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Abstract

There have been a lot of research done on the relationship between locally compact groups and algebras

associated with them. For example, Johnson proved that a locally compact group G is amenable if and only if

the convolution algebra L1(G) is amenable as a Banach algebra, and Ruan showed that G is amenable if and

only if the Fourier algebra A(G) of G is operator amenable. Motivated by Ruan’s work, we want to study G

through tools from p-operator spaces. We first introduce the p-operator space and various p-operator space

tensor products. We then study p-operator space approximation property and p-operator space completely

bounded approximation property which are related to p-operator space injective tensor product. We then

apply these properties to the study of the pseudofunction algebra PFp(G), the pseudomeasure algebra

PMp(G), and the Figà-Talamanca-Herz Algebra Ap(G). Especially we show that if G is discrete, the most of

approximation properties for the reduced group C∗-algebra C∗λ(G), the group von Neumann algebra V N(G),

and the Fourier algebra A(G) (related to amenability, weak amenability, and approximation property of G)

have natural p-analogues for PFp(G), PMp(G), and Ap(G). With help of Herz’s work, we also study the

stability of these properties. Finally we discuss the properties Cp, C ′p, and C ′′p which are natural p-analogues

of properties C, C ′, and C ′′.

ii



To my family

iii



Acknowledgments

First and foremost I offer my sincerest gratitude to my advisor Professor Zhong-Jin Ruan, who has supported

me throughout my thesis with his patience and knowledge. One of the brightest moments in my life is the

day he accepted me as one of his students. Without his help this thesis would not have been possible.

My thanks also go to the many people at the University of Illinois at Urbana-Champaign who helped

and encouraged me during my time as a Ph.D student. In particular, Professors Florin Boca, Marius Junge,

and Burak Erdogan provided an insightful view of my work and suggested future direction of research.

I am indebted to my parents and parents-in-law. They always gave a hand whenever I struggled through

hard times. Their unlimited support will never be forgotten and my deepest respect goes to them.

I am grateful to Ji Young Kim, who is the most wonderful person I know. I cannot even imagine how

she could be such a loving mom, an energetic teacher, and a promising researcher at the same time. I am

the luckiest man in the world because she calls me her hubby.

Finally, my biggest thanks go to my daughter, Avril Hajin Lee, for giving me the strength to go on when I

felt like giving up and throwing in the towel. You are the reason for everything I do.

iv



Table of Contents

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction to p-Operator Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 SQp Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 p-Operator Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 p-Completely Bounded Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 p-Operator Spaces on Lp Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Examples of p-Completely Isometric Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2 Tensor Products of p-Operator Spaces . . . . . . . . . . . . . . . . . . . . . . . 24
2.1 p-Projective Tensor Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 p-Haagerup Tensor Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 p-Injective Tensor Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Infinite Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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Chapter 1

Introduction to p-Operator Spaces

We introduce and study basics on p-operator spaces, which can be regarded as p-generalization of operator

spaces. We define p-operator spaces and p-completely bounded maps, and give some examples.

1.1 Preliminaries

Throughout this writing, we always assume 1 < p < ∞ unless stated otherwise. Given p, its conjugate

exponent is denoted by p′ so that 1/p + 1/p′ = 1. Every Banach space is over C, the field of complex

numbers. If X and Y are normed linear spaces, B(X,Y ) will denote the normed linear space of the bounded

linear operators from X into Y and we will use B(X) for B(X,X). For a normed linear space X, the dual

space X ′ of X is the Banach space defined by X ′ = B(X,C), that is, the space of all continuous linear

functionals on X. For a measure space (Ω,Σ, µ), if there is no risk of confusion, we will simply write Lp(µ)

for Lp(Ω,Σ, µ).

1.2 SQp Spaces

Definition 1.2.1. A Banach space E is called an Lp space if it is isometrically isomorphic to some Lp(µ).

A Banach space E is called an SQp (denoted E ∈ SQp) space1 if it is isometrically isomorphic to a quotient

of a subspace of an Lp space.

Remark 1.2.2. E ∈ SQp if and only if E is isometrically isomorphic to a subspace of quotient of an Lp space.

Indeed, if X ⊆ Y ⊆ Lp(µ) for some measure µ, then Y/X ⊆ Lp(µ)/X. Conversely, if πX : Lp(µ)→ Lp(µ)/X

denotes the canonical quotient map and if W ⊆ Lp(µ)/X, then one can show that π−1
X (W )/X is isometrically

isomorphic to W via the map Φ : π−1
X (W )/X →W defined by Φ(f +X) = πX(f), f ∈ π−1

X (W ).

To discuss properties of SQp spaces, we need some facts on Banach spaces. We include a lemma for

convenience.
1In the literature, e.g. [Run05], QSLp space is also used.
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Lemma 1.2.3. Let X ⊆ Y ⊆ Z be Banach spaces and let

X⊥ = {ϕ ∈ Z ′ : ϕ|X ≡ 0} and Y ⊥ = {ϕ ∈ Z ′ : ϕ|Y ≡ 0}.

Then there is an isometric isomorphism

(Y/X)′ ∼= X⊥/Y ⊥.

Proof. First note that the function Φ : (Y/X)′ → {ϕ ∈ Y ′ : ϕ|X ≡ 0} defined by

Φ(f)(y) = f(ŷ), f ∈ Y/X, y ∈ Y,

where ŷ := y+X ∈ Y/X, is an isometric isomorphism onto its image. Note also that the function Ψ : Y ′ →

Z ′/Y ⊥ defined by

Ψ(ϕ) = ϕ̄+ Y ⊥, ϕ ∈ Y ′

is also a well-defined isometric isomorphism onto its image, where ϕ̄ is a Hahn-Banach extension of ϕ to Z ′.

The result follows since the image of (Y/X)′ under Ψ ◦ Φ is X⊥/Y ⊥.

Remark 1.2.4. Now we can state some properties of SQp spaces.

1. Every SQp space is reflexive by [Meg98, Theorem 1.11.16, Corollary 1.11.18].

2. By 1 above and Lemma 1.2.3, E is an SQp space if and only if E′ is an SQp′ space.

3. A calculation similar to that in Remark 1.2.2 shows that SQp space is closed under taking subspaces

and quotients.

4. Since every subspace or quotient of a Hilbert space is again a Hilbert space, it follows that SQ2 =

{Hilbert spaces}.

5. If E and F are SQp spaces, then so is E ⊕p F , where ⊕p is the p-direct sum defined on E ⊕ F by

‖e ⊕ f‖ = (‖e‖p + ‖f‖p)1/p for e ∈ E and f ∈ F . Similarly, we can define the n-fold p-direct sum

E1 ⊕p · · · ⊕p En of SQp spaces E1, . . . , En. In particular, if E1 = · · · = En = E, and there is no risk

of confusion, then we will use the notation En for E ⊕p · · · ⊕p E.

6. If p = 1 or p =∞, then SQp = {Banach spaces}. To see this, it suffices to check that Φ : `1(X1)→ X

(resp. Ψ : X → `∞(X ′1)) given by {ax} 7→
∑
x axx (respectively, x 7→ [Ψ(x)(f) = f(x), f ∈ `∞(X ′1)]) is

2



a quotient map (respectively, an isometry). If X is a separable Banach space, then X can be regarded

as a quotient of `1 [Mor01, Theorem 2.19] or a subspace of `∞. To see this, first note that X ′1 is

weak*-metrizable [Meg98, Theorem 2.6.23] and therefore weak*-separable by Alaoglu’s theorem. Let

{fn}∞n=1 be a weak*-dense subset of X ′1 and define a map from X to `∞ by x 7→ {fn(x)}∞n=1: this gives

an isometry.

7. By [Her71, Corollary 2], if p ≤ q ≤ 2 or 2 ≤ q ≤ p, then an Lq space is an SQp space. Therefore, if

p ≤ q ≤ 2 or 2 ≤ q ≤ p, then every SQq space is an SQp space.

8. For another characterization of SQp spaces, see [Kwa72].

1.3 p-Operator Spaces

Let (Ω,Σ, µ) be a measure space and let X be a Banach space. Let Lp(µ,X) be the space of Bochner

p-integrable functions from Ω to X.2 We define a norm on the algebraic tensor product Lp(µ) ⊗ X by

embedding Lp(µ) ⊗X into Lp(µ,X) in the natural way, that is, f ⊗ x 7→ f(·)x for f ∈ Lp(µ) and x ∈ X.

Let Lp(µ)⊗p X denote the completion of Lp(µ)⊗X in Lp(µ,X) with respect to the norm in Lp(µ,X). It

follows easily that Lp(µ)⊗pX is isometrically isomorphic to Lp(µ,X).3 If X = Lp(Ω′,Σ′, µ′), then we have

the isometric isomorphism

Lp(µ)⊗p Lp(µ′) ∼= Lp(µ× µ′),

where µ × µ denotes the product measure on Σ × Σ′ [DF93, §7.2]. In particular, if I and J are index sets,

then we have

`p(I)⊗p `p(J) = `p(I × J).

If Lp(µ) = `np , Cn equipped with `p-norm, then we will also use notation `np (X) for `np ⊗p X = Xn.

Now we are ready to define the main subject of the thesis.

Definition 1.3.1. A Banach space X is called a concrete p-operator space if X is a closed subspace of B(E)

for some E ∈ SQp.

Let Mn(X) denote the linear space of all n × n matrices with entries in X. For a concrete p-operator

space X ⊆ B(E) and for each n ∈ N, define a norm ‖ · ‖n on Mn(X) by identifying Mn(X) as a subspace

of B(`np ⊗p E) = B(`np (E)), and let Mn(X) denote the corresponding normed space. The norms ‖ · ‖n then

satisfy
2See [DF93, Appendix B12] for details.
3See [DF93, §7.2] for details.
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D∞ for u ∈Mn(X) and v ∈Mm(X), we have ‖u⊕ v‖Mn+m(X) = max{‖u‖n, ‖v‖m}.

Mp for u ∈Mm(X), α ∈Mn,m, and β ∈Mm,n, we have ‖αuβ‖n ≤ ‖α‖‖u‖m‖β‖, where ‖α‖ is the norm of

α as a member of B(`mp , `
n
p ), and similarly for β.

Remark 1.3.2. When p = 2, these are Ruan’s axioms and 2-operator spaces are simply operator spaces

because the SQ2 spaces are exactly the same as Hilbert spaces.

As in operator spaces, we can also define abstract p-operator spaces.

Definition 1.3.3. An abstract p-operator space is a Banach space X together with a sequence of norms

‖ · ‖n defined on Mn(X) satisfying the conditions D∞ and Mp above.

Thanks to the following theorem by Le Merdy, we do not distinguish between concrete p-operator spaces

and abstract p-operator spaces and we will merely speak of p-operator spaces.

Theorem 1.3.4. [LeM96, Theorem 4.1] An abstract p-operator space X can be isometrically embedded in

B(E) for some E ∈ SQp in such a way that the canonical norms on Mn(X) arising from this embedding

agree with the given norms.

Example 1.3.5.

1. Suppose E and F are SQp spaces and let L = E ⊕p F , then the mapping

x 7→

 0 0

x 0


is an isometric embedding of B(E,F ) into B(L) and using this we can view B(E,F ) as a p-operator

space. Note that Mn(B(E,F )) is isometrically isomorphic to B(`np (E), `np (F )).

2. The identification Lp(µ) = B(C, Lp(µ)) ⊆ B(C⊕p Lp(µ)) gives a p-operator space structure on Lp(µ)

called the column p-operator space structure of Lp(µ), which we denote by Lcp(µ). Similarly, we denote

by Lrp′(µ) the p-operator space structure on Lp′(µ) which is called the row p-operator space structure

of Lp′(µ) and defined by the identification Lp′(µ) = B(Lp(µ),C). In general, we can define Ec and

(E′)r for any E ∈ SQp.

3. Unless stated otherwise, we give C the obvious p-operator space structure, that is, Mn(C) = B(`np ).4

4We will also use Mn to denote B(`np ).
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1.4 p-Completely Bounded Maps

Note that a linear map u : X → Y between p-operator spaces X and Y induces a map un : Mn(X)→Mn(Y )

by applying u entrywise.

Definition 1.4.1. We say that u is p-completely bounded (p-cb) if ‖u‖pcb := supn ‖un‖ < ∞. Similarly,

we define the notions of p-completely contractive, p-completely isometric, and p-completely quotient. We

write CBp(X,Y ) for the space of all p-completely bounded maps from X into Y and CBp(X) for the space

CBp(X,X).

Before proceeding, we discuss subspaces and quotients of a p-operator spaces as in [Daw10]. If Y is a

subspace of a p-operator space X, then inclusions Mn(Y ) ⊆Mn(X) and the corresponding norms determine

a p-operator space matrix norm on Y . This determines the p-operator subspace structure.

Example 1.4.2. Let K(Lp(µ)) ⊆ B(Lp(µ)) denote the space of compact operators on Lp(µ), then K(Lp(µ))

has a p-operator space structure inherited from that of B(Lp(µ)). Using the fact that a compact operator on

Lp(µ) can be approximated by finite rank operators [Rya02, Example 4.5 and Corollary 4.13]5, it is easily

shown that Mn(K(Lp(µ))) can be identified with K(Lp(µ)n) = K(Lp(µ)⊕p · · · ⊕p Lp(µ)).

Given a closed subspace Y of a p-operator space X, we use the identification Mn(X/Y ) = Mn(X)/Mn(Y )

to define a norm on Mn(X/Y ), and it is easy to check that X/Y becomes a p-operator space and that the

quotient map π : X → X/Y is a p-completely quotient map. This determines the p-operator quotient

structure.

For a p-operator space X and for each n ∈ N, we can give Mn(X) a natural p-operator space structure

using the identification Mr(Mn(X)) = Mrn(X). We also want to turn the mapping space CBp(X,Y )

between two p-operator spaces X and Y into a p-operator space: let us define a norm on Mn(CBp(X,Y )) by

identifying this space with CBp(X,Mn(Y )). Using Le Merdy’s theorem, one can show that CBp(X,Y ) itself

is a p-operator space. In particular, the p-operator dual space of X is defined to be CBp(X,C). The next

lemma by Daws shows that we may identify the Banach dual space X ′ of X with the p-operator dual space

CBp(X,C) of X.

Lemma 1.4.3. [Daw10, Lemma 4.2] Let X be a p-operator space, and let ϕ ∈ X ′, the Banach dual of X.

Then ϕ is p-completely bounded as a map to C. Moreover, ‖ϕ‖pcb = ‖ϕ‖.

Remark 1.4.4. If ϕ = [ϕij ] ∈Mn(X ′) = Mn(CBp(X,C)) = CBp(X,Mn) for some p-operator space X, then

‖ϕ‖ = sup{‖〈〈ϕ, x〉〉‖ : m ∈ N, x ∈Mm(X), ‖x‖ ≤ 1},
5That is, Lp(µ) has the Approximation Property.
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where 〈〈·, ·〉〉 is the matrix paring as in [ER00, §1.1].

We can slightly generalize Lemma 1.4.3 as in the following proposition.

Proposition 1.4.5. Let X be a p-operator space and ϕ : X →Mn = B(`np ) be bounded and linear. Then ϕ

is p-completely bounded and ‖ϕ‖pcb ≤ n‖ϕn‖.6

Proof. Fix m ≥ n. We need to show that ‖ϕm‖ ≤ n‖ϕn‖. Let x = [xij ] ∈ Mm(X). Choose ξ̃ ∈ `mnp and

η̃ ∈ `mnp′ such that ‖ξ̃‖ = ‖η̃‖ = 1 and consider 〈η̃, ϕm(x)ξ̃〉. One can find mn×mn permutation matrices P

and Q such that

Φ := Qϕm(x)P =


[ϕ1,1(xij)] · · · [ϕ1,n(xij)]

...
. . .

...

[ϕn,1(xij)] · · · [ϕn,n(xij)]

 .

Letting ξ = P−1ξ̃ and η = (QT )−1η̃, we have ‖ξ‖ = ‖η‖ = 1 and 〈η̃, ϕm(x)ξ̃〉 = 〈η,Φξ〉. Write

ξ =


ξ1
...

ξn

 , η =


η1

...

ηn

 , ξk =


ξk,1

...

ξk,m

 ∈ `mp , ηl =


ηl,1

...

ηl,m

 ∈ `mp′ , 1 ≤ k, l ≤ n,

and for each 1 ≤ k, l ≤ n, put uk = 1
‖ξk‖ξk and vl = 1

‖ηl‖ηl. Finally letting

α =


‖ξ1‖

...

‖ξn‖

 , β =


‖η1‖

...

‖ηn‖

 , U =


u1

. . .

un


mn×n

, and V =


v1

. . .

vn


mn×n

,

we obtain 〈η,Φξ〉 = 〈V β,ΦUα〉 = 〈β, V TΦUα〉 with U, V contractive and ‖α‖`np = ‖β‖`n
p′

= 1. Thus the

result will follow once we show that ‖V TΦU‖B(`np ) ≤ n‖ϕn‖‖x‖. Note that

V TΦU =


vT1

. . .

vTn


n×mn

 [ϕ(xij)k,l]1≤i,j≤m


mn×mn


u1

. . .

un


mn×n

=

 vTk [ϕ(xij)k,l]1≤i,j≤mul


n×n

6When p = 2, we have ‖ϕ‖cb = ‖ϕn‖. See [ER00, Proposition 2.2.2].
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=

 ϕ(vTk xul)k,l


n×n

.

Denote ϕ(vTk xul) ∈Mn by ykl, then the last matrix above is nothing but


(y11)1,1 · · · (y1n)1,n

...
. . .

...

(yn1)n,1 · · · (ynn)n,n

 ,

which can be computed as

R[ykl]n2×n2C = Rϕn

V T

x · · · x

...
. . .

...

x · · · x


mn×mn

U

C,

where R is an n× n2 matrix whose only nonzero entry is 1 at positions (1, 1), (2, n+ 2), (3, 2n+ 3), · · · , and

at (n, n2) and C = RT . Since



x x · · · x

x x · · · x

...
...

. . .
...

x x · · · x


=



x

x

. . .

x


+



x

x

. . .

x


+ · · ·+



x

x

. . .

x


, (1.1)

we get

‖V TΦU‖B(`np ) ≤ ‖R‖ · ‖ϕn‖ · ‖V T ‖ ·

∥∥∥∥∥∥∥∥∥∥


x · · · x

...
. . .

...

x · · · x


∥∥∥∥∥∥∥∥∥∥
· ‖U‖ · ‖C‖

(‖R‖, ‖V T ‖, ‖U‖, ‖C‖ ≤ 1) ≤ ‖ϕn‖ ·

∥∥∥∥∥∥∥∥∥∥


x · · · x

...
. . .

...

x · · · x


∥∥∥∥∥∥∥∥∥∥

(by (1.1)) ≤ n‖ϕn‖‖x‖,

and this completes the proof.
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1.5 p-Operator Spaces on Lp Space

When E = Lp(µ) and if X ⊆ B(E) = B(Lp(µ)), then we say that X is a p-operator space on Lp space. These

p-operator spaces are often easier to work with as we will see soon. Let κX : X → X ′′ denote the canonical

inclusion from a Banach space X into its second dual. Contrary to operator spaces, κX is not always p-

completely isometric. Thanks to the following theorem by Daws, however, we can easily characterize those

p-operator spaces with the property that the canonical inclusion is p-completely isometric.

Proposition 1.5.1. [Daw10, Proposition 4.4] Let X be a p-operator space. Then κX is a p-complete

contraction. Moreover, κX is a p-complete isometry if and only if X ⊆ B(Lp(µ)) p-completely isometrically

for some measure µ.7

We say that a p-operator space X is reflexive if the canonical isometric inclusion κX : X → X ′′ is a

p-completely isometric isomorphism from X onto X ′′.

Lemma 1.5.2. A p-operator space X is reflexive if and only if X is reflexive as a Banach space and there

is a measure µ such that X ⊆ B(Lp(µ)). In particular, for any measure µ, Lcp(µ) and Lrp′(µ) are reflexive.

Proof. (=⇒) If X is reflexive as a p-operator space, then clearly X is reflexive as a Banach space. By [Daw10,

Proposition 4.4], if κX is p-completely isometric, then there exists a measure µ such that X ⊆ B(Lp(µ)).

(⇐=) Since X ⊆ B(Lp(µ)), by [Daw10, Proposition 4.4], for each n ∈ N, (κX)n is isometric. That (κX)n :

Mn(Lcp(µ))→Mn((Lcp(µ))′′) is surjective follows from the fact that κX : X → X ′′ is surjective.

As pointed out in [Daw10, §4.1], Le Merdy gives an example of (even finite dimensional) p-operator

spaces X such that κX is not a p-complete isometry, and this is a first significant problem we confront with

when extending results from operator spaces.8 At the same time, Proposition 1.5.1 shows that p-operator

spaces on Lp space are easier to work with.

Lemma 1.5.3 below exhibits another problem we face when extending results from operator spaces to

p-operator spaces.9

Lemma 1.5.3. [Daw10, Lemmas 4.5 and 4.6] Let X and Y be p-operator spaces. If u ∈ CBp(X,Y ), then

the adjoint mapping u′ belongs to ∈ CBp(Y ′, X ′) with ‖u′‖pcb ≤ ‖u‖pcb. If u is a p-complete quotient map,

then u′ is a p-complete isometry.

Remark 1.5.4. We do not know whether we always have ‖u′‖pcb = ‖u‖pcb. We cannot simply apply the

same argument as in operator spaces theory because we lack p-analogue of Roger Smith’s lemma [ER00,
7That is, κX is a p-complete isometry if and only if X is a p-operator space on Lp space.
8For any operator space X, the canonical inclusion is always completely isometric [ER00, Proposition 3.2.1].
9For operator spaces X,Y and for u ∈ CB(X,Y ), we always have ‖u‖cb = ‖u′‖cb [ER00, Proposition 3.2.2].
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Lemma 2.2.1]. Similarly, when u is a p-complete isometry, we do not know whether u′ is a p-complete quotient

because a p-analogue of Arveson-Wittstock-Hahn-Banach theorem is not available yet at this moment.10

However, with an additional condition that Y is a p-operator space on Lp space, we do get the equality

in Lemma 1.5.3 as explained in the following.

Proposition 1.5.5. Let X and Y be p-operator spaces with Y ⊆ B(Lp(µ)) for some measure µ. If u ∈

CBp(X,Y ), then the adjoint ‖u′‖pcb = ‖u‖pcb.

Proof.

‖u‖pcb = sup
{
‖[u(xij)]‖Mn(Y ) : n ∈ N, [xij ] ∈Mn(X), ‖[xij ]‖ ≤ 1

}
= sup

{
‖[u(xij)]‖Mn(Y ′′) : n ∈ N, [xij ] ∈Mn(X), ‖[xij ]‖ ≤ 1

}
= sup

{
‖[u(xij)]‖CBp(Y ′,Mn) : n ∈ N, [xij ] ∈Mn(X), ‖[xij ]‖ ≤ 1

}
= sup {‖〈〈u(xij), ϕkl〉〉‖ : n,m ∈ N, [xij ] ∈Mn(X), ‖[xij ]‖ ≤ 1, [ϕkl] ∈Mm(Y ′), ‖[ϕkl]‖ ≤ 1}

= sup {‖〈〈xij , u′(ϕkl)〉〉‖ : n,m ∈ N, [xij ] ∈Mn(X), ‖[xij ]‖ ≤ 1, [ϕkl] ∈Mm(Y ′), ‖[ϕkl]‖ ≤ 1}

(Remark1.4.4) = sup
{
‖u′(ϕkl)‖Mn(X′) : m ∈ N, [ϕkl] ∈Mm(Y ′), ‖[ϕkl]‖ ≤ 1

}
= ‖u′‖pcb,

where the second equality comes from Proposition 1.5.1.

We close this section with the following proposition.

Proposition 1.5.6. Let X ⊆ B(Lp(µ)) and Y ⊆ B(Lp(ν)) be p-operator spaces. Then the adjoint mapping

Φ : CBp(X,Y )→ CBp(Y ′, X ′), T 7→ T ′

is a p-completely isometric isomorphism from CBp(X,Y ) onto CBp(Y ′, X ′) if and only if either X = {0} or

Y is reflexive.

Proof. (=⇒) Suppose X 6= {0}. By Lemma 1.5.2, to show that Y is reflexive, it suffices to show that Y

is reflexive as a Banach space. Let ϕ ∈ Y ′′. Let x 6= 0 be a vector in X, then there exists x′ ∈ X ′ such

that x′(x) = 1. Define S : Y ′ → X ′ by S(f) = ϕ(f)x′, then S ∈ CBp(Y ′, X ′) and hence S = T ′ for some

T ∈ CBp(X,Y ). Since ϕ(f) = 〈S(f), x〉 = 〈f, Tx〉 for all f ∈ Y ′, we see that the canonical inclusion κY is
10Having a positive answer to this question is equivalent to p-analogue of Arveson-Wittstock-Hahn-Banach Theorem because

(u′)n : Mn(Y ′) = CBp(Y,Mn)→ CBp(X,Mn) = Mn(X′)

is given by the restriction.
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onto, that is, Y is reflexive as a Banach space.

(⇐=) If X = {0}, then the result is trivial. Suppose that Y is reflexive and fix n ∈ N. Let S = [Sij ] ∈

Mn(CBp(Y ′, X ′)) = CBp(Y ′,Mn(X ′)) = CBp(Y ′, CBp(X,Mn)). Since X ⊆ B(Lp(µ)), for each i, j, we can

define Tij = S′ij |X ∈ CBp(X,Y ). Now for any f ∈ Y ′ and for any x ∈ X,

S(f)(x) = [〈Sij(f), κX(x)〉]

= [〈f, Tij(x)〉]

= [〈T ′ij(f), x〉].

This shows that S = T ′, where T = [Tij ] ∈Mn(CBp(X,Y )) and hence the adjoint mapping is onto.

1.6 Examples of p-Completely Isometric Isomorphisms

In this section, we will give specific examples of p-operator spaces and identify some of them via p-completely

isometric isomorphisms. Let N (Lp(µ)) denote the Banach space of all nuclear operators on Lp(µ). Since

Lp(µ) has the Approximation Property [Rya02, Example 4.5], we have

N (Lp(µ)) = Lp′(µ)
π
⊗ Lp(µ), (1.2)

where
π
⊗ denotes the Banach space projective tensor product [Rya02, Chapter 2]. Since Lp(µ) is reflexive

(hence has the Radon-Nikodým property, [Rya02, Corollary 5.45]), we have the isometric isomorphisms

K(Lp(µ))′ = N (Lp(µ)) and N (Lp(µ))′ = B(Lp(µ)).11 (1.3)

Giving K(Lp(µ)) a p-operator subspace structure in B(Lp(µ)) and giving N (Lp(µ)) a p-operator space struc-

ture by duality, that is, by regarding N (Lp(µ)) as a p-operator subspace of B(Lp(µ))′12, we can regard

K(Lp(µ)) and N (Lp(µ)) as p-operator spaces. With this structure, we can say more about the second

isometry in (1.3) as in the following lemma.

Proposition 1.6.1. [Daw10, Lemma 5.1] With the dual p-operator space structure on N (Lp(µ)), we have

N (Lp(µ))′ = B(Lp(µ)) p-completely isometrically.

As an application of Proposition 1.6.1, let us take a closer look at the representation of a dual p-operator
11See Corollary 4.8, Corollay 4.13, and Theorem 5.33 in [Rya02]. See also [Rya02, §2.2].
12This p-operator space structure on N (Lp(µ)) will be called the dual p-operator space structure on N (Lp(µ)).
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space. Since X ′ is again a p-operator space for a p-operator space X, by Theorem 1.3.4, there exists E ∈ SQp

such that X ′ ⊆ B(E) p-completely isometrically. Daws showed that in fact we can choose E to be `p(I) for

some index set I [Daw10, Theorem 4.3]. We can still improve Daws’ result as in the following.

Proposition 1.6.2. Let V be a p-operator space. Then there exists an index set I such that V ′ can be

identified with a weak*-closed subspace of B(`p(I)) and the restriction map

π : ω ∈ N (`p(I))→ ω|V ′ ∈ V

is p-completely quotient. Therefore, we have the p-complete isometry V = N (`p(I))/V ′⊥, where V ′⊥ is the

pre-annihilator of V ′ in N (`p(I).

Proof. We can apply a construction similar to that given in the proof of [ER00, Proposition 3.2.4] by

constructing sn = Mn(V )1 and s =
⋃∞
n=1 sn. We can obtain an index set I such that `p(I) =

⊕
x∈s `

n(x)
p .

The map

Φσ : f ∈ V ′ → diag {fn(x) : x ∈ sn, n ∈ N} ∈
∏
x∈s

B(`n(x)
p ) ⊆ B(`p(I))

is a weak*-continuous p-completely isometric inclusion. In this case, we can identify V ′ with the weak*-closed

subspace Φσ(V ′) in B(`p(I)) and V is equal to the quotient N (`p(I))/V ′⊥ via the restriction map

π : ω ∈ N (`p(I))→ ω|V ′ ∈ V.

Now for each x = [xij ] ∈ Mn(V )1 = sn, we let ιn(x) be the canonical inclusion of `n(x)
p into `p(I) and Pn(x)

be the contractive projection from `p(I) onto `n(x)
p . Then the truncation map ω(y) = Pn(x)yιn(x) on B(`p(I))

defines a contractive element ω in Mn(N (`p(I))), which satisfies πn(ω) = x. This shows that π is actually

a p-complete quotient map from N (`p(I)) onto V . The last part follows from Lemma 1.5.3.

The first isometric isomorphism in (1.3) also turns out to be p-completely isometric with the dual p-

operator space structure on N (Lp(µ)). To prove this, we first need to study a norm structure on Mn(V ) for

a general p-operator space V .

Lemma 1.6.3. Let 1 ≤ p, p′ ≤ ∞ with 1/p′ + 1/p = 1. Let λ = {λj}1≤j≤n be a finite sequence in C. Then

‖λ‖`np ≤ n
|1/p−1/p′| · ‖λ‖`n

p′
.

Proof. There is nothing to prove if p = p′ = 2. It is trivial if p = 1. If p > p′, then ‖λ‖`np ≤ ‖λ‖`np′ ≤

n|1/p−1/p′| · ‖λ‖`n
p′

since n|1/p−1/p′| ≥ 1. Finally, assume 1 < p < p′ and let q = p′

p > 1 and let q′ be the
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conjugate exponent to q. By Hölder’s inequality,

‖λ‖p`np ≤

 n∑
j=1

|λj |pq
1/q

· n1/q′ =

 n∑
j=1

|λj |p
′

p/p′

· n1−p/p′

and hence ‖λ‖`np ≤ n
|1/p−1/p′| · ‖λ‖`n

p′
.

Lemma 1.6.4. Let α = [αij ] ∈ Mn,r and β = [βkl] ∈ Mr,n. Let 1 < p, p′ < ∞ with 1/p′ + 1/p = 1. Then

we have

‖α‖B(`rp,`
n
p ) ≤ ‖α‖p′ · n|1/p−1/p′| and ‖β‖B(`np ,`

r
p) ≤ ‖β‖p · n|1/p−1/p′|,

where

‖α‖p′ =

 n∑
i=1

r∑
j=1

|αij |p
′

1/p′

and ‖β‖p =

(
r∑

k=1

n∑
l=1

|βkl|p
)1/p

.

Proof. Suppose ξ = {ξj}rj=1 is a unit vector in `rp. For each i, 1 ≤ i ≤ n, let ηi =
∣∣∣∑r

j=1 αijξj

∣∣∣, then by

Hölder’s inequality, ηi ≤
(∑r

j=1 |αij |p
′
)1/p′

and by Lemma 1.6.3,

(
n∑
i=1

ηpi

)1/p

≤ n|1/p−1/p′| ·

(
n∑
i=1

ηp
′

i

)1/p′

≤ n|1/p−1/p′| · ‖α‖p′

and hence we get ‖α‖B(`rp,`
n
p ) ≤ n|1/p−1/p′| · ‖α‖p′ . To prove the second inequality, let γ : `rp′ → `np′ be the

adjoint operator of β. Then by the argument above we have

‖γ‖B(`r
p′ ,`

n
p′ )
≤ ‖γ‖p · n|1/p−1/p′|.

Since ‖γ‖B(`r
p′ ,`

n
p′ )

= ‖β‖B(`np ,`
r
p) and ‖γ‖p = ‖β‖p, we get the desired inequality.

Let V be a p-operator space. Fix n ∈ N and define ‖ · ‖1,n : Mn(V )→ [0,∞) by

‖v‖1,n = inf{‖α‖p′‖w‖‖β‖p : r ∈ N, v = αwβ, α ∈Mn,r, β ∈Mr,n, w ∈Mr(V )}, (1.4)

where ‖ · ‖p′ and ‖ · ‖p as in Lemma 1.6.4.

Proposition 1.6.5. Suppose that V is a p-operator space and n ∈ N. Then ‖ · ‖1,n defines a norm on

Mn(V ).

Proof. Suppose v1, v2 ∈ Mn(V ). Let ε > 0. For i = 1, 2, we can find αi, βi, and wi such that vi = αiwiβi
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with ‖wi‖ ≤ 1 and

‖αi‖p′ < (‖vi‖1,n + ε)1/p′
, ‖βi‖p < (‖vi‖1,n + ε)1/p

. (1.5)

Let

α = [α1 α2], β =

 β1

β2

 , and w =

 w1

w2

 ,
then ‖α‖p

′

p′ = ‖α1‖p
′

p′ + ‖α2‖p
′

p′ , ‖β‖pp = ‖β1‖pp + ‖β2‖pp, and ‖w‖ ≤ 1. Since v1 + v2 = αwβ, it follows that

‖v1 + v2‖1,n ≤ ‖α‖p′‖β‖p

(Young’s inequality) ≤
‖α‖p

′

p′

p′
+
‖β‖pp
p

=
‖α1‖p

′

p′ + ‖α2‖p
′

p′

p′
+
‖β1‖pp + ‖β2‖pp

p

(by (1.5)) <
‖v1‖1,n + ‖v2‖1,n + 2ε

p′
+
‖v1‖1,n + ‖v2‖1,n + 2ε

p

= ‖v1‖1,n + ‖v2‖1,n + 2ε.

Since ε is arbitrary, we get ‖v1 + v2‖1,n ≤ ‖v1‖1,n + ‖v2‖1,n.

For any c ∈ C, if v = αwβ, then we have cv = α(cw)β and hence ‖cv‖1,n ≤ ‖α‖p′ |c|‖w‖‖β‖p. Taking the

infimum, we get

‖cv‖1,n ≤ |c|‖v‖1,n. (1.6)

Replacing c by 1/c and v by cv in (1.6) gives

|c|‖v‖1,n ≤ ‖cv‖1,n, (1.7)

so (1.6) together with (1.7) gives ‖cv‖1,n = |c|‖v‖1,n.

Finally, suppose ‖v‖1,n = 0. To show that v = 0, it suffices to show that

‖v‖ ≤ n2|1/p−1/p′| · ‖v‖1,n. (1.8)

Indeed, if v = αwβ with α ∈Mn,r, β ∈Mr,n, and w ∈Mr(v), then

‖v‖ ≤ ‖α‖‖w‖‖β‖

(by Lemma 1.6.4) ≤ ‖α‖p′ · n|1/p−1/p′| · ‖w‖ · ‖β‖p · n|1/p−1/p′|
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= n2|1/p−1/p′| · ‖α‖p′ · ‖w‖ · ‖β‖p.

Taking the infimum, (1.8) follows.

Definition 1.6.6. For a p-operator space V , let Nn(V ) denote the normed space (Mn(V ), ‖ · ‖1,n).

We want to study the Banach dual of Nn(V ). Let f = [fij ] ∈Mn(V ′) = CBp(V,Mn). By Remark 1.4.4,

we have

‖f‖ = sup{‖〈〈f, ṽ〉〉‖ : r ∈ N, ṽ = [ṽkl] ∈Mr(V ), ‖ṽ‖ ≤ 1}.

Let Dp
n×r denote the closed unit ball of `n×rp , then

‖f‖ = sup{|〈〈〈f, ṽ〉〉η, ξ 〉| : r ∈ N, ṽ = [ṽkl] ∈Mr(V ), ‖ṽ‖ ≤ 1, η ∈ Dp
n×r, ξ ∈ D

p′

n×r}

= sup


∣∣∣∣∣∣
∑
i,j,k,l

fij(ṽkl)η(j,l)ξ(i,k)

∣∣∣∣∣∣ : r ∈ N, ṽ = [ṽkl] ∈Mr(V ), ‖ṽ‖ ≤ 1, η ∈ Dp
n×r, ξ ∈ D

p′

n×r


= sup


∣∣∣∣∣∣
n∑

i,j=1

〈
fij ,

r∑
k,l=1

ξ(i,k)ṽklη(j,l)

〉∣∣∣∣∣∣ : r ∈ N, ṽ = [ṽkl] ∈Mr(V ), ‖ṽ‖ ≤ 1, η ∈ Dp
n×r, ξ ∈ D

p′

n×r

 .

Note that
∑r
k,l=1 ξ(i,k)ṽklη(j,l) is the (i, j)-entry of the matrix product αṽβ, where

α =


ξ(1,1) · · · ξ(1,r)

...
. . .

...

ξ(n,1) · · · ξ(n,r)

 and β =


η(1,1) · · · η(n,1)

...
. . .

...

β(1,r) · · · η(n,r)

 ,

so

‖f‖ = sup


∣∣∣∣∣∣
n∑

i,j=1

〈fij , (αṽβ)ij〉

∣∣∣∣∣∣ : ‖ṽ‖ ≤ 1, ‖α‖p′ ≤ 1, ‖β‖p ≤ 1


= sup {|〈f, v〉| : v = αṽβ, ‖ṽ‖ ≤ 1, ‖α‖p′ ≤ 1, ‖β‖p ≤ 1}

= sup {|〈f, v〉| : ‖v‖1,n ≤ 1} . (1.9)

Lemma 1.6.7. For a p-operator space V , the scalar pairing determines the isometric identification Nn(V )′ =

Mn(V ′).

Proof. Define Φ : Mn(V ′)→ Nn(V )′ by f 7→ 〈f, ·〉.

Φ is one-to-one: suppose Φ(f) = 0, and let v ∈ V . For each i, j, consider an element Eij(v) ∈ Nn(V ) whose

only nonzero element is v at (i, j)-position, then 〈f,Eij(v)〉 = fij(v) = 0 and hence fij = 0.
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Φ is onto: Let G ∈ Nn(V )′. For each i, j, define Eij : V → Nn(V ) by v 7→ Eij(v), where Eij(v) as as above.

Let fij = G ◦ Eij : V → C and let f = [fij ] ∈Mn(V ′), then it follows that Φ(f) = G.

Φ is isometric: this is immediate from (1.9).

Now we are ready to show that the first isometric isomorphism in (1.3) is also p-completely isometric

with the dual p-operator space structure on N (Lp(µ)).

Proposition 1.6.8. With the dual p-operator space structure on N (Lp(µ)), we have K(Lp(µ))′ = N (Lp(µ))

p-completely isometrically.

Proof. Fix n ∈ N. We need to show that

Mn(N (Lp(µ))) = CBp(K(Lp(µ)),Mn)

isometrically. By the argument between Propositions 5.3 and 5.4 in [Daw10], we have an isometry

Mn(N (Lp(µ))) = Nn(K(Lp(µ)))′.13

Now the result follows from Lemma 1.6.7.

To explore more examples of p-completely isometric isomorphisms, we will make use of the following

lemmas.

Lemma 1.6.9. Let η = [ηij ] ∈Mm,n(Lcp(µ)) and ‖ηij‖ < ε for all i, j. Then ‖η‖Mm,n(Lcp(µ)) < m1/pn1/p′ε.

Proof. Since ‖η‖Mm,n(Lcp(µ)) = ‖η‖B(`np ,`
m
p (Lp(µ))),

‖η‖Mm,n(Lcp(µ)) = sup
λ∈`np
‖λ‖≤1

 m∑
i=1

∥∥∥∥∥∥
n∑
j=1

λjηij

∥∥∥∥∥∥
p1/p

.

Here for ‖λ‖ ≤ 1, by Hölder’s inequality,

∥∥∥∥∥∥
n∑
j=1

λjηij

∥∥∥∥∥∥ ≤
n∑
j=1

|λj |‖ηij‖ ≤

 n∑
j=1

‖ηij‖p
′

1/p′

< n1/p′ε

and the result follows.
13In [Daw10], Daws used the notation Tn(K(Lp(µ))) for Nn(K(Lp(µ))).
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Lemma 1.6.10. Let µ be a measure. Then for any ξ = [ξij ] ∈ Mm(Lcp(µ)) and for any ε > 0, there exist

a k(m) ∈ N, a subspace F of Lp(µ) which is isometrically isomorphic to `
k(m)
p , {f1, · · · , fk(m)} ⊆ F , and

matrices {α1, · · · , αk(m)} ⊆Mm such that

‖ξ − ξ̃‖Mm(Lcp(µ)) < ε,

where

ξ̃ =
k(m)∑
t=1

ft ⊗ αt.

Moreover, we can have

‖ξ̃‖ =

∥∥∥∥∥∥∥∥∥∥


α1

...

αk(m)


∥∥∥∥∥∥∥∥∥∥
Mmk(m),m

.

Proof. By standard properties of Lp(µ), there exist a k(m) ∈ N, a subspace F of Lp(µ) which is isometrically

isomorphic to `k(m)
p , and {ξ̃ij}mi,j=1 ⊆ F such that ‖ξij − ξ̃ij‖ < ε

m for each i, j.14 Let {f1, · · · , fk(m)} ⊆ F

correspond to the canonical basis of `k(m)
p and write ξ̃ij =

∑k(m)
t=1 αtijft, then we have

ξ̃ := [ξ̃ij ] =
k(m)∑
t=1

ft ⊗ αt,

where αt = [αtij ] ∈Mm. By Lemma 1.6.9, ‖ξ − ξ̃‖Mm(Lcp(µ)) < ε. Finally,

‖ξ̃‖ =

∥∥∥∥∥∥
k(m)∑
t=1

αtijft

∥∥∥∥∥∥
B(`mp ,`

m
p (Lp(µ)))

= sup
λ∈`mp
‖λ‖≤1

 m∑
i=1

∥∥∥∥∥∥
m∑
j=1

k(m)∑
t=1

αtijλjft

∥∥∥∥∥∥
p1/p

= sup
λ∈`mp
‖λ‖≤1

 m∑
i=1

∥∥∥∥∥∥
k(m)∑
t=1

 m∑
j=1

αtijλj

 ft

∥∥∥∥∥∥
p1/p

= sup
λ∈`mp
‖λ‖≤1

 m∑
i=1

k(m)∑
t=1

∣∣∣∣∣∣
m∑
j=1

αtijλj

∣∣∣∣∣∣
p1/p

= sup
λ∈`mp
‖λ‖≤1

k(m)∑
t=1

m∑
i=1

∣∣∣∣∣∣
m∑
j=1

αtijλj

∣∣∣∣∣∣
p1/p

14See [LP68]. We will keep refer this property to the rigid Lp-structure of Lp(µ).
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=

∥∥∥∥∥∥∥∥∥∥


α1

...

αk(m)


∥∥∥∥∥∥∥∥∥∥
Mmk(m),m

.

Proposition 1.6.11. For any Lp(µ) and Lp(ν), there exists a natural p-completely isometric isomorphism

CBp(Lcp(µ), Lcp(ν)) = B(Lp(µ), Lp(ν)).

Proof. Fix n ∈ N. For any matrix T = [Tkl] ∈ Mn(B(Lp(µ), Lp(ν))) = B(`np (Lp(µ)), `np (Lp(ν))), the corre-

sponding mapping T̃ ∈ Mn(CBp(Lcp(µ), Lcp(ν))) = CBp(Lcp(µ),Mn(Lcp(ν))) is defined by T̃ (ξ) = [Tkl(ξ)] for

all ξ ∈ Lcp(µ). We wish to show that ‖T̃‖pcb = ‖T‖. Fix ξ = [ξij ] ∈ Mm(Lcp(µ)) and let ε > 0. As in the

proof of Lemma 1.6.10, there exist a k(m) ∈ N, a subspace F of Lp(µ) which is isometrically isomorphic to

`
k(m)
p , and {ξ̃ij}mi,j=1 ⊆ F such that

‖ξij − ξ̃ij‖ < min
{

ε

nm‖T‖
,
ε

m

}
(1.10)

for each i, j. In particular,

‖ξ − ξ̃‖ < ε (1.11)

by Lemma 1.6.9, where ξ̃ = [ξ̃ij ]. Let {f1, · · · , fk(m)} ⊆ F correspond to the canonical basis of `k(m)
p and

write ξ̃ij =
∑k(m)
t=1 αtijft, then T̃m(ξ̃) =

∑k(m)
t=1 [Tkl(ft)]⊗αt. Since ‖Tkl‖ ≤ ‖T‖ for each k and l, from (1.10)

above and Lemma 1.6.9, we get

‖T̃m(ξ)− T̃m(ξ̃)‖ < ε. (1.12)

Again as in the proof of Lemma 1.6.10, there exist an l(m) ∈ N, a subspace G of Lp(ν) which is isometrically

isomorphic to `l(m)
p , and {ηtkl}k,l,t ⊆ G such that

‖Tkl(ft)− ηtkl‖ < min

{
ε

nk(m)1/p′
,

ε

n
∑k(m)
t=1 ‖αt‖

}
(1.13)

for all k, l, and t. In particular, by Lemma 1.6.9,

‖[Tkl(ft)]− [ηtkl]‖ <
ε∑k(m)

t=1 ‖αt‖
for each t. (1.14)
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Let {g1, · · · , gl(m)} ⊆ G correspond to the canonical basis of `l(m)
p and write ηtkl =

∑l(m)
s=1 β

st
klgs so that for

each t

[ηtkl] =
l(m)∑
s=1

gs ⊗ βst, (1.15)

where βst = [βstkl ] ∈Mn. Define T0 : `np (F )→ `np (G) by

ϕ :=


ϕ1

...

ϕn

 T07−→


∑
t,l γ

l
tη
t
1l

...∑
t,l γ

l
tη
t
nl

 ,

where ϕl =
∑k(m)
t=1 γltft. Note that

‖T0(ϕ)‖p =
n∑
k=1

∥∥∥∥∥∥
∑
t,l

γltη
t
kl

∥∥∥∥∥∥
p

=
n∑
k=1

∥∥∥∥∥∥
∑
s,t,l

γltβ
st
klgs

∥∥∥∥∥∥
p

=
n∑
k=1

l(m)∑
s=1

∣∣∣∣∣∣
∑
t,l

βstklγ
l
t

∣∣∣∣∣∣
p

= ‖βγ‖p,

where

β =


β11 · · · β1k(m)

...
. . .

...

βl(m)1 · · · βl(m)k(m)


︸ ︷︷ ︸

∈Mnl(m),nk(m)

, γt =


γ1
t

...

γnt


︸ ︷︷ ︸
∈Mn,1

, and γ =


γ1

...

γk(m)


︸ ︷︷ ︸
∈Mnk(m),1

.

Since ‖ϕ‖ =
(∑

t,l |γlt|p
)1/p

= ‖γ‖, it follows that

‖T0‖ = ‖β‖. (1.16)
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Now for all ϕ ∈ `np (F ), we obtain

‖T (ϕ)− T0(ϕ)‖p =

∥∥∥∥∥∥∥∥∥∥


∑
t,l γ

l
t(T1l(ft)− ηt1l)

...∑
t,l γ

l
t(Tnl(ft)− ηtnl)


∥∥∥∥∥∥∥∥∥∥

p

=
∑n
k=1

∥∥∥∑t,l γ
l
t(Tkl(ft)− ηtkl)

∥∥∥p
≤

∑n
k=1

(∑
t,l |γlt| ‖Tkl(ft)− ηtkl‖

)p
(Hölder’s inequality) ≤

∑n
k=1 ‖ϕ‖p

(∑
t,l ‖Tkl(ft)− ηtkl‖

p′
)p/p′

(by (1.13)) ≤ ‖ϕ‖p
∑n
k=1

(
nk(m) εp

′

np′k(m)

)p/p′
= εp‖ϕ‖p

and hence

‖T0‖ ≤ ‖T |`np (F )‖+ ‖T |`np (F ) − T0‖ ≤ ‖T‖+ ε. (1.17)

Since
‖T̃m(ξ̃)−

∑k(m)
t=1 [ηtkl]⊗ αt‖ =

∥∥∥∑k(m)
t=1 [Tkl(ft)]⊗ αt −

∑k(m)
t=1 [ηtkl]⊗ αt

∥∥∥
≤

∑k(m)
t=1 ‖[Tkl(ft)]− [ηtkl]‖‖αt‖

(by (1.14)) ≤ ε,

(1.18)

we finally have

‖T̃m(ξ)‖ ≤ ‖T̃m(ξ̃)‖+ ‖T̃m(ξ)− T̃m(ξ̃)‖

(by (1.12)) ≤

∥∥∥∥∥∥
k(m)∑
t=1

[ηtkl]⊗ αt
∥∥∥∥∥∥+

∥∥∥∥∥∥T̃m(ξ̃)−
k(m)∑
t=1

[ηtkl]⊗ αt
∥∥∥∥∥∥+ ε

(by (1.18)) ≤

∥∥∥∥∥∥
k(m)∑
t=1

[ηtkl]⊗ αt
∥∥∥∥∥∥+ 2ε

(by (1.15)) =

∥∥∥∥∥∥
k(m)∑
t=1

l(m)∑
s=1

gs ⊗ βst ⊗ αt
∥∥∥∥∥∥+ 2ε

=

∥∥∥∥∥∥∥∥∥∥


∑k(m)
t=1 β1t ⊗ αt

...∑k(m)
t=1 βl(m)t ⊗ αt


∥∥∥∥∥∥∥∥∥∥

+ 2ε

≤

∥∥∥∥∥∥∥∥∥∥


β11 · · · β1k(m)

...
. . .

...

βl(m)1 · · · βl(m)k(m)


∥∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥∥


α1

...

αk(m)


∥∥∥∥∥∥∥∥∥∥

+ 2ε
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(by (1.16)) = ‖T0‖‖ξ̃‖+ 2ε

(by (1.17) and (1.11)) ≤ (‖T‖+ ε) (‖ξ‖+ ε) + 2ε.

This shows that ‖T̃‖pcb ≤ ‖T‖. For the reverse inequality, fix

ξ =


ξ1
...

ξn

 ∈ `np (Lp(µ)),

then there exist a q(n) ∈ N, a subspace F of Lp(µ) which is isometrically isomorphic to `q(n)
p , {f1, · · · , fq(n)} ⊆

F corresponding to the canonical basis in `
q(n)
p , and a matrix δ = [δtl] ∈ Mq(n),n such that ‖ξl − ξ̃l‖ <

min
{

ε
n1/p ,

ε
n1/p‖T‖

}
for all l, where ξ̃l =

∑q(n)
t=1 δtlft. Note that

‖ξ − ξ̃‖ ≤ min
{
ε,

ε

‖T‖

}
. (1.19)

Put

ξ̃ =


ξ̃1
...

ξ̃n

 and δt =


δt1
...

δtn

 ,
then by (1.19) ∥∥∥T (ξ)− T (ξ̃)

∥∥∥ ≤ ‖T‖‖ξ − ξ̃‖ < ε (1.20)

and

T (ξ̃) =


∑n
l=1 T1l(ξ̃l)

...∑n
l=1 Tnl(ξ̃l)



=

∈Mn,nq(n)︷ ︸︸ ︷[
T (f1) · · · T (fq(n))

]
∈Mnq(n),1︷ ︸︸ ︷

δ1
...

δq(n)


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= T̃1,q(n)([ f1 · · · fq(n) ])


δ1
...

δq(n)

 .

Therefore,

‖T (ξ̃)‖ ≤
∥∥∥∥T̃1,q(n)([ f1 · · · fq(n) ])

∥∥∥∥
∥∥∥∥∥∥∥∥∥∥


δ1
...

δq(n)


∥∥∥∥∥∥∥∥∥∥

≤ ‖T̃‖pcb
∥∥∥∥[ f1 · · · fq(n) ]

∥∥∥∥
M1,q(n)(Lcp(µ))

‖ξ̃‖

= ‖T̃‖pcb‖ξ̃‖

(1.21)

since {f1, · · · , fq(n)} ⊆ F corresponds to the canonical basis in `
q(n)
p and hence

∥∥∥∥[ f1 · · · fq(n) ]
∥∥∥∥
M1,q(n)(Lcp(µ))

= 1.

Finally we obtain from (1.19), (1.20), and (1.21)

‖T (ξ)‖ ≤ ‖T (ξ̃)‖+
∥∥∥T (ξ)− T (ξ̃)

∥∥∥ ≤ ‖T̃‖pcb‖ξ̃‖+ ε ≤ ‖T̃‖pcb(‖ξ‖+ ε) + ε,

which completes the proof.

Corollary 1.6.12. For any Lp(µ) and Lp(ν), we have the p-completely isometric isomorphisms

(Lcp(µ))′ = Lrp′(µ), (Lrp′(µ))′ = Lcp(µ), and CBp(Lrp′(µ), Lrp′(ν)) = B(Lp(ν), Lp(µ)).

Proof. By Proposition 1.6.11,

(Lcp(µ))′ = CBp(Lcp(µ),C) = B(Lp(µ),C) = B(Lp′(µ)′,C) = Lrp′(µ).

By Lemma 1.5.2 and above calculation,

(Lrp′(µ))′ = (Lcp(µ))′′ = Lcp(µ).
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Finally, by Proposition 1.5.6,

CBp(Lrp′(µ), Lrp′(ν)) = CBp((Lcp(µ))′, (Lcp(ν))′) = CBp(Lcp(ν), Lcp(µ)) = B(Lp(ν), Lp(µ)).

We close this section with one more example. Let G be an index set. Then `∞(G) has a natural p-

operator space structure inherited from the embedding `∞(G) ⊆ B(`p(G)). We will always assume that

`∞(G) is given this p-operator space structure unless stated otherwise. Now give `1(G) the dual p-operator

space structure, that is, `1(G) is given the p-operator space structure regarded as a subspace of `∞(G)′.

Proposition 1.6.13. `1(G)′ = `∞(G) p-completely isometrically.

Proof. We claim that `∞(G) is weak*-closed in B(`p(G)); once this is done, the result follows from [Daw10,

Proposition 5.5]. To this end, suppose that {fi} ⊆ `∞(G) and that fi → T in the weak*- topology. If

s, t ∈ G with s 6= t, then

Tst = 〈δp
′

s , T δ
p
t 〉 = lim

i
fi(s)δ

p
t (s) = 0.

This shows that T ⊆ `∞(G).

Just like p = 2 case, we have the following characterization of the norm in Mn(`∞(G)).

Proposition 1.6.14. If [uij ] ∈Mn(`∞(G)), then ‖[uij ]‖Mn(`∞(G)) = sups∈G ‖[uij(s)]‖B(`np ).

Proof. For all s ∈ G,

‖[uij(s)]‖B(`np ) = sup


∣∣∣∣∣∣
n∑

i,j=1

aiuij(s)bj

∣∣∣∣∣∣ :
∑
i=1

|ai|p
′
≤ 1,

∑
j=1

|bj |p ≤ 1

 .

Since

n∑
i,j=1

aiuij(s)bj

=
n∑

i,j=1

∑
x∈G

aiδ
p′

s (x)uij(x)bjδps (x)

=
〈

[aiδp
′

s ], [uij ][bjδps ]
〉
,

we get ∣∣∣∣∣∣
n∑

i,j=1

aiuij(s)bj

∣∣∣∣∣∣ ≤ ‖[uij ]‖Mn(`∞(G)).
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For the converse, suppose that g = (gi)ni=1 ∈ `np′ ⊗p′ `p′(G) with
∑
i,x |gi(x)|p′ ≤ 1. Similarly, suppose that

f = (fj)nj=1 ∈ `np ⊗p `p(G) with
∑
j,x |fj(x)|p ≤ 1. Then

∣∣∣∣∣∣
∑
i,j

∑
x

gi(x)uij(x)fj(x)

∣∣∣∣∣∣
≤

∑
x

∣∣∣∣∣∣
∑
i,j

gi(x)uij(x)fj(x)

∣∣∣∣∣∣
≤

∑
x

‖[uij(x)]‖B(`np )

(
n∑
i=1

|gi(x)|p
′

)1/p′
 n∑
j=1

|fj(x)|p
1/p

≤ sup
s∈G
‖[uij(s)]‖B(`np )

and this completes the proof.
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Chapter 2

Tensor Products of p-Operator Spaces

In this chapter, we study various tensor products on p-operator spaces. We mainly focus on the follow-

ing three tensor products: p-projective tensor product, p-injective tensor product, and p-Haagerup tensor

product.

2.1 p-Projective Tensor Product

The main source for this section is [Daw10].

Definition 2.1.1. Let X,Y be p-operator spaces. For u ∈Mn(X ⊗ Y ), let

‖u‖∧p = inf{‖α‖‖v‖‖w‖‖β‖ : u = α(v ⊗ w)β},

where the infimum is taken over r, s ∈ N, α ∈Mn,r×s, v ∈Mr(X), w ∈Ms(Y ), and β ∈Mr×s,n.

It was Daws who first defined and studied the p-projective tensor product. Note that ‖ · ‖∧p gives the

algebraic tensor product X⊗Y a p-operator space structure [Daw10, Proposition 4.8]. Furthermore, ‖·‖∧p is

the largest subcross p-operator space norm on X⊗Y in the sense that ‖x⊗y‖ ≤ ‖x‖r‖y‖s for all x ∈Mr(X)

and all y ∈Ms(Y ) [Daw10, Proposition 4.8]. The p-operator space projective tensor product is defined to be

the completion of X ⊗ Y with respect to this norm and is denoted by X
∧p
⊗ Y .

Remark 2.1.2.

1. One can show that p-operator space projective tensor product is commutative, i.e., X
∧p
⊗ Y = Y

∧p
⊗ X

p-completely isometrically.

2. By universality of the Banach space projective tensor product
π
⊗ [BLM04, A.3.3], we have

‖u‖∧p ≤ ‖u‖π

for all u ∈ X ⊗ Y .
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Let V,W and Z be p-operator spaces, and let ψ : V ×W → Z be a bilinear map. Define bilinear maps

ψr,s;t,u by

ψr,s;t,u : Mr,s(V )×Mt,u(W )→Mr×t,s×u(Z), (v, w) 7→ (ψ(vi,j , wk,l)),

and let ψr;s = ψr,r;s,s. Finally define

‖ψ‖jpcb = sup{‖ψr;s‖ : r, s ∈ N}.

We say that ψ is jointly p-completely bounded (respectively, jointly p-completely contractive) if ‖ψ‖jpcb <∞

(respectively, ‖ψ‖jpcb ≤ 1). The space of all jointly p-completely bounded maps from V ×W to Z will be

denoted by CBp(V ×W,Z) and this space can be turned into a p-operator space in the same way as for

CBp(V,W ). Here we collect some results on the p-projective tensor product for convenience.

Proposition 2.1.3. [Daw10, Proposition 4.9] Let X,Y , and Z be p-operator spaces. Then we have natural

p-completely isometric identifications

CBp(X
∧p
⊗ Y,Z) = CBp(X × Y,Z) = CBp(X, CBp(Y,Z)).

In particular,

(X
∧p
⊗ Y )′ = CBp(X,Y ′).

For p-operator spaces X and Y , let CBσp (X ′, Y ′) denote the space of all weak*-weak*-continuous p-

completely bounded maps between X ′ and Y ′.

Corollary 2.1.4. Let X be a p-operator space on Lp space and Y be a p-operator space. Then we have

CBp(X,Y ′) = CBσp (X ′′, Y ′) (2.1)

p-completely isometrically.

Proof. Let u ∈ CBp(X,Y ′). It is easy to verify that ũ = κ′Y ◦ u′′ : X ′′ → Y ′ defines a weak*-weak*-

continuous p-completely bounded extension of u with ‖ũ‖pcb ≤ ‖u‖pcb. In fact, by Goldstine’s Theorem,

ũ is a unique weak*-weak*-continuous extension of u. Since X ⊆ X ′′ p-completely isometrically, we also

have ‖ũ‖pcb ≥ ‖u‖pcb. If T ∈ CBσp (X ′′, Y ′), then we must have T = T̃ |X and this shows that (2.1) holds
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isometrically. To show that (2.1) is a p-complete isometry, let us fix n ∈ N. Then we have isometries

Mn(CBp(X,Y ′)) = CBp(X,Mn(Y ′)) = CBp(X, CBp(Y,Mn)) = CBp(X, (Nn
∧p
⊗ Y )′).1

Since we already showed that (2.1) holds isometrically, we have

CBp(X, (Nn
∧p
⊗ Y )′) = CBp(X ′′, (Nn

∧p
⊗ Y )′)

isometrically and it follows that

Mn(CBp(X,Y ′)) = CBp(X ′′, (Nn
∧p
⊗ Y )′) = CBp(X ′′, CBp(Y,Mn)) = CBp(X ′′,Mn(Y ′)) = Mn(CBp(X ′′, Y ′))

isometrically. This completes the proof.

As in operator spaces, the p-operator space projective tensor product is projective in the following sense:

Proposition 2.1.5. [Daw10, Proposition 4.10] Let X, X̃, Y , and Ỹ be p-operator spaces. If u : X → X̃ and

v : Y → Ỹ are p-complete quotient maps, then u⊗ v extends to a p-complete quotient map u⊗ v : X
∧p
⊗ Y →

X̃
∧p
⊗ Ỹ .

In operator spaces, the trace class operators on a Hilbert space H can be expressed in terms of operator

space projective tensor product. To be more precise, we have the following natural isometries

(Hc)′⊗̂Hc ∼= H ′
π
⊗H ∼= T (H),

where T (H) denotes the space of all trace class operators on H [ER00, Proposition 8.2.1]. We have the

following p-analogue of this result.

Proposition 2.1.6. For a measure µ, we have an isometric isomorphism N (Lp(µ)) ∼= Lrp′(µ)
∧p
⊗ Lcp(µ).

Proof. Note that the adjoint of the canonical contraction2

ϕ : N (Lp(µ))
(1.2)
= Lp′(µ)

π
⊗ Lp(µ)→ Lrp′(µ)

∧p
⊗ Lcp(µ)

is the natural mapping CBp(Lcp(µ))→ B(Lp(µ)), which is an isometric surjection by Proposition 1.6.11. The

1Note that Mn(Y ′) = CBp(Y,Mn) p-completely isometrically.
2See Remark 2.1.2.

26



result follows using the arguments in [ER00, §A.2].3

Since p-operator space projective tensor product resembles the Banach space projective tensor product

in many ways, we can expect that the p-operator space N (Lp(µ)) to behave well with respect to the p-

operator space projective tensor product. Our next goal is to make this clear. Let Nn = N (`np ) so that

B(`np )′ = K(`np )′ = Nn and N ′n = B(`np ) p-completely isometrically. For a p-operator space V , we wish to

study the Banach space structure of Nn
∧p
⊗ V .

Proposition 2.1.7. For any p-operator space V , we have a natural isometry

Nn(V ) ∼= Nn
∧p
⊗ V,

where Nn(V ) denotes the normed space in Definition 1.6.6.

Proof. By Proposition 2.1.3, we know that (Nn
∧p
⊗ V )′ is isometrically isomorphic to CBp(V,Mn) = Mn(V ′).

Let’s examine the duality between Nn
∧p
⊗ V and Mn(V ′) more closely. Note that every element in Nn, being

a linear map from `np to `np , can be written as a linear combination of εij , where {εij}ni,j=1 denotes a standard

basis for Mn. If v =
∑
i,j εij ⊗ vij ∈ Nn

∧p
⊗ V and f = [fkl] ∈Mn(V ′), then

〈
f,
∑
i,j

εij ⊗ vij

〉
Mn(V ′),Nn

∧p
⊗ V

=
∑
i,j

〈εij , [fkl(vij)]nk,l=1〉Nn,Mn

=
∑
i,j

fij(vij)

= 〈f, v〉Mn(V ′),Nn(V ).

Therefore

‖v‖
Nn

∧p
⊗ V

= sup


∣∣∣∣∣∣
〈
f,
∑
i,j

εij ⊗ vij

〉
Mn(V ′),Nn

∧p
⊗ V

∣∣∣∣∣∣ : ‖f‖ ≤ 1, f ∈Mn(V ′)


= sup

{∣∣〈f, v〉Mn(V ′),Nn(V )

∣∣ : ‖f‖ ≤ 1, f ∈Mn(V ′)
}

= ‖v‖Nn(V ).

3That is, if ψ : V →W is a bounded linear map between two Banach spaces V and W , then ψ is an isometry if and only if
ψ′ is a quotient mapping. Under the same assumption, ψ is a quotient mapping if and only if ψ′ is an isometry.
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2.2 p-Haagerup Tensor Product

In [LeM96], Le Merdy considered the p-operator space Haagerup tensor product. Let X,Y be p-operator

spaces. Given v = [vir] ∈ Mn,k(X) and w = [wrj ] ∈ Mk,m(Y ), define v � w = [
∑k
r=1 vir ⊗ wrj ] ∈

Mn,m(X ⊗ Y ).

Definition 2.2.1. Let X,Y be p-operator spaces. For u ∈Mn,m(X ⊗ Y ), we define a norm

‖u‖hp = inf{‖v‖‖w‖ : v ∈Mn,k(X), w ∈Mk,m(Y ), u = v � w}.

The p-operator space Haagerup tensor product is defined to be the completion of (X ⊗ Y, ‖ · ‖hp).

Remark 2.2.2.

1. The p-Haagerup tensor product
hp
⊗ is associative [LeM96, Remark 2.5].

2. ‖ · ‖hp is a subcross norm, because for v ∈Mr(V ) and w ∈Ms(W ), v⊗w = (v⊗ Is)� (Ir ⊗w). Hence

it follows from [Daw10, Proposition 4.8] that ‖ · ‖hp ≤ ‖ · ‖∧p on the algebraic tensor product V ⊗W .

Just in operator spaces, sometimes
hp
⊗ and

∧p
⊗ produce the same norm. To give an example, we need a

lemma.

Lemma 2.2.3. Let V and W are p-operator spaces. Let v = [vij ] ∈ Mn,m(V ) and w = [wkl] ∈ Mm,n(W )

with ‖wkl‖ ≤ ε for all k, l, then ‖v � w‖∧p ≤ εn2m‖v‖.

Proof. Observe that

v � w =
n∑

i,l=1

m∑
k=1



0
...

0

1ith

0
...

0


n×1

(vik ⊗ wkl) [0 · · · 0 1lth 0 · · · 0]1×n.

Since ‖vik‖ ≤ ‖v‖ for all i, k, we get

‖v � w‖∧p ≤
n∑

i,l=1

m∑
k=1

‖v‖ε = n2m‖v‖ε.

28



Proposition 2.2.4. Let V be a p-operator space and µ a measure. Then we have the p-complete isometries

V
hp
⊗ Lcp(µ) = V

∧p
⊗ Lcp(µ), Lrp′(µ)

hp
⊗ V = Lrp′(µ)

∧p
⊗ V.

Proof. We prove only the first identification: the second one is similar. Suppose u ∈ Mn(V ⊗ Lcp(µ)) with

‖u‖hp < 1. By Remark 2.2.2, it suffices to show that ‖u‖∧p < 1. There exist an m ∈ N, v = [vij ] ∈Mn,m(V ),

and ξ = [ξkl] ∈ Mm,n(Lcp(µ)) such that u = v � ξ with ‖v‖, ‖ξ‖ < 1. Let ε > 0. As in the proof of Lemma

1.6.10, there exist a k(m) ∈ N, a subspace F of Lp(µ) which is isometrically isomorphic to `
k(m)
p , and

{ξ̃kl} ⊆ F such that

‖ξkl − ξ̃kl‖ < min
{ ε

2m1/pn1/p′
,

ε

2n2m

}
for each k, l. (2.2)

Let {f1, · · · , fk(m)} ⊆ F correspond to the canonical basis of `k(m)
p and write ξ̃kl =

∑k(m)
t=1 αtklft. If we let

ξ̃ = [ξ̃kl] ∈Mm,n(Lcp(µ)), then

ξ̃ =
k(m)∑
t=1

ft ⊗ αt = [f1 · · · fk(m)]�


α1

...

αk(m)


and by Lemma 1.6.9 and (2.2), we obtain ‖ξ − ξ̃‖ < ε

2 . In particular,

∥∥∥∥∥∥∥∥∥∥


α1

...

αk(m)


∥∥∥∥∥∥∥∥∥∥

= ‖ξ̃‖ < ‖ξ‖+
ε

2
< 1 +

ε

2
.

If we let ũ = [ũil] = v � ξ̃ ∈Mn(V ⊗ Lcp(µ)), then

ũ =

∑
j,t

αtj,lvij ⊗ ft


(i,l)

=
(
v ⊗ [f1 · · · fk(m)]

)


α̃1

...

α̃m

 ,
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where

α̃k =


α1
k1 · · · α1

kn

...
. . .

...

α
k(m)
k1 · · · α

k(m)
kn

 ∈Mk(m),n

for each k = 1, · · · ,m. Since

‖[f1 · · · fk(m)]‖ = 1 and

∥∥∥∥∥∥∥∥∥∥


α̃1

...

α̃m


∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥


α1

...

αk(m)


∥∥∥∥∥∥∥∥∥∥
,

we have

‖ũ‖∧p ≤ ‖v‖‖ξ̃‖ < 1 +
ε

2
.

Since u− ũ = v� (ξ− ξ̃), by Lemma 2.2.3 and (2.2), we have ‖u− ũ‖∧p < ε
2 , so ‖u‖∧p ≤ ‖ũ‖∧p +‖u− ũ‖∧p <

1 + ε. Since ε is arbitrary, we are done.

Corollary 2.2.5. For a measure µ, we have an isometric isomorphism N (Lp(µ)) ∼= Lrp′(µ)
hp
⊗ Lcp(µ).

Proof. This follows immediately from Propositions 2.1.6 and 2.2.4.

Corollary 2.2.6. Given a p-operator space V and measures µ and ν, we have the p-completely isometric

isometry

CBp(V,B(Lp(µ), Lp(ν))) = (Lrp′(ν)
hp
⊗ V

hp
⊗ Lcp(µ))′.

Proof. Since p-Haagerup tensor product is associative and p-projective tensor product is commutative, by

Proposition 2.2.4,

Lrp′(ν)
hp
⊗ V

hp
⊗ Lcp(µ) = Lrp′(ν)

∧p
⊗ V

∧p
⊗ Lcp(µ)

= V
∧p
⊗ Lcp(µ)

∧p
⊗ Lrp′(ν).

Therefore, by Proposition 2.1.3, Corollary 1.6.12, and Proposition 1.6.11,

(Lrp′(ν)
hp
⊗ V

hp
⊗ Lcp(µ))′ = (V

∧p
⊗ Lcp(µ)

∧p
⊗ Lrp′(ν))′

= CBp(V, (Lcp(µ)
∧p
⊗ Lrp′(ν))′)

= CBp(V, CBp(Lcp(µ), (Lrp′(ν))′))

= CBp(V, CBp(Lcp(µ), Lcp(ν)))
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= CBp(V,B(Lp(µ), Lp(ν))).

If we replace Lp spaces by SQp spaces in Corollary 2.2.6, then we have a slightly weaker result.

Lemma 2.2.7. If X and Y are SQp spaces, then we have the isometric isomorphism

B(X,Y ) ∼= ((Y ′)r
hp
⊗ Xc)′.

Proof. Define

Φ : B(X,Y )→ ((Y ′)r
hp
⊗ Xc)′ by Φ(u)(y′ ⊗ x) = 〈u(x), y′〉, u ∈ B(X,Y ), x ∈ X, y′ ∈ Y ′

and

Ψ : ((Y ′)r
hp
⊗ Xc)′ → B(X,Y ) by 〈Ψ(f)(x), y′〉 = f(y′ ⊗ x), f ∈ ((Y ′)r

hp
⊗ Xc)′, x ∈ X, y′ ∈ Y ′.4

Then it is easy to show that Ψ and Φ are inverses of each other. For all u ∈ B(X,Y ),

‖u‖ = sup{|〈u(x), y′〉| : ‖x‖ ≤ 1, ‖y′‖ ≤ 1, x ∈ X, y′ ∈ Y ′}

= sup{|Φ(u)(y′ ⊗ x)| : ‖x‖ ≤ 1, ‖y′‖ ≤ 1, x ∈ X, y′ ∈ Y ′}

≤ ‖Φ(u)‖,

where the last inequality comes from the fact that p-Haagerup tensor product is a subcross norm. Now

suppose z ∈ (Y ′)r ⊗ Xc with ‖z‖hp ≤ 1. Let ε > 0, then by definition of the p-Haagerup tensor product,

there exist y′1, · · · , y′n ∈ Y ′ and x1, · · · , xn ∈ X such that z =
∑n
i=1 y

′
i ⊗ xi and

‖[y′1 · · · y′n]‖

∥∥∥∥∥∥∥∥∥∥


x1

...

xn


∥∥∥∥∥∥∥∥∥∥

=

(
n∑
i=1

‖y′i‖p
′

)1/p′ ( n∑
i=1

‖xi‖p
)1/p

< 1 + ε.

4Recall that every SQp space is reflexive. See Remark 1.2.4.
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By Hölder’s inequality,

|Φ(u)(z)| =

∣∣∣∣∣
n∑
i=1

〈u(xi), y′i〉

∣∣∣∣∣ ≤ ‖u‖
(

n∑
i=1

‖xi‖p
)1/p( n∑

i=1

‖y′i‖p
′

)1/p′

< ‖u‖(1 + ε)

and this shows that ‖Φ(u)‖ ≤ ‖u‖. Therefore Φ is an isometric isomorphism.

Remark 2.2.8. Lemma 2.2.7 is enough to show that the p-Haagerup tensor product is not injective for

p 6= 2, in the sense of Remark 2.3.5.5 Motivated by [LeM96, Remark 6.2], let E be a subspace of Lp(µ)

which is not an Lp space.6 Consider the inclusion mapping J : (E′)r
hp
⊗ Ec → (E′)r

hp
⊗ Lcp(µ). We claim

that J is not even isometric. Indeed, if J were isometric, the adjoint J ′ : B(Lp(µ), E)→ B(E,E)7 would be

a quotient map given by the restriction. In particular, idE must extend to a map from Lp(µ) onto E and

this would imply that E is a 1-complemented subspace of Lp(µ). This is equivalent to saying that E is an

Lp space, which is a contradiction.

The fact that the p-Haagerup tensor product is not injective can be used to show that there is no p-

analogue of polar decomposition. To make it precise, suppose β ∈Mr,n with r > n. Regard β as an operator

from `n2 to `r2. If β has full rank, then we can always write β = τβ0, where τ ∈ B(`n2 , `
r
2) is an isometry and

β0 ∈ B(`n2 , `
n
2 ) satisfies ‖β‖ = ‖β0‖.8 It leads us to the following question.

Question 2.2.9. Do we have a similar decomposition if p 6= 2? That is to say, if p 6= 2, can we always

write a full rank matrix β ∈Mr,n as β = τβ0 where τ ∈ B(`np , `
r
p) is an isometry and β0 ∈ B(`np , `

n
p ) satisfies

‖β‖B(`np ,`
r
p) = ‖β0‖B(`np ,`

n
p )?

If the answer to Question 2.2.9 were yes, then the same argument as in [ER00, Lemma 9.2.3 and Propo-

sition 9.2.5] could be used to show that p-Haagerup tensor product is injective. Since p-Haagerup tensor

product is not injective, we conclude that the answer to Question 2.2.9 is no.

2.3 p-Injective Tensor Product

Definition 2.3.1. Let X,Y be p-operator spaces. Regarding the algebraic tensor product X ⊗ Y as a

subspace of CBp(X ′, Y ), we define the p-operator space injective tensor product X
∨p
⊗ Y to be the completion

of X ⊗ Y in CBp(X ′, Y ).

5The Haagerup tensor product for operator spaces is injective [ER00].
6`n2 can be regarded as a subspace of Lp(Cn, dx). See [DF93, Proposition 8.7]. Note that a Hilbert space cannot be isometric

to any Lp space, p 6= 2, since Lp spaces do not have the parallelogram law unless p = 2.
7Note that E is reflexive, see Remark 1.2.4.
8One can take β0 = |β| using polar decomposition. See the proof of [ER00, Lemma 9.2.3].
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Remark 2.3.2.

1. For each u ∈Mn(X ⊗ Y ), we have ‖u‖∨p ≤ ‖u‖hp .9 To see this, suppose u = v�w with v ∈Mn,r(X)

and w ∈Mr,n(Y ). It follows that

‖u‖∨p = sup

{∥∥∥∥∥
[

r∑
k=1

ϕst(vik)wkj

]∥∥∥∥∥ : m ∈ N, ϕ = [ϕst] ∈Mm(X ′)1

}
≤ sup {‖〈〈ϕ, v〉〉‖ ‖w‖ : m ∈ N, ϕ = [ϕst] ∈Mm(X ′)1}

≤ ‖v‖‖w‖.

Taking infimum over v and w, we get the desired inequality.

2. By definition of the Banach space injective tensor product
ε
⊗,10 we have

‖u‖ε = ‖u‖B(X′,Y ) ≤ ‖u‖CBp(X′,Y ) = ‖u‖∨p

for every u ∈ X ⊗ Y .

3. If Y ⊆ B(Lp(ν)), then the p-operator space injective matrix norm ‖ · ‖∨p on X ⊗ Y satisfies

‖u‖∨p = sup{‖(ϕ⊗ ψ)n(u)‖ : m, k ∈ N, ϕ ∈Mm(X ′)1, ψ ∈Mk(Y ′)1}

for each matrix u ∈Mn(X ⊗ Y ).

4. If X ⊆ B(Lp(µ)) as well, then X
∨p
⊗ Y = Y

∨p
⊗ X p-completely isometrically.

Now we are ready to compare various tensor norms on X ⊗ Y .

Proposition 2.3.3. If X and Y are p-operator spaces, then the various tensor norms X ⊗ Y are ordered

as follows:

‖ · ‖ε ≤ ‖ · ‖∨p ≤ ‖ · ‖hp ≤ ‖ · ‖∧p ≤ ‖ · ‖π.

Proof. Combine Remarks 2.1.2, 2.2.2, and 2.3.2.

Proposition 2.3.4. If X ⊆ B(Lp(µ)), then we have p-complete isometric isomorphisms

Mn(X) = Mn

∨p
⊗ X = CBσp (X ′,Mn).

9In particular, ‖u‖∨p is a subcross norm.
10For Banach spaces E and F , the norm of x ∈ E ⊗ F is given by regarding x as a member of B(E′, F ) [Rya02, §3.1].
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Proof. For each m ∈ N, we have

Mm(Mn(X)) ⊆Mm(Mn(X ′′)) = CBp(X ′,Mmn).

By definition, Mm(Mn

∨p
⊗ X) ⊆Mm(CBp(X ′,Mn)) = CBp(X ′,Mmn) and the first identification follows. For

the second identification, simple calculation shows that Mn(X) ⊆ CBσp (X ′,Mn). The other inclusion comes

from applying [Con90, Theorem V.1.2] to each component of T = [Tij ] ∈ CBσp (X ′,Mn).

Remark 2.3.5. At this moment, we do not know whether the p-operator space injective tensor product

is injective that is, if u : X → X̃ and v : Y → Ỹ are p-completely isometric injections, then we do not

know whether u ⊗ v always extend to a p-completely isometric injection u ⊗ v : X
∨p
⊗ Y → X̃

∨p
⊗ Ỹ . But

if we assume that all the p-operator spaces under consideration are on Lp space, then we can show that

u⊗ v : X
∨p
⊗ Y → X̃

∨p
⊗ Ỹ is a p-complete isometry as in the following proposition. This fact supports that

the terminology p-injective tensor product is still reasonable.

Proposition 2.3.6. For i = 1, 2, suppose Xi ⊆ Yi ⊆ B(Lp(µi)). Then

X1

∨p
⊗ X2 ⊆ Y1

∨p
⊗ Y2

p-completely isometrically.

Proof. For i = 1, 2, let ϕi : Xi ↪→ Yi denote the (p-completely isometric) inclusion. Since ϕ1 ⊗ ϕ2 =

(ϕ1 ⊗ idY2) ◦ (idX1 ⊗ ϕ2), by Remark 2.3.2 above, it suffices to show that

idX1 ⊗ ϕ2 : X1

∨p
⊗ X2 → X1

∨p
⊗ Y2

is p-completely isometric. Note that the following diagram commutes:

X1

∨p
⊗ X2� _

��

idX1⊗ϕ2 //
X1

∨p
⊗ Y2� _

��
CBp(X ′1, X2) � � // CBp(X ′1, Y2)

Since X1

∨p
⊗ X2 ⊆ CBp(X ′1, X2), X1

∨p
⊗ Y2 ⊆ CBp(X ′1, Y2), and CBp(X ′1, X2) ⊆ CBp(X ′1, Y2) p-completely

isometrically, we conclude that idX1 ⊗ ϕ2 is p-completely isometric.
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Theorem 2.3.7. If X ⊆ B(Lp(ν)), then there are p-complete isometries

K(Lp(µ))
∨p
⊗ X ↪→ B(Lp(µ)⊗p Lp(ν)),

B(Lp(µ))
∨p
⊗ X ↪→ B(Lp(µ)⊗p Lp(ν)).

In particular, if V ⊆ B(Lp(µ)) and W ⊆ B(Lp(ν)), then V
∨p
⊗ W ↪→ B(Lp(µ) ⊗p Lp(ν)) p-completely

isometrically.

Proof. By Proposition 1.6.8, we have a p-complete isometry K(Lp(µ))
∨p
⊗ X ↪→ CBp(N (Lp(µ)), X). By

[Daw10, Proposition 5.3], we have the isometry N (Lp(µ))
∧p
⊗ N (Lp(ν)) = N (Lp(µ)⊗p Lp(ν)) and hence we

get

CBp(N (Lp(µ)),B(Lp(ν))) = (N (Lp(µ))
∧p
⊗ N (Lp(ν)))′ = (N (Lp(µ)⊗p Lp(ν)))′ = B(Lp(µ)⊗p Lp(ν)) (2.3)

isometrically. Therefore,

Mn((N (Lp(µ))
∧p
⊗ N (Lp(ν)))′) = CBp(N (Lp(µ))

∧p
⊗ N (Lp(ν)),Mn)

= CBp(N (Lp(µ)), CBp(N (Lp(ν)),Mn))

= CBp(N (Lp(µ)),Mn(B(Lp(ν))))

= CBp(N (Lp(µ)),B(`np ⊗p Lp(ν)))

(by (2.3)) = B(Lp(µ)⊗p `np ⊗p Lp(ν))

= Mn(B(Lp(µ)⊗p Lp(ν)))

and this means that we have the p-complete isometry

(N (Lp(µ))
∧p
⊗ N (Lp(ν)))′ ∼= B(Lp(µ)⊗p Lp(ν)). (2.4)

Therefore, (2.3) is in fact a p-complete isometry and this in particular shows that

K(Lp(µ))
∨p
⊗ X ⊆ CBp(N (Lp(µ)), X) ⊆ CBp(N (Lp(µ)),B(Lp(ν))) = B(Lp(µ)⊗p Lp(ν))

p-completely isometrically.
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For the second identification, note that we have the following p-completely isometric inclusions

B(Lp(µ))
∨p
⊗ X ⊆ CBp(B(Lp(µ))′, X) ⊆ CBp(B(Lp(µ))′,B(Lp(ν))). (2.5)

By Proposition 2.1.7 and [Daw10, Proposition 5.4], we get isometric isomorphisms

Mn(B(Lp(µ))′) = CBp(B(Lp(µ)),Mn) = (B(Lp(µ))
∧p
⊗ Nn)′ = (Nn(B(Lp(µ))))′ = (Mn(N (Lp(µ))))′′ (2.6)

and hence the closed unit ball of Mn(N (Lp(µ))) is weak*-dense in the closed unit ball of Mn(B(Lp(µ))′).

To be more precise, by Lemma 1.6.7, (2.6) means that for all ψ = [ψij ] ∈ Mn(B(Lp(µ))′)1, there is a net

ψγ = [ψγij ] ∈Mn(N (Lp(µ)))1 such that for all T = [Tij ] ∈ Nn(B(Lp(µ))) = (Mn(N (Lp(µ))))′,11

∑
i,j

〈ψγij , Tij〉 →
∑
i,j

〈ψij , Tij〉. (2.7)

Let T0 ∈ B(Lp(µ)) and let δ > 0. By considering T = εij ⊗ T0 ∈ Mn(B(Lp(µ))), (2.7) in particular yields

that for each i, j, there is γij such that

|〈ψγij − ψij , T0〉| < δ for all γ < γij . (2.8)

Consider the following diagram

Mn(N (Lp(µ))) // Mn(B(Lp(µ))′)

CBσp (B(Lp(µ)),Mn) � � // CBp(B(Lp(µ)),Mn),

where the first column comes from Proposition 2.3.4. (2.7) and (2.8) mean that ψγ ∈ CBσp (B(Lp(µ)),Mn)1

converges to ψ in the point-norm topology because if T0 ∈ B(Lp(µ)), then

‖ψγ(T0)− ψ(T0)‖ ≤
∑
i,j

|〈ψγij − ψij , T0〉| ≤ n2δ

for γ large enough. Therefore, using the same argument as in [ER00, Proposition 8.1.2], we can replace

CBp(B(Lp(µ))′,B(Lp(ν))) in (2.5) by CBp(N (Lp(µ)),B(Lp(ν))) and the result follows from the previous

case. The remaining part follows from Proposition 2.3.6.
11See Definition 1.6.6 for the definition of Nn(B(Lp(µ))).
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Remark 2.3.8. In fact, in Theorem 2.3.7, one can show that K(Lp(µ))
∨p
⊗ X ↪→ B(Lp(µ))

∨p
⊗ X using

Proposition 2.3.6. We gave a different proof to exhibit that (2.4) is a p-complete isometry.

The following result provides another reason why the terminology p-injective tensor product is reasonable.

Theorem 2.3.9. Let V and W be p-operator spaces on Lp spaces. Then there exist two index sets I and

J such that we can identify V and W with p-operator subspaces of B(`p(I)) and B(`p(J)), respectively, and

the canonical inclusion

V
∨p
⊗ W ↪→ B (`p(I)⊗p `p(J))

is a p-completely isometric injection.

Proof. By assumption, V ⊆ V ′′ (respectively, W ⊆ W ′′) p-completely isometrically. By Proposition 1.6.2,

there is an index set I (respectively, J) such that V ′′ ⊆ B(`p(I)) (respectively, W ′′ ⊆ B(`p(J))). We can

conclude from Proposition 2.3.6 and Theorem 2.3.7 that the canonical inclusions

V
∨p
⊗ W ↪→ V ′′

∨p
⊗ W ′′ ↪→ B(`p(I))

∨p
⊗ B(`p(I)) ↪→ B (`p(I)⊗p `p(J))

are p-completely isometric injections.

Our next result is a p-operator space injective tensor product counterpart of Proposition 2.2.4.

Proposition 2.3.10. Let µ and ν be measures and let V ⊆ B(Lp(ν)). Then we have the p-complete

isometries

Lcp(µ)
hp
⊗ V = Lcp(µ)

∨p
⊗ V, V

hp
⊗ Lrp′(µ) = V

∨p
⊗ Lrp′(µ).

Proof. Let us only give the sketch of the proof for the column space Lcp(µ). The proof for the row space

Lrp′(µ) is similar. Let us first assume that Lp(µ) = `np . Then we have the p-completely isometric inclusion

(`np )c
∨p
⊗ V = V

∨p
⊗ (`np )c ↪→ CBp(V ′, (`np )c) = Mn,1(V ′′).

It follows that every v ∈Mm((`np )c
∨p
⊗ V ) = Mmn,m(V ) can be expressed by v = Imnv = Imn � v. Since we

can regard Imn as a contractive element in Mm,mn((`np )c) = Mmn, we get ‖v‖hp ≤ ‖v‖∨p . The general case

follows by applying the rigid Lp-structure of Lp(µ) [LP68].

37



Theorem 2.3.11. Let V be a p-operator space on Lp space. For any measure µ, we have the p-complete

isometries

K(Lp(µ))
∨p
⊗ V = Lcp(µ)

hp
⊗ V

hp
⊗ Lrp′(µ) = Lcp(µ)

∨p
⊗ V

∨p
⊗ Lrp′(µ).

In particular, we have

K(Lp(µ)) = Lcp(µ)
hp
⊗ Lrp′(µ) = Lcp(µ)

∨p
⊗ Lrp′(µ).

Proof. If Lp(µ) = `np , we have K(`np ) = B(`np ) = Mn. In this case, we obtain

B(`np )
∨p
⊗ V = Mn(V ) = (`np )c

hp
⊗ V

hp
⊗ (`np′)

r = (`np )c
∨p
⊗ V

∨p
⊗ (`np′)

r

by [LeM96, Proposition 6.3] and Proposition 2.3.10. For general case, we need to apply the rigid Lp-structure

of Lp(µ), i.e. we need to consider an increasing net {Fα} of finite dimensional subspaces in Lp(µ) such that

each Fα is isometric to some `d(α)
p and the union

⋃
α Fα is norm-dense in Lp(µ). For each α, we may identify

the dual space F ′α with a subspace of Lp′(µ) and F ′α is isometric to `d(α)
p′ . In this case, the p-operator spaces

F cα, (F ′α)r, and B(Fα) are 1-complemented subspaces of Lcp(µ), Lrp′(µ), and K(Lp(µ)), respectively. Then we

obtain an increasing net of p-operator spaces

B(Fα)
∨p
⊗ V = F cα

hp
⊗ V

hp
⊗ (F ′α)r = F cα

∨p
⊗ V

∨p
⊗ (F ′α)r.

Since the unions
⋃
α B(Fα),

⋃
α F

c
α

hp
⊗ V

hp
⊗ (F ′α)r, and

⋃
α F

c
α

∨p
⊗ V

∨p
⊗ (F ′α)r are norm-dense in K(Lp(µ)),

Lcp(µ)
hp
⊗ V

hp
⊗ Lrp′(µ), and Lcp(µ)

∨p
⊗ V

∨p
⊗ Lrp′(µ), respectively, thanks to Proposition 2.3.6, we obtain the

desired p-complete isometries

K(Lp(µ))
∨p
⊗ V = Lcp(µ)

hp
⊗ V

hp
⊗ Lrp′(µ) = Lcp(µ)

∨p
⊗ V

∨p
⊗ Lrp′(µ).

The second part is immediate by taking V = C.

Now let us discuss the duality property between the p-operator space injective tensor product and p-

operator space projective tensor product.12

Theorem 2.3.12. Let V be a p-operator space on Lp space. For each n ∈ N, we have the isometric

isomorphism

(Mn

∨p
⊗ V )′ = Nn

∧p
⊗ V ′.

12See also Lemma 5.1.1.
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Proof. Let us first assume that u is a contractive linear functional contained in (Mn

∨p
⊗ B(E))′ = B(En)′ with

E = Lp(µ) and ‖u‖ = 1. Since ‖u‖pcb = ‖u‖ = 1 (Lemma 1.4.3), u is actually a p-completely contractive

linear functional from B(En) into C. We can apply Pisier’s representation theorem [Pis90, Theorem 2.1(c)]

to obtain an Lp space, a unital p-completely contractive homomorphism π̃B(En) → B(Lp) and contractive

vectors η ∈ Lp, ξ ∈ Lp′ such that

u([aij ]) = 〈ξ, π̃([aij ])η〉.

Now using the submatrix system {eij ⊗ 1} in Mn

∨p
⊗ B(E) = B(En), we can split the range space Lp into

the following n-copies of `p-direct sum

Lp = π̃(e11 ⊗ 1)Lp ⊕p · · · ⊕p π̃(enn ⊗ 1)Lp.

It is easy to see that π̃(e11⊗ 1)Lp is a closed and contractively complemented subspace of Lp and thus is an

Lp space, which we denote by Lp(ν). All other spaces π̃(eii ⊗ 1)Lp(1 ≤ i ≤ n) are isometrically isomorphic

to Lp(ν) via {π̃(eij ⊗ 1)}. Therefore (up to an isometric isomorphism), we can obtain a unital p-completely

contractive homomorphism π : B(E) → B(Lp(ν)) and contractive vectors [ξi] ∈ Lp′(ν)n and [ηj ] ∈ Lp(ν)n

such that

u([aij ]) = 〈[ξi], (idMn
⊗ π)([aij ])[ηj ]〉 = 〈[ξi], [π(aij)][ηj ]〉 =

n∑
i,j=1

〈ξi, π(aij)ηj〉.

Now let us assume that the vectors η1, . . . , ηn are contained in a finite dimensional subspace F ⊆ Lp(ν)

such that F is isometric to `kp. If we let f1, . . . , fk correspond to the canonical basis of `kp, we can express

each ηj as ηj =
∑k
v=1 βj,vfv with

∑
j,v |βj,v|p ≤ 1. Similarly, we may assume that the vectors ξ1, . . . , ξn are

contained in a finite dimensional subspace G ⊆ Lp′(ν) such that G is isometric to `lp′ . In this case, we can

express ξi as ξi =
∑l
w=1 αi,wgw with

∑
i,w |αi,w|p

′ ≤ 1. Let ιF and ιG be the embedding of F and G into

Lp(ν) and Lp′(ν), respectively. Then the map

Φ = [Φw,v] : a ∈ B(E)→ (ιG)′π(a)ιF ∈ (ιG)′B(Lp(ν))ιF ∼= Ml,k

defines a contractive element in Ml,k(B(E)′) = CBp(B(E),Ml,k) such that

u = 〈[ξi], (idMn
⊗ π)[ηj ]〉 = [αi,w](idMn

⊗ Φ)[βj,v].

This shows that u corresponds to a contractive element in Nn
∧p
⊗ B(E)′.

In general, the vectors {ηj}nj=1 (respectively, {ξi}ni=1) can be approximated by vectors in some sufficiently
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large finite dimensional subspaces F ⊆ Lp(ν) such that F ∼= `kp (respectively, G ⊆ Lp′(ν) such that G ∼= `lp′).

It follows that u is a limit of contractive elements inNn
∧p
⊗ B(E)′ and thus u itself is contractive inNn

∧p
⊗ B(E)′.

Therefore we have the isometric isomorphism

(Mn

∨p
⊗ B(E))′ = Nn

∧p
⊗ B(E)′.

Now for general p-operator space V ⊆ B(Lp(µ)), if u is a contractive linear functional in (Mn

∨p
⊗ V )′,

we may extend u to a contractive linear functional ũ ∈ (Mn

∨p
⊗ B(Lp(µ)))′. From the above discussion,

we can find a p-complete contraction Φ : B(Lp(µ)) → Ml,k and contractive [αi,w] and [βj,v] such that

ũ = [αi,w](idMn
⊗Φ)[βj,v] is contractive in Nn

∧p
⊗ B(E)′. Then Φ|V is a p-complete contraction from V into

Ml,k and thus u = [αi,w](idMn
⊗ Φ|V )[βj,v] is contractive in Nn

∧p
⊗ V ′. This completes the proof.

Corollary 2.3.13. Let V and W be p-operator spaces on Lp space. Then the canonical inclusion

V ′
∨p
⊗ W ↪→ CBp(V,W )

is a p-completely isometric injection.

Proof. It is known from Proposition 2.3.4 and Theorem 2.3.12 that for each n ∈ N, we have the isometric

isomorphisms

Mn(V ′′) = CBp(V ′,Mn) = (Nn
∧p
⊗ V ′)′ = Mn(V )′′.

Therefore we can replace V ′′ by V in the definition V ′
∨p
⊗ W ↪→ CBp(V ′′,W ) of the p-operator space injective

tensor product as in the proof of the second half of Theorem 2.3.7.

2.4 Infinite Matrices

As in operator spaces, we can develop the theory of infinite matrices for p-operator spaces. Most of the

ideas in this section comes from those of [ER00, Chapter 11]. For the convenience of the reader, we briefly

introduce some p-operator space analogues. Suppose that V is a p-operator space. We denote by M∞(V )

the linear space of all infinite matrices [vij ] with vij ∈ V . For 1 ≤ r, s < ∞, we identify matrix spaces

Mr,s(V ) and Mr(V ) in the obvious manner, and we let vr denote the truncation of v ∈ M∞(V ) to Mr(V ).

If r ≤ s, then

‖vr‖ = ‖(Ir ⊕ 0s−r)vs(Ir ⊕ 0s−r)‖ ≤ ‖vs‖.
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If v ∈M∞(V ), then we define

‖v‖ = sup{‖vr‖ : r ∈ N} = lim
r→∞

‖vr‖,

and we define M∞(V ) to be the space of all v ∈M∞(V ) for which ‖v‖ <∞.

For any m ∈ N, we identify Mm(M∞(V )) with Mm×∞(V ). Let Mm(M∞(V )) denote Mm(M∞(V )) with the

corresponding norm.

Proposition 2.4.1. If V is a p-operator space, then M∞(V ) is a p-operator space.

Proof. This follows exactly as for operator spaces, as in [ER00, Proposition 10.1.1].

We define K∞(V ) to be the closure of Mfin
∞ (V ) in M∞(V ), where Mfin

∞ (V ) denotes the linear space of

matrices with only finitely many nonzero entries. Suppose that V ⊆ B(Lp(µ)), then the column mappings

in the diagram

Mr(V ) ∼= Mr

∨p
⊗ Vy y

K∞(V ) K∞
∨p
⊗ V

are isometric, and in each case the union of their ranges is dense. It follows that we have the isometry

K∞(V ) ∼= K∞
∨p
⊗ V.

One can also consider the spaces Mn,∞(V ) and M∞,n(V ). If v ∈ Mn,∞(V ), then we interpret the

truncation vr as an element of Mr(V ) for r ≤ n, an as an element of Mn,r(V ) for r ≥ n, and we use a similar

convention for M∞,n(V ). We define Mn,∞(V ) and M∞,n(V ) just as for M∞(V ). In particular, we wish to

study Mn,∞ and M∞,n more closely.

Lemma 2.4.2. Let α = [αij ] ∈ Mn,∞ and β = [βkl] ∈ M∞,n. Let 1 < p, p′ <∞ with 1/p′ + 1/p = 1. Then

we have

‖α‖B(`p,`np ) ≤ ‖α‖p′ · n|1/p−1/p′| and ‖β‖B(`np ,`p) ≤ ‖β‖p · n|1/p−1/p′|,

where

‖α‖p′ =

 n∑
i=1

∞∑
j=1

|αij |p
′

1/p′

and ‖β‖p =

( ∞∑
k=1

n∑
l=1

|βkl|p
)1/p

.

Proof. The proof is almost identical to that of Lemma 1.6.4. We insert the proof for convenience. Suppose

ξ = (ξj) is a unit vector in `p. For each i, 1 ≤ i ≤ n, let ηi =
∣∣∣∑∞j=1 αijξj

∣∣∣, then by Hölder’s inequality,
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ηi ≤
(∑∞

j=1 |αij |p
′
)1/p′

and by Lemma 1.6.3,

(
n∑
i=1

ηpi

)1/p

≤ n|1/p−1/p′| ·

(
n∑
i=1

ηp
′

i

)1/p′

≤ n|1/p−1/p′| · ‖α‖p′

and hence we get ‖α‖B(`p,`np ) ≤ n|1/p−1/p′| · ‖α‖p′ . To prove the second inequality, let γ : `p′ → `np′ be the

adjoint operator of β. Then by the argument above we have

‖γ‖B(`p′ ,`
n
p′ )
≤ ‖γ‖p · n|1/p−1/p′|.

Since ‖γ‖B(`p′ ,`
n
p′ )

= ‖β‖B(`np ,`p) and ‖γ‖p = ‖β‖p, we get the desired inequality.

For any matrices α ∈Mn,∞ and β ∈M∞,n, we have

lim
r→∞

‖α− αr‖ = lim
r→∞

‖β − βr‖ = 0. (2.9)

To see the first equality of (2.9), by Lemma 2.4.2, it suffices to show that limr→∞ ‖α − αr‖p′ = 0, but this

is a simple consequence of `p′-convergence. Similar argument works for the second equality in (2.9), and we

see that Mn,∞ = Kn,∞ and M∞,n = K∞,n.

If v ∈M∞(V ) and α ∈Mfin
∞ , then we define αv ∈M∞(V ) by

(αv)i,j =
∑
k

αi,kvk,j .

As in the 2-operator spaces, it turns out that indeed αv ∈M∞(V ). Given α ∈ K∞ and r ≤ s,

‖αsv − αrv‖ ≤ ‖αs − αr‖‖v‖,

and thus αrv is Cauchy. We let

αv = lim
r→∞

αrv. (2.10)

Similarly, for β ∈ K∞, let

vβ = lim
r→∞

vβr. (2.11)

Lemma 2.4.3. With operations in (2.10) and (2.11), M∞(V ) is K∞-bimodule.
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Proof. We follow the argument in [ER00]. Let α, β ∈ K∞, and v ∈M∞(V ). Firstly, we show that (αβ)v =

α(βv). Let Er = Ir ⊕ 0 ∈ K∞, then ‖α(I − Er)‖ → 0 as r → ∞ since this is evident for α ∈ Mr0 , and the

general case follows from the density argument. Therefore,

‖(αβ)r − αrβr‖ = ‖Erα(I − Er)βEr‖ → 0

and

(αβ)v = lim
r→∞

(αrβr)v = lim
r→∞

αr(βrv).

But we have
‖α(βv)− αr(βrv)‖ ≤ ‖α(β − βr)v‖+ ‖(α− αr)βrv‖

≤ ‖α‖‖β − βr‖‖v‖+ ‖α− αr‖‖β‖‖v‖ → 0,

and associativity follows. The same argument applies on the right side. Lastly, noting that (αrv)βr =

αr(vβr) = αrvβr, we show that

(αv)β = lim
r→∞

αrvβr = α(vβ). (2.12)

Indeed,

‖(αv)β − (αrv)βr‖ ≤ ‖(αv)β − (αrv)β‖+ ‖(αrv)β − (αrv)βr‖

= ‖(αv − αrv)β‖+ ‖αrv(β − βr)‖

≤ ‖αv − αrv‖‖β‖+ ‖αrv‖‖β − βr‖ → 0

as r → ∞ and the first equality of (2.12) follows. Likewise, we can prove the second equality of (2.12) and

this completes the proof.

The above argument applies, as well, to the space Mn,∞(V ) and M∞,n(V ). If α ∈ Mn,∞ = Kn,∞,

v ∈M∞(V ), and β ∈M∞,n = K∞,n, then we have a corresponding element

αvβ = lim
r→∞

αrvβr ∈Mn(V ). (2.13)

Following [ER00, Theorem 10.1.4], for any p-operator space V , we get p-completely isometric isomorphism

(N∞
∧p
⊗ V )′ ∼= M∞(V ′), (2.14)

where N∞ denotes the space of all nuclear operators on `p.

Now let us suppose that v ∈ M∞(V ), w ∈ M∞(W ), α ∈ Mn,∞2 , and β ∈ M∞2,n. We have v ⊗ w ∈
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M∞2(V
∧p
⊗ W ) since

‖(v ⊗ w)r×s‖∧p = ‖vr ⊗ ws‖∧p ≤ ‖vr‖‖ws‖ ≤ ‖v‖‖w‖,

and thus from (2.13) we have a well-defined element u = α(v ⊗ w)β ∈Mn(V
∧p
⊗ W ). Moreover, proceeding

as for 2-operator spaces, we get

‖u‖∧p ≤ ‖α‖‖v‖‖w‖‖β‖. (2.15)

Proposition 2.4.4. Given p-operator spaces V and W , and u ∈Mn(V
∧p
⊗ W ),

‖u‖∧p = inf{‖α‖‖v‖‖w‖‖β‖ : u = α(v ⊗ w)β},

where the infimum is taken over all such representations with v ∈ M∞(V ), w ∈ M∞(W ), α ∈ Mn,∞2 , and

β ∈M∞2,n. Furthermore, we may assume that v ∈ K∞(V ) and w ∈ K∞(W ).

Proof. By (2.15), it suffices to show that ‖u‖∧p ≥ inf{‖α‖‖v‖‖w‖‖β‖ : u = α(v⊗w)β}. If u ∈Mn(V
∧p
⊗ W )

and ‖u‖∧p < 1, then there exists a sequence {uk} of elements in Mn(V ⊗W ) such that

u =
∞∑
k=1

uk and
∞∑
k=1

‖uk‖∧p < 1.

Let 0 < ε < 1−
∑∞
k=1 ‖uk‖∧p . For each uk ∈Mn(V ⊗W ) we can choose vk ∈Mpk(V ), wk ∈Mqk(W ), αk ∈

Mn,pk×qk , and βk ∈Mpk×qk,n such that

uk = αk(vk ⊗ wk)βk

and

‖αk‖‖vk‖‖wk‖‖βk‖ < ‖uk‖∧p +
ε

2k
.

Without loss of generality, we can suppose that ‖vk‖ = ‖wk‖ = 1 and

‖αk‖p
′

= ‖βk‖p < ‖uk‖∧p +
ε

2k
. (2.16)

Let q = max{p′, p}. Since
∑
k(‖uk‖∧p + ε

2k
) < 1, we can find a sequence {ck} such that ck ≥ 1, ck → ∞,

and yet we still have
∞∑
k=1

cqk(‖uk‖∧p +
ε

2k
) < 1. (2.17)
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Let

v =
∞⊕
k=1

c−1
k vk and w =

∞⊕
k=1

c−1
k wk,

then v ∈ K∞(V ) and w ∈ K∞(W ) with ‖v‖, ‖w‖ ≤ 1. Let

α = [c1α1 012 013 · · · 021 c2α2 · · · 023 · · · ],

where 0rs denotes the n by pr × qs zero matrix. We claim that α ∈ Mn,∞2 with ‖α‖ < 1. Indeed, let

ξ = [ξ11 ξ12 · · · ξ21 ξ22 · · · ]T be a unit column vector in `p, where ξrs is a pr × qs-dimensional row vector.

Then

‖αξ‖ =

∥∥∥∥∥∑
k

ckαkξkk

∥∥∥∥∥ ≤∑
k

‖ckαkξkk‖ ≤

(∑
k

‖ckαk‖p
′

)1/p′ (∑
k

‖ξkk‖p
)1/p

< 1

by (2.16) and (2.17). This shows that ‖α‖ < 1. Let β be the transpose of

[c1βT1 012 013 · · · 021 c2β
T
2 · · · 023 · · · ],

Again, by (2.16) and (2.17), it follows easily that β ∈ M∞2,n with ‖β‖ < 1. Now the result follows since

u = α(v ⊗ w)β.

We can also represent elements in the p-operator spaces Haagerup tensor product in terms of infinite

matrices. First of all, using an argument similar to that used right before Proposition 2.4.4, we get that if

v ∈ Mn,∞(V ), x ∈ M∞(X) , and w ∈ M∞,n(W ), then we have a well-defined element u = v � x � w in

Mn(V
hp
⊗ X

hp
⊗ W ) and moreover ‖u‖hp ≤ ‖v‖‖x‖‖w‖.

Proposition 2.4.5. Given p-operator spaces V,W,X and u ∈Mn(V
hp
⊗ X

hp
⊗ W ),

‖u‖hp = inf{‖v‖‖x‖‖w‖ : u = v � x� w},

where the infimum is taken over all such representations with v ∈ Mn,∞(V ), x ∈ M∞(X), and w ∈

M∞,n(W ). Furthermore, we may assume that x ∈ K∞(X).

Proof. If u ∈Mn(V
hp
⊗ X

hp
⊗ W ) and ‖u‖hp < 1, then there exists a sequence {uk} of elements in Mn(V ⊗hp

X ⊗hp W ) such that

u =
∞∑
k=1

uk and
∞∑
k=1

‖uk‖hp < 1.

Let 0 < ε < 1 −
∑∞
k=1 ‖uk‖hp . For each uk ∈ Mn(V ⊗hp X ⊗hp W ) we can choose vk ∈ Mn,pk(V ), xk ∈
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Mpk×qk(X), and wk ∈Mqk,n such that

uk = vk � xk � wk

and

‖vk‖‖xk‖‖wk‖ < ‖uk‖hp +
ε

2k
.

Without loss of generality, we can suppose that ‖xk‖ = 1 and

‖vk‖p
′

= ‖wk‖p < ‖uk‖hp +
ε

2k
. (2.18)

Let q = max{p′, p}. Since
∑
k(‖uk‖hp + ε

2k
) < 1, we can find a sequence {ck} such that ck ≥ 1, ck → ∞,

and yet we still have
∞∑
k=1

cqk(‖uk‖hp +
ε

2k
) < 1. (2.19)

Let

x =
∞⊕
k=1

c−2
k xk,

then x ∈ K∞(X) with ‖x‖ ≤ 1. Let

v = [c1v1 c2v2 · · · ] and w =



c1w1

c2w2

...


,

then as in the proof of Proposition 2.4.4, we get v ∈ Mn,∞(V ) and w ∈ M∞,n(W ) with ‖v‖, ‖w‖ ≤ 1.

Finally, u = v � x� w and this finishes the proof.
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Chapter 3

Figà-Talamanca-Herz Algebras

3.1 Basics on Locally Compact Groups

Throughout this section G will denote a locally compact group. Whenever it makes sense, the convolution

ξ ? η of two functions ξ and η on G is defined to be

ξ ? η(x) =
∫
G

ξ(y)η(y−1x)dy,

where dy means the left Haar measure.

Lemma 3.1.1. Let K be a compact subset of G. Then there is a function f ∈ C00(G) such that f |K ≡ 1.

Proof. Let L be a compact neighborhood of the neutral element e ∈ G, then KL is also compact being the

image of a compact set under a continuous function: K × L 3 (k, l) 7→ kl. Consider the function

f =
1
|L|

1KL ? 1L−1 .

Since

f(x) =
1
|L|

∫
KL

1L−1(y−1x)dy =
1
|L|

∫
KL

1L(x−1y)dy =
|KL ∩ xL|
|L|

,

for every k ∈ K, we get

f(k) =
|KL ∩ kL|
|L|

=
|xL|
|L|

= 1.

f ∈ C0(G) because f is given by the convolution of functions with compact supports [HR79, (20.16)] and

f ∈ C00(G) because f vanishes off the compact set KLL−1.
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3.2 p-Pseudofunction Algebras and p-Pseudomeasure Algebras

Let G be a locally compact group and let 1 < p <∞. For each s ∈ G, there exists an isometric isomorphism

λp(s) on Lp(G), called the left regular representation, given by

λp(s)(ξ)(t) = ξ(s−1t), ξ ∈ Lp(G), s, t ∈ G.

It is well-known (for instance, [Run02]) that λp : G→ B(Lp(G)) is strong operator continuous (equivalently,

weak operator continuous).1 Note that λp induces a representation λp : L1(G)→ B(Lp(G)) via integration.

We let PFp(G) denote the p-pseudofunction algebra, which is defined to be the norm closure of λp(L1(G))

in B(Lp(G)) so that for f ∈ L1(G), the norm of λp(f) is defined by

‖λp(f)‖ = sup{‖f ? ξ‖p : ξ ∈ Lp(G), ‖ξ‖p ≤ 1}. (3.1)

Remark 3.2.1.

1. PFp(G) is indeed a Banach algebra, because λp(f ? g) = λp(f)λp(g) for all f, g ∈ L1(G).

2. By Young’s inequality for convolution

‖λp(f)‖ ≤ ‖f‖1 (3.2)

for any f ∈ L1(G). In particular, when p = 1, ‖λ1(f)‖ = ‖f‖1 for all f ∈ L1(G) since L1(G) has a

contractive approximate identity.

3. G is amenable if and only if for each positive f ∈ L1(G) one has ‖λp(f)‖ = ‖f‖1 [Lep68].

4. PFp(G) has a contractive approximate identity arising from contractive approximate identity of L1(G).

If G is discrete, then PFp(G) has a unit.

5. If p = 2, PF2(G) is nothing but the reduced group C*-algebra of G.

We let PMp(G) denote the p-pseudomeasure algebra, which is defined to be the weak operator topology

closure of λp(L1(G)) in B(Lp(G)). By Krĕın-Šmulian Theorem, PMp(G) is the same as the weak* closure

of λp(L1(G)) in B(Lp(G)).2

1Similarly one can define the right regular representation ρp, given by ρp(s)(ξ)(t) = ξ(ts)∆(s)1/p, ξ ∈ Lp(G), and s, t ∈ G,
where ∆ denotes the modular function.

2Equivalently, the weak*-closure of span{λp(s) : s ∈ G} in B(Lp(G)). So PMp(G) is always unital.
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3.3 Introduction to Figà-Talamanca-Herz Algebras

In this section we introduce a p-generalization of the Fourier algebra.

Definition 3.3.1. Let G be a locally compact group. Let Λp : Lp′(G)
π
⊗ Lp(G)→ C0(G) be defined by

Λp(g ⊗ f)(s) = 〈g, λp(s)(f)〉, s ∈ G, f ∈ Lp(G), g ∈ Lp′(G).

The Figà-Talamanca-Herz Algebra Ap(G) is defined to be the coimage of Λp.3

Remark 3.3.2. We collect some facts about Ap(G).

1. Ap(G) consists of those f ∈ C0(G) such that there are sequences (ξn) ⊆ Lp′(G) and (ηn) ⊆ Lp(G)

with
∑∞
n=1 ‖ξn‖‖ηn‖ <∞ and f =

∑∞
n=1 ξn ? η̌n. Note that

‖f‖Ap(G) = inf

{ ∞∑
n=1

‖ξn‖‖ηn‖ : f =
∞∑
n=1

ξn ? η̌n

}
.

Λp maps into C0(G) by Theorem [HR79, (20.16)]. Moreover, ‖ · ‖Ap(G) ≥ ‖ · ‖∞ by Young’s inequality

for convolution [HR79, (20.18)]. In particular, the convergence in ‖ · ‖Ap(G) implies uniform (hence

pointwise) convergence.

2. Ap(G) is a commutative Banach algebra under pointwise operations [Her71].

3. G is amenable if and only if Ap(G) has bounded (by 1) approximate identities for any p, 1 < p < ∞

[Her73, Theorem 6].

4. By Lemma 3.1.1, for any compact subset K of G, there exists ϕ ∈ Ap(G) with ϕ ≡ 1 on K. See also

9 below.

5. If G is amenable, given a compact subset K and ε > 0, there exists ϕ ∈ Ap(G) with ϕ ≡ 1 on K and

‖ϕ‖Ap(G) ≤ 1 + ε. See Theorem 4 and Section 0 in [Her73].

6. Ap(G) is isometrically isomorphic to Ap′(G) via f 7→ f̌ . If G is abelian, then Ap(G) = Ap′(G).

7. The Banach space dual Ap(G)′ can be identified with PMp(G) [Run02].

8. Let f ∈ L1(G), then f defines an element Φf in Ap(G)′ by
∫
f(x)ω(x)dx, ω ∈ Ap(G). The norm

‖Φf‖Ap(G)′ equals ‖λp(f)‖ introduced in (3.1) above [Cow79, §4].

9. Ap(G) is a regular tauberian algebra in the sense of [Her73, Proposition 3].4

3Some authors swap p and p′. For example, Runde in [Run02] uses Ap′ (G) instead of Ap(G) in our definition.
4A Banach algebra A is said to be a regular tauberian algebra of functions on G if the following three conditions hold:
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10. Ap(G) is dense in C0(G) in ‖ · ‖∞. To see this, it suffices to show that for any f ∈ C00(G) and for

any ε > 0, there exists u ∈ Ap(G) such that ‖u − f‖∞ < ε. Since f ∈ C00(G), f is (right) uniformly

continuous [Fol95, Proposition (2.6)], so there is an open neighborhood U of the neutral element of G

such that ‖f(·y)−f(·)‖∞ < ε for all y ∈ U . By [Fol95, Proposition (2.19)] and (inner) regularity of the

Haar measure, we can replace U with a compact set K with 0 < |K| < ∞. Define u := 1
|K|f ? 1K−1 ,

then u ∈ Ap(G) and for all t ∈ G,

|u(t)− f(t)| =
∣∣∣∣ 1
|K|

∫
s∈G

f(s)1K−1(s−1t)ds− f(t)
∣∣∣∣

=
1
|K|

∣∣∣∣∫
s∈tK

(f(s)− f(t)) ds
∣∣∣∣

(y = t−1s) ≤ 1
|K|

∫
y∈K
|f(ty)− f(t)| dy

< ε.

11. If xi → e in G, then ‖xiu − u‖Ap(G) → 0. This follows from the fact that Ap,c(G) = Ap(G) ∩ C00(G)

is dense in Ap(G).5

12. Ap(G) is closed under the left and right translations since for ϕ = ξ ? η̌, ξ ∈ Lp′(G), η ∈ Lp(G), we get

ϕ(s−1x) = (λp′(s)ξ ? η̌)(x) and ϕ(xs) = (ξ ? ρp(s)η̌)(x).

Since PMp(G) ⊆ B(Lp(G)) is a p-operator space, Ap(G) has a dual p-operator space structure and

Ap(G)′ = PMp(G) p-completely isometrically [Daw10, Proposition 5.5]. Unless stated otherwise, we assume

that Ap(G) carries this p-operator space structure.

Definition 3.3.3. A linear map T : Ap(G) → Ap(G) is said to be a multiplier if T (uv) = T (u)v for all

u, v ∈ Ap(G). The set of multipliers of Ap(G) is denoted by MAp(G).

Remark 3.3.4. If T ∈MAp(G), then T is necessarily bounded. To see this, suppose un → u and Tun → v

in Ap(G). Fix x ∈ G and take h ∈ Ap(G) such that h(x) = 1. Then

v(x) = v(x)h(x) = lim
n
Tun(x)h(x) = lim

n
T (unh)(x) = lim

n
un(x)Th(x) = u(x)Th(x) = Tu(x)h(x) = Tu(x)

(a) Given a compact set K ⊆ G and a closed subset F disjoint from K, there exists u ∈ A such that u ≡ 1 on K and u ≡ 0
on F .

(b) The elements of compact support are dense in A.

(c) If M is a continuous multiplicative linear functional on A whose support (in the sense of [Her73, §3]) is a single point
{x} ⊆ G, then M = δx, i.e., 〈u,M〉 = u(x) for all u ∈ A.

5See Remark 3.3.2.9.
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and the result follows by the Closed Graph Theorem.

To each T ∈ MAp(G), we associate a function hT : G → C in the following way: for x ∈ G, take

u ∈ Ap(G) with u(x) = 1 and define hT (x) = (Tu)(x). Note that hT is well-defined since if v ∈ Ap(G) is

another function satisfying v(x) = 1, then

(Tu)(x) = (Tu)(x)v(x) = T (uv)(x) = T (vu)(x) = (Tv)(x)u(x) = (Tv)(x).

It is not difficult to show that the mapping T 7→ hT is injective and this gives an alternative definition of

multipliers.

Definition 3.3.5. A complex-valued function u on G is said to be a multiplier for Ap(G) if the linear map

mu(v) = uv maps Ap(G) to Ap(G).

Definition 3.3.6. For u ∈MAp(G), let Mu : PMp(G)→ PMp(G) denote the weak*-continuous linear map

defined by Mu = m′u and M̄u denote the restriction of Mu to PFp(G). McbAp(G) is defined to be the space

of p-completely bounded multipliers, endowed with the norm ‖u‖McbAp(G) = ‖Mu‖pcb.

Remark 3.3.7.

1. If u ∈MAp(G), then u is necessarily in Cb(G). To see this, suppose gi → g in G. Let K be a compact

neighborhood of the neutral element e of G and define ψ ∈ Ap(G) by ψ(s) = 〈1K , λp(s)1g−1K〉, then

ψ(g) = |K| > 0. Since uψ ∈ Ap(G) ⊆ C0(G) (Remark 3.3.2), u(gi)ψ(gi)→ u(g)ψ(g) = u(g)|K|. Since

ψ(gi) → ψ(g) = |K| (See Remark 3.3.2), we conclude that u(gi) → u(g). For boundedness, one can

rely on Theorem 3.3.8 below.

2. If u ∈ MAp(G), then mu is a bounded linear map on Ap(G). This follows from the closed graph

theorem and the fact that ψn → ψ in Ap(G) implies ψn → ψ pointwise.

We have some useful characterizations of these spaces.

Theorem 3.3.8. [Daw10, Lemma 8.2, Theorem 8.3]

1. u ∈MAp(G) if and only if there exists a bounded, weak*-continuous operator M : PMp(G)→ PMp(G)

such that M(λp(s)) = u(s)λp(s).

2. u ∈ McbAp(G) if and only if there exist E ∈ SQp and bounded continuous maps α : G → E and

β : G→ E′ such that u(ts−1) = 〈β(t), α(s)〉 for s, t ∈ G.

Remark 3.3.9.
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1. Theorem 3.3.8.1 shows that the range of M̄u is contained in PFp(G).

2. Theorem 3.3.8.2 shows that the left and right translations are isometries in McbAp(G).

3. Since McbAp(G) ⊆ CBp(Ap(G)), McbAp(G) has a natural induced p-operator space structure. In fact,

if u = [uij ] ∈Mn(McbAp(G)), then

‖u‖Mn(McbAp(G))

= ‖u‖Mn(CBp(Ap(G)))

= ‖u‖CBp(Ap(G),Mn(Ap(G)))

= sup
{
‖[uijϕkl]‖Mnm(Ap(G)) : m ∈ N, ϕ = [ϕkl] ∈Mm(Ap(G))1

}
= sup

{
‖[uijϕkl]‖Mnm((PMp(G))′) : m ∈ N, ϕ = [ϕkl] ∈Mm(Ap(G))1

}
= sup

{
‖[uijϕkl]‖CBp(PMp(G),Mnm) : m ∈ N, ϕ = [ϕkl] ∈Mm(Ap(G))1

}
= sup {‖〈〈uijϕkl, Trs〉〉‖Mnmt

: m, t ∈ N, ϕ = [ϕkl] ∈Mm(Ap(G))1, T = [Trs] ∈Mt(PMp(G))1}

= sup
{
‖〈〈ϕkl,MuijTrs〉〉‖Mnmt

: m, t ∈ N, ϕ = [ϕkl] ∈Mm(Ap(G))1, T = [Trs] ∈Mt(PMp(G))1

}
= sup

{
‖MuijTrs‖Mnt(PMp(G)) : t ∈ N, T = [Trs] ∈Mt(PMp(G))1

}
= ‖Muij‖CBp(PMp(G),Mn(PMp(G)))

= ‖Muij‖Mn(CBp(PMp(G))).

4. If G is a discrete group, the inclusion mapping ι : McbAp(G) → `∞(G) is p-completely contractive.6

Indeed, it is easy to show that ι is contractive (See Remark 3.3.7). To prove that ι is p-completely

contractive, fix n ∈ N and let [uij ] ∈Mn(McbAp(G)). Then for each s ∈ G, we have

‖[uij(s)]‖B(`np )

= sup


∣∣∣∣∣∣
n∑

i,j=1

aiuij(s)bj

∣∣∣∣∣∣ :
∑
i=1

|ai|p
′
≤ 1,

∑
j=1

|bj |p ≤ 1


= sup

|v(s)| : v = [ai]T [uij ][bj ],
∑
i=1

|ai|p
′
≤ 1,

∑
j=1

|bj |p ≤ 1


≤ sup

‖v‖`∞(G) : v = [ai]T [uij ][bj ],
∑
i=1

|ai|p
′
≤ 1,

∑
j=1

|bj |p ≤ 1


≤ sup

‖v‖McbAp(G) : v = [ai]T [uij ][bj ],
∑
i=1

|ai|p
′
≤ 1,

∑
j=1

|bj |p ≤ 1


6See the paragraph right before Proposition 1.6.13 for the discussion of the p-operator space structure of `∞(G).
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≤ ‖[uij ]‖Mn(McbAp(G)).

By Proposition 1.6.14, taking supremum over s ∈ G, we get the desired result.

We close this section with an important observation on Ap(G) given by Miao. We record it for conve-

nience.

Lemma 3.3.10. Let ϕ ∈ MAp(G) and a ∈ Ap,c(G).7 Then the map x 7→ (xϕ)a from G to Ap(G) is

continuous.8

Proof. If x is in a neighborhood V of the neutral element e of G such that V̄ is compact, then by Remark

3.3.2.9, there is u ∈ Ap(G) such that u(t) = 1 for all t ∈ V̄ · supp(a). Hence for all x ∈ V , (xϕ)a = (x(ϕu))a

and ϕa = (ϕu)a. Thus for all x ∈ V , we have by Remark 3.3.2.11

‖(xϕ)a− ϕa‖Ap(G) = ‖(x(ϕu))a− (ϕu)a‖Ap(G) ≤ ‖a‖Ap(G)‖x(ϕu)− ϕu‖Ap(G) → 0

as x→ e.

Corollary 3.3.11. Let ϕ ∈ MAp(G) and a ∈ Ap,c(G). Let V be a neighborhood of e. If fV ∈ L1(G) with

‖fV ‖1 = 1 and fV (t) = 0 for t /∈ V , then

lim
V→e

∫
G

〈(xϕ)a, T 〉fV (x)dx = 〈ϕa, T 〉

for all T ∈ PMp(G).

Proof. It is immediate since

∣∣∣∣∫
G

〈(xϕ)a, T 〉fV (x)dx− 〈ϕa, T 〉
∣∣∣∣ =

∣∣∣∣∫
G

〈(xϕ)a− ϕa, T 〉fV (x)dx
∣∣∣∣ ≤ ‖(xϕ)a− ϕa‖Ap(G)‖T‖.

Corollary 3.3.12. Let ϕ ∈MAp(G) and a ∈ Ap,c(G). For any f ∈ L1(G), there is an element η ∈ Ap(G)

such that η =
∫
G

(x−1ϕ)af(x)dx and

〈T, η〉 =
∫
G

〈(x−1ϕ)a, T 〉f(x)dx

7Ap,c(G) = Ap(G) ∩ C00(G) is dense in Ap(G). See Remark 3.3.2.9.
8Note that xϕ ∈MAp(G). Indeed, if u ∈ Ap(G), then xϕ · u =x (ϕ ·x−1 u) ∈ Ap(G) by Remark 3.3.2.12.
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for all T ∈ PMp(G). Moreover, η = (f ? ϕ)a and hence

〈T, (f ? ϕ)a〉 =
∫
G

〈(x−1ϕ)a, T 〉f(x)dx

for all T ∈ PMp(G).

Proof. This follows from [Ped89, page.76], because x 7→ (x−1ϕ)a is a bounded continous function and f(x)dx

is a bounded Radon measure. Second part follows from the calculation

(f ? ϕ)a(t) =
∫
G

f(x)ϕ(x−1t)a(t)dx =
∫
G

(x−1ϕ(t))a(t)f(x)dx.

Corollary 3.3.13. Let ϕ ∈ McbAp(G) and v ∈ L1(G) with ‖v‖1 = 1. Then v ? ϕ ∈ McbAp(G) and

‖v ? ϕ‖McbAp(G) ≤ ‖ϕ‖McbAp(G).

Proof. Let n ∈ N and let T = [Tij ] ∈ Mn(PMp(G)). Suppose that f = {fj}nj=1 ∈ Lp(G) ⊗p `np and

g = {gi}ni=1 ∈ Lp′(G)⊗p′ `np′ have compact supports. Then

|〈g, (Mv?ϕ)n(T )(f)〉| =

∣∣∣∣∣∣
n∑

i,j=1

〈gi,Mv?ϕ(Tij)(fj)〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i,j=1

〈
gi ? f̌j ,Mv?ϕ(Tij)

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i,j=1

〈
(gi ? f̌j)(v ? ϕ), Tij

〉∣∣∣∣∣∣
(Corollary 3.3.12) =

∣∣∣∣∣∣
n∑

i,j=1

∫
G

〈
(gi ? f̌j)(x−1ϕ), Tij

〉
v(x)dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i,j=1

∫
G

〈
gi,Mx−1ϕ(Tij)(fj)

〉
v(x)dx

∣∣∣∣∣∣
=

∣∣∣∣∫
G

〈
g, (M

x−1ϕ)n(T )(f)
〉
v(x)dx

∣∣∣∣
≤ ‖g‖p′‖x−1ϕ‖McbAp(G)‖T‖‖f‖p

(Remark 3.3.9.2) = ‖g‖p′‖ϕ‖McbAp(G)‖T‖‖f‖p

This completes the proof.
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3.4 Other Related Spaces and Some Open Questions

In this section, we collect some results from [Run05].

Definition 3.4.1. Let G be a locally compact group. A representation of G is a pair (π,E) where E

is a Banach space and π is a group homomorphism from G into the invertible isometries on E which is

continuous with respect to the given topology on G and the strong operator topology on B(E). We denote

by Repp(G) the collection of all representations of G on a SQp space. A coefficient function of (π,E) is a

function f : G→ C of the form

f(x) = 〈π(x)ξ, ϕ〉 (x ∈ G),

where ξ ∈ E and ϕ ∈ E′. Finally, we let

Bp(G) = {f : G→ C : f is a coefficient of some (π,E) ∈ Repp(G)}.

Remark 3.4.2. Let G be a locally compact group.

1. Any representation (π,E) of G induces a representation of the group algebra L1(G) on E via integra-

tion, that is,

π(f) :=
∫
G

f(x)π(x)dx (f ∈ L1(G)).

2. A representation (π,E) is called cyclic if there is ξ ∈ E such that π(L1(G))ξ is dense in E. We let

Cycp(G) := {(π,E) : (π,E) is cyclic}

and for f ∈ Bp(G), we define ‖f‖Bp(G) as the infimum over all expressions
∑∞
n=1 ‖ξn‖‖ϕn‖, where, for

each n ∈ N, there is (πn, En) ∈ Cycp(G) with ξn ∈ En and ϕn ∈ E′n such that

∞∑
n=1

‖ξn‖‖ϕn‖ <∞ and f(x) =
∞∑
n=1

〈πn(x)ξn, ϕn〉 (x ∈ G).

Then ‖ · ‖Bp(G) defines a norm on Bp(G).

Runde proved the following result.

Theorem 3.4.3. Let G be a locally compact group and let Bp(G) be equipped with ‖ · ‖Bp(G). Then

1. Bp(G) is a commutative Banach algebra.

2. There are contractive inclusions Ap(G) ⊆ Bp(G) ⊆MAp(G).
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3. For 2 ≤ q ≤ p or p ≤ q ≤ 2, the inclusion Bq(G) ⊆ Bp(G) is a contraction.

Proof. Theorem 4.7 and Corollary 5.3 in [Run05].

Theorem 3.4.4. Let G be a locally compact group, then PFp(G)′ embeds contractively into Bp(G).

Proof. Theorem 6.6 in [Run05].

Let f ∈ L1(G), then f defines a bounded linear functional Φf on Ap(G) ⊆ C0(G) via integration: for

u ∈ Ap(G), Φf (u) =
∫
G
f(s)u(s)ds.

Lemma 3.4.5. With notations as above, ‖Φf‖ = ‖λp(f)‖ for all f ∈ L1(G).

Proof. This is proved in [Cow79]. We include the proof for convenience. By (3.1),

‖λp(f)‖ = sup{|〈ξ, f ? η〉| : ξ ∈ Lp′(G), η ∈ Lp(G), ‖ξ‖, ‖η‖ ≤ 1}.

Since

〈ξ, f ? η〉 =
∫
s∈G

ξ(s)
∫
t∈G

f(t)η(t−1s)dtds

=
∫
t∈G

f(t)
∫
s∈G

ξ(s)η(t−1s)dsdt

= Φf (ξ ? η̌),

it follows that ‖λp(f)‖ ≤ ‖Φf‖. For the other direction, let ε > 0 and let u ∈ Ap(G) with ‖u‖Ap(G) = 1 such

that |Φf (u)| ≥ ‖Φf‖ − ε. Let u =
∑∞
n=1 ξn ? η̌n with

∑∞
n=1 ‖ξn‖p′‖ηn‖p < 1 + ε, then

|Φf (u)| =

∣∣∣∣∣
∞∑
n=1

〈ξn, f ? ηn〉

∣∣∣∣∣
≤

∞∑
n=1

‖λp(f)‖‖ξn‖p′‖ηn‖p

< (1 + ε)‖λp(f)‖

and hence ‖λp(f)‖ > ‖Φf‖−ε
1+ε . Letting ε→ 0, we get the desired inequality.

Remark 3.4.6. By Remark 3.3.7, Theorems 3.4.3, 3.4.4, and Lemma 3.4.5, we have contractive inclusions

Ap(G) ⊆ PFp(G)′ ⊆ Bp(G) ⊆McbAp(G) ⊆MAp(G) ⊆ Cb(G).

Runde showed that some of these sets agree when G is amenable.
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Theorem 3.4.7. [Run05, Theorem 6.7] Let G be an amenable locally compact group, then PFp(G)′, Bp(G),

and MAp(G) are equal with identical norms.

By Remark 3.4.6, if G is amenable then PFp(G)′ = Bp(G) = McbAp(G) = MAp(G). In fact, a certain

equality among these sets implies the amenability of G as in the following remark.

Remark 3.4.8. For a locally compact group G,

1. PFp(G)′ = MAp(G) if and only if G is amenable [Cow79].

2. B2(G) = MA2(G) if and only if G is amenable. [Neb82] for discrete case, [Los84] for general case.

3. If G is discrete, B2(G) = McbA2(G) if and only if G is amenable [Boz85].

Remark 3.4.8 leads us to the following questions.9

Question 3.4.9. For a locally compact group G (see Theorem 3.4.7 and the explanation right after that),

1. Do we have G is amenable if (and only if) PFp(G)′ = McbAp(G)?

2. Do we have G is amenable if (and only if) PFp(G)′ = Bp(G)?

3. Do we have G is amenable if (and only if) Bp(G) = MAp(G)?

4. Do we have G is amenable if (and only if) Bp(G) = McbAp(G)?

3.5 Amenability and Multiplier Algebras

In this section, G will always denote a locally compact group. Let K be a compact subset of G. Let Ap(K)

denote the space of restrictions to K of functions in Ap(G) equipped with the norm defined by

‖w‖Ap(K) = inf{‖u‖Ap(G) : w = u|K , u ∈ Ap(G)}.

In other words, we identifyAp(K) with the quotient spaceAp(G)/MK , whereMK = {u ∈ Ap(G) : u|K ≡ 0}.

In [Cow79], Cowling gives a useful characterization of PFp(G)′.

Theorem 3.5.1. [Cow79, Theorem 4] w ∈ L∞(G) belongs to PFp(G)′ and has norm at most C if and only

if, for any compact subset K of G,

w|K ∈ Ap(K) and ‖w|K‖Ap(K) ≤ C.
9We have positive answers for the first two in Question 3.4.9. See Theorem 3.5.3 below.
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We recall the proof of the following theorem originally proved by Cowling [Cow79].

Theorem 3.5.2. For a locally compact group G, PFp(G)′ = MAp(G) isometrically if and only if G is

amenable.

Proof. (=⇒) First of all, by Remark 3.3.2, for each compact K, the constant function 1K ∈ Ap(K). If

we assume that sup{‖1K‖Ap(K) : K compact} < ∞, then we would be able to find a net {uK ∈ Ap(G) :

K compact} such that uK ≡ 1 on K for each K and C := sup{‖uK‖Ap(G)} < ∞. Now let ϕ ∈ Ap(G) and

ε > 0. Consider ϕ0 ∈ Ap,c(G) such that ‖ϕ − ϕ0‖ < ε. For every K containing the support of ϕ0, we get

ϕ0uK = ϕ0 and it follows that

‖ϕuK − ϕ‖ = ‖(ϕ− ϕ0)uK + ϕ0uK − u‖ ≤ (C + 1)ε.

This shows that {uK ∈ Ap(G) : K compact} is a bounded approximate identity for Ap(G) and hence G must

be amenable. Therefore, if G were not amenable, then we must have sup{‖1K‖Ap(K) : K compact} = ∞.

By Theorem 3.5.1, the constant function 1G is not in PFp(G)′ but 1G is always in MAp(G).

(⇐=) From Theorems 3.4.3 and 3.4.4, we see that PFp(G)′ ⊆MAp(G) contractively. Suppose w ∈MAp(G)

and let ε > 0. If G is amenable, then by Remark 3.3.2, for every compact K there exists uK such that uK ≡ 1

on K with ‖uK‖Ap(G) ≤ 1 + ε. Now w|K = (wuK)|K ∈ Ap(K) and hence ‖w|K‖Ap(K) ≤ ‖w‖MAp(G)(1 + ε).

Since ε is arbitrary, it follows that ‖w|K‖Ap(K) ≤ ‖w‖MAp(G) and by Theorem 3.5.1, w ∈ PFp(G)′. Finally,

to prove that ‖w‖MAp(G) ≤ ‖w‖PFp(G)′ , it suffices to show that ‖wϕ0‖Ap(G) ≤ ‖w‖PFp(G)′‖ϕ0‖Ap(G) for any

compactly supported ϕ0. Let ε > 0 and K be the support of ϕ0. By definition of Ap(K), one can find

u ∈ Ap(G) such that u|K = w|K and ‖u‖Ap(G) ≤ ‖w|K‖Ap(K) + ε. Now by Theorem 3.5.1,

‖wϕ0‖Ap(G) = ‖uϕ0‖Ap(G) ≤ (‖w|K‖Ap(K) + ε)‖ϕ0‖Ap(G) ≤ (‖w‖PFp(G)′ + ε)‖ϕ0‖Ap(G)

and the result follows.

We can now answer the first and the second questions in Question 3.4.9 positively.

Theorem 3.5.3. For a locally compact group G, PFp(G)′ = McbAp(G) (respectively, PFp(G)′ = Bp(G))

isometrically if and only if G is amenable.

Proof. (⇐=) This direction comes from Theorem 3.5.2.

(=⇒) The proof is almost identical to that of Theorem 3.5.2. The only point to note is that 1G is always in

McbAp(G) (respectively, = Bp(G)) as well.
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3.6 Qpcb(G) as the Predual of McbAp(G)

In this section, we will show that McbAp(G) is a dual space, which is essential to study p-operator space

approximation property.10 To begin with, let f ∈ L1(G). For each ϕ ∈ McbAp(G) ⊆ Cb(G), the integra-

tion
∫
G
f(t)ϕ(t)dt defines a bounded linear functional on McbAp(G) and hence we can embed L1(G) into

(McbAp(G))′. Let ‖ · ‖Q,p denote the norm on L1(G) inherited from this structure and let Qpcb(G) denote

the norm closure of (L1(G), ‖ · ‖Q,p) in (McbAp(G))′.

Remark 3.6.1. Let f ∈ L1(G). For each ψ ∈ MAp(G) ⊆ Cb(G), the integration
∫
G
f(t)ψ(t)dt defines a

bounded linear functional on MAp(G) and hence we can embed L1(G) into (MAp(G))′. Let Qp(G) denote

the norm closure of L1(G) with respect to the norm of (MAp(G))′, then we have Qp(G)′ = MAp(G) [Mia04,

Theorem 3.2].

Proposition 3.6.2 (Miao). Let G be a locally compact group, then we have an isometric isomorphism

Qpcb(G)′ = McbAp(G).

Proof. We give a proof for convenience. First of all, it is clear that each ϕ ∈ McbAp(G) is in Qpcb(G)′

with ‖ϕ‖Qpcb(G)′ ≤ ‖ϕ‖McbAp(G). Coversely, let m ∈ Qpcb(G)′ and ‖m‖Qpcb(G)′ = 1. Since Qpcb(G) is a

closed subspace of (McbAp(G))′, by the Hahn-Banach Theorem, we can extend m to a linear functional

m̃ on (McbAp(G))′ with ‖m̃‖(McbAp(G))′′ = 1. By Goldstine’s theorem, there is a net {mα} in McbAp(G)

such that ‖mα‖McbAp(G) ≤ 1 and mα → m̃ in the σ((McbAp(G))′′, (McbAp(G))′)-topology. In particular,

〈mα, f〉 → 〈m, f〉 for any f ∈ Qpcb(G).

Let f ∈ L1(G). Since McbAp(G) ⊆ MAp(G) with ‖ · ‖MAp(G) ≤ ‖ · ‖McbAp(G) on McbAp(G), we have

‖f‖Qpcb(G) ≤ ‖f‖Qp(G) and hence m ∈ Qp(G)′ = MAp(G) by Remark 3.6.1. We need to show that

M = m′ : PMp(G)→ PMp(G) is p-completely contractive. So let n ∈ N and let T = [Tij ] ∈Mn(PMp(G)).

Suppose that f = {fi}ni=1 ∈ Lp(G)⊗p `np and g = {gj}nj=1 ∈ Lp′(G)⊗p′ `np′ have compact supports. For each

neighborhood V of the neutral element e of G, choose an fV in Ap(G) such that fV (t) = 0 for t /∈ V and

‖fV ‖1 = 1. Then we have

|〈g,Mn(T )(f)〉| =

∣∣∣∣∣∣
n∑

i,j=1

〈gi,M(Tij)(fj)〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i,j=1

〈
gi ? f̌j ,M(Tij)

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i,j=1

〈
(gi ? f̌j)m,Tij

〉∣∣∣∣∣∣
10See Section 4.2.

59



(Corollary 3.3.11) =

∣∣∣∣∣∣limV
n∑

i,j=1

∫
G

〈
(gi ? f̌j)(x−1m), Tij

〉
fV (x)dx

∣∣∣∣∣∣
(Corollary 3.3.12) =

∣∣∣∣∣∣limV
n∑

i,j=1

〈
(gi ? f̌j),MfV ?m(Tij)

〉∣∣∣∣∣∣

Here note that
〈
(gi ? f̌j),MfV ?m(Tij)

〉
=
〈
ωTij ,gi?f̌j ,fV ,m

〉
, where ωTij ,gi?f̌j ,fV ∈ L1(G) [Mia09, Lemma

3.1]. Therefore

∣∣∣∣∣∣limV
n∑

i,j=1

〈
(gi ? f̌j),MfV ?mTij

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣limV
n∑

i,j=1

〈
ωTij ,gi?f̌j ,fV ,m

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣limV lim
α

n∑
i,j=1

〈
ωTij ,gi?f̌j ,fV ,mα

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣limV lim
α

n∑
i,j=1

〈gi,MfV ?mα(Tij)(fj)〉

∣∣∣∣∣∣
=

∣∣∣lim
V

lim
α
〈g, (MfV ?mα)n(T )(f)〉

∣∣∣
= lim

V
lim
α
‖g‖p′‖fV ? mα‖McbAp(G)‖T‖‖f‖p

(Corollary 3.3.13) ≤ ‖g‖p′‖mα‖McbAp(G)‖T‖‖f‖p

≤ ‖g‖p′‖T‖‖f‖p

and it follows that M is p-completely contractive.

3.7 Description of Qpcb(G) for a Discrete Group G

For future applications, we want to characterize Qpcb(G) for a discrete group G. We begin with a lemma.

Lemma 3.7.1. Let µ and ν be measures.

1. If A ⊆ B(Lp(µ)) is a p-operator space and T : A→ A is a p-completely bounded map, then there exists

a unique bounded map T̃ : B(Lp(ν))
∨p
⊗ A→ B(Lp(ν))

∨p
⊗ A such that

T̃ (b⊗ a) = b⊗ T (a), b ∈ B(Lp(ν)), a ∈ A,

with ‖T̃‖ ≤ ‖T‖pcb.

2. If M is a weak*-closed subalgebra of B(Lp(µ)), and T : M → M is a weak* continuous p-completely
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bounded map, then there exists a unique weak*-continuous bounded map T̃ : B(Lp(ν))⊗̄M → B(Lp(ν))⊗̄M

such that

T̃ (d⊗ c) = d⊗ T (c), d ∈ B(Lp(ν)), c ∈M,

where B(Lp(ν))⊗̄M denotes the weak*-closure of the algebraic tensor product B(Lp(ν))⊗M in B(Lp(ν×

µ)). Moreover, we have ‖T̃‖ ≤ ‖T‖pcb.

Remark 3.7.2.

1. Once Lemma 3.7.1 is established, we can justify (and will use) the notation T̃ = idLp(ν) ⊗ T .

2. In fact, T̃ is p-completely bounded with ‖T̃‖pcb ≤ ‖T‖pcb. See Lemma 3.7.3 below.

Proof of Lemma 3.7.1. 1. We use the rigid Lp-structure of Lp(ν). Let {Eγ} be a net of finite-dimensional

subspaces of Lp(ν), directed by inclusion, such that
⋃
γ Eγ is dense in Lp(ν) and each Eγ is isometric to

`
m(γ)
p with m(γ) = dimEγ [LP68]. Let Pγ denote the norm 1 projection from Lp(ν) onto Eγ , so that we

identify PγB(Lp(ν))Pγ with Mm(γ). Define an operator T0 on B(Lp(ν))⊗algA by T0(
∑
bi⊗ai) =

∑
bi⊗Tai,

then for every
∑
bi ⊗ ai ∈ B(Lp(ν))⊗alg A, we have

∥∥∥(Pγ ⊗ idLp(µ))T0

(∑
bi ⊗ ai

)
(Pγ ⊗ idLp(µ))

∥∥∥
=

∥∥∥∑PγbiPγ ⊗ Tai
∥∥∥

≤ ‖Tm(γ)‖
∥∥∥∑PγbiPγ ⊗ ai

∥∥∥
≤ ‖T‖pcb

∥∥∥(Pγ ⊗ idLp(µ))
(∑

bi ⊗ ai
)

(Pγ ⊗ idLp(µ))
∥∥∥

≤ ‖T‖pcb
∥∥∥∑ bi ⊗ ai

∥∥∥ .
Since (Pγ) converges strongly to idLp(ν), it follows that

∥∥∥T0

(∑
bi ⊗ ai

)∥∥∥ ≤ ‖T‖pcb ∥∥∥∑ bi ⊗ ai
∥∥∥

and T0 has a bounded extension T̃ to B(Lp(ν))
∨p
⊗ A.

2. This is [Daw10, Theorem 6.4].

Lemma 3.7.3. Let T be as in Lemma 3.7.1. Then idLp(ν) ⊗ T (See Remark 3.7.2 for definition) is p-

completely bounded with ‖idLp(ν) ⊗ T‖pcb ≤ ‖T‖pcb.

Proof. Fix n ∈ N and consider (idLp(ν) ⊗ T )n : Mn(B(Lp(ν))
∨p
⊗ A) → Mn(B(Lp(ν))

∨p
⊗ A). Since

Mn(B(Lp(ν))
∨p
⊗ A) ∼= B(Lp(ν)n)

∨p
⊗ A, we can identify (idLp(ν) ⊗ T )n with idLp(ν)n ⊗ T . The result
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follows by Lemma 3.7.1 2.

Proposition 3.7.4. Let G be a discrete group. Then

Qpcb(G) = {ωa,ϕ : a ∈ B(`p)
∨p
⊗ PFp(G), ϕ ∈ (B(`p)

∨p
⊗ PFp(G))′}.

Proof. ⊇: Since ‖ωa,ϕ‖ ≤ ‖a‖‖ϕ‖ and span{λp(s) : s ∈ G} is norm dense in PFp(G), it suffices to show that

ωa,ϕ ∈ Qpcb(G) for a = b⊗ λs with b ∈ B(`p). Indeed, for u ∈McbAp(G), we get

ωb⊗λs,ϕ(u) = 〈(idB(`p) ⊗ M̄u)(b⊗ λs), ϕ〉

= 〈b⊗ u(s)λs, ϕ〉 = u(s)〈b⊗ λs, ϕ〉

=
∑
t∈G u(t)g(t),

where g(·) = 〈b ⊗ λ·, ϕ〉δs(·) is a function in `1(G). By definition of Qpcb(G), this shows that ωb⊗λs,ϕ ∈

Qpcb(G).

⊆: We follow an idea similar to that given in [HK94]. Let

S = {ωa,ϕ : a ∈ (B(`p)
∨p
⊗ PFp(G))1, ϕ ∈ ((B(`p)⊗̄PMp(G))′)1}.

Then by the argument above, S is contained in the closed unit ball of Qpcb(G). It is also easy to check that

S is balanced. We claim that S is convex. To this end, first note that we can identify B(`p⊕p `p)
∨p
⊗ PFp(G)

with M2(B(`p))
∨p
⊗ PFp(G) = M2(B(`p)

∨p
⊗ PFp(G)). By Theorem 2.3.12,

(M2(B(`p)
∨p
⊗ PFp(G)))′ = N2

∧p
⊗ (B(`p)

∨p
⊗ PFp(G))′

isometrically, where N2 denotes the space of nuclear operators on `2p, and hence we can also identify (B(`p⊕p

`p)
∨p
⊗ PFp(G))′ with N2

∧p
⊗ (B(`p)

∨p
⊗ PFp(G))′. In particular, the duality is given in such a way that if

b = [bij ] ∈ B(`p ⊕p `p)
∨p
⊗ PFp(G) and ϕ = [ϕij ] ∈ (B(`p ⊕p `p)

∨p
⊗ PFp(G))′, then

〈b, ϕ〉 =
2∑

i,j=1

〈bij , ϕij〉.

If T is a p-completely bounded operator on PFp(G), then for any a = [aij ] ∈ B(`p ⊕p `p)
∨p
⊗ PFp(G), we

have

idB(`p⊕p`p) ⊗ T (a) = [idB(`p) ⊗ T (aij)]
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(See Lemma 3.7.1 for the definition of idB(`p⊕p`p)⊗T and idB(`p)⊗T ). Now let ωa1,ϕ1 and ωa2,ϕ2 be elements

of S, and suppose 0 ≤ λ ≤ 1. Let

a =

 a1 0

0 a2

 ∈ B(`p ⊕p `p)
∨p
⊗ PFp(G), ϕ =

 λϕ1 0

0 (1− λ)ϕ2

 ∈ (B(`p ⊕p `p)
∨p
⊗ PFp(G))′.

Then ‖a‖ = max{‖a1‖, ‖a2‖} ≤ 1 and ‖ϕ‖ ≤ λ‖ϕ1‖+ (1− λ)‖ϕ2‖ ≤ 1. Now for any p-completely bounded

operator T on PFp(G),

ωa,ϕ(T ) = 〈idB(`p⊕p`p) ⊗ T (a), ϕ〉

= 〈idB(`p) ⊗ T (a1), λϕ1〉+ 〈idB(`p) ⊗ T (a2), (1− λ)ϕ2〉

= (λωa1,ϕ1 + (1− λ)ωa2,ϕ2)(T ).

Moreover, since `p and `p ⊕p `p are isometrically isomorphic, ωa,ϕ = ωb,ψ for some b ∈ (B(`p)
∨p
⊗ PFp(G))1

and some ψ ∈ ((B(`p)
∨p
⊗ PFp(G))′)1. This shows that S is convex.

Now we claim that S is norm dense in the closed unit ball of Qpcb(G). Suppose this is not the case and

ω ∈ Qpcb(G)1 is not in the closure of S. Using the geometric Hahn-Banach theorem and the fact that S is

balanced, we can find u ∈McbAp(G) such that

|〈ωa,ϕ, u〉| ≤ 1 < 〈ω, u〉, ∀ωa,ϕ ∈ S.

However, this implies

‖u‖pcb ≤ sup{‖idB(`p) ⊗ M̄u(a)‖ : a ∈ (B(`p)
∨p
⊗ PFp(G))1}

= sup{|〈idB(`p) ⊗ M̄u(a), ϕ〉| : a ∈ (B(`p)
∨p
⊗ PFp(G))1, ϕ ∈ ((B(`p)

∨p
⊗ PFp(G))′)1}

= sup{|ωa,ϕ(u)| : a ∈ (B(`p)
∨p
⊗ PFp(G))1, ϕ ∈ ((B(`p)

∨p
⊗ PFp(G))′)1}

≤ 1.

But then this would imply |〈ω, u〉| ≤ 1, a contradiction. This shows that S is norm dense in the closed unit

ball of Qpcb(G).

Let `(∞)
p denote the p-direct sum of a countably infinite number of copies of `p. Since `p is isometrically

isomorphic to `(∞)
p , to complete the proof it suffices to show that every ω ∈ Qpcb(G) is of the form ω = ωa,ϕ

for some a ∈ B(`(∞)
p )

∨p
⊗ PFp(G) and some ϕ ∈ (B(`(∞)

p )
∨p
⊗ PFp(G))′. Without loss of generality, we can

assume that ω ∈ Qpcb(G)1. Then there is an ω1 ∈ S such that ‖ω − ω1‖ < 1
2 . Since 2(ω − ω1) ∈ Qpcb(G)1,
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there is an ω2 ∈ S such that ‖ω − ω1 − 1
2ω2‖ < 1

22 . Continuing in this fashion, we find a sequence {ωn} in

S such that ∥∥∥∥∥ω −
n∑
i=1

1
2i−1

ωi

∥∥∥∥∥ < 1
2n
.

Thus ω =
∑∞
i=1

1
2i−1ωi. Since ωi ∈ S, there are sequences bi ∈ (B(`p)

∨p
⊗ PFp(G))1 and ψi ∈ ((B(`p)

∨p
⊗

PFp(G))′)1 such that ωi = ωbi,ψi . Let αi = (2−i+1)1/2, let ai = αibi, and let ϕi = αiψi. Let a ∈

M∞(B(`p)
∨p
⊗ PFp(G)) = B(`(∞)

p )
∨p
⊗ PFp(G) be the diagonal matrix with diagonal entries a1, a2, · · · .

Since ‖ai‖ → 0, a in fact lies in K(`(∞)
p )

∨p
⊗ PFp(G). Moreover, since

∑∞
i=1 ‖ϕi‖ < ∞, we can define

ϕ0 ∈ (K(`(∞)
p )

∨p
⊗ PFp(G))′ = N∞

∧p
⊗ (B(`p)

∨p
⊗ PFp(G))′ by

ϕ0([aij ]) =
∞∑
i=1

〈aii, ϕi〉, [aij ] ∈ K(`(∞)
p )

∨p
⊗ PFp(G).

Extend ϕ0 to ϕ ∈ (B(`(∞)
p )

∨p
⊗ PFp(G))′ using Hahn-Banach theorem, then it follows that ω = ωa,ϕ and this

completes the proof.

Remark 3.7.5. The same argument as above actually works to show that

Qpcb(G) = {ωa,ϕ : a ∈ K(`p)
∨p
⊗ PFp(G), ϕ ∈ (K(`p)

∨p
⊗ PFp(G))′}.

Proposition 3.7.6. Let G be a discrete group. Then

Qpcb(G) = {ωa,ϕ : a ∈ K(`p)
∨p
⊗ PFp(G), ϕ ∈ N (`p ⊗p `p(G))},

where N (`p ⊗p `p(G)) denotes the space of nuclear operators on `p ⊗p `p(G).

Proof. ⊇: This direction is obtained by the same argument as in Proposition 3.7.4.

⊆: Let

S = {ωa,ϕ : a ∈ (K(`p)
∨p
⊗ PFp(G))1, ϕ ∈ (N (`p ⊗p `p(G)))1}.

Then by the argument above, S is contained in the closed unit ball of Qpcb(G). It is easy to check that S is

bounded. We claim that S is convex. Let ωa1,ϕ1 and ωa2,ϕ2 be elements of S, and suppose 0 ≤ λ ≤ 1. Let

a =

 a1 0

0 a2

 ∈M2(K(`p)
∨p
⊗ PFp(G))
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and

ϕ =

 λϕ1 0

0 (1− λ)ϕ2

 ∈ N2

∧p
⊗ T (`p ⊗p `p(G)),

then ϕ ∈ (M2(K(`p)
∨p
⊗ PFp(G)))′ = N2

∧p
⊗ (K(`p)

∨p
⊗ PFp(G))′ with ‖a‖ ≤ 1 and ‖ϕ‖ ≤ 1. Now, after

isometric identification

M2(K(`p)
∨p
⊗ PFp(G)) = K(`p ⊕p `p)

∨p
⊗ PFp(G)

and

N2

∧p
⊗ N (`p ⊗p `p(G)) = N ((`p ⊗p `p(G))⊕p(`p ⊗p `p(G))) = N (`p ⊕p `p)

∧p
⊗ N (`p(G)),

we have for any p-completely bounded operator T on PFp(G),

ωa,ϕ(T ) = 〈idK(`p⊕p`p) ⊗ T (a), ϕ〉

= 〈idK(`p) ⊗ T (a1), λϕ1〉+ 〈idK(`p) ⊗ T (a2), (1− λ)ϕ2〉

= (λωa1,ϕ1 + (1− λ)ωa2,ϕ2)(T ).

Moreover, since `p and `p ⊕p `p are isometrically isomorphic, ωa,ϕ = ωb,ψ for some b ∈ (K(`p)
∨p
⊗ PFp(G))1

and some ψ ∈ (N (`p ⊗p `p(G)))1. This shows that S is convex.

Now we claim that S is norm dense in the closed unit ball of Qpcb(G). Suppose this is not the case and

ω ∈ Qpcb(G)1 is not in the closure of S. Using the geometric Hahn-Banach theorem and the fact that S is

balanced, we can find u ∈McbAp(G) such that

|〈ωa,ϕ, u〉| ≤ 1 < 〈ω, u〉, ∀ωa,ϕ ∈ S.

However, this implies

‖u‖pcb ≤ sup{‖idK(`p) ⊗ M̄u(a)‖ : a ∈ (K(`p)
∨p
⊗ PFp(G))1}

= sup{|〈idB(`p) ⊗ M̄u(a), ϕ〉| : a ∈ (K(`p)
∨p
⊗ PFp(G))1, ϕ ∈ (N (`p ⊗p `p(G)))1}

= sup{|ωa,ϕ(u)| : a ∈ (K(`p)
∨p
⊗ PFp(G))1, ϕ ∈ (N (`p ⊗p `p(G)))1}

≤ 1.

But then this would imply |〈ω, u〉| ≤ 1, a contradiction. This shows that S is norm dense in the closed unit

ball of Qpcb(G).

Let `(∞)
p denote the p-direct sum of a countably infinite number of copies of `p. Since `p is isometrically
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isomorphic to `(∞)
p , to complete the proof it suffices to show that every ω ∈ Qpcb(G) is of the form ω = ωa,ϕ

for some a ∈ K(`(∞)
p )

∨p
⊗ PFp(G) and some ϕ ∈ N (`(∞)

p )
∧p
⊗ N (`p(G)). Without loss of generality, we can

assume that ω ∈ Qpcb(G)1. Then there is an ω1 ∈ S such that ‖ω − ω1‖ < 1
2 . Since 2(ω − ω1) ∈ Qpcb(G)1,

there is an ω2 ∈ S such that ‖ω − ω1 − 1
2ω2‖ < 1

22 . Continuing in this fashion, we find a sequence {ωn} in

S such that ∥∥∥∥∥ω −
n∑
i=1

1
2i−1

ωi

∥∥∥∥∥ < 1
2n
.

Thus ω =
∑∞
i=1

1
2i−1ωi. Since ωi ∈ S, there are sequences bi ∈ (K(`p)

∨p
⊗ PFp(G))1 and ψi ∈ (N (`p ⊗p

`p(G)))1 such that ωi = ωbi,ψi . Let αi = (2−i+1)1/2, let ai = αibi, and let ϕi = αiψi. Let a ∈M∞(K(`p)
∨p
⊗

PFp(G)) = B(`(∞)
p )

∨p
⊗ PFp(G) be the diagonal matrix with diagonal entries a1, a2, · · · . Since ‖ai‖ → 0, a in

fact lies in K(`(∞)
p )

∨p
⊗ PFp(G). Moreover, since

∑∞
i=1 ‖ϕi‖ <∞, we can define ϕ ∈ N∞

∧p
⊗N (`p⊗p `p(G)) =

N (`(∞)
p )

∧p
⊗ N (`p(G)) by

ϕ([aij ]) =
∞∑
i=1

〈aii, ϕi〉, [aij ] ∈ K(`(∞)
p )

∨p
⊗ PFp(G).

Now it follows that ω = ωa,ϕ and this completes the proof.

Remark 3.7.7. The same argument as above actually works to show that

Qpcb(G) = {ωb,ϕ : b ∈ B(`p)
∨p
⊗ PFp(G), ϕ ∈ N (`p ⊗p `p(G))}

for a discrete group G.

3.8 More on Qpcb(G): for General Locally Compact Group G

Theorem 3.8.1. Qpcb(G) ⊇
{
ωa,ϕ,f : a ∈ PMp(G)⊗̄K(`p), ϕ ∈ Ap(G)

∧p
⊗ N (`p), f ∈ Ap,c(G)

}
.

Proof. It suffices to show that if a ∈ PMp(G), ϕ ∈ Ap,c(G), and f ∈ Ap,c(G), then ωa,ϕ,f ∈ Qpcb(G), where

ωa,ϕ,f (u) = 〈Mf?u(a), ϕ〉. We will find a g ∈ L1(G) such that ωa,ϕ,f =
∫
u(x)g(x)dx for all u ∈ McbAp(G).

Let K = (supp f)−1 suppϕ. It is easy to show that

([f ? u]ϕ)(x) = (f ? 1Ku)(x) =
∫
G

fy(x)ϕ(x)(1Ku)(y−1) for all x ∈ G,

where fy(·) = f(·y). Define a map Φ : G → Ap(G) by [Φ(y)](x) = fy(x)ϕ(x), and define a measure µ on

G by dµ(y) = (1Ku)(y−1)dy, then dµ is a bounded Radon measure. Take v =
∫
G

Φ(y)dµ(y) (Analysis Now
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p.70) in Ap(G) so that

〈b, v〉 =
∫
G

〈b,Φ(y)〉dµ(y) for all b ∈ PMp(G).

In particular, if b = λp(x), then we get v(x) = (f ? 1Ku)(x) and thus

ωa,ϕ,f (u) = 〈a, v〉 =
∫
G

〈a,Φ(y)〉dµ(y) =
∫
G

u(y−1)〈a,Φ(y)〉1K(y−1)dy =
∫
G

u(y)g(y)dy,

where g(y) = 〈a,Φ(y−1)〉1K(y)∆(y−1). Now it is easy to verify that g ∈ L1(G).
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Chapter 4

Approximation Properties

4.1 p-Conditional Expectation

In this chapter, G always denotes a discrete group, unless stated otherwise. Let Ap,c(G) = C00(G)∩Ap(G),

where C00(G) denotes the set of compactly supported functions on G. Define

∆ : Ap,c(G)→ Ap,c(G×G), ∆ϕ =
∑
g∈G

ϕ(g)δ(g,g).

Note that ∆ϕ(s, t) = δs(t)ϕ(s).

Lemma 4.1.1. The map ∆ extends to a linear contraction from Ap(G) into Ap(G×G).

Proof. Let ε > 0. Suppose ϕ ∈ Ap,c(G), then we can express ϕ as ϕ =
∑
n ξn ? η̌n with ξn ∈ `p′(G),

ηn ∈ `p(G), and
∑
n ‖ξn‖p′‖ηn‖p < ‖ϕ‖Ap(G) + ε. Define ξ̃n ∈ `p′(G × G) by ξ̃n(s, t) = δs(t)ξn(s) and

η̃n ∈ `p(G × G) by η̃n(s, t) = δs(t)ηn(s). It is easy to show that ‖ξ̃n‖p′ = ‖ξn‖p′ and ‖η̃n‖p = ‖ηn‖p.

Moreover, ∑
n ξ̃n ?

ˇ̃ηn(s, t)

=
∑
n

(∑
(g,h) ξ̃n(g, h)η̃n(s−1g, t−1h)

)
=

∑
n

∑
(g,h) δg(h)ξn(g)δs−1g(t−1h)ηn(s−1g)

=
∑
n

∑
g ξn(g)δs(t)ηn(s−1g)

= δs(t)ϕ(s)

= ∆ϕ(s, t).

Therefore, we get

‖∆ϕ‖Ap(G×G) ≤ ‖ϕ‖Ap(G) + ε

and hence ‖∆‖ ≤ 1. Since Ap,c(G) is norm dense in Ap(G) [Run02], we can extend ∆ to a contraction from

Ap(G) into Ap(G×G).
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Remark 4.1.2. In particular, the proof above shows that if ξ ? η̌ ∈ Ap,c(G) with ξ ∈ `p′(G) and η ∈ `p(G),

then ∆(ξ ? η̌) = ξ̃ ? ˇ̃η. In fact, more is true as we have the following

Lemma 4.1.3. With the same notations as above, if ξ ∈ `p′(G) and η ∈ `p(G), then ∆(ξ ? η̌) = ξ̃ ? ˇ̃η.

Proof. Since C00(G) is dense in `p′(G), we can find a sequence (fn) ∈ C00(G) such that fn → ξ and

‖fn‖ ≤ ‖ξ‖p′ for all n. Similarly, there is a sequence (gn) ∈ C00(G) such that gn → η and ‖gn‖ ≤ ‖η‖p. It is

easy to check that fn ? ǧn → ξ ? η̌ in Ap(G) and hence ∆(fn ? ǧn)→ ∆(ξ ? η̌) in Ap(G×G). However, since

fn ? ǧn ∈ C00(G), from Remark 4.1.2, we get ∆(fn ? ǧn) = f̃n ? ˇ̃gn, which converges to ξ̃ ? ˇ̃η in Ap(G×G).

Define an isometry Γp : `p(G)→ `p(G×G) by δg 7→ δ(g,g). Note that `p′(G)
π
⊗`p(G) = N (`p(G)), the space

of nuclear operators on `p(G), then Γp′,p , Γp′
π
⊗ Γp : N (`p(G))→ N (`p(G×G)) = N (`p(G))

∧p
⊗ N (`p(G))

is a contraction. As in [Daw10], define a map Λp : N (`p(G))→ C0(G) by

Λp(g ⊗ f)(s) = 〈g, λp(s)(f)〉 (s ∈ G, f ∈ `p(G), g ∈ `p′(G)),

then it is easy to show that Λp induces a map from Ap(G) to Ap(G×G), which coincides with ∆ above.

Proposition 4.1.4. Let ρ : PMp(G × G) → PMp(G) denote the adjoint of ∆. Then ρ is p-completely

contractive.

Proof. Fix n ∈ N. Let [Tij ] ∈ Mn(PMp(G×G)). To estimate the norm of [ρ(Tij)] ∈ Mn(PMp(G)), choose

fi ∈ `p′(G), gj ∈ `p(G), 1 ≤ i, j ≤ n. We have

〈
f1

...

fn

 ,
 ρ(Tij)



g1

...

gn


〉
`n
p′
p′
⊗`p′ (G), `np⊗p`p(G)

=
∑n
i,j=1〈fi, ρ(Tij)gj〉`p′ (G), `p(G)

=
∑n
i,j=1〈fi ? ǧj , ρ(Tij)〉Ap(G), PMp(G)

(∆′ = ρ) =
∑n
i,j=1〈∆(fi ? ǧj), Tij〉Ap(G×G), PMp(G×G)

(Lemma 4.1.3) =
∑n
i,j=1〈f̃i ? ˇ̃gj , Tij〉Ap(G×G), PMp(G×G)

=
∑n
i,j=1〈f̃i, Tij(ˇ̃gj)〉`p′ (G×G), `p(G×G)

=

〈
f̃1

...

f̃n

 ,
 Tij



g̃1

...

g̃n


〉
`n
p′
p′
⊗`p′ (G×G), `np⊗p`p(G×G)
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Since ‖fi‖p′ = ‖f̃i‖p′ and ‖gj‖p = ‖g̃j‖p, 1 ≤ i, j ≤ n, we are done.

Lemma 4.1.5. For all s, t ∈ G, ρ(λ(s,t)) = δs(t)λs.

Proof. For all g, s, t ∈ G, by the duality between Ap(G) (respectively, Ap(G×G)) and PMp(G) (respectively,

PMp(G×G)), we get

〈δg, ρ(λ(s,t))〉 = 〈∆δg, λ(s,t)〉 = 〈δ(g,g), λ(s,t)〉 = δ(g,g)(s, t) = δg(s)δs(t) = δs(t)〈δg, λs〉 = 〈δg, δs(t)λs〉

and the result follows because Ap,c(G) is dense in Ap(G).

As in [Daw10], define Wp : `p(G × G) → `p(G × G) by (Wpξ)(s, t) = ξ(s, st), then Wp is an isometric

isomorphism on `p(G × G) with the inverse (W−1
p η)(s, t) = η(s, s−1t). It is straightforward to check that

(W−1
p )′ = Wp′ . Define

γ : PMp(G)→ B(`p(G×G))(= B(`p(G)⊗p `p(G))), T 7→W−1
p (T ⊗ I)Wp (T ∈ PMp(G)).

Before we proceed, we need a lemma about the Banach space projective tensor product.

Lemma 4.1.6. Let X
π
⊗ Y denote the Banach space projective tensor product of Banach spaces X and Y .

Let 1 < p′, p <∞ with 1/p′ + 1/p = 1. Then for every u ∈ X
π
⊗ Y , the norm π(u) of u is given by

π(u) = inf


( ∞∑
n=1

‖xn‖p
′

) 1
p′
( ∞∑
n=1

‖yn‖p
) 1
p

 , (4.1)

where the infimum is taken over all expressions u =
∑∞
n=1 xn ⊗ yn with

( ∞∑
n=1

‖xn‖p
′

) 1
p′
( ∞∑
n=1

‖yn‖p
) 1
p

<∞.

Proof. Let u ∈ X
π
⊗ Y and ε > 0. It is well known that

π(u) = inf

{ ∞∑
n=1

‖xn‖‖yn‖ :
∞∑
n=1

‖xn‖‖yn‖ <∞, u =
∞∑
n=1

xn ⊗ yn

}
. (4.2)

Therefore u can be written as u =
∑∞
n=1 ξn⊗ηn, ξn(6= 0) ∈ X, ηn(6= 0) ∈ Y with

∑∞
n=1 ‖ξn‖‖ηn‖ < π(u)+ε.

For each n, let λn = ‖ηn‖
p

p+p′ ‖ξn‖−
p′
p+p′ so that

‖λnξn‖p
′

=
∥∥∥∥ 1
λn
ηn

∥∥∥∥p = ‖ξn‖‖ηn‖.
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Now let xn = λnξn and yn = 1
λn
ηn then u =

∑∞
n=1 xn ⊗ yn and

( ∞∑
n=1

‖xn‖p
′

)1/p′ ( ∞∑
n=1

‖yn‖p
)1/p

=
∞∑
n=1

‖ξn‖‖ηn‖ < π(u) + ε.

Since ε is arbitrary, this shows that the right hand side of (4.1) is less than or equal to π(u). To show the

reverse inequality, let’s assume, for contradiction, that the right hand side of (4.1) is strictly less than π(u).

This means u can be written as u =
∑∞
n=1 xn ⊗ yn with (

∑∞
n=1 ‖xn‖p

′
)1/p′(

∑∞
n=1 ‖yn‖p)1/p < π(u). By

Hölder’s inequality, we would get
∑∞
n=1 ‖xn‖‖yn‖ < π(u) but this is impossible because of (4.2).

Lemma 4.1.7. γ is weak*-weak* continuous.

Proof. Suppose Tα, T ∈ PMp(G) and Tα → T in the weak* topology. For every
∑
n fn⊗gn ∈ `p′(G)

π
⊗`p(G)

with fn ∈ `p′(G), gn ∈ `p(G), and
∑
n ‖fn‖‖gn‖ <∞, we get

∑
n

〈fn, Tαgn〉 →
∑
n

〈fn, T gn〉.

We claim that Tα ⊗ I → T ⊗ I in the weak* topology in B(`p(G × G)). By Lemma 4.1.6, every u ∈

`p′(G × G)
π
⊗ `p(G × G) can be expressed as u =

∑
n ξn ⊗ ηn with ξn ∈ `p′(G × G), ηn ∈ `p(G × G),

and (
∑
n ‖ξn‖p

′
)1/p′(

∑
n ‖ηn‖p)1/p < ∞. Since `p′(G × G) = `p′(G) ⊗p′ `p′(G), each ξn can be written as

ξn =
∑
s∈G f

n
s ⊗ δp

′

s , where fns ∈ `p′(G) with
∑
s∈G ‖fns ‖p

′
= ‖ξn‖p

′
. In particular, fns is nonzero only for at

most countably many s ∈ G. Similarly each ηn can be expressed as ηn =
∑
t∈G g

n
t ⊗ δ

p
t , where gnt ∈ `p(G)

with
∑
t∈G ‖gnt ‖p = ‖ηn‖p. Now

∑
n

〈ξn, (Tα ⊗ I)ηn〉 =
∑
n

∑
s,t∈G

〈fns ⊗ δp
′

s , Tαg
n
t ⊗ δ

p
t 〉 =

∑
n

∑
s∈G
〈fns , Tαgns 〉.

Here the last term is a countable sum and

∑
n

∑
s∈G ‖fns ‖‖gns ‖ ≤

(∑
n

∑
s∈G ‖fns ‖p

′
)1/p′ (∑

n

∑
s∈G ‖gns ‖p

)1/p
=

(∑
n ‖ξn‖p

′
)1/p′

(
∑
n ‖ηn‖p)

1/p
<∞

and hence
∑
n

∑
s∈G〈fns , Tαgns 〉 →

∑
n

∑
s∈G〈fns , T gns 〉. This shows that Tα ⊗ I → T ⊗ I in the weak*

topology in B(`p(G × G)). Finally, for every u =
∑
n ξn ⊗ ηn with ξn ∈ `p′(G × G), ηn ∈ `p(G × G), and
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(
∑
n ‖ξn‖p

′
)1/p′(

∑
n ‖ηn‖p)1/p <∞, we obtain

〈γ(Tα), u〉 =
∑
n〈ξn,W−1

p (Tα ⊗ I)Wpηn〉

=
∑
n〈Wp′ξn, (Tα ⊗ I)Wpηn〉

→
∑
n〈Wp′ξn, (T ⊗ I)Wpηn〉

= 〈γ(T ), u〉

since (W−1
p )′ = Wp′ and Wp′ ,Wp are isometries and Tα ⊗ I → T ⊗ I in the weak* topology.

Remark 4.1.8. It is easy to show that γ(λs) = λ(s,s) and Lemma 4.1.7 shows that the range of γ is

contained in PMp(G)⊗̄PMp(G) = PMp(G×G).

Let us define the p-trace trp : PMp(G×G)→ C by trp(T ) = 〈Tδp(e,e), δ
p′

(e,e)〉.

Proposition 4.1.9. Define E : PMp(G×G)→ PMp(G×G) by E = γ ◦ ρ. Then

1. The range of E is the weak* closure of span{λp(s,s) : s ∈ G}

2. E is weak*-weak* continuous;

3. E2 = E;

4. trp ◦ E = trp;

5. E is unital and p-completely contractive.

Proof. (1) is easy to verify. (2) follows from definition of ρ and Lemma 4.1.7. (3) and (4) are immediate

from Lemma 4.1.5 and Remark 4.1.8. For (5), it is obvious that E is unital. By Proposition 4.1.4, it suffices

to show that γ is p-completely contractive. Fix n ∈ N and let [Tij ] ∈ Mn(PMp(G)). To compute the norm

of [γ(Tij)], let ξi ∈ `p′(G × G), ηj ∈ `p(G × G), 1 ≤ i, j ≤ n. Since `p′(G × G) = `p′(G)
p′

⊗ `p′(G), each ξi

can be written as ξi =
∑
s∈G f

i
s ⊗ δp

′

s , where f is ∈ `p′(G) with
∑
s∈G ‖f is‖p

′
= ‖ξi‖p

′
. Likewise, each ηj can
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be written as ηj =
∑
t∈G g

j
t ⊗ δ

p
t , where gjt ∈ `p(G) with

∑
t∈G ‖g

j
t ‖p = ‖ηj‖p. Since

〈
ξ1
...

ξn

 ,
 γ(Tij)



η1

...

ηn


〉
`n
p′
p′
⊗`p′ (G×G), `np⊗p`p(G×G)

=

〈
ξ1
...

ξn

 ,
 W−1

p (Tij ⊗ I)Wp



η1

...

ηn


〉
`n
p′
p′
⊗`p′ (G×G), `np⊗p`p(G×G)

((W−1
p )′ = Wp′) =

〈
Wp′ξ1

...

Wp′ξn

 ,
 Tij ⊗ I



Wpη1

...

Wpηn


〉
`n
p′
p′
⊗`p′ (G×G), `np⊗p`p(G×G)

and Wp′ (respectively, Wp) is an isometric isomorphism on `p′(G × G) (respectively, `p(G × G)), for norm

calculation of [γ(Tij)], we can replace the last term above by

〈
ξ1
...

ξn

 ,
 Tij ⊗ I



η1

...

ηn


〉
`n
p′
p′
⊗`p′ (G×G), `np⊗p`p(G×G)

=
∑n
i,j=1〈ξi, (Tij ⊗ I)ηj〉`p′ (G×G), `p(G×G)

=
∑n
i,j=1〈

∑
s∈G f

i
s ⊗ δp

′

s ,
∑
t∈G Tijg

j
t ⊗ δ

p
t 〉`p′ (G×G), `p(G×G)

=
∑n
i,j=1

∑
s∈G〈f is, Tijgjs〉`p′ (G), `p(G)

=
∑
s∈G

∑n
i,j=1〈f is, Tijgjs〉`p′ (G), `p(G)

=
∑
s∈G

〈
f1
s

...

fns

 ,
 Tij



g1
s

...

gns


〉
`n
p′
p′
⊗`p′ (G), `np⊗p`p(G)

.
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Here ∣∣∣∣∣∣∣∣∣∣∣
∑
s∈G

〈
f1
s

...

fns

 ,
 Tij



g1
s

...

gns


〉
`n
p′
p′
⊗`p′ (G), `np⊗p`p(G)

∣∣∣∣∣∣∣∣∣∣∣
≤ ‖[Tij ]‖ ·

∑
s∈G

(∑n
i=1 ‖f is‖p

′
)1/p′ (∑n

j=1 ‖gjs‖p
)1/p

(Hölder’s inequality) ≤ ‖[Tij ]‖ ·
(∑

s∈G
∑n
i=1 ‖f is‖p

′
)1/p′ (∑

s∈G
∑n
j=1 ‖gjs‖p

)1/p

= ‖[Tij ]‖ ·
(∑n

i=1

∑
s∈G ‖f is‖p

′
)1/p′ (∑n

j=1

∑
s∈G ‖gjs‖p

)1/p

= ‖[Tij ]‖ ·
(∑n

i=1 ‖ξi‖p
′
)1/p′ (∑n

j=1 ‖ηj‖p
)1/p

.

This completes the proof.

As an application, we get a p-analogue of Lemma 2.5 in [Haa86].

Corollary 4.1.10. Let G be a discrete group and let T be a weak*-continuous p-completely bounded map

on PMp(G) or p-completely bounded map on PFp(G). Define ϕ : G→ C by

ϕ(s) = 〈T (λps)δ
p
e , δ

p′

s 〉.

Then

1. ϕ ∈McbAp(G) with ‖ϕ‖McbAp(G) ≤ ‖T‖pcb.

2. If T is of finite rank, then ϕ ∈ `p(G) ⊆ Ap(G).

Proof. (1) First of all, suppose that T is a weak*-continuous p-completely bounded map on PMp(G). For

simplicity of notation, let M = PMp(G). Define

S = ρ ◦ (T ⊗ idPMp(G)) ◦ γ,

where T⊗idPMp(G) as in Lemma 3.7.1, then S is a weak*-continuous p-completely bounded map on PMp(G)

with ‖S‖pcb ≤ ‖T‖pcb. Suppose that T (λs)δe =
∑
t∈G cs,tδt with cs,t ∈ C and

∑
t∈G |cs,t|p < ∞. We claim

that S(λs) = cs,sλs. To show this, let ψ =
∑
g∈G agδg ∈ Ap,c(G) with ag ∈ C. Since

〈T (λs)⊗ λs, δg ⊗ δg〉PMp(G×G),Ap(G×G) = 〈δp
′

g ⊗ δp
′

g ,
∑
t∈G

cs,tδ
p
t ⊗ δps 〉`p′ (G×G),`p(G×G),

74



we obtain
〈S(λs), ψ〉

= 〈(ρ ◦ (T ⊗ idPMp(G)) ◦ γ)(λs), ψ〉

(ρ = ∆′) = 〈T (λs)⊗ λs,∆ψ〉

=
∑
g∈G ag〈T (λs)⊗ λs, δg ⊗ δg〉

= ascs,s

= 〈cs,sλs, ψ〉

and this proves the claim. On the other hand, by definition, ϕ(s) = cs,s and this shows that S = Mϕ and

therefore ‖ϕ‖McbAp(G) = ‖S‖pcb ≤ ‖T‖pcb.

Now assume that T is a p-completely bounded map on PFp(G). Define

S = ρ ◦ (T ⊗ idPFp(G)) ◦ γ|PFp(G),

where T ⊗ idPFp(G) as in Lemma 3.7.1, then S is a well-defined p-completely bounded map on PFp(G) the

result follows using the same argument as above.

(2) We adapt the idea used in [Haa86]. Without loss of generality, we can assume that T = f ⊗ b, where

f ∈ PMp(G)′ and b ∈ PMp(G). Then T (λs) = f(λs)b and

ϕ(s) = 〈T (λs)δpe , δ
p′

s 〉 = f(λs)〈bδpe , δp
′

s 〉.

This shows that ϕ(s) is the s-component of bδpe ∈ `p(G).

4.2 p-AP and p-OAP

Let G be a locally compact group. We say that G has the p-approximation property (p-AP) if there is a

net {uα} in Ap(G) such that uα → 1 in the σ(McbAp(G), Qpcb(G))-topology. Let V be a p-operator space.

We say that V has the p-operator space approximation property (p-OAP) if there is a net (Tα) of bounded

finite rank maps on V such that for every a ∈ K(`p)
∨p
⊗ V , (idK(`p) ⊗ Tα)(a)→ a in the norm topology (See

Lemma 3.7.1 for the definition of idK(`p)⊗ Tα). V is said to have the strong p-operator space approximation

property (strong p-OAP) if there is a net (Tα) of finite rank maps on V such that for every a ∈ B(`p)
∨p
⊗ V ,

(idB(`p) ⊗ Tα)(a)→ a in the norm topology.

Remark 4.2.1. 2-AP is the same as the approximation property studied in [HK94]. Similarly, 2-OAP is

the same as the operator space approximation property in [ER00].
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Lemma 4.2.2. Suppose that Tα, T ∈ CBp(PFp(G),B(`p(G))) and that Tα → T in the stable point-norm

topology. Then for any Lp(µ) and for any c ∈ K(Lp(µ))
∨p
⊗ PFp(G),

idK(Lp(µ)) ⊗ Tα(c)→ idK(Lp(µ)) ⊗ T (c)

in norm.

Proof. By Theorem 2.3.11, we have a p-complete isometry

K(Lp(µ))
∨p
⊗ PFp(G) = Lcp(µ)

hp
⊗ PFp(G)

hp
⊗ Lrp′(µ).

By Proposition 2.4.5, c ∈ K(Lp(µ))
∨p
⊗ PFp(G) can be written as v � x � w, where v ∈ M1,∞(Lcp(µ)),

x ∈ K∞(PFp(G)), and w ∈M∞,1(Lrp′(µ)) and hence

‖idK(Lp(µ)) ⊗ (Tα − T )(c)‖

= ‖v � (idK(`p) ⊗ (Tα − T ))(x)� w‖

≤ ‖v‖‖(idK(`p) ⊗ (Tα − T ))(x)‖‖w‖

→ 0.

Lemma 4.2.3. Suppose that Tα, T ∈ CBp(PFp(G),B(`p(G))) and that Tα → T in the stable point-norm

topology. Then Tα → T in the σ(CBp(PFp(G),B(`p(G))), PFp(G)
∧p
⊗ N (`p(G))) topology.

Proof. By assumption, for any a ∈ K(`p)
∨p
⊗ PFp(G), idK(`p) ⊗ Tα(a) → idK(`p) ⊗ T (a) in norm. Let u ∈

PFp(G)
∧p
⊗N (`p(G)), then by Proposition 2.4.4, we may assume that u = γ(a⊗f)δ =

∑
i,j,k,l γikaij⊗fklδjl,

where γ ∈M1,∞2 , δ ∈M∞2,1, a ∈ K(`p)
∨p
⊗ PFp(G), and f ∈ K(`p)

∨p
⊗ N (`p(G)). The operators γ̄ ∈M1,∞

and δ̄ ∈M∞,1 defined by

γ̄ = [γ1 γ2 · · · ], where γi = [γi1 γi2 · · · ]

and

δ̄ =



δ1

δ2

...


, where δl =



δ1l

δ2l
...


have the same norm as γ and δ. Let γn, γ̄n, an, fn, δn, and δ̄n be the truncations of γ, γ̄, a, f, δ, and δ̄,
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respectively, then it follows easily that u is the norm limit of γn(an ⊗ fn)δn in PFp(G)
∧p
⊗ N (`p(G)) and

that γ̄ � f � δ̄ is the norm limit of γ̄n � fn � δ̄n in `rp′
hp
⊗ N (`p(G))

hp
⊗ `cp = N∞

∧p
⊗ N (`p(G)). Since

〈Tα, u〉 = lim
n→∞

∑
i,j,k,l≤n

γik〈Tα(aij), fkl〉δjl

= lim
n→∞

〈(Tα)n(an), γ̄n � fn � δ̄n〉

= lim
n→∞

〈idK(`p) ⊗ Tα(a), γ̄n � fn � δ̄n〉

= 〈idK(`p) ⊗ Tα(a), γ̄ � f � δ̄〉,

the result follows.

Lemma 4.2.4. Suppose that Tα, T ∈ CBp(PFp(G),B(`p(G))). Then

Tα → T in the σ(CBp(PFp(G),B(`p(G))), PFp(G)
∧p
⊗ N (`p(G))) topology

if and only if for every b ∈ B(`p)
∨p
⊗ PFp(G) and ϕ ∈ N (`p ⊗p `p(G)),

〈idB(`p) ⊗ Tα(b), ϕ〉 → 〈idB(`p) ⊗ T (b), ϕ〉.

Proof. Let u ∈ PFp(G)
∧p
⊗ N (`p(G)), then by Proposition 2.4.4, we may assume that u = γ(b ⊗ f)δ =∑

i,j,k,l γikbij ⊗ fklδjl, where γ ∈M1,∞2 , δ ∈M∞2,1, b ∈ B(`p)
∨p
⊗ PFp(G), and f ∈ B(`p)

∨p
⊗ N (`p(G)). The

operators γ̄ ∈M1,∞ and δ̄ ∈M∞,1 defined by

γ̄ = [γ1 γ2 · · · ], where γi = [γi1 γi2 · · · ]

and

δ̄ =



δ1

δ2

...


, where δl =



δ1l

δ2l
...


have the same norm as γ and δ. Let γn, γ̄n, bn, fn, δn, and δ̄n be the truncations of γ, γ̄, b, f, δ, and δ̄,

respectively, then it follows easily that u is the norm limit of γn(bn⊗fn)δn in PFp(G)
∧p
⊗ N (`p(G)) and that

γ̄ � f � δ̄ is the norm limit of γ̄n � fn � δ̄n in `rp′
hp
⊗ N (`p(G))

hp
⊗ `cp = N∞

∧p
⊗ N (`p(G)) = N (`p ⊗p `p(G)).
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Since

〈Tα, u〉 = lim
n→∞

∑
i,j,k,l≤n

γik〈Tα(bij), fkl〉δjl

= lim
n→∞

〈(Tα)n(bn), γ̄n � fn � δ̄n〉

= lim
n→∞

〈idB(`p) ⊗ Tα(b), γ̄n � fn � δ̄n〉

= 〈idB(`p) ⊗ Tα(b), γ̄ � f � δ̄〉,

we get the result.

Proposition 4.2.5. Suppose that Tα, T ∈ CBp(PFp(G),B(`p(G))) and that Tα → T in the stable point-norm

topology. Then for any c ∈ B(Lp(µ))
∨p
⊗ PFp(G) and ϕ ∈ N (Lp(µ)⊗p `p(G)), we have

〈idB(Lp(µ)) ⊗ Tα(c), ϕ〉 → 〈idB(Lp(µ)) ⊗ T (c), ϕ〉.

Proof. Suppose c ∈ B(Lp(µ))
∨p
⊗ PFp(G) and ϕ ∈ N (Lp(µ) ⊗p `p(G)). By Proposition 2.4.4, we can write

ϕ = γ([fij ]⊗ [gkl])δ =
∑
i,j,k,l γikfij ⊗ gklδjl, where γ ∈M1,∞2 , δ ∈M∞2,1, f = [fij ] ∈ K(`p)

∨p
⊗ N (Lp(µ)),

and g = [gkl] ∈ K(`p)
∨p
⊗ N (`p(G)). Note that the map f̃ : B(Lp(µ))⊗ PFp(G)→ K(`p)⊗ PFp(G) defined

by

f̃(x⊗ y) = [fij(x)y]

extends to a map from B(Lp(µ))
∨p
⊗ PFp(G) to K(`p)

∨p
⊗ PFp(G). Now, using the same notation as in the

proof of Lemma 4.2.3, we claim that

〈idB(Lp(µ)) ⊗ Tα(c), ϕ〉 = 〈idK(`p) ⊗ Tα(f̃(c)), γ̄ � g � δ̄〉. (4.3)

It suffices to consider c = a⊗ b, where a ∈ B(Lp(µ)) and b ∈ PFp(G). Then

〈idB(Lp(µ)) ⊗ Tα(c), ϕ〉 = lim
n→∞

∑
i,j,k,l≤n

〈a⊗ Tα(b), γikfij ⊗ gklδjl〉

= lim
n→∞

∑
i,j,k,l≤n

γik〈fij , a〉〈gkl, Tα(b)〉δjl

= lim
n→∞

〈[fnij(Tα(a))]⊗ b, γ̄n � gn � δ̄n〉

= 〈idK(`p) ⊗ Tα(f̃(a⊗ b)), γ̄ � g � δ̄〉,

and the claim is proved. Finally, the result follows since idK(`p)⊗Tα(f̃(c))→ idK(`p)⊗T (f̃(c)) in norm.
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Lemma 4.2.6. For any x ∈ B(`p)
∨p
⊗ PFp(G)

∨p
⊗ PFp(G) and any ϕ ∈ N (`p ⊗p `p(G)), we have

〈idB(`p) ⊗ ρ(x), ϕ〉 = 〈x, idN (`p) ⊗ Γp′,p(ϕ)〉,

where idN (`p) ⊗ Γp′,p : N (`p)
∧p
⊗ N (`p(G))→ N (`p)

∧p
⊗ N (`p(G))

∧p
⊗ N (`p(G)).

Proof. It is enough to verify this for x = T ⊗λs⊗λt and ϕ = ψ⊗δp′w ⊗δpz , where T ∈ B(`p), λs, λt ∈ PFp(G),

ψ ∈ N (`p), δp
′

w ∈ `p′(G), and δpz ∈ `p(G). Indeed, by Lemma 4.1.5,

〈idB(`p) ⊗ ρ(x), ϕ〉 = δs(t)〈T ⊗ λs, ϕ〉 = δs(t)δw(sz)〈T, ψ〉.

On the other hand

〈x, idN (`p) ⊗ Γp′,p(ϕ)〉 = 〈x, ψ ⊗ δp
′

w,w ⊗ δpz,z〉 = 〈T, ψ〉δw(sz)δw(tz),

and the result follows.

Theorem 4.2.7. If PFp(G) has the p-OAP, then G has the p-AP.

Proof. Let (Tα) be a net of bounded finite rank maps on PFp(G) such that (idK(`p)⊗Tα)(a)→ a in the norm

topology for every a ∈ K(`p)
∨p
⊗ PFp(G) = K(`p)

∨p
⊗ PFp(G). Define uα : G→ C by uα(s) = 〈Tα(λs)δpe , δ

p′

s 〉,

then by Corollary 4.1.10, uα ∈ `p(G) ⊆ Ap(G) and moreover, it is easy to check that

M̄uα = ρ ◦ (idPFp(G) ⊗ Tα) ◦ γ|PFp(G).

We claim that uα → 1 in the σ(McbAp(G), Qpcb(G)) topology. Let a ∈ B(`p)
∨p
⊗ PFp(G) and ϕ ∈ N (`p ⊗p

`p(G)) (See Remark 3.7.7). Since

ωa,ϕ(uα) = 〈idB(`p) ⊗ M̄uα(a), ϕ〉,

we need to show that

〈idB(`p) ⊗ M̄uα(a), ϕ〉 → 〈a, ϕ〉. (4.4)

Since

idB(`p) ⊗ M̄uα = (idB(`p) ⊗ ρ) ◦ (idB(`p) ⊗ (idPFp(G) ⊗ Tα)) ◦ (idB(`p) ⊗ γ|PFp(G)),

79



from Lemma 4.2.6, (4.4) becomes

〈(idB(`p) ⊗ (idPFp(G) ⊗ Tα)) ◦ (idB(`p) ⊗ γ|PFp(G))(a), idN (`p) ⊗ Γp′,p(ϕ)〉

and the result follows from Proposition 4.2.5.

We can summarize this section in the following

Corollary 4.2.8. Let G be a discrete group. Then the following are equivalent

1. G has the p-AP;

2. there exists a net {ϕα} ⊆ Ap,c(G) such that idK(`p) ⊗ M̄ϕα(a) → a in norm for every a ∈ K(`p)
∨p
⊗

PFp(G);

3. PFp(G) has the p-OAP;

4. there exists a net {ϕα} ⊆ Ap,c(G) such that idB(`p) ⊗ M̄ϕα(a) → a in norm for every a ∈ B(`p)
∨p
⊗

PFp(G);

5. PFp(G) has the strong p-OAP;

Proof. 3 =⇒ 1 was proved in Theorem 4.2.7. Since 4 =⇒ 5, 4 =⇒ 2, 2 =⇒ 3, and 5 =⇒ 3 are clear, to

complete the proof, we only need to show that 1 =⇒ 4. Suppose that G has the p-AP, then there exists

a net {ψβ} ⊆ Ap(G) such that ψβ → 1 with respect to σ(McbAp(G), Qpcb(G))-topology. Moreover we

can assume that {ψβ} ⊆ Ap,c(G). Then M̄ψβ is a net of finite rank maps on PFp(G) such that for every

a ∈ B(`p)
∨p
⊗ PFp(G) and ϕ ∈ (B(`p)

∨p
⊗ PFp(G))′,

〈idB(`p) ⊗ M̄ψβ (a), ϕ〉 = 〈ωa,ϕ, ψβ〉 → 〈ωa,ϕ, 1〉 = 〈a, ϕ〉.

Therefore idB(`p) ⊗ M̄ψβ (a)→ a in the weak topology. By a standard convexity argument, we can choose a

net ϕα such that idB(`p) ⊗ M̄ϕα(a)→ a in norm for every a ∈ B(`p)
∨p
⊗ PFp(G).

This completes the proof.

4.3 p-Weak Amenability and p-CBAP

In this section we study properties which are stronger that those in the previous section. A locally compact

group G is said to be p-weakly amenable if Ap(G) has an approximate identity that is bounded in the
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McbAp(G) norm, i.e., if there exist a net {uα} in Ap(G) and a constant K such that ‖uαv − v‖Ap(G) → 0

for all v ∈ Ap(G) and such that ‖uα‖McbAp(G) < K for all α. A p-operator space V is said to have the p-

completely bounded approximation property (p-CBAP) if there is a positive number K such that the identity

map idV on V can be approximated in the point-norm topology by a net {Tα} of finite rank p-completely

bounded maps whose p-cb norms are bounded by K.

Remark 4.3.1. 1. 2-weak amenability is the same as weak amenability studied in Haagerup’s unpub-

lished paper [Haa86]. Similarly, 2-CBAP is the same as CBAP.

2. Following Theorem 11.3.3 in [ER00], one can show that if V has the p-CBAP, then V has the p-OAP.

The following is the main result in this section and gives a link between p-weak amenability and p-CBAP.

Theorem 4.3.2. Let G be a discrete group. Then the following are equivalent

1. Ap(G) has an approximate identity {ϕα} such that ‖ϕα‖McbAp(G) < K;

2. there exists a net {Tα} of finite rank maps on PFp(G) such that ‖Tα‖ < K and ‖Tα(x)− x‖ → 0 for

all x ∈ PFp(G);

3. there exists a net {Tα} of weak*-continuous finite rank maps on PMp(G) such that ‖Tα‖ < K and

〈Tα(x)− x, ϕ〉 → 0 for all x ∈ PMp(G).

Proof. 1 =⇒ 3 : We may assume that ϕα ∈ Ap,c(G). Then {mϕα} are finite rank p-cb maps on Ap(G) such

that ‖mϕα‖pcb < K and ‖mϕα(ω)− ω‖Ap(G) → 0 for all ω ∈ Ap(G). Then Tα := m∗ϕα satisfy 3.

1 =⇒ 2 : First note that for each s ∈ G, ‖δs‖Ap(G) = 1, see Remark 3.3.2. From 1, we can conclude that

|ϕα(s)− 1| = ‖(ϕα(s)− 1)δs‖Ap(G) = ‖ϕαδs − δs‖Ap(G) → 0. Since M̄ϕα(λs) = ϕα(s)λs, ‖M̄ϕα‖pcb < K and

‖M̄ϕα(λs)− λs‖ = ‖ϕα(s)λs − λs‖ = |ϕα(s)− 1|‖λs‖ → 0.

Then we can obtain 2.

2 =⇒ 1 : Given {Tα}, define ϕα : G → C by ϕ(s) = 〈T (λps)δ
p
e , δ

p′

s 〉. By Corollary 4.1.10, ϕα ∈ Ap(G) ⊆

McbAp(G) with ‖ϕα‖McbAp(G) < K. Since ‖Tα(λps)− λps‖ → 0, we can conclude that |ϕα− 1| → 0. Then for

any ψ ∈ Ap,c(G), we get ‖ϕαψ − ψ‖Ap(G) → 0. This implies that we have this true for all ψ ∈ Ap(G).

3 =⇒ 1 : For each s ∈ G, it is easy to see that the linear functional

a ∈ PMp(G) 7→ 〈aδpe , δp
′

s 〉
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is contained in Ap(G). Then

ϕα(s) = 〈Tα(λps)δ
p
e , δ

p′

s 〉 → 〈δps , δp
′

s 〉 = 1.

Now we can get the proof as in 2 =⇒ 1.

4.4 Comparison with the Classical Case

We take a closer look at Theorem 3.3.8.

Theorem 4.4.1. Let G be a discrete group and µ a measure. Let B(Lp(µ))⊗̄PMp(G) denote the weak*

closure of B(Lp(µ))⊗alg PMp(G) in B(Lp(µ)⊗p `p(G)). Then the following properties of a function ϕ : G→

B(Lp(µ)) are equivalent:

1. there exists a weak*-continuous p-complete contraction Mϕ : PMp(G)→ B(Lp(µ))⊗̄PMp(G) such that

Mu(λp(s)) = ϕ(s)⊗ λp(s);

2. there exists a p-complete contraction M̄ϕ : PFp(G)→ B(Lp(µ))
∨p
⊗ PFp(G) such that

M̄u(λp(s)) = ϕ(s)⊗ λp(s);

3. There exist an SQp space E and bounded maps α : G → B(Lp(µ), E) and β : G → B(E,Lp(µ)) such

that supt∈G ‖x(t)‖ ≤ 1, sups∈G ‖y(s)‖ ≤ 1 and

∀s, t ∈ G, ϕ(st−1) = y(s)x(t).

Proof. 1 =⇒2 is obvious.

2 =⇒3 First of all, note that λ(θ)⊗ϕ(θ) makes sense by Theorem 7.9 in [DF93]. By Theorem 4.1 in [Daw10],

there are an SQp space K, a p-representation π : PFp(G)→ B(K), and operators U : `p(G)⊗p Lp(µ)→ K,

V : K → `p(G)⊗p Lp(µ) with ‖U‖, ‖V ‖ ≤ 1 such that

∀θ ∈ G, λ(θ)⊗ ϕ(θ) = Mϕ(λ(θ)) = V π(λ(θ))U.

For t ∈ G, define x(t) ∈ B(Lp(µ),K) by

x(t)f = π(λ(t−1))U(δpt ⊗ f), f ∈ Lp(µ).
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For s ∈ G, define y(s) ∈ B(K,Lp(µ)) by

y(s)k = RsV π(λ(s))k, k ∈ K,

where Rs ∈ B(`p(G)⊗p Lp(µ), Lp(µ)) defined by Rs
(∑

t∈G δt ⊗ gt
)

= gs. Note that supt∈G ‖x(t)‖ ≤ 1 and

sups∈G ‖y(s)‖ ≤ 1. Now for all f ∈ Lp(µ) and for all f ′ ∈ Lp′(µ),

〈y(s)x(t)f, f ′〉

= 〈RsV π(λ(s))π(λ(t−1))U(δpt ⊗ f), f ′〉

= 〈RsV π(λ(st−1))U(δpt ⊗ f), f ′〉

= 〈Rsλ(st−1)⊗ ϕ(st−1)(δpt ⊗ f), f ′〉

= 〈Rs(δps ⊗ ϕ(st−1)f), f ′〉

= 〈ϕ(st−1)f, f ′〉

and the result follows.

(b)=⇒(a) Suppose K ⊆ Lp(ν)/E for some measure ν and a subspace E of Lp(ν). Let Q : Lp(ν) →

Lp(ν)/E denote the quotient mapping. By the argument in Section 7.3 in [DF93], for any T ∈ B(`p(G)),

T ⊗ idLp(ν) ∈ B(`p(G)⊗p Lp(ν)). By Proposition 7.4 in [DF93], T ⊗ idLp(ν) induces a continuous mapping

T ⊗ idLp(ν)/E : `p(G) ⊗p Lp(ν)/E → `p(G) ⊗p Lp(ν)/E. Finally let π : PFp(G) → B(`p(G) ⊗p K) denote

the operator defined by π(T ) = T ⊗ idK . Define operators U and V by

U : `p(G)⊗p Lp(µ)→ `p(G)⊗p K, δpt ⊗ f 7→ δpt ⊗ x(t)f

and

V : `p(G)⊗p K → `p(G)⊗p Lp(µ), δps ⊗ k 7→ δps ⊗ y(s)k,

then ‖U‖, ‖V ‖ ≤ 1 and for all f ∈ Lp(µ) and for all f ∈ Lp′(µ), we get

〈V π(λ(θ))U(δpt ⊗ f), δp
′

s ⊗ f ′〉

= 〈V π(λ(θ))(δpt ⊗ x(t)f), δp
′

s ⊗ f ′〉

= 〈V (δpθt ⊗ x(t)f), δp
′

s ⊗ f ′〉

= 〈δpθt ⊗ y(s)x(t)f, δp
′

s ⊗ f ′〉
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=


〈ϕ(st−1)f, f ′〉, if θ = st−1

0, otherwise

= 〈(λ(θ)⊗ ϕ(θ))(δpt ⊗ f), δp
′

s ⊗ f ′〉

hence Mϕ(λ(θ)) = V π(λ(θ))U and the result follows by the converse of Theorem 4.1 in [Daw10] once

we can prove that the mapping T 7→ π(T ) (hence T 7→ V π(T )U) is p-completely contractive. To this

end, let [Tij ] ∈ Mn(PFp(G)) with ‖[Tij ]‖ ≤ 1. Write Tijδt =
∑
s∈G a

j,t
i,sδs and for each 1 ≤ j ≤ n, let

ξj =
∑
t∈G ξ

j
t δt ∈ `p(G) with

(∑n
j=1 ‖ξj‖p

)1/p

=
(∑

j,t |ξ
j
t |p
)1/p

≤ 1. Then we get

1 ≥

∥∥∥∥∥∥∥∥∥∥

 Tij



ξ1
...

ξn


∥∥∥∥∥∥∥∥∥∥

p

=
∑
i

∥∥∥∥∥∥
∑
j

Tijξj

∥∥∥∥∥∥
p

(4.5)

=
∑
i,s

∣∣∣∣∣∣
∑
j,t

aj,ti,sξ
j
t

∣∣∣∣∣∣
p

.

For each 1 ≤ j ≤ n, let kj =
∑
t∈G δt ⊗ k

j
t ∈ `p(G) ⊗p K with

(∑n
j=1 ‖kj‖p

)1/p

=
(∑

j,t ‖k
j
t ‖p
)1/p

≤ 1.

Then we get

∥∥∥∥∥∥∥∥∥∥

 π(Tij)



k1

...

kn


∥∥∥∥∥∥∥∥∥∥

p

=
∑
i

∥∥∥∥∥∥
∑
j

π(Tij)kj

∥∥∥∥∥∥
p

=
∑
i,s

∥∥∥∥∥∥
∑
j,t

aj,ti,sk
j
t

∥∥∥∥∥∥
p

.

By Theorem 3.2 in [LeM96] (originally due to [Kwa72]), the last term
∑
i,s

∥∥∥∑j,t a
j,t
i,sk

j
t

∥∥∥p is dominated by∑
i,s

∣∣∣∑j,t a
j,t
i,sξ

j
t

∣∣∣p, which is in turn dominated by 1 by (4.5). This completes the proof.

Remark 4.4.2. Suppose 2 ≤ q ≤ p or p ≤ q ≤ 2. By [Her71, Corollary 2] and Theorem 4.4.1, it follows

that the identity mapping Jq,p : McbAq(G) → McbAp(G) is contractive. Taking the adjoint, we have that
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J ′q,p : (McbAp(G))′ → (McbAq(G))′ is also contractive and that ‖f‖Q,p ≥ ‖f‖Q,q for all f ∈ L1(G) (See the

discussion in the beginning of Section 3.6). Therefore Qpcb(G) ⊆ Qqcb(G) contractively.

Proposition 4.4.3. Suppose 2 ≤ q ≤ p or p ≤ q ≤ 2. If a discrete group G is q-weakly amenable, then it is

also p-weakly amenable.

Proof. Since G is q-weakly amenable, there exist an approximate identity {ωα} ∈ Aq,c(G) and C > 0 such

that ‖ωα‖McbAq(G) ≤ C for all α. By Remark 4.4.2, we see that ωα ∈McbAp(G) with ‖ωα‖McbAp(G) ≤ C for

each α. Define Mωα on PFp(G) by Mωα(λp(s)) = ωα(s)λp(s), then by Theorem 3.3.8, it follows that {Mωα}

are finite rank bounded maps on PFp(G) with ‖Mωα‖ ≤ C for all α. Since

|ωα(s)− 1| = ‖ωαδs − δs‖Aq(G) → 0

for each s ∈ G, we conclude that ‖Mωα(x) − x‖ → 0 for all x ∈ PFp(G). Now the result follows from

Theorem 4.3.2.

Proposition 4.4.4. Suppose 2 ≤ q ≤ p or p ≤ q ≤ 2. If a discrete group G has the q-AP, then it also has

the p-AP.

Proof. If G has the q-AP, then there exists a net {uα} ⊆ Aq,c(G) such that 〈uα, ω〉 → 〈1, ω〉 for all ω ∈

Qqcb(G). Since G is discrete, {uα} ⊆ Ap,c(G) and by Remark 4.4.2, we have 〈uα, ω〉 → 〈1, ω〉 for all

ω ∈ Qpcb(G).

4.5 1-Nuclearity

Lemma 4.5.1. Let x = [xij ] ∈ B(`m1 ). Then

‖x‖B(`m1 ) = max
1≤j≤m

{
m∑
i=1

|xij |

}
.

Proof. Easy.

Suppose G is a countable discrete group. Write G =
⋃∞
n=1 Fn with {e} ⊆ F1 ⊆ F2 ⊆ F3 ⊆ · · · , each Fn

finite, and |Fn| = Nn. For each n ∈ N, define Pn ∈ B(`1(G)) by

Pn

(∑
s∈G

asδs

)
=
∑
s∈Fn

asδs,
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then we can identify PnB(`1(G))Pn with MNn = B(`Nn1 ).

PnB(`1(G))Pn
ψn

&&NNNNNNNNNN

`1(G)

ϕn
88pppppppppp

`1(G)

Define

ϕn : `1(G)→ PnB(`1(G))Pn, f 7→ Pnλ(f)Pn

and

ψn : PnB(`1(G))Pn → `1(G), [au,v]u,v∈Fn 7→
∑
u∈Fn

au,eδu.

Claim 4.5.2. For all f ∈ `1(G), ‖ψn ◦ ϕn(f)− f‖ → 0.

Proof. For u ∈ Fn, we have 〈δu, ϕn(f)δe〉 = 〈δu, Pnf〉 = f(u) and this calculation shows that ψn ◦ ϕn(f) =

χFnf .

Note that `1(G) can be identified with λ(`1(G)) ⊆ B(`1(G)) as convolution operators and naturally

equipped with the 1-operator space structure inherited from this inclusion. For notational convenience, we

fix n and drop the subscript n.

Claim 4.5.3. ϕ is 1-completely contractive.

Proof. Clear.

Claim 4.5.4. ψ is 1-completely contractive.

Proof. Fix k ∈ N. Let [Tij ]1≤i,j≤k ∈Mk(PnB(`1(G))Pn) with ‖[Tij ]‖ ≤ 1. We need to show that ‖[ψ(Tij)]‖ ≤

1. To this end, suppose gj ∈ `1(G) with
∑k
j=1 ‖gj‖1 ≤ 1, then

∥∥∥∥∥∥∥∥∥∥

 ψ(Tij)



g1

...

gk


∥∥∥∥∥∥∥∥∥∥

≤
k∑
i=1

∥∥∥∥∥∥
k∑
j=1

ψ(Tij) ? gj

∥∥∥∥∥∥
≤

k∑
i=1

k∑
j=1

‖ψ(Tij)‖1 ‖gj‖1
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=
k∑
j=1

‖gj‖1
k∑
i=1

‖ψ(Tij)‖1

(By Lemma 4.5.1) ≤
k∑
j=1

‖gj‖1 ‖[Tij ]‖

≤ 1.

This completes the proof.

4.6 Stability of Approximation Properties

Lemma 4.6.1. Let H be a closed subgroup of a locally compact group G. For any function u on G, let u|H

denote the restriction of u to H.

1. If u ∈MAp(G), then u|H ∈MAp(H) and

‖u|H‖MAp(H) ≤ ‖u‖MAp(G).

2. If u ∈McbAp(G), then u|H ∈McbAp(H) and

‖u|H‖McbAp(H) ≤ ‖u‖McbAp(G).

Proof. (a) By Theorem 1 in [Her71], the restriction of functions gives a quotient mapping from Ap(G) to

Ap(H). Therefore, for ϕ ∈ Ap(H), we get

‖ϕ‖Ap(H) = inf{‖ϕ̃‖Ap(G) : ϕ̃ ∈ Ap(G), ϕ̃|H = ϕ}.

Suppose u ∈MAp(G). For ϕ ∈ Ap(H), there exists ϕ̃ with ϕ̃|H = ϕ. Since u|Hϕ = (uϕ̃)|H and uϕ̃ ∈ Ap(G),

again by Theorem 1 in [Her71] we get u|Hϕ ∈ Ap(H). This shows that u|H ∈MAp(H) and moreover,

‖u|H‖MAp(H) = inf{‖u|Hϕ‖Ap(H) : ϕ ∈ Ap(H), ‖ϕ‖Ap(H) ≤ 1}

≤ inf{‖uϕ̃‖Ap(G) : ϕ̃ ∈ Ap(G), ϕ̃|H = ϕ, ‖ϕ‖Ap(H) ≤ 1}

≤ ‖u‖MAp(G).

(b) By Theorem 8.3 in [Daw10], there exists E ∈ SQp and bounded continuous maps α : G → E and

β : G → E′ such that u(ts−1) = 〈β(t), α(s)〉 for all t, s ∈ G. It follows that u|H(τσ−1) = 〈β|H(τ), α|H(σ)〉
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for all τ, σ ∈ H. This shows that u|H ∈McbAp(H) and that ‖u|H‖McbAp(H) ≤ ‖u‖McbAp(G).

Theorem 4.6.2. Let H be a closed subgroup of a locally compact group G. If G is p-weakly amenable, then

H is also p-weakly amenable.

Proof. Let {ui} be an approximate identity in Ap(G) such that supi ‖ui‖McbAp(G) ≤ k for some k. Put

vi = ui|H . We claim that {vi} is an approximate identity in Ap(H) such that supi ‖ui‖McbAp(G) ≤ k.

Indeed, for any ϕ ∈ Ap(H), we can always find ϕ̃ ∈ Ap(G) such that ϕ̃|H = ϕ and

‖viϕ− ϕ‖Ap(H) = ‖(uiϕ̃− ϕ̃)|H‖Ap(H) ≤ ‖uiϕ̃− ϕ̃‖Ap(G) → 0.

Since supi ‖vi‖McbAp(G) ≤ k by Lemma 4.6.1, this completes the proof.

Theorem 4.6.3. Let H be a subgroup of a discrete group G. If G has p-AP, then H also has p-AP.

Proof. Suppose {ui} is a net in Ap(G) such that ui → 1G in σ(McbAp(G), Qpcb(G))-topology. Let vi = ui|H .

We claim that vi → 1H in σ(McbAp(H), Qpcb(H))-topology. Suppose ξ ∈ Qpcb(H), then ξ = limn fn for

some fn ∈ L1(H) in McbAp(H)′. Define gn ∈ L1(G) by

gn(x) =


fn(x), x ∈ H,

0, x ∈ G \H.

Since

‖gn − gm‖McbAp(G)′ = sup

{∣∣∣∣∣∑
x∈G

(gn(x)− gm(x))ϕ(x)

∣∣∣∣∣ : ϕ ∈McbAp(G), ‖ϕ‖McbAp(G) ≤ 1

}

= sup

{∣∣∣∣∣∑
x∈H

(fn(x)− fm(x))ϕ|H(x)

∣∣∣∣∣ : ϕ ∈McbAp(G), ‖ϕ‖McbAp(G) ≤ 1

}
= ‖fn − fm‖McbAp(H)′ ,

{gn} is Cauchy in McbAp(G)′. Let η = limn gn in McbAp(H)′, then

〈vi, ξ〉 = lim
n

∑
x∈H

vi(x)fn(x) = lim
n

∑
x∈G

ui(x)gn(x)

= 〈ui, η〉

→ 〈1G, η〉

= lim
n

∑
x∈G

gn(x) = lim
n

∑
x∈H

fn(x)
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= 〈1H , ξ〉.

This completes the proof.

Remark 4.6.4. Even when p = 2, it is unlikely that G has the p-AP implies G/H has the p-AP. See [HK94].

Lemma 4.6.5. Let G be a locally compact group, and suppose that H is a closed subgroup of G such that

∆G(h) = ∆H(h) for all h ∈ H. For each f, g ∈ C00(G), let Φf,g denote the map defined on McbAp(H) by

Φf,g(u) = f ? udh ? ǧ, u ∈McbAp(H),

where dh is a fixed left Haar measure on H. Then Φf,g is a bounded linear map from McbAp(H) into

McbAp(G) that is σ(McbAp(H), Qpcb(H))-σ(McbAp(G), Qpcb(G)) continuous.

Proof. Let πH : G → G/H denote the canonical mapping onto the left cosets of H and write ẋ = πH(x).

Let TH : C00(G)� C00(G/H) be as in [RS00, Definition 3.3.9], that is,

THf(ẋ) =
∫
H

f(xh)dh, f ∈ C00(G), ẋ ∈ G/H.

By [RS00, Propositions 8.1.1, 8.1.3, 8.1.4], there is a measure µ on G/H that is invariant under the natural

action of G on G/H and satisfies the relation

∫
G/H

THf(ẋ)dµ(ẋ) =
∫
G/H

∫
H

f(xh)dhdµ(ẋ) =
∫
G

f(x)dx, f ∈ C00(G), (4.6)

where dx is a fixed Haar measure on G. Let g ∈ C00(G) and let u ∈McbAp(H). Then

(udh ? ǧ)(y) =
∫
H

u(h)g(y−1h)dh, ∀y ∈ G.

Using the fact that u is bounded and g is uniformly continuous, one can easily show that udh?ǧ is continuous,

and hence for each x ∈ G, the function y 7→ f(y)(udh ? ǧ)(y−1x) is in C00(G). Now, by (4.6),

Φf,g(u)(x) =
∫
G

f(y)(udh ? ǧ)(y−1x)dy

=
∫
G/H

∫
H

f(yh)(udh ? ǧ)(h−1y−1x)dhdµ(ẏ)

=
∫
G/H

∫
H

f(yh)
∫
H

u(k)g(x−1yhk)dkdhdµ(ẏ)

=
∫
G/H

∫
H

∫
H

f(yh)u(k)g(x−1yhk)dkdhdµ(ẏ). (4.7)
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Let ε > 0. Since u ∈ McbAp(H), by [Daw10, Theorem 8.3], there exist E ∈ SQp and bounded maps α :

H → E and β : H → E′ such that u(s−1t) = 〈β(s), α(t)〉 for all t, s ∈ H and ‖α‖∞‖β‖∞ < ‖u‖McbAp(H) + ε.

Define P : G→ E′ (respectively, Q : G→ E) by

P (x) =
∫
H

f(xh)β(h)dh
(

respectively, Q(x) =
∫
H

g(xh)α(h)
)
, x ∈ G.

For any x ∈ G and for any ϕ ∈ E′′ = E, we have

|〈P (x), ϕ〉| ≤
∫
H

|f(xh)| |〈β(h), ϕ〉| dh ≤ ‖β‖∞‖ϕ‖
∫
H

|f(xh)| dh,

and hence

‖P (x)‖ ≤ ‖β‖∞
∫
H

|f(xh)| dh, ∀x ∈ G. (4.8)

Since

‖P (x)− P (y)‖ ≤ ‖β‖∞
∫
H

|f(xh)− f(yh)| dh

and f ∈ C00(G), it follows that P is continuous. Similarly,

‖Q(x)‖ ≤ ‖α‖∞
∫
H

|g(xh)| dh, ∀x ∈ G, (4.9)

‖Q(x)−Q(y)‖ ≤ ‖α‖∞
∫
H

|g(xh)− g(yh)| dh, (4.10)

and in particular, Q is also continuous. Now by (4.7),

Φf,g(u)(x−1y) =
∫
G/H

∫
H

∫
H

f(zh)u(k)g(y−1xzhk)dkdhdµ(ż)

(k 7→ h−1k) =
∫
G/H

∫
H

∫
H

f(zh)u(h−1k)g(y−1xzk)dkdhdµ(ż)

(z 7→ x−1z) =
∫
G/H

∫
H

∫
H

f(x−1zh)u(h−1k)g(y−1zk)dkdhdµ(ż)

=
∫
G/H

∫
H

∫
H

f(x−1zh)g(y−1zk)〈β(h), α(k)〉dkdhdµ(ż)

=
∫
G/H

〈P (x−1z), Q(y−1z)〉dµ(ż),

where the G-invariance of µ is used in the third equality. Let ρ, ω be as in the proof of [HK94, Lemma 1.16].

90



Then

∫
G

‖Q(y−1x)‖pdω(x) =
∫
G/H

‖Q(y−1ρ(ẋ))‖pdµ(ẋ)

(by (4.9)) ≤
∫
G/H

(
‖α‖∞

∫
H

∣∣g(y−1ρ(ẋ)h)
∣∣ dh)p dµ(ẋ)

(πH(ρ(ẋ)) = ẋ) =
∫
G/H

(
‖α‖∞

∫
H

∣∣g(y−1xh)
∣∣ dh)p dµ(ẋ)

(G-invariance of µ) =
∫
G/H

(
‖α‖∞

∫
H

|g(xh)| dh
)p

dµ(ẋ).

Put L(g) =
∫
G/H

(∫
H
|g(xh)| dh

)p
dµ(ẋ) and F = Lp(G,E, ω) = Lp(G,ω) ⊗p E, then F is an SQp space

(See Theorem 3.1 and the remarks after it in [Run05]) and the function B : G→ F defined by

B(x)(y) = Q(x−1y), x, y ∈ G,

satisfies ‖B(x)‖p ≤ ‖α‖p∞L(g) for all x ∈ G. Moreover, for any y, z ∈ G,

‖B(y)−B(z)‖p =
∫
G

‖Q(y−1x)−Q(z−1x)‖pdω(x)

=
∫
G/H

‖Q(y−1ρ(ẋ))−Q(z−1ρ(ẋ))‖pdµ(ẋ)

(by (4.10)) ≤
∫
G/H

‖α‖p∞
(∫

H

∣∣g(y−1ρ(ẋ)h)− g(z−1ρ(ẋ)h)
∣∣ dh)p dµ(ẋ)

≤
∫
G/H

‖α‖p∞
(∫

H

∣∣g(y−1xh)− g(z−1xh)
∣∣ dh)p dµ(ẋ)

≤
∫
G/H

‖α‖p∞2p−1‖TH |g|‖p−1
∞

∫
H

∣∣g(y−1xh)− g(z−1xh)
∣∣ dhdµ(ẋ)

= ‖α‖p∞2p−1‖TH |g|‖p−1
∞

∫
G

∣∣g(y−1x)− g(z−1x)
∣∣ dx

and it follows that B is continuous. Similarly,

∫
G

‖P (y−1x)‖p
′
dω(x) ≤

∫
G/H

(
‖β‖∞

∫
H

|f(xh)| dh
)p′

dµ(ẋ).

Put M(f) =
∫
G/H

(∫
H
|g(xh)| dh

)p
dµ(ẋ) and define A : G→ Lp′(G,ω)⊗p′ E′ ⊆ F ′ [DF93, Proposition

15.10] by A(x)(y) = P (x−1y), then ‖A(x)‖p′ ≤ ‖β‖p′∞M(f) for all x ∈ G. Moreover, the same argument as

above gives

‖A(y)−A(z)‖p
′
≤ ‖β‖p

′

∞2p
′−1‖TH |g|‖p

′−1
∞

∫
G

∣∣f(y−1x)− f(z−1x)
∣∣ dx
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and hence A is also continuous. Now it follows that

〈A(x), B(y)〉 =
∫
G

〈P (x−1z), Q(y−1z)〉dω(z)

=
∫
G

∫
H

∫
H

f(x−1zh)g(y−1zk)〈β(h), α(k)〉dhdkdω(z)

=
∫
G/H

∫
H

∫
H

f(x−1ρ(ż)h)g(y−1ρ(ż)k)〈β(h), α(k)〉dhdkdµ(ż)

=
∫
G/H

∫
H

∫
H

f(x−1zh)g(y−1zk)〈β(h), α(k)〉dhdkdµ(ż)

= Φf,g(u)(x−1y)

and this shows that Φf,g(u) ∈McbAp(G). Moreover, by taking the infimum over α and β, we get

‖Φf,g‖ ≤ L(g)1/pM(f)1/p′ .

It remains to show that Φf,g is σ(McbAp(H), Qpcb(H)) - σ(McbAp(G), Qpcb(G)) continuous. To this end, it

suffices to show that Φ′f,g maps Qpcb(G) into Qpcb(H). Since L1(G) is dense in Qpcb(G), it suffices to show

that Φ′f,g(ξ) ∈ Qpcb(H) for every ξ ∈ L1(G). So let ξ ∈ L1(G) and define a function ξf,g on H by

ξf,g(h) =
∫
G

f(x)(ξ ? g)(xh)dx, h ∈ H.

It is easy to check that ξf,g ∈ L1(H) and that

〈u,Φ′f,g(ξ)〉 = 〈Φf,g(u), ξ〉 =
∫
H

u(k)ξf,g(k)dk = 〈u, ξf,g〉,

from which it follows that Φ′f,g(ξ) = ξf,g ∈ L1(H) ⊆ Qpcb(H).

Theorem 4.6.6. Let G be a locally compact group and H a closed normal subgroup of G. If H and G/H

have the p-AP, then G has the p-AP.

Proof. Let {ui} ⊆ Ap,c(H) be such that ui → 1H in the σ(McbAp(H), Qpcb(H)) topology. By Lemma 4.6.5

and [RS00, Proposition 3.3.17], for any f, g ∈ C00(G), Φf,g(ui) → Φf,g(1H) in the σ(McbAp(G), Qpcb(G))

topology. Since Φf,g(ui) ∈ Ap,c(G) for all i, it suffices to show that 1G is in the σ(McbAp(G), Qpcb(G))

closure of {Φf,g(1H) : f, g ∈ C00(G)}. Let f, g ∈ C00(G) and put ξ = THf , η = THg. It follows from (4.7)

that

Φf,g(1H)(x) =
∫
G/H

∫
H

∫
H

f(yh)g(x−1yhk)dkdhdµ(ẏ)

92



=
∫
G/H

ξ(ẏ)η(ẋ−1ẏ)dµ(ẏ)

= ξ ? η̌(ẋ), ∀x ∈ G.

Since TH is a map from C00(G) onto C00(G/H) [RS00, Proposition 3.4.2], we obtain

{Φf,g(1H) : f, g ∈ C00(G)} = {(ξ ? η̌) ◦ πH : ξ, η ∈ C00(G/H)}. (4.11)

Moreover, TH extends to a map from L1(G) onto L1(G/H) [RS00, Proposition 3.4.5]. Define a map

Ψ on McbAp(G/H) by Ψ(u) = u ◦ πH , u ∈ McbAp(G/H). Since Ψ(u)(st−1) = u(ṡṫ−1), we see that

Ψ maps McbAp(G/H) contractively into McbAp(G). We claim that Ψ is σ(McbAp(G/H), Qpcb(G/H)) -

σ(McbAp(G), Qpcb(G)) continuous. Let ζ ∈ L1(G), then for any u ∈McbAp(G/H), we get

〈u, THζ〉 =
∫
G/H

u(ẋ)
∫
H

ζ(xh)dhdµ(ẋ)

=
∫
G/H

∫
H

u(ẋ)ζ(xh)dhdµ(ẋ)

=
∫
G/H

∫
H

Ψ(u)(xh)ζ(xh)dhdµ(ẋ)

= 〈Ψ(u), ζ〉

and using the same argument as in the proof of Lemma 4.6.5, we get the desired continuity of Ψ. Let R

denote the linear span of {ξ ? η̌ : ξ, η ∈ C00(G/H)}, then R is dense in Ap(G/H) in the Ap(G/H) norm and

hence 1G/H is in the σ(McbAp(G/H), Qpcb(G/H)) closure of R. Now from the continuity of Ψ and (4.11),

we conclude that 1G is in the σ(McbAp(G), Qpcb(G)) closure of {Φf,g(1H) : f, g ∈ C00(G)} as desired.
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Chapter 5

Conditions Cp, C ′p, and C ′′p for
p-Operator Spaces

5.1 Introduction

Conditions C, C ′, and C ′′ for operator spaces are studied in [ER00, Chapter 14]. To be precise, it is known

that an operator space W is locally reflexive if and only if W satisfies condition C ′′ [ER00, Theorem 14.3.1].

It is also known that an operator space V is exact if and only if V satisfies condition C ′ [ER00, Theorem

14.4.1]. In this chapter, we define p-analogues of these definitions, which will be called conditions Cp, C ′p,

and C ′′p , and show that a p-operator space satisfies condition Cp if and only if it satisfies both conditions C ′p

and C ′′p .

Lemma 5.1.1. Let V and W be p-operator spaces. Then the bilinear mapping

Ψ̃ : V ′ ×W ′ → (V
∨p
⊗ W )′, (f, g) 7→ f ⊗ g

is jointly p-completely contractive and hence the canonical mapping Ψ : V ′
∧p
⊗W ′ → (V

∨p
⊗W )′ is p-completely

contractive.

Proof. The second half follows from Proposition 2.1.3, so it suffices to show that the bilinear map Ψ̃ is jointly

p-completely contractive. Recall the definition

Ψ̃r;s : Mr(V ′)×Ms(W ′)→Mrs((V
∨p
⊗ W )′), ([fij ], [gkl]) 7→ [fij ⊗ gkl], r, s ∈ N.

Here we can identify [fij ⊗ gkl] with [fij ] ⊗ [gkl] : V
∨p
⊗ W → Mrs and hence we get ‖[fij ⊗ gkl]‖ ≤

‖[fij ]‖ · ‖[gkl]‖.

Lemma 5.1.2. Let V ⊆ B(Lp(µ)) and W ⊆ B(Lp(ν)). Then ‖·‖∨p is a subcross matrix norm. In particular,

for every u ∈Mn(V ⊗W ), we have ‖u‖∨p ≤ ‖u‖∧p .
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Proof. Let v = [vij ] ∈Mr(V ) and w = [wkl] ∈Mq(W ), then by Remark 2.3.2,

‖v ⊗ w‖∨p = sup {‖(f ⊗ g)rq(v ⊗ w)‖ : f ∈Ms(V ′)1, g ∈Mt(W ′)1} .

Note that (f ⊗ g)rq(v ⊗ w) = fr(v)⊗ gq(w) and hence

‖(f ⊗ g)rq(v ⊗ w)‖ = ‖fr(v)‖ · ‖gq(w)‖ ≤ ‖v‖ · ‖w‖.

The second half of the lemma follows immediately because ‖ · ‖∧p is the largest subcross matrix norm.

5.2 Conditions C ′p, C ′′p , and Cp for p-Operator Spaces

Let V ⊆ B(Lp(µ)) and W ⊆ B(Lp(ν)). Fix ϕ ∈ (V
∨p
⊗W )′. For v0 ∈ V , we define a bounded linear functional

v0ϕ on W by

v0ϕ(w) = ϕ(v0 ⊗ w), w ∈W.

In general, when v0 = [vij ] ∈ Mr(V ) and ϕ = [ϕkl] ∈ Mn((V
∨p
⊗ W )′), we define v0ϕ = [vijϕkl] ∈ Mrn(W ′).

Similarly, for w0 ∈W , we define ϕw0 ∈ V ′ by

ϕw0(v) = ϕ(v ⊗ w0), v ∈ V.

As in v0ϕ above, we can extend the definition of ϕw0 for w0 ∈Mr(W ) and ϕ ∈Mn((V
∨p
⊗ W )′).

Define a linear map ΦRV,W : V ⊗W ′′ → (V
∨p
⊗ W )′′ by

ΦRV,W (v ⊗ w′′)(ϕ) = 〈vϕ,w′′〉W ′,W ′′ , v ∈ V, w′′ ∈W ′′, ϕ ∈ (V
∨p
⊗ W )′.

Similarly, define a linear map ΦLV,W : V ′′ ⊗W → (V
∨p
⊗ W )′′ by

ΦLV,W (v′′ ⊗ w)(ϕ) = 〈ϕw, v′′〉V ′,V ′′ , v′′ ∈ V ′′, w ∈W, ϕ ∈ (V
∨p
⊗ W )′.

Lemma 5.2.1. The map ΦRV,W (respectively, ΦLV,W ) defined above extends to a p-completely contractive map

ΦRV,W : V
∧p
⊗ W ′′ → (V

∨p
⊗ W )′′ (respectively, ΦLV,W : V ′′

∧p
⊗ W → (V

∨p
⊗ W )′′).

Proof. Consider the bilinear map Φ : V ×W ′′ → (V
∨p
⊗ W )′′ given by

(v, w′′) 7→ (ϕ 7→ 〈vϕ,w′′〉W ′,W ′′).
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We get

Φr;s : Mr(V )×Ms(W ′′)→Mrs((V
∨p
⊗ W )′′), ([vij ], [wkl′′]) 7→ [Φ(vij , wkl′′)].

Following the notation in [ER00], we obtain

‖[Φ(vij , wkl′′)]| = sup
n

{
‖〈〈Φr;s(v, w′′), ϕ〉〉‖ : ϕ ∈Mn((V

∨p
⊗ W )′), ‖ϕ‖ ≤ 1

}
.

Since 〈〈Φr;s(v, w′′), ϕ〉〉 = 〈〈vϕ,w′′〉〉, we have

‖〈〈Φr;s(v, w′′), ϕ〉〉‖ = ‖〈〈vϕ,w′′〉〉‖ ≤ ‖vϕ‖Mrn(W ′) · ‖w′′‖Ms(W ′′)

and the result follows because

‖vϕ‖Mrn(W ′) = supm {‖〈〈vϕ,w〉〉‖Mrnm
: w ∈Mm(W ), ‖w‖ ≤ 1}

= supm {‖〈〈ϕ, v ⊗ w〉〉‖Mrnm
: w ∈Mm(W ), ‖w‖ ≤ 1}

≤ ‖ϕ‖ · ‖v‖

≤ ‖v‖.

Let Ψ : V ′
∧p
⊗W ′ → (V

∨p
⊗W )′ denote the canonical map, and consider the following commutative diagram

V ⊗W ′′
ΦRV,W // (V

∨p
⊗ W )′′

Ψ′ // (V ′
∧p
⊗ W ′)′

CBσp,F (V ′,W ′′) � � ι // CBp(V ′,W ′′)

where CBσp,F (V ′,W ′′) denotes the space of all weak∗-continuous p-completely bounded finite rank maps from

V ′ to W ′′ and ι is the inclusion map. This commutative diagram shows that ΦRV,W is one-to-one, so one can

equip V ⊗W ′′ with the p-operator space norm inherited from (V
∨p
⊗W )′′, which will be denoted by, following

the notation in [ER00], V⊗∨p :W ′′. We say that V satisfies condition C ′p (or V has property C ′p) if this

induced norm coincides with the injective tensor product norm with every W ⊆ B(Lp(ν)).
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Similarly, the following diagram

V ′′ ⊗W
ΦLV,W // (V

∨p
⊗ W )′′

Ψ′ // (V ′
∧p
⊗ W ′)′

CBσp,F (W ′, V ′′) � � ι // CBp(W ′, V ′′)

is also commutative, ΦLV,W is one-to-one, and one can hence equip V ′′⊗W with the p-operator space norm in-

herited from (V
∨p
⊗W )′′, which will be denoted by V ′′ :⊗∨pW . We say that V satisfies condition C ′′p (or V has

property C ′′p ) if this induced norm coincides with the injective tensor product norm with every W ⊆ B(Lp(ν)).

In order to define condition Cp for p-operator spaces, we consider the following diagram

(V
∧p
⊗ W ′′)′′

(ΦRV,W )′′

&&MMMMMMMMMM

V ′′ ⊗W ′′

ΦL
V,W ′′

99rrrrrrrrrrr

ΦR
V ′′,W %%LLLLLLLLLLL (V

∨p
⊗ W )

′′′′ P // (V
∨p
⊗ W )′′ ,

(V ′′
∧p
⊗ W )′′

(ΦLV,W )′′

88qqqqqqqqqq

where P is the restriction mapping. Note that Lemma 5.2.1 was used here to consider (ΦRV,W )′′ and (ΦLV,W )′′.

For p-operator spaces V ⊆ B(Lp(µ)), W ⊆ B(Lp(ν)), we consider the following p-complete contraction:

(V
∧p
⊗ W )′

pcb∼= CBp(V,W ′)
adj−−−−→ CBp(W ′′, V ′)

pcb∼= (V
∧p
⊗ W ′′)′.

For ϕ ∈ (V
∧p
⊗ W )′, let ϕ∧ ∈ (V

∧p
⊗ W ′′)′ denote the image of ϕ under this map. Then we have

ϕ∧(v ⊗ w′′) = 〈vϕ,w′′〉W ′,W ′′ = ΦRV,W (v ⊗ w′′)(ϕ), v ∈ V, w′′ ∈W ′′.

Moreover, ϕ∧ is weak*-continuous in the second variable. Similarly, we also consider the p-complete con-

traction

(V
∧p
⊗ W )′

pcb∼= CBp(W,V ′)
adj−−−−→ CBp(V ′′,W ′)

pcb∼= (V ′′
∧p
⊗ W )′
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and define ∧ϕ, and then we get that

∧ϕ(v′′ ⊗ w) = 〈ϕw, v′′〉V ′,V ′′ = ΦLV,W (v′′ ⊗ w)(ϕ), v′′ ∈ V ′′, w ∈W,

and that ∧ϕ is weak*-continuous in the first variable.

Following the idea in [Han07], we have the next result.

Theorem 5.2.2. Let V ⊆ B(Lp(µ)) and W ⊆ B(Lp(ν)). Let α be a subcross matrix norm on V ⊗W and

denote by V ⊗αW the resulting normed space. Then the following are equivalent.

1. There exists a separately weak*-continuous extension

Φ : V ′′ ⊗W ′′ → (V ⊗αW )′′

of the natural inclusion ι : V ⊗W → (V ⊗αW )′′.

2. The following diagram commutes

(V
∧p
⊗ W ′′)′′

(ΦRV,W )′′

&&NNNNNNNNNNN

V ′′ ⊗W ′′

ΦL
V,W ′′

88rrrrrrrrrrr

ΦR
V ′′,W &&LLLLLLLLLLL (V ⊗αW )

′′′′ P // (V ⊗αW )′′ .

(V ′′
∧p
⊗ W )′′

(ΦLV,W )′′

88ppppppppppp

3. For every ϕ ∈ (V ⊗αW )′, two functionals (∧ϕ)∧ and ∧(ϕ∧) coincide on V ′′ ⊗W ′′.

4. For every ϕ ∈ (V ⊗α W )′, Lϕ : V → W ′ is weakly compact, where 〈Lϕ(v), w〉 = ϕ(v ⊗ w), v ∈ V ,

w ∈W .

Proof. 2 ⇐⇒ 3: Every ϕ ∈ (V ⊗α W )′ can be regarded as a bounded linear functional on V
∧p
⊗ W because

‖ · ‖∧p is the largest subcross matrix norm and both ∧ϕ and ϕ∧ extend ϕ. We have

ϕ∧(v ⊗ w′′) = 〈vϕ,w′′〉W ′,W ′′ = 〈ΦRV,W (v ⊗ w′′, ϕ)〉 = 〈v ⊗ w′′, ((ΦRV,W )′ ◦ κ)(ϕ)〉,

where κ is the natural inclusion from (V
∧p
⊗ W )′ into (V

∧p
⊗ W )

′′′
. This shows that ϕ∧ = ((ΦRV,W )′ ◦

κ)(ϕ). Similarly, ∧ϕ = ((ΦLV,W )′ ◦ κ)(ϕ). Let Φ1 (respectively, Φ2) be the composition of the upper chain
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(respectively, lower chain) in the diagram in 2, i.e., Φ1 = P ◦(ΦRV,W )′′◦ΦLV,W ′′ and Φ2 = P ◦(ΦLV,W )′′◦ΦRV ′′,W ,

then we have

〈Φ1(v′′ ⊗ w′′), ϕ〉 = 〈P ◦ (ΦRV,W )′′ ◦ ΦLV,W ′′(v
′′ ⊗ w′′), ϕ〉(V⊗αW )′′,(V⊗αW )∗

= 〈ΦLV,W ′′(v′′ ⊗ w′′), ((ΦRV,W )′ ◦ κ)(ϕ)〉(V⊗αW )′′,(V⊗αW )∗

= 〈ΦLV,W ′′(v′′ ⊗ w′′), ϕ∧〉(V⊗αW )′′,(V⊗αW )∗

= 〈(ϕ∧)W ′′ , v′′〉V ′,V ′′

= ∧(ϕ∧)(v′′ ⊗ w′′).

Similarly,

Φ2(v′′ ⊗ w′′), ϕ〉 = (∧ϕ)∧(v′′ ⊗ w′′),

and thus Φ1 = Φ2 ⇐⇒ ∧(ϕ∧) = (∧ϕ)∧ on V ′′ ⊗W ′′.

1⇐⇒ 2: According to calculations above, Φ1 (respectively, Φ2) is left (respectively, right) weak*-continuous.

If Φ1 = Φ2, then it (Φ1 = Φ2 , Φ) is a separately weak*-continuous map which extends the natural inclusion

ι : V ⊗W → (V ⊗α W )′′. Conversely, suppose that Φ is the separately weak*-continuous extension of ι.

For v′′ ∈ V ′′ (respectively, w′′ ∈ W ′′), let us take a net {vi} in V converging to v′′ in the weak* topology

(respectively, {wj} in W converging to w′′ in the weak* topology). It follows that

〈Φ1(v′′ ⊗ w′′), ϕ〉 = ∧(ϕ∧)(v′′ ⊗ w′′) = lim∧i (ϕ∧)(vi ⊗ w′′) = limi ϕ
∧(vi ⊗ w′′)

= limi limj ϕ
∧(vi ⊗ wj) = limi limj ϕ(vi ⊗ wj) = limi limj〈Φ(vi ⊗ wj), ϕ〉

= 〈Φ(v′′ ⊗ w′′), ϕ〉

= limj limi〈Φ(vi ⊗ wj), ϕ〉 = limj limi ϕ(vi ⊗ wj) = limj limi
∧ϕ(vi ⊗ wj)

= limj
∧ϕ(v′′ ⊗ wj) = limj(∧ϕ)∧(v′′ ⊗ wj) = (∧ϕ)∧(v′′ ⊗ w′′)

= 〈Φ2(v′′ ⊗ w′′), ϕ〉,

so we conclude that Φ1 = Φ = Φ2.

3⇐⇒ 4: Let ϕ ∈ (V⊗αW )′. Since 〈Lϕ∧(v), w′′〉W ′′′ ,W ′′ = ϕ∧(v⊗w′′) = 〈vϕ,w′′〉W ′,W ′′ = 〈Lϕ(v), w′′〉W ′,W ′′ =

〈ιW ′ ◦ Lϕ(v), w′′〉W ′′′ ,W ′′ , we get

Lϕ∧ = ιW ′ ◦ Lϕ.

On the other hand, observe that 〈L∧ϕ(v′′), w〉W ′,W = ∧ϕ(v′′ ⊗ w) = 〈ϕw, v′′〉V ′,V ′′ and that 〈PW ′ ◦
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Lϕ
′′(v′′), w〉W ′,W = 〈Lϕ′′(v′′, ιW (w))〉W ′′′ ,W ′′ = 〈v′′, L′ϕ ◦ ιW (w)〉V ′′,V ′ . Since

〈L′ϕ ◦ ιW (w), v〉V ′,V = 〈ιW (w), Lϕ(v)〉W ′′,W ′ = 〈w,Lϕ(v)〉W,W ′ = ϕ(v ⊗ w) = ϕw(v),

we obtain

L∧ϕ = PW ′ ◦ Lϕ′′.

Therefore, we get

L(∧ϕ)∧ = ιW ′ ◦ L∧ϕ = ιW ′ ◦ PW ′ ◦ Lϕ′′

and

L∧(ϕ∧) = PW ′′′ ◦ Lϕ∧
′′ = PW ′′′ ◦ (ιW ′ ◦ Lϕ)′′ = PW ′′′ ◦ ιW ′

′′ ◦ Lϕ′′ = Lϕ
′′.

This shows that
(∧ϕ)∧ = ∧(ϕ∧) on V ′′ ⊗W ′′

⇐⇒ L(∧ϕ)∧ = L∧(ϕ∧)

⇐⇒ Lϕ
′′(V ′′) ⊆W ′

⇐⇒ Lϕ is weakly compact.

(See [Meg98, Theorem 3.5.8] for the last equivalence)

Theorem 5.2.3. Let V ⊆ B(Lp(µ)) and W ⊆ B(Lp(ν)). For every ϕ ∈ (V
∨p
⊗ W )′, Lϕ is weakly compact.

Proof. Without loss of generality, we may assume ‖ϕ‖(= ‖ϕ‖pcb) ≤ 1. Using Theorem 2.3.9, we have two

index sets I and J and p-complete isometries

ΦV : V ↪→ V ′′ ↪→ B(`p(I)) and ΦW : W ↪→W ′′ ↪→ B(`p(J)).

Consider the diagram below:

V
∨p
⊗ W

ϕ //
� _

��

C

B(`p(I))
∨p
⊗ B(`p(J))� _

��
B(`p(I ⊗ J))

ϕ̃
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By Hahn-Banach Theorem, ϕ extends to ϕ̃ : B(`p(I⊗J))→ C. Applying the same technique as in the proof
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of Theorem 2.3.12, we can find a measure space (Ω,Σ, θ) together with two vectors ξ ∈ Lp(θ), η ∈ Lp′(θ), and

a unital p-completely contractive homomorphism π : B(`p(I ⊗ J))→ B(Lp(θ)) such that ϕ̃(·) = 〈π(·)ξ, η〉.

Define T : B(`p(I))→ B(`p(J))′ by

〈T (x), y〉 = ϕ̃(x⊗ y), x ∈ B(`p(I)), y ∈ B(`p(J)).

Then it is easy to check that the following diagram is commutative:

V
Lϕ //

� _

ΦV

��

W ′

B(`p(I)) T // B(`p(J))′

(ΦW )′

OO

Define R : B(`p(I))→ Lp(θ) and S : B(`p(J))→ Lp′(θ) by

R(x) = π(x⊗ 1)ξ, x ∈ B(`p(I)), and S(y) = (π(1⊗ y))′η, y ∈ B(`p(J)),

then the diagram

B(`p(I)) T //

R $$JJJJJJJJJ
B(`p(J))′

Lp(θ)
S′

99ttttttttt

is commutative, because

〈S′R(x), y〉 = 〈R(x), S(y)〉 = 〈π(x⊗ 1)ξ, (π(1⊗ y))′η〉 = 〈π(x⊗ y)ξ, η〉 = ϕ̃(x⊗ y) = 〈T (x), y〉.

Combining these two commutative diagrams, we finally have Lϕ = (ΦW )′S′RΦV , that is, Lϕ is factorized

through a reflexive Banach space Lp(θ), so Lϕ is a weakly compact operator [Meg98, Propositions 3.5.4 and

3.5.11].

Corollary 5.2.4. There exists a (necessarily unique) separately weak*-continuous extension

Φ : V ′′ ⊗W ′′ → (V
∨p
⊗ W )′′

of the natural inclusion ι : V ⊗W → (V
∨p
⊗ W )′′.

Proof. Combine Theorem 5.2.2 and Theorem 5.2.3. Uniqueness follows from separate weak*-continuity.
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Now we are ready to define condition Cp for p-operator spaces. Let Φ be as in Corollary 5.2.4. The

following commutative diagram

V ′′ ⊗W ′′ Φ // (V
∨p
⊗ W )′′

Ψ′ // (V ′
∧p
⊗ W ′)′

CBσp,F (V ′,W ′′) � � ι // CBp(V ′,W ′′)

shows that Φ is injective. Thus we can equip V ′′ ⊗W ′′ with the p-operator space structure induced by Φ,

which will be denoted by V ′′ :⊗∨p :W ′′. We say that V ⊆ B(Lp(µ)) satisfies condition Cp (or has property

Cp) if the map Φ is isometric with respect to the injective tensor product norm with every W ⊆ B(Lp(ν)).

Proposition 5.2.5. Suppose that V ⊆ B(Lp(µ)). Then V satisfies condition Cp if and only if V satisfies

both condition C ′p and C ′′p .

Proof. Suppose that V satisfies condition Cp and W ⊆ B(Lp(ν)). Note that, even though we do not have

a p-analogue of Arveson-Wittstock-Hahn-Banach theorem, we still have p-completely isometric embedding

V ⊗∨p W ′′ ⊆ V ′′ ⊗∨p W ′′ and the bottom row in the following commutative diagram

V⊗∨p :W ′′ //
� _

��

V ⊗∨p W ′′� _

��
V ′′ :⊗∨p :W ′′ // V ′′ ⊗∨p W ′′

is isometric. Therefore the top row is also isometric and hence V satisfies condition C ′p. That V satisfies

condition C ′′p can be proved using a similar argument.

On the other hand, if V satisfies condition C ′′p , we get

V ′′ ⊗∨p W ′′ = V ′′ : ⊗∨p :W ′′ ↪→ (V ⊗∨p W ′′)′′.

If V also satisfies condition C ′p, then

V ⊗∨p W ′′ = V⊗∨p :W ′′ ↪→ (V ⊗∨p W )′′,

and hence we have isometric inclusion

V ′′ ⊗∨p W ′′ ↪→ (V ⊗∨p W )′′′′.
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Since V ′′⊗∨pW ′′ ⊂ (V ⊗∨pW )′′ and (V ⊗∨pW )′′ ↪→ (V ⊗∨pW )′′′′ isometrically, the inclusion V ′′⊗∨pW ′′ ⊆

(V ⊗∨p W )′′ must be isometric.
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