able. Recently, Fox et al. [38] analyze a special case of Porteus’s model

with two suppliers, one with only variable cost while the other with both

fixed and variable costs. Using the concepts of K-concavity introduced in

Scarf [52] and quasi-concavity (equivalently, quasi-0-concavity), they prove

that the generalized (s, S) policy (indeed, a bit simplified policy) is optimal

when demand has a strongly unimodal density. Our results and analysis,

building upon the new preservation property of quasi-K-concavity as well as

preservation properties of K-concavity and quasi-concavity, extend those in

Porteus [50, 49] and Fox et al. [38] to include pricing decision.

The rest of this chapter is organized as follows. In Section 3.2, we present

our major technical results, which are then applied to characterize the opti-

mal policy for our inventory and pricing model with concave ordering cost in

Section 3.3.
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3.2 Main Technical Results

In this section, we present our preservation property of quasi-K-concavity.

Quasi-K-concavity was introduced by Porteus [50] to prove the optimality of

a generalized (s, S) policy for inventory systems with general concave order-

ing costs. By definition, a one-dimensional function f is quasi-K-concave if

for any x1 ≤ x2 and λ ∈ [0, 1], f((1− λ)x1 + λx2) ≥ min{f(x1), f(x2)−K}.
For brevity, readers are referred to Porteus [49] for properties of this class of

functions.

Among all quasi-K-concave functions, we mainly consider one class called

quasi-K-concave function with changeover a. A function f is quasi-K-concave

with changeover a if it is increasing on (−∞, a] and non-K-increasing on

[a,∞) (non-K-increasing means that for x1 < x2, f(x1) ≥ f(x2) −K). An

important property for this class of functions is that the quasi-K-concavity is

preserved under integral convolution with respect to a positive Pólya or a pos-

itive uniform random variable. Positive Pólya (also called one-sided Pólya)

distribution includes, among others, all finite convolutions of exponentially

distributed random variables. Thus, as a special case, Erlang distribution

is positive Pólya. Though the positive Pólya distribution appears to be re-

strictive, Cox [29] notes that for any given µ and σ2 ∈ [µ2/n, µ2] for some

natural number n, a random variable with mean µ and variance σ2 can be

generated through a convolution of n exponential random variables. We re-

fer to Porteus [50] for more details on this class of random variables and its

relationship with quasi-K-concave functions.

We now present our major result of this section, which says that quasi-K-

concavity can be preserved under a maximization operation. Let α(·) and

β(·) be one-dimensional continuous functions defined in a bounded interval

D = [d, d̄] and in the real line respectively. Define a new function

Γ(y) = max
d∈D

[α(d) + β(y − d)]. (3.1)

Lemma 3.2.1. If α(·) is a differentiable concave function and β(·) is a con-

tinuously differentiable quasi-K-concave function with some finite changeover

ξ0. Then the function Γ(·) defined in problem (3.1) is quasi-K-concave with

a finite changeover no less than ξ0.

Since the proof is quite involved and long, it is provided in Appendix A.
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Here we only briefly sketch the main idea of the proof. First, we show that y−
d(y) is non-increasing in y, where d(y) is the smallest maximizer for problem

(3.1). Second, we show that d(y0) is a maximizer of function α(·), where y0

is the largest point such that Γ(·) is nondecreasing in (−∞, y0]. Third, we

show that y0 is no less than the largest changeover of β(·). Finally, we use

the results from the previous steps to prove that Γ(·) is non-K-increasing for

y ≥ y0 and thus is quasi-K-concave with y0 as its changeover.

In the next section, we will use Lemma 3.2.1 to analyze an inventory and

pricing model with concave ordering cost. For a special case of the model

involving two suppliers, one with only variable cost while the other with both

fixed and variable costs, we can prove that a generalized (s, S, p) policy is

optimal under a bit relaxed conditions using similar preservation properties

of quasi-concavity (equivalently, quasi-0-concavity) and K-concavity.

Lemma 3.2.2. Let α(·) and β(·) be two continuous functions and Γ(·) be

defined in problem (3.1). We have the following results:

(a) if α(·) and β(·) are both quasi-concave, Γ(·) is also quasi-concave;

(b) if α(·) is concave and β(·) is K-concave, Γ(·) is also K-concave.

Note that different from Lemma 3.2.1, part (a) of the above result only

requires the quasi-concavity of α. We also comment that K-concavity was

first introduced by Scarf [52] to show that an (s, S) policy is optimal for

stochastic inventory models with fixed ordering costs. Chen and Simchi-Levi

[26] implicitly use Theorem 3.2.2 part (b) to prove the optimality of (s, S, p)

policy for an inventory and pricing problem with fixed ordering cost and

additive demand.

3.3 Applications: Optimality of Generalized (s, S, p)

Policy

In this section, we show how to apply our preservation properties in the

previous section to analyze joint inventory and pricing models with concave

ordering costs. It is worthwhile mentioning that a similar approach can

be used to analyze another important application, namely inventory models

incorporating sales effort/promotion decisions and concave ordering costs.
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3.3.1 The Model

Consider a single product periodic-review inventory system in which a firm

needs to replenish its inventory and set the selling price simultaneously at

the beginning of each period over a finite planning horizon with length T .

Customer demand is random but depends on the price. Unsatisfied demand

is fully backlogged. The firm faces a concave piecewise linear ordering cost,

which can be viewed as ordering from different (say M) suppliers with differ-

ent fixed and variable ordering costs. Delivery leadtimes from all suppliers

are assumed to be zero, as is common in the literature of joint inventory and

pricing optimization. Ordering from supplier i incurs a fixed cost Ki and a

unit cost ci. Without loss of generality, assume that c1 > c2 > · · · > cM ≥ 0,

and 0 ≤ K1 < K2 < · · · < KM .

The remaining inventory at the end of each period t incurs a unit holding

cost ht while the unsatisfied demand incurs a unit backlog cost bt. We use

Lt(x) = ht max{x, 0} + bt max{−x, 0} to denote the inventory holding and

customer backlog cost given the ending inventory x. Let γ be the discount

factor, 0 ≤ γ ≤ 1. Similar to Porteus [50] (Assumption B1 in Chapter 9.4),

we assume that (c1 − γcM) ≤ bt, which implies that it is more cost effective

to fill an order now from a more expensive supplier than delaying it until the

next period using a cheaper supplier (in terms of only variable cost). The

selling price of the product in period t is pt ∈ [p
t
, pt], and the demand has

the following additive form:

Dt(pt, εt) = Dt(pt) + εt,

in which εt is a continuous random variable with cdf Ft(·) and mean µt.

We also make the following assumption on the function Dt(pt).

Assumption 3.3.1. For all t = 1, 2, · · · , T , Dt(p) has an inverse D−1
t (d),

which is continuous and strictly decreasing. Furthermore, the expected rev-

enue

Rt(d) , (d+ µt)D
−1
t (d)

is differentiable and concave in d.

Assumption 1 implies that there is a one-to-one correspondence between

the selling price pt ∈ [p
t
, p̄t] and dt = Dt(pt) ∈ Dt ≡ [dt, d̄t], where dt = Dt(p̄t)
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and d̄t = Dt(pt). Therefore, in what follows, to facilitate the analysis, we

will use d instead of p as the decision variable. The concavity requirement

for Rt(d) is standard in the literature. Demand functions that satisfy this

requirement include, among others, linear demand Dt(p) = a− bp and expo-

nential demand Dt(p) = ae−bp.

We seek an optimal ordering and pricing policy for the firm so as to max-

imize its total expected discounted profit over the entire planning horizon.

Let vt(x) be the optimal total expected discounted profit from period t to T .

Note that vt(x) is a maximization over possible ordering from all M available

suppliers:

vt(x) = max
1≤i≤M

{
−ci(y − x) + sup

y≥x
[Ĥt(y)−Kiδ(y − x)]

}
where δ(q) = 1 if q > 0 and 0 otherwise, Ĥt is given as

Ĥt(y) = max
d∈Dt

{
Rt(d) + E[Ĝt(y − d− εt)]

}
,

and Ĝt(x), including inventory holding and customer backlog cost as well

as the discounted profit from next period, is given by

Ĝt(x) = −Lt(x) + γvt+1(x).

To facilitate our analysis in the sequel, we define Git(x) = Ĝt(x) − cix,

Hit(y) = Ĥt(y) − ciy and R̂it(d) = Rt(d) − cid. With these definitions, we

easily rewrite the above equations as:

vt(x) = max
1≤i≤M

{
cix+ sup

y≥x
[Hit(y)−Kiδ(y − x)]

}
(3.2)

Hit(y) = max
d∈Dt

{
R̂it(d) + E[Git(y − d− εt)]− ciµt

}
(3.3)

Git(x) = −cix− Lt(x) + γvt+1(x). (3.4)

We assume without loss of generality that vT+1(·) = 0. Note that lim
|x|→∞

Git(x) =
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lim
|x|→∞

Hit(y) = lim
|x|→∞

vt(x) = −∞ as lim
|x|→∞

Lt(x) = +∞ and bt ≥ c1 − γcM .

We end this section with the definition of generalized (s, S) policy.

Definition 3.3.1. A policy π is called generalized (s, S) if there exists an m

and a sequence of parameters

sm ≤ sm−1 ≤ · · · ≤ s1 ≤ S1 ≤ S2 ≤ · · · ≤ Sm,

such that, given starting inventory level x, the optimal order-up-to level

π(x) is given by Sm if x < sm, Si if si+1 ≤ x < si for i = 1, 2, · · · ,m − 1,

and x otherwise.

3.3.2 Analysis

In this section, we analyze the optimization problem (3.2)-(3.4) and charac-

terize the optimal policies.

Let V ∗ denote the set of continuous functions v : R → R such that

−cMx + v(x) is non-decreasing on (−∞, 0] and that −cix + v(x) is non-Ki-

increasing for each i on R. The following result provides a characterization

of the optimal policy of problem (3.2)-(3.4).

Theorem 3.3.1. If vt+1 ∈ V ∗ and εt is a positive Pólya or a positive uniform

random variable, then

(a) Hit is quasi-Ki-concave with changeover at some ait ≥ 0 for each i;

(b) There exists a generalized (s, S, p) policy that is optimal in period t;

(c) vt ∈ V ∗.

Thus, for our joint inventory and pricing problem (3.2)-(3.4), a generalized

(s, S, p) policy is optimal.

Proof. For part (a), we first rewrite

Git(y) = −[(ci − γcM)y + Lt(y)] + γ[vt+1(y)− cMy].

The property of vt+1(y), together with the assumptions (c1 − γcM) ≤ bt

and ci < c1, implies that each term in Git(y) is increasing in (−∞, 0] and
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thus Git(y) is increasing in (−∞, 0]. Moreover, for y > 0, we rewrite Git(y)

as

Git(y) = −[(1− γ)ciy + Lt(y)[+γ[−ciy + vt+1(y)].

Because −[(1 − γ)ciy + Lt(y)[ is decreasing and hence non-(1 − γ)Ki-

increasing and γ[−ciy+vt+1(y)] is non-γKi-increasing as vt+1 ∈ V ∗, Git(y) is

non-Ki-increasing for y > 0. Thus, Git(y) is quasi-Ki-concave with changeover

0. Since εt has positive Pólya distribution, E[Git(y − d − εt)] is quasi-Ki-

concave in y with a positive changeover. lim
|x|→∞

Git(x) = −∞ implies that

this changeover is finite. In addition, since εt is a continuous random vari-

able, E[Git(y− d− εt)] is continuously differentiable. Thus, by Lemma 3.2.1,

Hit(y) is quasi-Ki-concave with a changeover at some ait ≥ 0, and part (a)

is proven.

For part (b), since Hit(y) is quasi-Ki-concave, it is optimal to replenish

inventory following a generalized (s, S) policy, which follows directly from

Lemma 9.13 in Porteus [50]. Moreover, there exists an optimal d∗it(y), such

that

d∗it(y) = argmax
d∈[dt,dt]

{R̂it(d) + E[Git(y − d− εt)]}.

Note that the optimal d∗it(y) is set based on the resulting inventory level y

after the replenishment decision, and we can find the optimal price p∗ through

D−1
t (d∗it(y)) = p∗ given i is the supplier being ordered from.

For the proof of part (c), readers are referred to Porteus [49] pp. 147-148

for detailed steps.

We now focus on a special case of the model presented above. Specifically,

we assume that there are only two suppliers: supplier H and supplier L,

where supplierH charges a variable cost c1 per unit but no fixed cost (K1 = 0)

while supplier L charges a variable cost c2 (c1 > c2) per unit plus a fixed cost

K2 = K > 0. Such a cost structure is commonly seen in the practice of a

dual sourcing strategy as discussed in Fox et al. [38]. Similar to the general

model, we assume bt ≥ c1 − γc2.

Given this cost structure, Fox et al. [38] proved for a corresponding in-

ventory model without pricing decisions the optimality of generalized (s, S)

type policies when demand has strongly unimodal densities. The class of
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strongly unimodal density functions is a broader class of random variables

and includes many commonly used probability distributions such as normal,

uniform, gamma distribution with shape parameter p ≥ 1. A salient property

of strongly unimodal density functions is the preservation of quasi-concavity,

i.e., E[f(x − ε)] is still quasi-concave if f is and ε has a strongly unimodal

density (for more discussion on strongly unimodal density functions see Dhar-

madhikari and Joag-Dev [31]).

The result in Fox et al. [38] can be extended to our setting with pricing

decisions. Specifically, the following result implies that the optimal inventory

policy is a hybrid version of a base-stock policy plus an (s, S) policy.

Theorem 3.3.2. For our joint inventory and pricing problem with two sup-

pliers, under Assumption 3.3.1 with εt having a strongly unimodal density,

there exist parameters st, S
L
t , SHt for period t such that the optimal order-

up-to level y∗t takes one of the two forms: If SHt ≤ st, order from supplier L

based on the following (st, S
L
t ) policy,

y∗t =

{
SLt , if x ≤ st

xt, if x > st;

otherwise, follow an (st, S
H
t , S

L
t ) mixed-ordering policy,

y∗t =


SLt (order from supplier L) if x ≤ st

SHt (order from supplier H) if st < x ≤ SHt

x if x > SHt .

Finally, set the optimal price p∗ = D−1
t (d∗t (y

∗
t )) based on the inventory level

after replenishment.

The proof of the above result is almost parallel to the one in Fox et al.

[38], who essentially show that both quasi-concavity and K-concavity can be

preserved under dynamic programming recursions. Thus, rather than pre-

senting the complete proof we will only sketch the key steps to prove the

preservation of quasi-concavity and K-concavity under dynamic program-

ming recursions (3.2)-(3.4) while highlighting the major differences with Fox

et al. [38]. The main idea of the proof is to show by induction that vt(x)
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is K-concave and G1t−1(x) is quasi-concave in two steps. In the first step,

one can prove that if H1t(y) is quasi-concave with nonnegative changeover

and H2t(y) is K-concave, then the policy described in Theorem 3.3.2 is opti-

mal, and in addition, vt(x) is K-concave and G1t−1(x) is quasi-concave with

nonnegative changeover. This step can be proven by following an argument

similar to the one in Fox et al. [38].

In the second step, we prove that if vt+1(x) is K-concave and G1t(x) is

quasi-concave with nonnegative changeover, then H1t(y) is quasi-concave

with nonnegative changeover and H2t(y) is K-concave. Observe that quasi-

concavity is preserved under integral convolution with a strongly unimodal

densities while K-concavity is preserved under integral convolution with gen-

eral densities. Thus, to complete the proof of the second step, it suffices to

use Lemma 3.2.2 to show that quasi-concavity and K-concavity are preserved

under the optimization operation (3.1), which constitutes the major differ-

ence between our proof and the one in Fox et al. [38].
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Chapter 4

Stochastic Inventory Model with Reference
Price Effects

4.1 Introduction

Joint inventory-and-pricing models have enjoyed a rapid growth in the re-

cent few decades. The driving force behind this development is quite clear:

it is a good attempt that brings together the focus of traditionally separated

disciplines. From an operations perspective which focuses on inventory con-

trol issues, bringing in pricing gives the decision maker an addition set of

tools to achieve profit maximization. On the other hand, from an economics

perspective which traditionally focuses on price and demand curve, inven-

tory control is a problem that’s often overlooked, but important enough that

practitioners are forced to analyze.

A first attempt to joint inventory-and-pricing models dates back to Whitin

[58], which analyzed a one-period model. Recently, significant progress has

been made in this area. With fixed ordering cost and stochastic demand,

Chen and Simchi-Levi [26][27] and Huh and Janakiraman [43] analyzed the

backlogging case. Lost sales case was dealt with in Chen et al. [22] and Huh

and Janakiraman [43]. For comprehensive reviews of this area see Chen and

Simchi-Levi [28], Elmaghraby and Keskinocak [34], Federgruen and Heching

[35] and Yano and Gilbert [59].

The demand function involved in most of the joint inventory-and-pricing

models are dependent on price only through an instantaneous effect, that

is, demand is assumed a function of the current price only. In recent years,

numerous empirical studies in marketing science which analyze comsumers’

choice behavior have revealed a more intricate relation between price and de-

mand. This lead to the notion of reference price effects. For a good review of

this area as well as an introduction to the conceptual framework, the readers

are referred to Mazumdar et al. [46]. In order to understand what reference
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price effect means, consider a customer who enters a shop. If he has previ-

ous shopping experience for a product, then he is likely to form an internal

judgement of a “fair price” for that product based on previous knowledge.

This perceived “fair price” is termed reference price. The customer would

then base his decision upon this reference price. When the observed price

is below it, the customer would see it as a bargain and would buy it with a

higher probability. On the other hand, when the observed price is above the

reference point, the customer would see it as a loss and would be less inclined

to make the purchase. In psychology, this reference-point-dependent behav-

ior has been well explained using prospect theory in Kahneman and Tversky

[44].

Since reference price cannot be directly observed through transaction records,

its exact nature has been under debate. Some argue that it should simply

reflect the memory for past prices; Others say that a reference price should

be an expected future price, which incorporates a subjective view of a ”fair

price” for the product. Again, for a comprehensive review of the conceptual

framework, see Mazumdar et al. [46]. This review paper also summarized

most statistical models that have been proposed for reference price. In our

study, we stick to the commonly-used assumption that reference price is de-

fined by an exponentially-weighted average of historical prices. Details of

this will be made clear when we discuss our model in the next section.

For any practitioner who is responsible for making pricing decisions, be-

ing aware of the reference price effect is of course beneficial as it leads to a

more accurate judgement on the demand he faces, and hence a more prof-

itable decision. Suppose a retailing firm has some knowledge of the reference

price effect among its customers, how would she dynamically set her price

in order to make the maximum profit out of this effect? It turns out that

there has already been some work along this direction. In Greenleaf [41], the

author analyzed the impact of reference price effect on a single-period pro-

motion. Specifically the author argued how the reference price effect would

create a trade-off between additional short-term profits and a better long-

term prospect. He then described how an optimal promotion strategy should

be designed in order to reap the most profit out of this effect. Also under

a discrete-time framework, Kopalle et al. [45] used dynamic programming

to study the optimal pricing policy under asymmetric reference price effect.

They further discussed a setting where brands compete in an oligopoly. Re-
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cently, using a more general demand function than previous works, Popescu

and Wu [48] provided analytical answers to several questions of interest.

Namely, they discussed conditions under which a constant pricing strategy

would be optimal. They also proved that in certain cases, given an arbi-

trary starting reference price, the system would converge to the constant

pricing strategy. Finally, In a continuous-time framework, Fibich et al. [36]

studied the dynamic pricing problem under both symmetric and asymmetric

demand function. Their work provided an elegant explicit solution to the

optimal price process using optimal control. Extension to oligopolistic con-

petition was also discussed for which the solution tool changed to dynamic

games.

What distinguishes our paper from this literature is that pricing with ref-

erence price effect and inventory decision are all integrated in one model.

This poses a significant challenge to analyzing the model and establishing

structural results. We are currently aware of only a few studies along this di-

rection: Urban [57] analyzed a one-period joint inventory-and-pricing model

with both symmetric and asymmetric reference price effect, and provided

numerical analysis which indicates that accounting for reference prices can

have a substantial impact on the firm’s profitability. In Gimpl-Heersink [39]

the author mainly analyzed the model for one-period and two-periods cases.

By explicitly calculating the profit-to-go function and its partial derivatives,

the author proved that a base-stock list-price policy is optimal for both the

two periods. They also provided a discussion on multi-period model however

the assumptions are relatively restrictive: the commonly-used linear demand

function - among other demand functions - fails to satisfy their assump-

tion. Chen et al. [23] analyzed the problem from an algorithmic perspective.

Namely they looked at an Economic-Lot-Sizing(ELS) problem with dynamic

pricing and with reference price effect. They developed strong polynomial

time algorithms for a few special cases of the prolem, and for the general

case, they provided a heuristic with error bound estimations. And finally, we

would like to mention the work by Ahn et al. [1]. They also studied an ELS

model with dynamic pricing in which demand can be a function of current

period price as well as past period prices. Although their demand model is

not of the reference price-type per se, it is closely related. In fact, one of their

special cases is almost identical to a special case in Chen et al. [23]. They

proved structural results for their model and developed closed-form solutions
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or heuristics for various special cases.

In our paper, we try to analyze the finite horizon as well as infinite horizon

version of the model, under various forms of demand function, reference

price effect, and demand uncertainty. We will first provide a transformation

technique that makes the new revenue function jointly concave under linear

demand function, thus addressing the difficulty raised in Gimpl-Heersink [39]

regarding linear demand functions. We will prove the optimality of a base-

stock policy. We will then prove that reference price will converge to some

steady state in the optimal trajectory. Finally we will give characterizations

to the steady states. The conditions under which these results are obtained

will be made clear in the sequel.

The rest of this chapter is organized as follows. In Section 4.2 we present

the mathematical formulation of our model in finite horizon and discuss base-

stock policy. In Section 4.3 we move to the infinite horizon model and prove

the convergence results. Characterization of steady states are given in Sec-

tion 4.4, various comparative statics as well as economic intuitions are also

provided. Finally Section 4.5 concludes the paper and points to interesting

topics for future research.

4.2 Our Model

We describe the model in a finite horizon setting. The corresponding infinite

horizon model can be formulated in the same way. Consider a firm making

inventory and pricing decisions over a planning horizon of length T . Periods

are labeled backwards as T, · · · , 1 where T corresponds to the first period in

time. We also add an artificial period 0 to denote the end of the planning

horizon. At the beginning of each period, an ordering decision is made to-

gether with a pricing decision. The order is received immediately and incurs

a per unit cost c. Let P ≡ [p, p̄] be the interval of allowed prices, we also

assume that reference price r lies in P . Demand is stochastic and depends

on the current period price p as well as the reference price r. Specifically, we

have:

Assumption 4.2.1 (Stochastic Demand Function). Demand is given as:

Dt(pt, rt, ε) = dt(pt, rt)εm + εa,
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dt(p, r) is the expected demand function and is assumed to be non-increasing

in p and nondecreasing in r. ε = (εm, εa) is random with E[εm] = 1 and

E[εa] = 0. Furthermore, Dt(p, r, ε) ≥ for any p, r ∈ P and any ε.

The following expected demand function dt(p, r) will be used in most of

our analysis. A more general form will be given and used in Section 4.4.

Definition 4.2.1 (Expected Demand Function). Expected demand is given

by dt(p, r) = bt − atp+Qt(r − p) and

Qt(x) = η+(x)+ + η−(−x)+,

where x+ = max(0, x) and η+, η− ≥ 0. The demand is said to be:

• Loss-Averse(LA): if η+ < η−.

• Loss-Neutral(LN): if η+ = η−(also called Symmetric Reference Price

Effect).

• Loss-Seeking(LS): if η+ > η−.

The first term in the expected demand function (with a slight abuse of

notation we call it dt(p)) is the base demand function and Qt(r − p) is the

reference price effect. We defined Qt(x) to be a two-piece linear function,

with its only kink at x = 0. Note that r − p corresponds to consumers’

perceived loss/gain, with r− p < 0 being a loss. Among two cases of LA and

LS, Loss-Averse(LA) demand is more favored from a psychological point-

of-view using Prospect Theory (Kahneman and Tversky [44]). Specifically

it predicts, as a general rule, that a perceived loss would stimulate more

reaction from a human, compared to a perceived gain. When the two slopes

are equal: η+ = η− , η, consumers have equal response to loss and gain.

That is why this is called Loss-Neutral(LN) demand, or symmetric reference

price effect. As pointed out in Fibich et al. [36], this “bears many similarities

to the model of symmetric sticky-price effects, i.e., when market price does

not adjust instantaneously to changes in quantities supplied.” In our analysis

we will try to establish our results using LN demand, and extend it to LA or

LS demand whenever possible.
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4.2.1 Model formulation

With the demand function, we can define expected revenue as R̂t(p, r) =

E[(p− c)Dt(p, r, ε)] which equals (p− c)dt(p, r) by Assumption (4.2.1). Ref-

erence price evolves according to the following dynamics(remember periods

are labeled backwards):

rt−1 = (1− α)pt + αrt. (4.1)

We make a comment here that applies to the Bellman Equation which we are

about to describe. By default, price pt is used as the independent (decision)

variable in the Bellman Equation. However from (4.1), given rt, there is

a one-to-one correspondence between pt and rt−1. Therefore choosing pt

is equivalent to choosing rt−1, in their respective feasible region of course.

Thus, in some of our subsequent analysis we will use rt−1 instead of pt as the

decision variable.

We assume unsatisfied demand is backlogged and let h(x) be the inventory

holding and backlogging cost function. Denote by Πt(y, p, r) the single period

expected profit, i.e.,

Πt(y, p, r) = R̂t(p, r)− E[hγ(y − dt(p, r, ε))],

γ ∈ (0, 1) is the discount factor and hγ(x) = h(x) + (1 − γ)cx is a trans-

formed holding cost function. This transformation is a standard technique

on stochastic inventory problems. For more information on this one can see,

for example, Simchi-Levi et al. [53]. We further assume that hγ(x) is convex.

We are now ready to describe the finite horizon problem formulation. Let

φ̂t(x, r) be the profit-to-go function at the end of period t with inventory x

and reference price r. For the end of the planning horizon let φ̂0(x, r) ≡ 0.

The Bellman equation for period t (t = 1, · · · , T ) is:

φ̂t(x, r) = max
y≥x,p∈P

Πt(y, p, r) + γEφ̂t−1[y − d(p, r, ε), (1− α)p+ αr], (4.2)

4.2.2 Transformation technique for LN demand

As pointed out in Gimpl-Heersink [39], for loss-neutral(LN) demand func-

tion, R̂t(p, r) is not jointly-concave in (p, r). This poses significant challenge
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for the commonly-used approach which requires joint-concavity to be pre-

served from period to period. As a result, the analysis in Gimpl-Heersink

[39] for multi-period model carries on under rather restrictive assumptions

which does not include LN demand. We also like to point out that for a two-

period setting, Gimpl-Heersink [39] proved the joint-concavity of the function

to be maximized in the Bellman Equation, even though the revenue function

is not jointly-concave, and nor is the profit-to-go function from period 1. Un-

fortunately, their approach of calculating the profit-to-go functions explicitly

does not extend to multi-period analysis. Here, we show that by making a

carefully-chosen transformation on R̂t(p, r), we can make it jointly-concave

and supermodular. Specifically, we make the following transformation on the

profit-to-go function:

φt(x, r) = φ̂t(x, r)− λtr2.

Where λt are real numbers that are yet to be specified. By introducing φt,

we can write the recursion in terms of this new function:

φt(x, r) = max
y≥x,p∈P

R̂t(p, r)− λtr2 − EH[y − dt(p, r)εm]

+ γEφt−1[y − dt(p, r)εm − εa, (1− α)p+ αr] + γλt−1[(1− α)p+ αr]2. (4.3)

We combine a few terms and write this as:

φt(x, r) = max
y≥x,p∈P

Rt(p, r;λ)− EH[y − dt(p, r)εm]

+ γEφt−1[y − dt(p, r)εm − εa, (1− α)p+ αr] (4.4)

where

Rt(p, r;λ) = R̂t(p, r)− λtr2 + γλt−1[(1− α)p+ αr]2. (4.5)

The next theorem gives a condition under which there indeed exists λt that

makes R̂t(p, r;λ) jointly-concave and supermodular.

Lemma 4.2.1. When demand parameters vary proportionally at/at−1 =

ηt/ηt−1 = kt and the ratio kt ≥ max

{
γα, γ

(
αa+η
a+η

)2
}

, there exist λt ≥ 0
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such that Rt(p, r;λ) is jointly-concave and supermodular in (p, r).

Proof. See Appendix B.1.

Remark.The condition here is a sufficient condition and by no means nec-

essary. The expression in max sign is between (0, 1), hence we are requiring

demand fluctuation to have limited downside movement. As an example,

with γ = 0.99, α = 0.3, a = 10, η = 6, this bound is max{0.297, 0.313} =

0.313 which allows a lot of room for demand fluctuation. As a special case,

when parameters are stationary: at = a, bt = b and ηt = η, the condition

trivially holds.

We carry out our subsequent analysis under the assumption that this trans-

formation is possible. Since the choice of λt will no longer be of interest, we

suppress λt and write the transformed revenue function as Rt(p, r).

4.2.3 Optimality of base-stock policy

For the finite horizon model, we now prove that a base-stock policy is optimal.

For each t, the decision variables y and p attaining maximum in (4.4) are

denoted by y∗t (x, r) and p∗t (x, r). Optimality of base-stock policy is given by

the theorem below.

Theorem 4.2.1. For the finite horizon model under LN demand, at any

period t, the optimal profit-to-go function φt(x, r) is jointly concave in (x, r).

Furthermore, the optimal inventory decision follows a base-stock policy. That

is, there exists a base-stock function y0
t (r) and:

y∗t (x, r) =

{
y0
t (r) when x ≤ y0

t (r)

x when x > y0
t (r).

Proof. By Lemma 4.2.1 and the discussion following it, we can assume that

our revenue function R(p, r) is jointly-concave. We now prove the theorem

by induction. For t = 0 since φ0(x, r) = 0, φ0 is jointly concave in (x, r).

Now assume φt−1(x, r) is jointly concave in (x, r). Since dt(p, r) is a linear

function of p and r, φt−1[y− dt(p, r)εm− εa, (1− α)p+ αr] is jointly concave

in (y, p, r) for any (εm, εa). Passing that through expectation sign, Eφt−1[y−
dt(p, r)εm − εa, (1− α)p+ αr] is jointly concave in (y, p, r). Similarly we can

prove joint concavity of EH[y− dt(p, r)εm]. Lastly, Rt(p, r) is assumed to be
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jointly concave in (p, r). Therefore the function in (4.4) before maximization

is jointly concave in (x, y, p, r). And finally since maximization preserves

joint-concavity, φt(x, r) is jointly concave in (x, r).

Suppose the maximization in (4.4) is taken over p first, then we get a

function Ft(y, r) which is joint-concave in (y, r). Ft(y, r) is the maximized

over y ≥ x. For each r let y0
t (r) be the smallest maximizer of Ft(y, r),

optimality of the base-stock policy follows from the concavity of Ft(y, r).

Again, to compare with previous results, Gimpl-Heersink [39] proved that

a base-stock list-price is optimal for the two-period model. Here, under

a multi-period setting, we were able to prove the optimality of a base-stock

policy. Whether a list-price policy is optimal, in other words whether p∗(x, r)

is a nonincreasing function of x for any given r, is still unknown.

A closely related problem is the monotonicity of the base-stock level y0
t (r)

with respect to r. Gimpl-Heersink [39] proved for the one-period model under

additive demand uncertainty that y0
t (r) is non-decreasing in r. We point out

that this is simply a consequence of the one-period revenue function R(d, r)

(written in terms of variables (d, r)) is supermodular in (d, r). For one-

period model we can set γ = 0 and furthermore under additive demand

uncertainty, base-stock level y0(r) is simply the optimal demand d0(r) plus a

fixed amount of safety stock. Hence monotonicity of y0(r) in the one-period

model follows from the monotonicity of d0(r), and the latter is guaranteed

by supermodularity of R(d, r).

For multi-period models, monotonicity of the base-stock level becomes a

nontrivial question. Technical difficulty arise from the fact that supermodu-

larity of the profit-to-go function φt(x, r) is not preserved in the expression

γEφt−1[y − d(p, r, ε), (1 − α)p + αr]. Interestingly, all our numerical results

for the multi-period problem shows that the optimal base-stock d0
t (r) level

is monotonically non-decreasing in r. This is even true under a significant

amount of multiplicative uncertainty. As an example, Figure 4.2.3 shows the

optimal base-stock level vs. reference price with the following parameters:

γ = 0.99, α = 0.15, c = 0.2, h = 0.1, s = 0.15, b = 40, a = 20, η =

20, V ar(εa) = 5, V ar(εm) = 0.1.
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Figure 4.1: Base-stock level vs. reference price

4.3 Infinite Horizon Stochastic Model

We now turn to the infinite horizon version of our model. For infinite hori-

zon, we are interested in the asymptotic property of the optimal trajectory,

under some sample path. Namely we want to prove that the optimal trajec-

tory converge to some stationary state. Furthermore, we want to find out

properties that characterize these steady states. These two questions will be

answered in this and the next section.

Since we are dealing with the infinite horizon problem now, subscript t

is dropped and the profit-to-go function is now φ(x, r). We first prove a

property of φ(x, r):

Theorem 4.3.1. φ(x, r) satisfies:

(a) φ(x, r) is decreasing in x for fixed r.

(b) If p ≥ c, then φ(x, r) is increasing in r for fixed x.

Proof. Part 1 of the theorem is quite obvious: right-hand-side of (4.4) is a

maximization over y ≥ x and r ∈ P . Increasing x shrinks the feasible set of

that maximization, while leaving the function itself intact. Therefore φ(x, r)
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decreases in x for fixed r. As for part 2, remember the finite horizon Bellman

Equation:

φt(x, r) = max
y≥x,p∈P

Π(y, p, r) + γEφt−1[y −D(p, r, ε), (1− α)p+ αr]

with φ0(x, r) = 0. We can prove that φt(x, r) converges to φ(x, r) point-

wise. First observe that φ0(x, r) is increasing in r for fixed x. Assume that

φt−1(x, r) is increasing in r for fixed x. Let r ≥ c and (y, p) be optimal for

the initial condition (x, r). For any r′ ≥ r and close to r, we can pick p′ ≥ p

such that D(p, r, ε) = D(p′, r′, ε) for any realization of ε. Therefore

φt(x, r
′) ≥ Π(y, p′, r′) + γEφt−1[y −D(p′, r′, ε), (1− α)p′ + αr′]

≥ Π(y, p, r) + γEφt−1[y −D(p, r, ε), (1− α)p′ + αr′]

≥ Π(y, p, r) + γEφt−1[y −D(p, r, ε), (1− α)p+ αr]

= φt(x, r).

Since φt(x, r) converges to φ(x, r) point-wise, we have that φ(x, r) is in-

creasing in r for fixed x.

Before moving on to the detailed analysis, we first give a brief roadmap.

Compared to a classical joint inventory-and-pricing model, our Bellman equa-

tion has one more state variable r. This added dimension of state space brings

significant challenge. Therefore we first propose a simplification of the prob-

lem, prove results for this simplified version, then demonstrate how we can

use it as an auxiliary tool to establish results for our original problem.

Specifically we make the following simplification. Assume now that the

retailer is allowed to return products back to the manufacturer and get a

full refund. In mathematical terms, this is equivalent to allowing order-up-to

level y to be less than initial inventory x. This allows us to divide and conquer

the difficulties that our original model poses. Subsection (4.3.1) establishes

structural results for this simplified model. Then Subsection (4.3.2) uses it

to prove results for the original model.
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4.3.1 When return is allowed

When return is allowed, the dynamic programming equation can be written

as:

φ(x, r) = max
y,p∈P

R(p, r)−EH[y−D(p, r)εm]+γEφ[y−D(p, r)εm−εa, (1−α)p+αr].

where H(x) , Ehγ(x− εa) is convex because hγ(·) is convex. It is easy to

see that the right-hand-side(RHS) does not involve x at all. Therefore φ(x, r)

is indeed only a function of r. This reduces the dimension of our dynamic

programming equation to one, which is the main merit of this simplification.

Note that Eφ(x−εa, r) = φ(r), the dynamic programming equation simplifies

to:

φ(r) = max
y,p∈P

R(p, r)− EH[y − d(p, r)εm] + γφ[(1− α)p+ αr]. (4.6)

We now do a variable change: let q = (1− α)p+ αr be the new reference

price if price is chosen to be p. Equivalently p = q−αr
1−α . The above formulation

can be written in terms of q:

φ(r) = max
y,q∈Qr

R

(
q − αr
1− α

, r

)
− EH

[
y − d

(
q − αr
1− α

, r

)
εm

]
+ γφ(q)(4.7)

, max
q∈Qr

[R̃(q, r)− (min
y
G(y, q, r)) + γφ(q)].

Where Qr = (1 − α)P + αr and R̃(·) is the expected revenue function

now in terms of (q, r). The above dynamic programming formulation can by

optimized through some optimal response function q∗(r). The next theorem

presents monotonicity results of q∗(r):

Lemma 4.3.1. The response function q∗(r) that maximizes (4.8) is nonde-

creasing in r.

Proof. Our arguments will be based on properties of supermodular functions.

One is referred to Topkis [56] for a general treatment of this topic.

For arbitrary r, r′ ∈ P , r ≤ r′ and q ∈ Qr, q′ ∈ Qr′ , since Qr = (1−α)P +
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αr, it is not hard to prove that min(q, q′) ∈ Qr and max(q, q′) ∈ Qr′ , in other

words, the set {(q, r) : q ∈ Qr, r ∈ P} is a lattice.

In order to prove that q∗(r) is nondecreasing in r, by Theorem 2.8.2 in

Topkis [56] we only need to prove the function R(q, r) − miny G(y, q, r) is

supermodular. We assumed that R̃(p, r) is supermodular in (p, r), by Lemma

2 in Popescu and Wu [48] R̃(q, r) should also be supermodular in (q, r).

Also, by Lemma 2.6.1 in Topkis [56], sum of two supermodular functions is

supermodular. What’s left to prove is that the function miny G(y, q, r) is

submodular. This is, in its full form, the following function:

min
y

EH
[
y −D

(
q − αr
1− α

, r

)
εm

]
.

First of all note that H(·) is convex. Therefore for any fixed εm, H(y−dεm)

is jointly convex in y and d. Taking expectation over εm preserves convexity,

that is: EH(y − dεm) is convex. Minimizing this function with respect to y

gives a convex function of d: miny EH(y − dεm). Finally, replace d by the

following expression:

d = a− a+ η

1− α
q +

[
η +

α(a+ η)

1− α

]
r

This is a linear function in q and r with opposite signs. Therefore by

Theorem 2.6.2 in Topkis [56] the resulting function is submodular in q and

r.

This completes our argument that the one-period profit function is super-

modular. And therefore q∗(r) is nondecreasing in r.

Lemma (4.3.1) leads directly to the following stability and convergence

result:

Theorem 4.3.2. In the case when return is allowed and under LN demand,

starting from any state, with probability 1 the system will converge to a sta-

tionary price and a fixed base-stock level along an optimal trajectory. Fur-

thermore, convergence to the stationary price is monotone.

Proof. Theorem 4.3.2 is essentially a consequence of Lemma 4.3.1. It can be

proved in much the same way as the proofs of Lemma 2 and Theorem 2 in

Popescu and Wu [48]. We therefore omit the proof here.
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4.3.2 When return is not allowed

Now we come back to the case when return is not allowed, that is, the max-

imization over inventory is now taken for y ≥ x. To simplify our subsequent

discussion we introduce a few notations: Let I∗ be the system when return

is not allowed. And let I0 be a system with the same parameters as I∗

but allowing return. Let the profit-to-go functions in the two systems be

φ∗(x, r), φ0(r), respectively (remember x is not a state variable for I0). φ0(r)

should be the solution to the dynamic programming equation in (4.6) and

φ∗(x, r) should be the solution to:

φ∗(x, r) = max
y≥x,p∈P

R(p, r)− EH[y − d(p, r)εm]

+ γE[φ∗(y − d(p, r)εm − εa, (1− α)p+ αr] (4.8)

We first look at additive demand uncertainty, that is, d(p, r, ε) = d(p, r) +

εa. For any state (x, r), denote the optimal decision for I0 by [y0(r), p0(r)]

and the optimal decision for I∗ by [y∗(x, r), p∗(x, r)]. The major obstacle

to proving convergence in system I∗ is that I∗ cannot always mimic the

behavior of I0: when y0(r) < x, y∗(x, r) cannot be equal to y0(r) because of

the constraint y∗(x, r) ≥ x. This is due to a high level in initial inventory

x so whenever this happens, we say the inventory level “blocks” the optimal

solution y0(r). Because of this discrepancy, we cannot reduce I∗ to a one-

dimensional dynamic program like we did for I0. However the following

theorem guarantees the same type of path-wise convergence result for I∗:

Theorem 4.3.3. Under LN demand with additive uncertainty, starting sys-

tem I∗ from any state and with probability 1 it will eventually converge to a

steady state in which price remains stable and inventory is replenished up to

some fixed base-stock level in each period.

Proof. We prove by comparing the two systems I0 and I∗ and we first divide

the state space S = {(x, r) | r ∈ P} into two complementary sets: S1 ,

{(x, r) ∈ S | y0(r) ≥ x}, and S2 = S \ S1. See Figure 1 for a graphical

representation. In words, if any state belongs to S1, it means that inventory

is low enough such that the optimal decision for I0 is also feasible for I∗.

Our proof relies on proving the following three facts:
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(a) For (x, r) ∈ S1, suppose I∗ follows I0’s decisions y0(r) and p0(r), then

the new state (x′, r′) is still in S1, regardless of demand uncertainty εa.

(b) If (x, r) ∈ S1, then it is indeed optimal for I∗ to follow I0’s decisions:

y∗(x, r) = y0(r), p∗(x, r) = p0(r).

(c) For (x, r) ∈ S2, y∗(x, r) = x. In words, if the initial inventory is too

high that it blocks the order quantity y0(r), then system I∗ would

choose to not make an order.

Intuitively, fact (c) guarantees that if the system starts at high inventory

(x, r) ∈ S2, then it will make no order and let its inventory drop down. After

this transient phase of reducing inventory, the state will enter S1. From then

on, fact (a) and (b) jointly guarantees that I∗ would follow I0’s strategies

and the state will remain in S1 from then on.

We first prove fact (a). For additive demand uncertainty: D(p, r, ε) =

d(p, r) + εa, holding cost becomes H[y − d(p, r)] and the maximization over

y can be taken explicitly. Assume the largest minimizer of H(·) is xmin and

the minimum is H∗, then y0(r) = argmin
y

H[y− d0(r)] = xmin + d0(r). where

d0(r) = d[p0(r), r] is the expected demand under optimal decisions. Suppose

(x, r) ∈ S1 and the optimal expected demands are d0
1 for the current period

and d0
2 for the next period. Then after the current period inventory level

would become xmin+d0
1−d0

1− εa while the next period requires an inventory

level no more than xmin + d0
2 so that the optimal order is not blocked. This

leads to the inequality:
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xmin + d0
1 − d0

1 − εa ≤ xmin + d0
2.

But this inequality is equivalent to d0
2 + εa ≥ 0 which always holds by

Assumption (4.2.1). Therefore the state at the next period remains in S1.

We now turn to fact (b), Note that φ∗(x, r) ≤ φ0(r) since any feasible

decision for system I∗ is also feasible for I0. Also, by fact 1, once the state

enters S1, if I∗ mimics I0’s strategy it can continue doing so. This gives

a feasible solution for I∗ with a profit identical to the optimal profit in I0.

Therefore φ∗(x, r) = φ0(r) for (x, r) ∈ S1 and it is indeed optimal for I∗ to

mimic I0: y∗(x, r) = y0(r),p∗(x, r) = p0(r).

Finally we prove fact (c). We first introduce some more notations. Define

[ỹ∗(x, r), p̃∗(x, r)] as follows:

[ỹ∗(x, r), p̃∗(x, r)] = argmax
y,p∈P

R(p, r)− EH[y − d(p, r)εm]

+ γEφ∗[y − d(p, r)εm − εa, (1− α)p+ αr] (4.9)

In case that there are multiple maximizers, choose the one with the smallest

y. This is the same equation as (4.8) only relaxing the constraint y ≥ x. Note

the critical difference between this and (4.6): the profit-to-go function here

is still φ∗(x, r) and in some sense we are only relaxing the constraint y ≥ x

in the current period.

We want to prove that ỹ∗(x, r) ≤ y0(r). Assume the opposite is true, that

is, ỹ∗(x, r) > y0(r). To make our argument more concise, let F 0(y, p; r) and

F ∗(y, p;x, r) be the functions behind maximization sign in (4.6) and (4.9),

respectively. Since φ∗(x, r) ≤ φ0(r) for all (x, r), F ∗(y, p;x, r) ≤ F 0(y, p; r)

for all (y, p) and all (x, r). We now claim that the following inequalities hold:

F ∗[ỹ∗(x, r), p̃∗(x, r)] ≤ F 0[ỹ∗(x, r), p̃∗(x, r)]

≤ F 0[y0(r), p0(r)]

= F ∗[y0(r), p0(r)].

The first inequality holds because F ∗(y, p;x, r) ≤ F 0(y, p; r) for any (x, r)

and any (y, p), as stated before. The second inequality holds because [y0(r), p0(r)]
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maximizes F 0(y, p;x, r). The equality on the last line requires a slightly more

careful argument, which we now make. Remember that under additive de-

mand, y0(r) = xmin+d[p0(r)]. We can follow exactly the same argument when

we were proving fact (a), and show that the new state would remain in S1.

More precisely, define x′ = y0(r)− d[p0(r)]εm− εa and r′ = (1−α)p0(r) +αr

then we can prove that (x′, r′) ∈ S1 with probability 1. Therefore using fact

(b) it is clear that φ∗(x′, r′) = φ0(r′) for all the possible outcomes of x′. and

hence F 0(y0(r), p0(r)) = F ∗(y0(r), p0(r)).

The inequalities show that [y0(r), p0(r)] is another maximizer of F ∗ with

y0(r) < ỹ∗(x, r), which contradicts our assumption that ỹ∗ is the smallest

such maximizer. Therefore ỹ∗(x, r) ≤ y0(r) always holds.

Finally, remember that the inventory cost H[y − d(p, r)εm] is concave in

y. From our proof in Theorem 4.2.1 we also know that φ∗[y − d(p, r)εm −
εa, (1 − α)p + αr] is concave in y. Therefore F ∗(y, p;x, r) is concave in y.

For any state (x, r) with x > y0(r) and decision (y, p) with y > x, we know

that x > ỹ∗(x, r). By concavity of F ∗ and that ỹ∗(x, r) is its maximizer,

F ∗(y, p;x, r) ≤ F ∗(x, p;x, r) and therefore the optimal decision at (x, r) is

to not make any order and let inventory remain at x. The proof is now

complete.

The proof above actually gives a good sketch of what the optimal reference

price path would look like. When initial inventory is high, the system will

go through a transient stage where it makes no replenishments. We do not

know whether the reference price is monotone or not in this transient stage.

But once the state (s, r) enters S1 (and it always will by fact (c)), it will

stay in S1(fact (a)) and the reference price thereafter will converge to r∗

monotonically.

We now extend this convergence result to LA demand, or the case where

η+ ≤ η−. Specifically, we show that when demand uncertainty is additive, the

desired monotone convergence still holds. The technique we use here, which

was also used both in Fibich et al. [36] and in Popescu and Wu [48], applies to

a wide range of dynamic programs with kinked reward structure. Intuitively

the argument goes as follows: With the kinked price shock function, under

an optimal reference price trajectory, only one of those linear pieces would

matter. This is because under an optimal pricing policy, the reference price

monotonically converge to its optimal value, therefore the “price shock” pt−rt
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is either always positive or always negative and only one side of the function

Q(r− p) would affect the outcome. This is the content of the next theorem:

Theorem 4.3.4. Under demand with Loss Aversion defined in (4.2.1) and

additive demand uncertainty, starting system I∗ from any state and with

probability 1 it will eventually converge to a steady state in which price re-

mains stable and inventory is replenished up to some fixed base-stock level in

each period.

Proof. For system I∗ denote its reference price effect by Q∗(r−p) = η+ · (r−
p)+ + η− · (p− r)+. Because η+ ≤ η−, we can write this as:

Q∗(r − p) = min
η∈[η+,η−]

η · (r − p). (4.10)

For any η ∈ [η+, η−], we construct a system that is otherwise identical

to I∗ but has a loss-neutral reference price effect Qη(r − p) = η · (r − p),

we call it I(η). From Equation (4.10) we know Q∗(r − p) ≤ Qη(r − p) for

any η ∈ [η+, η−]. Thus for any price trajectory in P , system I(η) generates

more profit than I∗ (remember we assumed that p ≥ c so that profit margin

is always non-negative). Let the profit-to-go function corresponding to I(η)

be φ(x, r; η). Then φ∗(x, r) ≤ φ(x, r; η) for any η ∈ [η+, η−]. The reason is

that the two systems have exactly the same feasible set, while I(η) always

generate no less profit than I∗. From Theorem 4.3.3 we know that system

I(η+) yields a steady state r(η+) while I(η−) yields a steady state r(η−).

Suppose system I∗ starts from some r < r(η−), then one feasible trajectory

for I∗ is to mimic the optimal trajectory of I(η−). Since this trajectory is

optimal for I(η−) and that φ∗(x, r) ≤ φ(x, r; η−), this trajectory is indeed

optimal for I∗ as well. Hence reference price for I∗ would be monotonically

increase and converge to r(η−). The case where r > r(η+) is the same:

reference price for I∗ would monotonically decrease and converge to r(η+).

When r(η+) < r < r(η−), it is not hard to show that there exists η ∈
[η+, η−] such that r is the steady state for system I(η). Similarly we have

φ∗(x, r) ≤ φ(x, r; η) and since a stationary reference price at r is optimal for

I(η), it is optimal for I∗ as well.

Remark.The proof of this theorem also give a good sketch of the optimal

trajectory. In the loss-averse case, there will be an interval of steady states,

each of those states corresponds to an unique η ∈ [η+, η−]. Starting from
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any reference price, in an optimal trajectory the system will converge to the

nearest steady state and stay there.

We make a note that Theorem 4.3.3 and 4.3.4 do not cover multiplicative

demand uncertainty. Specifically our proof of fact 1 and 3 in Theorem 4.3.3

requires additive uncertainty. Our numerical experiments do show that the

same kind of convergence should hold for multiplicative demand as well. This

is true even when V ar(εm) gets very significant. As an example, Figure 4.3.2

shows the optimal trajectories of reference price (inventory is not plotted

here) with the following parameters: γ = 0.99, α = 0.15, c = 0.2, h =

0.1, s = 0.15, b = 40, a = 20, η = 20, V ar(εa) = 5, V ar(εm) = 0.1.
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Figure 4.3: Reference price path under LN demand

This phenomenon suggests that for multiplicative demand uncertainty,

there should also be some type of convergence at work. Although for mul-

tiplicative demand uncertainty, we cannot make the same arguments as we

did for Theorem 4.3.3, and hence we cannot prove global convergence of the

reference price path. Local convergence can indeed be guaranteed, and that

is the content of the next theorem. Define S1 in the same way as in the proof

of Theorem 4.3.3 and we have:

Theorem 4.3.5. Under LN demand with multiplicative uncertainty, there

exists an open neighborhood B(r∗) around the optimal steady state r∗ such
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that, if system I∗ starts from any state (x, r) ∈ S1 with r ∈ B(r∗), then with

probability 1 it will eventually converge to the steady state r∗ in which price

remains stable and inventory is replenished up to some fixed base-stock level

in each period.

Proof. See Appendix B.2.

Figure 4.3.2 gives an example of the optimal trajectories under LA demand.

Remember that under LA demand there exists an interval of steady states

instead of an unique one. Starting from any initial state and the system

would converge to a state within that interval, and stay there. Of course

under LN demand the interval of steady states shrinks to an unique point.
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Figure 4.4: Reference price path under LA demand

The reason why there is not a similar convergence result for the loss-seeking

case, is because an optimal trajectory can indeed cycle infinitely. Figure 4.3.2

provides some numerical examples of this phenomenon. Here we would like

to point out that in a purely dynamic pricing setting, these properties were

already observed in Popescu and Wu [48], alongside with various economic

intuitions. What we have shown here is that these properties still hold when

inventory cost is included explicitly in the model.

69



 
0
.
3

 
0
.
4

 
0
.
5

 
0
.
6

 
0
.
7

 
0
.
8

 
0
.
9

 0  10  20  30  40  50

R
e
f
e
r
e
n
c
e
 
P
r
i
c
e

Figure 4.5: Reference price path under LS demand

4.4 Characterizing the Steady-State

In the previous section we’ve established the existence of steady states and

proved global convergence properties. The next step is of course to charac-

terize these steady states. Specifically, suppose r is an optimal steady-state

reference price for the problem. we carry out a perturbation analysis, that

is, we look at the value-to-go when price path stays at r, and then compare

it to a perturbed path in which reference price takes a small perturbation

around the steady-state, then returns back to it. The total discounted profit

for the perturbed path should be no more than that of the steady-state path,

and we therefore get the condition characterizing optimality of steady-state

price.

In this section, we use a more general demand function, so that it becomes

easier to compare with previous results obtained in Popescu and Wu [48].

Assumption 4.4.1. Expected demand is now given by:

d(p, r) = d(p) +Q(r − p, r) (4.11)

where Q(r − p, r) denotes the reference price effect in demand.

The corresponding revenue function can be written as:
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R(p, r) = (p− c)d(p) + (p− c)Q(r − p, r) , R(p) +Rr(p, r). (4.12)

We assume that these functions are all differentiable.

4.4.1 Loss neutral demand

When demand is loss-neutral. The function Q(x, r) should have equal left-

and right-derivative. That is: lim
δ→0

Q(δ,r)
δ

= η(r) > 0. Consider two reference

price paths: one stays constant at r while the other is perturbed: r, r −
(1 − α)δ, r, r, r, · · · . The price path corresponding to this perturbation is

r − δ, r + αδ, r, r, · · · . We first introduce a few notations: let Ψ(d, y) =

EH(y− εmd) be the expected holding cost, and let ψ(d) , miny Ψ(d, y). We

replacing the holding cost term in Equation (4.6) by our new notations:

φ(r) = max
p
R(p, r)− ψ[d(p, r)] + γφ[(1− α)p+ αr]. (4.13)

The total value without perturbation is:

V0 = R(r, r)− ψ[d(r, r)] + γ[R(r, r)− ψ[d(r, r)]] + γ2φ(r).

Total value for the perturbed problem is:

Vδ = R(r − δ, r)− ψ[d(r − δ, r)] + γ[R[r + αδ, r − (1− α)δ]

− ψ[d(r + αδ, r − (1− α)δ)]] + γ2φ(r).

By optimality V0 ≥ Vδ should hold. When δ is small, we take the first-

order Taylor expansion on each of the terms above, cancel out the principle

components on both sides, and arrive at an inequality characterizing opti-

mality:
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Vδ = R(r, r)−Rp(r, r)δ − ψ[d(r, r)] + ψ′[d(r, r)]dp(r, r)δ + γR(r, r)

−Rr(r, r)(1− α)γδ +Rp(r, r)αγδ − ψ[d(r, r)]γ

+ ψ′[d(r, r)]γdr(r, r)(1− α)δ − ψ′[d(r, r)]γdp(r, r)αδ + γ2φ(r)

≤ R(r, r)− ψ[d(r, r)] + γR(r, r)− γψ[d(r, r)] + γ2φ(r) = V0.

We can simplify the above inequality and use the fact that δ can be both

positive or negative to get the following condition: (suppressing function

arguments(r, r))

−Rp + ψ′dp − (1− α)γRr + αγRp + γψ′(1− α)dr − γψ′dpα = 0.

This further simplifies into:

(1−αγ)R′(r)+(γ−1)(r− c)η(r)−ψ′[d(r)] · [(1−αγ)d′(r)− (1−γ)η(r)] = 0.

(4.14)

To compare with the result in Popescu and Wu [48], note that if we ignore

the holding cost part ψ(·) and let R(p, r) take the form in (4.12), then the

inequality reduces to:

(1− αγ)R′(r) = (1− γ)(r − c)η(r). (4.15)

Not surprisingly this coincides with the result in Popescu and Wu [48].

Since the additional term in (4.14) corresponds to inventory costs, we can

compare the solutions of (4.14) and (4.15) and find out the effect of adding

inventory considerations. Namely we want to know whether inventory cost

would raise or lower the steady state price. To answer this question, we make

use of the following property of the function ψ(d):

Lemma 4.4.1. ψ′(d) ≥ 0 for any d.

Proof. Remember ψ(d) = miny Ψ(y, d), by the envelope theorem:

ψ′(d) =
∂Ψ

∂d

∣∣∣∣
(y∗(d),d))
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Let f(·) be the pdf of εm then:

∂Ψ

∂d
= −

∫ ∞
0

H ′(y − ud)uf(u)du

Since y∗(d) = arg miny Ψ(y, d), we have ∂Ψ
∂y

∣∣∣
(y∗(d),d)

= 0. That is:

∫ ∞
0

H ′[y∗(d)− ud]f(u)du = 0.

H(·) is convex and continuously differentiable. Therefore there should exist

a changeover point u0 for which:

H ′(u)

{
≥ 0 when u ≤ u0

≤ 0 when u ≥ u0.

Therefore,

ψ′(d) = −
∫ ∞

0

H ′[y∗(d)− ud]uf(u)du

= −
∫ ∞

0

H ′[y∗(d)− ud]uf(u)du+ u0

∫ ∞
0

H ′[y∗(d)− ud]f(u)du

= −
∫ u0

0

H ′[y∗(d)− ud](u− u0)f(u)du

−
∫ ∞
u0

H ′[y∗(d)− ud](u− u0)f(u)du.

Both the two terms are non-negative by our choice of u0. Hence ψ′(d) ≥
0.

Remark.This theorem states that larger expected demand d always leads

to higher inventory cost. This is largely due to the multiplicative demand

uncertainty. When d increases, variance of the stochastic demand D = dεm+

εa also increases. And intuitively speaking, increased demand uncertainty

leads to increased inventory cost.

Theorem 4.4.1. Under LN demand given in Definition 4.2.1, adding inven-

tory cost always lead to higher steady-state reference price.

Proof. Remember that R(r) = (r−c)d(r) therefore R′(r) = d(r)+(r−c)d′(r).
Using this and we can transform (4.14) into:
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d(r) = (r − c− ψ′[d(r)])

[
1− γ

1− αγ
η(r)− d′(r)

]
. (4.16)

With LN demand, η(r) ≡ η and d(r) = b−ar. The above equation further

simplifies into:

b− ar = (r − c)
[

1− γ
1− αγ

+ a

]
− ψ′(b− ar)

[
1− γ

1− αγ
+ a

]
. (4.17)

Let r0 be the solution to this equation when the term ψ′[b− ar] does not

exist. This corresponds to the steady-state reference price when there are no

inventory cost. If we put back inventory cost in Equation (4.17) and suppose

the new solution is r. By Lemma 4.4.1 we know ψ′[b − ar] ≥ 0. If r < r0,

then

b− ar > b− ar0

= (r0 − c)
[

1− γ
1− αγ

+ a

]
> (r − c)

[
1− γ

1− αγ
+ a

]
≥ (r − c)

[
1− γ

1− αγ
+ a

]
− ψ′(b− ar)

[
1− γ

1− αγ
+ a

]
.

Which contradicts with Equation (4.17). Therefore in order to balance the

equation r has to be no less than r0.

The economic intuition behind this is very clear: When inventory cost

is brought into the picture, total cost is raised and thus profit margin is

lowered. Therefore in order to maintain the original profitability, price has

to be raised.

4.4.2 Loss-averse and loss-seeking demand

When reference price effect function Q(x, r) has a kink at x = 0, namely let

lim
δ→0+

Q(δ,r)
δ

= η+(r) and lim
δ→0−

Q(δ,r)
δ

= η−(r) where η+ 6= η−. Again, we apply

the perturbation analysis done in the previous section. Note that since the

left and right derivative of Q(x, r) are not equal, the sign of the perturbation
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matters and by perturbing the stationary reference price r in both directions,

we get the following pair of inequalities:

(1− αγ)R′(r)− (r − c)(η+(r)− γη−(r))

− ψ′[d(r)][(1− γα)d′(r)− η+(r) + γη−(r)] ≥ 0.

(1− αγ)R′(r)− (r − c)(η−(r)− γη+(r))

− ψ′[d(r)][(1− γα)d′(r)− η−(r) + γη+(r)] ≤ 0.

We can write the pair in a more concise way:

η+(r)− γη−(r) ≤ (1− αγ)[R′(r)− ψ′[d(r)]d′(r)]

r − c− ψ′[d′(r)]
≤ η−(r)− γη+(r). (4.18)

From this it’s clear that there exists a stationary reference price r only

when η+(r) ≤ η−(r), which corresponds to the case when consumers are

loss-averse. Furthermore, when reference price effect is kinked linear, η+

and η− are not dependent on r, and there is an easy parameterization that

characterizes all the stationary reference prices. Since this follows directly

from the inequality in (4.18), we state it as a proposition and omit the proof:

Proposition 4.4.1. When η+ ≤ η−, the set of all stationary reference prices

is given by {r(η) | η ∈ [η+, η−]} where r(η) solves:

(1− αγ)[R′(r)− ψ′[d(r)]d′(r)]

r − c− ψ′[d′(r)]
= (1− γ)η.

The proposition states that any steady state reference price for the loss-

averse model is also the steady state reference price for some loss-neutral

model with η ∈ [η+, η−]. Hence by Theorem (4.4.1), adding inventory costs

still lead to higher steady states, which matches with our discussion in the

previous section. In the loss-averse case, steady states form an interval with

each point in the interval corresponding to some η ∈ [η+, η−]. Starting the

system from any reference price and it will converge to the nearst state in

that interval.
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4.4.3 Strategic vs. myopic decision making

Reference price effect dictates that the decision makers have to be forward-

looking when planning their inventory and pricing policies. This is why

we adopted the dynamic programming formulation (4.13) to analyze the

problem. Failure to take into account future consequences of current deci-

sions(myopic decision making) would of course lead to suboptimal decisions.

We would also like to know whether myopic decision making leads to higher

or lower price and reference price.

A forward-looking(strategic) planner would carry out the maximization

(4.13) in each period, while a myopic planner would simply ignore the last

term γφ[(1−α)p+αr]. By Theorem (4.3.1) φ(r) is increasing in r, therefore

the strategic planner who takes into account this term, would choose a price

that’s higher than what the myopic planner would choose. As for the steady

state, we have the following proposition:

Proposition 4.4.2. Under LN demand, reference price under a myopic de-

cision maker would also reach a steady state rM . rM is given by the following

condition:

d(r) = (r − c− ψ′[b− ar])[η + a]. (4.19)

Furthermore, r ≥ rM , that is, strategic decision making always leads to

higher steady state reference price compared to myopic decision making.

Proof. Note that by setting γ in the dynamic programming equation (4.13)

to 0, we end up with a myopic policy. Therefore convergence to a steady

state rM is guaranteed for the myopic planner.

This equation is very similar to Equation (4.16). Since γ < 1 and α < 1,

we know 1−γ
1−αγ < 1 Using an argument that’s similar to the proof of Theo-

rem 4.4.1, we can prove that r ≥ rM .

Remark.The intuition to this is very clear: under myopic decision making,

the planner cares only about current period profit and he would reduce price

to boost current period sales. This leads to lower steady-state reference price

and is detrimental to the firm’s long-term profit.
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4.4.4 The effect of neglecting reference price effect

We are also interested in a closely related question: What are the conse-

quences when the decision maker is not aware of the reference price effect. In

other words the decision maker believes that demand function is d(p) while in

reality it’s d(p) +Q(r− p, r). Note the distinction between this case and the

previous strategic vs. myopic case: a decision maker who ignores reference

price effect would still make forward-looking decisions to maximize his firm’s

total discounted profit. The following proposition answers our question:

Proposition 4.4.3. Under LN demand and when the reference price effect

is neglected, a system would converge to its steady state rN characterized by

the following equation:

d(p) = −[p− c− ψ′[d(p)]]d′(p). (4.20)

Furthermore, r ≤ rN .

Proof. In this case, the decision maker’s problem simplifies to the following

one-period maximization problem:

max
p,r

(p− c)d(p)− EH[y − d(p)εm].

Equation (4.20) is exactly the first order optimality condition of this max-

imization problem. Equation (4.20) is also very similar to Equation (4.19),

with p replacing r. So again, using an argument that’s similar to the proof

of Theorem 4.4.1, we can prove that r ≤ rN .

Remark.This fact also makes intuitive sense: with reference price effect,

a higher price hurts demand not only through the base demand function, but

also through reference price effect. A decision maker who is aware of this

additional effect should of course be more wary of raising his price, Compared

to a decision maker who only cares about the base demand function.

4.5 Conclusion

Our paper studies a joint inventory and pricing model under reference price

effect. This provides new insights into how inventory decision interacts with
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pricing decision under the presence of reference price effect. The major dif-

ficulty in this integrated approach is that reference price effect links pricing

decision in difference periods together. This increases the dimension of the

dynamic program. It further links with inventory replenishment decisions

in each period. Despite the difficulty, we were able to analyze both the fi-

nite horizon and infinite horizon model, and establish a number of structural

results.

For the finite horizon model with LN demand, we proved that a base-stock

policy is always optimal, regardless of the demand uncertainty being additive

or multiplicative.

For infinite horizon model, we first analyzed a simplified model in which

return of inventory is allowed. This allows us to reduce the dimension of

our dynamic program, and establish convergence results: Namely we proved

in Lemma 4.3.1 that in an optimal trajectory, reference price in the next

period q∗ is always a nondecreasing function in the current reference price

r. We then proved the main convergence result (Theorem 4.3.2) which says

that in an optimal trajectory, the state would converge to a steady state

with probability 1. In this process, we made use of a jointly-concave and

supermodular property on the revenue function. Since LN demand function

does not satisfy this assumption, we introduced a transformation technique

to cope with this issue.

We then went back to the case where return is not allowed. Specifically,

under additive demand uncertainty, we were able to prove the same con-

vergence result (Theorem 4.3.3). This result is extended from loss-neutral

demand to loss-averse demand. For multiplicative demand uncertainty, un-

fortunately the same kind of convergence cannot be proved theoretically. We

showed through numerical examples that that should be the case.

We analyzed the steady state that the system should converge to. This

includes a characterization of the steady state for LN and LA demand. We

answered some questions of central interest in this integrated model: Under

LN demand and linear reference price effect, adding inventory considerations

leads to higher steady-state reference price (Theorem 4.4.1); Neglecting ref-

erence price effect leads to higher steady-state reference price. Furthermore,

forward-looking (strategic) decision making leads to higher steady-state ref-

erence price, compared to myopic decision making.

This chapter should only be taken as an initial attempt to inventory and

78



pricing models with reference price effect. Several future tasks are specifically

desirable. This includes giving a theoretical proof for convergence in the

multiplicative demand case. Also, it would be very interesting to look at other

types of inventory models. For example in a deterministic and continuous

setting one can look at the EOQ (Economic Order Quantity) model,
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Chapter 5

Stochastic Reference Price Effect: A
Stochastic Optimal Control Perspective

5.1 Introduction

In this chapter, we continue to build on the model with reference price ef-

fect discussed in the previous chapter. The focus here however, is a purely

economic question: how do one dynamically set the best price to maximize

his profit? The operational question of setting the best inventory level will

not be modeled here. Several seminal papers, already reviewed in the pre-

vious chapter, studied this dynamic pricing problem under reference price

effect. In particular, in a continuous-time framework, Fibich et al. [36]

studied the dynamic pricing problem under both symmetric and asymmetric

demand function. Their work provided an elegant explicit solution to the

optimal price process using optimal control. Extension to oligopolistic con-

petition was also discussed for which the solution tool changed to dynamic

games. Our study, which is also adopting a continuous-time model, has been

inspired by their work.

The following argument marks our departure from previous work in this

area: Since the notion of reference price is a subjective construction, which

cannot be directly measured from transaction records, we argue that the

dynamics of reference price may be subject to noise. Even if two identical

customers are presented with the exact same scenario (in terms of historical

prices), it is not reasonable to assume that they will arrive at the exact same

reference price. Indeed, many previous empirical studies in this area have

been focusing on proposing different models or factors for the formation of

reference price. One is referred to Mazumdar et al. [46] for a review of these

models. the goal in these studies has always been to explain a larger portion

of the variance in the statistical model. In our opinion, it may be benificial

to look at the residual variance and try to explain its nature: whether it is
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due to pure noise or whether it is due to some additional factors not taken

into account. The possibility of there being a pure noise is of course very

significant, again because of the subjective nature of reference price.

Therefore, it is more realistic to model the reference price process as a

stochastic process rather than a deterministic one. We adopt a continuous-

time model similar to the one presented in Fibich et al. [36] and try to

understand the role that a stochastic reference price would play. The rest of

this chapter will proceed as follows: In section 5.2 we propose a model that

allows this random effect in the formation of reference price. We then analyze

the optimal pricing problem in section 5.3. We obtain explicit solutions to

the optimal steady-state price using stochastic optimal control. In section 5.4

we compare our results to that of Fibich et al. [36] and make some sense of

how big a difference it makes by introducing stochastic reference price. In

section 5.5 we extend our analysis to the case of oligopolistic competition

with identical retailers. Finally, conclusions are given in section 5.6.

5.2 Model

We discuss the formation of reference price first. In [36], the authors con-

sidered reference price to be an exponentially-weighted average of historical

prices. With a smoothing factor α, the reference price is given by:

r(t) = e−αt
[
r0 + α

∫ t

0

eαsp(s)ds

]
, t ≥ 0 (5.1)

where r0 is the initial reference price and p(·) is the price process. This ex-

plains the work “exponentially-weighted average” because reference price is a

weighted average of historical prices with the more recent ones weighted more

heavily. In differential form this relationship can be written more concisely

as: {
dr = α[p(t)− r(t)]dt

r(0) = r0

(5.2)

The intuition behind this differential form is quite clear: reference price

starts at an initial value r0, and at a constant rate α, it would drift to close the

gap p(t)− r(t). The resulting r(t) is a deterministic process. Which means,
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with a given initial value r0 and a given price process p(t), the reference price

at any given time is a fixed value for the entire consumer population.

In reality however, since reference price is such a subjective construct, it

is natural to assume that the dynamics of it be subject to noise. When

consumers are forming their reference price, the exact same scenarios might

lead to different reference price paths. Specifically, we extend the above

reference price dynamics using a stochastic differential equation(SDE):

dr(t) = α[p(t)− r(t)]dt+ σ
√
r(t)dW (t). (5.3)

Here W (t) denotes a standard Wiener process and reference price r(t) is

now a stochastic process. At any given time it yields a probability distribu-

tion over all possible prices. For a good reference on the topic of SDE see

[47]. This formulation has been inspired by the CIR model of interest rates

in [30]. The special feature is the
√
r(t) term which makes variance of the

process smaller as r(t) itself gets smaller. Specifically one can prove that the

probability of r going negative is always zero.

Given the above dynamics, we introduce our optimal control problem. The

demand rate function is given as:

D(r, p) = b− ap− η(p− r). (5.4)

The first part of this represents a normal linear demand function and the

second part is the reference price effect. η > 0 controls the magnitude of

this effect. When p(t) < r(t), consumers perceive the deal as a bargain and

demand would rise. On the contrary when p(t) > r(t) demand would fall.

Given the demand rate, revenue would accumulate at the following rate:

F (r, p) = (p− c)D(r, p) = (p− c)[b− ap− η(p− r)] (5.5)

where c is the unit production cost. Given an initial condition r(0) = r0, our

goal is to maximize the total discounted profit over a finite horizon of T (γ is

the discount factor):

Π[p] = E
[∫ T

0

e−γtF [r(t), p(t)]dt

]
. (5.6)
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5.3 Analysis

We adopt a dynamic programming approach. Let V (r, t) be the optimal

“profit-to-go” function at reference price r and time t. In order to better

serve our purpose, we relax some of the mathematical rigor and derive the

equation in a more intuitive way. Consider an infinitesimal increment of time

dt. If one is to take this small step into the future, and wants to take the best

possible step by carefully picking his control p, then V (r, t) should satisfy the

following equation:

V (r, t) = max
p

E
[
F (r, p)dt+ e−γtV (r + dr, t+ dt)

]
. (5.7)

Using Taylor series expansion and suppress the arguments (r, t), the last term

above can be written as:

e−γdtV (r + dr, t+ dt) = V − γV dt+ Vtdt+ Vrdr +
1

2
Vrrdr · dr

= V − γV dt+ Vtdt+ Vr[α(p− r)dt+ σ
√
rdW ]

+
σ2

2
rVrrdt.

When passing this through the expectation sign, drift term VrσdW van-

ishes since Wiener process has mean zero. Plugging this back into (5.7) and

we have:

V (r, t) = max
p

[
F (r, p) + V − γV + Vt + α(p− r)Vr +

σ2

2
rVrr

]
dt. (5.8)

Cancel out the term V (r, t) on both sides of the equation, and drop dt, we

reach the Bellman equation:

max
p
F (r, p)− γV + Vt + α(p− r)Vr +

σ2

2
rVrr = 0. (5.9)

Similar to previous literature, our interests is not in calculating the value

function in its full form. Instead, we want to answer the following question:

when time horizon is long enough, will the optimal price process converge to

a steady state? In other words, would a fixed price be sufficient in the long

run? The following theorem answers this question:

Theorem 5.3.1. The Bellman equation (5.9) yields a solution. And when
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time horizon approaches infinity, the optimal price process converges to the

following steady-state price:

p∗S = p∗D +
σ2

2a(γ + α) + γη

[
a+ η

α

(
γ

2
− ∆

2

)
+

2a+ η

2

]
(5.10)

where ∆ is a constant given by:

∆ =

√
γ2 + 2α

2a(γ + α) + γη

η + a

and p∗D is the optimal price in the deterministic problem:

p∗D =
(γ + α)(b+ ac) + γηc

2a(γ + α) + γη
.

The proof will be provided in Appendix C.

Here we want to point out p∗D is the same as pssoptimal given in [36]. Obviously

when σ = 0, our model reduces to a deterministic one and our solution agrees

with the one in [36]. Furthermore, it is easy to check that the coefficient

associated with σ2 is always positive, regardless of the parameters γ, α, η

and a. Therefore when the stochastic reference price is taken into account,

the optimal price is consistently higher. We want to point out that this

conclusion cannot be made by only looking at economic intuitions, as it is

entirely unclear, without careful analysis, how a stochastic reference price

would change optimal price. Mathematically, one can argue that this has to

do with the convexity of V (r, t) in r. But from (5.9) one can see that even

this is not a sufficient argument because there are two(potentially offsetting)

terms involving p: The linear term αVrp which is clearly non-decreasing in

p as Vr ≥ 0; and the demand rate F (r, p) which can be either increasing

or decreasing in p. Therefore the conclusion here is indeed a bit surprising:

Regardless of the parameters we use in the model, it is always beneficial to

have a slightly higher price to deal with stochastic reference price.

5.4 The Effect of Stochastic Reference Price

In the previous section we characterized the effect that optimal price goes

up once stochastic reference price effect is taken into account. In this section
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we try to get an idea of the magnitude of this effect. in other words we

want to know how big the change in optimal price is, given typical model

parameters. To answer this, we have computed a table of the magnitude of

this effect for various parameters. There are six parameters in total, they are:

α(smoothing factor), γ(discount factor), b(constant coefficient in demand

function), a(coefficient of p in demand function), η(coefficient of r − p in

demand function) and c(per-unit cost). We fix c at 0.2 and b at 1.0. Since a

and η only matter through their magnitude relative to b, we choose different

levels for a/b and η/b. various levels of γ and α are also chosen.

For the results, note that the optimal price in (5.10) is linear in σ2, this

coefficient would naturally become our criteria. Furthermore, it makes sense

to divide this coefficient by p∗D as it measures the relative magnitude of this

effect on the optimal price. This ratio, which we call relative price change,

will be quoted in percentage points, to signify its meaning of “percentage

change in optimal price, per unit of variance σ2’.

Two levels of discount factor γ are used: 0.01 and 0.05, their results are

listed in Table 5.1 and Table 5.2, respectively.

η/b = 0.2 η/b = 0.5 η/b = 0.8
α 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

a/b = 0.2 10% 4% 2% 42% 17% 10% 81% 33% 20%
a/b = 0.5 4% 1% 1% 17% 7% 4% 37% 14% 9%
a/b = 0.8 2% 1% 0% 10% 4% 2% 21% 08% 5%

Table 5.1: Relative price change with discount factor γ = 0.01

η/b = 0.2 η/b = 0.5 η/b = 0.8
α 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

a/b = 0.2 6% 3% 2% 20% 12% 8% 34% 23% 16%
a/b = 0.5 2% 1% 1% 9% 5% 3% 18% 11% 7%
a/b = 0.8 1% 1% 0% 5% 3% 2% 11% 6% 4%

Table 5.2: Relative price change with discount factor γ = 0.05

A few observations are immediate from these tables. First of all, the

relative change in optimal price can be very significant in many scenarios,

keep in mind that these are “per unit of σ2” figures, so the actual relative
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changes in optimal price are these numbers multiplied by σ2. When η/b is

large, reference price effect becomes the more dominating factor in demand

function, in which case the relative price change understandably becomes

large. On the other hand when a/b is large, relative price change becomes

less significant. Furthermore, relative price change decreases when α gets

larger, or when reference price adjusts to new price faster. This also makes

intuitive sense, because as α gets larger, the merit of having a reference price

model shrinks. In the limiting case reference price adjusts to current price

instantaneously, and there would not be a reference price effect any more.

Finally, relative price change decreases when γ gets larger, or when future

profit is discounted more. This is somewhat less intuitive, however it is

still helpful to think about the limiting case. When γ gets arbitrarily large,

future profit is discounted so much so that essentially we would be dealing

with a single-period problem. In which case the relative price change would

of course become 0 as reference price effect itself would vanish.

5.5 Oligopolistic Competition

The results in the last section can be readily extended to the case of compet-

ing firms. Specifically, assume we have N retailers aiming at the same group

of consumers. Furthermore, assume that they have production costs that

are identical. Note that when there is only a single firm, setting price p is

equivalent to setting production quantity q. When there are multiple firms,

this is no longer the case. Price p is now determined by the total production

quantity Q of all the firms through the demand function. That is, Q =
∑
n

qn,

and Q = a− δp− γ(p− r).
Let Vn(r) be the value-to-go function for firm n, the Bellman equation in

this case can be written as:

αVn(r) = max
qn

{
(p− c)qn +

dVn(r)

dr
β(p− r) +

σ2r

2

d2Vn(r)

dr2

}
. (5.11)

The maximum is attained by:

q̂n = a+ γr − Q̂− (δ + γ)c− βdVn(r)

dr
.
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Where Q̂ =
∑
n

q̂n. The firms are identical, and that allows us to sum all the

equations and use V (r) =
∑
n

Vn(r). The PDE we obtain is:

αV =
N

(δ + γ)(N + 1)2
[a+γr−(δ+γ)c+βVr] ·

[
a+ γr − (δ + γ)c− β

N
Vr

]
+

βVr
(δ + γ)(N + 1)

· [a+(δ+γ)Nc+βVr− (δ+γ)(N +1)r+γr]+
Nσ2r

2
Vrr.

(5.12)

The solution of (5.12) is given by:

V (r) = Ar2 +Br + C

where A is the same as in Fibich et al. [36]:

A = (α + 2β)
(δ + γ)(N + 1)2

8β2N

− γ

2β
π

√(
(α + 2β)

(δ + γ)(N + 1)2

8β2N
− γ

2β

)2

− γ2

4β2
.

And B is given by:

B =
(
2[a− (δ + γ)c][Aβ(N − 1) +Nγ] + 2Aβ[a+ (δ + γ)NC](N + 1)

+NA(δ + γ)(N + 1)2σ2
)
/
(
(δ + γ)(N + 1)2(α + β)− 2βN(2Aβ + γ)

)
.

5.6 Conclusion

This chapter studies a dynamic pricing problem under stochastic reference

price effect. This stochasticity is adopted because it is more reasonable to

assume that the dynamics of reference price is subject to noise. A stochastic

differential equation for the reference price evolution was proposed. The

corresponding optimal pricing model was analyzed using stochastic optimal

control theory. By solving the HJB equations we were able to provide an

explicit solution for the optimal steady-state price.

We then compared numerically our optimal price to the one in [36] to show

that the relative change in the optimal price can be very significant when a
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stochastic reference price is assumed. Specifically, this relative change in

price becomes larger if: (1) reference price effect itself becomes larger, (2)

reference price adapts to new price at a higher speed, and (3) future profit

is discounted more.

One interesting observation is that when noise is introduced in reference

price, the resulting optimal price is always higher, regardless of model pa-

rameters. The managerial implication of this fact is clear: if a decision maker

is adopting a reference price model to set his optimal price, and if he believes

that the noisy dynamics of reference price is causing his model-implied opti-

mal price to become suboptimal, then it is always beneficial for him to adjust

his price upwards.

As a potential direction of extention, it would be interesting to see an

analysis of the oligopolistic competition model with non-identical retailers.

The technique presented in this thesis would no longer work as the Bellman

equation becomes a system of equations.

It is important to point out that while reference price in our model is

subject to noise, the consumer group is still homogeneous in the sense that

they share the same parameters a, η, α, σ, etc. As a potential future direction

of research, it would be interesting to look at a model that analyzes the

heterogeneity of consumer groups explicitly. The meaning of heterogeneity

is two folds here: consumers may differ in their reaction to a given reference

price and a price, in other words they may have different utility functions.

On the other hand, consumers may differ in their underlying reference price

dynamics. We believe that a model that incorporates heterogeneity might

lead to some interesting insights.

In the first case the interesting question is, given a demographic profile of

consumers’ utility functions, what would the aggregate-level demand func-

tion look like? Indeed, this question has already been raised in the literature.

Bell and Lattin [5] argues that by simply using a loss-neutral reference price

effect (so that demand has a linear term in r − p) but allowing the coeffi-

cient in front of r− p to be heterogeneous among consumers, the aggregate-

level reference price effect might demonstrate a loss-averse shape. Thus the

commonly-adopted loss-averse reference price effect might, instead of being

implied by consumer loss-aversion via Prospect Theory, simply be a con-

sequence of heterogeneity in consumers. Arora et al. [2] also studied the

reference price effect in which consumers differ in their risk preference. They
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also managed to derive important implications from this heterogeneity effect

which makes them suggest that in may be worthwhile for a researcher in this

field or a decision maker to develop a demographic profile of the risk prefer-

ences of consumers. In the second case, it would be interesting to look at -

once again - a dynamic programming problem. When price discrimination is

not allowed, a retailer would have to make his pricing decisions taking into

account all his different consumer groups.
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Chapter 6

Future Research

Chapter 2 extended the class of affine response functions and made them

more versatile. There are two natural questions to ask. First, what is the

fundamental structure on the problem that makes these types of extensions

possible? Nemirovski et al. [7] provides an insightful answer to this question:

when the convex hull of the extended uncertainty set is still in some tractable

form, then the overall robust optimization problem is still efficiently solvable.

The question now becomes this: which classes of nonlinear transformation

can be used to form the extended uncertainty set, so that tractability is

retained. The second question - which might be even harder to answer than

the first - is, for which problems are affine decision rules guaranteed to be

optimal? In other words, what kind of problem structure would render an

extended decision rule worthless? To the best of our knowledge, this question

has only been partially answered by Bertsimas et al. [16], which looks a one-

dimensional multi-stage robust formulation, and proves the optimality of

response functions that are affine in terms of disturbances.

There is another question that appears more specific to the EAARC that

we proposed. Namely how to choose an appropriate extended affinely decision

rule. Specifically, for a given constant ρ ≥ 1, can we construct a tractable

EAARC such that

XEAARC ⊆ X0 ⊆ ρXEAARC?

For the joint inventory-and-pricing problem with general concave cost dis-

cussed in chapter 3, Some further questions that can be asked include: what

happens when inventory replenishments have (deterministic or stochastic)

lead time? What happens with a lost-sales model instead of a backlogging

model? These questions - we believe - would further add a significant chal-

lenge in terms of technical difficulty.
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For the joint inventory-and-pricing problem with reference price effects

studied in chapter 4, there are two interesting unanswered questions. Firstly,

we proved that a base-stock policy is optimal for the model, but what about a

list-price policy? Namely is the optimal price a decreasing function of current

reference price level? Secondly, it will be interesting to see whether our

convergence results would still hold under multiplicative demand uncertainty.

Currently we still don’t know the answer to that this question, although

numerical results show that this is very likely the case.

Finally, chapter 5 represents only an initial attempt to use a more realistic

reference price model that incorporates heterogeneity and randomness. The

interesting question to ask is, among previous results for dynamic pricing

models under reference price effect, which ones will cease to hold under these

more realistic models? Which ones will be preserved under these models?

We believe the answer to this question is greatly valuable to offering more

reliable managerial insights for practitioners who are dealing with reference

price effect.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Lemma 3.2.1 on page 42

To prove Lemma 3.2.1, we need the following result.

Proposition A.1.1. Let α(·) be a concave function in a bounded interval

D = [d, d̄] and β(·) be a continuous function. There exists a d(y) maximizing

α(d) + β(y − d) for d ∈ D such that y − d(y) is an increasing function of y.

To prove the above result, one can first replace d by a new variable d̃ =

y − d. Since α(·) is concave and β(·) is a function of a single variable, the

function α(y − d̃) + β(d̃) is supermodular in (y, d̃). Thus, there exists a d̃(y)

maximizing α(y− d̃) + β(d̃) such that d̃(y) is increasing in y (note that d̃(y)

can be chosen as either the largest optimal solution for all y or the smallest

optimal solution for all y). Then the above lemma holds for d(y) = y− d̃(y).

Now we move on to prove Lemma 3.2.1. Define d(y) = min{d : d ∈
arg maxd∈D[α(d) + β(y − d)]}. By Proposition A.1.1, y − d(y) is increasing.

Define

y0 = sup{y : Γ(y) is non-decreasing on (−∞, y]}.

We claim that d(y0) ∈ {argmaxd∈D α(d)}. In the sequel, we will first prove

the lemma under this claim. The proof for the claim itself will be provided

after that.

Note that if Γ(·) is indeed quasi-K-concave, y0 defined above would be its

largest changeover point. Therefore, to prove the lemma, it is sufficient to

show that Γ(y) is non-K-increasing for y ≥ y0 or for y0 ≤ y2 ≤ y1:

Γ(y2) ≥ Γ(y1)−K.
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Let ξ0 > 0 be the largest changeover of β(y). One should note that, if

ξ0 = ∞, then y0 = ∞ and the lemma is clearly true. So in the following

proof, ξ0 is assumed to be finite.

We first show the right-continuity of y − d(y) at y = y0. Since y − d(y) is

increasing in y, limy→y+0
y−d(y) always exists (superscript “+” means taking

the right limit) and it is sufficient to show that it equals y0 − d(y0). Assume

limy→y+0
y − d(y) = y0 − d̃ for some d̃ ≥ 0. Then by continuity of Γ(·),

Γ(y0) = α(d̃) + β(y0 − d̃)

and so d̃ ∈ {argmaxd[α(d)+β(y0−d)]}. Furthermore, by the monotonicity

of y−d(y) we have y0− d̃ = limy→y+0
y−d(y) ≥ y0−d(y0). Hence, d̃ ≤ d(y0).

As d(y0) is assumed to be the smallest maximizer of [α(d) + β(y0 − d)],

d̃ = d(y0) and limy→y+0
y − d(y) = y0 − d(y0).

We next show by contradiction that y0− d(y0) ≥ ξ0. Suppose y0− d(y0) <

ξ0, by right-continuity of y−d(y) at y0 there exists a number η > 0 such that

for any y ≤ y′ in the interval[y0, y0+η], y0−d(y0) ≤ y−d(y) ≤ y′−d(y′) ≤ ξ0.

We can show that Γ(y) is non-decreasing in this interval [y0, y0+η] with η > 0:

Γ(y′) = α(d(y′)) + β(y′ − d(y′))

≥ α(d(y)) + β(y′ − d(y))

≥ α(d(y)) + β(y − d(y))

= Γ(y),

where the first inequality follows from the fact that d(y′) is optimal for

Γ(y′); the second inequality holds because β(·) is increasing on (−∞, ξ0].

This contradicts with the definition of y0. Therefore, y0 − d(y0) ≥ ξ0.

Now we focus our attention on ξ0 ≤ y2 − d(y2) ≤ y1 − d(y1), we verify the

lemma by discussing several different cases.

If d(y2) ≥ d(y1), then y2 − d(y1) ≥ y2 − d(y2) ≥ ξ0 and therefore
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Γ(y2) = α(d(y2)) + β(y2 − d(y2))

≥ α(d(y1)) + β(y2 − d(y1))

≥ α(d(y1)) + β(y1 − d(y1))−K

= Γ(y1)−K,

where the first inequality follows from the optimality of d(y2) and the

second one from the non-K-increasing of β(y) for y ≥ ξ0.

If d(y2) < d(y1), then we have the following two different cases:

Case I: d(y0) ≥ d(y2). In this case, obviously y2 − d(y0) ≤ y2 − d(y2).

Γ(y2) = α(d(y2)) + β(y2 − d(y2))

≥ α(d(y0)) + β(y2 − d(y0))

≥ α(d(y0)) + β(y1 − d(y1))−K

≥ α(d(y1)) + β(y1 − d(y1))−K

= Γ(y1)−K,

where the second inequality follows from ξ0 ≤ y0 − d(y0) ≤ y2 − d(y0) ≤
y2− d(y2) ≤ y1− d(y1) and the last one from the optimality of d(y0) for α(d)

that we claimed.

Case II: d(y2) > d(y0).

Γ(y2) = α(d(y2)) + β(y2 − d(y2))

≥ α(d(y2)) + β(y1 − d(y1))−K

≥ α(d(y1)) + β(y1 − d(y1))−K

= Γ(y1)−K,

where the first inequality follows from the non-K-increasing of β(y) and the

second one follows from the concavity of α(d) and that d(y0) is its maximizer.

The above cases cover all possibilities and we have proved the lemma under

the claim that d(y0) is a maximizer of α(d). We now turn to prove the claim

itself. Observe that d(y0) can either lie in the interior of D = [d, d] or on
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its boundary. We distinguish between these two cases. If d(y0) is an interior

point of D, then from the first order optimality condition,

α′(d(y0)) = β′(y0 − d(y0)).

If α′(d(y0)) > 0, then β′(y0 − d(y0)) > 0. Since β(·) is continuously

differentiable, β′(x) > 0 for x in a small neighborhood of y0 − d(y0). As

limy→y+0
d(y) = d(y0), one can show that there exists a small neighborhood U

of y0 such that for any y′, y ∈ U with y′ > y > y0, β(y′−d(y)) > β(y−d(y)).

Then

Γ(y′) = α(d(y′)) + β(y′ − d(y′))

≥ α(d(y)) + β(y′ − d(y))

> α(d(y)) + β(y − d(y))

= Γ(y).

This contradicts with the definition of y0.

If α′(d(y0)) < 0, then β′(y0− d(y0)) < 0. There exists some y′ < y0 that is

sufficiently close to y0 such that β(y′ − d(y0)) > β(y0 − d(y0)). Then

Γ(y′) = α(d(y′)) + β(y′ − d(y′))

≥ α(d(y0))) + β(y′ − d(y0))

> α(d(y0)) + β(y0 − d(y0))

= Γ(y0),

which also contradicts with the definition of y0. Therefore, α′(d(y0)) = 0

and d(y0) is an interior maximizer for α(·).
We next consider the case where d(y0) is on the boundary of D. Consider

first d(y0) = d. From the first order optimality condition, we have that

α′(d)− β′(y0 − d) ≤ 0.

We need to show that d is a maximizer of α(d) in D. Suppose this is

not true, then as α(d) is differentiable and concave, α′(d) > 0 and therefore
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β′(y0 − d) > 0. By an argument similar to the one used in the previous two

paragraphs, we can show that for y′ ≥ y > y0 with y′ sufficiently close to y0,

Γ(y′) = α(d(y′)) + β(y′ − d(y′))

≥ α(d(y)) + β(y′ − d(y))

≥ α(d(y)) + β(y − d(y))

= Γ(y),

where the last inequality follows from the fact that β′(y0− d) > 0 and the

continuity of β(·). This contradicts with the definition of Γ(y0). Therefore, d

is a maximizer of α(d). The case that d(y0) = d can be similarly proven. Thus

we have proved our claim that d(y0) ∈ {arg mind∈D α(d)}. This concludes

the proof of Lemma 3.2.1.

A.2 Proof of Lemma 3.2.2 on page 43

Since part (b) has been implicitly proven and used in Chen and Simchi-Levi

[26], we focus on part (a).

Let d(y) ∈ arg maxd∈D[α(d) + β(y− d)] (its existence is guaranteed by the

continuity of α(·) and β(·)) and d∗ be a maximizer of α(·) in D. First note

that if β(·) does not have a finite maximizer, then it must be monotone. In

this case, we can show that Γ(·) is also monotone. We only prove the case in

which β(·) is increasing (the case in which β(·) is decreasing can be proven

similarly). Let y1 ≤ y2. Then

Γ(y1) = α(d(y1)) + β(y1 − d(y1)) ≤ α(d(y1)) + β(y2 − d(y1))

≤ α(d(y2)) + β(y2 − d(y2)) = Γ(y2),

where the first inequality holds since β(·) is increasing and the remaining

equalities and inequality follow from the definition of d(y).

We now assume that β(·) has a finite maximizer, denoted as x∗. It is not

hard to show that y∗ = x∗ + d∗ is a maximizer of the function Γ(·). We

can show that Γ(·) is increasing in (−∞, y∗] and decreasing in [y∗,∞). Let
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y < y∗ and η = y∗ − y. To this end, we prove that Γ(·) is increasing in a

neighborhood of y. Since y < y∗, either d∗ − d(y) or y∗ − d∗ − (y − d(y))

must be no less than η/2. We focus on the case with d∗ − d(y) ≥ η/2 (Note

that the other case is symmetric). In this case, for any y′ ∈ [y, y + η/2], let

d = d(y) + y′ − y. Then d(y) ≤ d ≤ d∗, y′ − d = y − d(y), and therefore

Γ(y) = α(d(y)) + β(y − d(y)) ≤ α(d) + β(y′ − d) ≤ Γ(y′),

where the first inequality holds since α(d) is increasing for d ≤ d∗. We next

prove that Γ(y′) ≤ Γ(y) for any y′ ∈ [y−η/2, y]. For a given y′ ∈ [y−η/2, y],

if y′ − d(y′) ≤ y∗ − d∗, then

Γ(y′) = α(d(y′)) + β(y′ − d(y′)) ≤ α(d(y′)) + β(y − d(y′)) ≤ Γ(y),

where the first inequality holds since β(·) is increasing in (−∞, y∗− d∗]; if

y′−d(y′) ≥ y∗−d∗, denoting d = d(y′)+(y−y′), we have that d(y′) ≤ d ≤ d∗,

y − d = y′ − d(y′) and

Γ(y′) = α(d(y′)) + β(y′ − d(y′)) ≤ α(d) + β(y − d) ≤ Γ(y),

where the first inequality holds since α(d) is increasing for d ≤ d∗. Thus,

Γ(·) is increasing in (−∞, y∗]. Similarly, we can prove that Γ(·) is decreasing

in [y∗,∞).
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Appendix B

Proofs for Chapter 4

B.1 Proof of Lemma 4.2.1 on page 56

Proof. Rt(p, r;λ) is a quadratic function in (p, r). By choosing the appro-

priate λt, we want to make its Hessian negative semidefinite and also make
∂2R
∂p∂r
≥ 0. The Hessian of R is:[

−2(at + ηt) + 2γλt−1(1− α)2 ηt + 2γλt−1(1− α)α

ηt + 2γλt−1(1− α)α −2λt + 2γλt−1α
2

]
.

Negative semi-definiteness requires the following inequalities:

λt − γλt−1α
2 ≥ 0 (B.1)

λt ≤
at + ηt
γ(1− α)2

(B.2)

[
−2(at + ηt) + 2γλt−1(1− α)2

] [
−2λt + 2γλt−1α

2
]

− [ηt + 2γλt−1(1− α)α]2 ≥ 0. (B.3)

Supermodularity requires

ηt + 2γλt−1(1− α)α ≥ 0. (B.4)

By our assumption in this lemma, demand fluctuates proportionally, there-

fore we can write at and ηt both as multiples of an “underlying demand rate”

ρt: at = aρt and ηt = ηρt. It is therefore not hard to conjecture that the ap-

propriate λt should also be some multiple of the underlying demand rate. In

fact, we looking for λt having the following form: λt = λρt+1. Using this new
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set of notations, and after some simple calculations, equations (B.1)-(B.4)

can be rewritten as:

λ ≤ a+ η

γ(1− α)2
. (B.5)

λρt+1 − γα2λρt ≥ 0. (B.6)

− (a+ η)λρtρt+1 + γα2(a+ η)λρ2
t + γ(1− α)2λ2ρtρt+1

+ η2ρ2
t/4 + γα(1− α)ηλρ2

t ≤ 0. (B.7)

λ ≥ − η

2γα(1− α)
. (B.8)

In (B.7), divide both sides by ρ2
t and remember kt = ρt+1/ρt, this inequality

further simplifies into a quadratic inequality in λ:

[
γ(1− α)2kt

]
λ2 −

[
(a+ η)(kt − γα2)− γα(1− α)η

]
λ+ η2/4 ≤ 0. (B.9)

We now restrict ourselves in looking for λ ≥ 0. (B.6) now becomes kt ≥
γα2. This is always satisfied because of the lemma assumption kt ≥ γα and

that α < 1. Equation (B.8) also becomes trivial because of the restriction

λ ≥ 0. In summary, we now search for 0 ≤ λ ≤ a+η
γ(1−α)2

satisfying (B.9).

(B.9) is a quadratic inequality. We denote it by Aλ2+Bλ+C ≤ 0 for short.

The first thing to check is whether ∆ = B2 − 4AC ≥ 0. Some calculation

would reveal that

∆ =
[
(a+ η)(kt − γα2)− γα(1− α)η

]2 − γη2(1− α)2kt

= (kt − γα2)
[
kt(a+ η)2 − γ(αa+ η)2

]
.

This expression is always nonnegative, because by our assumption kt ≥ γα2

and also kt ≥ γ(αa+η)2

(a+η)2
. We now pick λ = argmin(Aλ2 + Bλ + C) = − B

2A
,

that is:
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λ =
(a+ η)(kt − γα2)− γα(1− α)η

2γ(1− α)2kt
. (B.10)

The only thing left to show is that 0 ≤ λ ≤ a+η
γ(1−α)2

. For the upper bound

part:

λ =
(a+ η)(kt − γα2)− γα(1− α)η

2γ(1− α)2kt

≤ (a+ η)kt
2γ(1− α)2kt

=
a+ η

2γ(1− α)2

≤ a+ η

γ(1− α)2
.

As for the lower bound part:

λ =
(a+ η)(kt − γα2)− γα(1− α)η

2γ(1− α)2kt

≥ (a+ η)(kt − γα2)− γα(1− α)(a+ η)

2γ(1− α)2kt

=
(kt − γα)(a+ η)

2γkt(1− α)2

≥ 0.

The final inequality holds because of the assumption that kt ≥ γα. The

proof is now complete.

B.2 Proof of Theorem 4.3.5 on page 68

Proof. In Proof of Theorem 4.2.1 we have shown that the function behind

maximization sign in (4.4) is jointly-concave in all its variables. Similarly

the function behind maximization sign in (4.6), which we call F 0(y, p; r), is

also jointly-concave in (y, p, r). Furthermore, if we apply the linear transform

d = b−ap+ η(r− p) and call the new function F̃ 0(y, d; r), then this function

is still jointly-concave in (y, d, r). And therefore the maximizing y0(r) should

be continuous in (r).
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Assumption 4.2.1 assumed an uniform lower bound on the stochastic de-

mand, namely D = dεm + εa ≥ δ > 0 for any valid expected demand d and

any ε. By continuity of y0(r), there exists a neighborhood B(r∗) such that

|y0(r)− y0(r′)| ≤ δ for all r, r′ ∈ B(r∗).

Suppose that the system starts at a state (x, r) ∈ S1 and r ∈ B(r∗). We use

the decision y0(r) and p0(r) and denote d0(r) = d[p0(r), r], by Theorem 4.3.2

we know r′ = (1 − α)p0(r) + αr ∈ B(r∗). The new inventory level x′ =

y0(r) − d0(r)εa − εa ≤ y0(r) − δ ≤ y0(r′) which means in the next period,

the optimal inventory decision would not be blocked by a high x′. Carrying

this argument on in a similar fashion as the proof of fact 2 in Theorem 4.3.3,

we can now claim that (x, r) would remain in S1 under the policy y0(·) and

p0(·). And finally since φ∗(x, r) ≤ φ0(x, r) for all (x, r), it is indeed optimal

for I∗ to follow the policy y0(·) and p0(·).
The proof of local convergence is now complete.
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Appendix C

Proofs for Chapter 5

C.1 Proof of Theorem 5.3.1 on page 83

Substitute in the expression for F (r, p), the first order optimality condition

on p gives:

p =
c

2
+

b+ ηr

2(a+ η)
+

αVr
2(a+ η)

. (C.1)

Plugging this back into the Bellman equation (5.9), we get:

σ2

2
r
∂2V

∂r2
+
∂V

∂t
− γV +

α2

4(a+ η)

(
∂V

∂r

)2

+

[
αc

2
− αr +

α(b+ ηr)

2(a+ η)

]
∂V

∂r

− c(b+ ηr)

2
+

(b+ ηr)2

4(a+ η)
+
c2(a+ η)

4
= 0.

Introducing a few new notations, this can be written concisely as:

∂V

∂t
− γV + Ar

∂2V

∂r2
+B

(
∂V

∂r

)2

+ P1(r)
∂V

∂r
+ P2(r) = 0. (C.2)

Where A and B are constants. P1(r), P2(r) are 1st-order and 2nd-order

polynomials in r, respectively. Assume further that:{
P1(r) = p10 + p11r

P2(r) = p20 + p21r + p22

Assume function V (r, t) has the following form:

V (r, t) = Q(t)r2 +R(t)r +M(t). (C.3)
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Then we get the following ordinary differential equation:

dQ

dt
− γQ+ 4BQ2 + 2p11Q+ p22 = 0. (C.4)

dR

dt
− γR + 2AQ+ 4BQR + 2p10Q+ p11R + p21 = 0. (C.5)

dM

dt
− γM +BR2 + p10R + p20 = 0. (C.6)

The terminal condition V (r, T ) = 0 ∀r implies terminal conditions Q(T ) =

R(T ) = M(T ) = 0. Here’s a list of the new notations:

A =
σ2

2

B =
α2

4(a+ η)

p10 =
αc

2
+

αb

2(a+ η)

p11 = −α +
αη

2(a+ η)

p20 = −bc
2

+
b2

4(a+ η)
+
c2(a+ η)

4

p21 = −cη
2

+
bη

2(a+ η)

p22 =
η2

4(a+ η)
.

We will start by giving an explicit solution to the ODE (C.4). Rewrite it

as:
dQ

dt
= −4B(Q−Q1)(Q−Q2)

where Q1 < Q2 are the two distinct roots of the equation:

4BQ2 − (γ − 2p11)Q+ p22 = 0.

Namely:

Q1 =
γ − 2p11 −

√
(γ − 2p11)2 − 16Bp22

8B
,

Q2 =
γ − 2p11 +

√
(γ − 2p11)2 − 16Bp22

8B
.
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Therefore:
dQ

(Q−Q1)(Q−Q2)
= −4Bdt

dQ

Q1 −Q2

[
1

Q−Q1

− 1

Q−Q2

]
= −4Bdt

ln
Q−Q1

Q−Q2

= −4B(Q1 −Q2)t+ C

Q−Q1

Q−Q2

= D · e−4B(Q1−Q2)t. (C.7)

Using the terminal condition of Q(T ) = 0, we can determine the constant

multiplier D:

D =
Q1

Q2

e4B(Q1−Q2)T .

Plugging this back to (C.7) we get:

Q(t) =
Q1e

4B(Q1−Q2)T −Q1e
4B(Q1−Q2)t

Q1/Q2e4B(Q1−Q2)T − e4B(Q1−Q2)t
. (C.8)

Plugging this back into (C.5) and (C.6) it is not hard to solve for R(t) and

M(t), and therefore we can get an explicit solution for V (r, t) using (C.3).

These steps can indeed be carried out. However, since this calculation is

tedious, and we are only interested in the steady-state outcome, for simplic-

ity we omit these steps and claim that we have an explicit V (r, t) that is

sufficiently differentiable on [0,+∞)× [0, T ].

Keep in mind that up till now we have solved our nonlinear second order

partial differential equation (C.2) with terminal condition V (r, T ) = 0. And

by performing the minimization indicated in (5.9) we would be able to solve

for the optimal control p∗(t). We still need to prove that this p∗(t) indeed

solves the stochastic optimal control problem in steady state, with the opti-

mal value function equal to V (r, t). This is known as the verification step.

Various forms of verification theorem exist in the optimal control literature,

for example see Theorem 4.1 in chapter VI of Fleming et al. [37]. The typical

condition for a verification theorem is that the value function V (r, t) satisfies

a “polynomial growth” criteria in terms of its state variable r. That is: there

exist constants D and k, for which |V (r, t)| ≤ D(1 + |r|k). Looking at our

value function (C.3), which is itself a second-order polynomial in r, with t in

a finite interval, the “polynomial growth” criteria is obviously satisfied with
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k = 2 and D sufficiently large. Therefore by the verfication theorem, we have

indeed obtained an optimal control to our problem.

In the sequel, let’s turn our attention to the steady-state outcome. Looking

at (C.8), if we hold t fixed, and let T → ∞, then since Q1 < Q2, we would

have Q(t)→ Q1 , Q. Explicitly, we have:

Q =
γ

2α2
(a+ η) +

2a+ η

2α
− a+ η

2α2
∆

where ∆ is given by:

∆ =

√
γ2 + 2α

2a(γ + α) + γη

η + a
.

Correspondingly, we have:

R =
2p10Q+ p21 + 2AQ

γ − 4BQ− p11

=

[
γ

α
+
σ2(a+ η)

α2
+
c(a+ η)

α

]
γ −∆

γ + ∆
+

[
b+ ca+

σ2(2a+ η)

2α

]
2

b+ ∆
.

Similarly we would be able to solve for M , however the explicit formula for

M is not needed in the following analysis. With Q, R, M , the steady-state

value function is now solely dependent on r: Qr2 + Rr + M . To solve for

the optimal steady-state price p∗, we look back to the first-order optimality

condition (C.1). Note that in a steady-state, Vr(r
∗) = 2Qr∗ + R and also

r∗ = p∗. This leads to:

p∗
[
1− η

2(a+ η)
− αQ

a+ η

]
=
c

2
+

b

2(a+ η)
+

αR

2(a+ η)
.

Therefore,

p∗S = p∗D +
σ2

2a(γ + α) + γη

[
a+ η

α

(
γ

2
− ∆

2

)
+

2a+ η

2

]
.

Where p∗D is the optimal price in the deterministic problem:

p∗D =
(γ + α)(b+ ac) + γηc

2a(γ + α) + γη
.
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