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Abstract

There have been a lot of research done on the relationship between locally compact groups and algebras
associated with them. For example, Johnson proved that a locally compact group G is amenable if and only if
the convolution algebra L (G) is amenable as a Banach algebra, and Ruan showed that G is amenable if and
only if the Fourier algebra A(G) of G is operator amenable. Motivated by Ruan’s work, we want to study G
through tools from p-operator spaces. We first introduce the p-operator space and various p-operator space
tensor products. We then study p-operator space approximation property and p-operator space completely
bounded approximation property which are related to p-operator space injective tensor product. We then
apply these properties to the study of the pseudofunction algebra PF,(G), the pseudomeasure algebra
PM,(G), and the Figa-Talamanca-Herz Algebra A,(G). Especially we show that if G is discrete, the most of
approximation properties for the reduced group C*-algebra C5(G), the group von Neumann algebra VN (G),
and the Fourier algebra A(G) (related to amenability, weak amenability, and approximation property of G)
have natural p-analogues for PF,(G), PM,(G), and A,(G). With help of Herz’s work, we also study the
stability of these properties. Finally we discuss the properties Cp, Cz/w and C]’D’ which are natural p-analogues

of properties C, C’, and C”'.
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Chapter 1

Introduction to p-Operator Spaces

We introduce and study basics on p-operator spaces, which can be regarded as p-generalization of operator

spaces. We define p-operator spaces and p-completely bounded maps, and give some examples.

1.1 Preliminaries

Throughout this writing, we always assume 1 < p < oo unless stated otherwise. Given p, its conjugate
exponent is denoted by p’ so that 1/p + 1/p’ = 1. Every Banach space is over C, the field of complex
numbers. If X and Y are normed linear spaces, B(X,Y) will denote the normed linear space of the bounded
linear operators from X into Y and we will use B(X) for B(X, X). For a normed linear space X, the dual
space X’ of X is the Banach space defined by X’ = B(X,C), that is, the space of all continuous linear
functionals on X. For a measure space (£, 3, u), if there is no risk of confusion, we will simply write L, (u)

for L,y(£2, %, p).

1.2 SQ, Spaces

Definition 1.2.1. A Banach space E is called an L, space if it is isometrically isomorphic to some Ly (u).
A Banach space F is called an SQ,, (denoted E € SQ,) space® if it is isometrically isomorphic to a quotient

of a subspace of an L, space.

Remark 1.2.2. F € 5Q, if and only if F is isometrically isomorphic to a subspace of quotient of an L, space.
Indeed, if X CY C L,(u) for some measure p, then Y/X C L, (p)/X. Conversely, if mx : L,(p) — Lp(p)/X
denotes the canonical quotient map and if W C L, (1) /X, then one can show that 75! (W)/X is isometrically
isomorphic to W via the map ® : 73" (W)/X — W defined by ®(f + X) = 7x(f), f € 75" (W).

To discuss properties of SQ, spaces, we need some facts on Banach spaces. We include a lemma for

convenience.

'In the literature, e.g. [Run05], QSL, space is also used.



Lemma 1.2.3. Let X CY C Z be Banach spaces and let

Xt={peZ :¢lx =0} and Y*-={pecZ :ply =0}

Then there is an isometric isomorphism

(v/X) = Xxt/y+

Proof. First note that the function @ : (Y/X) — {9 € Y’ : ¢|x = 0} defined by

O(f)y) = f@), [feY/X, yey,

where §:=y+ X € Y/X, is an isometric isomorphism onto its image. Note also that the function ¥ : Y’ —
Z'/Y L defined by

V) =p+Y",  peY

is also a well-defined isometric isomorphism onto its image, where @ is a Hahn-Banach extension of ¢ to Z'.

The result follows since the image of (Y/X)" under ¥ o ® is X+ /Y. O
Remark 1.2.4. Now we can state some properties of SQ, spaces.

1. Every SQ, space is reflexive by [Meg98, Theorem 1.11.16, Corollary 1.11.18].

2. By 1 above and Lemma 1.2.3, E is an SQ, space if and only if E’ is an SQ, space.

3. A calculation similar to that in Remark 1.2.2 shows that S@, space is closed under taking subspaces

and quotients.

4. Since every subspace or quotient of a Hilbert space is again a Hilbert space, it follows that SQ; =

{Hilbert spaces}.

5. If £ and F are SQ, spaces, then so is F @, F, where @, is the p-direct sum defined on £ @& F by
le @ £l = (lel|” + If|P)"/? for e € E and f € F. Similarly, we can define the n-fold p-direct sum
Ey ®p - @y Ey, of SQp spaces Eq, ..., E,. In particular, if £y = --- = E,, = E, and there is no risk

of confusion, then we will use the notation E" for £ @), --- &, E.

6. If p=1 or p = oo, then SQ, = {Banach spaces}. To see this, it suffices to check that ® : £1(X;) — X
(resp. U : X — loo(X7])) given by {a} — Y azx (respectively, z — [U(z)(f) = f(x), f € Lo (X])]) is



a quotient map (respectively, an isometry). If X is a separable Banach space, then X can be regarded
as a quotient of ¢; [Mor0l, Theorem 2.19] or a subspace of f,. To see this, first note that X7 is
weak*-metrizable [Meg98, Theorem 2.6.23] and therefore weak*-separable by Alaoglu’s theorem. Let
{fn}52, be a weak*-dense subset of X{ and define a map from X to £ by z — {f,(2)}22;: this gives

an isometry.

7. By [Her71, Corollary 2], if p < ¢ <2 or 2 < ¢ < p, then an L, space is an SQ,, space. Therefore, if

p<qg<2or2<q<p, then every SQ, space is an S@Q, space.

8. For another characterization of SQ, spaces, see [KwaT72].

1.3 p-Operator Spaces

Let (©,%, 1) be a measure space and let X be a Banach space. Let L,(u, X) be the space of Bochner
p-integrable functions from € to X.? We define a norm on the algebraic tensor product L,(u) @ X by
embedding L,(¢) ® X into L,(u, X) in the natural way, that is, f ® x — f(-)x for f € L,(u) and z € X.
Let L,(p) ®p X denote the completion of L, (1) ® X in L,(p, X) with respect to the norm in L,(p, X). It
follows easily that L,(u) ®, X is isometrically isomorphic to L, (u, X).3 If X = L,(', %', i), then we have
the isometric isomorphism

Lp(p) @p Lp(p') 2 Ly (e x '),

where p x p denotes the product measure on ¥ x ¥/ [DF93, §7.2]. In particular, if I and J are index sets,

then we have

6(1) @, £,(T) = 6(I x J).

If L,(p) = £, C" equipped with £,-norm, then we will also use notation £} (X) for £ @, X = X™.

Now we are ready to define the main subject of the thesis.

Definition 1.3.1. A Banach space X is called a concrete p-operator space if X is a closed subspace of B(F)
for some £ € 5Q,.

Let M,,(X) denote the linear space of all n x n matrices with entries in X. For a concrete p-operator
space X C B(FE) and for each n € N, define a norm || - ||,, on M, (X) by identifying M,,(X) as a subspace
of B({y @, E) = B({};(E)), and let M,,(X) denote the corresponding normed space. The norms || - [|,, then

satisfy

2See [DF93, Appendix B12] for details.
3See [DF93, §7.2] for details.



Dy, for u € M,(X) and v € M,,(X), we have ||u @ v|[ar, . (x) = max{||u|ln, [|v]lm}

M, for u € M,,,(X), a € M, 1, and § € M, o, we have ||auf|, < ||al||ullm||B], where ||a|| is the norm of
« as a member of B({}",£;), and similarly for 3.

Remark 1.3.2. When p = 2, these are Ruan’s axioms and 2-operator spaces are simply operator spaces

because the SQs spaces are exactly the same as Hilbert spaces.

As in operator spaces, we can also define abstract p-operator spaces.

Definition 1.3.3. An abstract p-operator space is a Banach space X together with a sequence of norms

I - |l defined on M., (X) satisfying the conditions Dy, and M,, above.

Thanks to the following theorem by Le Merdy, we do not distinguish between concrete p-operator spaces

and abstract p-operator spaces and we will merely speak of p-operator spaces.

Theorem 1.3.4. [LeM96, Theorem 4.1] An abstract p-operator space X can be isometrically embedded in
B(E) for some E € SQ, in such a way that the canonical norms on M, (X) arising from this embedding

agree with the given norms.
Example 1.3.5.

1. Suppose I and F' are SQ,, spaces and let L = E/ @, F, then the mapping

X —

is an isometric embedding of B(E, F') into B(L) and using this we can view B(E, F') as a p-operator

space. Note that M, (B(E, I)) is isometrically isomorphic to B(¢} (E), £, (F')).

2. The identification L, () = B(C, L,(1)) € B(C @, L,(1)) gives a p-operator space structure on L, (1)
called the column p-operator space structure of L,(u), which we denote by LIC,(M). Similarly, we denote
by Ly, (u) the p-operator space structure on L, (1) which is called the row p-operator space structure
of L, (p) and defined by the identification L, (u) = B(L,(p),C). In general, we can define E and
(E") for any E € SQ,.

3. Unless stated otherwise, we give C the obvious p-operator space structure, that is, M,,(C) = B(ZZ).4

4We will also use My, to denote B(ey).



1.4 p-Completely Bounded Maps

Note that a linear map u : X — Y between p-operator spaces X and Y induces a map u,, : M, (X) — M, (Y)

by applying u entrywise.

Definition 1.4.1. We say that u is p-completely bounded (p-cb) if ||ul|pes := sup,, ||un|| < oco. Similarly,
we define the notions of p-completely contractive, p-completely isometric, and p-completely quotient. We
write CB,(X,Y) for the space of all p-completely bounded maps from X into Y and CB,(X) for the space
CB,(X,X).

Before proceeding, we discuss subspaces and quotients of a p-operator spaces as in [Dawl0]. If Y is a
subspace of a p-operator space X, then inclusions M, (Y) C M,,(X) and the corresponding norms determine

a p-operator space matrix norm on Y. This determines the p-operator subspace structure.

Example 1.4.2. Let K(L,(r)) € B(L,(r)) denote the space of compact operators on L, (), then K(Lp (1))
has a p-operator space structure inherited from that of B(L,(x)). Using the fact that a compact operator on
L,(p) can be approximated by finite rank operators [Rya02, Example 4.5 and Corollary 4.13]°, it is easily
shown that M, (K(L,(r))) can be identified with K(L,(u)™) = K(Lp(p) &p - - Sp Lp(p)).

Given a closed subspace Y of a p-operator space X, we use the identification M, (X/Y) = M,, (X ) /M, (Y)
to define a norm on M, (X/Y), and it is easy to check that X/Y becomes a p-operator space and that the
quotient map 7 : X — X/Y is a p-completely quotient map. This determines the p-operator quotient
structure.

For a p-operator space X and for each n € N, we can give M,,(X) a natural p-operator space structure
using the identification M, (M, (X)) = M,,(X). We also want to turn the mapping space CB,(X,Y)
between two p-operator spaces X and Y into a p-operator space: let us define a norm on M,,(CB,(X,Y)) by
identifying this space with CB,(X, M, (Y)). Using Le Merdy’s theorem, one can show that CB,(X,Y) itself
is a p-operator space. In particular, the p-operator dual space of X is defined to be CB,(X,C). The next
lemma by Daws shows that we may identify the Banach dual space X’ of X with the p-operator dual space
CB,(X,C) of X.

Lemma 1.4.3. [Dawl10, Lemma 4.2] Let X be a p-operator space, and let p € X', the Banach dual of X.

Then ¢ is p-completely bounded as a map to C. Moreover, ||¢|/pe = ||¢|-

Remark 1.4.4. If ¢ = [p;;] € M, (X') = M, (CB,(X,C)) = CB,(X, M,) for some p-operator space X, then

el = sup{[[{e, )] : m € N, & € My, (X), ]| <1},

5That is, Lp(u) has the Approximation Property.




where ((-,-)) is the matrix paring as in [ER00, §1.1].
We can slightly generalize Lemma 1.4.3 as in the following proposition.

Proposition 1.4.5. Let X be a p-operator space and p : X — M, = B(Zg) be bounded and linear. Then ¢

is p-completely bounded and ||¢||peo < nll¢nll.

Proof. Fix m > n. We need to show that [@,.|| < nlj¢n|. Let = [zi;] € My, (X). Choose £ € £ and
7 € £} such that €]l = ||77]] = 1 and consider (7], @, (z)E). One can find mn x mn permutation matrices P
and @ such that
[pra(@a)] - lprn(ei)]
b = Qpm(z)P =

[‘Pn,l(xij)] T [‘pn,n(mij)]
Letting £ = P7¢ and n = (QT) 714, we have ||¢|| = [[n]| = 1 and (i, pn (2)) = (n, BE). Write
&1 m &kl mi
E=1 |, n=1| : |, &= : €Ly, m= : €ly, 1<kl<n,

fn Nn gk,m M,m

and for each 1 < k,I < n, put up = ”f—lknfk and v; = mm. Finally letting
[l [l uy vy

mnXxXn mnxn

we obtain (n, ®¢) = (V3,®Ua) = (3,VI®Ua) with U,V contractive and |allen = [|Blen, = 1. Thus the

result will follow once we show that ||VT<I>U||3(5;L) < nllen|l||lz]|. Note that

vy U1
. B .
VToU - . [p(zij)ki1<i,j<m

Unp
- nxmn mnXmn mnXmn

= v [p(@ij )k l1<ij<mt

L nxn

5When p = 2, we have |||y = ||@n]l- See [ER00, Proposition 2.2.2].
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= (v, wur),
nxn

Denote (v zu;) € M, by y*!, then the last matrix above is nothing but

(7 IR VR P
(" )na " )n.n
which can be computed as
‘r ... x
RlyMn2n2C = Ren (VT | 1 0 U|c,
z DR :Z:‘
mnXmn
where R is an n x n? matrix whose only nonzero entry is 1 at positions (1,1), (2,n+2),(3,2n+3),--- , and
at (n,n?) and C' = RT. Since
r x x x x x
r x x x x x
= + oot : (1.1)
x x x x x x
we get
.’E DR x
IVT@Ulls@y < IRI-leal -IVTI-{ 5 - 5 |-l liCl
x e x
-7/‘ ... x
(RILIVILITILICT < 1) < llenll -
:1:’ ... x
(by (1.1)) < nflenllllz]l,
and this completes the proof. O



1.5 p-Operator Spaces on L, Space

When E = L,(p) and if X C B(E) = B(Lp(1)), then we say that X is a p-operator space on L, space. These
p-operator spaces are often easier to work with as we will see soon. Let kx : X — X" denote the canonical
inclusion from a Banach space X into its second dual. Contrary to operator spaces, kx is not always p-
completely isometric. Thanks to the following theorem by Daws, however, we can easily characterize those

p-operator spaces with the property that the canonical inclusion is p-completely isometric.

Proposition 1.5.1. [Dawl0, Proposition 4.4] Let X be a p-operator space. Then kx is a p-complete
contraction. Moreover, kx is a p-complete isometry if and only if X C B(Ly(p)) p-completely isometrically

fOT’ some measure ,LL.7

We say that a p-operator space X is reflexive if the canonical isometric inclusion kx : X — X" is a

p-completely isometric isomorphism from X onto X”.

Lemma 1.5.2. A p-operator space X is reflexive if and only if X is reflexive as a Banach space and there

is a measure p such that X C B(Ly(n)). In particular, for any measure p, Ly (p) and Ly, (1) are reflexive.

Proof. (=) If X is reflexive as a p-operator space, then clearly X is reflexive as a Banach space. By [Daw10,
Proposition 4.4], if kx is p-completely isometric, then there exists a measure p such that X C B(L,(u)).
(<) Since X C B(L,(u)), by [Dawl0, Proposition 4.4], for each n € N, (kx),, is isometric. That (kx)p :

M, (Lg () — Mu((Lg (1)) is surjective follows from the fact that xx : X — X" is surjective. O

As pointed out in [Dawl0, §4.1], Le Merdy gives an example of (even finite dimensional) p-operator
spaces X such that kx is not a p-complete isometry, and this is a first significant problem we confront with
when extending results from operator spaces.® At the same time, Proposition 1.5.1 shows that p-operator
spaces on L, space are easier to work with.

Lemma 1.5.3 below exhibits another problem we face when extending results from operator spaces to

p-operator spaces.’

Lemma 1.5.3. [Dawl0, Lemmas 4.5 and 4.6] Let X and Y be p-operator spaces. If u € CBy(X,Y), then
the adjoint mapping v’ belongs to € CB,(Y', X") with ||u/||pev < ||ullper- If w is a p-complete quotient map,

then u' is a p-complete isometry.

Remark 1.5.4. We do not know whether we always have ||v/||pco = |||lpes- We cannot simply apply the

same argument as in operator spaces theory because we lack p-analogue of Roger Smith’s lemma [ER00,

"That is, kx is a p-complete isometry if and only if X is a p-operator space on L, space.
8For any operator space X, the canonical inclusion is always completely isometric [ER00, Proposition 3.2.1].
9For operator spaces X,Y and for u € CB(X,Y), we always have ||u||c» = ||u||cs [ER00, Proposition 3.2.2].



Lemma 2.2.1]. Similarly, when w is a p-complete isometry, we do not know whether v’ is a p-complete quotient

because a p-analogue of Arveson-Wittstock-Hahn-Banach theorem is not available yet at this moment.'°

However, with an additional condition that Y is a p-operator space on L, space, we do get the equality

in Lemma 1.5.3 as explained in the following.

Proposition 1.5.5. Let X and Y be p-operator spaces with Y C B(L,(n)) for some measure p. If u €
CB,(X,Y), then the adjoint ||u||pes = ||| peb-

Proof.

lullper = sup {[[[u(@ij)lllar,v) 7 €N, [2i;] € Mn(X), [[[2is]] < 1}
= sup {[|[u(zij)lllar, v : 0 € N, 5] € M (X), [|[235]]] < 1}
= sup {[|[w(@iy)]les, (v, i n €N, 23] € M (X), [[[wg]l] < 1}
= sup {[[{ulxi), el : n,m € N, [wi;] € M (X), [[[wis]ll < 1, [pm] € M (Y7), [[[ral | < 1}

= sup {[[{zij, v (er)) ] - nym € N, ;] € My (X)), [[[wis]ll < 1, [owi] € M (Y'), om]ll < 1}

(Remark1.4.4) sup {Hu'(<pkl)||Mn(X/) :m €N, o] € My, (Y, ller]]l < 1}

= [[u/lpes,

where the second equality comes from Proposition 1.5.1. O

We close this section with the following proposition.

Proposition 1.5.6. Let X C B(L,(n)) and Y C B(L,(v)) be p-operator spaces. Then the adjoint mapping

®:CB,(X,Y) = CB,(Y',X"), Tw—T

is a p-completely isometric isomorphism from CBy(X,Y") onto CB,(Y', X') if and only if either X = {0} or

Y is reflexive.

Proof. (=) Suppose X # {0}. By Lemma 1.5.2, to show that Y is reflexive, it suffices to show that ¥’
is reflexive as a Banach space. Let ¢ € Y”. Let 2 # 0 be a vector in X, then there exists 2’ € X’ such
that 2'(z) = 1. Define S : Y’ — X’ by S(f) = ¢(f)a’, then S € CB,(Y’, X’) and hence S = T’ for some
T € CB,(X,Y). Since o(f) = (S(f),z) = (f,Tx) for all f € Y’', we see that the canonical inclusion ky is

10Having a positive answer to this question is equivalent to p-analogue of Arveson-Wittstock-Hahn-Banach Theorem because
(W)n s Mn(Y') = CBp(Y, M) — CBp(X, Myp) = Mn(X')

is given by the restriction.



onto, that is, Y is reflexive as a Banach space.

(<) If X = {0}, then the result is trivial. Suppose that Y is reflexive and fix n € N. Let S = [S;;] €
M, (CB,(Y',X")) = CB,(Y', M, (X")) = CB,(Y',CB,(X, M,)). Since X C B(Ly(p)), for each i,j, we can
define Tj; = Sj;|x € CB,(X,Y). Now for any f € Y’ and for any = € X,

= [{f, T (2))]
= [(T};(f),2)].

This shows that S = T’, where T = [T};] € M,,(CB,(X,Y)) and hence the adjoint mapping is onto. O

1.6 Examples of p-Completely Isometric Isomorphisms

In this section, we will give specific examples of p-operator spaces and identify some of them via p-completely
isometric isomorphisms. Let N(L,(u)) denote the Banach space of all nuclear operators on L, (u). Since

L,(u) has the Approximation Property [Rya02, Example 4.5], we have

N(Lp(p) = Ly (1) © Ly (1), (1.2)

where & denotes the Banach space projective tensor product [Rya02, Chapter 2]. Since L,(u) is reflexive

(hence has the Radon-Nikodym property, [Rya02, Corollary 5.45]), we have the isometric isomorphisms
K(Lyp(n)) = N(Lp(p)) and N(Ly(n))" = B(Ly(n))."* (1.3)

Giving K(L, (1)) a p-operator subspace structure in B(L,(u)) and giving N'(L,(p)) a p-operator space struc-
ture by duality, that is, by regarding N'(L,(p)) as a p-operator subspace of B(L,(u))''?, we can regard
K(L,(p)) and N (L,(u)) as p-operator spaces. With this structure, we can say more about the second

isometry in (1.3) as in the following lemma.

Proposition 1.6.1. [Daw10, Lemma 5.1] With the dual p-operator space structure on N (L,(u)), we have

N(Ly(p)) = B(Ly(p)) p-completely isometrically.

As an application of Proposition 1.6.1, let us take a closer look at the representation of a dual p-operator

11See Corollary 4.8, Corollay 4.13, and Theorem 5.33 in [Rya02]. See also [Rya02, §2.2].
12This p-operator space structure on N'(Lp(p)) will be called the dual p-operator space structure on N (Lp()).
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space. Since X' is again a p-operator space for a p-operator space X, by Theorem 1.3.4, there exists E € SQ,,
such that X’ C B(E) p-completely isometrically. Daws showed that in fact we can choose E to be £,(I) for

some index set I [Daw10, Theorem 4.3]. We can still improve Daws’ result as in the following.

Proposition 1.6.2. Let V be a p-operator space. Then there exists an index set I such that V' can be

identified with a weak*-closed subspace of B({,(I)) and the restriction map
miweNWU,)) > wly eV

is p-completely quotient. Therefore, we have the p-complete isometry V.= N ({,(1))/V|, where V| s the
pre-annihilator of V' in N'(€,(I).

Proof. We can apply a construction similar to that given in the proof of [ER00, Proposition 3.2.4] by

constructing s, = M, (V); and s = |J,;,_, 6,. We can obtain an index set I such that £,(I) = @, Eg(w).

The map
o7 : f eV —diag{fn(x) : z € 5,,n € N} € [[ BUZ™) C B4, (D))

TES
is a weak *-continuous p-completely isometric inclusion. In this case, we can identify V’ with the weak*-closed

subspace ®7(V’) in B(£,(I)) and V is equal to the quotient N'(¢,(I))/V| via the restriction map
miw €N, () - wly €V.

Now for each z = [x;;] € M,,(V)1 = $,, we let 1,,(;) be the canonical inclusion of e;“””) into £,(I) and P,y
be the contractive projection from ¢,(I) onto ég(x). Then the truncation map w(y) = Py (z)Ytn(z) on B(Ly(1))
defines a contractive element w in M, (N (¢,(I))), which satisfies 7, (w) = x. This shows that 7 is actually

a p-complete quotient map from N(¢,(I)) onto V. The last part follows from Lemma 1.5.3. O

The first isometric isomorphism in (1.3) also turns out to be p-completely isometric with the dual p-
operator space structure on N (L, (p)). To prove this, we first need to study a norm structure on M,, (V') for

a general p-operator space V.

Lemma 1.6.3. Let 1 < p,p’ < oo with 1/p' +1/p=1. Let A = {\;}1<j<n be a finite sequence in C. Then

1A

_ ’
o < nlt/p=1/p'1 ”AHZZ"

Proof. There is nothing to prove if p = p’ = 2. It is trivial if p = 1. If p > p/, then [[Allgn < ||/\||g;z,, <

nlt/p=1/9'1 . | Allgn, since plt/P=1/p'l > 1, Finally, assume 1 < p < p’ and let ¢ = % > 1 and let ¢’ be the
P

11



conjugate exponent to q. By Hélder’s inequality,

n /4 n p/p’
||/\||§; < Z |A;|P pl/d — Z |7 . pl-p/p
Jj=1 j=1

and hence [[All¢n < nIV/P=1/P" L N[ gn, O
P

Lemma 1.6.4. Let o = o] € M, and 8 = [B] € M, . Let 1 < p,p’ < oo with 1/p'+1/p =1. Then

we have
_ / _ /
lallier.en) < llally - n7=1 and ||Bllsep ) < 18, - 0217,
where ,
n T 1/p s n 1/p
/
oy = (23 bl | ond 151, = ( mw) .
i=1 j=1 k=11=1

Proof. Suppose § = {§;}}_; is a unit vector in £}. For each i, 1 <i < n, let n; = ‘22:1 a;;&;|, then by

’

N 1/p
Hélder’s inequality, 7; < (Z;Zl |ovi;|P ) and by Lemma 1.6.3,

1/p’

n 1/p n
(Z mp) < pll/p=1/p] <Z n’ ) < plt/p=1/71 ]|
i=1 =1

and hence we get ||04HB(Z£722) < plt/p=1/7'. ol To prove the second inequality, let v : £7, — {7, be the

adjoint operator of 3. Then by the argument above we have

Ivlce, ) < Il - nl/2=272".

Since [ lis(er ) = 181565 57 and [yllp = [1]» we et the desired inequality. 0

Let V be a p-operator space. Fix n € N and define || - ||, : M, (V) — [0, 00) by

loll1.n = nf{|lal|p w8, : 7 €N, v=awl, a€M,,, [LeM,,, welM. (V)} (1.4)

where || - ||, and || - ||, as in Lemma 1.6.4.
Proposition 1.6.5. Suppose that V is a p-operator space and n € N. Then || - |1, defines a norm on
M, (V).

Proof. Suppose v1,ve € M, (V). Let € > 0. For ¢ = 1,2, we can find «;, 3;, and w; such that v; = a;w;0;

12



with |Jw;|| <1 and

loillyr < (sllin+ €)' 18illp < (leilln + €)' (1.5)
Let
B w1
a:[al CYQ], B = , and w= )
B2 wo
then ||o|?) = [lar||% + [lz|lZ, 18112 = 161]1% + [|Ba]|2, and |Jw]| < 1. Since v +vs = aw, it follows that
lor +vallin < ey lBly
all?, p
(Young’s inequality) < | |Jp + m
p p
_ Mol + el L B+ 117
Y p
2 2
(by (15) < [oall1.n + Ht)z||1,n t2e  Jvilln + vzl + 2¢
p p
= loallin + llvaflin + 26
Since € is arbitrary, we get ||vi + va|[1,n < [[v1]l1,0 + [lv2]l1,n-
For any ¢ € C, if v = awf, then we have cv = a(cw)f and hence [|cv||1,, < ||elp|c]||w]]||B]|,- Taking the
infimum, we get
levllsn < lelllolly,n- (1.6)
Replacing ¢ by 1/c and v by cv in (1.6) gives
lefllvllin < fleviln, (1.7)
so (1.6) together with (1.7) gives ||cv||1,n = |e|||v]l1,n-
Finally, suppose |[v||1,, = 0. To show that v = 0, it suffices to show that
loll < n?PP= o). (1.8)

Indeed, if v = awf with a« € M,,, ,-, § € M, ,,, and w € M, (v), then

IN

eIl I8

(by Lemma 1.6.4) < [lall, - /2= ] - ||, - nl /7177

[[o]]
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’
— p2/e=1/p] ||0<Hp’ -Njw]| - ||ﬁ”p'

Taking the infimum, (1.8) follows. O

Definition 1.6.6. For a p-operator space V, let N,,(V) denote the normed space (M, (V), || -

we have

Let DP

nxr

171l

|1,n)-

We want to study the Banach dual of N,,(V'). Let f = [fi;] € M,, (V') = CB,(V, M,,). By Remark 1.4.4,

£l = sup{[[{f, o)1 : 7 €N, 0 = [ow] € My (V), [Jof] <1}

denote the closed unit ball of £7*", then

sup{|((f,5)m, € )] :7 €N, © = [b] € Mo(V), [[5]] <1, n € DE,, €€ D}

> Fi@rnGnSam| €N, 0= [op] € Mo(V), |5 <1, ne Db, £€ Db,
i,7,k,l

> <fijv > f(i,k)@km(j,z)> ir €N, 0= [og] € M (V), 0] <1, n€ Dy, £€ Dy,

ij=1 k=1

Note that Y-, ;1 €.k Ok, is the (i, j)-entry of the matrix product a3, where

SO

Sany o S Ny M)

E(n,l) T 'g(n,r) 6(1,7") o NMngr)

n

£l = sup§ | D (fiss (@@B)i)| 3] < 1, Nally < 1, 1B, < 1

1,7=1
= sup{[(f,v)] s v =adf, 0] <1, |lafl, <1, I8]l, <1}

= sup{[(f,0)] : [[vll1.n <1} (1.9)

Lemma 1.6.7. For a p-operator space V, the scalar pairing determines the isometric identification N, (V)" =

M, (V).

Proof. Define ® : M,,(V') — N, (V) by f— (f,-).

® is one-to-one: suppose ®(f) =0, and let v € V. For each i, j, consider an element F;;(v) € N, (V) whose

only nonzero element is v at (i, j)-position, then (f, E;;(v)) = fij(v) = 0 and hence f;; = 0.

14



® is onto: Let G € N, (V). For each 4, j, define E;; : V. — N, (V) by v — E;;(v), where E;;(v) as as above.
Let fij =GoE;; : V — Cand let f = [f;;] € M,(V'), then it follows that ®(f) = G.

® is isometric: this is immediate from (1.9). O

Now we are ready to show that the first isometric isomorphism in (1.3) is also p-completely isometric

with the dual p-operator space structure on N (L, (u)).

Proposition 1.6.8. With the dual p-operator space structure on N'(L,(p)), we have K(Ly(p)) = N(Ly(p))

p-completely isometrically.

Proof. Fix n € N. We need to show that
My (N (Lp(n))) = CBp(K(Lp(11)), Mn)

isometrically. By the argument between Propositions 5.3 and 5.4 in [Daw10], we have an isometry

Now the result follows from Lemma 1.6.7. O

To explore more examples of p-completely isometric isomorphisms, we will make use of the following

lemmas.
Lemma 1.6.9. Let n = [n;;] € Mm,n(L‘;,(u)) and ||ni;|| < € for alli,j. Then HUHJVIm,n(L;(u)) < mb/Ppl/P e,

Proof. Since (|n||ar,, ,.(ze ) = [nllBeen,em (2, )

p\ 1/p
n

m
170 2 (L 1)) = sup Z ZAJ‘%
J i=1 1

INES =
Here for ||A|| < 1, by Holder’s inequality,
1/p’
n n n
STmis|| < S0 Nl < (Yol | <0t/
=1 j=1 j=1

Jj=

and the result follows. O
13In [Daw10], Daws used the notation Ty (K(Lp(p))) for N (K(Lp(p))).
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Lemma 1.6.10. Let pu be a measure. Then for any & = [€;5] € My (Lg(n)) and for any e > 0, there exist

a k(m) € N, a subspace F' of L,(u) which is isometrically isomorphic to fl;(m), {fi,--  foem)} € F, and

matrices {a',--- ,a*™} C M, such that
1€ = &l atn(zguy <€
where
~ k(m)
£= fr®a
t=1
Moreover, we can have
al
€l =
ak(m)

M,

mk(m),m
Proof. By standard properties of L, (u), there exist a k(m) € N, a subspace F' of L, () which is isometrically
isomorphic to K’;(m), and {fij}?szl C F such that ||&; — & < < for each i,7."* Let {f1, -+, fuem} € F
k(m)
=1

correspond to the canonical basis of é];(m) and write éij = aj; fi, then we have

~ ~ k(m)
=[&1=) fivd,
t=1

where of = [a};] € M,,. By Lemma 1.6.9, [|§ — g”]\/jm(L;(M)) < ¢. Finally,

k(m)
: ¢
el = ;i fr
=1
B(lpr (L (1))
1
m || m [ E(m) p\ 1/p
= (5[ et
reep \ = 1 — J
Iaer N\ ][I=E =
1
m |ktm) [ m p\ 1/p
= sup E Eaﬁ»)\j ft
reep \ =\ /
Iaer N[ =L A=
1
m k(m) | m p\ 1/p
= sup E g ab:\
e \I IS
Iaer \=1 ==
1
k(m) m | m p\ 1/p
= sup g g b\
e \IH Sl
Ia<r \ =Ll =

14See [LP68]. We will keep refer this property to the rigid Lp-structure of Lp(u).
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)
Mk (m),m

O

Proposition 1.6.11. For any L,(u) and L,(v), there exists a natural p-completely isometric isomorphism

Proof. Fix n € N. For any matrix T' = [Tj] € My, (B(Ly(p), Lp(v))) = B(Ly (Lyp(it)), €5 (Lp(v))), the corre-
sponding mapping T € My (CBy(Lg (1), Ly (v))) = CBy(Lg (1), M (Lg(v))) is defined by T(&) = [T (€)] for
all £ € Lg(u). We wish to show that IT\lpes = || Tl Fix & = [&;] € M, (L5 (p)) and let € > 0. As in the
proof of Lemma 1.6.10, there exist a k(m) € N, a subspace F of L,(u) which is isometrically isomorphic to

élg(m), and {é]}:”]:l C F such that

~ € €
=&l < 1 _— — 1.10
e = sl < min{ o < (1.10)
for each i, j. In particular,
I€ =&l < e (1.11)
by Lemma 1.6.9, where & = [§;;]. Let {f1, - , frim)} € F correspond to the canonical basis of E’;(m) and

write &;; = SF™) ol fy, then T, (€) = SR T (f)] @ ot Since |[Ti|| < || T for each k and I, from (1.10)

t=1

above and Lemma 1.6.9, we get

1T (&) = T (O] < e. (1.12)

Again as in the proof of Lemma 1.6.10, there exist an I(m) € N, a subspace G of L, (v) which is isometrically

isomorphic to fé(m), and {n},}x.1+ C G such that

€ €
1Tt (f2) — miall < miﬂ{ a — } (1.13)
nk(m)/7" 5RO |t

for all k,I, and t. In particular, by Lemma 1.6.9,

Tt (f)] = [l < for each ¢. (1.14)

€
k(m
SR ot
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Let {g1,--- ,9im)} € G correspond to the canonical basis of Eé(m) and write 7}, = le(:ml) Bitgs so that for
each t
I(m)

k) = 3 g0 B, (1.15)
s=1

where 3% = [83{] € M,,. Define Ty : £(F) — £(G) by

¥1 Zm ”/é’ﬁz
) To .
(p = : — 5
n e Vi
where ¢; = ngf) ! fi. Note that
P
n
!
ITo@1” = Y 1D vink
k=1|| t1
. P
= > ID_Biigs
k=1 ||s,t,l
n_l(m) P
= 22> B
k=1 s=1 | t|
= B,
where
g ke 7 ”n
B = soM= , and vy =
gt . gitm)k(m) AP Ve(m)
—_—— [ ——
EMni(m),nk(m) €My 1 EMpk(m),1
. L\ 1/ .
Since ||¢]| = (Zt,l |'yt|p) = ||v|l, it follows that
[Toll = 118]]- (1.16)

18



Now for all ¢ € £3(F), we obtain

S (Tl fe) = nip)
IT(0) - TP = :

S (Tl fe) = nty)
iy [ T = k)
St (S P ITaCF) = nfall)”
(Hilder's inequality) < 37—, el (S, 1T () — iy )"

. o p/p’
(by (1.13)) < lell” >y (nk<m>m)

hS]

IN

’

= |l
and hence
IToll < I Tley oyl + I Tlep ) — Toll < 1T + . (1.17)
Since
nd g k(m k(m k(m
170@ - SEPR @t = ||SEP Tl @ af = S k]  of
k(m
< SENTw ()] - Mkl (1.18)

(by (1.14)) < e,

we finally have

1T < NN+ 1T (&) = T (&)l
k(m) k(m)

Sl @ of|| + ||Tw@ — Y Ik @ o+

t=1 t=1

(by (112)

IN

k(m)
> k] ®a'|| + 2

t=1

(by (1.18))

IN

k(m) l(m)

YD gseptoal|+2e

t=1 s=1

Zfiql) B ® at

(by (1.15))

T B gt

ﬁll L. Iglk(m) al

IN

+ 2¢

BlUmT L. gim)k(m) ak(m)
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(by (1.16)) ITolllI€] + 2e

(by (1.17) and (1.11))

IN

(T + ) (€l + €) + 2e.

This shows that |||, < ||T||. For the reverse inequality, fix

&1
&= € £y (Lp(p));
&n
then there exist a g¢(n) € N, a subspace F of L, (1) which is isometrically isomorphic to &g("), {fi, - fam} €

F corresponding to the canonical basis in 62("), and a matrix 0 = [0y] € My, such that ||§ — &l <

min { o5, oy | for all £, where & = Y200 0y fi. Note that

1€ =<l Smm{e,w}. (1.19)
Put
& 1
ENZ : and J; = : ,
én 6tn
then by (1.19)
|7 - 1@ < 1Tiie - & < e (1.20)

and

S Tu(&)

S Tul&)

€J\an(n),l
—f

EMp ng(n) 5
1

= | () - T(fam)

q(n)
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01
= TLQ(")([ fl t fq(n) ])
L dq(n)
Therefore,
o1
IT@N < [ h - D ||
Og(n) (1.21)
S (A S| Ié)
Ml,q(n)(L;(:u'))
= | Tlpes €]l
since {f1,---, fg(n)} € F corresponds to the canonical basis in Kg(n) and hence
H[ fio ]H =1.

My q(n) (L5 (1))

Finally we obtain from (1.19), (1.20), and (1.21)

ITE) < ITEN+ 7€) = TE)| < 1T Upes Il + € < 1T Upes €] + ) + e,

which completes the proof. O

Corollary 1.6.12. For any L,(u) and L,(v), we have the p-completely isometric isomorphisms

(L) = Ly (p)y (L (w)" = Ly(),  and - CBy(Ly (1), Lyy (v)) = B(Lp(v), Ly (1))

Proof. By Proposition 1.6.11,

(Ly()" = CBy(Ly (1), C) = B(Lp(p), C) = B(Lyy ()", C) = Liy ()

By Lemma 1.5.2 and above calculation,

(L ()" = (Lyy ()" = Ly ().
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Finally, by Proposition 1.5.6,

CBy(Lyy (1), Ly (V) = CBp((Lyy (1), (L5 (1)) = CBp(Lyy(v), Ly (1)) = B(Lp(v), Lp(12))-

O

We close this section with one more example. Let G be an index set. Then /. (G) has a natural p-
operator space structure inherited from the embedding £+ (G) C B(¢,(G)). We will always assume that
{5 (@) is given this p-operator space structure unless stated otherwise. Now give ¢1(G) the dual p-operator

space structure, that is, ¢1(G) is given the p-operator space structure regarded as a subspace of £ (G)'.
Proposition 1.6.13. (1(G)" = o (G) p-completely isometrically.

Proof. We claim that ¢, (G) is weak*-closed in B(¢,(G)); once this is done, the result follows from [Daw10,
Proposition 5.5]. To this end, suppose that {f;} C ¢s(G) and that f; — T in the weak*- topology. If
s,t € G with s # t, then

Tor = (87, T67) = lim fi(5)57 (s) = 0.
This shows that T' C o (G). O

Just like p = 2 case, we have the following characterization of the norm in M, (¢ (G)).
Proposition 1.6.14. If [ui;] € Mn (o (G)), then [[[uij]lla, (e (@) = SuPseq lI[wij ()] ay)-
Proof. For all s € G,

H[UZJ(S)]HB(QL) = sup Z aiuij(s)bj : Z |al|p < 172 ‘b]|p <1
= i=1 j=1

i,j=1

Since
Z aguij(s)b;
Q=1
— a;6% ()us; ()b 6% ()
i,j=1x€CG
= < ai&gl]a [uzj][bjés]> )
we get

> aiuii(s)bi| < luii] | ar, e ) -

ij=1
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For the converse, suppose that g = (g;)7_; € £}, ®p £y (G) with 3, |gi(2)[P" < 1. Similarly, suppose that
= (fj);lzl €l ®p 0,(G) with Zj,m |fj(x)? <1. Then

Zzgi(ﬂf)uij(ﬂf)fj(x)

< D gil@)ug () fi(x)
T 1,
" 1/p’ n 1/p
< 3 s @) ey (Z |gi<x>|p/) (Z Ifj(:v)lp>
© i=1 j=1
< sup |||uii(s n
< sup s ()] ey
and this completes the proof. O
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Chapter 2

Tensor Products of p-Operator Spaces

In this chapter, we study various tensor products on p-operator spaces. We mainly focus on the follow-
ing three tensor products: p-projective tensor product, p-injective tensor product, and p-Haagerup tensor

product.

2.1 p-Projective Tensor Product

The main source for this section is [Daw10].

Definition 2.1.1. Let X,Y be p-operator spaces. For u € M,(X ® Y), let

[ulln, = mf{{laffvlw]l5] : v = alv @ w)s},

where the infimum is taken over 7,s € N, a € M,, ,xs, v € M, (X), w € Ms(Y), and 8 € M, x5 n.

It was Daws who first defined and studied the p-projective tensor product. Note that || - ||, gives the
algebraic tensor product X ®Y" a p-operator space structure [Daw10, Proposition 4.8]. Furthermore, ||-||A,, is
the largest subcross p-operator space norm on X ®Y in the sense that ||z @y| < ||z||,|ly|s for all z € M,.(X)
and all y € M(Y) [Dawl0, Proposition 4.8]. The p-operator space projective tensor product is defined to be

/\P
the completion of X ® Y with respect to this norm and is denoted by X ® Y.
Remark 2.1.2.

A A
1. One can show that p-operator space projective tensor product is commutative, i.e., X Y=Y ® X

p-completely isometrically.

2. By universality of the Banach space projective tensor product é% [BLMO04, A.3.3], we have
[ulln, < llullx

foralue X ®Y.
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Let V,W and Z be p-operator spaces, and let ¢ : V X W — Z be a bilinear map. Define bilinear maps
wns;t,u by
wr,s;t,u : Mr,s(v) X Mt,u(W) - r><t,s><u(Z)7 (U7U)) = (¢(vi,j7wk,l))7

and let ¥,.s = ¢y .5 5. Finally define

[ jpen = sup{[[or;s | : 7 s € N}

We say that 1 is jointly p-completely bounded (respectively, jointly p-completely contractive) if ||| jper < 00
(respectively, ||¥|jpes < 1). The space of all jointly p-completely bounded maps from V' x W to Z will be
denoted by CB,(V x W, Z) and this space can be turned into a p-operator space in the same way as for

CB,(V,W). Here we collect some results on the p-projective tensor product for convenience.
Proposition 2.1.3. [Dawl10, Proposition 4.9] Let X, Y, and Z be p-operator spaces. Then we have natural
p-completely isometric identifications
Ap
CB,(X @ Y,Z)=CB,(X xY,Z) =CB,(X,CB,(Y, 2)).
In particular,
A
(X ® V) =CB,(X,Y").

For p-operator spaces X and Y, let CB, (X', Y’') denote the space of all weak*-weak*-continuous p-

completely bounded maps between X’ and Y.

Corollary 2.1.4. Let X be a p-operator space on Ly, space and Y be a p-operator space. Then we have
CB,(X,Y') = CBg(X”, Y’) (2.1)

p-completely isometrically.

Proof. Let u € CB,(X,Y’). It is easy to verify that ¢ = k} ou” : X" — Y’ defines a weak*-weak™*-
continuous p-completely bounded extension of u with ||@|/per < ||u|pes- In fact, by Goldstine’s Theorem,
4 is a unique weak*-weak*-continuous extension of u. Since X C X" p-completely isometrically, we also

have [|[@flpes > |[ullpes- If T € CB(X"”,Y”), then we must have T' = ﬂ;( and this shows that (2.1) holds
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isometrically. To show that (2.1) is a p-complete isometry, let us fix n € N. Then we have isometries
/\P
M, (CBy(X,Y")) = CBu(X, M, (Y")) = CB,(X,CB,(Y, M,)) = CBy(X, (N, ® Y)).!
Since we already showed that (2.1) holds isometrically, we have
/\P /\P
CB,(X,(N,, @ Y))=CB,(X",(N,, @ Y))
isometrically and it follows that
/\P
M, (CBy(X,Y")) = CBy(X",(Nn ® Y)') = CB,(X",CB,(Y, My)) = CBy(X", My (Y')) = My (CB,(X",Y"))

isometrically. This completes the proof. O
As in operator spaces, the p-operator space projective tensor product is projective in the following sense:

Proposition 2.1.5. [Dawl10, Proposition 4.10] Let X, X.,Y, and Y be p-operator spaces. Ifu : X — X and

- A
v:Y — Y are p-complete quotient maps, then u®v extends to a p-complete quotient map u@v : X Y —
- Ap o~

X ®Y.

In operator spaces, the trace class operators on a Hilbert space H can be expressed in terms of operator

space projective tensor product. To be more precise, we have the following natural isometries
(HY®H =~ H' & H = T(H),

where 7 (H) denotes the space of all trace class operators on H [ER00, Proposition 8.2.1]. We have the
following p-analogue of this result.
/\P

Proposition 2.1.6. For a measure i, we have an isometric isomorphism N (Ly(n)) = Ly, (1) @ Lg(p).

Proof. Note that the adjoint of the canonical contraction?

o N(Lo(w) 2 Ly (1) & Ly() — Ly () & LE ()

is the natural mapping CB, (L5, (1)) — B(Ly (1)), which is an isometric surjection by Proposition 1.6.11. The

INote that M, (Y') = CB,(Y, M,,) p-completely isometrically.
2See Remark 2.1.2.
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result follows using the arguments in [ER00, §A.2].3 O

Since p-operator space projective tensor product resembles the Banach space projective tensor product
in many ways, we can expect that the p-operator space N(Ly(p)) to behave well with respect to the p-
operator space projective tensor product. Our next goal is to make this clear. Let AV, = N (ﬂg) so that
B(ty) = K(y)" = Ny and N, = B(£}) p-completely isometrically. For a p-operator space V, we wish to

A
study the Banach space structure of N, @ V.

Proposition 2.1.7. For any p-operator space V, we have a natural isometry
Ap
Na(V) =N, @V,

where Ny,(V) denotes the normed space in Definition 1.6.6.

A

Proof. By Proposition 2.1.3, we know that (N, ® V')’ is isometrically isomorphic to CB,(V, M,) = M, (V).
A

Let’s examine the duality between N, ® V and M,, (V') more closely. Note that every element in N,,, being

a linear map from £} to £}, can be written as a linear combination of €;;, where {e”}f j—1 denotes a standard

Ap
basis for M,,. If v =737, ;€ ®vi; €N,y ® V and f = [fi] € M, (V'), then

> leiss (Wi IF =1 0,

Ap —

Mn(V’),/\/n ®V v
> fij(vi)

i

= ([0, (v N (v)-

<f, Zeij ® Uij>
i,J

Therefore

foll s, = sw <f,Zeij®vij> A< 1, f € M)
2

M (VYN &V
= sup {|(f/,V)a,(vonva ] IFI <1, f e Mu(V)}

= ”UH/\/,L(V)-

O

3That is, if ¢ : V — W is a bounded linear map between two Banach spaces V and W, then 1 is an isometry if and only if
1’ is a quotient mapping. Under the same assumption, v is a quotient mapping if and only if 1)’ is an isometry.
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2.2 p-Haagerup Tensor Product

In [LeM96], Le Merdy considered the p-operator space Haagerup tensor product. Let X,Y be p-operator
spaces. Given v = [v] € M, x(X) and w = [wrj] € Mg (YY), define v O w = [Zle Vir ® Wrj] €
M,m(X ®Y).

Definition 2.2.1. Let X,Y be p-operator spaces. For u € M, ,, (X ® Y), we define a norm
[ulln, = inf{{|vfl[lw] : v e Mpx(X), w e Mym(Y), u=vOw}

The p-operator space Haagerup tensor product is defined to be the completion of (X @ Y, || - [[,)-
Remark 2.2.2.
h
1. The p-Haagerup tensor product ® is associative [LeM96, Remark 2.5].

2. || ||, is a subcross norm, because for v € M, (V) and w € M,(W), v@w = (v®I) © (I, ®w). Hence
it follows from [Daw10, Proposition 4.8] that || - [, < || - [|», on the algebraic tensor product V & W.

hp /\P
Just in operator spaces, sometimes ® and ® produce the same norm. To give an example, we need a

lemma.

Lemma 2.2.3. Let V and W are p-operator spaces. Let v = [v;;] € My (V) and w = [wy] € My, n (W)

with ||wi|| < € for all k,1, then ||v © w||, < en*mlfv].

Proof. Observe that

0
0
n m
vow = S| L | @ik @wr) [0---0 Ly 0+ 0]
il=1k=1
0
0

- - nx1l

Since |lvik]l < ||v| for all ¢, k, we get
n m
lo©wlla, < D D llvlle =n*mlo]e.

i,l=1k=1
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O
Proposition 2.2.4. Let V' be a p-operator space and p a measure. Then we have the p-complete isometries

hP /\:D h:l’ /\:D
Ve L=V @ Ly(u), Ly(p) @ V=L,(n @ V.

Proof. We prove only the first identification: the second one is similar. Suppose u € M, (V @ Lg(u)) with
llulln, < 1. By Remark 2.2.2, it suffices to show that [|u|[», < 1. There exist an m € N, v = [v;;] € M, (V),
and & = [§k1] € My n(Lg(p)) such that u = v © § with |[v]], [|{]| < 1. Let ¢ > 0. As in the proof of Lemma
1.6.10, there exist a k(m) € N, a subspace F of L,(u) which is isometrically isomorphic to K’;(m), and

{€1} C F such that
€ €
2m1/ppl/e’’ 2n2m

1€kt — Esz < min{ } for each k,I. (2.2)

Let {f1, -, fuem)} € F correspond to the canonical basis of f’;(m) and write &y = ng?) ab, fr. If we let

g: [gkl] € Mm,n(L;(H))’ then

e
~ k(m)
§= froa =[fi fum)] ©
t=1
ak(m)
and by Lemma 1.6.9 and (2.2), we obtain ||¢ — &|| < 5. In particular,
ol
- € €
: = - <14+
. €< el + 5 <1+ ¢
ak(m)

If we let @ = [tiy] = v ® € € M, (V ® LE(p)), then

~ _ t
(O E ajvij @ [
Iy
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where

1 1
Qpr 0 Qg
~k _ . ) . M
o = : . : € k(m),n
k(m) k(m)
Q1 T Qg
for each k =1,--- ,m. Since
al al

Ifr-- fegmlll =1 and : = : ;

we have

~ nd €
alla, < llvlliel <1+ 5.

Since u—1 = v® (£ —€), by Lemma 2.2.3 and (2.2), we have |lu—1al[a, < 5,80 [[ullr, <I[E]n, +]u—al, <

1+ €. Since € is arbitrary, we are done. O
hP

Corollary 2.2.5. For a measure ji, we have an isometric isomorphism N (Ly(1)) = Ly, (1) @ Ly ().

Proof. This follows immediately from Propositions 2.1.6 and 2.2.4. O

Corollary 2.2.6. Given a p-operator space V and measures p and v, we have the p-completely isometric

1sometry

CB, (V. B(Ly(), L)) = (L (v) &V & L2 ().

Proof. Since p-Haagerup tensor product is associative and p-projective tensor product is commutative, by

Proposition 2.2.4,

hyp hyp Ap Ap

Np Np
V @ Ly(n) @ Ly (v).

Therefore, by Proposition 2.1.3, Corollary 1.6.12, and Proposition 1.6.11,

L0) EV S L) = (V& Lo & L)

= CB,(V, (L) & Ly (v)))
= CB,(V,CBy(Ly (1), (L (v))"))

= CB,(V,CB,(LE(p), LE(v)))
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— CB,(V.B(Ly(n), L,(1))).

If we replace L, spaces by S@Q, spaces in Corollary 2.2.6, then we have a slightly weaker result.
Lemma 2.2.7. If X and Y are SQ, spaces, then we have the isometric isomorphism

BX,Y) = (V') & XY,

Proof. Define
d: B(X,Y) — (V)" & X9 by )y ®z) = (ulx),y), weBX,Y), z€X,y ey’
and
V() & XY S BLY) by (B()@),y) = [ ©a), fe(¥) & XY, zeX, ¢ ey

Then it is easy to show that ¥ and ® are inverses of each other. For all u € B(X,Y),

lul = sup{l(u(z),y")| : x| < L[y < Lo e X,y €Y'}

= sup{[e(u)(y @z)|: lz| <L,y <Lz e X,y €Y'}

IN

@),

where the last inequality comes from the fact that p-Haagerup tensor product is a subcross norm. Now

suppose z € (Y')" ® X¢ with ||z|ln, < 1. Let € > 0, then by definition of the p-Haagerup tensor product,

there exist y;, -+ ,y, € Y’ and 1, ,z, € X such that z =", ¥/ ® z; and
T " 1/p/ n l/p
we-wi|| 2 || = (Z yw’) (Z ||xi|”> <lte
i=1 i=1
T,

4Recall that every SQp space is reflexive. See Remark 1.2.4.
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By Holder’s inequality,

n

> (uli), i)

i=1

|[®(u)(2)] =

i=1

n /p / pn 1/p’
< lul] ( IIwiI”> <Z |y§p> < lul[(1 +¢)
i=1

and this shows that ||®(u)|| < ||u||. Therefore ® is an isometric isomorphism. O

Remark 2.2.8. Lemma 2.2.7 is enough to show that the p-Haagerup tensor product is not injective for
p # 2, in the sense of Remark 2.3.5.5 Motivated by [LeM96, Remark 6.2], let E be a subspace of L,(u)
which is not an L, space.5 Consider the inclusion mapping J : (E')" %’7 Ec — (E")" fé” Lg(p). We claim
that J is not even isometric. Indeed, if J were isometric, the adjoint J' : B(L,(u), E) — B(E, E)” would be
a quotient map given by the restriction. In particular, idg must extend to a map from L,(u) onto E and
this would imply that E is a 1-complemented subspace of L,(u). This is equivalent to saying that F is an

L, space, which is a contradiction.

The fact that the p-Haagerup tensor product is not injective can be used to show that there is no p-
analogue of polar decomposition. To make it precise, suppose 8 € M, ,, with r > n. Regard [ as an operator
from £ to ¢5. If § has full rank, then we can always write 8 = 70y, where 7 € B(£, (%) is an isometry and

Bo € B(¢3,¢) satisfies ||B3]| = ||Bo]|.® It leads us to the following question.

Question 2.2.9. Do we have a similar decomposition if p # 2?7 That is to say, if p # 2, can we always
write a full rank matrix 8 € M., as 3 = 70y where 7 € B({};,£}) is an isometry and 3y € B(¢}, () satisfies
1B8llBeen,er) = [1Bolleey en)?

If the answer to Question 2.2.9 were yes, then the same argument as in [ER00, Lemma 9.2.3 and Propo-

sition 9.2.5] could be used to show that p-Haagerup tensor product is injective. Since p-Haagerup tensor

product is not injective, we conclude that the answer to Question 2.2.9 is no.

2.3 p-Injective Tensor Product

Definition 2.3.1. Let XY be p-operator spaces. Regarding the algebraic tensor product X ® Y as a
v

subspace of CB,(X’,Y’), we define the p-operator space injective tensor product X ® Y to be the completion

of X®Y in CB,(X",Y).

5The Haagerup tensor product for operator spaces is injective [ER00].

6@‘ can be regarded as a subspace of L,(C",dx). See [DF93, Proposition 8.7]. Note that a Hilbert space cannot be isometric
to any Ly space, p # 2, since Ly spaces do not have the parallelogram law unless p = 2.

"Note that E is reflexive, see Remark 1.2.4.

80ne can take By = |G| using polar decomposition. See the proof of [ER00, Lemma 9.2.3].
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Remark 2.3.2.

1. For each u € M,(X ® Y), we have ||ullv, < [[ul[n,.® To see this, suppose u = v ® w with v € M, ,(X)
and w € M, ,(Y). It follows that

lullv, = sup {‘ [Z ‘Pst(vik)wkj] im e N, ¢ = [pa] € Mm(X')l}
k=1
< sup {||{e, o) llwll - m € N, @ = [par] € M (X')1}
< ol

Taking infimum over v and w, we get the desired inequality.

2. By definition of the Banach space injective tensor product é,lo we have

[ulle = llullaxr vy < llulles, x vy = llullv,

for everyu e X ®Y.

3. If Y € B(Ly(v)), then the p-operator space injective matrix norm | - ||, on X ® Y satisfies

lullyv, = sup{[l(¢ @ Y)n(W)]| : m,k € N, o € My (X')1,9 € My(Y')1}

for each matrix v € M,(X ® ).
\/P VP
4. If X C B(Ly(p)) as well, then X ® ¥ =Y ® X p-completely isometrically.
Now we are ready to compare various tensor norms on X ® Y.

Proposition 2.3.3. If X and Y are p-operator spaces, then the various tensor norms X ® Y are ordered

as follows:

- lle < llve <MDl < A Hlap <A Ml
Proof. Combine Remarks 2.1.2, 2.2.2, and 2.3.2. O

Proposition 2.3.4. If X C B(L,(u)), then we have p-complete isometric isomorphisms

\/P
Mo (X) = M, & X =CBJ(X', M,).

%In particular, |lullv, is a subcross norm.
0For Banach spaces E and F, the norm of x € E ® F is given by regarding x as a member of B(E’, F') [Rya02, §3.1].
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Proof. For each m € N, we have
My, (M (X)) C Mm(Mn(X”)) = CBP(X/vaﬂ)'

\/p
By definition, M,,(M,, ® X) C M,,(CB,(X',M,,)) = CB,(X’, M;,,,) and the first identification follows. For
the second identification, simple calculation shows that M, (X) C CB; (X', M,). The other inclusion comes

from applying [Con90, Theorem V.1.2] to each component of 7' = [T;] € CB, (X', M,,). O

Remark 2.3.5. At this moment, we do not know whether the p-operator space injective tensor product
is injective that is, if u : X — Xandv:Y — Y are p-completely isometric injections, then we do not
know whether u ® v always extend to a p-completely isometric injection u @ v : X <§v§p Y - X @v@” Y. But
if we assume that all the p-operator spaces under consideration are on L, space, then we can show that
uv: X g@p Y — X @v@" Yisa p-complete isometry as in the following proposition. This fact supports that

the terminology p-injective tensor product is still reasonable.

Proposition 2.3.6. Fori=1,2, suppose X; CY; C B(Ly(1i)). Then
Vp \/p
X1 @ XoCY1 @Y,

p-completely isometrically.

Proof. For i = 1,2, let ¢; : X; — Y; denote the (p-completely isometric) inclusion. Since p; ® o =

(p1 ®idy,) o (idx, ® p2), by Remark 2.3.2 above, it suffices to show that
Vi Vo
idX1®<p2:X1®X2—>X1®Y2

is p-completely isometric. Note that the following diagram commutes:
Vo idx, ®p2 Vp
X1 ® X X1 ®@ Y
CB,(X1{, X2)——CB,(X{,Y2)
v v
Since X; ® X5 C CB,(X1,X2), X1 ® Yy C CB,(X{,Ys), and CB,(X1,X2) C CB,(X{,Y2) p-completely

isometrically, we conclude that idx, ® 2 is p-completely isometric. O
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Theorem 2.3.7. If X C B(L,(v)), then there are p-complete isometries
\/P
K(Lp(p) ® X — B(Ly(p) ®p Lp(v)),

B(Ly(1) & X = B(Ly(s) @ Ly(v)).

\/P
In particular, if V. C B(Ly(p)) and W C B(L,(v)), then V.@ W «— B(L,(u) ®p Lp(v)) p-completely

isometrically.

vp
Proof. By Proposition 1.6.8, we have a p-complete isometry K(L,(n)) ® X — CB,(N(Ly(n)),X). By
/\P
[Daw10, Proposition 5.3], we have the isometry N (L,(p)) @ N(Ly(v)) = N(Lp(p) ®p Ly(v)) and hence we

get

Ap

CBy(N (Lp(n)), B(Lp(v))) = N (Lp(p)) ® N(Lp(¥)))" = N (Lp(p) @p Lp(v)))" = B(Lp(1) @p Lp(v)) (2.3)

isometrically. Therefore,

Mo((W(Ly (1) & ML) = CB,N(Ly() & N (L)), My)
= CB(N(Ly(), CBy(N (Ly (), My))
= CB,(N(Lp(w), Mo (B(Ly())))
= CB,(N(Lyp(w), Bl @, Ly(v)))

(by (2.3)) = B(Ly(n) ®, ly ®p Ly(v))

= Mu(B(Ly(p) @p Lp(v)))
and this means that we have the p-complete isometry
N (Lp() & N(Ly(w))' 2 B(Ly(p) @, Ly(v). (2.4)
Therefore, (2.3) is in fact a p-complete isometry and this in particular shows that
K(Ly(1)) & X € CByW (Ly(1)). X) € CBy(N(Ly (1), B(Ly(1))) = B(Ly(1) @y Ly(v))

p-completely isometrically.
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For the second identification, note that we have the following p-completely isometric inclusions
VP
B(Ly(n)) ® X CCBy(B(Ly(n))', X) C CBy(B(Ly(1))', B(Lp(v)))- (2.5)
By Proposition 2.1.7 and [Daw10, Proposition 5.4], we get isometric isomorphisms

M(B(Ly(1))) = CBy(BLy (1)), My) = (B(Ly() & N’ = Na(BLy())) = (Ma(N (Ly(1))) (2.6)

and hence the closed unit ball of M,,(N(L,(u))) is weak*-dense in the closed unit ball of M, (B(L,(ux))").
To be more precise, by Lemma 1.6.7, (2.6) means that for all ¢ = [¢;;] € M, (B(Ly(1))")1, there is a net
U7 =[] € My (N (Ly(p)))r such that for all T' = [T35] € No(B(Lp () = (Mn (N (Lp(1))))", M

D W Ty = > (Wi, Tog). (2.7)

2 2

Let Ty € B(Ly(p)) and let § > 0. By considering T' = ¢;; ® Ty € M, (B(L,(1))), (2.7) in particular yields

that for each i, j, there is 7;; such that

() — ij, To)] <6 for all v 3= 7. (2.8)
Consider the following diagram

My (N (Lp () ———— Mn(B(Lp())')

CB(B(Ly()), Mp) = CBp(B(Lp (1)), Mn),

where the first column comes from Proposition 2.3.4. (2.7) and (2.8) mean that ¢ € CB; (B(Ly(x)), Mn)1

converges to v in the point-norm topology because if Ty € B(L,(u)), then
197 (To) = (To)|| < D (w7 — iy, To)| < nS
‘7j

for v large enough. Therefore, using the same argument as in [ER00, Proposition 8.1.2], we can replace
CB,(B(Ly(p))',B(Ly(v))) in (2.5) by CBy(N(Ly(r)), B(Ly(v))) and the result follows from the previous

case. The remaining part follows from Proposition 2.3.6. [

11See Definition 1.6.6 for the definition of Ny (B(Lp(1))).
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Vp v
Remark 2.3.8. In fact, in Theorem 2.3.7, one can show that K(L,(u)) ® X — B(L,(n)) ® X using

Proposition 2.3.6. We gave a different proof to exhibit that (2.4) is a p-complete isometry.
The following result provides another reason why the terminology p-injective tensor product is reasonable.

Theorem 2.3.9. Let V and W be p-operator spaces on L, spaces. Then there exist two index sets I and
J such that we can identify V' and W with p-operator subspaces of B(£,(I)) and B(£,(J)), respectively, and
the canonical inclusion

V& W o B(l,(1) @, 6,(])

is a p-completely isometric injection.

Proof. By assumption, V' C V" (respectively, W C W") p-completely isometrically. By Proposition 1.6.2,
there is an index set I (respectively, J) such that V" C B(¢,(I)) (respectively, W C B(¢,(J))). We can

conclude from Proposition 2.3.6 and Theorem 2.3.7 that the canonical inclusions
Ve nolP Vp
VoW=Vie W' —=BI) @ BlI)) = B(lI)3y(J]))

are p-completely isometric injections.

Our next result is a p-operator space injective tensor product counterpart of Proposition 2.2.4.

Proposition 2.3.10. Let 1 and v be measures and let V. C B(L,(v)). Then we have the p-complete
isometries

hP V:D P
Ly(p) @ V=1Ly(n) @V, VeL,(=V® L, (u.

Proof. Let us only give the sketch of the proof for the column space Lg(u). The proof for the row space

Ly, (w) is similar. Let us first assume that L,(u) = £3. Then we have the p-completely isometric inclusion

VP VP
(p)° @V =V & () = CB,(V',(£;)°) = Mp 1 (V").

\
It follows that every v € M, ((£})° ® V) = My m (V) can be expressed by v = Ip,,v = Ly, @ v. Since we
can regard I,,,, as a contractive element in M, ymn((€})°) = My, we get |[v][n, < [[v]lv,. The general case

follows by applying the rigid £,-structure of L,(u) [LP68]. O
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Theorem 2.3.11. Let V' be a p-operator space on L, space. For any measure j1, we have the p-complete

isometries

In particular, we have
h

P vT’
K(Lp(p) = Ly(p) @ Ly (p) = Ly(p) @ Ly (k).
Proof. If L,(n) = £y, we have K(£y) = B({;) = M, In this case, we obtain

’ILVP nchp hp’rLT ’nCVZ7 Vpn’l‘
B(ty) @ V=M,(V)= () @V & ({)" =) @V e ()

by [LeM96, Proposition 6.3] and Proposition 2.3.10. For general case, we need to apply the rigid £,-structure
of L,(), i.e. we need to consider an increasing net {F, } of finite dimensional subspaces in L,(u) such that
each F, is isometric to some e;;““) and the union J,, F,, is norm-dense in L, (). For each «, we may identify
the dual space F/, with a subspace of L,/ (1) and F, is isometric to K;l,(a). In this case, the p-operator spaces
Fg, (F,)", and B(Fy) are 1-complemented subspaces of L (i), Ly, (1), and K(Ly (1)), respectively. Then we

obtain an increasing net of p-operator spaces

hyp hyp Vp Vp

Since the unions |J, B(F.), U, FS ® V @ (F))", and |J, FS ® V ® (F),)" are norm-dense in K(L,(j)),
hp  hy Ve VY , L -

Ly(p) ® V@ Ly(p), and Ly(p) @ V. @ Ly, (u), respectively, thanks to Proposition 2.3.6, we obtain the

desired p-complete isometries

Vp hp hp Vp Vp
K(Lp(p)) @ V=Ly(pn) @ V& Ly(p)=Ly(p) ® V& Ly (p).

The second part is immediate by taking V = C. O

Now let us discuss the duality property between the p-operator space injective tensor product and p-

operator space projective tensor product.12

Theorem 2.3.12. Let V be a p-operator space on L, space. For each n € N, we have the isometric
isomorphism

VP /\P
(M, @ V) =N, @ V.

128ee also Lemma 5.1.1.
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Proof. Let us first assume that u is a contractive linear functional contained in (M, g@pl@ (E)) = B(E™)" with
E = L,(p) and |Ju|| = 1. Since ||ullpes = [Ju]] = 1 (Lemma 1.4.3), u is actually a p-completely contractive
linear functional from B(E™) into C. We can apply Pisier’s representation theorem [Pis90, Theorem 2.1(c)]
to obtain an L, space, a unital p-completely contractive homomorphism 7#8(E™) — B(L,) and contractive

vectors ) € Ly, £ € Ly such that
ullaz)) = (& 7 ([a])n)-

\/P
Now using the submatrix system {e;; ® 1} in M,, ® B(E) = B(E"™), we can split the range space L,, into

the following n-copies of £,-direct sum
L,=7(e11®1)L, ®p -+ Bp T(enn @ 1)L,.

It is easy to see that 7(e1; ® 1)L, is a closed and contractively complemented subspace of L, and thus is an
L, space, which we denote by L,(v). All other spaces 7(e;; ® 1)L, (1 < ¢ < n) are isometrically isomorphic
to L,(v) via {7(e;; ® 1)}. Therefore (up to an isometric isomorphism), we can obtain a unital p-completely

contractive homomorphism 7 : B(E) — B(L,(v)) and contractive vectors [§;] € Ly (v)™ and [n;] € L,(v)"

such that
u(lay)) = ([&], (idar, ® m)(las)) ) = (&), [r(agg)]ms)) = Y (& mlass)my)-
i5=1
Now let us assume that the vectors 71, ...,7, are contained in a finite dimensional subspace F C L,(v)
such that F' is isometric to E’;. If we let fq,..., fr correspond to the canonical basis of E’;, We can express

each n); as n; = Zle Bjwfo with 37, 85,07 < 1. Similarly, we may assume that the vectors &1, ..., &, are
contained in a finite dimensional subspace G C L,/ (v) such that G is isometric to Ki,,. In this case, we can
express &; as & = Ziu:l QG G With D, |ai’w|p/ < 1. Let ¢tf and tg be the embedding of F' and G into

L,(v) and L, (v), respectively. Then the map
P =[®,,]:a€B(E)— (g)n(a)r € (1g)' B(Ly(¥))tr = My,
defines a contractive element in M; x(B(E)") = CB,(B(E), M; 1) such that
u = ([&], (tdar, @ m)5]) = [aiw] (idar, @ P)[Bj0]-

A
This shows that u corresponds to a contractive element in N, ® B(E)'.

In general, the vectors {n; i=1 (respectively, {£;}7 ;) can be approximated by vectors in some sufficiently
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large finite dimensional subspaces F' C L, (v) such that F = (% (respectively, G C Ly (v) such that G = 4,,).
A N
It follows that w is a limit of contractive elements in N, ® B (E)" and thus u itself is contractive in \V;, ®pB(E)’ .

Therefore we have the isometric isomorphism

Now for general p-operator space V. C B(L,(u)), if u is a contractive linear functional in (M, éf VY,
we may extend u to a contractive linear functional @ € (M, ép B(Ly(1))). From the above discussion,
we can find a p-complete contraction ® : B(L,(n)) — M and contractive [o; ] and [§;,] such that
U = [0 ] (id g, ® ®)[B;,0] is contractive in N, (%)p B(E)'. Then ®|V is a p-complete contraction from V into

Ap
M, and thus u = [ ] (ida, ® ®|v)[0),0] is contractive in A,, ® V. This completes the proof. O

Corollary 2.3.13. Let V and W be p-operator spaces on L, space. Then the canonical inclusion
\/P
Vi@ W — CB,(V,W)

is a p-completely isometric injection.

Proof. 1t is known from Proposition 2.3.4 and Theorem 2.3.12 that for each n € N, we have the isometric
isomorphisms

Mo (V") = CBy(V', My) = (N & V'Y = My (V)".

v
Therefore we can replace V” by V' in the definition V! @ W < CB, (V" , W) of the p-operator space injective

tensor product as in the proof of the second half of Theorem 2.3.7. O

2.4 Infinite Matrices

As in operator spaces, we can develop the theory of infinite matrices for p-operator spaces. Most of the
ideas in this section comes from those of [ER00, Chapter 11]. For the convenience of the reader, we briefly
introduce some p-operator space analogues. Suppose that V is a p-operator space. We denote by M, (V)
the linear space of all infinite matrices [v;;] with v;; € V. For 1 < r,s < oo, we identify matrix spaces
M, 4(V) and M,.(V) in the obvious manner, and we let v" denote the truncation of v € My (V) to M,.(V).
If r < s, then

[0" ] = [[(Ir © Os—)0* (I @ 0 ) [| < [[0°]]-
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If v € Moo (V), then we define

ol = sup{lo"]| -~ € N} = tim [l

and we define M (V') to be the space of all v € M (V) for which ||v| < cc.
For any m € N, we identify M, (Mo (V) with M, x00 (V). Let M, (Mo, (V) denote M., (Ms (V)) with the

corresponding norm.
Proposition 2.4.1. If V is a p-operator space, then My (V) is a p-operator space.
Proof. This follows exactly as for operator spaces, as in [ER00, Proposition 10.1.1]. O

We define Koo (V) to be the closure of M (V) in M., (V), where Mf? (V') denotes the linear space of
matrices with only finitely many nonzero entries. Suppose that V' C B(L,(u)), then the column mappings

in the diagram

Vp
M(V) & M, ® V

|
Ka(V) Koo &V

are isometric, and in each case the union of their ranges is dense. It follows that we have the isometry
VP
Ko(V) 2K @ V.

One can also consider the spaces My, o (V) and Mo (V). If v € M, »(V), then we interpret the
truncation v as an element of M, (V') for r < n, an as an element of M,, ,.(V') for r > n, and we use a similar
convention for M, (V). We define M), o(V) and M (V) just as for Mo (V). In particular, we wish to

study M,, oc and My ,, more closely.

Lemma 2.4.2. Let a = [a;;] € M, 00 and § = [Bri] € Moo, Let 1 < p,p’ < oo with 1/p" +1/p =1. Then

we have
”aHB(Ep,Zg) < Ha”p’ .n\l/Pfl/pl and ||ﬂ”8(€g,£p) < Hﬁ”p . n\l/pfl/p |’
where ,
fally = (323 el | ana 31, = (zz mkm’) |
i=1 j=1 k=1 I=1

Proof. The proof is almost identical to that of Lemma 1.6.4. We insert the proof for convenience. Suppose

& = (&) is a unit vector in £,. For each 4, 1 < i < n, let n; = ‘Z;’;l aijfj‘, then by Holder’s inequality,
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/

’ 1/p
N < (Z;’il |evi;|P ) and by Lemma 1.6.3,

1/p’

n p n
(Z 77f> < plt/p=1/91 (Z nP > < plt/p=1/71 ol
i=1 i=1

and hence we get [|a|[5(,,em) < nlt/P=1/?'l . ||al|,/. To prove the second inequality, let 7 : £, — 2, be the

adjoint operator of 3. Then by the argument above we have

. pl1/p=1/p'|
B, o) <1l -n :

Since |[1]1s(e,..1,) = 18ll5e; 4,7 and |7l = 18], we gt the desired inequality. =

For any matrices o € M,, o and 8 € M, ,,, we have
lim [l — o7 = lim |3~ 57 = 0. (2.9)

To see the first equality of (2.9), by Lemma 2.4.2, it suffices to show that lim, . || — a”||,» = 0, but this
is a simple consequence of ¢,/-convergence. Similar argument works for the second equality in (2.9), and we

see that My, oo = Ky 00 and Mo p, = Koo -
If v € Moo (V) and a € MED, then we define av € M. (V) by
(Ov)ij =Y ik -
k
As in the 2-operator spaces, it turns out that indeed av € M, (V). Given a € K, and r < s,
oo —a"v| < [la® = a"[[[v],

and thus o”v is Cauchy. We let

av = lim a"v. (2.10)
Similarly, for 8 € K, let
v@ = lim vG". (2.11)

Lemma 2.4.3. With operations in (2.10) and (2.11), M (V) is Koo -bimodule.
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Proof. We follow the argument in [ER00]. Let o, 8 € Ko, and v € M (V). Firstly, we show that (af)v =
a(fv). Let E" = I, ® 0 € Ko, then ||a(I — E")|| — 0 as r — oo since this is evident for a € M, and the

general case follows from the density argument. Therefore,
[(@B)" —a"B"|| = [[E"a(l — E")BE"|| — 0
and
(af)v = lim (a"F")v = lim o"(8"v).

But we have
|a(8 = B")v[l + [[(a — a”) 80|
< lallllB = B"[lvll + lle = " [[[| 8]0 — 0,

[l (Bv) — " (57|

IN

A

and associativity follows. The same argument applies on the right side. Lastly, noting that (a"v)5" =
a"(vB") = a"vP", we show that

(a)p = an}o a"vf" = a(vf). (2.12)

T

Indeed,

[(av)f = (@)™ < [[(aw)B = (@ 0)B] + [[(a"v) 5 — (") 5"
[(av = a™0)B] + [[a"v(8 = 7))l
llow —a”o|[[|B]] + [l v[l[|8 = 87| — O

IN

as r — oo and the first equality of (2.12) follows. Likewise, we can prove the second equality of (2.12) and

this completes the proof. O

The above argument applies, as well, to the space M, (V) and My »n(V). If o € M, 00 = Kp 0,

v € My (V), and 8 € Mo, = Koo n, then we have a corresponding element
avf = lim o"v@" € M, (V). (2.13)
Following [ER00, Theorem 10.1.4], for any p-operator space V', we get p-completely isometric isomorphism
/\P
(Now @ V) = M (V'), (2.14)

where N denotes the space of all nuclear operators on £,,.

Now let us suppose that v € My (V), w € Mo(W), a € My, o2, and 8 € My2,,. We have v @ w €
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/\p
My2(V ® W) since

(v @w)™* [, = llv" @ w®||a, < [[o"[[[lw*] < [lollw],

/\P
and thus from (2.13) we have a well-defined element v = a(v ® w)8 € M,(V ® W). Moreover, proceeding

as for 2-operator spaces, we get

[wlln, < lledllolljwllIB]l (2.15)

A
Proposition 2.4.4. Given p-operator spaces V and W, and u € M, (V ® W),
[ulln, = inf{[lefl[[v[[[[w][[[B] - v = a(v® w)B},
where the infimum is taken over all such representations with v € My (V),w € Mo (W), a0 € M,, 2, and

B € M2 . Furthermore, we may assume that v € Koo(V) and w € Koo (W).

A
Proof. By (2.15), it suffices to show that [jux, > inf{||a|/||v||||w|[|B]| : v = a(v@w)B}. If u € M, (V ® W)

and [[u[[x, < 1, then there exists a sequence {u} of elements in M, (V ® W) such that

o0 oo
u:Zuk and ZHukH/\p <1
k=1 k=1

Let 0 <e<1—77 |lug|l,- Foreach uy € M,(V ® W) we can choose v, € My, (V), w € Mg, (W), oy, €

My, py, xq), > and Bk € M, xqi,n such that

up = og(ve ® wy) B

and
€
llevk [[llox Hlwn [[18ell < llurlla, + o -
Without loss of generality, we can suppose that ||vg|| = [Jwg| = 1 and
/ €
llewk [P = 8.7 < llunlin, + - (2.16)

Let ¢ = max{p’,p}. Since ), (|luxllr, + 5%) < 1, we can find a sequence {cx} such that c;, > 1, ¢z — oo,

and yet we still have

> €
> chlluella, + 55) < 1. (2.17)
k=1
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Let
oo oo
o —1 d _ —1
v = ¢, v and w= C Wk,
k=1 k=1

then v € Koo (V) and w € Koo (W) with ||Jv]], [|w] < 1. Let
a=[ciay 012 013 -+ 021 coag -+ Ogg ---],

where 0,, denotes the n by p, X g5 zero matrix. We claim that o € M,, o2 with ||a| < 1. Indeed, let
€=[&11 &2 - &1 &ao --+ ]T be a unit column vector in ¢,, where 5 is a p, X gs-dimensional row vector.

Then

lag]l =

1/p 1/p
> vt < llevanéill < (Z ||Ck04k||p/> <Z fkk”p) <1
! k k: e

by (2.16) and (2.17). This shows that ||| < 1. Let 8 be the transpose of

[c18] 012 013 -+ 091 283 -+ Ogg -],

Again, by (2.16) and (2.17), it follows easily that 5 € My, with ||3| < 1. Now the result follows since

u=alv®w)s. O

We can also represent elements in the p-operator spaces Haagerup tensor product in terms of infinite
matrices. First of all, using an argument similar to that used right before Proposition 2.4.4, we get that if
v E Myoo(V), 2 € Moo(X) , and w € M (W), then we have a well-defined element u = v ® 2 ©® w in
M, (V X & W) and moreover [[ulls, < |lv][lz]|w].

hp  hy
Proposition 2.4.5. Given p-operator spaces V,W, X andu e M,(V @ X ® W),

[ulln, = mf{[jo[[[lz][[w]: v =v Oz Ow},

where the infimum is taken over all such representations with v € M, (V),z € My (X), and w €

Moo n(W). Furthermore, we may assume that x € Koo (X).

hy h
Proof. Tt u € M, (V ® X @ W) and |lul[n, < 1, then there exists a sequence {u} of elements in M, (V ®p,
X ®p, W) such that

oo o0
u= Zuk and Z luklln, <1.
k=1 k=1

Let 0 <e<1—372, |lug||n,. For each up € M, (V @, X @4, W) we can choose v, € M, p, (V), 21 €
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My, xq, (X), and wy, € M, » such that

Up = Vg O T © Wi

and
€
lvellllerlwel < lluklln, + 55
Without loss of generality, we can suppose that ||z =1 and
' €
lorll” = llwrll” < llurlln, + 55- (2.18)

Let ¢ = max{p’,p}. Since >, (|luxlln, + 5r) < 1, we can find a sequence {ci} such that cx > 1, cx — oo,
and yet we still have

= €
> chllluel, + 57) < 1. (2.19)
k=1

Let

o0
-2
T = @ck Tk,
k=1

then z € Ko (X) with ||z|| < 1. Let

Clwq

CoWa
v=[c1v; coug -+ | and w= ,

then as in the proof of Proposition 2.4.4, we get v € M, (V) and w € My, (W) with ||v]|, |w| < 1.

Finally, u = v ® x ® w and this finishes the proof. O

46



Chapter 3

Figa-Talamanca-Herz Algebras

3.1 Basics on Locally Compact Groups

Throughout this section G will denote a locally compact group. Whenever it makes sense, the convolution

& *n of two functions & and n on G is defined to be

€*W(I)Z/G§(y)n(y’1x)dy,

where dy means the left Haar measure.
Lemma 3.1.1. Let K be a compact subset of G. Then there is a function f € Coo(G) such that f|x = 1.

Proof. Let L be a compact neighborhood of the neutral element e € G, then KL is also compact being the

image of a compact set under a continuous function: K x L 3 (k,l) — kl. Consider the function

1

=1k x1p-1.
|L|
Since
1 ~ 1 ~ \[KLNzL|
fl@)== [ 1@y 'a)dy=— [ 1z 'y)dy=""———,
=127 J, L] S, M) ]

for every k € K, we get

IKLNKL|  |zL|
k) = =B,
") == )

f € Cy(G) because f is given by the convolution of functions with compact supports [HR79, (20.16)] and

€ Copo ecause f vanishes off the compact set .
fecC (G) b f ish I th p KLL™! O

47



3.2 p-Pseudofunction Algebras and p-Pseudomeasure Algebras

Let G be a locally compact group and let 1 < p < co. For each s € G, there exists an isometric isomorphism

Ap(s) on L,(G), called the left regular representation, given by
() ) =€(s7H),  EeLy(G), s ted.

It is well-known (for instance, [Run02]) that A, : G — B(L,(G)) is strong operator continuous (equivalently,
weak operator continuous).! Note that A, induces a representation A, : L1(G) — B(L,(G)) via integration.
We let PF,(G) denote the p-pseudofunction algebra, which is defined to be the norm closure of A\,(L1(G))

in B(L,(G)) so that for f € L1(G), the norm of A\,(f) is defined by

Ao (Pl = sup{[lf +&llp : € € Lp(G), (€], < 1}- (3.1)
Remark 3.2.1.
1. PF,(G) is indeed a Banach algebra, because A,(f x g) = A\, (f)A\p(g) for all f,g € L1(G).

2. By Young’s inequality for convolution

Ap (NI < 11f11 (3.2)

for any f € Li(G). In particular, when p = 1, [|A\(f)]] = ||f|lx for all f € L1(G) since L1(G) has a

contractive approximate identity.
3. @ is amenable if and only if for each positive f € L1(G) one has |\, ()|l = || f]l1 [Lep68].

4. PF,(G) has a contractive approximate identity arising from contractive approximate identity of L, (G).

If G is discrete, then PF,(G) has a unit.
5. If p =2, PF5(Q) is nothing but the reduced group C*-algebra of G.

We let PM,(G) denote the p-pseudomeasure algebra, which is defined to be the weak operator topology
closure of \,(L1(G)) in B(L,(G)). By Krein-Smulian Theorem, PM,(G) is the same as the weak* closure
of \y(L1(G)) in B(L,(Q)).2

1Similarly one can define the right regular representation pp, given by pp(s)(€)(t) = £(ts)A(s)V/?, € € Lp(G), and s,t € G,
where A denotes the modular function.
2Equivalently, the weak*-closure of span{Ap(s) : s € G} in B(Lp(G)). So PM,(G) is always unital.
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3.3 Introduction to Figa-Talamanca-Herz Algebras

In this section we introduce a p-generalization of the Fourier algebra.

Definition 3.3.1. Let G be a locally compact group. Let A, : L, (G) ® L,(G) — Cy(G) be defined by

Ap(g® f)(s) = (g, Ap(s)(f)), s €G, feLy(G), g€ Ly(G).

The Figa-Talamanca-Herz Algebra A,(G) is defined to be the coimage of A,.3

Remark 3.3.2. We collect some facts about A,(G).

1. A,(G) consists of those f € Cy(G) such that there are sequences (§,) € L,y(G) and (1,) € L,(G)

with Y07 [[€nllllnn]] < oo and f = "7 | &, *7j,. Note that

1l 4,0) = inf{z 1€nllllnall - f = Z«En*ﬁn}-
n=1 n=1

A, maps into Co(G) by Theorem [HR79, (20.16)]. Moreover, || - |4, (c) > || - [lc by Young’s inequality

for convolution [HR79, (20.18)]. In particular, the convergence in || - |4, (@) implies uniform (hence

pointwise) convergence.

2. A,(G) is a commutative Banach algebra under pointwise operations [Her71].

3. G is amenable if and only if A,(G) has bounded (by 1) approximate identities for any p, 1 < p < oo

[Her73, Theorem 6].

4. By Lemma 3.1.1, for any compact subset K of G, there exists ¢ € A,(G) with ¢ =1 on K. See also

9 below.

5. If G is amenable, given a compact subset K and € > 0, there exists ¢ € A,(G) with ¢ =1 on K and

ll¢lla, @) <1+ e See Theorem 4 and Section 0 in [Her73].
6. A,(G) is isometrically isomorphic to A, (G) via f + f. If G is abelian, then A,(G) = A, (G).

7. The Banach space dual A,(G)" can be identified with PM,(G) [Run02].

8. Let f € L1(G), then f defines an element ®; in A,(G)" by [ f(z)w(z)dz, w € Ap(G). The norm

@],y equals ||A,(f)] introduced in (3.1) above [Cow79, §4].

9. A,(G) is a regular tauberian algebra in the sense of [Her73, Proposition 3].4

3Some authors swap p and p’. For example, Runde in [Run02] uses A,/ (G) instead of Ap(G) in our definition.
4A Banach algebra A is said to be a regular tauberian algebra of functions on G if the following three conditions hold:
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10. A,(Q) is dense in Cy(G) in || - ||eo- To see this, it suffices to show that for any f € Coo(G) and for
any € > 0, there exists u € A,(G) such that ||u — f|le < €. Since f € Coo(G), f is (right) uniformly
continuous [Fol95, Proposition (2.6)], so there is an open neighborhood U of the neutral element of G
such that ||f(-y) — f(*)||ec < € for all y € U. By [Fol95, Proposition (2.19)] and (inner) regularity of the
Haar measure, we can replace U with a compact set K with 0 < |K| < co. Define u := |Tl(\f * L1,

then u € A,(G) and for all t € G,

ut) - £0)] = ‘Ifl(l . (S)Jlxl(slt)de(t)’
- % /etK(f(S)—f(t))ds
=t"s) < % () = )1y
< €.

11. If z; — e in G, then

2;u —ulla, (@ — 0. This follows from the fact that A, .(G) = A,(G) N Coo(G)
is dense in A,(G).°

12. A,(QG) is closed under the left and right translations since for ¢ = {1, £ € Ly (G),n € L,(G), we get
p(s7a) = M\ ()Exm)(x) and  @(ws) = (§x pp(s)i)(x)-

Since PM,(G) C B(L,(G)) is a p-operator space, A,(G) has a dual p-operator space structure and
A, (G) = PM,(G) p-completely isometrically [Daw10, Proposition 5.5]. Unless stated otherwise, we assume

that A,(G) carries this p-operator space structure.

Definition 3.3.3. A linear map T : A,(G) — A,(G) is said to be a multiplier if T'(uv) = T'(u)v for all
u,v € Ap(G). The set of multipliers of A,(G) is denoted by MA,(G).

Remark 3.3.4. If T' € M A,(G), then T is necessarily bounded. To see this, suppose u,, — w and T'u,, — v
in A,(G). Fix x € G and take h € A,(G) such that h(z) = 1. Then

v(z) =v(x)h(z) = 1i711n Tu,(x)h(z) = li}ln T(unh)(z) = li7rln un (2)Th(z) = u(x)Th(z) = Tu(x)h(x) = Tu(zx)

(a) Given a compact set K C G and a closed subset F' disjoint from K, there exists u € A such that u =1 on K and u =0
on F.

(b) The elements of compact support are dense in A.

(¢) If M is a continuous multiplicative linear functional on A whose support (in the sense of [Her73, §3]) is a single point
{z} C G, then M = 6, i.e., (u, M) = u(z) for all u € A.

5See Remark 3.3.2.9.
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and the result follows by the Closed Graph Theorem.

To each T € MA,(G), we associate a function hy : G — C in the following way: for x € G, take
u € Ay(G) with u(z) = 1 and define hy(z) = (Tu)(z). Note that hr is well-defined since if v € A,(G) is

another function satisfying v(z) = 1, then

(Tu)(x) = (Tu)(@)o(z) = T(uv)(z) = T(vu)(z) = (Tv)(@)u(z) = (Tv)(x).

It is not difficult to show that the mapping T' — hr is injective and this gives an alternative definition of

multipliers.

Definition 3.3.5. A complex-valued function u on G is said to be a multiplier for A,(G) if the linear map

my,(v) = uv maps Ay(G) to Ap(G).

Definition 3.3.6. For u € M A,(G), let M, : PM,(G) — PMy(G) denote the weak*-continuous linear map
defined by M, = m!, and M, denote the restriction of M, to PF,(G). M.A,(G) is defined to be the space

of p-completely bounded multipliers, endowed with the norm |[u||az,, 4, (c) = [[Mullpeb-
Remark 3.3.7.

1. f u e MA,(G), then w is necessarily in C},(G). To see this, suppose g; — g in G. Let K be a compact
neighborhood of the neutral element e of G and define ¢ € A,(G) by ¥(s) = (Lx, Ap(s)1,-1k), then
¥(g) = |K| > 0. Since uy) € Ay(G) C Co(G) (Remark 3.3.2), u(g;)(g:) — u(g9)¥(g) = u(g)|K]|. Since
¥(g;) — ¥(g) = |K| (See Remark 3.3.2), we conclude that u(g;) — u(g). For boundedness, one can

rely on Theorem 3.3.8 below.

2. If u € MA,(G), then m,, is a bounded linear map on A,(G). This follows from the closed graph

theorem and the fact that ¢,, — ¢ in A,(G) implies 1, — ¥ pointwise.
We have some useful characterizations of these spaces.
Theorem 3.3.8. [Daw10, Lemma 8.2, Theorem 8.3]

1. uw e MAL(G) if and only if there exists a bounded, weak*-continuous operator M : PM,(G) — PM,(G)
such that M(Ap(s)) = u(s)Ap(s).

2. u € MypAy(G) if and only if there exist E € SQ, and bounded continuous maps o : G — E and
B:G — E'" such that u(ts~!) = (B(t),a(s)) for s,t € G.

Remark 3.3.9.
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1. Theorem 3.3.8.1 shows that the range of M, is contained in PF,(G).
2. Theorem 3.3.8.2 shows that the left and right translations are isometries in M, A,(G).

3. Since M, A,(G) C CBL(A,(G)), MwpA,(G) has a natural induced p-operator space structure. In fact,
if u = [u;;] € My (MepAp(G)), then

l[ullar,, (Mo, ()
=l e, 4,
= Nlulles,a,(c).Ma(a,(c)))
= sup {[[userlll M (a, @) :mEN, 0 =[pr] € Mm(Ay(G))1}
= sup {[|[ui; ert)| Mo ((PMy Gy M EN, 0 = [pri] € My (Ap(G))1}
= sup {||[uij%l]||CB,,(PM,,(G),M,,”,L) tmeN, ¢=[pu] € Mn(4,(G))1}
= sup {[|(uijor: Trs) ntnne st €N, @ = [pr1] € Min(Ap(G))1, T = [Tys] € My(PM,(G))1}
= sup {|{@rts Mus, Trs) | Mo : Mt €N, 0 =[] € My (Ap(G))1, T = [Trs] € My(PM,(G))1}
= sup {|Mu,, Trslla,,Praycy) it EN, T = [Tps] € My(PM,(G))1}
= || Mu;lles, (P, (), M, (PM,(G)))

= M,

»(&)))

4. If G is a discrete group, the inclusion mapping ¢ : M A,(G) — loo(G) is p-completely contractive.5
Indeed, it is easy to show that ¢ is contractive (See Remark 3.3.7). To prove that ¢ is p-completely

contractive, fix n € N and let [u;;] € M,,(MaA,(G)). Then for each s € G, we have

[[[wi5(s)] ||B(£n

Z aiugg(s Z ;P <1 Z b;|? <1

1,9=1

- p{w fug][b Z\az|P<1Z|b|p<1

IN

vllen = [ag)" [ui;][b5]. Y as” < 1 Z|b P <1

i=1

sup

< supq llara,@) tv = Tl Z|al|p <1 Z b;|P <1

6See the paragraph right before Proposition 1.6.13 for the discussion of the p-operator space structure of £oo (G).
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< wiglll g, (Mo 4, (G)) -

By Proposition 1.6.14, taking supremum over s € G, we get the desired result.

We close this section with an important observation on A,(G) given by Miao. We record it for conve-

nience.

Lemma 3.3.10. Let ¢ € MA,(G) and a € A, (G).” Then the map x — (zp)a from G to A,(G) is

continuous.®

Proof. If z is in a neighborhood V of the neutral element e of G such that V is compact, then by Remark
3.3.2.9, there is u € A,(G) such that u(t) =1 for all t € V - supp(a). Hence for all z € V, (,¢)a = (»(¢u))a

and pa = (pu)a. Thus for all x € V, we have by Remark 3.3.2.11

I(ep)a = walla ) = (=(pu))a = (pu)alla,@) < llalla, @ ll=(pw) = pulla,@ —0

as T — e. O
Corollary 3.3.11. Let p € MA,(G) and a € A, (G). Let V be a neighborhood of e. If fy € L1(G) with

[fvlli =1 and fy(t) =0 fort ¢ V, then

&im ((ep)a, T) fv(z)dz = (pa,T)
—e Ja

for all T € PMy(G).

Proof. Tt is immediate since

[ (epra sy ()i - <wa,T>\ - \ [ (a0, 1)y @] < apha pallay 1T
G G

O

Corollary 3.3.12. Let ¢ € MA,(G) and a € A, (G). For any f € L1(G), there is an element n € A,(G)
such that n = [, (,—1p)af(x)dx and

(T,) = /G (-19)a, T) f (2)da

TAp.o(G) = Ap(G) N Coo(G) is dense in Ap(G). See Remark 3.3.2.9.
8Note that ¢ € MAp(G). Indeed, if u € Ap(G), then yo - u =5 (¢ -,—1 u) € Ap(G) by Remark 3.3.2.12.
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for all T € PM,(G). Moreover, n = (f *¢)a and hence

(T, (f % p)a) = /G (-r19)a, T) f () de

for all T € PM,(G).

Proof. This follows from [Ped89, page.76], because « — (,-1¢)a is a bounded continous function and f(z)dx

is a bounded Radon measure. Second part follows from the calculation

(f *)a / f(@) o t)a(t)dz = /G (o p(8))a(t) f(2)da.

O

Corollary 3.3.13. Let ¢ € MyAy(G) and v € Li(G) with ||v||s = 1. Then v+ ¢ € MypAy(G) and

lv* el 4,6 < lelm,a,6)-

Proof. Let n € N and let T' = [T};] € M,(PMy(G)). Suppose that f = {f;}7_; € L,(G) ®, ¢, and

9 =1{9i}i=1 € Ly (G) @y £}, have compact supports. Then

n

|<ga (Mv*cp)n(T)(f)H = Z <gi7Mv*g0(ﬂj)(fj)>

ij=1

n

_ Z <gi*fj,Mv*Lp(Tij)>

i,j=1

n

= |2 g x Fwx). Tyy)

ij=1

(Corollary 3.3.12) = Z/ (9 % ;) (o=19), Ty ) v(x)dz

1,7=1

= Z/ gl, _lgo zy)(fj)> ()

3,7=1

- /G (9.(M_, )n(D)(F)) 0(2)de

< gl lla=r @llaze, 4, ) 1Tl

N

(Remark 3.3.9.2)

gllp o1l a2 4, 1T Nl

This completes the proof. O]
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3.4 Other Related Spaces and Some Open Questions

In this section, we collect some results from [Run05].

Definition 3.4.1. Let G be a locally compact group. A representation of G is a pair (w, E) where F
is a Banach space and 7 is a group homomorphism from G into the invertible isometries on E which is
continuous with respect to the given topology on G and the strong operator topology on B(E). We denote
by Rep,,(G) the collection of all representations of G on a SQ, space. A coefficient function of (m, E) is a

function f : G — C of the form

f(x) = (w(x), ) (v €q),

where £ € E and ¢ € E’. Finally, we let
By(G) ={f:G — C: f is a coefficient of some (7, E) € Rep,(G)}.

Remark 3.4.2. Let G be a locally compact group.

1. Any representation (7, E') of G induces a representation of the group algebra L;(G) on E via integra-
tion, that is,

/ f@)n(@)dr (f € Li(G)).

2. A representation (m, F) is called cyclic if there is £ € E such that m(L1(G))¢ is dense in E. We let
Cyc,(G) == {(m, E) : (7, E) is cyclic}

and for f € B,(G), we define || f||5,(c) as the infimum over all expressions Y~ | [[£, | [l¢n |, where, for

each n € N, there is (7, E,,) € Cyc,(G) with &, € E, and ¢,, € Ej, such that

ZIISnHII%II <oo and f(x) =Y (mu(@)én,0n) (x€Q).
n=1 n=1

Then |[| - || g, () defines a norm on B,(G).
Runde proved the following result.
Theorem 3.4.3. Let G be a locally compact group and let B,(G) be equipped with || - ||, (). Then
1. B,(G) is a commutative Banach algebra.
2. There are contractive inclusions A,(G) C B,(G) C MA,(G).
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3. For2<q<porp<q<2, the inclusion B,(G) C B,(G) is a contraction.
Proof. Theorem 4.7 and Corollary 5.3 in [Run05]. O
Theorem 3.4.4. Let G be a locally compact group, then PF,(G)" embeds contractively into By(G).
Proof. Theorem 6.6 in [Run05]. O

Let f € L1(G), then f defines a bounded linear functional ®; on A,(G) C Cy(G) via integration: for
u€ A,(G), Ps(u) = fG F(s)u(s)ds

Lemma 3.4.5. With notations as above, || ®¢|| = ||\, (f)| for all f € Li(G).

Proof. This is proved in [Cow79]. We include the proof for convenience. By (3.1),

[Ap (Nl = sup{[&, fxm] : € € Ly (G), n € Lp(G), (€]l lInll < 1}

Since

(&, f*mn)

/ &(s) f®)n(tts)dtds

seG teG

/tEG f(t) /SGG E(s)n(tts)dsdt
)

s (Ex),

it follows that [[A,(f)[| < [|®]|. For the other direction, let € > 0 and let u € A,(G) with [Jul|l4, () = 1 such

that [®s(u)| = [|@f|] — € Let =372 &n % i with 372 1 €l [lnmllp < 1+ €, then

oo
2wl = Z & 5 m)
< S IO Enl ol
n=1
< A+ AN
and hence ||A,(f)] > M Letting € — 0, we get the desired inequality. O

Remark 3.4.6. By Remark 3.3.7, Theorems 3.4.3, 3.4.4, and Lemma 3.4.5, we have contractive inclusions

4,(G) € PF,(G) € B,(G) € MayAy(G) € MAL(G) € Gy(G).

Runde showed that some of these sets agree when G is amenable.
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Theorem 3.4.7. [Run05, Theorem 6.7] Let G be an amenable locally compact group, then PF,(G)’, B,(G),

and M A,(G) are equal with identical norms.

By Remark 3.4.6, if G is amenable then PF,(G) = B,(G) = Ms3A,(G) = MA,(G). In fact, a certain

equality among these sets implies the amenability of G as in the following remark.

Remark 3.4.8. For a locally compact group G,
1. PF,(G) = MA,(QG) if and only if G is amenable [Cow79].
2. B3(G) = M A2(G) if and only if G is amenable. [Neb82] for discrete case, [Los84] for general case.
3. If G is discrete, Ba(G) = My A2(G) if and only if G is amenable [Boz85].
Remark 3.4.8 leads us to the following questions.”

Question 3.4.9. For a locally compact group G (see Theorem 3.4.7 and the explanation right after that),
1. Do we have G is amenable if (and only if) PF,(G) = MuA,(G)?
2. Do we have G is amenable if (and only if) PF,(G) = B,(G)?

3. Do we have G is amenable if (and only if) B,(G) = M A,(G)?

4. Do we have G is amenable if (and only if) B,(G) = M A,(G)?

3.5 Amenability and Multiplier Algebras

In this section, G will always denote a locally compact group. Let K be a compact subset of G. Let A,(K)

denote the space of restrictions to K of functions in A,(G) equipped with the norm defined by
[wlla, ) = inf{[[ulla, () : w=ulk, ue Ap(G)}.

In other words, we identify A,(K) with the quotient space A,(G)/ Mg, where Mg = {u € A,(G) : u|x = 0}.

In [CowT79], Cowling gives a useful characterization of PF,(G)".

Theorem 3.5.1. [Cow79, Theorem 4] w € Loo(G) belongs to PF,(G)' and has norm at most C if and only

if, for any compact subset K of G,

w|K S AP(K) and Hw|KHAp(K) <C.

9We have positive answers for the first two in Question 3.4.9. See Theorem 3.5.3 below.
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We recall the proof of the following theorem originally proved by Cowling [CowT79].

Theorem 3.5.2. For a locally compact group G, PF,(G) = MA,(G) isometrically if and only if G is

amenable.

Proof. (=) First of all, by Remark 3.3.2, for each compact K, the constant function 1x € A,(K). If
we assume that sup{||1x|/a,x) : K compact} < oo, then we would be able to find a net {ux € A,(G) :
K compact} such that ux =1 on K for each K and C := sup{|lur||a,@)} < oo. Now let ¢ € A4,(G) and
e > 0. Consider ¢y € A, .(G) such that ||¢ — ¢g|| < €. For every K containing the support of ¢g, we get

pour = o and it follows that

lpur — ¢l = [[(# = po)ux + pour —ul < (C+1e

This shows that {ux € A,(G) : K compact} is a bounded approximate identity for A,(G) and hence G must
be amenable. Therefore, if G were not amenable, then we must have sup{||1x||4,(x) : K compact} = oo.
By Theorem 3.5.1, the constant function 1¢ is not in PF,(G)’ but 1¢ is always in M A,(G).

(<=) From Theorems 3.4.3 and 3.4.4, we see that PF,(G) C M A,(G) contractively. Suppose w € M A,(G)
and let € > 0. If GG is amenable, then by Remark 3.3.2, for every compact K there exists ux such that uxg =1
on K with [luk|la,) <1+e Now w|kx = (wug)|x € Ap(K) and hence |[w|k||a,x) < |wllara, @) (1 + €).
Since e is arbitrary, it follows that [|w|k||4,(x) < [[w|ara, (@) and by Theorem 3.5.1, w € PF,(G)". Finally,
to prove that |[w|aa,(q) < [lwlpr, )y, it suffices to show that [[wpo|la,a) < lwllpr, @) ll@olla, () for any
compactly supported ¢o. Let € > 0 and K be the support of ¢g. By definition of A,(K), one can find

u € A,(G) such that u|x = w|k and |ulla, @) < lw|k|a,x) + ¢ Now by Theorem 3.5.1,

[weolla, ) = lluwolla, @) < (lwlklla,x) +llvolla,@) < lwllpr,@y + €)llvolla, @)

and the result follows. O
We can now answer the first and the second questions in Question 3.4.9 positively.

Theorem 3.5.3. For a locally compact group G, PF,(G) = M Ay(G) (respectively, PF,(G) = By(G))

isometrically if and only if G is amenable.

Proof. (<=) This direction comes from Theorem 3.5.2.

(=) The proof is almost identical to that of Theorem 3.5.2. The only point to note is that 14 is always in

M Ay (G) (respectively, = B,(G)) as well. O
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3.6 Q,u(G) as the Predual of M;A,(G)

In this section, we will show that M A,(G) is a dual space, which is essential to study p-operator space
approximation property.'® To begin with, let f € L1(G). For each ¢ € M4A,(G) C Cy(G), the integra-
tion [ f(t)¢(t)dt defines a bounded linear functional on M., A,(G) and hence we can embed L;(G) into
(M Ap(G))'. Let || - ||g,p denote the norm on L (G) inherited from this structure and let Q,»(G) denote

the norm closure of (L1(G),| - |lg,p) in (MapA,(G))'.

Remark 3.6.1. Let f € Li(G). For each 1) € MAL(G) C Cy(G), the integration [, f(t)¥(t)dt defines a
bounded linear functional on M A,(G) and hence we can embed Li(G) into (M A,(G))’. Let Q,(G) denote
the norm closure of L1 (G) with respect to the norm of (M A,(G))’, then we have Q,(G)" = M A,(G) [Mia04,

Theorem 3.2].

Proposition 3.6.2 (Miao). Let G be a locally compact group, then we have an isometric isomorphism
Qper(G) = My 4,(G).

Proof. We give a proof for convenience. First of all, it is clear that each ¢ € My A,(G) is in Qper(G)’
with [|¢llq, ..y < ll¢llarn,a,()- Coversely, let m € Qpep(G)' and [[ml|q,., @)y = 1. Since Qpe(G) is a
closed subspace of (MxA,(G))’, by the Hahn-Banach Theorem, we can extend m to a linear functional
m on (M Ap(G)) with [[m|(ar,,4,(c) = 1. By Goldstine’s theorem, there is a net {mq} in M4, (G)
such that ||mallar,4,@) < 1 and my — m in the o((MpA,(G))", (MayAp(G))')-topology. In particular,
(ma, f) = (m, f) for any f € Qpey(G).

Let f € Li(G). Since MypA,(G) € MAL(G) with || - [[ara,) < || - a4,(@) on MpAy(G), we have
Iflg,m@ < lIfllg, @ and hence m € Q,(G)" = MA,(G) by Remark 3.6.1. We need to show that
M=m': PM,(G) — PM,(G) is p-completely contractive. So let n € N and let T' = [T};] € M,,(PMy,(Q)).
Suppose that f = {fi}7_; € Ly(G) ®, € and g = {g;}}_; € Ly (G) ® £}, have compact supports. For each
neighborhood V of the neutral element e of G, choose an fy in A,(G) such that fy(¢t) =0 for t ¢ V and

lfv]l1 = 1. Then we have

(g, M (D)NT = | D (90 T ()

108ee Section 4.2.
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(Corollary 3.3.11) li‘r/n Z /G<(gi*fj)(z71m),Ti]‘>fv(a:)dx

ij=1

(Corollary 3.3.12)

lim > (g% F))s Mpyam(T))

1,j=1

Here note that ((g; x f;), Myysm(T35)) = <wTij;gi*,fj;fV7m>’ where wy, o5 r, € L1(G) [Mia09, Lemma

3.1]. Therefore

h‘I/n Z <(gi*fj)vav*mTij> = h‘;n Z <wTijvg'i*fj7fV’m>

i,j=1 ,5=1

n
= h‘I/Ilhén z: <wTij=gi*fj,fv’m°‘>
,j=1

= |limlim > {gis My am,, (Tij) (7))

2,j=1

= [imlim (g, (Mp, s ) (D)D)

= limlim gl || fv x mallara,@ 1Tl

(Corollary 3.3.13) < |lglly [lmallarea, @) I T Il
< Mgl 1T ANl
and it follows that 91 is p-completely contractive. O

3.7 Description of (), (G) for a Discrete Group G

For future applications, we want to characterize Qpc(G) for a discrete group G. We begin with a lemma.
Lemma 3.7.1. Let p and v be measures.

1. If AC B(L,(w)) is a p-operator space and T : A — A is a p-completely bounded map, then there exists
. v v
a unique bounded map T : B(L,(v)) ® A— B(L,(v)) ® A such that

Thb®a)=b®T(a), beB(Ly(v)), acA,

with || T < T ][pet-
2. If M is a weak*-closed subalgebra of B(L,(p)), and T : M — M is a weak™ continuous p-completely
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bounded map, then there exists a unique weak*-continuous bounded map T : B(L,(v))®M — B(L,(v))®M
such that

Td®c)=dxT(c), deB(Ly(v)), ceM,

where B(L,(v))@M denotes the weak*-closure of the algebraic tensor product B(L,(v))QM in B(L,(vx

). Moreover, we have | T|| < ||T)|peb-
Remark 3.7.2.
1. Once Lemma 3.7.1 is established, we can justify (and will use) the notation T = idp, ) @T.
2. In fact, T is p-completely bounded with ||T|pes < ||T||pes- See Lemma 3.7.3 below.

Proof of Lemma 8.7.1. 1. We use the rigid £,-structure of L,(v). Let {E,} be a net of finite-dimensional
subspaces of Ly(v), directed by inclusion, such that J, Ey is dense in L,(v) and each E. is isometric to

é;nh) with m(y) = dim E,, [LP68]|. Let P, denote the norm 1 projection from L,(v) onto E.

~, so that we

identify P,B(Ly,(v))P, with M,,(. Define an operator Ty on B(L,(v)) ®aig A by To(D_ bi®a;) = > bi®@Tay,

then for every > b; ® a; € B(Lp(v)) ®aig A, we have

Py @ idi, )To (D bs @ ;) (Py @ ida, )|

= P,b;P, ® Ta;
1> PP,

< Nyl Hzpvbin(@ai
< AT lpes |[(Py @ i, ) (Db @ i) (P @i, )|
< T pen ’Z bi ®a;

Since (P,) converges strongly to idp, (), it follows that

(S o)

| < 1Tl

’Zbi & a;

Vp

and Tp has a bounded extension T to B(L,(v)) ® A.
2. This is [Daw10, Theorem 6.4]. O

Lemma 3.7.3. Let T' be as in Lemma 3.7.1. Then idy ) @ T (See Remark 3.7.2 for definition) is p-

completely bounded with ||idr,, ) @ Tlpes < || T ||peb-

\/P Vp
Proof. Fix n € N and consider (idp, ) ® T)n @ Mn(B(Ly(v)) ® A) — M,(B(Ly(v)) ® A). Since
Vp \/p
M (B(Ly(v)) @ A) = B(Ly(v)") @ A, we can identify (idg, ) ® T), with idp )n @ T. The result
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follows by Lemma 3.7.1 2. O
Proposition 3.7.4. Let G be a discrete group. Then

\Y%

Quer(G) = {wap : a € B(ty) & PE,(G), ¢ € (B(L,) & PF(G))'}.

Proof. D: Since [|wq,o|| < ||al/l|¢]] and span{A,(s) : s € G} is norm dense in PF,(G), it suffices to show that

Wa,p € Qpeb(G) for a =b® A with b € B(¢,,). Indeed, for u € M Ap(G), we get

wWeor,o(w) = ((idge,) ® My)(b® As), @)
= (b@u(s)As, ) = u(s){b @ As, )
Yiequt)g(t),

where g(-) = (b® A, )d,(-) is a function in ¢;(G). By definition of Qpep(G), this shows that wygx,,, €

Qper(G).
C: We follow an idea similar to that given in [HK94]. Let

S = {wap 0 € (Bty) & PE(G)1, € (B(L,)BPMy(G)) )1}

Then by the argument above, S is contained in the closed unit ball of Qpe,(G). It is also easy to check that
VP
S is balanced. We claim that S is convex. To this end, first note that we can identify B(¢, @, l,) ® PF,(G)
\/p VP
with My(B(¢p)) ® PF,(G) = M2(B({,) @ PF,(G)). By Theorem 2.3.12,

(Ma(B(ty) & PF,(G))) =Ny & (B(t,) & PF,(G))

isometrically, where A5 denotes the space of nuclear operators on 612), and hence we can also identify (B(¢, ®,
\/p /\p \/P
l,) ® PF,(G)) with Ny ® (B(¢,) ® PF,(G))". In particular, the duality is given in such a way that if
Vo Vo
b= [bi;] € Bl, ®p lp) @ PF,(G) and ¢ = [p;;] € (B({p ®p £y) @ PF,(G)), then

2

(B0) = Y (bigs i)

ij=1

Vp
If T is a p-completely bounded operator on PF,(G), then for any a = [a;;] € B({p &y ¢,) ® PF,(G), we

have

idB (e, @,e,) @ T(a) = [idp,) ® T(aij)]

62



(See Lemma 3.7.1 for the definition of idg s, ¢,) @T and idg,)@T). Now let w, o, and wq, o, be elements

of S, and suppose 0 < XA < 1. Let
ai O Vp Ap1 0 Vp ,
a= € Blly 0, 0,) & PF(G), = € (Blty &, ) & PF(G)).
0 a9 0 (1 — )\)(,02
Then ||a|| = max{||ai]], |laz||} <1 and ||¢|| < Alle1]] + (1 — A)|j¢z2]| < 1. Now for any p-completely bounded

operator T on PF,(G),

Wa,po(T) = (idpu,e,0,) @T(a),p)
= (idp,) @ T(a1), \p1) + (idp,) @ T(az), (1 — X)p2)
= (/\wa17<,01 + (1 - )‘)wa27tﬂ2)(T)'

Moreover, since £, and £, &, ¢, are isometrically isomorphic, wq , = wpy for some b € (B(¢,) (\E/@p PF,(G))h
and some ¢ € ((B(¢p) (\ép PF,(G))")1. This shows that S is convex.

Now we claim that S is norm dense in the closed unit ball of Qpc(G). Suppose this is not the case and
w € Qpep(G)1 is not in the closure of S. Using the geometric Hahn-Banach theorem and the fact that S is
balanced, we can find u € M, A,(G) such that

|<w0«7807u>| S 1 < <w>u>7 vwa,ga S S

However, this implies

sup{|lidisge,) ® M, (a)] : a € (B(t,) & PE,(G)h}

lullpes <
= sup{|{ids(e,) ® Mu(a),¢)| : a € (B(L,) & PE,(G))1,p € (B(t,) & PF,(G)))1}
= sup{|wa,e ()] : a € (B(l,) ® PF,(G))1,¢ € (B(L,) @ PF,(G)))1}
< 1.

But then this would imply |{(w, u)| < 1, a contradiction. This shows that S is norm dense in the closed unit
ball of Qper(G).

Let EI(,OO) denote the p-direct sum of a countably infinite number of copies of £,. Since ¢, is isometrically
isomorphic to 61(700), to complete the proof it suffices to show that every w € Qpet(G) is of the form w = wq
for some a € B(&(,DO)) ép PF,(G) and some ¢ € (B(&(JX’)) Qv?)p PF,(G))". Without loss of generality, we can

assume that w € Qpey(G)1. Then there is an wy € S such that [|w — wi|| < 3. Since 2(w — w1) € Qper(G)1,
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there is an wy € S such that ||w — w; — wa|| < 5. Continuing in this fashion, we find a sequence {wy} in

S such that

n

1
W_ZFM

i=1

1

< —.
on

Vp

\/p
Thus w = Y7, 52rw;. Since w; € S, there are sequences b; € (B({,) ® PF,(G)); and ¢; € ((B({,) ®
PF,(G))')1 such that w; = wp, ;. Let o = (2*”1)1/2, let a; = ayb;, and let p; = «a;9;. Let a €

VP \/P
My (B(¢,) ® PF,(Q)) = 8(61(,00)) ® PF,(G) be the diagonal matrix with diagonal entries ai, a9, - .

Vp

Since |la;]| — 0, a in fact lies in K(E,(,OO)) ® PF,(G). Moreover, since Y .o, |l¢i]] < oo, we can define
Vp /\p VP
eo € (K(6)) & PF(G)) = Noo & (B(L,) & PF,(G)) by

oo

volla]) = S i vi),  laig] € K(&) & PE,(G).

i=1

VP
Extend g to ¢ € (B(ﬂz()oo)) ® PF,(G))" using Hahn-Banach theorem, then it follows that w = w, , and this

completes the proof. O

Remark 3.7.5. The same argument as above actually works to show that
Vo Vp ,
Qpet(G) ={wa,p 1 a € K(¢p) ® PE,(G), ¢ € (K(f,) ® PF,(G))'}
Proposition 3.7.6. Let G be a discrete group. Then
VP
Qpeb(G) ={wa,p 1 a € K(4y) ® PF(G), ¢ € N(4, @, 6,(G))},

where N (€, ®, ,(G)) denotes the space of nuclear operators on £, @, £y(G).

Proof. O: This direction is obtained by the same argument as in Proposition 3.7.4.
C: Let
VP
S ={wa,p:a€ (K(l,) @ PF,(G))1, ¢ € Nl ®pL(G)))1}
Then by the argument above, S is contained in the closed unit ball of Qe (G). It is easy to check that S is

bounded. We claim that S is convex. Let wq, ,, and wg, ., be elements of S, and suppose 0 < A < 1. Let
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and

0 Ap
Y = eN, ® T(gp ®p %(G)),
0 (1 - /\)<P2
\/P /\P VP
then ¢ € (M(K(¢p) ® PF,(G))) = N2 ® (K({p) @ PF,(G))" with |la|| < 1 and ||¢|| < 1. Now, after
isometric identification

My(K(ty) & PF,(G)) = K(ty @, 4,) & PF,(G)

and

No B Ny @ £(G)) = N (6 @ £p(G))Bp(ly Bp £(G))) = Nty 8 £) S N(6,(G)),

we have for any p-completely bounded operator T on PF,(G),

waﬂp(T) = <idK(Zp@pep) ® T(CL), SO>
= (idi(,) ® T(a1), \p1) + (idic(e,) ® T(az), (1 — X)p2)
= ()\wal,<,01 + (1 - )‘)wazytpz)(T)'

\/p
Moreover, since £, and £, @, £, are isometrically isomorphic, wq,, = wp . for some b € (K(¢p) ® PF,(G)):

and some 1) € (N (£, ®, €,(G)))1. This shows that S is convex.

Now we claim that S is norm dense in the closed unit ball of Q,c(G). Suppose this is not the case and
w € Qpep(G)1 is not in the closure of S. Using the geometric Hahn-Banach theorem and the fact that S is
balanced, we can find u € M, A,(G) such that

|<w0«,@7u>| S 1 < <wvu>v Vwa,ga S S

However, this implies

[ullpes < sup{llidic(r,) @ Mu(a)] : a € (K(,) & PF,(G))1}
= sup{|{idp(,) ® Mu(a),¢)| 1 a € (K(4,) @ PF,(G)1,¢ € (N(l, @, 6p(G))1}
= sup{|wa,,(u)| : a € (K(£p) ® PE,(G))1,9 € (N (£ @p £,(G)))1}
< 1

But then this would imply |{(w, u)| < 1, a contradiction. This shows that S is norm dense in the closed unit

ball of Qpey(G).

Let EZ(,OO) denote the p-direct sum of a countably infinite number of copies of ¢,. Since /, is isometrically
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isomorphic to Ej(goo), to complete the proof it suffices to show that every w € Qpet(G) is of the form w = wq 4,
for some a € K(@,()OO)) g@p PF,(G) and some ¢ € N(£§)°°)) 25 N (4,(@)). Without loss of generality, we can
assume that w € Qpey(G)1. Then there is an wy € S such that [|w — wi]| < 3. Since 2(w — w1) € Qper(G)1,
there is an wy € S such that ||w — w; — wa|| < 5. Continuing in this fashion, we find a sequence {wy} in

S such that

n

1
w—ZQi—_lwi

i=1

< —.
on

\/P
Thus w = > ;o) 5rw;. Since w; € S, there are sequences b; € (K({,) ® PF,(G)): and ¢; € (N({, ®,

Vp

(,(G)))1 such that w; = wp, p,. Let a; = (2772 let a; = a;b;, and let ¢; = a9, Let a € Mo (K(4,) ®
PF,(G)) = B(&(,OO)) ép PF,(G) be the diagonal matrix with diagonal entries a1, aq, - --. Since ||a;|| — 0, a in
fact lies in K (£5°) (\E/Qp PF,(G). Moreover, since >~ ||¢;]| < 0o, we can define ¢ € N gN(ﬁp ®plp(G)) =
N S N (6,(G)) by

oo

olla) =3 e g, lay) € K & PF,(G).

i=1
Now it follows that w = w, , and this completes the proof. O

Remark 3.7.7. The same argument as above actually works to show that
VP
Qpcb(G) = {wb,np be B(gp) ® PFP(G)’ pE N.(ep ®p EP(G))}

for a discrete group G.

3.8 More on @Q,u(G): for General Locally Compact Group G

Theorem 3.8.1. Qpu(G) 2 {w,w,’ i ia € PM(Q)@K(G,), ¢ € A)(G) & N(6,), f € AM(G)}.

Proof. Tt suffices to show that if a € PM,(G), ¢ € Ap (G), and f € A, (G), then w, o f € Qpep(G), where
Wa,p,f (1) = (Mpuy(a), o). We will find a g € Li(G) such that w, 5 = [u(z)g(z)dz for all u € My A,(G).

Let K = (supp f)~!supp . It is easy to show that

(If % ulp) () = (f * Licu) () = /G £y(@)p(@)(Lxu)(y™") forallz e G,

where f,(-) = f(-y). Define a map ® : G — A,(G) by [2(y)](z) = fy(z)e(x), and define a measure p on

G by du(y) = (1xu)(y~')dy, then du is a bounded Radon measure. Take v = [, ®(y)du(y) (Analysis Now
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p.70) in A,(G) so that

(b,v) = /G<b, @(y))du(y) for all b € PM,(G).

In particular, if b = A, (x), then we get v(z) = (f * Lxu)(x) and thus

(@) = (a0 = |

G

(a, ®(y))du(y) = /

U(y‘1)<a7‘1>(y)>llz<(y‘1)dy=/ u(y)g(y)dy,
G

G

where g(y) = (a, ®(y™1)) 1k (y)A(y~1). Now it is easy to verify that g € L1 (G).
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Chapter 4

Approximation Properties

4.1 p-Conditional Expectation

In this chapter, G always denotes a discrete group, unless stated otherwise. Let A, .(G) = Cyo(G) N Ap(G),

where Cyo(G) denotes the set of compactly supported functions on G. Define

A:Ape(Q) = 4G X G), Ap=" 0(9)d(g.0).

geG
Note that Ap(s,t) = ds(t)e(s).
Lemma 4.1.1. The map A extends to a linear contraction from A,(G) into A,(G x G).

Proof. Let € > 0. Suppose ¢ € A, .(G), then we can express ¢ as ¢ = > &, * 7, with &, € £,(G),
M € Lp(G), and 32, [l Imnlly < ll#lla, ) + € Define &, € £, (G x G) by &u(s,t) = 35(t)én(s) and
iin € £p(G X G) by fin(s,t) = 0s(t)n(s). 1t is easy to show that [|Eallr = &ally and [|7ally = [19allp-
Moreover,
>, &n * Tin(s,1)

= 0 (S &nlo Wi(s gt h)

= 20 (g 09(h)En(9)ds-14(t )1 (57 g)

= 22 &n(@)ds(t)nn(s~ )

= 0s(t)p(s)

= Ay(s,t).

Therefore, we get

1Aolla,@xa) < llella, @) +e

and hence |A]| < 1. Since A, .(G) is norm dense in A,(G) [Run02], we can extend A to a contraction from

A,(G) into A,(G x G). O
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Remark 4.1.2. In particular, the proof above shows that if £ x7 € A, .(G) with & € £,,(G) and n € £,(G),

then A(Ex17) = Ex 7. In fact, more is true as we have the following
Lemma 4.1.3. With the same notations as above, if € € £, (G) and n € £,(G), then A(Ex7j) = € x1).

Proof. Since Cyo(G) is dense in £, (G), we can find a sequence (f,) € Coo(G) such that f, — ¢ and
I fnll < ||€]lp for all n. Similarly, there is a sequence (g,,) € Coo(G) such that g, — n and ||g.| < ||7]l,- It is
easy to check that f, x g, — {*7 in A,(G) and hence A(fy, * §n) — A({*7) in A,(G x G). However, since
fnxdn € Coo(G), from Remark 4.1.2, we get A(fp*gn) = fn*ﬁn, which converges to é*ﬁ inA4,(GxG). O

Define an isometry I', : £,(G) — £,(GxG) by §4 +— (4, 4). Note that £,/ (G)Q%ZP(G) = N (4,(G)), the space
Uy /\p
of nuclear operators on £,(G), then T'y , 2 Ty @ T, : N(£,(G)) — N(Up(G x G)) = N(£,(G)) @ N(£,(G))
is a contraction. As in [Daw10], define a map A, : N'(€,(G)) — Co(G) by

Ap(g @ f)(s) = (9, 2 (3)([)) (s € G, [ €b(G), g € by (G)),

then it is easy to show that A, induces a map from A,(G) to A,(G x G), which coincides with A above.

Proposition 4.1.4. Let p : PM,(G x G) — PM,(G) denote the adjoint of A. Then p is p-completely

contractive.

Proof. Fix n € N. Let [T;;] € M,,(PMy,(G x G)). To estimate the norm of [p(T};)] € M, (PMy,(G)), choose
fi €ty (G),g; € £p(G), 1 < i,j < n. We have

f1 g1

< S p(Tij) : >

fn 9n p’
Z;,@EP/ (G), Lr®@ply(G)

>
>
(A=p) = X
(Lemma 4.1.3) = Y0
>

fi g1
C s T;; : >
f~n n n p’
07, @0, (GXG), £3@yly(GXG)
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Since || fillpr = || fillp and [|g;llp = 135llp, 1 < 4,5 < n, we are done. O
Lemma 4.1.5. For all s,t € G, p(As)) = 0s(t) s

Proof. For all g, s,t € G, by the duality between A,(G) (respectively, A,(G x G)) and PM,(G) (respectively,
PM,(G x G)), we get

(0g: P(A(s,))) = (Adg, As,t) = (0(g,9)5 As.t)) = O(g,9)(8,8) = 04(5)05(t) = 05 (t)(dg, As) = (09, 05 (t)As)

and the result follows because A, .(G) is dense in A,(G). O

As in [Daw10], define W), : £,(G x G) — £,(G x G) by (Wp£)(s,t) = &(s, st), then W, is an isometric

isomorphism on £,(G x G) with the inverse (W, 'n)(s,t) = n(s,s~'t). It is straightforward to check that

(W, 1Y = W,. Define

v PMP(G> - B(EP(G x G))(= B(KP(G) ®p E;D(G))% T+ Wp_l(T ® I>Wp (T e PM:D(G))'

Before we proceed, we need a lemma about the Banach space projective tensor product.

Lemma 4.1.6. Let X é) Y denote the Banach space projective tensor product of Banach spaces X and Y .

Let 1 <p',p < oo with 1/p'+ 1/p=1. Then for every u € X g@Y, the norm w(u) of u is given by

1
7

m(u) = inf (annnﬂ)p (Znynnp)p : (4.1)

where the infimum is taken over all expressions u ="y .~ | Tp @ Y with

0o o/ oo :
(z leal? ) (z nynnp) .
n=1 n=1

Proof. Let u e X éé Y and € > 0. It is well known that

7(u) = inf {Z lznlllgnll : Y llznlllynl <00, uw=Y w,® yn} : (4.2)
n=1 n=1 n=1

Therefore u can be written as u =Y o> | &, @, En(# 0) € X, 0p(£0) € Y with D07 | 1€ ||| < 7(u)+e.
For each n, let A, = ||n,|| P ||§n||_PiP’ so that

P

/ 1
D e
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Now let z,, = \,&, and y,, = %nn then u = Zf’:l Tn ® Y, and

oo /9 /o /p
(Z [l [P > (Z IIyn”> = lénllllmnll < () +e
n=1 n=1

n=1

Since € is arbitrary, this shows that the right hand side of (4.1) is less than or equal to 7(u). To show the
reverse inequality, let’s assume, for contradiction, that the right hand side of (4.1) is strictly less than m(u).
This means u can be written as u = .00 &, @ y, with (300 . [[P)P (00, yal?)/? < 7(u). By

Hélder’s inequality, we would get > 7 ||z ||[|yn|| < 7(w) but this is impossible because of (4.2). O
Lemma 4.1.7. v is weak*-weak™ continuous.

Proof. Suppose T,,,T € PMy(G) and T,, — T in the weak* topology. For every > f,®g, € £y (G) Q%fp(G)
with f, € £y (G), gn € £p(G), and >, || fullllgnll < o0, we get

Z<fmTagn> - Z<fnaTgn>~

n n

We claim that T, ® I — T ® I in the weak* topology in B(¢,(G x G)). By Lemma 4.1.6, every u €
Ly (G x Q) ® £,(G x G) can be expressed as u = Y &, ® n, with &, € €,(G x G),n, € £,(G x G),
and (32, [1€.17)Y7 (3, 1na]P)/P < oo. Since £, (G x G) = £, (G) @y Ly (G), each &, can be written as
§n =2 scc I ® 6P, where f7 € £, (G) with Y osca /217" = [|€,]17". In particular, f7* is nonzero only for at
most countably many s € G. Similarly each 7, can be expressed as 7, = >, 91 ® 67, where gi* € £,(G)

with 35 cq g8 17 = [[7a]]P. Now

Z@m( @ Inn) = Z Z fn®5p Togt ®6p ZZ Tags)-

n n s,teG n seG

Here the last term is a countable sum and

Zn ZSEG Hf:LHHg?” < (Zn ZéEG ”fn” ) 1/p (Zn ZSEG ||g?Hp)1/p
= (E [[€n11P ) (5, IalP)Y? < oo

and hence ) > o (f&,Tagd) — D0 Dsec(fe, Tgl). This shows that T, ® I — T ® I in the weak*
topology in B({,(G x G)). Finally, for every u = > &, ® n, with &, € £y (G x G),n, € £,(G x G), and
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(0 I€all? )7 (32, ImallP)/P < 00, we obtain

V(Ta),u) = Zn<€nv Wp_l(Ta ® I)ann>
= Zn<Wp’§m (Ta ® I)ann>
- Zn<Wp’§n= (T ® I)ann>

= (1), u)
since (W, 1) = W, and W, W, are isometries and T, ® I — T ® I in the weak* topology. O

p

Remark 4.1.8. It is easy to show that y(\s;) = A(ss) and Lemma 4.1.7 shows that the range of v is
contained in PM,(G)@PM,(G) = PM,(G x G).

Let us define the p-trace tr, : PM,(G x G) — C by tr,(T) = <T5€e,e)75€e/,e)>'

Proposition 4.1.9. Define £ : PM,(G x G) — PM,(G x G) by E =~ op. Then

~

. The range of € is the weak™* closure of span{)\‘?&s) :s € G}
2. & is weak®weak™® continuous;

3. E2=¢;

4. trp0 & =try;

5. & is unital and p-completely contractive.

Proof. (1) is easy to verify. (2) follows from definition of p and Lemma 4.1.7. (3) and (4) are immediate
from Lemma 4.1.5 and Remark 4.1.8. For (5), it is obvious that & is unital. By Proposition 4.1.4, it suffices
to show that v is p-completely contractive. Fix n € N and let [T};] € M,,(PM,(G)). To compute the norm
of [Y(Ti;)], let & € £y (G x G), nj € £,(G x G), 1 <i,j < n. Since £, (G x G) = £y (G) % ¢y (@), each ¢;

can be written as & = Y., fI ® 0%, where fI € £,,(G) with 3" [|fI[?" = [|&]|”". Likewise, each n; can

72



be written as 1, = 3,. 91 ® 0F, where g} € £,(G) with 3, [lg[|? = [|n;*. Since

&1 m
< Dl v(Tiz) : >

L &n 1 L in zg,’ézp,(cxc), r@,0,(GXG)

&1 M
= < Sl W, N (T @ )W, : >

L & 1 L in e;,’éep,(cxc), 01@,8,(GXG)

Wp'& anl
(W, =Wy) = < : ) Ti;®I : >
| Worén W e;,%zp,(cxc), @0, (GXG)

and W) (respectively, W,,) is an isometric isomorphism on £,/(G x G) (respectively, £,(G x G)), for norm

calculation of [y(T;;)], we can replace the last term above by

51 T

&n i €, &0, (GXG), £3:8,0,(GXG)

= 2=l (Tig @ Dnj)e,(axa), t,(GxE)
= ZZJ‘:1 <ZSEG fsi ® 55/7 ZteG Ejgf ® 5f>4p/(GxG)7 £, (GXG)
= Yo 2sec i Tiggl)e @), 6,(@)

= Yo i jmi (i Tiigh)e (@), 6,(@)

= ZsEG < ) T%j >

}’7/
@0, (G), (32,0, (G)
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Here

D

0,%0,(G), £3@,6,(G)
1/1/ LN

H[Tijm-zsec (i i) ™ (e gl
o 1 N
(Holder’s inequality) < [[Ty]ll - (Soea Sim IP) 7 (Soee it i)

1/p' n oo N1/p
- (o Zoc I ) (e Y i)

n 1/p
- (S el) (S )

f’fl ’I’L
S

IN

This completes the proof. O
As an application, we get a p-analogue of Lemma 2.5 in [Haa86].

Corollary 4.1.10. Let G be a discrete group and let T be a weak*-continuous p-completely bounded map
on PM,(G) or p-completely bounded map on PF,(G). Define ¢ : G — C by

p(s) = (T(AD)6P, o%').

Then

1. ¢ € My Ap(G) with ||@llar,a,c) < 1T || peb-

2. If T is of finite rank, then ¢ € £,(G) C A,(G).
Proof. (1) First of all, suppose that T is a weak*-continuous p-completely bounded map on PM,(G). For
simplicity of notation, let M = PM,(G). Define

S =po(T®idpn,(c))°;

where T'®idpys, (@) as in Lemma 3.7.1, then S is a weak*-continuous p-completely bounded map on PM,(G)
with [|S||pes < |T||pe- Suppose that T'(As)de = D ,cqr Cs,¢0r With c5p € C and )7, |es [P < 0o. We claim

that S(As) = ¢s,sAs. To show this, let ¢ =3 - a405 € Ay (G) with a4 € C. Since

(T'(As) @ As, 0 @ Og) P, (GXG),Ap(GXG) = 5p ®5p cht5 ® 0%)0,,(GXG),bp(GXG)s
tea
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we obtain

(S(As), )
= {(po (T @idpu,c)) ° 7)), ¥)
(p=24") = (T(\) @ A5, A¢h)
= Dgec ag{T(As) @ As, 65 @ dg)

= <Cs,s>\37 ’l/)>

and this proves the claim. On the other hand, by definition, ¢(s) = ¢ s and this shows that S = M, and
therefore [|[|ar.,4, () = [[Sllpeb < [ Tllpeb-

Now assume that T is a p-completely bounded map on PF,(G). Define

S=po(T®idpr,(a)) °VlpFr, ()

where T ® idpr, (¢ as in Lemma 3.7.1, then S is a well-defined p-completely bounded map on PF,(G) the
result follows using the same argument as above.

(2) We adapt the idea used in [Haa86]. Without loss of generality, we can assume that T = f ® b, where
f € PM,(G) and b € PM,(G). Then T()s) = f(As)b and

0(s) = (T(Xs)0P, 6% = F(Xs) (002, 5%").

er-’s e’rrs

This shows that ¢(s) is the s-component of bo¥ € £,(G). O

4.2 p-AP and p-OAP

Let G be a locally compact group. We say that G has the p-approzimation property (p-AP) if there is a
net {uy} in Ay(G) such that u, — 1 in the o(MypA,(G), Qper(G))-topology. Let V' be a p-operator space.
We say that V' has the p-operator space approzimation property (p-OAP) if there is a net (T,) of bounded
finite rank maps on V such that for every a € K(¢,) ép V, (idx(e,) ® Ta)(a) — a in the norm topology (See
Lemma 3.7.1 for the definition of idic(¢,) ® T,). V is said to have the strong p-operator space approximation
property (strong p-OAP) if there is a net (T,) of finite rank maps on V' such that for every a € B(¢,) ép Vv,

(idp(s,) ® T )(a) — a in the norm topology.

Remark 4.2.1. 2-AP is the same as the approximation property studied in [HK94]. Similarly, 2-OAP is

the same as the operator space approximation property in [ER00].
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Lemma 4.2.2. Suppose that T,,,T € CB,(PF,(G),B({,(G))) and that T, — T in the stable point-norm

v
topology. Then for any L,(u) and for any ¢ € K(Ly(w)) ® PF,(G),
w1,y (w) ® Tale) = dd(z, () @ T(c)

m norm.
Proof. By Theorem 2.3.11, we have a p-complete isometry

v hop

K(Ly(1)) & PFy(G) = Liu) & PE,(G) & L ().

p

vp
By Proposition 2.4.5, ¢ € K(Ly()) ® PF,(G) can be written as v © x © w, where v € M oo (Ly (1)),

T € Koo (PF(G)), and w € Mo 1(Ly, (12)) and hence

lidic (L, () @ (Ta = T) ()l
= |vo (idge,) @ (Ta = T))(z) © |
< llll(idiee,y ® (To = T)) ()] [|w]]

A

— 0.

O

Lemma 4.2.3. Suppose that T,,,T € CB,(PF,(G),B({,(G))) and that T, — T in the stable point-norm

/\p
topology. Then T, — T in the 0(CB,(PF,(GQ),B(¢y(Q))), PF,(G) @ N(£,(G))) topology.

Vp
Proof. By assumption, for any a € K({,) @ PF,(G), idk,) ® Ta(a) — idie,) ® T(a) in norm. Let u €

Np
PF,(G) ® N (£,(G)), then by Proposition 2.4.4, we may assume that u = y(a® f)d =37, ; |, Yiraij ® fridji,

\/P \/P
where 7 € M o2, 6 € Mo21, a € K(¢p) ® PF,(G), and f € K(¢p) ® N(£p(G)). The operators 7 € M o

and 6 € Mo 1 defined by

y=[n"9* -], where ' =[y1vi2 -]
and ) ) ) }
ot O
_ 52 day
0= . where &' =

have the same norm as v and 6. Let 4 4™, a", f, 0", and 6™ be the truncations of ~,7,a, f,d, and ¢,
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A

respectively, then it follows easily that w is the norm limit of v"(a™ ® f")0" in PF,(G) & N (¢,(@)) and
_ _ h h A

that 5 ® f ® 3 is the norm limit of 5" ® f* © 8" in £, @ N(£,(G)) & €5 = Now © N(£,(G)). Since

(To,u) = nh_{go Z Yir{Talaij), fri)di
iGkd<n

= lim (To)n(a™),57" ® f* © ")

n—00

= nan;O<idK(gp) @ Tol(a), 7" © f* © 6™

= <id}C(£p) ®Ta(a)a’7®f®g>7

the result follows. O

Lemma 4.2.4. Suppose that T,,,T € CB,(PF,(G), B({,(G))). Then
T — T in the o(CB,(PF,(G), B(t,(G))), PE,(G) & N(£,(G))) topology
if and only if for every b € B({) g?p PFE,(G) and ¢ € N(€, @, (,(Q)),
(idp(e,) @ Ta(b), o) — (idp(,) @ T(b), ¢).

/\P
Proof. Let uw € PF,(G) @ N({,(G)), then by Proposition 2.4.4, we may assume that u = y(b ® f)d =
Vp Vp
Zi,j,k,l ’Yikbij ®fkl5jla where v € Ml,ooza b€ ]\4002717 be B(gp) ® PFP(G), and f € B(fp) ® N(EP(G)) The

operators y € M o and de Mo,1 defined by

=R~ -1, where v =[y1 72 -]
and ) ) ) )
5t 011
_ 52 021
6= . where ¢ =

have the same norm as v and §. Let 4™, 5™, b" f*, 6", and 6" be the truncations of ,%,b, f,6, and 0,
A
respectively, then it follows easily that u is the norm limit of 4™ (0" ® f™)é™ in PF,(G) ® N (£,(G)) and that
- _ h h A
7® f®4 is the norm limit of 5" © f* © 8" in £, & N(£,(G)) & €5 = Now @ N(6p(G)) = N6, ®, £,(G)).
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Since

(Toyu) = lim > yix(Talbiy), fr)dj

n—oo
4,5,k I<n

= lim (Tu)a(0"),7" © /" ©57)

= lim (ids(,) © Ta(0),7" © f" © ")

= <id3(gp) ®To¢(b)»;/®f®5>v

we get the result. O

Proposition 4.2.5. Suppose that T,,,T € CB,(PF,(G),B(¢,(G))) and that T, — T in the stable point-norm

\/p
topology. Then for any ¢ € B(L,(p)) ® PF,(G) and ¢ € N(L,(p) @, £,(G)), we have
(idp(L, () @ Talc), p) = (idp(L,(u) ® T(c), ¢)-

vp
Proof. Suppose ¢ € B(L,(1)) @ PF,(G) and ¢ € N(Ly(p) ®, £,(G)). By Proposition 2.4.4, we can write
vp
o =([fi;] @ lgu])d = 32, ; 1 Vik fij @ gradji, where v € My o2, 6 € Mooz 1, f = [fij] € K(£p) @ N(Lp(p)),
Vp -
and g = [gr1] € K(¢p) ® N(£p(G)). Note that the map f : B(L,(n)) ® PF,(G) — K({,) ® PF,(G) defined
by

flz®y) =[fij(@)y]

v v
extends to a map from B(L,(u)) ® PF,(G) to K(¢p) ® PF,(G). Now, using the same notation as in the

proof of Lemma 4.2.3, we claim that

(id5(L, (1)) ® Talc), @) = (idx(,) ® Ta(f(c),7© g @ d). (4.3)

It suffices to consider ¢ = a ® b, where a € B(L,(n)) and b € PF,(G). Then

(idB(L,(u) ® Talc),p) = lim Z (@ ® To(b), Yirfij @ gridji)

n—00
4,k l<n

= nlingo Z ’Yz‘k<fijaa><gkl7Ta(b)>5j

i,5,k,l<n
= lim ([f5(Ta()] ®b,7" © 4" ©8")
= (idg,) ® Ta(f(a®b)),70 g @),

and the claim is proved. Finally, the result follows since idi(s,) @ T (f(e) — idic(e,) ® T(f(c)) in norm. [OJ
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\/p \/P
Lemma 4.2.6. For any © € B({,) ® PF,(G) ® PF,(G) and any ¢ € N (£, ®, (,(G)), we have

<idl’5(2p) ® p(l’), <p> = <xaid/\/(£p) ® FP’,P(QD)%

/\P /\P /\1-7
where idy(,) ® Ty s N(6) & N((G) = N(6) & N (6,(G)) E N(6,(G)).
Proof. Tt is enough to verify this for z = T® A\, @\, and ¢ = ¢ ® 0¥, @ ¥, where T € B(ly), As; At € PF,(G),

Y eN(L), 0 € L, (G), and 67 € £,(G). Indeed, by Lemma 4.1.5,

<idB(Zp) & p(l‘), LP) = 0s (t)<T ® As, <P> = 5s(t)6w(sz)<T7 '(/)>

On the other hand
(. idnrey) © Tyrop()) = (006 @ 88 @ 07) = (T, )00 (52)00 (¢2),

and the result follows. O
Theorem 4.2.7. If PF,(G) has the p-OAP, then G has the p-AP.

Proof. Let (T,) be a net of bounded finite rank maps on PF,(G) such that (idx(,)®Ta)(a) — a in the norm
\% \% ’
topology for every a € K(¢,) ® PF,(G)=K(¢,) ® PF,(G). Define uy : G — C by un(s) = (Tn(As)0E, 67),

then by Corollary 4.1.10, u, € £,(G) C Ap(G) and moreover, it is easy to check that

Mua =po (idPFp(G) ® To‘) © 7|PFP(G)'

\/p
We claim that u, — 1 in the (M A,(G), Qpeb(G)) topology. Let a € B({,) ® PF,(G) and ¢ € N(£, ®,
¢,(@)) (See Remark 3.7.7). Since

Wa,so(ua) = <id8(£p) ® Mua (a), p),

we need to show that

<id5(€p) & Mua (a)7 90> - <CL, §0> (44)

Since

idp(e,) @ My, = (idg,) ® p) o (idp,) ® (idpp,c) ® Ta)) © (idg@,) @ V| pE,(c));
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from Lemma 4.2.6, (4.4) becomes

((idp(r,) @ (idpFp,(a) ® Ta)) © (idp,) @ V| PF,(@))(@), idr(e,) @ Ty p(0))

and the result follows from Proposition 4.2.5. O
We can summarize this section in the following
Corollary 4.2.8. Let G be a discrete group. Then the following are equivalent

1. G has the p-AP;

Vp

2. there exists a net {pa} C Ap(G) such that idi(,) ® My, (a) — a in norm for every a € K(£,) ®
PE,(G);

3. PF,(G) has the p-OAP;

_ V,
4. there exists a net {oa} C Ap(G) such that idg,) @ My, (a) — a in norm for every a € B({y) ®

PF,(G);
5. PF,(Q) has the strong p-OAP;

Proof. 3= 1 was proved in Theorem 4.2.7. Since 4— §, 4— 2, 2—> 3, and 5= & are clear, to
complete the proof, we only need to show that 1= J. Suppose that G has the p-AP, then there exists
a net {¢Y3} C A,(G) such that g3 — 1 with respect to o(MpA,(G), Qper(G))-topology. Moreover we
can assume that {13} € A, (G). Then My, is a net of finite rank maps on PF,(G) such that for every
acB(t,) & PFy(G) and ¢ € (B(L,) & PF,(G)),

<id8(€p) ® Mw@ (a)790> = <Wa,<p7'(/]ﬁ> - <wa’¢7 1> = <a7@>'

Therefore idg ) ® J\Zf% (a) — a in the weak topology. By a standard convexity argument, we can choose a
— \/P
net ¢, such that idg,) ® My, (a) — a in norm for every a € B({,) ® PF,(G).

This completes the proof. O

4.3 p-Weak Amenability and p-CBAP

In this section we study properties which are stronger that those in the previous section. A locally compact

group G is said to be p-weakly amenable if A,(G) has an approximate identity that is bounded in the
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M Ap(G) norm, i.e., if there exist a net {uq} in 4,(G) and a constant K such that ||uqv — v|la,@) — 0
for all v € A,(G) and such that |lua||ar,,4,(@) < K for all a. A p-operator space V' is said to have the p-
completely bounded approximation property (p-CBAP) if there is a positive number K such that the identity
map idy on V can be approximated in the point-norm topology by a net {T,} of finite rank p-completely

bounded maps whose p-cb norms are bounded by K.

Remark 4.3.1. 1. 2-weak amenability is the same as weak amenability studied in Haagerup’s unpub-

lished paper [Haa86]. Similarly, 2-CBAP is the same as CBAP.
2. Following Theorem 11.3.3 in [ER00], one can show that if V has the p-CBAP, then V has the p-OAP.
The following is the main result in this section and gives a link between p-weak amenability and p-CBAP.
Theorem 4.3.2. Let G be a discrete group. Then the following are equivalent
1. Ay(G) has an approzimate identity {¢o} such that ||pallar,4,c) < K;

2. there exists a net {To} of finite rank maps on PF,(G) such that ||To|| < K and ||To(x) — x| — 0 for
all z € PF,(G);

3. there exists a net {T,} of weak*-continuous finite rank maps on PM,(G) such that | To| < K and

(To(x) —2,0) — 0 for all x € PM,(G).

Proof. 1= 3: We may assume that ¢, € A, .(G). Then {m,,} are finite rank p-cb maps on A,(G) such
that [|my, [[per < K and |[my, (w) — wlla,) — 0 for all w € A,(G). Then T, := mj,  satisfy 3.
1== 2: First note that for each s € G, ||ds]|4,(c) = 1, see Remark 3.3.2. From 1, we can conclude that

lPal(s) = 1] = [[(pals) — 1)55||AP(G) = |lpads — 5SHAP(G) — 0. Since Mcpa (As) = @als)As, ||M ollpes < K and
1M, (Ns) = Asll = l9a(5)As = Xs]l = [0als) = 1[I As]| — O.

Then we can obtain 2.

2= 1: Given {T,}, define ¢, : G — C by @(s) = (T(\2)d?,6%"). By Corollary 4.1.10, ¢, € A,(G) C
M Ap(G) with [[pallar., 4, (@) < K. Since ||T5(A8) — AZ|| — 0, we can conclude that |, — 1| — 0. Then for
any ¢ € Ay, o(G), we get [|pat) —¥[la, (@) — 0. This implies that we have this true for all ¢ € A,(G).

3= 1: For each s € G, it is easy to see that the linear functional

a € PM,(G) — (aé?, ")
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is contained in 4,(G). Then
Pals) = (Ta(AR)8E,67) — (6,67) = 1.

erYs s1Ys

Now we can get the proof as in 2= 1. O

4.4 Comparison with the Classical Case

We take a closer look at Theorem 3.3.8.

Theorem 4.4.1. Let G be a discrete group and (1 a measure. Let B(L,(pn))QPM,(G) denote the weak*
closure of B(Ly (1)) ®ag PMp(G) in B(Ly(1) ®pLp(G)). Then the following properties of a function ¢ : G —

B(Ly(p)) are equivalent:

1. there exists a weak™*-continuous p-complete contraction M, : PM,(G) — B(Ly(1))@PMy(G) such that
Mu(Ap(5)) = () © Ap(s);

_ Vp
2. there exists a p-complete contraction M, : PF,(G) — B(Ly(p)) ® PF,(G) such that

My (Ap(s)) = @(s) @ Ap(s);

3. There exist an SQ, space E and bounded maps o : G — B(L,(u), E) and 8 : G — B(E, L,(u)) such

that supyec o(8)| < 1, sup,cc Iy(s)] < 1 and
Vs,t € G, p(st™h) = y(s)z(t).

Proof. 1=—2 is obvious.

2=—>3 First of all, note that A\(6) ® ¢(6) makes sense by Theorem 7.9 in [DF93]. By Theorem 4.1 in [Daw10],
there are an SQ,, space K, a p-representation 7 : PF,(G) — B(K), and operators U : £,(G) ®, Ly(1) — K,
V:K — {,(Q) ®p Ly(pn) with [|U]], |V|| <1 such that

Vo e G, AO)®p(0) =M,(\0)) =Vr(A6))U.
For t € G, define x(t) € B(L,(1), K) by

a(t)f =7(ANE)UF @ f), [f€ Ly(w).

82



For s € G, define y(s) € B(K, L,(1)) by
y(s)k = R;Vw(A(s))k, keK,

where R, € B((,(G) ®p Lyp(1), Ly(1)) defined by R, (3,c¢ 0t ® g:) = gs. Note that sup,cq [lz(f)]| < 1 and

supscq ly(s)|| < 1. Now for all f € L,(p) and for all f' € L, (u),

(y(s)z@®)f, f)
= (RVa(A(s))m(A(t~ 1)U} @ f), [')
= (RVr(\st™ 1)U @ f). f')
= (RA(st™ ) @ (st 1) (0] @ f), [)
= (Rs(8F @ (st 1)), [")

= (p(st™)f. f)

and the result follows.

(b)==(a) Suppose K C L,(v)/E for some measure v and a subspace E of L,(v). Let Q : L,(v) —
L,(v)/E denote the quotient mapping. By the argument in Section 7.3 in [DF93], for any T € B({,(G)),
T ®idg, ) € B(lp(G) ®p Lyp(v)). By Proposition 7.4 in [DF93], T ® idy,,(,) induces a continuous mapping
T ®idy, /e : €p(G) @p Ly(v)/E — £,(G) @, Lp(v)/E. Finally let 7 : PF,(G) — B({,(G) ®, K) denote

the operator defined by 7(T) = T ® idk. Define operators U and V' by
U £p(G) ®p Lyp(p) = 6p(G) @p K, 67 @ f = 6f @ (L) f

and

Vi lp(G) @p K — £(G) ®p Ly(p), 07 @ k= 67 @ y(s)k,
then |U||,||V|| <1 and for all f € L,(u) and for all f € L, (n), we get
(VN @ 1), 07 @ f)
= (VaO)OF @ 2(t)f), 0 @ f)

= V(6 ®x(t)f).8% ® f')

= (0, @y(s)zt)f,oF @ f)
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(p(st™)f, ), if0=st"!
0, otherwise

= ((\O)® p(0)(0F @ f),8" @ f)

hence M, (A(#)) = Vr(A(0))U and the result follows by the converse of Theorem 4.1 in [Dawl0] once
we can prove that the mapping T +— =(T) (hence T — Vr(T)U) is p-completely contractive. To this
end, let [Tj;] € M,(PF,(G)) with |[[T;]]| < 1. Write Ti;0; = > .cqr a?:ﬁés and for each 1 < j < n, let
& = e &0 € 4,(G) with (S, 16,17) " = (S,167) " < 1. Then we et

P

&1

—_
v

Ti;

&n

= YD 1 (4.5)
J
= |2
— |

) 1/p . 1/p
For each 1 < j <, let kj = 3,000 @ ki € £,(G) @, K with (z;;l ||kjup) - (ZM ||kg||p) < 1.
Then we get
p
k1
m(Ti;)
k,

— § ' § ' Jit 1.3
- ai,skt
1,8 7.t

p

By Theorem 3.2 in [LeM96] (originally due to [Kwa72]), the last term 3, | is dominated by

Jtg.J
Zj,t a;’ ok
Dis thaf’iff '

, which is in turn dominated by 1 by (4.5). This completes the proof. O

Remark 4.4.2. Suppose 2 < ¢ < p or p < ¢ < 2. By [Her71, Corollary 2] and Theorem 4.4.1, it follows

that the identity mapping J,, @ My Aq(G) — MpAy(G) is contractive. Taking the adjoint, we have that
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Ty p 1 (M Ap(G)) — (Mg Ag(G))" is also contractive and that || f|lg, > || f]

Q,q for all f € L1(G) (See the

discussion in the beginning of Section 3.6). Therefore Qpet(G) C Qqeb(G) contractively.

Proposition 4.4.3. Suppose 2 < q<p orp < q <2. If a discrete group G is g-weakly amenable, then it is

also p-weakly amenable.

Proof. Since G is g-weakly amenable, there exist an approximate identity {wo} € A4 (G) and C' > 0 such
that ||wallar.,4,(@) < C for all a. By Remark 4.4.2, we see that wy, € M Ap(G) with [|wa||ar,4,(c) < C for
each a. Define M,,, on PF,(G) by M, (Ap(s)) = wa(s)Ap(s), then by Theorem 3.3.8, it follows that {M,,  }

are finite rank bounded maps on PF,(G) with || M, || < C for all .. Since
lwa (s) = 1] = [lwads — 6S||AQ(G) -0

for each s € G, we conclude that ||M,, (z) — x| — 0 for all z € PF,(G). Now the result follows from

Theorem 4.3.2. O

Proposition 4.4.4. Suppose 2 < q < p orp < q < 2. If a discrete group G has the q-AP, then it also has
the p-AP.

Proof. If G has the ¢-AP, then there exists a net {uy} C Ay (G) such that (uq,w) — (1,w) for all w €
Qqeb(G). Since G is discrete, {ua} C A, (G) and by Remark 4.4.2, we have (uo,w) — (1,w) for all

w € Qpcb(G>. O

4.5 1-Nuclearity

Lemma 4.5.1. Let x = [z;;] € B{"). Then

[l Beemy = ,pax {; |=’Eij|}-
Proof. Easy. O

Suppose G is a countable discrete group. Write G = UZO:1 F, with {e} CF, CF, CF3C .-, each F,

finite, and |F},| = N,,. For each n € N, define P,, € B(¢1(G)) by

P, (Z a3(55> =) ads,

seG seF,

85



then we can identify P,B(¢1(G))P, with My, = B({2™).

P,B(41(G))P,
0(G) 0(G)
Define
on : 01(G) — P,B(1(G)) Py, = P A(f)Pn
and

wn : PnB(gl(G))Pn - él(G)7 [au,v]u,UEFn — Z au,cau

ueF,

Claim 4.5.2. For all f € (1(G), ||¢n o on(f) — f]| — 0.

Proof. For u € F,, we have {0y, pn(f)de) = (du, Pof) = f(u) and this calculation shows that ¢, o ¢, (f) =

XF, [ O

Note that ¢1(G) can be identified with A(¢1(G)) C B(¢1(G)) as convolution operators and naturally
equipped with the 1-operator space structure inherited from this inclusion. For notational convenience, we

fix n and drop the subscript n.

Claim 4.5.3. ¢ is 1-completely contractive.

Proof. Clear. O
Claim 4.5.4. 1 is 1-completely contractive.

Proof. Fix k € N. Let [T}]1<i,j<x € Mi(P,B(¢1(G))P,) with ||[T3;]]] < 1. We need to show that ||[¢(T;;)]]] <

1. To this end, suppose g; € ¢1(G) with ijl llgjlli <1, then

g1
Y(Tiz)
9k
k k
< DD U@y *gs
i=1||j=1
k k
< SN @pl, gl
i=1 j=1
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k k
> lgslly D1 (Tiplly
j=1 i=1

k
(By Lemma 4.5.1) < Z llg; Il 115511
j=1

IN

1.

This completes the proof. O

4.6 Stability of Approximation Properties

Lemma 4.6.1. Let H be a closed subgroup of a locally compact group G. For any function v on G, let u|ly

denote the restriction of u to H.

1. Ifue MA,(G), then ulg € MA,(H) and
lulellara, ey < lullara, -
2. If u € Mo Ap(G), then ulg € MapAy(H) and
Nl el aropa, ey < Nl ara,a,(c)-

Proof. (a) By Theorem 1 in [Her71], the restriction of functions gives a quotient mapping from A,(G) to

Ap(H). Therefore, for ¢ € A,(H), we get

lella, ) = inf{||@lla, () : @ € Ap(G), Plu = »}.

Suppose u € M A,(G). For ¢ € A,(H), there exists ¢ with ¢|g = ¢. Since u|ge = (u@)|g and ug € A,(G),

again by Theorem 1 in [Her71] we get u|g¢ € A,(H). This shows that u|y € M A,(H) and moreover,

lulellara, o) inf{|lulmella, ) ¢ € Ap(H), |lolla, ) <1}

IN

inf{|[ud]|a,(c) : ¢ € Ap(G), &lu =@, llolla,m <1}

N

= ”u”MA,)(Gy

(b) By Theorem 8.3 in [Dawl0], there exists E € S@Q, and bounded continuous maps a : G — E and

B : G — E' such that u(ts™t) = (B(t),a(s)) for all t,s € G. It follows that u|g(ro™) = (B|u (1), alu (o))
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for all 7,0 € H. This shows that u|g € M Ay(H) and that [|u|g|lar.,a, @) < ullan,a, @) O

Theorem 4.6.2. Let H be a closed subgroup of a locally compact group G. If G is p-weakly amenable, then

H is also p-weakly amenable.

Proof. Let {u;} be an approximate identity in A,(G) such that sup; ||uil|ar,4,(@) < k for some k. Put
v; = uilg. We claim that {v;} is an approximate identity in A,(H) such that sup, [|uillrr,4,@) < k-

Indeed, for any ¢ € A,(H), we can always find ¢ € A,(G) such that ¢|g = ¢ and

lvie = @lla, ) = (wip — D) ulla, ) < l|wig — &lla, @) — 0.

Since sup; [|vil|ar.,4,(q) < k by Lemma 4.6.1, this completes the proof. O
Theorem 4.6.3. Let H be a subgroup of a discrete group G. If G has p-AP, then H also has p-AP.

Proof. Suppose {u;} is a net in A,(G) such that u; — 1g in o(MpAp(G), Qpeb(G))-topology. Let v; = w;|g.
We claim that v; — 1y in o(MpAp(H), Qper(H))-topology. Suppose £ € Qpep(H), then § = lim, f,, for
some f, € L1(H) in My A,(H)'. Define g, € L1(G) by

fu(z), x€ H,
gn(z) =
0, rxeG\ H.
Since
lgn = gmll Mo a, ey = Sup{ > (gn(@) = gm(@)e(@)| : ¢ € Moy Ap(G), @llarsa,c) < 1}
zeG
= Sup{ > (fal@) = fm(@)elu(@)| : 0 € MaAp(G), lellar,a,c) < 1}
rxeH

= |fa = fmllmo,a,cmys

gn ¢ 1s Cauchy in M, . Let n = lim,, g, In M, , then
is C h'MApG’L li 'MApH/h

W€ = Tm Y @) fale) = lim Y wil@)ga (@)

zeH zeG
- <1G777>
— i Y gu(@) =1im 3 ful)
" zeG " z€H
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= (1g,§).

This completes the proof. O

Remark 4.6.4. Even when p = 2, it is unlikely that G has the p-AP implies G/H has the p-AP. See [HK94].

Lemma 4.6.5. Let G be a locally compact group, and suppose that H is a closed subgroup of G such that
Ag(h) = An(h) for allh € H. For each f,g € Coo(G), let ®f, denote the map defined on M A, (H) by

<I>f,g(u) = f*udh*g, u e Mchp(H),

where dh is a fived left Haar measure on H. Then ®f 4 is a bounded linear map from M A,(H) into
Mo Ay(G) that is o(MpAp(H), Qpen(H))-0(MapAp(G), Qper(G)) continuous.

Proof. Let mpp : G — G/H denote the canonical mapping onto the left cosets of H and write & = 7 (z).

Let Ty : Coo(G) — Coo(G/H) be as in [RS00, Definition 3.3.9], that is,

Ty f(d) = /H Jah)dh,  feCo(@), e G/H.

By [RS00, Propositions 8.1.1, 8.1.3, 8.1.4], there is a measure p on G/H that is invariant under the natural

action of G on G/H and satisfies the relation

/G T (i) = /G p /H £ (ah)dhdp() = /G f@)dr, e ColG), (4.6)

where dz is a fixed Haar measure on G. Let g € Co(G) and let u € M Ap(H). Then

(udh*g)) = [ ulb)gly h)dh, ¥y eG.

Using the fact that u is bounded and ¢ is uniformly continuous, one can easily show that udh*g is continuous,

and hence for each z € G, the function y — f(y)(udh x §)(y~1z) is in Cyo(G). Now, by (4.6),

D o(u) () /G £ (o) (udh x 3)(y~ ) dy
- / / F(yh) (udh * ) (h™y ™ 2) dhdp()
G/HJH
- / / £(yh) / u(k)g(a yhk)dkdhdu(j)
G/H JH H
= U z ! 7). .
- /G y /H /H Fuh)utk)g(a yhk)dkdhdu(j) (4.7)
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Let € > 0. Since u € My A,(H), by [Dawl0, Theorem 8.3], there exist E € SQ, and bounded maps « :
H — E and 3: H — E’ such that u(s~'t) = (3(s), a(t)) for all t,s € H and [|or]|so||Bllcc < [l a1, (i) +€-
Define P : G — E’ (respectively, Q : G — E) by

= /H f(zh)B(h)dh (respectively, Qz) = /Hg(a:h)a(h)) , zeqG.

For any z € G and for any ¢ € E” = E, we have

o) < /H F@h)] [{B(R), @) dh < [1Bllsoll] /H \f(ah)| dh,

and hence

1P()] < Hﬁlloo/H |[f(eh)[dh,  VzeG. (4.8)

Since

[1P(z) = P(y)ll < IIﬁlloc/H [f(zh) — f(yh)| dh

and f € Cyo(Q), it follows that P is continuous. Similarly,

1Q@) < llalls /H g(zh)|dh, Yz e G, (4.9)

1Q(x) = QI < llevlf oo /H lg(zh) — g(yh)| dh, (4.10)

and in particular, @ is also continuous. Now by (4.7),

/G o / / f(zh)u(k)g(y twzhk)dkdhdp(?)
(kv h7'k) = /G/H/ / f(zh)u )9y~ tazk)dkdhdp(%)
(z—2712) = /G/H/ / fztzh)u(h ™ k) gy~ 2k)dkdhdu()

/ / / S L2k)(B(h), a(k))dkdhdp(z)
G/H
:/ ~12),Qy™ 2))du(2),

G/H

(I)f,g(“)(x_ly)

where the G-invariance of u is used in the third equality. Let p,w be as in the proof of [HK94, Lemma 1.16].
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Then

/ 1Q(y 0 [Pdw(z) = / 1Q(y™ o)) [Pdpu(i)
G G/H

[, (telle [l *atelan)”aute
oy =) = [ (1ot |ttt ar) it

(by (4.9))

IN

(G-invariance of 1) = /G p <||aoo /H |g(a:h)|dh>pdu(a':).

Put L(g) = [q/p ([ lg(zh)| dh)” du(s) and F = L,(G, E,w) = L,(G,w) ®, E, then F is an SQ, space

(See Theorem 3.1 and the remarks after it in [Run05]) and the function B : G — F defined by

B(z)(y) =Q(z"'y), =x,yeg,

satisfies || B(z)||P < |||, L(g) for all x € G. Moreover, for any y, z € G,

1B(y) = B()II" = /GHQ(y’lm)—Q(Z’laf)ll”dW(x)

/ 1Q(y ™ p(&)) — Q=" p()) IPdpu()
G/H

(by (4.10))

IN

[ e (1ot = ateatayn) | an )t

L ([ Joto o) — otz ato] an ) auta

[ Nl Talgllzet [ oty ah) — gz ah)| dndta)
G/H H

IN

IN

o227 o g2 /G l9(y~") — g(=~'a)| du

and it follows that B is continuous. Similarly,

Lipeapraw < [ . (nmw / If(wh)dh>pldu(x')-

Put M(f) = [ u ([; lg(zh)| dh)? du(d) and define A : G — Ly (G,w) ®, E' C F' [DF93, Proposition
15.10] by A(x)(y) = P(z~'y), then ||A(z)||?" < ||B||E M(f) for all € G. Moreover, the same argument as

above gives

IA(y) — AP < |1BIE2Y Y| T lgl|E /G |fly~t2) — f(z" )| do
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and hence A is also continuous. Now it follows that

(A(2), B(y)) /G (P(a2), QU 2))dw(2)
[ [ s tengty asn. a)dndidoz)
GJH JH

/G/H /H /H P p(2)h) gy~ p(2)k)(B(h), (k) dhdkdys(2)

/G/H/H /Hf(x zh)g(y™"zk){B(h), a(k))dhdkdp(Z)

= Opg(u)(a"y)
and this shows that ® ,(u) € M Ap(G). Moreover, by taking the infimum over a and 3, we get
@101l < L(g)/?M ()"

It remains to show that @y, is o(MopAy(H), Qpes(H)) - 0(MpAp(G), Qpeb(G)) continuous. To this end, it
suffices to show that @ = maps Qe (G) into Qpey(H). Since L1 (G) is dense in Qper(G), it suffices to show
that ©  (§) € Qper(H) for every § € L1(G). So let £ € L1(G) and define a function {f 4 on H by

€1 (h) = /G f@)(€*g)ah)dz,  hed.

It is easy to check that &, € L1(H) and that

(u, @7 ,4() = <‘I>f,g(U),€>:/HU(k)'Sf,g(k)dk:<u,§f,g>,

from which it follows that @ (§) =Es4 € L1(H) C Qper(H). O

Theorem 4.6.6. Let G be a locally compact group and H a closed normal subgroup of G. If H and G/H
have the p-AP, then G has the p-AP.

Proof. Let {u;} € A, (H) be such that u; — 1y in the o(MpA,(H), Qper(H)) topology. By Lemma 4.6.5
and [RS00, Proposition 3.3.17], for any f,g € Coo(G), Pf,q(u;) — Ps4(1p) in the o(MapAy(G), Qper(G))
topology. Since ®¢ ,(u;) € A, (G) for all i, it suffices to show that 1¢ is in the o(MpAp(G), Qpes(G))
closure of {®¢ (1) : f,g € Coo(G)}. Let f,g € Coo(G) and put & = Ty f, n = Trg. It follows from (4.7)

that

Dy y(lm)z) = /G y /H /H F(yh)g(a yhk)dkdhdu(s)
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_ / @)@ "9)du(H)
G/H
£ x (), VreG.

Since Ty is a map from Coyo(G) onto Cyo(G/H) [RS00, Proposition 3.4.2], we obtain

{‘bf’g(lH) : f,g € CO()(G)} = {(ﬁ*’f]) OTH f,’l] S C()()(G/H)} (411)

Moreover, Ty extends to a map from L;(G) onto Li(G/H) [RS00, Proposition 3.4.5]. Define a map
U on MyAy(G/H) by ¥(u) = uomy, u € MpApy(G/H). Since ¥(u)(st™!) = u(st7!), we see that
U maps MpAp(G/H) contractively into MqA,(G). We claim that ¥ is o(MapA,(G/H), Qper(G/H)) -
0(MpAp(G), Qper(G)) continuous. Let ¢ € Lq(G), then for any u € Mo Ap(G/H), we get

<u7 TH<> =

N

u(#) /H C(eh)dhdp()

G/H

u()(wh)dhdp()

U (u)(zh)¢(zh)dhdp (i)

and using the same argument as in the proof of Lemma 4.6.5, we get the desired continuity of U. Let R
denote the linear span of {{x7: &,n € Coo(G/H)}, then R is dense in A,(G/H) in the A,(G/H) norm and
hence 1g, g is in the o(Mp Ay (G/H), Qper(G/H)) closure of R. Now from the continuity of ¥ and (4.11),
we conclude that 1¢ is in the o(MpAp(G), Qpeb(G)) closure of {@f,(1x) : f,9 € Coo(G)} as desired. O
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Chapter 5

Conditions C), C']g, and C']/?’ for
p-Operator Spaces

5.1 Introduction

Conditions C, C’, and C” for operator spaces are studied in [ER00, Chapter 14]. To be precise, it is known
that an operator space W is locally reflexive if and only if W satisfies condition C*” [ER00, Theorem 14.3.1].
It is also known that an operator space V is exact if and only if V satisfies condition ¢’ [ER00, Theorem
14.4.1]. In this chapter, we define p-analogues of these definitions, which will be called conditions Cp, C’I’,,
and C’I’,' , and show that a p-operator space satisfies condition C), if and only if it satisfies both conditions CI'D

and C} .
Lemma 5.1.1. Let V and W be p-operator spaces. Then the bilinear mapping

\%
UV xW - (VeWw), (f9—fog

A v
18 jointly p-completely contractive and hence the canonical mapping ¥ : V' SW' — % @I)JW)’ s p-completely

contractive.

Proof. The second half follows from Proposition 2.1.3, so it suffices to show that the bilinear map W is jointly

p-completely contractive. Recall the definition

Bpow - M (V') 5 My(W') > Myo(VEWY), (i) low)) = Ui @ g, ms €N,

)

v
Here we can identify [f;; ® gii] with [fi;] ® [gr] © V ® W — M,, and hence we get Ifi; @ gr]ll <
Ifasll - Ngmid -

Lemma 5.1.2. Let V' C B(Ly(p)) and W C B(Ly(v)). Then ||-||v, is a subcross matriz norm. In particular,

for every u € M,(V @ W), we have ||ullv, < [Jul,-
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Proof. Let v = [v;5] € M, (V) and w = [wy] € My(W), then by Remark 2.3.2,
lv@wlv, =sup {[|(f @ g)rg(v @ w)|| : f € Ms(V')1,9 € My(W')1}.
Note that (f ® g)rq(v @ w) = fr(v) ® gq(w) and hence

I(f @ g)rq(v @ w)l| = |[fr(0)] - [lgg(w)I| < [0l - [Jw]]-

The second half of the lemma follows immediately because || - ||, is the largest subcross matrix norm. [

5.2 Conditions C}, C]

»» and C), for p-Operator Spaces

v
Let V C B(Lp(p)) and W C B(L,(v)). Fix ¢ € (V ® W)'. For vy € V, we define a bounded linear functional
v on W by

vop(w) = (vo ® w), w € W.

\/P
In general, when vg = [v5;] € M, (V) and ¢ = [pn] € M,,((V ® W)'), we define ,¢ = [o,; 1] € Mpn(W').

Similarly, for wy € W, we define ¢,,, € V' by
P (V) = (v @ wp), veV.

v
As in ,,p above, we can extend the definition of ¢,,, for wo € M, (W) and ¢ € M, ((V ® w).
v
Define a linear map @y, : VO W” — (V & W) by

\/P
OF (v @ W) (@) = (v, wYwrwr,  vEV, w'eW" oe(VeW)
\/P
Similarly, define a linear map ®f; y, : V/ @ W — (V @ W)” by
Vp
¢€,W(v" R w)(p) = (Pw, V" )y v, VeV weW, e (VoW

Lemma 5.2.1. The map <I>{}W (respectively, @{:,ﬁw) defined above extends to a p-completely contractive map

R o J— Vp " . L n'p Vp "
Py VW' — (Vo W) (respectively, Py y, : V' @ W — (V. @ W)").

vp
Proof. Consider the bilinear map ® : V x W"” — (V ® W)" given by

(v,w") = (¢ = (i, 0" )wr ).
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We get
Broy s Mo (V) x My(W") = Mus(V E WY, (o], [wnd”]) — [0, wia”)].

3

Following the notation in [ER00], we obtain
205 0] =50 { 00,0, D+ € MV WY.Ll < 1.
Since {(®@r.s(v,w"), @) = (v, ")), we have
(@7 (0, w"), D 1| = o, DI < Nlospllag, ey - 0" az, cwrr)

and the result follows because

lopllar., vy = sy Hl e, Whla,,, - w € My (W), [lw] <1}
sup,,, {[[{(¢,v @ whllas,.,,,. : w € M (W), [lw]| <1}

IN

lell - ol

IA

[v]]-
O
Ap Vp
Let ¥ : V'@ W' — (V@ W)’ denote the canonical map, and consider the following commutative diagram
g

R
<I>W

VeoWw” (V\é@W)HL V’@W//

CBZ’F(V/7 W//)( L V/ WII

where CB) (V',W") denotes the space of all weak*-continuous p-completely bounded finite rank maps from
V' to W and ¢ is the inclusion map. This commutative diagram shows that <I>{2W is one-to-one, so one can
equip V @ W with the p-operator space norm inherited from (V' éz’? W)”, which will be denoted by, following
the notation in [ER00], V®y, : W”. We say that V satisfies condition C}, (or V has property C}) if this

induced norm coincides with the injective tensor product norm with every W C B(L,(v)).
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Similarly, the following diagram

L
Py w Vp

o’
v & wy ——= (v & wry

CB;F(W/7V//)( L Wl V//

V'e W

is also commutative, <I>‘L,7W is one-to-one, and one can hence equip V"’ @ W with the p-operator space norm in-
v
herited from (V @ W)”, which will be denoted by V" : ®v,W. We say that V satisfies condition C,) (or V has

property C}) if this induced norm coincides with the injective tensor product norm with every W C B(L,(v)).

In order to define condition C), for p-operator spaces, we consider the following diagram

( W// "
y \
V"o W ” 1t 4>P Vp "
® (VeoWw) Veow) |
k N A
(V” W

where P is the restriction mapping. Note that Lemma 5.2.1 was used here to consider (®f ;)" and ()"

For p-operator spaces V' C B(L,(p)), W C B(Ly(v)), we consider the following p-complete contraction:

P PCb ad

N : c
(Ve W) =cB,(V,W) == CB,(W", V') = (V ® Wy
Ap Ap
For o € (V @ WY, let " € (V ® W)’ denote the image of ¢ under this map. Then we have

e (v @w") = (o, ) wrwr =@ W)(e), wveV, w'eW’

Moreover, ¢” is weak*-continuous in the second variable. Similarly, we also consider the p-complete con-

traction

Ap

cb
(VE WY = eB,(W, V)

adj

2 eB, (VW) £ (v S Wy
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and define "y, and then we get that
(v @ w) = (Pu, V" )y v = @‘L,,W(v” Q@ w)(p), eV’ weWw,

and that "y is weak*-continuous in the first variable.

Following the idea in [Han07], we have the next result.

Theorem 5.2.2. Let V C B(L,(p)) and W C B(L,(v)). Let o be a subcross matriz norm on V@ W and

denote by V @4, W the resulting normed space. Then the following are equivalent.

1. There exists a separately weak*-continuous extension
(P . V// ® W// — (V ®a W)//

of the natural inclusion v : VW — (V ®, W)".

2. The following diagram commutes

/\P
(V ® WI/)//
V' QW (V @0 W) —L (V @, W)
m /ﬁw;
/\P
(V// ® W)/I

3. For every p € (V @y, W)', two functionals ("p)" and "(p") coincide on V" @ W".

4. For every ¢ € (V ®q W), Ly, : V. — W' is weakly compact, where (L,(v),w) = ¢(v @ w), v € V,
weW.

A
Proof. 2 <= 3: Every ¢ € (V ®, W)’ can be regarded as a bounded linear functional on V' & W because

|- ||, is the largest subcross matrix norm and both "¢ and " extend ¢. We have

M@ w”) = (vp,w )wrwr = (B w (0@ W, ) = (v u”, (PFw) °r)(¢)),

1"

/\p /\P
where k is the natural inclusion from (V ® W)’ into (V @ W) This shows that ¢" = ((@§7W)’ o

k)(¢). Similarly, “¢ = ((<I>‘L,7W)’ o k)(p). Let @ (respectively, ®3) be the composition of the upper chain
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(respectively, lower chain) in the diagram in 2, i.e., @, = Po(®{} )" 0®{: . and &y = Po(Df )" o 4y,

then we have

(@1(v" @uw"),0) = (Po(Rfy)" o iy, (v" @w"),0)(ve,wy,(ve.w):
= (D (V" @ W), (B¢ ) © K) () (Ve.w) (ve.w)-
= (O (V" O W), ") (Ve w) (V. w)*
= (M )wr, ")y

— A((,OA)(U” ® w”).

Similarly,

02(v" @ w"), ) = (") (0" @ w”),

and thus ®; = &3 < "(p") = (") on V' @ W".

1 <= 2: According to calculations above, ®; (respectively, ®2) is left (respectively, right) weak*-continuous.
If ®; = s, then it (P = ®y £ ®) is a separately weak*-continuous map which extends the natural inclusion
L: VoW — (Ve, W)’. Conversely, suppose that ® is the separately weak*-continuous extension of ¢.
For v € V" (respectively, w” € W), let us take a net {v;} in V converging to v in the weak* topology

(respectively, {w;} in W converging to w” in the weak™® topology). It follows that

(21(v" @ w"), ) = MM @ w") =lm} (") (v ® w") = lim; " (v; @ w")
= lim; lim; ¢" (v; ® w;) = lim; lim; ¢(v; ® w;) = lim,; lim; (P (v; ® w;), )
= (2" @w"),¢)
= lim; lim;(®(v; ® w;), ) = lim; lim; o(v; ® w;) = lim; lim; "¢ (v; ® w;)
= lim, /\QD(UH ® wj) _ limj(Aap)A(v” ® wj) — (A@)A(v// ® w'")
= (" @ w"),¢),

so we conclude that &1 = ® = ®,.
§4= J Letp € (V@ W) Since (Lo (v), 0" )y 10 = 9 (0E0") = (oip, w0 Y s = (L (0), 0" Yy s =

<LW/ ¢ Lq,(v), w”)W,,,7W,,, we get

Lon = twr o L.

On the other hand, observe that (Li,(v”),w)ww = "p("” @ w) = (w,v")y, v and that (Py- o
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L ("), wywrw = (L," (V" ew (W) sy = (0", L, 0ty (w)) v v Since

(L, o vw (w),v)vr v = (tw(w), Ly () wr wr = (w, Ly (0))wwr = @(v @ w) = @u(v),

we obtain

L/\SO = PW’ ] LSDH.

Therefore, we get

L(/\SD)A = Lw'’ © LA<p = LW’ O PW’ [e] ch/,

and

L/\(Lp/\) — PW/// O ch/\/l = PW/// (0] ([,W/ (0] Ls&)” = PW/// 0] [,W/H O LQOH = Lﬁa”'

This shows that
/\(90/\) on V/I ® W//

< L(/\LP)/\ = L/\(Lp/\)
= L)/(V") W'
<= L, is weakly compact.

(See [Meg98, Theorem 3.5.8] for the last equivalence)

O

\/T‘
Theorem 5.2.3. Let V C B(L,(p)) and W C B(Ly(v)). For every p € (V @ W)', L, is weakly compact.

Proof. Without loss of generality, we may assume ||¢||(= [|¢|lpes) < 1. Using Theorem 2.3.9, we have two

index sets I and J and p-complete isometries

OV Vs V" B(,(I) and OV W — W — B(l,(J)).

Consider the diagram below:

By Hahn-Banach Theorem, ¢ extends to ¢ : B(¢,(I ® J)) — C. Applying the same technique as in the proof
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of Theorem 2.3.12, we can find a measure space (£2, 2, 6) together with two vectors £ € L,(6), n € L, (), and
a unital p-completely contractive homomorphism 7 : B(¢,(I ® J)) — B(L,(0)) such that ¢(-) = (7(-)&,n).
Define T : B(¢,(I)) — B(¢p(J))" by

(T(x),y) =plx®@y),  zeB()), yebB(J)):

Then it is easy to check that the following diagram is commutative:

Define R : B(¢,(I)) — Ly(6) and S : B(¢,(J)) — L, () by

R(x) =m(z@1)§, ze€B(l(I), and  S(y)=(1@y)n yeBL(J])),

then the diagram

is commutative, because

(S'R(x),y) = (R(x),S(y)) = (m(x @ 1), (r(1@y))'n) = (r(z @ y)&,n) = @z @y) = (T(x),y).

Combining these two commutative diagrams, we finally have L, = (®"V)'S’R®Y, that is, L, is factorized
through a reflexive Banach space L,(6), so L, is a weakly compact operator [Meg98, Propositions 3.5.4 and
3.5.11]. O

Corollary 5.2.4. There exists a (necessarily unique) separately weak*-continuous extension
\/P
@ . V// ® W/l — (V ® W)//

v
of the natural inclusion ¢ : V@ W — (V ) wH”.

Proof. Combine Theorem 5.2.2 and Theorem 5.2.3. Uniqueness follows from separate weak*-continuity. [
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Now we are ready to define condition C), for p-operator spaces. Let ® be as in Corollary 5.2.4. The

following commutative diagram

V//®W//—¢>(V®W)”L> V/®W//

CB;F(V/a W//)( L V/ W//

shows that ® is injective. Thus we can equip V" @ W with the p-operator space structure induced by &
which will be denoted by V":®y, :W". We say that V C B(L,(u)) satisfies condition C, (or has property

C,) if the map & is isometric with respect to the injective tensor product norm with every W C B(L,(v)).

Proposition 5.2.5. Suppose that V. C B(L,(r)). Then V satisfies condition C,, if and only if V satisfies
both condition C,, and Cy.

Proof. Suppose that V satisfies condition C, and W C B(L,(v)). Note that, even though we do not have
a p-analogue of Arveson-Wittstock-Hahn-Banach theorem, we still have p-completely isometric embedding

V ey, W CV"®,, W and the bottom row in the following commutative diagram

Vay, W' ——= Ve, W

|

V. ®\/p W ®\/p w”

is isometric. Therefore the top row is also isometric and hence V' satisfies condition Cj. That V satisfies
condition C]’D’ can be proved using a similar argument.

On the other hand, if V' satisfies condition C}/, we get
Vi@y, W'=V":@y,: W' — (Ve,, W)".
If V' also satisfies condition C,, then
Vay, W =Vey, W = (Ve,, W),
and hence we have isometric inclusion
V"' @y, W' (Vay, W)".
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Since V"' @y, W" C (V@y, W)" and (V ey, W)" — (V @y, W)"" isometrically, the inclusion V" @, W" C

(V ®v, W)" must be isometric. m
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