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ABSTRACT

Two mechanical systems are studied in this thesis. One is a model for the

motion of water waves and the other is an autoparametric oscillator. These

systems are studied when driven by stochastic forcing. The analysis pre-

sented is based on the theory of stochastic averaging. This theory provides a

mathematically rigorous method to reduce the number of differential equa-

tions required to describe the long term evolution of dynamical systems forced

by small amplitude stochastic forces. There are three novelties in the work

presented in this thesis.

First, and perhaps most importantly, the systems studied exhibit bifurca-

tions. In order to average such systems, modern stochastic averaging theory

based on the martingale problem is necessary. Bifurcations in the fast deter-

ministic dynamics, it is seen, are associated with gluing boundary conditions

in the averaged systems.

Second, the two mechanical systems have three intrinsic timescales whereas

averaging methods are normally used to treat two timescale problems. The

presence of a third timescale leads to the introduction of a second averaging

operator.

The third novelty presented in this thesis is the treatment of systems in

near-resonant motion. More specifically, the surface wave and autoparamet-

ric systems are studied as two degree of freedom systems that are set near

low-order resonances. Stochastic averaging then reduces those systems’ di-

mensions from four to two. Previously, stochastic averaging of mechanical

systems has only been used to perform reductions from two dimensions to

one.

The results of stochastic averaging theory lead to an equation describ-

ing the evolution of the probability distributions of the reduced system, the

Fokker–Planck equation. Solving the steady-state two-dimensional Fokker–

Planck equation forms a major part of this thesis; a finite-element method
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is used. Solving the Fokker–Planck equation necessitates the development of

computational procedures to calculate the drift and diffusion coefficients of

the equation, it also necessitates a clear understanding of how the gluing con-

dition enters the specification of the equation, and, since the two-dimensional

domain of the Fokker–Planck equation contains cusps, one must proceed with

care when applying the finite-element method.

From an engineering standpoint, the utility of the procedures developed

in this thesis is to provide a new, semi-analytic probabilistic description of

the long term response of stochastically forced systems. In closing, a few

peculiar characteristics of the solutions produced are noted. These do not

constitute a comprehensive study of the physical implications of the results

obtained, but the methods presented seem to put such an endeavor within

reach.
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CHAPTER 1

Introduction

1.1 Motivation

The research presented in this thesis is intended as a contribution to scien-

tific research in multiscale dynamical systems. Multiscale systems often arise

when a physical process is modeled mathematically. In such cases, funda-

mental physical conservation laws are often used to derive the differential

equations governing a system at microscopic scales. It frequently happens

that one seeks to understand phenomena that occur on time or space scales

orders of magnitude larger than those on which the microscopic equations are

derived. In theory, this does not present a problem; in order to understand

macroscopic phenomena, one should simply calculate with the microscopic

equations over and over until the large scales of interest are reached. In

practice, things can become complicated, and the results in this thesis help

address two problems that arise.

The first problem is one of computational cost. Despite advances in com-

putational power, one cannot always take the microscopic equations and

hope to simulate them for time-spans orders of magnitude larger than their

intrinsic time-scales to reveal macroscopic phenomenology. To borrow from

the computational mechanics community, the problem may be too “stiff”, so

that obtaining results on the scales of interest will require so many calcula-

tions at the microscopic timescales that observing macroscopic phenomena

will take far too much computer time.

Another problem can arise due to noise. It is almost a given that any

mathematical model of a physical system neglects certain phenomena. While

it may be possible to demonstrate that the exclusion of certain effects is in-

consequential over microscopic length scales, this seldom proves that these

same effects can be ignored over macroscopic scales. In order to elucidate
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such problems, it can be fruitful to lump all unmodeled dynamics into small

amplitude stochastic forcing terms. The question then becomes one of deter-

mining if and how forcing on microscopic scales is transferred to macroscopic

scales. The method known as stochastic averaging directly addresses this

question.

1.2 Stochastic Averaging Theory

In this section, the general formulation used to setup mechanical systems

so as to make them amenable to analysis with stochastic averaging is given.

The key formulas that enable the application of stochastic averaging theory

to mechanical systems are then presented.

The starting point is a general form for the equations of the dynamical

systems that shall be averaged. The results of stochastic averaging based on

the martingale problem are then given. The section concludes by giving a

precise definitions for the drift and diffusion coefficients of a stochastically

averaged Markov. In addition, the domain of the reduced Markov process is

fully defined.

Note that proofs are not provided in this thesis. Quite similar results were

developed in Namachchivaya and Sowers [2001] although in that publication

stochastic averaging was used to reduce a system from two dimensions to one.

While it is expected that for the problems presented in this thesis, where the

reduction is from four dimensions to two, theoretical results will carry over in

a straightforward manner, strictly speaking the stochastic averaging formulas

used here should be taken as conjectures.

The mechanical systems analyzed in this thesis are governed by Hamilto-

nian dynamics. The Hamiltonian is nonlinear and by introducing a scaling

parameter, ǫ, the Hamiltonian can be expanded in powers of ǫ:

H(q, p) = H0(q, p) + ǫH1(q, p) + ǫ2H2(q, p) +O(ǫ3) (1.1)

with q, p ∈ R2. The Hamiltonian dynamics are perturbed by a stochastic

forcing function, σ, and to compensate for the energy input from forcing, a
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damping function, ζ , is also introduced:

dqk =
∂H

∂pk
dt,

dpk = −∂H
∂qk

dt+ ǫ2ζ(q, p)dt+ ǫσ(q, p)dt.

Note that despite the different powers of ǫ in front of the damping and noise,

these two effects ultimately have equal influence; the peculiar scaling stems

from the quadratic variation of Brownian processes that affects how such

processes rescale with timescale changes.

In order to remove the leading order terms of the Hamiltonian, i.e. H0,

a canonical transformation is used. Symbolically, the transformation can be

denoted (q1, q2, p1, p2) 7→ (x1, x2, x3, x4); the conjugate pairs are (x1, x3) and

(x2, x4). It is important to note that this transformation is time-dependent,

therefore it involves a generating function [Goldstein, 1980, §9.1].
The dynamics of x ≡ (x1, x2, x3, x4) have the form:

dxǫt = ǫb1(xǫt, t)dt+ ǫ2b2(xǫt, t)dt+ ǫg(xǫt, t)dt. (1.2)

In this equation, b1 is associated with Hamiltonian dynamics, b2 with damp-

ing and g with stochastic forcing.

A key difference between typical stochastic averaging problems and sto-

chastic averaging applied to mechanical systems now comes to light. Typi-

cally, stochastic averaging is applied to systems with two timescales, Equation

(1.2) however, contains three timescales: (i) the timescale associated with the

time-dependent transformation from (q1, q2, p1, p2) 7→ (x1, x2, x3, x4); this is

the shortest timescale of the system, (ii) the timescale associated with peri-

odic motion along Hamiltonian orbits; this is an intermediate timescale and

(iii) the timescale over which stochastic forcing, which is of small amplitude,

has an effect; this is the longest timescale. These timescales are separated

from one another by a factor of ǫ. Typically, stochastic averaging would be

applied to average out our intermediate timescale so as to obtain an averaged

equation valid at our longest timescale. In order to arrive at such results for

the problems presented in this thesis, a supplementary averaging step will be

necessary. Specifically, a time averaging operator with a period equal to the

period of the canonical transformation mentioned above will appear. This
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supplementary averaging operator is defined below.

Definition 1.2.1 (Time averaging operator). For a function ϕ ∈ C∞(R4 ×
R) which is 2π periodic in its last argument, define the time averaging oper-

ator M by

(Mϕ)(x) ≡ 1

2π

∫ 2π

0

ϕ(x, t)dt.

Stochastic averaging with this additional time-scale was first presented in

Namachchivaya and Sowers [2001].

1.2.1 Structure of the Unperturbed System

Having stated that stochastic averaging enables the analysis of the effects

of small amplitude stochastic perturbations over long timescales, selection

of the slow variables must now be considered. In the context of multiscale

dynamical systems, knowing how to select good slow variables can be chal-

lenging. Recently, anisotropic diffusion maps [Singer et al., 2009] have been

proposed as machinery that would help automate the discovery of slowly

changing variables, however in this thesis we used the more traditional ap-

proach of relying on insight into the problem at hand for finding the slowly

changing variables. For mechanical system with a Hamiltonian structure, it

seems quite natural to select the Hamiltonian as a slow variable. It is the

average of the Hamiltonian of Equation (1.1) over its cyclic coordinates that

gives the first integral of motion, K, defined as follows:

K = M[H1].

K generates Hamiltonian dynamics. The variable z will be associated with

these unperturbed dynamics, so that:

ż = ∇̄K (1.3)

where

∇̄ ≡
(

∂

∂z3
,− ∂

∂z1
,
∂

∂z4
,− ∂

∂z2

)

A key objective of this thesis is to treat 2-D averaging problems, thus two

degree of freedom systems (i.e. systems in R4) are taken as the starting point
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Figure 1.1: Depiction of the relation between the 2-D phase space of a
Hamiltonian system with a single elliptic fixed point and the reduced space,
a line segment.

and their reduction to 2-D is sought. The second slow variable is introduced

by setting the two modes of system (1.3) to be in low-order resonance with

each other. This second slow variable is akin to an angular momentum and

is denoted by I. Thus, the two slow variables that will be part of our analysis

are K and I, we combine them in the vector y = (K, I).

Before considering the dynamics of y, let us start by considering the

geometric structure of space associated with the unperturbed system. This

is important since the stochastically perturbed system evolves in the domain

defined by the unperturbed system.

The main point behind the stochastic averaging method developed here is

to use the geometric structure of the averaged integrable Hamiltonian prob-

lem, Equation (1.3) in order to develop an appropriate set of “coordinates”

for studying the perturbed problem, Equation (1.2).

The simplest case one can encounter is when the Hamiltonian has a single

elliptic fixed point. As illustrated in Figure 1.1, the reduced space is then

a line segment. When the Hamiltonian has more than one fixed point, the

notion of a reduction to a line segment is insufficient. As illustrated in Figure

1.2, the reduced space is a graph.

The reduced space of the problems studied in this thesis is two dimen-

sional. Line segments seen in Figures 1.1 and 1.2 then become planes and
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Figure 1.2: Depiction of the relation between the 2-D phase space of a
Hamiltonian system with multiple fixed points and the corresponding
reduced graph. Figure reproduced from Freidlin and Weber [1998].

the terminology of reduction on an open book Freidlin and Wentzell [2004]

is introduced. Specific open book geometries will be given in 3.3.2 and 4.4.2,

but here a general description is presented, in part to introduce notation.

The phase space of the systems we consider is composed of elliptic and

saddle fixed points, ci, closed orbits with arbitrarily large values of I where

the process is killed ⊛i and open leaves, Γi within which classical averaging

results are valid. The union of these three components forms the graph of

the reduced process:

G ≡
N
⋃

i=1

Γi ∪
Nc
⋃

i=1

[ci] ∪
Nb
⋃

i=1

⊛i.

1.2.2 Main Results

The dynamics of y will deviate from those of z noticeably only on time scales

of order ǫ−1, thus time is rescaled such that Xǫ
t ≡ xǫt/ǫ2 . The fast dynamics
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are then governed by

dXǫ
t =

1

ǫ
b1(Xǫ

t , t/ǫ
2)dt+ b2(Xǫ

t , t/ǫ
2)dt+

1

ǫ
g(Xǫ

t , t/ǫ
2)dt (1.4)

and the slow dynamics are governed by

dY ǫ
t =

1

ǫ
F 1(Xǫ

t , t/ǫ
2)dt+ F 2(Xǫ

t , t/ǫ
2)dt+

1

ǫ
G(Xǫ

t , t/ǫ
2)dt. (1.5)

The coefficients of the slow equation are found using the chain rule and Ito’s

formula (i.e. the stochastic chain rule), specifically,

F 1
1 =

4
∑

i=1

∂K

∂xi
b1i F 1

2 =
4
∑

i=1

∂I

∂xi
b1i

F 2
1 =

4
∑

i=1

∂K

∂xi
b2i F 2

2 =

4
∑

i=1

∂I

∂xi
b2i

G1 =

4
∑

i=1

∂K

∂xi
gi G2 =

4
∑

i=1

∂I

∂xi
gi

(1.6)

Note that M[b1] = ∇̄K, therefore

M[F 1
1 ] = ∇K · ∇̄K.

Since the gradient and symplectic gradient produce vectors perpendicular to

each other, M[F 1
1 ] = 0. Similarly M[F 1

2 ] = 0, therefore it starts to become

evident that the dynamics of Equation (1.5) are an order of ǫ slower than

those of Equation (1.4).

This demonstrates that the dynamics of Y ǫ
t are indeed slow compared to

those of Xǫ
t .

For all problems treated in this thesis, it is a given that the fast process is a

Markov process, which is to say a process for which the future is independent

of everything but the present (delay differential equations do not satisfy this

property.) Equation (1.4) has a generator ([Øksendal, 1998, §7.3]). For

φ ∈ C2(R4 ×R) this generator is:

(L ǫφ)(x, t) = ǫ−1(b1,∇φ)(x, t) + (L φ)(x, t)
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where

(L φ)(x, t) =

4
∑

i=1

b2i (x, t)
∂φ

∂xi
(x) +

1

2

4
∑

i,j=1

aij(x, t)
∂2φ

∂xi∂xj
(x)

where aij(x, t) ≡ (g(x, t)gT (x, t))ij . The theory of stochastic averaging pro-

vides the formalism required to prove that in the limit of infinitesimally small

ǫ, the generator for Y ǫ
t becomes decoupled from Xǫ

t . Effectively then, aver-

aging becomes a method for dimensional reduction since a system in R4 is

approximated by one in R2. Formally this result holds for infinitesimally

small ǫ.

The problem has now been setup to apply stochastic averaging theory.

First, the results of stochastic averaging theory are stated and then the meth-

ods used to arrive at those results is explained. It must be noted that proofs

for the results given below are not provided in this thesis, although in Na-

machchivaya and Sowers [2001] similar results are proved. The principal

difference between results in that reference and those used in this thesis is

that in the reference, reduction from R2 → R is analyzed, whereas here,

the case of reduction from R4 → R2 is treated. While this difference should

not lead to significant changes, strictly speaking, the stochastic averaging

formulas given below should be termed conjectures.

To begin, an averaging operator is defined.

Definition 1.2.2 (Hamiltonian orbit averaging operator). For a function

ϕ ∈ C∞(R4), define averaging operator acting over Hamiltonian orbits, A

by

(Aϕ)(y) ≡ 1

T (y)

∫ T (y)

0

ϕ(zs(x))ds

where T (y) is the period associated with a Hamiltonian orbit.

The reduced Markov process is defined in terms of its drift and diffusion

coefficients. These two quantities are given by the following definition.

Definition 1.2.3 (Averaged drift & diffusion coefficients).

bi(y) ≡
(

A
(

M
(

F 2
i + fi + gi

)))

(y) (1.7)

aij(y) ≡
(

A
(

M
(

σσT
)

ij

))

(y) (1.8)
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for i, j = 1, 2, where

fi(x, t) ≡
4
∑

j=1

∂F 1
i (x, t)

∂xj
f̃ 1
j (x, t)

f̃ 1
i (x, t) ≡

∫ t

0

{

b1i (x, s)−Ms(b
1
i (x, s))

}

ds

gi(x, t) ≡
∫ 0

−∞

E

[

∂Gi(x, t, ξt)

∂xj
gj(x, t + τ, ξt+τ )

]

dτ

(

σσT
)

jk
(x, t) ≡

∫ ∞

−∞

E [Gj(x, t, ξt)Gk(x, t + τ, ξt+τ )] dτ

It’s worth pointing out that classical stochastic averaging theory, i.e.

Khasminskii [1968] is sufficient to provide these results since they hold within

the leaves of the reduced domain, where one need not deal with fixed points

and infinite periods.

Definition 1.2.4 (Generator of the reduced Markov process). The generator

of the reduced Markov process is, for a function f ∈ C2(R2),

(L †
i f)(y) =

2
∑

j=1

bij(y)
∂f(y)

∂yj
+

1

2

2
∑

j,k=1

aijk(y)
∂2f(y)

∂yj∂yk

b is the drift coefficient and a the diffusion coefficient. The domain of the

generator of the process evolving on a G with n leaves is defined by

D
†
G = {f ∈ C(G)∩C2(

n
⋃

i=1

Γi) : lim
y→ci

(L †
i f)(y) exists, lim

y→⊛i

(L †
i f)(y) = 0 ∀ i,

n
∑

i=1

{±}
2
∑

j=1

{

2
∑

k=1

åijk(O)
∂f

∂yk

∣

∣

∣

∣

O

}

· νj(O) = 0} (1.9)

where å denotes the same coefficient as in equation (1.8) except that the A-

averaging operator excludes division by the period and O denotes the gluing

vertex.

The sum involving å constitutes the gluing condition. An intuitive inter-

pretation of the gluing condition is provided in Namachchivaya and Sowers
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[2001]. This interpretation is extended to two-dimensions here. Define

α =

n
∑

i=1

‖̊ai(O)‖.

Suppose the limiting process starts on the page Γ1. It will evolve according

to L
†
1 until it hits the gluing vertex. The process will then return to page

Γ1 with probability ‖̊a1(O)‖/α and it will go to page Γi with probability

‖̊ai(O)‖/α.
Now, a sketch is given for the proof that L † is the generator of a Markov

process and Equation (1.9) its domain. The Wiener process of the fast

process given in Equation (1.4) is given on the original probability space,

(Ωo,F o,Po), where Ωo is the event space, F o the filtration, and Po the

probability measure. A canonical space is introduced so as to transfer the

dependence on ǫ from the process onto the measure. The original and canon-

ical spaces are related by

Pǫ(A) ≡ Po(Xǫ ∈ A), A ∈ B(Ω)

where B(Ω) denotes the space of Borel measures on Ω.

The martingale problem is used because it gives an alternative formula-

tion for the existence and uniqueness of weak solutions of stochastic differen-

tial equations (SDEs). Classical existence and uniqueness properties of are

proved using Holder continuity of the SDE’s coefficients, but such conditions

are too strong to deal with the topology of the reduced space, which consists

of leaves with edges that have singularities due to the homoclinic structure of

the fast deterministic dynamics. Formally, the martingale problem is stated

as follows [Rogers and Williams, 2000]. Denote an SDE by:

dX = b(X, t)dt + σ(X, t)dW

Suppose X is a weak solution to this equation starting at y ∈ Rn. Let Py

be the law of X ; Py is a probability measure on (Ωn,F n
t ). Then Py has the

following properties

1. Py(x0 = y) = 1

10



2. under Py, for each f ∈ C∞(n)

Mf
t ≡ f(xt)− f(x0)−

∫ t

0

Lf(x, s)ds

where L denotes the SDE’s generator, is an F n
t martingale.

For the fast process, Xǫ
t , the existence and uniqueness of weak solutions is

assured by the fact that (1.4) is a well-behaved SDE. Thus, by the martingale

problem we can state that, for f ∈ C2(R4 ×R) a function 2π-periodic in its

last argument,

Mf,ǫ
t ≡ f(Xt, t/ǫ

2)−
∫ t

0

ǫ−2∂f

∂s
(Xs, s/ǫ

2) + (L ǫf)(Xs, s/ǫ
2)ds,

is a martingale with respect to the filtration Ft; t ≥ 0 under the probabil-

ity measure Pǫ. An alternative form of the martingale problem is used in

proofs [Ethier and Kurtz, 1986]. If 0 ≤ r1 < r2 · · · < rn ≤ s < t and

φj; j = 1, 2 . . . n ∈ Cb(R
n), then

Eǫ
[{

f(Xt)− f(Xs)−
∫ t

s

ǫ−2∂f

∂s
(Xu, u/ǫ

2)

+ (L ǫf)(Xu, u/ǫ
2)du

}

n
∏

j=1

φj(Xrj )
]

= 0.

This form of the martingale property relies on the fact that functions of the

form
∏n

j=1 φj(Xrj) generate Fs.

Stochastic averaging theory show that the law of the reduced process, Y ǫ
t ,

converges to a unique limit. This is also stated in a canonical space. Y ǫ
t takes

values in G. The event space is Ω† ≡ C([0,∞),G), the filtration is F † and

the canonical probability measure is defined by

Pǫ,† ≡ Pǫ(Y ∈ A), A ∈ B(Ω†).

Stochastic averaging theory is used to prove the existence and uniqueness of

the limit

P† ≡ lim
ǫ→0

Pǫ,†. (1.10)

Formally, the main theorem of stochastic averaging is stated as follows. Pǫ,†

tends to a unique solution P† of the martingale problem with generator L †

11



and with initial condition δy0 . This means P(Y †
0 = Y0) = 1, and if f ∈ D

†
G,

0 ≤ r1 < r2 · · · < rn ≤ s < t and φ†
j; j = 1, 2 . . . n ∈ C(G), then

E†

[

{

f(Y †
t )− f(Y †

s )−
∫ t

s

(L †f)(Y †
u )du

} n
∏

j=1

φ†
j(Y

†
rj
)

]

= 0. (1.11)

To prove that L † is the generator of a Markov process, the first step is to

show the reduced probability measure, Pǫ,† is tight in the Prohorov topology

on B(Ω†). Then, by Prokhorov’s theorem, there exists at least one cluster

point in the weak topology of probability measures on Ω†.

Based on definition (1.10), (1.11) can be stated as

lim
ǫ→0

Eǫ,†

[

{

f(Y †
t )− f(Y †

s )−
∫ t

s

(L †f)(Y †
u )du

} n
∏

j=1

φ†
j(Y

†
rj
)

]

= 0

and reverting back to the unreduced process, the above can be stated as

lim
ǫ→0

Eǫ

[

{

f(Yt)− f(Ys)−
∫ t

s

(L †f)(Yu)du

} n
∏

j=1

φj(Yrj)

]

= 0.

In the original canonical space, it’s known that, if y = R(x, y),

Eǫ

[

{

f(Yt)− f(Ys)−
∫ t

s

(L ǫ(f ◦ R))(Xu)du

} n
∏

j=1

φj(Xrj )

]

= 0

for all ǫ > 0. This demonstrates that the bulk of the work that needs to be

performed to prove stochastic averaging results is to show

lim
ǫ→0

E

[∣

∣

∣

∣

(∫ t

0

(L ǫ(f ◦ R))(Xs)− (L †f)(Ys)

)

du

∣

∣

∣

∣

]

= 0.

Denoting

(L ǫ(f ◦ R))(x, t) = Lǫ
1(x, t) + Lǫ

2(x, t)

12



where

Lǫ
1(x, t) ≡ (LK)(x, t)

∂f ǫ

∂K
(K(x), I(x)) + (L I)(x, t)

∂f ǫ

∂I
(K(x), I(x))

+
1

2

{

〈dK, dK〉(x, t)∂
2f ǫ

∂k2
(K(x), I(x))

+ 〈dI, dI〉(x, t)∂
2f ǫ

∂i2
(K(x), I(x))

}

+ 〈dK, dI〉(x, t)∂
2f ǫ

∂k∂i
(K(x), I(x))

and

Lǫ
2(x, t) ≡

1

ǫ

{

(b1,∇K)(x, t)
∂f ǫ

∂k
(K(x), I(x))

+ (b1,∇I)(x, t)∂f
ǫ

∂i
(K(x), I(x))

}

for all x ∈ R4 and t ≥ 0. The fastest variation is the oscillation of coefficients,

which has period ǫ2; the second-fastest variation is the motion around the

orbits of z; these oscillations have period ǫ. Thus we should have

∫ t

0

Lǫ
1(Xu, u/ǫ

2)du ≈
∫ t

0

(MLǫ
1)(Xu)du ≈

∫ t

0

(AMLǫ
1)(K(Xu), I(Xu))du.

It should be possible to prove this using standard averaging techniques, as

was done for reduction from R2 → R in Namachchivaya and Sowers [2001].

The analysis of Lǫ
2 is a bit more delicate since it contains large fluctuations,

which are of order one on average.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 applies sto-

chastic averaging techniques to a resonant periodically driven noisy oscillator.

This is problem where the original system is two-dimensional and the reduced

system is one dimensional. Thus the averaging analysis can be done with-

out recourse to numerical techniques. In this sense, Chapter 2 serves as an

introductory example. This chapter is self-contained.

In Chapter 3 a model of surface wave motion will be analyzed. This is

perhaps the most challenging application of stochastic averaging in this the-
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sis. The first step is to transform partial differential equations into an infinite

system of ordinary differential equations. The graph of the reduced process

has a relatively complicated geometry and in order to calculate averaged drift

and diffusion coefficients, numerical algorithms are devised.

In Chapter 4 an autoparametric oscillator model will be analyzed. The

level of complexity of this problem is similar to the wave motion problem,

however more calculations can be done analytically, simplifying the analysis

slightly.

In Chapter 5, the main results of this thesis are developed. Stationary

probability density solutions are given for the surface wave and autopara-

metric problems. These solutions are found with a finite-element method

(FEM). In Chapter 5, a sample path method is also developed to solve the

Fokker–Planck equation. This serves to validate the FEM.

Chapter 6 concludes the thesis. In that chapter, results are summarized

and possible extensions to the work in this thesis are presented.
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CHAPTER 2

Resonant Dynamics of a Periodically Driven

Noisy Oscillator

2.1 Introduction

We are interested in the nonlinear response of a single-degree-of-freedom

system under both periodic and stochastic external excitations. The general

form of the equations studied here is given by

q̈t +
∂U

∂q
(qt) +G(qt, q̇t)q̇t = µ0 cos(ωt) + µ1ξ(t), (2.1)

where q ∈ R represents a generalized coordinate and the potential U : R →
R has a single well. More precisely, we require that U ∈ C∞(R;R+), that

lim|x|→∞U(x) = ∞, that

{x ∈ R : U ′(x) = 0} = {x ∈ R : U(x) = 0} = 0,

and that ω2
0 ≡ U ′′(0) > 0. See Figure 2.1.

In (2.1), G represents dissipative terms, and ξ represents mean zero, sta-

tionary, independent Gaussian white noise processes. For convenience, we

Figure 2.1: Potential energy
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shall define

Uh(q) ≡ U(q) +
1

2
ω2
0q

2. q ∈ R

Since an exact solution of (2.1) is not known, the purpose of the present

analysis is to develop a stochastic averaging technique of perturbed two-

dimensional Hamiltonian systems with an elliptic fixed point. The analytical

methods presented are based on Freidlin and Weber [1998], Namachchivaya

and Sowers [2001, 2002], Sowers [2003].

Introducing appropriate scaling of parameters for the nonlinear, dissipa-

tive, and time dependent terms, we recast (2.1) as

q̈ǫt + ω2
0q

ǫ
t + ǫn

∂Uh

∂q
(qǫt) + ǫdG(qǫt , q̇

ǫ
t)q̇

ǫ
t = ǫµ0 cos(ωt) + ǫνµ1ξ(t), (2.2)

Our interest is the behavior of q in a certain limiting regime. Depending

on the values of n, d, ν, the limiting dynamics of the state (qǫ, q̇ǫ) as ǫ → 0

are significantly different. In Namachchivaya and Sowers [2001] a unified

approach for noisy weakly nonlinear systems like (2.2) was developed for the

case when n = 1. Here, by appropriate scaling of the nonlinear term ∂Uh/∂q,

the solution (qǫ, q̇ǫ) over any finite interval converges in probability, as ǫ→ 0,

to the solution of an averaged equation which has a conservation law. The

averaged equation has certain nontrivial (yet generic) types of fixed points.

The evolution of the first integral (associated with a conservation law) was

examined on a rescaled time interval.

A number of researchers have worked on Duffing oscillators in various

environments. In the absence of noisy perturbations (i.e., µ1 = 0), equa-

tion (2.2) represents a harmonically forced nonlinear oscillator. This has been

studied extensively [Guckenheimer and Holmes, 1983, Nayfeh and Mook,

1979]. On the other hand, in the absence of periodic perturbations (i.e.,

µ0 = 0), (2.2) represents the noisy Duffing-van der Pol equation which has

been studied by Arnold et al. [1996], Liang and Namachchivaya [1999], Lin

[1967] and Bolotin [1984], to name a few. Here the work of Namachchivaya

and Sowers [2001] is extended to include more general (strongly) nonlinear

systems (n = 0 in (2.2)) and obtain analytical results for a low-dimensional

model of (2.2). Stochastic averaging can achieve model-reduction for two

different sets of values of d and ν. Here, we consider the case in which the

order of the noise equals that of the dissipation, i.e., d = ν = 1. Note that

16



when the noise intensity is larger than the dissipative or periodic perturba-

tions, i.e., ν = 1/2, it becomes possible to use the results of Pinsky and

Wihstutz [1988]. Pinsky-Wihstutz scaling stretches the coordinates in such

a way that to leading order, stochastic forcing induced diffusion balances

dissipative drift.

It is well known that stochastic resonance (SR) can arise in under-damped

systems with a single-well potential, unlike conventional SR in multi-well

potentials. Therefore, to study such SR, we shall consider a prototypical

single-well potential

U(q) =
1

2
q2 +

1

4
q4 +Bq

with two distinct cases depending on the constant |B|. In the first case,

when |B| ≤ Bc the nonlinear oscillation frequency Ω(E) monotonically in-

creases with total energy E as shown in Figure 2.2(a). In the second case

with |B| > Bc, the system frequency Ω(E) is non-monotonic as sketched

in Figure 2.2(b). Furthermore, in the absence of the periodic forcing, the

under-damped oscillator exhibits the so-called sharp zero-dispersion spectral

peaks (ZDPs) close to the extremal frequency Ωm in the fluctuation spec-

trum. The magnitude of the ZDP climbs up exponentially with increasing

noise strength µ1. The extreme narrowness of the ZDP Soskin [1989, 1992]

suggests that stochastic resonance in the latter case is far more dramatic

phenomenon than in the former case. Here, we investigate the system with a

symmetric single potential, i.e., B = 0 and the constant damping coefficient,

G(qǫt , q̇
ǫ
t) = ζ . Thus Equation (2.2) becomes

q̈ǫt + ǫζq̇ǫt + qǫt + qǫt
3 = ǫµ0 cos(ωt) + ǫµ1ξ(t)

In section 2.2 is devoted to setting up a framework to study the effect

of random perturbation of the system near the resonance surface. In other

words, adequately scaled local coordinates adjacent to the resonance surface

are introduced from the system in action space. In section 2.3, a cascaded

averaging approach is presented for the local system under the capture into

resonance. More specifically, we address a separation of time scales so that

state variables of fast time scale can be averaged out while the equation of

the slow variable is approximated. The near resonant motion is reduced to a

graph valued process which turns out to converge weakly to a Markov process
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with a limiting generator. Section 2.4 presents stationary probability density

from the limiting generator which characterize the reduced Markov process.

In the final section, we give conclusion and conjecture regarding the effect of

SR.

2.2 Problem Setting

By making use of the system Hamiltonian with strong nonlinear terms, we

write (2.1) with the standard rescaling for dissipation, as a weakly perturbed

Hamiltonian system

ẋǫt =
∂H(xǫt , y

ǫ
t)

∂y

ẏǫt = −∂H(xǫt , y
ǫ
t)

∂x
+ ǫF y(xǫt, y

ǫ
t , θt) + ǫGy(xǫt, y

ǫ
t)ξ(t)

θ̇t = ω,

(2.3)

where (xǫ0, y
ǫ
0) ≡ (x, y) ∈ R2, θ0 ≡ θ ∈ S. The unperturbed (ǫ = 0) equations

corresponding to (2.3) form a Hamiltonian

H(x, y) =
y2

2
+ U(x)

where U(x) = x2/2 + x4/4. We apply a canonical transformation to obtain

new variables φ, I in such a way that the transformed Hamiltonian remains a

constant, I, and the angle φ increases by one during every period of rotation.

The conjugate momentum corresponding to φ is the action I. Thus, the

unperturbed integrable Hamiltonian equations with elliptic fixed points can

be written as

İt = 0, φ̇t = Ω(It), θ̇t = ω, (2.4)

and the perturbed equations (2.3) simplify to the following Stratonovich

equations

dIǫt = ǫf I(Iǫt , φ
ǫ
t, θt)dt+ ǫgI(Iǫt , φ

ǫ
t) ◦ dWt

dφǫ
t = Ω(Iǫt )dt+ ǫfφ(Iǫt , φ

ǫ
t, θt)dt+ ǫgφ(Iǫt , φ

ǫ
t) ◦ dWt

dθt = ωdt,

(2.5)
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where I0 = I ∈ R, φ0 = φ ∈ S, θ0 = θ ∈ S. S denotes the circle with unit

radius in 2-dimensional Euclidean space. We shall use the dominant global

dynamics and the phase-space stratification of (2.4) to capture the long-term

behavior of the dissipative, periodically driven, noisy system (2.5).

As stated in the introduction, our principal technique of dimensional re-

duction will be the method of stochastic averaging for nonlinear systems with

small noise. As the noise becomes asymptotically small, one can exploit sep-

aration of scales to find an appropriate lower-dimensional description of the

system for many important random vibration problems. The unique feature

in our treatment will be the inclusion of resonances, as we shall describe

below.

2.2.1 Resonances in Two Frequency System

In an integrable Hamiltonian system such as (2.4), if the frequencies are non-

commensurable, then the orbits are everywhere dense on S2 and the motion

corresponding to the unperturbed system (2.4) is called quasi-periodic. Res-

onance occurs when the frequencies are commensurable or nearly commensu-

rable, and the closure of an orbit is a one-dimensional torus. Since Ω depends

on the action I, the resonance will depend on certain values of the action.

Definition 2.2.1 (Resonance). For the two-phase system, resonances occur

when Ω’s, are connected by a commensurability relation

κ1 Ω(I) + κ2 ω = 0, κ = (κ1, κ2) ∈ Z2 − (0, 0) (2.6)

and the order of the resonance is given by |κ| =∑2
i=1 κi.

If we regard (κ1, κ2) ∈ Z2 − (0, 0) as fixed, then (2.6) is a single equation

in one unknown. Away from the equilibrium point (Ω(I) 6= 0) and at a

particular value Im:n with (κ1, κ2) = (m,−n), we have

Ω(Im:n)

ω
=

n

m
∈ Q

So each rational value assumed by the above frequency ratio corresponds

with a resonance domain, in principal, an infinite number of such resonance

domains exist.
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Definition 2.2.2 (Resonance Module: Ω⊥). For some fixed I, the resonance

module is a 2-dimensional integer vector

Ω⊥ ≡ {κ = (κ1, κ2) ∈ Z2 − (0, 0) : κ1Ω(I) + κ2ω = 0}

Definition 2.2.3 (Resonance Set: Rk). The resonance set are those values

of I for which a particular resonance κ = (m,−n) ∈ Z2 − (0, 0) occurs, i.e.,

Rk ≡ {I ∈ D ⊂ R2 : κ1Ω(I) + κ2ω = 0, κ = (κ1, κ2) ∈ Z2 − (0, 0)}

A resonance set is a point in the one-dimensional action space and this

point along with the variables (φ, θ) ∈ S2 forms, what is often called a reso-

nance surface. For some fixed (κ1, κ2) = (m,−n), the resonance set for the

Figure 2.2: Resonance sets for the Duffing equation

Duffing equation, for example, consists of just one point Im:n. When the tra-

jectory of a phase point arrives at this surface, the trajectory either passes

through the resonance and gets away from the resonant surface or gets cap-

tured into resonance. The captured trajectory moves slowly while preserving

the resonance condition and may leave the resonance surface after a time

interval of order ǫ−1. In the next section we describe the perturbed stochas-

tic dynamics of system (2.3) close to this resonance surface with the aim of

determining the effects of noisy perturbations on the passage of trajectories

through the resonance zone.
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2.2.2 Scaling Close to a Resonant Surface

The near resonant motion of randomly perturbed integrable systems is not

well understood. In this section, we will study this problem in depth by

introducing local coordinates close to the resonance surface. A point (I, φ, θ)

in the neighborhood of the resonant surface will be specified by r, the distance

to the resonant surface, and the angles (γ, θ). Since in the frequency plane,

Ω(I)− ω, the resonance curve forms a straight line through the origin with

the normal defined by r ≡ mΩ(I)− nω. If we assume

∂Ω

∂I
(I) 6= 0

then the transformation is invertible, i.e. I = I(r). Hence, we introduce a

distance to the resonant manifold as

η ≡ I − Im:n,

Making use of (2.4) we introduce a slow angle γ

mφ̇− nθ̇ =
d

dt
(mφ− nθ) ≡ dγ

dt
, for κ = (m,−n) ∈ Ω⊥.

and it is clear that there is a 2×2 matrix

A =

[

m −n
0 1

]

,

with m 6= 0. The matrix A satisfies A · Ω = [0, ω]T and it can be used to

transform between fast and slow variables since A · [φ, θ]T = [γ, θ]T. We can

write the evolutions in the new variables ηǫt , γ
ǫ
t , θt using the Taylor expansion,
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about η = 0 as

dηǫt = ǫ

{

f I(Im:n, φǫ
t(γ

ǫ
t , θt),

θt
ω
) +

∂f I

∂I
(Im:n, φǫ

t(γ
ǫ
t , θt),

θt
ω
) ηǫt

+
1

2

∂2f I

∂I2
(Im:n, φǫ

t(γ
ǫ
t , θt),

θt
ω
) (ηǫt)

2

}

+ ǫ
{

gI(Im:n, φǫ
t(γ

ǫ
t , θt))

+
∂gI

∂I
(Im:n, φǫ

t(γ
ǫ
t , θt)) η

ǫ
t +

1

2

∂2gI

∂I2
(Im:n, φǫ

t(γ
ǫ
t , θt)) (η

ǫ
t)

2

}

◦ dWt

dγǫt = m
∂Ω

∂I
(Im:n)ηǫt +

m

2

∂2Ω

∂I2
(Im:n)(ηǫt )

2 + ǫm

{

fφ(Im:n, φǫ
t(γ

ǫ
t , θt),

θt
ω
)

+
∂fφ

∂I
(Im:n, φǫ

t(γ
ǫ
t , θt),

θt
ω
) ηǫt +

1

2

∂2fφ

∂I2
(Im:n, φǫ

t(γ
ǫ
t , θt),

θt
ω
)(ηǫt)

2

}

+ ǫm

{

gφ(Im:n, φǫ
t(γ

ǫ
t , θt)) +

∂gφ

∂I
(Im:n, φǫ

t(γ
ǫ
t , θt))η

ǫ
t

+
1

2

∂2gφ

∂I2
(Im:n, φǫ

t(γ
ǫ
t , θt))(η

ǫ
t)

2

}

◦ dWt

dθt = ωdt where φǫ
t(γ

ǫ
t , θt) ≡

γǫt
m

+
n

m
θt

(2.7)

On the resonant surface η = 0 and in the neighborhood of that surface η

is small, since the effect of a resonance is felt in a narrow strip about the

resonance line called the resonant zone. Due to the nilpotent structure of

the zeroth order terms in equations (2.7), we need an appropriate scaling to

capture the dynamics in the proximity of the resonant zone. For the case

of interest in the current analysis (i.e. noise intensity of the same order as

the dissipative perturbation) the width of the resonant zone is of order
√
ǫak

where ak is an upper bound for the amplitudes of the resonant harmonics of

the perturbations. Accordingly, η is rescaled:

η = ǫ
1

2h.
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Thus, we obtain the following set of stochastic equations from (2.7)

dhǫt =

{

ǫ1/2f I
0

(

Im:n, φǫ
t(γ

ǫ
t , θt),

θt
ω

)

+ ǫf I
1

(

Im:n, φǫ
t(γ

ǫ
t , θt),

θt
ω

)

hǫt

}

dt

+
{

ǫ1/2gI0(I
m:n, φǫ

t(γ
ǫ
t , θt)) + ǫgI1(I

m:n, φǫ
t(γ

ǫ
t , θt))h

ǫ
t

}

◦ dWt

dγǫt = m

{

ǫ1/2
∂Ω

∂I
(Im:n)hǫt +

ǫ

2

∂2Ω

∂I2
(Im:n)(hǫt)

2

}

dt

+m

{

ǫfφ
0

(

Im:n, φǫ
t(γ

ǫ
t , θt),

θt
ω

)

+ ǫ3/2fφ
1

(

Im:n, φǫ
t(γ

ǫ
t , θt),

θt
ω

)

hǫt

}

dt

+m
{

ǫgφ0 (I
m:n, φǫ

t(γ
ǫ
t , θt)) + ǫ3/2gφ1 (I

m:n, φǫ
t(γ

ǫ
t , θt))h

ǫ
t

}

◦ dWt

dθt = ωdt

(2.8)

It is important to realize that the scaled Stratonovich equation (2.8) are the

starting point for the rest of the analysis.

2.3 Reduction to Graph Valued Processes

Our goal in the first part of this section is to describe the perturbed stochastic

dynamics of the system (2.8) close to this resonance surface for the case

µ = 1/2. Keeping the first two orders in each equations of motion (2.8), we

get

dhǫt =

{

ǫ1/2f I
0

(

Im:n, φǫ
t(γ

ǫ
t , θt),

θt
ω

)

+ ǫf I
1

(

Im:n, φǫ
t(γ

ǫ
t , θt),

θt
ω

)

hǫt

}

dt

+ ǫ1/2gI0(I
m:n, φǫ

t(γ
ǫ
t , θt)) ◦ dWt

dγǫt = m

{

ǫ1/2
∂Ω

∂I
(Im:n)hǫt + ǫfφ

0

(

Im:n, φǫ
t(γ

ǫ
t , θt),

θt
ω

)

+
ǫ

2

∂2Ω

∂I2
(Im:n)(hǫt)

2

}

dt

+ ǫmgφ0 (I
m:n, φǫ

t(γ
ǫ
t , θt)) ◦ dWt

dθt = ωdt

(2.9)
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where

f I
0 =

∂I

∂y
(µ0 cosωt− ζy) =

y

Ω(I)
(µ0 cosωt− ζy),

f I
1 =

∂f I
0

∂I
, gφ0 = µ1

∂φ

∂y
= −µ1

∂x

∂I
,

gI0 = µ1
∂I

∂y
= µ1

∂I

∂H

∂H

∂y
=

µ1

Ω(I)
y,

fφ
0 =

∂φ

∂y
(µ0 cosωt− ζy) = −∂x

∂I
(µ0 cosωt− ζy).

Since this section deals with a fixed resonance band, we can easily express

φǫ
t(γ

ǫ
t , θt) = Ω(Im:n)t +

γǫt
m

=
ωn

m
t+

γǫt
m

and θt = ωt

Define ǫ̃ ≡ √
ǫ. We can then rewrite (2.9) as the Ito stochastic differential

equation,

dẐ ǫ̃
t = ǫ̃b1(Ẑ ǫ̃

t , t)dt+ ǫ̃2b2(Ẑ ǫ̃
t , t)dt+ ǫ̃σ(Ẑ ǫ̃

t , t)dWt

Ẑ ǫ̃
0 = x ≡ (h, γ) ∈ R+ × S

t ≥ 0 (2.10)

where the vectors b1, b2 and the matrix σ are given by

b1(x, t) = b1(h, γ, t) ≡
(

f I
0 (I

m:n,Ω(Im:n)t+ γ/m, ωt)

m∂Ω
∂I
(Im:n) h

)

b2(x, t) = b2(h, γ, t) ≡
(

f I
1 (I

m:n,Ω(Im:n)t+ γ/m, ωt) h

mfφ
0 (I

m:n,Ω(Im:n)t+ γ/m, ωt) + m
2

∂2Ω
∂I2

(Im:n)h2

)

σ(x, t) = σ(h, γ/m, t) ≡
(

gI0(I
m:n,Ω(Im:n)t+ γ/m)

0

)

and where x is an initial condition (that will remain fixed throughout).

In (2.10), b1, b2 and σ are 2π-periodic in their last argument, time, and W

is a R2-valued Wiener process given on some probability space (Ω◦,F ◦,P◦);

as usual, we let E◦ denote the expectation operator with respect to P◦. We

attach the superscript ◦ to denote that this is the original probability triple.

As in the previous section, the effects of the dissipation and noise can be

understood via a diffusive generator and a symbol. For future reference, we

define these operators.
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Definition 2.3.1 (Generator and Symbol). For each ϕ and ψ in C2(R+×S),
define

(Lϕ)(x, t) ≡ 1

2

∑

i,j

aij(x, t)
∂2ϕ

∂xi∂xj
(x) +

∑

i

b2i (x, t)
∂ϕ

∂xi
(x)

〈dϕ, dψ〉(x, t) ≡
∑

i,j

aij(x, t)
∂ϕ

∂xi
(x)

∂ψ

∂xj
(x)

for all x ≡ (h, γ) ∈ R+ × S, and t ≥ 0, where aij(x, t) ≡ (σ(x, t)σT (x, t))ij.

There are three timescales in (2.10). The 2π/ω-periodicity of the coeffi-

cients appears on time intervals of order 1. Since in the time interval 1/ǫ̃ the

slow variables, x, are constants, we can average with respect to the fast time

in the above equations. The drift term b2 and the diffusion cause fluctuations

of order ǫ̃2 and ǫ̃, whereas the drift term b1 causes fluctuations of order ǫ̃.

Our interest here is when the periodic fluctuations of the coefficients in a

sense cancel out the fluctuations due to b1, leaving us with fluctuations of

order ǫ̃2. First, we give a definition.

Definition 2.3.2 (Time-Averaging Operator). Fix ϕ ∈ C∞(R+ × S × R)

which is T -periodic in its last argument. Define Mϕ ∈ C∞(R+ × S) by

(Mϕ)(x) ≡ 1

T

∫ T

0

ϕ(x, t)dt

for all x ∈ R+ × S.

To see fluctuations, we need to examine (2.10) on a time scale of order

1/ǫ̃. Namely, consider the following stochastic differential equation

dZ̃ ǫ̃
t = b1(Z̃ ǫ̃

t , t/ǫ̃)dt+ ǫ̃b2(Z̃ ǫ̃
t , t/ǫ̃)dt+

√
ǫ̃σ(Z̃ ǫ̃

t , t/ǫ̃)dWt

Z̃ ǫ̃
0 = x ≡ (h, γ) ∈ R+ × S

t ≥ 0 (2.11)

then the law of {Z̃ ǫ̃
t ; t ≥ 0} is the same as the law of {Ẑ ǫ̃

t/ǫ̃; t ≥ 0}.
Theorem 2.3.3. Consider (2.11), where b1’s are bounded with bounded first

and second derivatives. For any T > 0 and {x̃ǫ̃t; 0 ≤ t ≤ T} converges in

probability to the flow {zt(x); 0 ≤ t ≤ T} generated by

żt(x) = ∇̄H(zt(x))

z0(x) = x ≡ (h̄, γ̄) ∈ R+ × S.
t ∈ R, (2.12)
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where for all x ∈ R+ × S,

∇̄H(x) ≡ (M b1)(x) =

(

− ζ
2π
J1 +

µ0

2π
J2 sin(γ̄)

m∂Ω
∂I
(Im:n)h̄ǫt

)

J1 ≡
8

3

(1− k2)K(k) + (2k2 − 1)E(k)

(1− 2k2)3/2

J2 ≡
{

0 for n 6= 1

2
√
2πω sech mπK(1−k2)

2K(k)
for n = 1, m =odd

i.e., for any δ > 0,

lim
ǫ̃→0

P◦

{

sup
0≤t≤T

‖xǫ̃t − zt(x)‖ ≥ δ

}

= 0.

Furthermore, if we define ζ ǫ̃t ≡ (xǫ̃t − zt(x))/ǫ̃ for t ≥ 0 and ǫ̃ > 0, then the

law of ζ ǫ̃ converges in law to a Gaussian Markov process ζ0 satisfying

dζ0t = D∇̄H(zt(x))ζ
0
t dt+ σ̄(zt(x))dWt

ζ00 = 0

where σ̄ is a 4× 4 matrix such that

(σ̄(x)σ̄T (x))ij ≡ (M ai,j)(x) =

(

M(gI0
2
(Im:n, γ̄)) 0

0 0

)

and

M(gI0
2
(Im:n, γ̄)) =

4µ2
1

3πnΩ(Im:n)(1− 2k2)3/2
[

(1− k2)K(k) + (2k2 − 1)E(k)
]

for all x ∈ R2.

Proof. Application of Khasminskii [1966].

Since the leading order partially averaged system (2.12) in the resonance

zone is Hamiltonian and the higher order terms contain both noisy and dis-

sipative perturbations, the phase points may cross the homoclinic orbit. The

phase space has no fixed points for

µ0

ζ
≤ Rm(ω) ≡ J1(m, 1)

J2(m, 1, ω)
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and the solution trajectories pass through the resonance zone quickly. Here

we consider the case of
µ0

ζ
> Rm(ω).

A typical form of H(x; Im:n), introduced in equation (2.12), is

H(γ, h; Im:n) =
m

2

∂Ω

∂I
(Im:n)h2 + V (γ, Im:n)− τ(Im:n)γ (2.13)

which represents a pendulum-like system with a constant torque parametri-

zed by Im:n,

1

mΩ′(Im:n)
γ̈ ǫ̃t +

∂V (Im:n, γ ǫ̃t )

∂γ
= τ(Im:n), Im:n = constant,

V (γ, Im:n) ≡ µ0

2π
J2 cos γ, τ(Im:n) ≡ − ζ

2π
J1.

(2.14)

There are a number of interesting and interrelated effects at play in our

problem. In the deterministic context, τ(Im:n) 6= 0 is called the Neishtadt

condition. Under Neishtadt’s condition, only trajectories corresponding to a

set of initial conditions of measure of order O(ǭ) get trapped into resonance.

All other trajectories pass through the resonance zone within a time duration

such that the separation between the exact and the averaged trajectories

is insignificant. Under this condition, for large values of the angle γ the

periodic part given by V (γ̄) is small compared to the linear part thus the

driving torque dominates at high speeds. There are only two phase portraits

for the forced pendulum equation above which may possess both elliptic and

saddle fixed points. We make the following assumption on the structure of

the integrable Hamiltonian.

Assumption 2.3.4 (phase portrait of constant torque pendulum). For Im:n ∈
Z ⊂ R, there exists γ̄c(I

m:n) and γ̄s(I
m:n) such that (0, γ̄c(I

m:n)) is a cen-

ter type fixed point of (2.14) while (0, γs(I
m:n)) is a saddle type fixed point

of (2.14). Moreover, the saddle is connected to itself by a homoclinic orbit

and the center is the only fixed point inside the homoclinic orbit.

The Hamiltonian (2.13) has multiple critical points and the reduced state

space is a graph. The vertices of this graph represent the homoclinic or hete-

roclinic orbits of (2.12). At the vertices, gluing conditions need to be added in

order to completely specify the behavior of the reduced model; the analysis at
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the vertices (i.e. the critical points of H) is somewhat subtle. Making use of

the martingale formulation, Freidlin and Wentzell [1994], Freidlin and Weber

[1998], Sowers [2003] identified some of the issues relating to boundary-layer

behavior close to the homoclinic orbits of (2.12). Similar rigorous results

at elliptic and saddle points are given by Namachchivaya and Sowers [2001].

To see the fluctuations of H , we need to look on an even longer time scale.

Guided by Theorem 2.3.3, we write that Z̃ ǫ̃
t ≈ zt(x) + ǫ̃ζ0t . We then expect

Z̃ ǫ̃
t to noticeably deviate from zt(x) only on time scales which are of order at

least ǫ̃−1. Thus, we make another (final) rescaling. Consider the SDE

dZ ǫ̃
t =

1

ǫ̃
b1(Z ǫ̃

t , t/ǫ̃
2)dt+ b2(Z ǫ̃

t , t/ǫ̃
2)dt+ σ(Z ǫ̃

t , t/ǫ̃
2)dWt, t ≥ 0

Z ǫ̃
0 = x

(2.15)

Then the law of {Z ǫ̃
t ; t ≥ 0} is the same as the law of {Z̃ ǫ̃

t/ǫ̃; t ≥ 0} (which is

in turn the same as the law of {Ẑ ǫ̃
t/ǫ̃2; t ≥ 0}).

Our goal is to study (2.15) and show that as ǫ̃ tends to zero, the dynamics

ofH(Z ǫ̃) tend to a lower-dimensional Markov process and to identify the gen-

erator of the limiting law. Our aim is to do this via the martingale problem.

The random motion across the unperturbed trajectories is approximated by a

Markov process which is obtained by averaging with respect to both the fast

oscillations and the invariant measure concentrated on the closed trajectories

of (2.12). Thus we shall appeal to the results of Namachchivaya and Sowers

[2001] and Sowers [2003] to complete the analysis relating to boundary-layer

behavior close to the elliptic and saddle points of H , respectively.

2.3.1 Reduced State Space

We are interested in the behavior of Pǫ̃
x as ǫ̃ tends to zero. In essence, the

underpinning of the classical stochastic averaging method is a separation of

time scales; under Pǫ̃
x, the process Xt evolves around the level sets of H

very quickly, and thus a coarse-grained description of the process records

only H(Xt), and the Pǫ̃
x-dynamics of H(Xt) depend only on H(Xt) itself,

i.e., {H(Xt); 0 ≤ t ≤ e} is a slowly varying process, where e is the stopping

time. As ǫ̃ tends to zero, one should be able to find closed dynamics for the

projection of the process onto the space of such level sets.
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Consider the flow (2.12), we use z to generate an equivalence relation on

the original state space S̄. Mathematically, the level sets can be understood

via an equivalence relation; we say that any two points x and y in R+×S are

equivalent, i.e., x ∼ y, if H(x) = H(y); if x ∈ S̄, we let [x] ≡ {y ∈ S̄ : y ∼ x}
denote the equivalence class of x.

To make our analysis easier, let us take advantage of the fact that the

reduced state space looks like a number of intersecting lines. For each 1 ≤
i ≤ N , let Ii denote all points belonging to the connected components of a

level set {R+ × S : H(x) = H} of the state space. We can then treat the

reduced state space as

G ≡ ∪N
i=1Īi,

this being interpreted as a disjoint union. To make this rigorous, we need

a nontrivial topology on G that reflects the fact that endpoints of different

Īi’s should be identified.

Let us define an averaging operator:

Definition 2.3.5 (Averaging Operator). For any ϕ ∈ B(S), we define Aϕ ∈
B(I) by

(Aϕ)(H(x)) ≡
∫

y∈H(x)
ϕ(y)‖∇̄H(y)‖−1

R+×SH (dy)
∫

y∈H(x)
‖∇̄H(y)‖−1

R+×SH (dy)

=
1

T ◦(H(x))

∫ T ◦(H(x))

0

ϕ(zs(x))ds

for all x ∈ S. H is one-dimensional Hausdorff measure and T ◦ : I → R+

is defined by

T ◦(H(x)) ≡ inf{t > 0 : zt(x) = x} =

∫

y∈H(x)

‖∇̄H(y)‖−1
R+×SH (dy).

We then want to find a Markov process on G which represents the limiting

dynamics of Xt. To start to specify this generator, first define

K(x, t) ≡
∫ t

0

(∇H, b1)(x, s)ds

for all x ∈ R+ × S and t > 0. We note the easily-seen and important fact
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that K is 2π/ω-periodic in its last argument (time) since

M(∇H, b1) = (∇H, ∇̄H) ≡ 0.

Next, define the drift and diffusion coefficients

b(h) ≡ (A(M(LH − (b1,∇K))))(h), (2.16)

σ2(h) ≡ (A(M〈dH, dH〉))(h), (2.17)

for all h ∈ Ii. We then define for each 1 ≤ i ≤ N an elliptic operator Li on

C(Ii) as

(Lif)(h) ≡
1

2
σ2
i (h)f̈(h) + bi(h)ḟ(h).

We want to put these Li’s together to get a Markov process on G with

generator L
†
G with domain D

†
G . Finally, for notational convenience, when

N ≥ 2, we also define fi ≡ f
∣

∣

Ii
for all 1 ≤ i ≤ N . The limiting domain for

this case is

D
†
G = {f ∈ C(G) ∩ C2(∪N

i=1Ii) : lim
h→H(ci)

(Lifi)(h) exists ∀i,

lim
h→H∗

(LNfN)(h) = 0,

N
∑

i=1

{±} lim
h→hs

(̊σ2
i f

′
i)(h) ≡

N
∑

i=1

{±}σ̊2
i (O)f ′

i(O) = 0}

where ci’s are the elliptic fixed points, H∗ is the largest allowable value of

H , hs is the Hamiltonian at a saddle point and the ‘+’ sign is taken if

the coordinate h on the leg Ii is greater than hs and the ‘−’ sign is taken

otherwise. Then for f ∈ D
†
G, the generator is

(L †
Gf)(h) = lim

h′→h
h∈Ii

(Lifi)(h
′) = bi(h)ḟi(h) +

1

2
σ2
i (h)f̈i(h)

for all h ∈ Īi.

Our main theorem is thus

Theorem 2.3.6. The Pǫ̃,†’s tend to the unique solution P† of the martingale

problem with generator L † with domain D† and with initial condition δH(x◦).

This means the following. Firstly that P†{X†
0 = H(x◦)} = 1. Secondly, that

if we fix f ∈ D†, 0 ≤ r1 < r2 · · · < rn ≤ s < t, and {ϕ†
j; j = 1, 2 . . . n} ⊂
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C(Ī), then

E†

[

{

f(X†
t )− f(X†

s)−
∫ t

s

(L †f)(X†
u)du

} n
∏

j=1

ϕ†
j(X

†
rj
)

]

= 0.

The proof of this result is given in Namachchivaya and Sowers [2001].

Remark 2.3.7. Now we interpret the results. We show that the limiting

process (as ǫ̃ tends to zero) is simply a Markov process on G (a graph) with

the generator L
†
G whose domain D

†
G consists of all functions f that are con-

tinuous on G such that:

1. f is twice differentiable in
⋃N

i=1 Ii, the interior of G,

2.

lim
h→H(ci)

|(Lifi)(h)| <∞ ∀i

3. the process is killed when the energy reaches H∗.

4. the gluing condition is satisfied. This condition has the following inter-

pretation. Define

α ≡
n
∑

i=1

σ̊2
i (O).

If the limiting process starts in leg I1, it evolves according to (L †
Gf1)(h)

for h ∈ I1. Upon reaching the vertex O, it flips an n-sided die to decide

where to go next. It will go back to leg 1 with likelihood σ2
1(O)/α, to leg

2 with likelihood σ2
2(O)/α, and to leg n with likelihood σ2

n(O)/α. Once

in any of these legs, it will evolve according to (L †
Gfi)(h) with σ1 and

b1 replaced by the appropriate σi and bi. When it hits the vertex again,

the die-throwing procedure is repeated.

2.3.2 Averaged Results

In this section, we give the averaged result for the weakly noisy, periodically

driven under-damped Duffing equation with symmetric single potential well

in (2.1), i.e., U(q) = q2/2 + q4/4 with constant damping G(qǫt , q̇t
ǫ) = ζ . The
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generator L and its symbol 〈·, ·〉 in Definition 2.3.1 are obtained by

(LH)(h, γ, t) =
1

2
gI0

2
(Im:n,Ω(Im:n)t + γ/m)

∂2H

∂h2
(h, γ)

+ f I
1 (I

m:n,Ω(Im:n)t+ γ/m, t)h
∂H

∂h
(h, γ)

+m

(

1

2

∂2Ω

∂I2
(Im:n)h2 + fφ

0 (I
m:n,Ω(Im:n)t+ γ/m, t)

)

∂H

∂γ
(h, γ),

〈dH, dH〉(h, γ, t) = gI0
2
(Im:n,Ω(Im:n)t+ γ/m)

(

∂H

∂h
(h, γ)

)2

,

with H as given in (2.13). The second order term which is created by the

averaging of leading order is given in the form

(b1,∇K)(h, γ, t) = −mΩ′(Im:n)
∂H

∂γ
(h, γ)u1

where

u1 =

∫ t

0

[f I
0 −M(f I

0 )]ds.

First, the unperturbed averaged Hamiltonian system (2.12) for m = n =

1 (i.e., primary resonance) has three fixed points: a center, b1, and two

saddles, O1,O2 along the x2 (= γ)-axis. Here the reduced state space is

G =
⋃2

i=1 Ii

⋃

b1
⋃2

i=0[Oi], where

I1 ≡ ∪x=(x1,x2)∈S̄
H(x)<O1

x 6=b1

[x], I2 ≡ ∪ x=(x1,x2)∈S̄
O1<H(x)<O2

[x], I3 ≡ ∪x=(x1,x2)∈S̄
H(x)>O2

[x].

See Figure 2.4(a). Secondly, the Hamiltonian system (2.12) for m = 3, n = 1

(i.e., sub-harmonic resonance) has seven fixed points: three centers, b1,2,3, and

four saddles, O1,2,3,4 along the x2-axis. Here the reduced state space is, as
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Figure 2.3: Phase portrait

Figure 2.4: Reduced space G
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illustrated in Figure 2.4(b), G =
⋃7

i=1 Ii

⋃3
i=1 bi

⋃4
i=1[Oi], where

I1 ≡ ∪x=(x1,x2)∈S̄
H(x)<O1

x 6=b1

[x], I2 ≡ ∪ x=(x1,x2)∈S̄
O1<H(x)<O2

x2<{x2:x=O2}

[x], I3 ≡ ∪ x=(x1,x2)∈S̄
H(x)<O2

x 6=b2
x2>{x2:x=O4}

[x]

I4 ≡ ∪ x=(x1,x2)∈S̄
O2<H(x)<O3

x2<{x2:x=O3}

[x], I5 ≡ ∪ x=(x1,x2)∈S̄
H(x)<O2

x 6=b3
x2>{x2:x=O3}

[x], I6 ≡ ∪ x=(x1,x2)∈S̄
O3<H(x)<O4

[x]

I7 ≡ ∪x=(x1,x2)∈S̄
H(x)>O4

[x]

It should be noted that the Hamiltonian system is 2mπ periodic in the angle

variable x2. Namely, the potential for the primary resonance (1:1) contains

a single well while the potential for the sub-harmonics (3:1) contains three

wells. Besides, except for the orbits inside the closed homoclinic orbits, the

remnant of orbits have open trajectories, i.e., their periods become infinite.

Henceforth, we can no longer carry out the averaging in the path integrals,

namely, the integration with respect to the Hausdorff measure in Defini-

tion 2.3.5. The time averaged drift and diffusion coefficients on each leg Ii
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are calculated as

M(LH − (b1,∇K)) =
2mΩ′(Im:n)µ2

1 [(1− k2)K(k) + (2k2 − 1)E(k)]

3πnΩ(Im:n)(1− 2k2)3/2

−mΩ′(Im:n)ζh2
[

(1− 2k2)2E2(k)− 2(1− 3k2 + 2k4)E(k)K(k)+

(1− 5k2 + 4k4)K2(k)
]

/
[

3k2(k2 − 1)K2(k)
]

+mΩ′(Im:n)µ0(1− 2k2)2π ω sech2Ah2 sin γ×
[

−2 coshAK(k)
{

(1− 2k2)E(k) + (k2 − 1)K(k)
}

+

sinhA(2k2 − 1)mπ
{

E(1− k2)K(k) + (E(k)−K(k))K(1− k2)
}]

/
[

4
√
2k2

√
1− 2k2(k2 − 1)K3(k)

]

+
m

4π
(ζJ1 − µ0J2Ω

′′

(Im:n)h2 sin γ) +
m

2π
(ζJ1 − µ0J2 sin γ)ζE1

+
(ζJ1 − µ0J2 sin γ)

2π
µ0(1− 2k2)2πω sech2A cos γ×

[

−2 coshAK(k)
{

(1− 2k2)E(k) + (k2 − 1)K(k)
}

+

sinhA(2k2 − 1)mπ
{

E(1− k2)K(k) + (E(k)−K(k))K(1− k2)
}]

/
[

4
√
2 k2

√
1− 2k2(k2 − 1)K3(k)

]

+
m

2π
Ω′(Im:n)(ζJ1 − µ0J2 sin γ)E2,

M(〈dH, dH〉) = 4m2Ω′2(Im:n)µ2
1h

2 [(1− k2)K(k) + (2k2 − 1)E(k)]

3πnΩ(Im:n)(1− 2k2)3/2

where

A =
mπK(1− k2)

2K(k)
, E1 =

ω

2πm

∫ 2πm/ω

0

∂x

∂I
y dt

∣

∣

∣

∣

∣

I=Im:n

,

E2 =
ω

2πm

∫ 2πm/ω

0

u1ds.

Here the modulus k is determined by the resonant orbit Im:n and the detailed

calculation of time averaging above are available in Choi [2003, Appendix F].

2.4 Stationary Probability Density

In this section, we examine the stationary probability density of random

motions in the resonance zone. The stationary probability density is obtained
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Figure 2.5: Drift coefficient, b̊, as a function of the Hamiltonian, H .
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Figure 2.6: Diffusion coefficient, σ̊, as a function of the Hamiltonian, H .
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by solving the Fokker–Planck equation, namely,

L
adj
i pi(z) = − 1

Ti
J ′
i(zi) = 0, z ∈ Ii, (2.18)

where the probability current which is constant in each leg Ii is defined

Ji(z) ≡ b̊i(z)pi(z)−
1

2

(

σ̊2
i (z)pi(z)

)′
, z ∈ Ii,

where the definitions of b̊ and σ̊ follow Equations (2.16) and (2.17), but the

A averaging operator is applied without division by the period.

The limiting domain for our case is

D
adj = {p ∈ C(G) ∩ C2(∪N

i=1Ii) : lim
h→hs

(L adj
i pi)(h) exists ∀i,

∑

(±)Ji(hs) = 0, and Ji(ci) = 0},

At each of the centers, the so called entrance boundary is prescribed because

the drift coefficient at the centers is positive whereas the diffusion coefficient

is equal to zero. Physically speaking, an entrance boundary (or reflecting

boundary) cannot be reached from the interior of the state space because the

positive sign of the drift pushes towards the inside. Thus, there is zero net

flow of probability across the boundary, which implies that the probability

current (or flux) in each leg Ii which contains a center becomes identically

zero. The reader is referred to Karlin and Taylor [1981] for a detailed dis-

cussion regarding the classification of boundaries. Further, the conservation

of probability flux at the interior vertices is imposed

The solution of (2.18) for the energy level sets is obtained as

pi(h) =
1

σ̊2
i (h)

exp

{

2

∫ h

hc

i

b̊i(η)

σ̊2
i (η)

dη

}

×
[

Ci

∫ h

hc

i

exp

{

−2

∫ η

hc

i

b̊i(ξ)

σ̊2
i (ξ)

dξ

}

dη +Di

]

.

We need to determine unknown constants Ci and Di from the prescribed

conditions. First, Ci’s become identically zero due to the fact of zero proba-

bility current condition in the legs Ii’s which include the centers in Fig. 2.4.

On the other hand, we have the same constant probability current in the rest
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of legs due to the conservation of probability current at the interior vertices.

We specify the conditions necessary to solve the unknown constants for the

primary and sub-harmonic resonance, respectively. For the primary reso-

nance (1 : 1) we encounter 3 unknown constants, i.e., D1, C2, D2. Then in

order to determine them, we apply one continuity and one periodic boundary

condition at the saddles

p1(O1) = p2(O1) = p2(O2)

normalization. For the sub-harmonic resonance case (3 : 1), we have 9

unknowns, i.e., D1, C2, D2, D3, C4, D4, D5, C6, D6. Thus, in order

to determine them completely, we need nine conditions. Firstly, we apply

five continuity conditions and one periodic boundary condition at the saddle

points

p1(O1) = p2(O1) = p6(O4)

p2(O2) = p3(O2) = p4(O2)

p4(O3) = p5(O3) = p6(O3).

Secondly, we have the conserved probability current at each of saddle points

which leads to

C2 = C4 = C6,

and the normalization,
N
∑

i=1

∫

z∈Ii

pi(z) dz = 1

completes the determination of the constants.

Graphical results are given in Figures 2.7 and 2.8. For the primary reso-

nance case, we have set the driving frequency ω = 2, the damping coefficient

ζ = 1, the amplitude of the periodic force µ0 = (Rm + 5)ζ , and the ratio

Rm(ω) = 3.97. The corresponding resonant orbit which is determined by the

resonance condition becomes I1:1 = 0.6345 in terms of the elliptic modulus.

In a similar manner, for the sub-harmonic resonance case, we carried out the

numerical analysis with the following values: ω = 4, ζ = 1, µ0 = (Rm+20)ζ ,

Rm(ω) = 23.8, and I3:1 = 0.5068 (graphical results are omitted.)
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Figure 2.7: Stationary probability density at 1 : 1 resonance
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Figure 2.8: Stationary probability density at 1 : 1 resonance
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2.5 Validation With Sample Path Method

To validate the solutions to the Fokker–Planck equation shown in Figures 2.7

and 2.8, a numerical procedure inspired by the heterogeneous multi-scale

methods for stochastic differential equations [E et al., 2005] is developed.

Instead of solving the FPE, the underlying stochastic differential equations

are solved directly.

The stochastic differential equation to be solved is

dz = b̊(z)dt + σ̊(z)dWt, (2.19)

with b̊ and σ̊ defined by Equations (2.16) and (2.17). Our numerical val-

idation is used is a multiscale method in the sense that A-averaging is

performed numerically with time-averaging and the stochastic differential

equation above is solved on a longer timescale. At each time-step of the

“macroscopic” SDE, microscopic A-based time averaging is performed.

First, the period of Hamiltonian orbits over which A averaging occurs

must be determined. We do this using numerical integration and in that

procedure, polar coordinates are used with the arc length being parametrized

by the angle variable, θ.

Rewriting the Hamiltonian given in Equation (2.13) as

H = a1h
2 + a2γ + a3 cos(γ)

where

a1 =
m

2

∂Ω

∂I
(Im:n), a2 =

ζ

2π
J1, a3 =

µ0

2π
J2.

The orbits are translated by yc so their center is at the origin:

ỹ = y − yc,

and polar coordinates are introduced

x = r cos θ, ỹ = r sin θ.
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Thus Equation (2.13) becomes

H = a1(r cos θ)
2 + a2(r sin θ + yc) + a3 cos(r sin θ + yc). (2.20)

The arc length formula is

∫ θ2

θ1

√

(

dr

dθ

)2

+ r2dθ

Using Equation (2.20), r(θ) is found numerically (in Octave, the function

fsolve is used) and to find dr/dθ one uses

dr

dθ
=
∂f/∂θ

∂f/∂r
,

where

∂f/∂θ = −2a1r
2 cos θ sin θ + a2r cos θ − a3 sin(r sin θ + yc)r cos θ,

∂f/∂r = 2a1r cos
2 θ + a2 sin θ − a3 sin(r sin θ + yc) sin θ.

The period is found by numerical quadrature (in Octave, the function quad

is used.) Thus

T = 2

∫ π

0

√

(

dr

dθ

)2

+ r2dθ.

Equation (2.19) is solved numerically using the Euler-Maruyama first

order scheme [Kloeden and Platen, 1999]

zn+1 = zn + bn∆t + σnΞn+1

√
∆t,

where Ξn are normally distributed random numbers with mean zero and vari-

ance one. Illustrative results obtained with the drift and diffusion coefficients

in Figures 2.5 and 2.6 are shown in Figure 2.9.

2.6 Conclusions

An averaging approach has been developed to explore the near resonant

motion of a noisy, strongly nonlinear periodically forced system. We first
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rewrote the perturbed Hamiltonian system with strong nonlinearity in ac-

tion space by means of a canonical transformation. We introduced local

coordinates adjacent to the resonance surface and performed the appropriate

rescaling which allows us to see the correct asymptotics. After stochastic

averaging, the resulting reduced model became a graph valued process under

capture into resonance. Since we addressed a separation of time scales, such

a methodology enabled us to diminish the dimension of the original model.

The reduced process converged in probability to a Markov process as ǫ̃→ 0.

The associated limiting generator has furnished statistical quantities such

as the probability density function. The effects of noisy perturbations were

investigated through such a statistical description.

Some investigators, including Soskin [1989, 1992], have shown there is

no dramatic stochastic resonance phenomenon in a system whose oscillation

frequency is a monotonically increasing function of energy (see Fig. 2.2(a).)

In systems with asymmetric single-well potentials with a non-monotonic fre-

quency variation (see Fig. 2.2(b)), however, dramatic stochastic resonance

has been shown to emerge at optimal noise. Thus, in view of our analysis,

we conjecture that the existence of P-bifurcations in asymmetric systems

may be connected to stochastic resonance.

44



CHAPTER 3

Surface Gravity Waves

3.1 Introduction

Surface waves form at the free surface of a liquid. For additional clarity, they

are sometimes called surface gravity waves. This emphasizes that gravity

(and not, for example, surface tension) is the dominant restoring force.

Surface waves have captured the interest of many scientists. Michael

Faraday was among them and he was sufficiently successful to have a problem

in surface wave motion named after him. In 1831, Faraday reported to the

Royal Society [Faraday, 1831] on experiments he did in which a thin layer

of water was placed on a vibrating membrane. Faraday established that the

standing waves that form on the plate have an oscillation frequency equal to

one-half the vertical forcing frequency used to produce them. It is due to this

discovery that nowadays, many investigations in wave excitation are known

under the rubric of the ‘Faraday problem.’

In certain applications, for example in experiments carried out on space-

craft where ‘g-jitter’ is hard to eliminate [Walter, 1987], there is a need to

describe the surface gravity wave patterns that form under the influence of

‘noisy’ forcing. Thus, in the present development we focus on stochastic

forcing. Specifically, we examine the long-term evolution of a horizontally

excited Faraday system when two wave-modes are near 1:1 resonance and

show that in this case, rather than studying the fast timescale evolution of

two individual wave modes (i.e. a four-dimensional system), one can focus

on the long timescale evolution of two conserved quantities (the Hamiltonian

and the angular momentum.)
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3.2 Surface-Gravity Wave Model

3.2.1 Governing Equations

Although our ultimate goal is to study surface wave patterns, we begin by

considering the ‘internal’ motion of the fluid at whose surface these wave

patterns form. For an incompressible fluid whose velocity is described by the

vector u, the Boussinesq approximation [Kundu, 1990] holds and conserva-

tion of mass is expressed by the continuity equation

∇ · u = 0 (3.1)

For a fluid particle with density ρ, pressure p and viscosity ν (and with

gravity represented by the vector g), conservation of momentum is expressed

by the equation

ρ

[

∂u

∂t
+ (u · ∇)u

]

= −∇p + ρg + ν∇2u. (3.2)

This equation is known by many as the Navier-Stokes equation. We are

working towards a Hamiltonian formulation, therefore we assume the fluid is

inviscid and the Navier-Stokes equation simplifies to the Euler equation

ρ

[

∂u

∂t
+ (u · ∇)u

]

= −∇p+ ρg. (3.3)

Note, however, that we will reintroduce viscous effects (in §3.2.3) in the form

of linear damping.

Next, the fluid motion is assumed irrotational: ∇×u = 0. This assump-

tion can either be introduced ad-hoc, or it can be inferred from Kelvin’s

circulation theorem. The latter states that for inviscid fluids, rotational mo-

tion is conserved. Therefore, if we take the initial state of the fluid to be

irrotational, it will remain irrotational forever after. Irrotational fluid mo-

tions can be described by a velocity potential u = ∇φ. The conservation of

momentum equation becomes

∂φ

∂t
+

1

2
|u|2 + p

ρ
+ gz = 0. (3.4)
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In the above, it has been assumed gravity acts along the vertical direction,

therefore |g| = g.

In order to relate the motion of the surface waves to the internal motion

of the fluid, boundary conditions are needed. First, there is the kinematic

boundary condition. As explained in Whitham [1974], derivation of this

boundary condition, the kinematic boundary condition is based on the sur-

face of the fluid being defined by the property that no fluid crosses it. This

surface has height

z = η(x1, x2, t) (3.5)

(x1 and x2 refer to the coordinates of the horizontal plane, in actual cal-

culations we use cylindrical coordinates, thus x1 = r and x2 = θ) and the

kinematic boundary condition is given by

∂η

∂t
+∇η · u = uz at z = η (3.6)

In the above, we have made use of the notation u = (ux1
, ux2

, uz).

In our treatment, we take the fluid to be confined to a cylindrical tank

of radius a and depth d (at rest the fluid is contained between z = −d and

z = 0.) This leads to boundary conditions at the lateral and bottom walls

of the tank that state that there is no flow across these walls

ur = 0 at r = a

uz = 0 at z = −d

An essential contribution made by Miles [1976] is to show that the conser-

vation of mass equation, the kinematic boundary condition and the boundary

conditions at the lateral and bottom walls can be obtained from a variational

formulation. Specifically, the first variation of the integral

SI(φ) =

∫ 2π

θ=0

∫ a

r=0

∫ η(r,θ,t)

z=−d

1

2
|∇φ|2dz dS −

∫ 2π

θ=0

∫ a

r=0

φ|z=η
∂η

∂t
dS (3.7)

must vanish (S = πr2 is the cross-sectional area of the basin). Miles’s deriva-

tion was based on work by Serrin [1959]. Note that Miles’s derivation is

different from the oft-cited variational in Luke [1967] since the latter also

recovers the dynamic boundary condition. Note furthermore that a similar
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variational analysis was obtained earlier by Zakharov [1968].

First, separation of variables is used to write

η(x1, x2, t) = qn(t)ψn(x1, x2),

φ(x1, x2, z, t) = φn(t)χn(x1, x2, z).

The relationship between ψn and χn is found from the conservation of mass

equation, the boundary condition at the container’s walls and a linearization

of the kinematic boundary condition

∂η

∂t
=
∂φ

∂z
at z = 0. (3.8)

The relation between φn(t) and qn(t) is found using the variational formula-

tion. Details are given in Miles [1976, §2].

3.2.2 The Hamiltonian of Surface-Gravity Waves

Stochastic averaging may be seen as a procedure used to reduce the number of

dimensions of a system. The lower-dimensional system’s long-term evolution

is given in terms of quantities that are constants of motion of the original

(higher dimension) system over short timespan. This motivates our interest

in determining the Hamiltonian for the surface-gravity wave system. First,

we write expressions for the kinetic and potential energies. These give the

Lagrangian from which the Hamiltonian follows.

The kinetic energy is

T =
1

2

∫

|∇φ|2dSdz

=
ρS

2
amnq̇mq̇n.

The second form of T makes use of the results in Miles [1976], where it is

shown that

amn = δmnam + almnql +
1

2
ajlmnqjql +O(q2) (3.9)

The quantities almn and ajlmn are constants. The potential energy of the
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free-surface, displaced from its equilibrium position, is

V = ρ

∫

dS

∫ η

z=0

|g|zdz (3.10)

=
ρS

2
gqnqn.

The Lagrangian, which for convenience we normalize by ρS, is

L =
1

ρS
(T − V )

=
1

2
(amnq̇mq̇n − gqnqn).

and the Hamiltonian is

H =
1

2
(hmn(q)pmpn + gqnqn). (3.11)

Note that this Hamiltonian contains quadratic terms, but also higher order

terms since the coefficient hmn depends on qn

hmn = δmn
ω2
m

g
+ hlmnql +

1

2
hjlmnqjql +O(q3). (3.12)

The equations for hlmn and hjlmn are given in Miles [1976] and reproduced

in Appendix A.1

3.2.3 Damping and Forcing Effects

We are interested in the effects of stochastic forcing. To balance forcing

effects, damping is necessary. Physically, damping stems from the viscosity

of the fluid, but for simplicity we introduce damping ad-hoc. We use linear

damping coefficients, αk to supplement the momentum equation.

To account for forcing effects, we follow the method presented in Miles

[1976]. Terms are added to the potential energy given in Equation (3.10),

thus

V = ρ

∫

dS

∫ η

z=0

[

ξ̇x1
x1 + ξ̇x2

x2 + (g + ξ̇z)z
]

dz

= ρS
(

−Qnqn +
1

2
(g + ξ̇z)qnqn

)

.

(3.13)
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In the above ξx1
and ξx2

specify the imposed horizontal velocities of the tank

while ξz is the vertical velocity and

Qn = −ξ̇x1
x1n − ξ̇x2

x2n (3.14)

x1n ≡ S−1

∫

x1ψndS (3.15)

x2n ≡ S−1

∫

x2ψndS (3.16)

With forcing and damping, the equations governing the motion of the surface-

gravity waves are, for t ≥ 0,

q̇k =
∂H

∂pk
(3.17)

ṗk = −∂H
∂qk

+ αkpk + ξ̇zq1 + ξ̇x1
x1k + ξ̇x2

x2k (3.18)

3.3 Stochastic Analysis

In this section, we analyze the equations of motion presented in the previous

section under the influence of stochastic forcing. Specifically, we concentrate

on the motion of two wave modes near resonance.

3.3.1 Integrals of Motion

In order to study the effects of small amplitude noise over long time scales,

we introduce a small scaling parameter ǫ (0 < ǫ ≪ 1.) First, we rescale the

canonical variables by
√
ǫ

q =
√
ǫq̃ p =

√
ǫp̃.

Concentrating our analysis on the two wave modes (near resonance), we use

the canonical transformation

q̃1,2 = x1,2 cosω1,2t +
ω1,2

g
y1,2 sinω1,2t

p̃1,2 = − g
ω1,2

x1,2 sinω1,2t+ y1,2 cosω1,2t
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This transformation eliminates terms of order ǫ in the Hamiltonian. The

lowest order terms of the Hamiltonian are now of order ǫ3/2. Terms of that

order are eliminated by setting the two wave modes near resonance with

one another, so that ω1,2 = ω + ǫσ1,2. This imposition and the time aver-

aging operator from Definition 1.2.1 eliminate terms of order ǫ3/2 from the

Hamiltonian. Thus the dynamics of the system acquire the form

ẋǫ
t = ǫb1(xǫ

t, t) + ǫ2b2(xǫ
t, t) + ǫg(xǫ

t, t) (3.19)

Equation (3.19) is helpful in showing the three timescales present in this

problem. Owing to their small amplitude (i.e. ǫ2), the effects of noise and

damping have an influence only over long times, of order 1/ǫ2. The Hamil-

tonian dynamics, associated with the components of b1 are of order ǫ, thus

they fluctuate over a faster timescale, of order 1/ǫ. Finally, the fastest fluc-

tuations occur due periodicity of some of the coefficients that constitute b1.

The coefficients fluctuate over a period ω/2π, which is of order 1.

We rescale time such that leading order dynamics become of order 1. If

x̃ǫ
t ≡ xǫ

t/ǫ. Equation (3.19) becomes

˙̃xǫ
t = b1(x̃ǫ

t, t/ǫ) + ǫb2(x̃ǫ
t, t/ǫ) + g(x̃ǫ

t, t/ǫ)

With the equation in this form, we are able to apply a result from Khasminskii

[1966]. This result tells us that as ǫ→ 0, x̃ǫ
t converges in probability to

ẋt = M[b1(xt, t/ǫ)] = ∇̄M[H(xt)] = ∇̄K(xt), t ≥ 0

x0 = x ∈ R4

The averaged Hamiltonian, K, is our first integral of motion.

K =
1

192g3ω

[

3k2K1(y
2
1 + y22)

2ω5+3g4(32(σ1x
2
1 + σ2x

2
2) + k2K1ω(x

2
1+ x22)

2)

+ 2g2ω2{48(σ1y21 + σ2y
2
2) + k2(32K−1(x2y1 − x1y2)

2 +K1[(3x
2
1 + x22)y

2
1

+ 4x1x2y1y2 + (x21 + 3x22)y
2
2])ω}

]

The second integral of motion will be denoted by I and represents angular

momentum.

I =
1

2gω

[

g2(x21 + x22) + ω2(y21 + y22)
]

. (3.20)
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3.3.2 Structure of the Unperturbed System

As stated in the previous section, the surface wave system in 1:1 resonance has

two constants of motion, K and I. We now introduce a canonical transforma-

tion that takes advantage of this fact by making the angular momentum one

of the canonical variables. The canonical transformation from (x1, y1, x2, y2)

to (X, Y, θ, I) is given by

x1 =

√

ω
g
(X2 + Y 2)

Y
√

1 + X2

Y 2

(Y cos θ −X sin θ)

y1 = −
√

g
ω
(X2 + Y 2)

Y
√

1 + X2

Y 2

(X cos θ + Y sin θ)

x2 =

√

ω

g
(2I −X2 − Y 2) cos θ

y2 = −
√

g

ω
(2I −X2 − Y 2) sin θ.

Introducing the variables

α ≡ k2ω2

24g
(K1 − 16K−1) β ≡ 3k2ω2

24g
K1

the averaged Hamiltonian is

K =
α

2
(X2 + Y 2 − 2I)X2 +

β

2
I2 +

σ1 − σ2
2

(X2 + Y 2) + σ2I (3.21)

and the equations of motion are

Ẋt = (αX2
t + σ1 − σ2)Yt

Ẏt = [α(2It − 2X2
t − Y 2

t )− σ1 + σ2]Xt

İt = 0

θ̇t = βIt − αX2
t + σ2

(3.22)

This canonical transformation decouples the equations for Xt and Yt from

those for θt, and, consistent with the results of §3.3.1, It is a constant (effec-

tively a parameter) since İt = 0. I acts as a bifurcation parameter. Defining
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Figure 3.1: K − I domain

the critical value

Ic =
σ1 − σ2

2α
, (3.23)

when I < Ic phase portraits in the X, Y plane have a single elliptic fixed

point at the origin. For I > Ic, the fixed point at the origin becomes a saddle

point and two fixed points on the X axis appear. The coordinates of these

fixed points are

X = ±
√

I +
σ2 − σ1

2α
Y = 0 (3.24)

The stochastic diffusion process that we will study is described in terms

of the variables K and I. The K − I domain is shown in figure 3.1. In that

figure, I ranges from 0 to 0.5, but the upper limit can be made arbitrarily

large. The range of K is not arbitrary. The maximum value, Ke occurs

at the elliptic fixed points. There is also a minimum value, K2I , since the

canonical transformation introduces the restriction X2+Y 2 ≤ 2I. Note that

the domain between Ks and Ke exits for both elliptic fixed points, thus,

the entire K − I domain may be described as a three-leaved open-book, a

nomenclature used in Freidlin and Wentzell [2004], or an arrowhead.
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Note that second order averaging terms have not been included because

they may change our results quantitatively but not qualitatively. The small

increase in the accuracy of our results is unlikely to be worth the extra effort

due to significantly more complex algebraic manipulations.

3.3.3 Calculation of the Drift and Diffusion Coefficients

The drift vector, b, and diffusion matrix, a, are defined by equations (1.7)

and (1.8). Up to and including the M averaging operator, calculations are

carried out analytically. The final operation, A averaging is performed nu-

merically.

The expectation operator used in Equations (1.7) and (1.8) leads to the

introduction of correlation functions. For example

E[ξ̇x1
(t)ξ̇x2

(t+ τ)] = RH1H2
(τ). (3.25)

Furthermore, Fourier transforms are used, for example

∫ 0

−∞

RH1H2
cos(ωτ)dτ =

√

π

2
Fc(ω). (3.26)

Applying these two simplifications and setting ξz = ξx2
= 0, we obtain

formulas for M(F 2
i + gi) and M(σσT )jk in terms of X, Y and I. These

formulas are given in Appendix A.2.

The final step is A-averaging. In Definition 1.2.2, this was presented as a

time-averaging operation, but an equivalent definition can be given in terms

of two-dimensional line integrals. For this, denote the l2 norm by ‖·‖. Making

use of the relationship between distance, velocity and time, the period of a

Hamiltonian orbit, S, is then given by

T (y) =

∫

S

‖∇̄K(x(s))‖−1ds.

Using spatial integration the Aave-averaging operator in Definition 1.2.2 can

be rewritten

(Aϕ)(y) =
1

T (y)

∫

S

ϕ(x(s))‖∇̄K(x(s))‖−1ds.
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To make computations straightforward, Cartesian coordinates are pa-

rametrized by an angle variable, thus transforming 2-D line integrals into

one dimensional integrals. This is helpful because it allows the use of stan-

dard one-dimensional numerical integrators to perform A-averaging. This

parametrization by θ is separated into two cases:

1. Orbits for which I < Ic or K2I < K < Ks. These orbits are centred at

the origin, as illustrated in figure 3.2.

2. Orbits for which Ks < K < Ke. These orbits are centred at either the

positive or negative elliptic fixed point, as illustrated in figure 3.3.

Expressing the integrands by g(X, Y ) and denoting the coordinate of

the centre fixed point by (xc, 0), transformation to polar coordinates and

parametrization by θ gives

∫

s

g(X, Y )dS =

∫ 2π

0

g(r(θ) cos θ + xc, r(θ) sin θ)

√

(

dr

dθ

)2

+ (r(θ))2dθ.

(3.27)

(For case 1, xc = 0.)

To apply (3.27), r(θ) is calculated with a numerical root solver by trans-

forming equation (3.21) to polar coordinates.

The procedure described above holds in the K − I domain wherever the

period is not infinite. The period is infinite along the edges Ks and Ke.

Along the edge Ks the diffusion coefficients have a finite value whereas the

drift coefficients do not, but only the former need to be evaluated to impose

the conservation of probability flux condition. Along the edge Ke, the drift

and diffusion coefficients are found by linearization about the coordinates of

the elliptic fixed points. Sample representations of the drift and diffusion

coefficients are shown in figure 3.4.

3.4 Conclusions

In this chapter, it has been demonstrated that surface wave motion can be

analyzed using stochastic averaging techniques. To achieve this a Hamilto-

nian model of surface wave motion was used to transform a set of governing

partial differential equations into an infinite system of ordinary differential
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equations. Stochastic effects were then added to the model. Resonance was

introduced and the geometry of the reduced graph of the stochastic process

was established. Finally the averaged drift and diffusion coefficients were

calculated throughout the domain. To do so, numerical algorithms were de-

vised and special care was given to the boundaries of the reduced graph where

singularities can manifest themselves.

With the drift and diffusion coefficients determined, a two-dimensional

reduced Markov process has been characterized in the weak sense. In Chapter

5, our analysis continues. We will determine stationary probability density

distributions associated with the generator of the surface waves problem.
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CHAPTER 4

Autoparametric Oscillator

4.1 Introduction

We investigate the random vibrations of a nonlinear stochastically-forced

system of the form

q̈1(t) + ζ1q̇1(t) + f1(q1(t), q2(t)) = ξ(t)

q̈2(t) + ζ2q̇2(t) + f2(q1(t), q2(t)) = 0
t ≥ 0 (4.1)

where for each time t > 0, (q1(t), q2(t)) represents the generalized coordinates

of the system, the constants ζ1 and ζ2 are damping coefficients, and ξ is

a stationary random process. While only the first mode q1 is forced, the

nonlinear coupling can transfer energy to the second mode q2. Often, systems

such as (4.1) are known as autoparametric systems (one may think of q1 as a

parameter in the dynamics of q2). Our focus here is when the dynamics of q1

and q2 are that of coupled and damped oscillators, and we are then interested

in questions of stability of the stochastic system (4.1), and in particular we

are interested in the transfer of energy from the forced mode to the unforced

mode.

Periodically excited autoparametric systems have been studied exten-

sively; see for example Sethna [1965], Haxton and Barr [1972], Nayfeh and

Mook [1979], Hatwal et al. [1983], Bajaj et al. [1996] and Tien et al. [1994].

The most interesting situations occur when the natural frequencies of the

excited mode and the unexcited mode are in 2:1 resonance. If the excitation

is periodic and the energy of the forced oscillator is increased, it reaches a

certain value of amplitude at which saturation takes place for the oscillator

and the energy is transferred to the unforced second mode. This may be

undesirable, because disturbances affecting one mode may cause unwanted

instability in another mode. Our effort (which is not considered by any of
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the above works) is to study energy transfer in the presence of noisy input.

A natural question is whether such saturation and transfer of energy take

place in the presence of stationary random excitations (as opposed to de-

terministic periodic excitations). Although various papers have dealt with

some aspects of this question, non have given completely satisfactory an-

swers. This is primarily due to the complex interactions between, noise,

nonlinearities and resonances. Our approach is to study these interactions

via a novel dimensional-reduction approach. The analysis hinges upon some

recent abstract theories of stochastic dimensional reduction. We then use this

reduced model to calculate some essential design-related statistical measures

of response and stability (e.g., mean exit times and stationary measures).

The important assumption in our analysis is that the dissipation and

random perturbations are small. Of course this means that their effect will

be visible only over a long time horizon. However, since the noise is small,

the dynamics of the unperturbed system gives some structure to our analysis

and organizing the effects of the random perturbation. In particular, the

dynamics of the unperturbed system identify a reduced phase space (the

orbit space) on which to carry out stochastic averaging. While the classical

theory of stochastic averaging is a natural framework for such a program, the

equations of interest contain resonances and bifurcations, which precludes a

simple application of classical techniques. In particular, the resonance gives

rise to an intermediate scale, and the bifurcations give rise to some non-

standard singularities in the orbit space. See Freidlin and Wentzell [1994],

Freidlin and Weber [1998], Namachchivaya et al. [2001] and Sowers [2002] for

some related investigations.

4.2 Physical Model

The equations of motion (4.1) considered can model the dynamics of a num-

ber of structural and mechanical systems, namely a randomly excited and

initially deformed shallow arch, a suspended elastic cable driven by planar

excitation, or a water vessel subject to longitudinal wave action. To keep

things as simple as possible, we shall consider a very simple system, namely

a type of autoparametric vibration absorber with randomly excited base (see

[Hatwal et al., 1983]). Namely, we shall consider a mass attached by a spring
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to a pendulum, as illustrated in Figure 4.1. For clarity, we use mass to refer

to the object at the free end of the spring, while the object at the end of

the pendulum is referred to as the bob. The quantity ϕ is the angle of the

pendulum (with respect to the vertical axis) and the quantity y represents

the height of the mass (relative to a rest position defined by the position

of the pendulum). The mass is forced according to a stochastic signal Ξ(t).

The subscripts here refer to the fact that this is our original physical model.

The equations for such a system can be written as

(mo +mp)ÿ + doẏ + ky +mpl(ϕ̈ sinϕ+ ϕ̇2 cosϕ) = Ξ

mpl
2ϕ̈+ dpϕ̇+mpl(g + ÿ) sinϕ = 0

(4.2)

where mo, do and k are the mass, damping and the spring constant of the

spring-mass system and mp , dp and l are the mass, damping and the length

of the pendulum. The kinetic and the potential energies of the conserved

system are given by

T ≡ 1

2
(mo +mp)ẏ

2 +
1

2
mp l

2ϕ̇2 +mp lẏ ϕ̇ sinϕ

U ≡ mp gl(1− cosϕ) +
1

2
ky2

It is clear that the nonlinearities in the equations of motion arise due to the

gravitational restoring force and due to the dependence of kinetic energy on

the angle ϕ which leads to inertial coupling between the the two coordinates.

It also turns out (we shall use this later) that in the absence of noise and

damping, this system is Hamiltonian, so the dynamics of y and ϕ are governed

by the geometry of this Hamiltonian.

In order to non dimensionalize the equations in system (4.2), a change of

variables is introduced:

t = τ/ω0, y(t) = lη̂(τ), ϕ(t) = θ̂(τ), Ξ(t) = klξ̂(τ).

ωo is defined by

ω2
o =

k

mo +mp
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Figure 4.1: Schematic of the autoparametric system governed by
equations (4.2). The letter “o” denotes the mass and “p” denotes the
pendulum.
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Then

dy(t)

dt
= l

dη̂(τ)

dτ

dτ

dt

= lωo
dη̂(τ)

dτ

d2y(t)

dt2
= lω2

o

d2η̂(τ)

dτ 2

dϕ(t)

dt
= ωo

dθ̂(τ)

dτ

d2ϕ(t)

dt2
= ω2

o

d2θ̂(τ)

dτ 2

Substituting into the equation for y in (4.2) gives

¨̂η +
do√

k
√
mo +mp

˙̂η + η̂ +
mp

mo +mp
(
¨̂
θ sin θ̂ +

˙̂
θ
2

cos θ̂) = ξ̂

Two dimensionless quantities follow naturally:

ζ̂o =
do

2
√
k
√
mo +mp

R =
mp

mo +mp

The equation for ¨̂η becomes

¨̂η + 2ζ̂o ˙̂η + η̂ +R(
¨̂
θ sin θ̂ +

˙̂
θ
2

cos θ̂) = ξ̂

The equation for ϕ when non dimensionalized becomes

mpl
2ω2

o
¨̂
θ + dpωo

˙̂
θ +mpl

2ω2
0(

g

lω2
o

+ ¨̂η) sin θ̂ = 0.

Substituting for ωo, ω
2 = g/l and q = ω/ωo gives

R
¨̂
θ +

dp

l2
√
k
√
mo +mp

˙̂
θ +R(q2 + ¨̂η) sin θ̂ = 0

Introducing a third nondimensional quantity:

ζ̂p =
dp
√
mo +mp

2l2mp

√
k

=
dp

2l2mpωo

,
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the equation for θ̂ becomes

R
¨̂
θ + 2Rζ̂p

˙̂
θ +R(q2 + ¨̂η) sin θ̂ = 0

The corresponding Lagrangian for the autonomous and non-dissipative sys-

tem is

L =
1

2
˙̂η
2
+

1

2
R
˙̂
θ
2

+ R ˙̂η
˙̂
θ sin θ̂ − 1

2
η̂2 −Rq2

(

1− cos θ̂
)

(4.3)

Making use of the velocities in terms of the generalized momentum, we have

˙̂η =
p1 − p2 sin θ̂

1− R sin2 θ̂
,

˙̂
θ =

p2 − Rp1 sin θ̂

R
(

1− R sin2 θ̂
) (4.4)

and from Legendre transformation we obtain the Hamiltonian as

H =
1

2

p1
2

1− R sin2 θ̂
− p1p2 sin θ̂

1−R sin2 θ̂
+

1

2

p2
2

R(1−R sin2 θ̂)
+

1

2
η̂2+Rq2(1− cos θ̂).

When ξ̂ is periodic, the motion of the mass causes variations in the absorber

spring stiffness, and in turn, the absorber acts (in a nonlinear fashion) back

on the main mass. With appropriate choice of tuning parameters, the effect

of the mass can be completely absorbed. For periodically excited autopara-

metric systems, the most interesting situations occurs when the natural fre-

quencies of the mass and the pendulum are in 2 : 1 internal resonance; i.e.,

when q = 1/2. In resonance, the pendulum is primarily excited by energy

coming from the mass. When the external energy put into the mass is small

enough, its effect on the pendulum is small compared to the stability of

the hanging pendulum. As the external energy increases, a saturation takes

place at a certain threshold, above which the pendulum noticeably moves;

see [Nayfeh and Mook, 1979]. In some mechanical absorbers, this transfer

of energy is useful. In other systems, it may not, since a disturbance affect-

ing one mode may cause unwanted dynamics in other modes (for example,

longitudinal wave action could lead to capsizing of a ship). Since such distur-

bances often contain an essential random component (think of water waves

in the ocean), it is essential to complement the above investigations of the

effect of periodic excitations by corresponding investigations of the effect of

random excitations.

Our interest here is a refined stability analysis near the fixed point (η̂, θ̂) ≡
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0 of the unperturbed system. In particular, we are interested in the effect of

small random perturbations, so we will let ξ̂ be of the form ξ̂ = ǫ2νξ, where ξ

is a noise process of “unit” variance and ν is some empirical parameter. Our

dynamics are most interesting when they are not overdamped, so let ζ̂o and

ζ̂p be of the form ζ̂o = ǫ2ζo and ζp = ǫ2ζp, where ζo and ζp are some positive

constants (this corresponds to letting do and dp be of size ǫ). Guided by the

corresponding analysis for periodic forcing, we are interested in the behavior

when q2 is very close to q2o ≡ 1/4. Let’s replace q by qo + ǫ2µ, where µ is an

unfolding parameter. Since we are interested in η̂ and θ̂ near the fixed point

0, we should look at these quantities on a finer resolution. Namely, let η and

θ be defined by

η̂(t) = ǫη(t) θ̂(t) = ǫθ(t)

Then the dynamics of our system are

η̈ + 2ǫ2ζoη̇ + η +R(θ̈ sin(ǫθ) + ǫθ̇2 cos(ǫθ)) = ǫνξ

θ̈ + 2ǫ2ζpθ̇ +

(

(

qo + ǫ2µ
)2 sin(ǫθ)

ǫ
+ η̈ sin(ǫθ)

)

= 0.
(4.5)

The salient feature of this system is that the dominant deterministic com-

ponent of the dynamics gives us a place to start to search for structure in

the light of randomness. Once we understand this structure, we can then

investigate how various system parameters (i.e., the damping coefficients, R,

ν and µ) affect various important engineering quantities – exit times from

stable regions, invariant measures, etc.

4.3 Single Mode Solutions

To clarify some general qualitative effects of noise, let’s consider a simple sta-

bility analysis using some spectral methods and the first-order linearization.

Assume that initially the pendulum hangs vertically, at rest. Then θ will be

identically zero – “locked-mass” dynamics. The mass on the spring can move

only in the vertical direction and is excited by νξ. We get the equation

η̈ + 2ǫ2ζoη̇ + η = ǫνξ.
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If ξ is white noise we can solve for η explicitly. Its power spectral density is

Sη(ω) =
ǫ2ν2S0

(1− ω2)2 + 4ǫ4ζ2oω
2

where S0 is the power spectral density of ξ. The peak intensity and the

carrying frequency of η are determined by the filter parameter ζo.

The stability of the locked mass steady-state oscillation is now obtained

by using the first-order approximation of sine and cosine in the dynamics for

θ. We get

θ̈ + 2ǫ2ζpθ̇ + ((q0 + ǫ2µ)2 + ǫη̈)θ = 0

and the power spectral density of η̈ is given by

Sη̈(ω) =
ω4ǫ2ν2S0

(1− ω2)2 + 4ǫ4ζ2oω
2

The maximal Lyapunov exponent can now be easily calculated and the sta-

bility boundary can be obtained in terms of excitation intensity ν and the

dissipation coefficients ζp. An explicit expression for the maximal Lyapunov

exponents of the single mode solution is given in Arnold et al. [1986] and

Namachchivaya and Ariaratnam [1987]; expanding it in ǫ, we have

λ1 ≈ ǫ2
(

−ζp +
1

8 q2o
Sη̈(2 (qo + ǫ2µ))

)

Using the trace formula, the second Lyapunov exponent can be obtained as

λ2 = ǫ2
(

−ζp −
1

8 q2o
Sη̈(2 (qo + ǫ2µ))

)

.

The noise has no effect on the other two exponents; i.e., λ3 = λ4 = −ζo.
At exact one-to-two resonance, i.e., µ = 0, the maximal Lyapunov expo-

nent reduces to

λ1 = ǫ2
(

−ζp +
ν2 S0

8 ζ2o

)

(4.6)

It is clear, that when the noise intensity ν2 is small (remember that we have

normalized so that ξ has unit intensity), the size of the oscillations of η is

similarly small. Since the point θ ≡ 0 is a stable point for the hanging

pendulum, the pendulum undergoes small random motion near θ ≡ 0, and

all four Lyapunov exponents are negative. However, as we further increase
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the noise intensity, the top exponent becomes positive when ν2S0 = 8ζ2oζp.

The system then becomes unstable, and a host of questions arise.

• Do both the mass spring oscillator and the pendulum undergo ran-

dom vibrations when the top exponent becomes positive (i.e., ν2 S0 >

8 ζ2o ζp), i.e., does a new coupled-mode “stationary solution” or “sta-

tionary density function” appear?

• Does the positive exponent lead to a transfer of energy from the mass

to the vertically hanging pendulum, i.e., is the energy transferred only

after the mean square amplitude of the motion of the mass reaches a

certain critical size?

4.4 Coupled Mode Problem

The deficit of the above analysis is that it relied upon simplifying lineariza-

tions. The true dynamics of y and θ are of course globally governed by

nonlinear effects. It is to an analysis of these nonlinear effects that we com-

mend ourselves in this paper. Namely, in order to maintain the nonlinear

nature of the dynamics of y and θ, we will keep all terms which are of order

ǫ2 and larger.

Before writing out the exact equations, let’s invoke some of the formalism

of mechanics. We can rewrite (4.5) in terms of the generalized coordinates

(η, θ) and conjugate momenta (p1, p2) are expressed as

η̇ =
p1 − p2 sin(ǫθ)

1−R sin2(ǫθ)

θ̇ =
p2 − Rp1 sin(ǫθ)

R(1− R sin2(ǫθ))

ṗ1 = −η − 2ǫ2ζo

(

p1 − p2 sin(ǫθ)

1− R sin2(ǫθ)

)

+ ǫνξ

ṗ2 = Rǫ

(

p1 − p2 sin(ǫθ)

1− R sin2(ǫθ)

)(

p2 −Rp1 sin(ǫθ)

R(1− R sin2(ǫθ))

)

cos(ǫθ)

− R(q0 + ǫ2µ)2
sin(ǫθ)

ǫ
− 2ǫ2Rζp

(

p2 − Rp1 sin(ǫθ)

R(1− R sin2(ǫθ))

)

Expanding the sines and cosines and keeping terms up to order ǫ2, we get
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the system

η̇ = p1 − ǫp2θ + ǫ2Rp1θ
2

θ̇ =
p2
R

− ǫp1θ + ǫ2p2θ
2

ṗ1 = −η − 2ǫ2ζop1 + ǫνξ

ṗ2 = −Rq20θ + ǫp1p2 + ǫ2
{

1

6
Rq20θ

3 − 2Rq0µθ − Rp21θ − p22θ − 2ζpp2

}

and the Hamiltonian is

H =
p21
2

+
p22
2R2

+
η2

2
+
Rq20θ

2

2
− ǫp1p2θ

+ ǫ2
{

p22θ
2

2
+
Rp21θ

2

2
− Rq20θ

4

24
+Rq0µθ

2

}

The dominant dynamics of η and θ are

η̈ + η = 0 and θ̈ + q20θ = 0

We apply the following time dependent symplectic transformation:

η = x1 cos t + x3 sin t

p1 = −x1 sin t+ x3 cos t

θ = [x2 cos(qt) + x4 sin(qt)]/
√

Rq

p2 =
√

Rq [−x2 sin(qt) + x4 cos(qt)]

The conjugate pairs are (x1, x3) and (x2, x4). Then x = (x1, x2, x3, x4) satis-

fies the random evolution equation

ẋǫ
t = ǫb1(xǫ

t, t) + ǫ2b2(xǫ
t, t : ζ, µ) + ǫσ(xǫ

t, t : ν)ξ(t) (4.7)

where b1 contains spatially quadratic nonlinearities (which come from a cu-

bic Hamiltonian) and b2 contains spatially cubic nonlinearities (arising from

a quartic Hamiltonian), and terms arising from dissipation and detuning.

The explicit form of the quadratic and cubic nonlinear terms are given in

Appendix B.1. The stochastic forcing terms are defined by

σ(x, t : ν) = {−ν sin t, 0, ν cos t, 0}
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It is important to realize that there are three scales in (4.7). The peri-

odicity of the coefficients appears on time intervals of order 1/ǫ. The terms

containing b2 and σ cause fluctuations of order ǫ and
√
ǫ. The effect of the

b1 term is to cause fluctuations of order 1. Our interest here is when the

periodic fluctuations of the coefficients in a sense cancel out the fluctuations

due to b1, leaving us with fluctuations of order ǫ.

4.4.1 Conserved Quantities

From the explicit formulas for b1 in Appendix B.1 (where q = 1/2), we see

that for x = (x1, x2, x3, x4) ∈ R4,

(M b1)(x) =













−1
2
x2x4

1
2
(x1x4 − x2x3)
1
4
(x22 − x24)

1
2
(x1x2 + x3x4)













The Hamiltonian associated with these dynamics is

K(x) =
1

4
x1(x

2
4 − x22)−

1

2
x2x3x4 (4.8)

The Hamiltonian system

ż = ∇̄K(z) (4.9)

has a second integral which is in involution with the Hamiltonian (4.8) (two

integrals of motion are in involution if their Poisson bracket vanishes iden-

tically). Thus, the unperturbed four-dimensional Hamiltonian has two first

integrals in involution, namely, the Hamiltonian itself (4.8) and a second

invariant or constant of motion (momentum variable)

I(x) = (x21 + x23) +
1

2
(x22 + x24). (4.10)

The invariant I is functionally independent of K, exists globally and is single

valued.

68



4.4.2 Structure of the Unperturbed Systems

Our main analytical tool is a certain method of dimensional reduction of

nonlinear systems with symmetries and small noise. As the noise becomes

asymptotically small, one can exploit symmetries and a separation of scales

to use well-known methods (viz. stochastic averaging) to find an appropriate

lower-dimensional description of the system.

Consider the following symplectic transformation

x1 =
√
2J sin(φ+ 2ψ) x3 =

√
2J cos(φ+ 2ψ)

x2 =
√

2(I − 2J) sinψ x4 =
√

2(I − 2J) cosψ

The conjugate pairs are (φ, J) and (ψ, I). This transformation yields a new

set of equations which can easily be integrated

φ̇t =

√
2Jt
4Jt

(It − 6Jt) sinφt J̇t =

√
2Jt
2

(2Jt − It) cosφt

ψ̇t =

√
2Jt
2

sin(φt) İt = 0

(4.11)

The Hamiltonian corresponding to the equations above is

K =

√
2J

2
(I − 2J) sinφ

If ψt is a solution, then π+ψt is also a solution. Further, it is clear from (4.11)

that at exact resonance, during the undamped motion, the energy in the sys-

tem continues to be exchanged between the two modes of oscillation provided

the initial conditions are not on the circle J = I/2. However, the dynamics

on that plane (x2 = x4 = 0) in the original coordinates, which corresponds

to the circle J = I/2, is given by

φ̇t = −
√

I0 sinφt, ψ̇t =

√
I0
2

sin φt, I = I0, J =
I0
2

Hence, the plane (x2 = x4 = 0) is invariant and for initial conditions on the

the circle J = I/2 (heteroclinic orbit), the energy exchange is not periodic.

To make the calculations even simpler, we consider the symplectic trans-
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formation

x1 = u1 cos(2ψ) + u2 sin(2ψ), x3 = −u1 sin(2ψ) + u2 cos(2ψ)

x2 =
√

2(I − u21 − u22) sinψ, x4 =
√

2(I − u21 − u22) cosψ.
(4.12)

The conjugate pairs are (u1, u2) and (ψ, I). This transformation yields

u̇1t = −u1tu2t, u̇2t =
1

2
(3u1

2
t + u2

2
t − It), ψ̇t =

1

2
u1t, İt = 0 (4.13)

and the corresponding Hamiltonian is

K =
1

2
u1(I − u21 − u22) (4.14)

System (4.13) has four fixed points. They are

(u1, u2) = (0,±
√
I) (u1, u2) = (±

√
3I

3
, 0)

As I varies, the system described by (4.13) can display bifurcations. At

exact resonance, by using the action-angle coordinates, we express the non-

dissipative deterministic flow as

żIt (u) = ∇̄K(zIt (u), I), zI0(u) = u = (u1, u2)

ψ =

∫ t

0

DIK(zIt (u), I) ds+ ψ0

K = constant ∈ R, I = constant ∈ R+

(4.15)

The dynamics in the u-space are completely integrable and represent a one

parameter family of an one degree of freedom Hamiltonian system. The fixed

points and the corresponding energy levels for the unperturbed system are

given by

A± : (ū01, ū
±
2 ) = (0,±

√
I), KA± = 0

B± : (ū±1 , ū
0
2) = (±

√

I

3
, 0), KB± = ±I

3

√

I

3

(4.16)

provided I ≥ 0. The eigenvalues are given by ±
√

ū22 − 3ū21. For I > 0,

A± represent saddle points while B± represent center fixed points and at

I = 0 all four fixed points coalesce at the origin and both the eigenvalues are
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Figure 4.2: Surface and contour plots of the averaged Hamiltonian in u1, u2
coordinates, as given in (4.14). I = 1.

71



zero. It follows from transformations (4.12) that 0 ≤ u21 + u22 ≤ I. Hence,

the domain of interest is restricted to the area within and including the

heteroclinic orbits; the periodic orbits encircling the two elliptic fixed points

and the heteroclinic orbits.

Note that at the origin, the reduced domain has a cusp since

K =
I

3

√

I

3
and

dK

dI

∣

∣

∣

∣

I=0

= 0.

4.5 Time-Averaging

We have pointed out that that there are three time-scales involved in our

averaging problems. According to the theory presented in Section 1.2, the

first step is to average the periodic fluctuations of the coefficients and obtain

M-averaged quantities as the precursors to the stochastically averaged drift

and diffusion coefficients. Somewhat laborious calculations yield

m1(x) ≡
(

M
(

F 2
1 + f1 + g1

))

(x)

= − 1

32R

((

x24 − x22
)

x3 + 2x1x2x4
) (

6R
(

x21 + x23
)

− x22 − x24
)

− (ζo + 2 ζp)K +
1

2
µx3(x

2
2 − x24)− µx1x2x4

m2(x) ≡
(

M
(

F 2
2 + f2 + g2

))

(x)

= 2σ2Sξξ(1)− 2ζo(x
2
1 + x23)− ζp(x

2
2 + x24)

(4.17)

a11(x) ≡
(

M
(

σσT
)

11

)

(x)

=
1

32
σ2Sξξ(1)

(

x22 + x24
)2

a12(x) ≡
(

M
(

σσT
)

12

)

(x)

= σ2Sξξ(1)K

a22(x) ≡
(

M
(

σσT
)

22

)

(x)

= 2σ2Sξξ(1)
(

x21 + x23
)

(4.18)

The symplectic transformation of (4.12) provides a convenient geometric

structure of the unperturbed integrable Hamiltonian problem. In (u,K, I)
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coordinates, the drift (4.17) and diffusion (4.18) coefficients are

m1(u, y) = −(ζo + 2ζp)K

+
1

8R

(

u21 + u22 − I
)

u2

(

u21 + u22 − I + 3R

(

u21 + u22 +
8µ

3

))

= −(ζo + 2ζp)K − 1

4
(8µ+ 3I)K

u2
u1

+
1

2

(

3 +
1

R

)

K2u2
u21

m2(u, y) = 2[σ2Sξξ(1)− ζoI + 2(ζo − ζp)K/u1]

(4.19)

a11(u, y) =
1

8
σ2Sξξ(1)

(

u21 + u22 − I
)2

=
1

2
σ2Sξξ(1)K

2 1

u21

a12(u, y) = σ2Sξξ(1)K

a22(u, y) = 2σ2Sξξ(1)(u
2
1 + u22)

= 2σ2Sξξ(1)(I − 2K/u1).

(4.20)

Since, there are certain advantages in the use of one form of mi(u, y) and

aij(u, y) over the other, we shall make use of either one of the forms in

evaluating the diffusion coefficients.

To obtain a limiting generator for the martingale problem, we need an

averaging operator where the averaging is done with respect to the invariant

measure concentrated on the closed trajectories.

In the deterministic context Neistadt’s condition [Neistadt, 1975b,a,

Lochak and Meunier, 1988] ensures the existence of an average transverse

force that drives the trajectories away from the resonance zones. For the

stochastic case, it was shown Ramakrishnan and Namachchivaya [2000] that

even for the case when Neistadt’s condition does not hold, passage of trajec-

tories through resonance without getting captured can be ensured if appro-

priate conditions on the noise are satisfied.

Using (4.19) in the A-averaging operator yields on each leaf Γi, for y =
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(K, I) ∈ Γi,

bi1 =
1

Ti(y)

∫ Ti(y)

0

m1(u(t), y)dt

= −(ζo + 2ζp)K − 1

4
(8µ+ 3I)K

1

Ti

∫ Ti

0

u2(t)

u1(t)
dt

+
1

2

(

3 +
1

R

)

K2 1

Ti

∫ Ti

0

u2(t)

u1(t)
2dt

= −(ζo + 2ζp)K

(4.21)

bi2 =
1

Ti(y)

∫ Ti(y)

0

m2(u(t), y)dt

= 2[σ2Sξξ(1)− ζoI] + 4(ζo − ζp)K
1

Ti

∫ Ti

0

dt

u1(t)

= 2[σ2Sξξ(1)− ζoI] + 4(ζo − ζp)K
I 1

i

Ti

(4.22)

ai11 =
1

Ti(y)

∫ Ti(y)

0

a11(u(t), y)dt

=
1

2
σ2Sξξ(1)K

2 1

Ti

∫ Ti

0

1

u1(t)
2dt

=
1

2
σ2Sξξ(1)K

2I
2
i

Ti

(4.23)

ai12 =
1

Ti(y)

∫ Ti(y)

0

a12(u(t), y)dt

= σ2Sξξ(1)K

(4.24)

ai22 =
1

Ti(y)

∫ Ti(y)

0

a22(u(t), y)dt

= 2σ2Sξξ(1)

(

I − 2K

Ti

∫ Ti

0

1

u1(t)
dt

)

= 2σ2Sξξ(1)(I − 2K
I 1

i

Ti
)

(4.25)

We want to put these Li’s together to get a Markov process on G with

generator L
†
G with domain D

†
G, where G has a shape of an arrowhead. For

notational convenience, we also define fi ≡ f
∣

∣

Ii
for all 1 ≤ i ≤ 2. From the

results of Freidlin and Weber [1998], and Sowers [2003], it is clear the gluing

conditions, which we need to specify at the interior edges, solely depend on
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the diffusion coefficients aijk. To this end, we define

åijk(y) ≡ aijk(y) T (y)

The limiting domain for the graph valued process is

D
†
G =

{

f ∈ C(G) ∩ C2(∪2
i=1Ii) : lim

y→(K(ci),I(ci))
(Lifi)(y) exists ∀ i

lim
I→I∗

(Lifi)(y) = 0 ∀ i,
2
∑

i=1

2
∑

j=1

{

2
∑

k=1

åijk(y)
∂fi(y)

∂yk

}

νj

∣

∣

∣

y=O
= 0

}

(4.26)

where ν is the outward normal vector to the boundary ∂Γi. The gluing

condition is the last term in the expression above. The gluing condition can

be simplified by making use of the fact that the period is asymptotically

equivalent to T (y) ∼ ln |K| as K → 0, thus it can be verified that

lim
K→0

åi11(y) <∞, lim
K→0

åi12(y) = 0, and lim
K→0

å122(y) = lim
K→0

å222(y)

and in addition the vertex O ≡ [0, I∗] consistes of a vertical line (ν2 = 0).

Hence, the limiting domain for the graph valued process simplifies to

D
†
G =

{

f ∈ C(G) ∩ C2(∪2
i=1Ii) : lim

y→(K(ci),I(ci))
(Lifi)(y) exists ∀ i,

lim
I→I∗

(Lifi)(y) = 0 ∀ i, and
2
∑

i=1

{±}(̊ai11
∂fi
∂y1

)(O) = 0

}

(4.27)

where the ‘+’ sign is taken if the coordinate h on the leg Ii is greater than

0 (the value of y1(= h) at the vertex O) and the ‘−’ sign is taken otherwise.

Then for f ∈ D
†
G, the generator is

(L †
Gf)(y) =

2
∑

j=1

bij(y)
∂fi
∂yj

(y) +
1

2

2
∑

j,k=1

aijk(y)
∂2fi
∂yj∂yk

(y) (4.28)

for all y ∈ Īi, where the averaged drift and diffusion coefficients on each leg

Ii are evaluated making use of the calculations in Appendix B.2. The period

of the orbits is the same

T1 = T2 =
4

√

λ1(λ2 − λ3)
K(κ)
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1. u1 < 0, H < 0: The integrals are calculated along the paths which

correspond to the “oscillations in the valley”.

b11 = −(ζo + 2ζp)H (4.29)

b12 = 2[σ2Sξξ(1)− ζoI]

+ 8(ζp − ζo)
1

T1
√

λ1 (λ2 − λ3)
[−λ1λ2K(κ) + λ1 (λ2 − λ3)E(κ)]

= 2[σ2Sξξ(1)− ζoI] + 2 (ζo − ζp)λ1λ2

− 2 (ζo − ζp)λ1 (λ2 − λ3)
E(κ)

K(κ)

= 2[σ2Sξξ(1)− ζoI]− 4(ζo − ζp)
H

λ2κ2

[

κ2 − α2 + α2E(κ)

K(κ)

]

= 2[σ2Sξξ(1)− ζoI] + 4(ζo − ζp)
|H|
λ2κ2

[

κ2 − α2 + α2E(κ)

K(κ)

]

a111 =
1

6
σ2Sξξ(1)

λ21

T1
√

λ1 (λ2 − λ3)

[

(λ2 − λ3)
2 κ2

+
(

−λ23 + 2λ3λ2 + 2λ22
) ]

K(κ)

− 1

3
σ2Sξξ(1)

λ21

T1
√

λ1 (λ2 − λ3)
(λ2 − λ3)

[

(λ2 − λ3)κ
2

+ (λ2 + 2λ3)
]

E(κ)

=
1

24
σ2Sξξ(1)λ1

2
[

(λ2 − λ3)
2 κ2 +

(

−λ32 + 2λ3λ2 + 2λ2
2
)]

− 1

12
σ2Sξξ(1)λ1

2 (λ2 − λ3)
[

(λ2 − λ3) κ
2 + (λ2 + 2 λ3)

] E(κ)

K(κ)

=
1

6
σ2Sξξ(1)

(

H

λ2κ2

)2 [
(

3κ4 − 6α2κ2 + 2α4 + α4κ2
)

− 2α2
(

−3 κ2 + α2 + α2κ2
) E(κ)

K(κ)

]

a112 = σ2Sξξ(1)H
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a122 = 2σ2Sξξ(1)I

+ 8σ2Sξξ(1)
1

T2
√

λ1 (λ2 − λ3)
[−λ1λ2K(κ) + λ1 (λ2 − λ3)E(κ)]

= 2σ2Sξξ(1)I − 2σ2Sξξ(1)λ1λ2 + 2σ2Sξξ(1)λ1 (λ2 − λ3)
E(κ)

K(κ)

= 2σ2Sξξ(1)I − 4σ2Sξξ(1)
|H|
λ2κ2

[

κ2 − α2 + α2E(κ)

K(κ)

]

Where K(κ), E(κ) are complete elliptic integrals of the first and the

second kinds with the modulus

κ2 ≡ λ3(λ2 − λ1)

λ1(λ2 − λ3)
> 0.

2. u1 > 0, K > 0: In this case, the integrals are calculated along the

paths which correspond to the “oscillations on the hill”.

b21 = −(ζo + 2ζp)H (4.30)

b22 = 2[σ2Sξξ(1)− ζoI]

+ 8(ζo − ζp)
1

T2
√

λ1 (λ2 − λ3)
[−λ1λ2K(κ) + λ1 (λ2 − λ3)E(κ)]

= 2[σ2Sξξ(1)− ζoI]− 2 (ζo − ζp)λ1λ2

+ 2 (ζo − ζp) λ1 (λ2 − λ3)
E(κ)

K(κ)

= 2[σ2Sξξ(1)− ζoI] + 4(ζo − ζp)
H

λ2κ2

[

κ2 − α2 + α2E(κ)

K(κ)

]

= 2[σ2Sξξ(1)− ζoI] + 4(ζo − ζp)
|H|
λ2κ2

[

κ2 − α2 + α2E(κ)

K(κ)

]
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a211 =
1

6
σ2Sξξ(1)

λ21

T2
√

λ1 (λ2 − λ3)

[

(λ2 − λ3)
2 κ2

+
(

−λ32 + 2λ3λ2 + 2λ22
)

]

K(κ)

− 1

3
σ2Sξξ(1)

λ21

T2
√

λ1 (λ2 − λ3)
(λ2 − λ3)

[

(λ2 − λ3) κ
2

+ (λ2 + 2λ3)
]

E(κ)

=
1

24
σ2Sξξ(1)λ1

2
[

(λ2 − λ3)
2 κ2 +

(

−λ32 + 2λ3λ2 + 2λ22
)]

− 1

12
σ2Sξξ(1)λ1

2 (λ2 − λ3)
[

(λ2 − λ3) κ
2 + (λ2 + 2λ3)

] E(κ)

K(κ)

=
1

6
σ2Sξξ(1)

(

H

λ2κ2

)2 [
(

3κ4 − 6α2κ2 + 2α4 + α4κ2
)

− 2α2
(

−3κ2 + α2 + α2κ2
) E(κ)

K(κ)

]

a212 = σ2Sξξ(1)H

a222 = 2σ2Sξξ(1)I − 8σ2Sξξ(1)
1

T2
√

λ1 (λ2 − λ3)

[

− λ1λ2K(κ)

+ λ1 (λ2 − λ3)E(κ)
]

= 2 σ2Sξξ(1)I + 2σ2Sξξ(1)λ1λ2 − 2σ2Sξξ(1)λ1 (λ2 − λ3)
E(κ)

K(κ)

= 2σ2Sξξ(1)I − 4σ2Sξξ(1)
|H|
λ2κ2

[

κ2 − α2 + α2E(κ)

K(κ)

]

We derive the gluing conditions, by determining asymptotic values as

h→ 0. The asymptotic values of the three roots are

λ1 =
√
I − ǫ/I λ2 = 2ǫ/I λ3 = −

√
I − ǫ/I.

The period is asymptotically equivalent to T (y) ∼ ln |H| as H → 0. This
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Figure 4.3: Example of domain within which the FPE is specified. A finite
element triangulation of the domain is also shown.

yields limh→0 b̊
i
1 = 0. Furthermore,

lim
h→0

åi11(O) ≡ lim
h→0

(

ai11Ti
)

= −1

6
σ2 Sξξ(1) lim

h→0

(

λ1λ
2
3

)

lim
κ′→0

(

κ′
2
ln

4

κ′

)

+
1

3
σ2Sξξ(1) lim

h→0

(

λ1λ
2
3

)

lim
κ→1

({

2− κ2
}

E(κ)
)

= σ2Sξξ(1)
I
√
I

3
≥ 0 (4.31)

Hence −ḟ1(y)+ ḟ2(y) = 0. Note that the values of b̊i2, å
i
12 and åi22 in the limit

k → 0 all approach infinity.

The complete domain within which the FPE is specified is shown in Fig-

ure 4.3. This domain is described as having two “leaves” with a common

edge at K = 0. The edge at K = 0 is called the gluing edge.

A set of illustrative values for å is shown in Figures 4.4, 4.5 and 4.6.

Likewise, Figures 4.7 and 4.8 show values for b̊. Note that at points where

no data is shown (ie. on the line K = 0), the coefficients are unbounded,

although certain coefficients do have a value in the limit K → 0.

4.6 Conclusions

This chapter has shown how it is possible to analyze the stochastic motion

of a pair of oscillators auto-parametrically coupled. In broad terms, the

methodology used to achieve this was the same as for the wave model in 3.

Differences exist in the details however. 1:2 resonance was imposed for the au-

toparametric problem whereas the wave model was near 1:1 resonance. The

reduced domain of the autoparametric system contains two leaves, whereas

the surface waves model has three. With regards to calculating averaged drift

and diffusion coefficients, completely analytic results have been obtained for
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Figure 4.4: Example of numeric values for å11. Circles denote points where
the value is only defined by equation (4.31).
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Figure 4.5: Example of numeric values for å12. Circles denote points where
the value is only defined by limy2→0 å12 = 0.
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Figure 4.6: Example of numeric values for å22. On the gluing edge, the
value goes to infinity.
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Figure 4.7: Example of numeric values for b̊1. Circles denote points where
the value is only defined by limy1→0 b̊1 = 0.
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Figure 4.8: Example of numeric values for b̊2. On the gluing edge, the value
goes to infinity.

the autoparametric system, leading to formulas that contain elliptic integrals.

In the next chapter, the analysis of the autoparametric oscillator contin-

ues. Now that the generator of the reduced Markov process and its domain

have been completely characterized in a weak sense, it becomes possible to

derive a partial differential equation governing the evolution of probability

density functions for the autoparametric oscillators. This equation will be

derived in the next chapter, and it will be solved numerically.
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CHAPTER 5

Probability Density Solutions

5.1 Introduction

We turn our attention to producing solutions with the results of stochastic

averaging theory. Specifically, stationary probability distribution functions

are produced. First, the Fokker–Planck equation is derived. Then a finite

element formulation of the Fokker–Planck problem is presented. Solutions

for the surface gravity waves model and the autoparametric oscillator are

then shown. Finally, the finite element results are validated with a sample

path method.

5.2 Derivation of the Fokker–Planck Equation

Before starting to derive the Fokker–Planck equation, it is necessary to

consider how inner products behave under changes of variables. Specifi-

cally, it is found that if the area A(y1) is bounded by the curve E(y1),

functions f and g satisfy f(u1, u2, ψ, I) = f(y1(u1, u2, I), y2(u1, u2, I)) and

g(u1, u2, ψ, I) = g(y1(u1, u2, I), y2(u1, u2, I)), then

∫

A(y1)

f(u1, u2, ψ, I)g(u1, u2, ψ, I)du1du2dψdI

=

∫

f(y1, y2)g(y1, y2)T (y1, y2)dy1dy2.

To show this, the first step is to change the variables of integration of the

integral on the left hand of the equation above. This yields

∫

A(y1)

f(u1, u2, ψ, I)g(u1, u2, ψ, I)

∣

∣

∣

∣

∂u1
∂y1

∣

∣

∣

∣

dy1du2dψdy2. (5.1)
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Denoting arc length along a Hamiltonian orbit E(y1) by s, since

ds

du2
=

‖∇y1‖
|dy1/du1|

Equation (5.1) can be written as

∫ ∮

E(y1)

f(u1, u2, ψ, I)g(u1, u2, ψ, I)

‖∇y1‖
dsdy1dψdy2.

After substituting the assumed functional form of f and g, it follows that

the inner product is given by

〈f(y), g(y)〉K,I ≡
∫

K=y1

∫

I=y2

f(y)g(y)T (y)dy1dy2

Now we derive the Fokker-Planck equation (FPE) for the density of

{(kt, It); t ≥ 0}. We present a rigorous derivation that takes care of the killed

process at I∗ and examine the stationary behavior of the FPE when I∗ = ∞.

We assume that there is a p ∈ C∞((0,∞)×
⋃n

i=1 Γi) and a p⊛i ∈ C∞((0,∞))

such that for any f ∈ D
†
G

Eǫ
x [f(kt, It)] =

n
∑

i=1

(±)

∫

Γi

fi(y)pi(y, t)Ti(y)dkdI

+

n
∑

i=1

(±)

∫

ki
fi(k, I

∗)Ti(k, I
∗)p⊛i (k, t)dk (5.2)

where the ‘+’ sign is taken on the leaves where the coordinate k is greater

than K(O) and the ‘−’ sign is taken on the leaves where the coordinate k

is less than K(O).) pi(y, t) and p⊛i (t) are the density of the law of (kt, It)

relative to Lebesgue measure on
⋃n

i=1 Γi and a Dirac mass at I∗. Since we

kill (kt, It) at I
∗, mass may accumulate there, necessitating a Dirac measure

at I∗. Differentiating (5.2) with respect to time yields

∂

∂t
Eǫ

x [f(kt, It)] =

n
∑

i=1

(±)

∫

Γi

fi(y)
∂pi
∂t

(t, y)Ti(y)dkdI

+
n
∑

i=1

(±)

∫

ki

fi(k, I
∗)Ti(k, I

∗)
∂p⊛i
∂t

(k, t)dk (5.3)
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On the other hand

∂

∂t
Eǫ

x [f(kt, It)] = Eǫ
x

[

(L †
i f)(kt, It)

]

=

n
∑

i=1

(±)

∫

Γi

(L †
i fi)(y)pi(t, y)Ti(y)dkdI

+
n
∑

i=1

(±)

∫ kci (I
∗)

0

(L †
i fi)(k, I

∗)Ti(k, I
∗)p⊛i (k, t)dk

(5.4)

Combining Equations (5.3) and (5.4) gives

n
∑

i=1

(±)

∫ kci (I
∗)

0

{

fi(k, I
∗)
∂p⊛i
∂t

(t, k)− (L †
i fi)(k, I

∗)p⊛i (t, k)

}

Ti(k, I
∗)dk

+

n
∑

i=1

(±)

∫

Γi

{

fi(y)
∂pi
∂t

(t, y)− (L †
i fi)(y)pi(t, y)

}

Ti(y)dkdI = 0 (5.5)

Remark 5.2.1. Relation between the gluing condition and the probability

flux condition. The gluing condition and the probability flux condition are

related. This is seen by starting with the generic “adjoint” formula for a

linear second order operator L and its adjoint L adj. Referring to, for ex-

ample Zauderer [1998, §3.6], on adjoint differential operators, the divergence

theorem gives
∫

G

{pL f − fL
adjp}dv =

∫

∂G

P · nds.

When the generator has the form given in Definition 1.2.4,

P i
j =

1

2

2
∑

k=1

åijk
∂fi(y)

∂yk
pi(t, y) + fiJ

i
j

Referring to (4.26), the first term in the sum is recognized as being associated

with the gluing condition while the second is associated with the probability

flux condition. The probability flux on leaf i in the direction yj is:

J i
j(t, y) ≡ b̊ij(y)pi(t, y)−

1

2

2
∑

k=1

∂

∂yk

(

åijk(y)pi(t, y)
)

(5.6)

Applying the divergence theorem to the last term on the left side of (5.5)
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and making use of the properties of D
†
G yields

n
∑

i=1

(±)

∫

Γi

{

∂pi
∂t

(t, y)− L
†,adj
i pi(t, y)

}

fi(y)Ti(y)dkdI

+

n
∑

i=1

(±)

∫ kci (I
∗)

0

fi(k, I
∗)
∂p⊛i
∂t

(t, k)dk

=
n
∑

i=1

(±)

∫

∂Γi

2
∑

j=1

J i
j(t, y)fi(y) · νjds

+
n
∑

i=1

(±)

∫

∂Γi

1

2

2
∑

j=1

{

2
∑

k=1

åijk(y)
∂fi
∂yk

(y)

}

pi(t, y) · νjds (5.7)

where

L
†,adj
i =

1

Ti(y)

2
∑

j=1

∂

∂yj
(̊bj(y)p(y))−

1

2Ti(y)

2
∑

j,k=1

∂2

∂yj∂yk
(̊ajk(y)p(y)).

For the autoparametric problem, each ∂Γi consists of a vertical line (ν2 =

0) representing the vertex O ≡ [0, I∗], a horizontal (ν1 = 0) line B ≡
[0, kci (I

∗)], at which the process is killed (I = I∗), and a curved line Ci ≡
{(k, I) ∈ R2 : k = (−1)iI

√
3I/9}, for i = 1, 2 representing the fixed points.

Hence, by explicitly expressing the boundary ∂Γi, equation (5.7) can be

rewritten as

n
∑

i=1

(±)

∫

Γi

{

∂pi
∂t

(t, y)− L̊
†,adj
i pi(t, y)

}

fi(y)Ti(y)dkdI

+
n
∑

i=1

(±)

∫

B

[

∂p⊛i
∂t

(t, k)− J i
2(t, k, I

∗)

]

fi(k, I
∗)dk

=

n
∑

i=1

∫

Ci

2
∑

j=1

J i
j(t, y)fi(y) · νjds+

n
∑

i=1

(±)

∫

O

J i
1(t,O, I)fi(O, I)dI

+
1

2

n
∑

i=1

(±)

∫

B

{

2
∑

k=1

åi2k(k, I
∗)
∂fi
∂yk

(k, I∗)

}

pi(t, k, I
∗)dk

+
1

2

∫

C

2
∑

j=1

{

n
∑

k=1

åijk(y)
∂fi
∂yk

(y)

}

pi(t, y) · νjds

+
1

2

n
∑

i=1

(±)

∫

O

{

2
∑

k=1

åi1k(O, I)
∂fi
∂yk

(O, I)
}

pi(t,O, I)dI (5.8)
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The properties of fi defined for the limiting domain D
†
G (i.e. equation (4.27))

will not eliminate any other terms in (5.8). Boundary conditions for pi are

derived from the right hand side of (5.8). Along Ci, which represent regular

elliptic fixed points (non-degenerate), we impose the zero probability flux

boundary condition. Hence the first term in the right hand side of (5.8)

becomes identically zero. Once again for fi ∈ D
†
G, the second and the last

term vanish by imposing zero net flux and continuity of probability density

at the vertex O, respectively.

Hence pi satisfies

1. the FPE,

∂pi
∂t

(t, y) = L
†,adj
i pi(t, y) for t > 0 and y ∈ Γi (5.9)

2. conservation of probability flux at the vertex O

lim
y→O

N
∑

i=1

J i(t, y) · νi = 0 (5.10)

3. the zero probability flux condition along the edges identified with el-

liptic fixed points,

2
∑

j=1

(

bij(y)pi(t, y)−
1

2

2
∑

k=1

∂

∂yk

(

aijk(y) pi(t, y)
)

)

· νj

∣

∣

∣

∣

∣

y=Ci

= 0 (5.11)

4. killing of the process when the energy reaches I∗, i.e.,

lim
y2→I∗

pi(t, y) = 0. (5.12)

The dynamics of p⊛i are defined by

∂p⊛i
∂t

(t, k) = b̊i2(y) pi(t, k, I
∗)− 1

2

2
∑

k=1

∂

∂yk

(

åi2k(z)pi(t, k, I
∗)
)

i.e., the rate of change of probability in the cemetery state I∗, on each leg of

the graph, is equal to the flux entering I∗ from the interior.
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5.3 Finite Element Solution to the Fokker-Planck

Equation

We solve the FPE at steady-state. Based on equation (5.9), within leaves

where the FPE is specified we have:

2
∑

j=1

∂

∂yj
(̊bj(y)p(y))−

1

2

2
∑

j,k=1

∂2

∂yj∂yk
(̊ajk(y)p(y)) = 0 (5.13)

The boundary condition given in equation (5.11) cannot be imposed di-

rectly because it uses coefficients divided by the period, whereas the FPE

contains “ringed” (i.e. not divided by the period) coefficients. Applying the

chain and the product rule for differentiation, equation (5.11) on either leaf

becomes

1

T (y)

2
∑

j=1

(

b̊j(y)p(y)−
1

2

2
∑

k=1

[ ∂

∂yk
(̊ajk(y)p(y))−

åjkp(y)

T (y)

∂T (y)

∂yk

]

)

νj

∣

∣

∣

∣

∣

y=C

= 0

1

T (y)

2
∑

j=1

(

Jj(y) +
1

2

2
∑

k=1

åjkp(y)

T (y)

∂T (y)

∂yk

)

νj

∣

∣

∣

∣

∣

z=C

= 0 (5.14)

At the “upper” boundary, I = I∗, the boundary condition given in equa-

tion (5.12) should be imposed. This introduces a difficulty however since

equation (5.12) is formally derived in the limit I∗ → ∞. Since representing

this limit in numerical calculations may not be straightforward, we choose to

simplify the situation by imposing a condition like the zero probability flux

in equation (5.11) instead. In our results, we will need to ensure that the

finite value selected for I∗ is sufficiently large.

As can be seen in Figure 4.3, the domain used with the finite-element

approach does not start at I = 0, this is to avoid the cusp at the origin. As

a result, a boundary condition must be imposed on that boundary. As with

the boundary at I∗, the zero-flux boundary condition will be imposed.

Finally the conservation of probability flux condition, in equation (5.10),

needs to be considered. As shown in Appendix B.3, it can be demonstrated

numerically that this condition simplifies to:

∂p1
∂k

∣

∣

∣

∣

z=O

=
∂p2
∂k

∣

∣

∣

∣

z=O

(5.15)
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5.3.1 Weak Formulation of the Fokker-Planck Problem

Use of the finite element method entails specifying a weak form of the Fokker-

Planck problem. The weak formulation of the FPE given here is adapted from

Langtangen [1991], where a method to obtain steady-state solutions using a

finite-element approach is presented. The use of Langtangen’s method is nec-

essary because the steady-state FPE is satisfied by the trivial solution, p = 0.

Langtangen’s method enforce the normalization condition and thus provides

a nontrivial solution. Essentially, our task consists of extending Langtan-

gen’s method to multi-leaf domains (i.e. with a conservation of probability

flux condition.)

To begin, we introduce a Hilbert space, H1, that we will use to specify

weak solutions. Let

V =

{

v ∈ H1(I) :

∫

I

vdz = 1

}

and W =

{

v ∈ H1(I) :

∫

I

vdz = 0

}

(5.16)

Note that the definitions above do not reflect that we have two leaves, I1,2

– we start our presentation by considering the simpler case where the do-

main of the FPE is a single leaf. The next step is to derive a bilinear form

corresponding to the FPE. The weak form of the steady-state FPE, equa-

tion (5.13), is
∫

I

φ(∇ · J)dy = 0

where φ ∈ W and the p ∈ V (recall from equation (5.6) that p is contained

within J .) Integration by parts gives

−
∫

I

∇φ · Jdy +
∫

∂I

φJ · νdσ(y) = 0

Separating ∂I into an exterior boundary and an interior boundary (i.e. the

gluing edge),

−
∫

I

∇φ · Jdy +
∫

∂IC

φJ · νdσ(y) +
∫

∂IO

φJ · νdσ(y) = 0 (5.17)
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On ∂IC , using equation (5.14) gives

J · ν = − 1

2T (y)

2
∑

j,k=1

åjk
∂T (y)

∂yk
νjp(y)

Thus equation (5.17) becomes

∫

I

∇φ · Jdy +
∫

∂IC

φ

2T (y)

2
∑

j,k=1

åjk
∂T (y)

∂yk
νjp(y)dσ(y) +

∫

∂IO

φJ · νdσ(y) = 0

(5.18)

Now the finite-element problem is formulated so as to treat both leaves to-

gether. In so doing, we must redefine the quantities given in (5.16), we have

V =

{

v ∈ H1(I1 ∪ I2) :

∫

I1

vdy +

∫

I2

vdy = 1

}

W =

{

v ∈ H1(I1 ∪ I2) :

∫

I1

vdy +

∫

I2

vdy = 0

}

and (5.18) and the results of Appendix B.3 on simplifications of the conser-

vation of probability flux condition give

∫

I1

∇φ · J1dy +

∫

∂IC1

φ

2T (y)

2
∑

j,k=1

å1jk
∂T (y)

∂yk
ν1j p1(y)dσ(y)

+

∫

I2

∇φ · J2dy +

∫

∂IC2

φ

2T (y)

2
∑

j,k=1

å2jk
∂T (y)

∂yk
ν2j p2(y)dσ(y) = 0

Since on the edge ∂IO equation (5.15) holds and å111 = å211, the equation

above gives the bilinear form we sought:

L(p, φ) =

∫

I1

∇φ · J1dy +

∫

∂IC1

φ

2T (y)

2
∑

j,k=1

å1jk
∂T (y)

∂yk
ν1j p1(y)dσ(y)

+

∫

I2

∇φ · J2dy +

∫

∂IC2

φ

2T (y)

2
∑

j,k=1

å2jk
∂T (y)

∂yk
ν2j p2(y)dσ(y) (5.19)

Note that the bilinear form is non-symmetric.
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We wish to solve

L(p, φ) = 0, φ = v − p, ∀ v ∈ V. (5.20)

The discrete version of (5.19) is found with the approximation

p(y) ≈ ph(y) =

n
∑

j=1

Hj(y)pj

where Hj(x) denote finite-element shape functions. The discrete form of the

normalization condition is

∫

I1

ph(y)dy +

∫

I2

ph(y)dy = 1

which can be written

cTp = 1

where c = (c1, c2, . . . , cn) and

ci =

∫

I1

Hi(y)dy +

∫

I2

Hi(y)dy.

The discrete equivalent to (5.20) is

L(ph, φh) = 0, φh = vh − ph, ∀ vh ∈ V h. (5.21)

Here, φ ∈ W h and

V h =
{

v =

n
∑

j=1

Hj(y)vj, vj ∈ R, Hj ∈ H1(I1 ∪ I2), j = 1, . . . , n :

n
∑

j=1

cjvj = 1
}

W h =
{

v =

n
∑

j=1

Hj(y)vj, vj ∈ R, Hj ∈ H1(I1 ∪ I2), j = 1, . . . , n :

n
∑

j=1

cjvj = 0
}
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Typical finite-element problems have weighting functions equal to shape func-

tions, but this is not possible for the Fokker-Planck equation since Hi /∈ W h.

Define

U =
{

q = (q1, . . . , qn)
T ∈ Rn : cT q = 0.

}

.

Then one can construct φh ∈ W h:

φh =

n
∑

i=1

qiHx(x), q ∈ U.

Equation (5.21) then results in the following system of algebraic equations

for p:

qTKp = 0, ∀q ∈ U

cTp = 1

The specific form of K is:

Kij =

∫

Ω

∂φi

∂y1

[{

− b̊1 +
1

2

(∂å11
∂y1

+
∂å12
∂y2

)}

φj

+
1

2

(

å11
∂φj

∂y1
+ å12

∂φj

∂y2

)]

+
∂φi

∂y2

[{

− b̊2 +
1

2

(∂å21
∂y1

+
∂å22
∂y2

)}

φj

+
1

2

(

å21
∂φj

∂y1
+ å22

∂φj

∂y2

)]

dy

5.3.2 Langtangen’s Method

A method that can be used to solve the FPE by the finite-element method

(FEM) is given in Langtangen [1991]. Starting from Equations (27) & (28)

in that publication, namely:

Kp = λc (5.22)

cTp = 1 (5.23)

Langtangen’s method consists of solving for a rescaled probability density

first, p̂

p̂ = K−1c
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The vector c is known and is given by ci =
∫

I
Hi(x)dx1dx2 with Hi’s being

the shape functions of the FEM. λ is found by solving the equation

cT p̂ = 1/λ

and finally

p = λp̂

The FEM solver is programmed with Octave [Eaton et al., 2002].

5.3.3 Domain Triangulation

Finite-element triangulations of the K − I domains are produced using Tri-

angle [Shewchuk, 1996]. The domains of the Fokker-Planck equation have

boundaries defined by polynomial functions. Triangle does not allow spec-

ifying such boundaries directly, rather a certain number of points on the

boundary must be given. In order to create elements of a specified area, Tri-

angle may place additional nodes between points given to it as input. These

additional points can be problematic because they are positioned using linear

interpolation between the input points (these extra nodes are called Steiner

points) and this can lead to nodes being placed outside the analytically de-

fined domain of the Fokker–Planck equation.

Experience with Triangle shows that these problems can be avoided by

specifying the number of input points in (inverse) proportion to the requested

element area. Specifically, input points are placed by calculating the arc

length along the boundary and the spacing between the points is made equal

to the length of the side of an equilateral triangle with an area equal to the

requested element area. As long as the domain triangulated does not include

cusps, this procedure seems to produce triangulation that have none, or few,

Steiner points.

DistMesh [Persson and Strang, 2004] is another mesh generator. It allows

specifying boundaries in terms of functions. Its use for the problems treated

in this thesis has not been explored.
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Figure 5.1: Probability density solution. Parameters are as the same as
those for figure 3.4

5.4 Surface Wave Solutions

A sample solution to our problem is shown in figure 5.1. Note the domain

includes a cusp. Normally, producing a solution for a domain with a cusp

would require special consideration. For the solution shown, domain trian-

gulation was performed manually near the cusp and quadrature points were

altered as well. Such an approach is not rigorous. Nonetheless, the solution

produced near the cusp does not appear to display any singularities and this

is promising since it suggests that the solution near the cusp does not exhibit

any singularities.

With regards to physical significance of the solution, the main point to

note is that the probability density function (PDF) is highest along the edge

K2I . This feature of the solution remains present when the aspect ratio of

the cylindrical basin is varied from d/a = 1, as in Figure 5.1 down to 0.3

(solution not illustrated.) In the X-Y phase plane, the edge K2I is situated

outside the homoclinic orbit and our results suggests the wave motions most

likely to be observed would be those corresponding to circular motion where

for a given value of I, K is near its maximum.
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Similarly to our analysis, in Miles [1984b], a system of two surface-gravity

wave modes in a cylindrical basin subjected to horizontal excitation is stud-

ied. Unlike our problem, the two wave modes are set to be in exact resonance

with one another, and a detuning parameter is introduced to represent the

frequency difference between the natural wave frequency and the forcing fre-

quency. A significant conclusion reached in that study is that for cylindrical

basins with an aspect ratio between 0.3 and 0.5, limit cycles and chaotic

motion are not possible, making the wave dynamics observed in that inter-

val of aspect ratios qualitatively different from the dynamics seen outside

that interval. In our case, with stochastic excitation, the probability densi-

ties obtained inside and outside the interval do not exhibit any qualitative

differences; in both cases, the probability density is highest near the edge

K2I .

5.5 Autoparametric Oscillator Solutions

In this section, solutions for the autoparametric oscillator system are pro-

duced. The first set of solutions is shown in Figures 5.2, 5.3 and 5.4. Physical

parameters are kept the same for all of the solutions shown with the difference

between the Figures being that different maximum areas for the elements are

specified. The intent of these Figures is to demonstrate that across the glu-

ing edge, where the finite element method must be formulated carefully, the

solution does not exhibit any singularities. As the Figures show, the solu-

tions appear to be continuous across the gluing edge, as expected based on

analytic calculations.

The next set of results is in shown in Figure 5.5. These Figures probe the

effect of varying the value of Imin. Recalling that the domain of the FPE has

a cusp at the origin, the behavior of the solution near the origin is of interest.

In Figure 5.5, the FEM solution is plotted along the I-axis. Curves in that

figure suggest that as the cusp is approached, the solution goes to zero.

The final set of solutions is shown in Figures 5.6 and 5.7. These figures use

the same mesh as Figure 5.3, but now a physically significant parameter, the

amplitude of stochastic forcing, is varied. Although there seems to be a bug

in the FEM solver that causes irregularities in the solution near the gluing

edge, the overall trend in the solutions seems clear. As forcing amplitude
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Figure 5.2: Steady-state solution to the FPE obtained by the finite-element
method when the maximum element area is 100.
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Figure 5.3: Same solution as Figure 5.2, but with the maximum element
area set to 50.
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Figure 5.4: Same solution as Figure 5.2, but with the maximum element
area set to 10.
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Figure 5.5: Steady-state solution to the FPE along y1 = 0 for different
values of y2,min = 20, 40, 60. It is conjectured that the lines do not overlap
exactly due to discretization errors.
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Figure 5.6: Steady-state solution to the FPE obtained by the finite-element
method for σ = 0.5.

is increased, the peak of the probability distribution moves to larger values

of I while remaining symmetric about the I axis. The latter fact is worth

contemplating. Recalling the structure of the Hamiltonian, (see Figure 4.2)

the outer edge of the domain in the left hand plane corresponds to a sink

and the outer edge of the domain in the right hand plane is a valley. As

such it seems reasonable to think that as forcing amplitude increases, the

peak of the PDF will shift from the left hand plane to the right hand plane,

but this is not observed in the Figures. In fact, simply by looking at the

form of b1 (see Equations (4.29) and (4.30) and Figure 4.7), one notices that

along the K axis, the drift coefficient tends to center the probability density

on the I axis. It is curious that b1 does not contain any stochastic effects;

whether this is a generic feature for systems in 1:2 resonance remains to be

determined.
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Figure 5.7: Steady-state solution to the FPE obtained by the finite-element
method for σ = 1.5.
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5.6 FEM Validation With Sample Path Method

In this section, the solutions to the FPE obtained with the FEM are repro-

duced using an alternate approach. Instead of solving the FPE, the under-

lying stochastic differential equations are solved numerically. The validation

method presented in this section can be used with the autoparametric and

the wave systems, but results have been computed only for the autopara-

metric oscillator. The method presented was inspired by the heterogeneous

multiscale method, as applied to stochastic differential equations [E et al.,

2005].

To begin, recall that unperturbed dynamics are governed by a Hamilto-

nian

ż = ∇̄K, z0 ∈ R4.

After a canonical transformation, the dynamics of z can be separated so that

the fast dynamics are restricted to being in a 2-D plane. For the autopara-

metric oscillator, recalling Equation (4.13), the fast dynamics were given by

u̇1 = −u1u2, u̇2 =
1

2
(3u21 + u22 − I).

For the surface gravity wave model, similar 2-D fast dynamics are described

by Equation (3.22). These dynamics are obtained after time averaging and

they are perturbed by higher order noise and damping effects. Xt = (u1, u2)

will be used as the fast variables and Yt = (K, I) will be the slow variables.

Note that because u1, u2 and K are constrained by Equation (4.14), it should

be possible to have only one of the variables from the (u1, u2) pair as the fast

variable, but computationally it seems easier to use Equation (4.13) than

Equation (4.14). The general form of the fast equations is

dXt = ǫ−2f(Xt, Yt)dt

After time-averaging, the slow dynamics are given by

dM[Yt] = ǫ−1M[F 2](Xt, Yt)dt+ ǫ−2 M[G](Xt, Yt)dt. (5.24)

It is important to understand why the dynamics of the slow variables are

time averaged. Prior to time averaging, the equation for Yt contains a term
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of order ǫ−2, therefore the dynamical timescales of the fast and slow equations

are not separated. It should be possible to performM-averaging numerically,

but for simplicity, here time averaged quantities are considered straightaway.

The averaged equation is

dA[M[Yt]] = A[M[m]](Yt)dt+A[M[σ]](Yt)dt (5.25)

with m defined in Equation (4.19) and σ will be derived from (4.20). Con-

ceptually, A-averaging represents averages over Hamiltonian orbits.

Having described the two timescale nature the equations to be solved,

now the numerical procedure is setup. Since the fast dynamics are determin-

istic, the equivalent of what is called the microsolver in the HMM can be

implemented using widely available numerical ODE solvers. The microsolver

serves to generate paths over which to calculate the averaged coefficients,

symbolically

A[f ](y) =
1

T (y)

∫ T (y)

0

f(Xt, y)dt.

For simplicity analytic results of Chapter 4 are used for T (y), but in principle

this quantity could be discovered with the microsolver. Note that in E et al.

[2005] the case where the fast equations are stochastic is treated; this can

make the choice of an optimal time-span for the microsolver more difficult.

Referring to terminology used in the HMM context, an estimator is used

to approximate the averaging operator. The estimator resembles numerical

integration formulas:

1

T (y)

N
∑

i=1

f(u(ti), y)∆ti.

Thus estimated values for A[M[m]] and A[M[σσT ]] are obtained. Let us

denote these estimates by b̃ and ã respectively. Because the fast equations are

deterministic, the computations performed by the microsolver and estimator

for the problems considered in this thesis are rather simple. Nonetheless,

they make it possible to validate the results obtained analytically for the

autoparametric oscillator and the results obtained with numerical quadrature

for the surface gravity waves system. Comparisons between the analytically

obtained drift and diffusion coefficients and their estimated values show good

agreement (typically differences smaller than 10−8.)

Whereas averaging provides the diffusion matrix a = A[M[σσT ]], to pro-
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duce sample paths, σ is needed. Cholesky decomposition is used to make

this connection. Symbolically, let’s use the notation

ã = σ̃σ̃T .

The key point is that the variance of ã is reproduced when σ̃T multiplies a

Wiener process [Law and Kelton, 1982].

In the HMM, the slow equations are approximated numerically with the

macrosolver. For numerical solutions to System (5.25), a stochastic ODE

solver is used. The simplest of these is the Euler-Maruyama first order scheme

[Kloeden and Platen, 1999]:

Yn+1 = Yn + b̃n∆t+ σ̃nΞn+1

√
∆t

where Ξn are normally distributed random numbers with mean zero and

variance one. This completes the description of the numerical method used

to generate stochastic samples in a multiscale context. An analysis of the

convergence properties and efficiency of the scheme presented here has not

been performed.

In order to validate the solutions obtained by the FEM multiple sample

paths must be produced. This can be done systematically with the following

procedure. First, initial conditions must be generated so as to reproduce a

uniform distribution across the entire K − I domain. First a FEM trian-

gulation is produced and the area of each element is calculated. The initial

conditions of the samples are set at the center of each element, and the num-

ber of samples in each element is proportional to each element’s area. Such

a placement scheme is automated by dividing the unit interval into segments

with length proportional to each element’s area. A uniform random number

generator is then used to draw numbers in the unit interval and the number

of samples placed at the center of each element is determined by the uniform

random number generator. Thus larger elements end up with more samples

and smaller elements with fewer.

At each time-step of the macrosolver, the microsolver is initialized with

conditions consistent with the state of the macrosolver. The microsolver is

then simulated for the time-span of one period so as to compute the values

of b̃ and ã. In order to impose reflective boundary conditions, at each step of

104



the macrosolver a check is made to determine if the sample has gone outside

the domain. If it has, the sample is returned to its last location inside the

domain, but the time-step is still increased by one. This approach ensure

that the reflective boundary condition does not lead to infinite simulation

times.

All the samples are simulated for an equal number of time-steps of the

macrosolver. The number of samples in each element is then counted and

the value of each node is set by taking the average of the number of samples

of all the elements that contain that node.

Results produced with this numerical approach are shown in Figures 5.8

to 5.10. These results bear a qualitative resemblance to the FEM results.

Namely, as the noise intensity is increased, the probability distributions move

away from the origin, but remain centered around the K = 0 axis. The

solutions shown in the Figures are not particularly smooth. Presumably

smoother solutions could be produced, but producing the Figures shown

takes several hours. Optimizing numerical parameters such as the time-step

of the Euler-Maruyama solver and the time-span of the macrosolver may be

necessary to avoid excessively long simulations.

It is worth mentioning that producing the solutions shown in Figures 5.8

to 5.10 takes several hours whereas the solutions produced with the FEM

takes no more than a few minutes. Establishing exact figures on the compu-

tational advantage of FEM methods over SDE methods would require addi-

tional work; numerical parameters should be chosen optimally. Nonetheless,

the large difference in computation times between the two methods suggests

that averaging methods can lead to significantly faster computational meth-

ods. It seems plausible that in some circumstances, problems that have been

deemed too complicated could be solved if stochastic averaging methods were

used.
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Figure 5.8: HMM solution for σ = 0.5. 1000 samples are used to produce
this PDF.
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Figure 5.9: HMM solution for σ = 1. 2000 samples are used to produce this
PDF.
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Figure 5.10: HMM solution for σ = 1.5. 4000 samples are used to produce
this PDF.
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CHAPTER 6

Conclusions

Summarizing the results of this thesis, the theory of stochastic averaging has

been applied to study the behavior of mechanical systems with bifurcations

in their fast deterministic dynamics. After setting the systems near low-order

resonance, the reduced space of the averaged systems was determined. Sto-

chastic averaging theory was then applied to calculate drift and diffusion co-

efficients of the reduced Markov process. The steady response of the systems

has been characterized by finding solutions of the Fokker–Planck equation.

From a physical point of view, the solutions obtained exhibit peculiarities

that are not anticipated from deterministic analysis. A comprehensive inter-

pretation of these peculiarities remains an open area of research.

In closing this thesis, possible extensions are covered.

A number of things could be done to improve physical insight into the

surface waves problem. Two of the easiest extensions would be to (i) carry

out calculations for vertical forcing and (ii) carry out calculations for 1:2

resonance. Given that analytical formulas have been found for the autopara-

metric problem in 1:2 resonance, it would be interesting to see if the same

could be achieved with the surface wave equations.

The Miles wave model presented in Section 3.2.1 is highly idealized. To

make the model more realistic, surface tension could be added. The potential

energy with surface tension terms is given in Miles and Henderson [1990]:

V = ρS(−Qnqn) +
1

2
(g + z̈)qnqn +

1

2
T̂ (δmnk

2
n −

1

4
bjlmnqjql +O(q3))qmqn

ρT̂ is the surface tension. It should be straightforward to replace Equation

(3.10). Since surface tension, like gravity, acts on terms quadratic in q, and

because the averaged drift and diffusion coefficients do not vanish, the inclu-

sion of surface tension effects should lead to quantitative but not qualitative

changes in the averaging results.
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In the surface wave model, linear damping has been used. It would be

good if the fluid viscosity could be related to the damping coefficients. This

may allow the removal of damping terms as free parameters. The work

presented in Vega et al. [2001] may provide a good starting point since it

uses a model similar to the Miles wave model.

The averaging results presented in this thesis have used a Hamiltonian

and an angular momentum as the slow variables. For the models analyzed,

there is little doubt that these are the optimal slow variables. For other

applications finding slow variables can be non-trivial. Therefore, developing

automated methods to select slow variables, such as the method based on

anisotropic diffusion maps [Singer et al., 2009] seems worthwhile.

With regards to applications of stochastic averaging theory, this thesis

has presented steady probability densities obtained from the Fokker–Planck

equation as the ultimate application. Another application frequently sought

for engineering applications is the calculation of exit times from a prescribed

domain. Once the averaged drift and diffusion coefficients are known, cal-

culating exit times should not require much more work. For the problems

presented here, one could calculate the exit time associated with different

values of Imax.

Steady solutions of the Fokker–Planck equation have been obtained di-

rectly. For certain applications, it may be desirable to know the transient

behavior of the FPE. For example, in filtering problems one seeks to merge

theoretically predicted dynamics with experimentally obtained data. This

requires time-dependent solutions.

Another numerical aspect that could be explored is the nature of the

Fokker–Planck equation as a convection-diffusion equation. The numerical

methods required to solve convection-diffusion equations can change dra-

matically depending on the magnitude of the convective terms relative to

the diffusive terms. While the steady solutions produced seem acceptable, it

may be that for time-dependent solutions a detailed understand of numerical

methods for convection-diffusion PDEs will be necessary, particularly since

the drift and diffusion coefficients can vary greatly near gluing vertices.

The FEM used to solve the Fokker–Planck equation has not been analyzed

for numerical convergence properties. It appears that this is an areas that

it still open for research. Kumar et al. [2009] provide some results in this

direction, however their work uses spectral decompositions and as such, may
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be difficult to apply to domains like the ones encountered in this thesis, with

non-trivial shapes.

In finding reduced domains, it has been observed that for both the sur-

face waves and autoparametric oscillator models, a cusp exists at the gluing

boundary that joins two fixed points. To obtain solutions, this issue has been

“swept under the rug” by removing the portion of the domain that contains

the cusp and by imposing reflective boundary conditions instead. While it

has been demonstrated numerically that such an approach gives reasonable

solutions, it would be good to analyze this problem analytically. For this, the

first step might be to study the one-dimensional diffusion process along the

gluing edge. For one dimensional diffusions one might start by calculating

scale and speed measures[Karlin and Taylor, 1981, §15.6].
The numerical scheme devised in the second half of Chapter 5 was inspired

by the heterogeneous multiscale methods[E et al., 2005]. To keep the analysis

simple, the fastest of the three timescales in our mechanical systems was not

incorporated. Developing a three timescale HMM should be possible, and

this would form a more complete counterpart, and validation method, to the

stochastic averaging method.
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APPENDIX A

Surface Gravity Waves

A.1 Non-linear Hamiltonian

The equation below give the detailed form of terms appearing in non-linear

Hamiltonian coefficient appearing in Equation 3.12. These expressions are

copied from [Miles, 1976].

hlmn = Dlmn − Clmnkmkn (A.1)

hjlmn = Djlmn(km + kn)− 2CjmiDlnikm − 2ClniDjmikn + 2CjmiClnikikmkn

(A.2)

Clmn = S−1

∫∫

ψlψmψndS (A.3)

Cjlmn = S−1

∫∫

ψjψlψmψndS (A.4)

Dlmn = S−1

∫∫

ψl∇ψm · ∇ψndS (A.5)

Djlmn = S−1

∫∫

ψjψl∇ψm · ∇ψndS (A.6)

Formulas for the eigenfunctions, ψk, are determined by the geometry of

the wave basin. For a cylindrical tank, complete specifications are given in

Miles [1984a].

A.2 Drift and Diffusion Coefficient Integrands

The results given below are for the case of horizontal forcing.
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M(F 2
H) =

k2ω2

48g

{

α1

[

K1({X2 + Y 2}X2 + I{X2 + 3Y 2})

+ 16K−1(2I −X2 − Y 2)X2
]

+ α2

[

2I −X2 − Y 2
][

3K1I − (K1 − 16K−1)X
2
]

}

+
1

2
(σ1α1 − σ2α2)(X

2 + Y 2) + σ2α2I (A.7)

M(gH) =

√
2π

24

x211 ωFc(ω)

g2S2

{

k2ω2[(K1 − 4K−1)(X
2 + Y 2) + (K1 + 8K−1)I]

+ 12gσ1
}

(A.8)

M(F 2
I ) =

1

2

[

(α1 − α2)(X
2 + Y 2) + 2α2I

]

(A.9)

M(gI) =

√
2πx211ωFc(ω)

2gS2
(A.10)

M(σσT )HH =

√
2πx211ωFc(ω)

1152g3S2

[

k4ω4{256K2
−1X

2(X2 + Y 2 − 2I)

− 32K1K−1X
2[(X2 + Y 2)2 − I(X2 + Y 2)− 2I2]

+K2
1 [2IX

2(X2 + Y 2) +X2(X2 + Y 2)2 + I2(X2 + 9Y 2)]}
+ 48gk2ω2σ1

{

K1(IX
2 +X4 + 3IY 2 +X2Y 2) + 16K−1X

2(2I −X2 − Y 2)
}

+ 576g2σ2
1(X

2 + Y 2)
]

(A.11)

M(σσT )HI =

√
2πx211ωFc(ω)

48g2S2

[

k2ω2{K1(IX
2 +X4 + 3IY 2 +X2Y 2)

+ 16K−1X
2(2I −X2 − Y 2)}+ 24gσ1(X

2 + Y 2)
]

(A.12)

M(σσT )II =

√
2πx211ωFc(ω)

2gS2
(X2 + Y 2) (A.13)
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APPENDIX B

Autoparametric System

B.1 Nonlinear vector fields

In this appendix, we derive exact formulas for b1 and b2 in (4.7). Although

quadratic nonlinearities in coupled oscillators affect the normal forms or the

averaged equations at higher order, the presence of 1 : 2 resonance make

their contribution at O(ǫ) paramount. For the problem under consideration,

we have:

b11(x, t) =
1

4
(x22 − x24)[sin(2q + 1)t + sin(2q − 1)t]

− 1

2
x2x4[cos(2q + 1)t+ cos(2q − 1)t]

b12(x, t) =
1

2
(x1x2 − x3x4)[sin(2q + 1)t− sin(2q − 1)t]

+
1

2
x1x4[cos(2q − 1)t− cos(2q + 1)t]

− 1

2
x2x3[cos(2q − 1)t+ cos(2q + 1)t]

b13(x, t) =
1

4
(x22 − x24)[cos(2q − 1)t− cos(2q + 1)t]

− 1

2
x2x4[sin(2q + 1)t− sin(2q − 1)t]

b14(x, t) =
1

2
x1x2[cos(2q − 1)t− cos(2q + 1)t]

− 1

2
x1x4[sin(2q + 1)t− sin(2q − 1)t]

− 1

2
x2x3[sin(2q − 1)t+ sin(2q + 1)t]

+
1

2
x3x4[cos(2q − 1)t+ cos(2q + 1)t]

In these expressions, those terms that contain cos(2q − 1)t will remain con-

stant while averaging with the condition of resonance, i.e., q = 1/2.
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At O(ǫ2), we consider the cubic nonlinearities of the original equations of

motion, the dissipative effects and the effect of detuning. It is worth pointing

out that, while averaging there will be higher order terms from the quadratic

nonlinearities,and they have to be considered at O(ǫ2) to be consistent.

b21(x, t) = −ζox1 +
1

4q
x3
(

x2
2 + x4

2
)

+
1

4q
x3
(

x2
2 + x4

2
)

cos(2t)

+
1

8q

(

2 x2x4x1 + x2
2x3 − x4

2x3
)

cos(1 + q)2 t

− 1

8q

(

−x22x3 + x4
2x3 + 2 x2x4x1

)

cos(q − 1)2 t

+
1

4q
x3 (x2 − x4) (x2 + x4) cos(2 qt)

− 1

8q

(

−x42x1 + x2
2x1 − 2 x2x4x3

)

sin(1 + q)2 t

+
1

8q

(

x2
2x1 + 2 x2x4x3 − x4

2x1
)

sin(q − 1)2 t

− 1

4q
x1
(

x2
2 + x4

2
)

sin(2 t) +
1

2q
x2x4x3 sin(2 qt)

+ ζox1 cos(2t) + ζox3 sin(2 t)
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b22(x, t) = − 1

2q
(2ζpqx2 − µx4)

+
1

16Rq
x4
(

4R (x1
2 + x3

2) + (4Rq − q)(x2
2 + x4

2)
)

− 1

4q
x4 (x1 − x3) (x1 + x3) cos(2t)

+
1

8q

(

2 x2x1x3 + x4x1
2 − x4x3

2
)

cos(1 + q)2t

+
1

8q

(

−x4x32 + x4x1
2 − 2 x2x1x3

)

cos(q − 1)2 t

− 1

12Rq
x4
(

3Rx3
2 + 3Rx1

2 − qx4
2
)

cos(2 qt)

+
1

48R
x4
(

−x42 + 3 x2
2
)

(1 + 12R) cos(4 qt)

− 1

8q

(

−2 x4x1x3 + x2x1
2 − x2x3

2
)

sin(1 + q)2 t

− 1

8q

(

x2x1
2 + 2 x4x1x3 − x2x3

2
)

sin(q − 1)2 t

− 1

48R
x2
(

x2
2 − 3 x4

2
)

(1 + 12R) sin(4 qt)

− 1

2q
x4x1x3 sin(2 t)

+
1

24Rq
x2
(

−qx22 + 6Rx1
2 + 6Rx3

2 − 3 qx4
2
)

sin(2qt)

+
1

2q
(2 ζpqx2 − µ x4) cos(2 qt) +

1

2q
(µ x2 + 2 ζ2qx4) sin(2 qt)
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b23(x, t) = −ζox3 −
1

4q
x1
(

x2
2 + x4

2
)

+
1

4q
x1
(

x2
2 + x4

2
)

cos(2t)

+
1

8q

(

−x42x1 + x2
2x1 − 2 x2x4x3

)

cos(1 + q)2t

+
1

8q

(

x2
2x1 + 2 x2x4x3 − x4

2x1
)

cos(q − 1)2 t

− 1

4q
x1 (x2 − x4) (x2 + x4) cos(2 qt)

+
1

8q

(

2 x2x4x1 + x2
2x3 − x4

2x3
)

sin(1 + q)2 t

+
1

8q

(

−x22x3 + x4
2x3 + 2 x2x4x1

)

sin(q − 1)2 t

+
1

4q
x3
(

x2
2 + x4

2
)

sin(2 t)− 1

2q
x2x4x1 sin(2 qt) + ζox1 sin(2 t)

− ζox3 cos(2t)

b24(x, t) = − 1

2q
(µ x2 + 2 ζpqx4)

− 1

16Rq
x2
(

4R (x1
2 + x3

2) + (4Rq − q)(x2
2 + x4

2)
)

+
1

4q
x2 (x1 − x3) (x1 + x3) cos(2t)

+
1

8q

(

−2 x4x1x3 + x2x1
2 − x2x3

2
)

cos(1 + q)2t

+
1

8q

(

x2x1
2 + 2 x4x1x3 − x2x3

2
)

cos(q − 1)2 t

− 1

12Rq
x2
(

3Rx3
2 − qx2

2 + 3Rx1
2
)

cos(2 qt)

+
1

48R
x2
(

x2
2 − 3x4

2
)

(1 + 12R) cos(4 qt)

+
1

8q

(

2 x2x1x3 + x4x1
2 − x4x3

2
)

sin(1 + q)2 t

+
1

8q

(

−x4x32 + x4x1
2 − 2 x2x1x3

)

sin(q − 1)2 t+
1

2q
x2x1x3 sin(2 t)

− 1

24Rq
x4
(

6Rx1
2 − 3qx2

2 + 6Rx3
2 − qx4

2
)

sin(2 qt)

+
1

48R
x4
(

−x42 + 3 x2
2
)

(1 + 12R) sin(4 qt)

− 1

2q
(µ x2 + 2 ζpqx4) cos(2 qt) +

1

2q
(2 ζpqx2 − µ x4) sin(2 qt)
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B.2 Path integrals

Making use of the fact

dt = −du
uv
,

we change the time integrals

Ti(z) ≡
∫ Ti

0

dt, I
j
i ≡

∫ Ti

0

1

uj1(t)
dt

to path integrals with respect to the fast variable u1(t), u2(t). This process

effectively removes the fast variable u1(t), u2(t). To this end, for an arbitrary

value of h we define from (4.14)

u±2 = ±
√

Iu1 − u31 − 2h

u1
≡ ±

√

f(u1) (B.1)

and the intersections of the periodic orbits with the u1-axis are obtained by

solving

Iu1 − u31 − 2h = (u−1 − u1)(u
+
1 − u1)(u

∗
1 − u1) = 0

u−1 u
+
1 u

∗
1 = −2h, u−1 u

+
1 + u−1 u

∗
1 + u+1 u

∗
1 = −I, u−1 + u+1 + u∗1 = 0

(B.2)

where two of the three roots ū−1 , ū
+
1 represent the intersections of an orbit

of energy level H encircling the elliptic fixed point, while the third root ū∗1

corresponds to the intersection of the orbit which lies out side the heteroclinic

orbit but of the same energy level H . It is clear that at the elliptic fixed point

B+, H is positive and since the fixed point lies on the right hand plane,

the intersections u−1 and u+1 (points where the periodic orbit intersects the

u1−axis, i.e., the points where u2 = 0) are positive while u∗1 is negative, i.e,

0 6 h 6
I

3

√

I

3
, u2

∗

1 6 0 6 u2
−

1 6 u2
+

1 .

Similarly for the elliptic fixed point B−, H is negative and it can be shown

that u−1 and u+1 are negative while u∗1 is positive, i.e.,

−I
3

√

I

3
6 h 6 0, u1

−

1 ≤ u1
+

1 6 0 6 u1
∗

1 .
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Figure B.1: Three roots shown for I = 0.5 and 0 ≤ h ≤ Hc. This figure is
meant to help understand the limiting value of κ which in turns helps in
evaluating the gluing boundary condition

Due to the symmetry of the phase plane, we have

λ1 = u2
+

1 = −u1−1 , λ2 = u2
−

1 = −u1+1 , λ3 = u2
∗

1 = −u1∗1 (B.3)

where superscript 1 represents the region u1 < 0, H < 0 while superscript

2 represents the region u1 > 0, H > 0. A sample plot of the three roots is

shown in Figure B.1. Since the roots of Iu1−u31+2h for h ≤ 0 are the same

as the roots of Iu1−u31−2h for h ≥ 0, keeping the order u2
+

1 > u2
−

1 > 0 > u2
∗

1

T1(z) = T2(z) = 2

∫ u2+

1

u2−

1

dt
√

t (It− t3 − 2h)
= 2 gK(κ)

where

g ≡ 2
√

λ1(λ2 − λ3)
, κ2 ≡ λ3(λ2 − λ1)

λ1(λ2 − λ3)
> 0, κ2 < α2 ≡ λ1 − λ2

λ1
< 1
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By Byrd and Friedman [1954, formula 256.12], the integrals I 1
j , reduce to

−I
1
1 = I

1
2 = 2

∫ u2
+

1

u2−

1

dt

t
√

t(It− t3 − 2h)

= 2

∫ u2
+

1

u2−

1

dt

t
√

t(u2
+

1 − t)(t− u2
−

1 )(t− u2
∗

1 )
= A1K(κ) +B1E(κ),

where

A1 = 2
g (κ− α) (κ+ α)

λ2κ2
=

4

λ3
√

λ1 (λ2 − λ3)

B1 = 2
gα2

λ2κ2
=

4(λ3 − λ2)

λ2λ3
√

λ1 (λ2 − λ3)

Similarly, we can show the second set of integrals I 2
j reduces to

I
2
1 = I

2
2 = 2

∫ u2
+

1

u2−

1

dt

t2
√

t (It− t3 − 2h)

= 2

∫ u2+

1

u2−

1

dt

t2
√

t (u2
+

1 − t)(t− u2
−

1 )(t− u2
∗

1 )
= A2K(κ) +B2E(κ)

where

A2 =
2

3

g (3 κ4 − 6α2κ2 + 2α4 + α4κ2)

λ2
2κ4

=
4

3

(

λ3
2 + λ2

2 − 2 λ3λ2
)

κ2
√

λ1 (λ2 − λ3)λ2
2λ3

2
+

4

3

−λ32 + 2 λ3λ2 + 2 λ2
2

√

λ1 (λ2 − λ3)λ2
2λ3

2

B2 = −4

3

gα2 (−3 κ2 + α2 + α2κ2)

λ2
2κ4

= −8

3

(λ2 − λ3)
2 κ2

√

λ1 (λ2 − λ3)λ2
2λ3

2
− 8

3

(λ2 − λ3) (λ2 + 2 λ3)
√

λ1 (λ2 − λ3)λ2
2λ3

2

The drift and diffusion terms are evaluated making use of these results.

B.3 Simplification of the Gluing Condition

The general form for the conservation of probability flux condition was given

in equation (5.10). The probability flux, J , is given in equation (5.6) and νn

represents the outward normal vector of leaf n. z = (h, i) = O is used to

120



denote the gluing vertex. In this appendix we show that the conservation of

probability flux condition simplifies to equation (5.15).

The first step towards this simplification is to exploit the fact the gluing

vertex is aligned with the h = 0 axis, therefore equation (5.10) for the two-leaf

autoparametric system becomes

lim
h→0

(

J1
1 (h, i)− J2

1 (h, i)
)

= 0. (B.4)

Next, individual terms of the probability flux must be considered. First we

consider those simplifications that can be made analytically. From (4.21), it

follows that b̊n1 = −(ζo + 2ζp)HTn (for n = 1, 2.) Since as h → 0, the period

is asymptotically equivalent to T (z) ∼ ln |H|, the following results:

lim
h→0

b̊n1 = 0

Similarly, from equation (4.24) it follows that ån12 = σ2Sξξ(1)HTn. Again,

the asymptotic behavior of T (z) yields:

lim
h→0

ån12 = 0

The fact that å111 = å111 = σ2Sξξ(1)I
√
I/3 (see equation (4.31)) is also used

to simplify equation (B.4).

The final two simplifications are

lim
h→0

∂ån11
∂h

= 0, lim
h→0

∂ån12
∂i

= 0

for n = 1, 2. These two simplifications can be demonstrated numerically, as

shown in Figures B.2 & B.3.
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Figure B.2: Numerical demonstration that limh→0
∂̊an

11

∂h
= 0. Each dataset is

for a different value of i.
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Figure B.3: Numerical demonstration that limh→0 h · dT/di = 0. This result
demonstrates that ∂å12/∂I = 0, that is used to simplify the conservation of
probability flux condition.
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