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ABSTRACT

In this thesis, we consider a special class of binary quadratic programming

problem (BQP) where the number of nonzero elements is fixed. Such prob-

lems arise frequently from various applications and have been proved to be

NP-hard. After a brief review of the quadratic programming problem, several

optimization algorithms are presented.

In Chapter 3, we propose a new simple second order conic relaxation of

the BQP problem. We derive some additional constraints based on the in-

formation from the data matrix. The algorithm will be compared with the

existing SDP relaxation algorithm in terms of their numerical performances.

In Chapter 4, we use the convex quadratic relaxation as a geometric em-

bedding tool to reformulate the underlying BQP as a clustering problem,

where the target is to find a single cluster of fixed size. This connection

allows us to employ many effective clustering algorithm developed in the

data mining field. A 2-approximation algorithm for the clustering problem

is presented. Numerical results based on the new relaxation model and the

proposed algorithm are reported.

The last Chapter mainly discusses some theoretical results we put forward

on the derived clustering problem. Core-set technique is used to derive a new

algorithm, which can provide a (1+ε) approximation ratio to the reformulated

clustering problem.
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CHAPTER 1

INTRODUCTION

1.1 The quadratic problem

Optimizing a quadratic function over some hypercube is one of the basic

discrete optimization problems. The problem has several equivalent formu-

lations in the literature. For instance,

min
x

xT Qx (1.1)

s.t. x ∈ {−1, 1}n

Adding a linear term to the objective function essentially won’t change the

problem too much:

min
x

xT Qx + qT x (1.2)

s.t. x ∈ {−1, 1}n

is equivalent to

min
x

xT Q̃x (1.3)

s.t. x ∈ {−1, 1}n+1, xn+1 = 1

where

Q̃ :=

(
Q q

2
qT

2
0

)

Therefore, the above problem leads to a quadratic problem of the form (1.1),

of problem size increased by 1 and one more constraint xn+1 = 1.

Some researchers [1] also notice that (1.1) is equivalent to quadratic (0,1)
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programming (1.4).

min
x

xT Qx (1.4)

s.t. x ∈ {0, 1}n

1.2 Graph partition problem

Another important case of quadratic problem is the graph partition prob-

lem. The maximization graph partition problem(MAX-GP) calls for finding

a subset S ⊂ V of k nodes such that an objective function w(S) is maxi-

mized. A special case of Max−Cut Problem, Max−Cut with size k where

the total edge weights of the edges crossing between S and V/S is maxi-

mized, is a graph partition problem. A similar graph partition problem is

Max−Not−Cut with size k where the total edge weights of the edges non-

crossing between S and V/S is maximized. Max V ertex Cover with size k

problem, where the goal is to maximize the total edge weights of the edges

covered by S, is also a case contained by graph partition problem. Densest−
k − subgraph(DSP ) problem, whose objective function is the total edge

weights of the subgraph induced by S, is the one we are quite interested in:

as elaborated later, the DSP problem is equivalent to a special quadratic

problem we study. Such connection enables us to integrate results from two

completely different class of problems.

1.3 Our problem

In this thesis, we consider the following specific binary quadratic program-

ming (BQP) problem:

min
x

xT Qx + qT x (1.5)

s.t. Ax = b (1.6)
n∑

i=1

xi = k

x ∈ {0, 1}n
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where Q ∈ <n×n is a symmetric matrix, A ∈ <m×n and q ∈ <n, b ∈ <m.

The above model covers many scenarios arising from various applications

such as molecular conformation [2], cellular radio channel assignment[3] and

capital budgeting and financial analysis [4], the feature selection problem

in ranking [5]. It covers also numerous graph problems such as the sparest

(or densest) k-subgraph problem [6, 7] and Maximization graph partition

problem [8]. Here we take Max V ertex Cover with size k problem as an

example to show how it can be cast as the BQP problem 1.7 ([6]):

Given a graph G = (V, E) and each edge eij ∈ E of weight wij, the

Max V ertex Cover with size k problem asks the maximal weight of edges

covered by a set U of k vertices in G. We model this problem into the

following quadratic programming problem:

max
eij∈E

∑
wij(

3 + xi + xj − xixj

4
) (1.7)

s.t.
n∑

i=1

xi = 2k − n

x ∈ {−1, 1}n

Note that for each edge eij the objective function is zero if both xi and xj

are equal to -1 and wij otherwise. Further, the first constraint ensures that

exactly k variables will be of value 1. Thus by choosing the vertex vi ∈ V to

be in the cover U if and only if xi = 1, the quadratic program corresponds to

the Max V ertex Cover with size k problem on G. This quadratic problem

follows the form 1.7.

The problem has been proved to be NP-hard [7]. Several researchers have

studied such a problem and numerous algorithms have been proposed. For

more details, we refer to [6, 7, 5, 8, 9] and the references listed in these papers.

The relaxation model plays an important role in the development of ef-

ficient algorithms for BQPs. For example, at every iteration of exact algo-

rithms based on branch and bound (B & B) or branch and cut (B & C)

approaches, one needs to solve a relaxed optimization problem to obtain a

lower bound that can be used further to decide the branching strategy. A

relaxation model that can be solved effectively and provide a tight bound is

crucial for the success of the B&B or B&C process. Secondly, as showed in

3



[10, 11], the relaxation model can also help to design efficient approximation

algorithms for classes of discrete optimization problems.

Various relaxation models for BQPs have been proposed in the literature.

For example, Adams and Sherali [12, 13] first proposed to the well-known

lifting and relaxation technique for binary optimization. Lovász and Schri-

jver [14] introduced a lift and project method to approximates the convex

hull of 0 − 1 valued solutions for a system of linear inequalities in higher

dimension, and applied their method to the so-called vertex packing poly-

tope problems. In [15], Lasserre considered SDP relaxations for nonlinear

0− 1 Programming based on the representations of nonnegative polynomials

in algebraic geometry.

In this thesis, we are interested in bounds based on conic optimization

relaxations for BQPs. The idea of using conic optimization, in particular

positive semi-definite programming (SDP) relaxations for discrete optimiza-

tion problems can be dated back to Lovász ([16], 1979) and Shor ([17], 1987).

In early 1990s, Alizadeh [18] considered the SDP relaxation of various com-

binatorial optimization problems and used interior-point methods to solve

the relaxed problem. A remarkable achievement in the study of SDP relax-

ation for discrete optimization is the work by Goemans and Williamson [10]

where they designed a very efficient approximation algorithm for the max-

cut problem based on its SDP relaxation. Since then, many results on SDP

relaxations for discrete optimization problems have been reported in the lit-

erature. The survey [11] summarized the progress made in this direction and

listed most references available up to that time.

It should be mentioned that most existing SDP relaxations for BQPs in

the literature are built upon the lifting technique, which usually leads to an

SDP in <n×n or a higher dimensional space. Though these relaxations have

helped to obtain strong bounds for the original BQP, the scalability of these

approaches depends on the computational capacity of the SDP solvers and

is restricted to moderately sized problems as pointed out in [9].

One main purpose of this work is to reconsider some existing simple con-

vex quadratic programming relaxations for problem (1.7) and explore how

to improve these simple relaxations and use the convex QP to design new

algorithm. In particular, we follow a similar idea as proposed in [19] that

used the minimum eigenvalue of the matrix Q to derive a convex relaxation

for the original BQP (See also [20, 21]). However, for the special class of
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BQPs in this work, by introducing an artificial variable, we first reformulate

such a convex QP as an optimization problem over the second-order conic

constraints (SOCO). Such a slight modification allows us to combine the

classical graph modeling techniques to further improve the relaxation model.

Secondly, we use the convex quadratic programming model as a geometric

embedding tool to recast a special case of the BQPs, the so-called densest

k-subgraph problem, as a clustering problem where the target is to find a

single cluster of fixed size that minimizes the sum of squares of distances

within the cluster. A simple approximation algorithm is proposed for the

new clustering problem and such an algorithm can be viewed as a heuristics

for the original BQP. Numerical results based on the new relaxation model

and the proposed heuristics will be reported.

1.4 Organization of this thesis

The thesis is organized as follows. In the next Chapter, we review some ex-

isting relaxation algorithms on solving BQP problem. In Chapter 4 we first

represent the classical relaxation for problem (1.7) in the form of second-

order conic optimization and discuss how to use graph modeling techniques

to add simple constraints that can enhance the relaxation model. Numerical

experiments based on the new relaxation model will be reported. In Chapter

4, we first use the convex quadratic programming as a geometric embedding

tool to recast a special case of BQPs, the densest k-subgraph problem as

a very specific clustering problem. We then propose a algorithm with ap-

proximation ratio of 2 to the clustering problem and report numerical results

based on such an algorithm. Core-set techniques have also been employed to

develop approximation algorithm in Chapter 6. We conclude the paper by

remarks in Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

2.1 Approximation algorithm for optimization problem

Many optimization problems have been proven to be NP -hard. This means

that we can not expect polynomial time algorithms to find optimal solu-

tions for these problems. Alternatively, it’s still of interest to study these

NP-problems via polynomial time algorithms and see how close to the opti-

mality we can accomplish within polynomial time. These polynomial time

algorithms are called approximation algorithm. Various techniques and algo-

rithms are proposed in this purpose: combinatorial algorithms, for a bunch

of important problems using a wide variety of algorithm design techniques,

and linear programming based algorithms. For a complete review, we refer

to Vazirani’s book [22].

An NP -optimization problem Π is a fourtuple (I, sol,m, goal) such that

1. I is the set of the instances of Π and it is recognizable in polynomial

time.

2. Given an instance x of I, sol(x) denotes the set of feasible solution of

x. These solutions are short, that is, a polynomial p exists such that, for

any y ∈ sol(x), |y| ≤ p(|x|). Moreover, it is decidable in polynomial time

whether, for any x and any y such that |y| ≤ p(|x|), y ∈ sol(x).

3. Given an instance x and a feasible solution y of x, m(x, y) denotes the

positive integer measure of y. The function m is computable in polynomial

time and is also called the objective function.

4. goal ∈ {max, min}
The class NPO is the set of all NP optimization problems.

For example, valid instances of the vertx cover problem consist of an undi-

rected graph G = (V, E) and a cost function on vertices. A feasible solution

is a set S ⊆ V that is a cover for G. Its objective function value is the sum
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costs of all vertices in S. A feasible solution of minimum cost is an optimal

solution.

An approximation algorithm, A, for Π produces, in polynomial time, a

feasible solution whose objective function value is ”close” to the optimal.

For example, a polynomial time approximation algorithm for a maximiza-

tion problem has a performance guarantee or worst case ratio 0 < r ≤ 1,

if it outputs a feasible solution whose value is at least r times the maximal

value for all instances of the problem. A key step in designing a good approx-

imation algorithm for such a maximization problem is to establish a good

upper bound on the maximal objective value. As we will see in detail soon,

linear programming (LP) and semidefinite programming (SDP) have been

frequently used to provide such upper bounds for many NP-hard problems.

2.2 Linear relaxation method

A large fraction of the theory of approximation algorithms, is built around

linear programming(LP). Many combinatorial optimization problems can be

cast as integer programs. Once this is done, the linear relaxation of this

program provides a natural way of lower bounding the cost of the optimal

solution. This is typically a key step in designing of an approximation algo-

rithm. However, in the case of NP -problem, we cannot expect the feasible

polyhedron to have integer vertices. Thus, we need to look for a near-optimal

integral solution instead of optimal solution.

Basically there are two techniques for obtaining approximation algorithm

via linear programming. The first one, which is straightforward to some

extent, is to solve the linear problem and convert the fractional solution

obtained into an integral solution, trying to ensure that during the process

the cost does not increase much. The approximation guarantee is established

by comparing the cost of the integral and fractional solution. This technique

is called LP − rounding or simply rounding.

The second method, which is more sophisticated, is to employ the dual of

the LP-relaxation to develop algorithm. This technique is called the primal−
dual schema.Let us call the LP-relaxation the primal problem. Under this

schema, an integral solution to the primal problem and feasible solution to

the dual problem are constructed iteratively. Notice that any feasible solution
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to the dual also provides a lower bound of the optimal solution of the primal

problem. The approximation guarantee is established by comparing the two

solution.

As for the quadratic problem, linear programming has been playing an

important role in the design of approximation algorithm. A substantial com-

putational study based on linear programming(LP) and cutting planes is

given by Barahona et al. [1]. The numerial results imply the efficiency of the

LP-based algorithm when the graph is rather sparse. Some authors approach

QP with techniques developed for pseudo-Boolen functions [23]. The concept

of roof dual studied in [23] is a linear relaxation of the problem over a subset

of the triangle inequalities. Pardalos and Rodgers [24] solve QP by Branch

and Bound with a preprocessing phase where they try to fix some of the

variables. The main idea is the observation that xi can be fixed if the partial

derivative of the objective function with respect to xi does not change sign

over the convex hull of the feasible points. Surprisedly, the computational

performance of this approach is quite similar to the results reproted in [1].

Eigenvalue-based approaches have been explored when solving quadratic

problem as well. Mohar and Poljak [25] observed this when tackled the max-

cut problem:

4mc(G) ≤ max
xtx=n

xtLx = nλmax(L)

As is shown in [26] the eigenvalue relaxation can be cast as a semidefinite

program, which will be introduced in the next subsection.

2.3 SDP relaxation method

As we mentioned early, the works by Nesterov and Nemirovski [27], Alizadeh

[18] on computational semidefinite programming promoted the application

of semidefinite(SDP) relaxation. Some strong theoretical results have been

obtained from SDP relaxation when approximating the NP -problem. Here

we take max-cut problem as an example to illustrate how the SDP relaxation

works.

The max-cut problem can be written as form 1.1 as observed by Mohar and

Poljak [25]. Let G be an undirected graph on vertex set V = {1, 2, . . . , n}
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with edge weights {ce : e ∈ E(G)}, given by its adjacency matrix A = (aij)

where aij = aji = ce for e ∈ E(G), e = (ij), and aij = 0 otherwise.

The max-cut problem is to determine a subset S ⊂ V such that the total

weight of the edges cut by the partition is maximized.

mc(G) := max
S⊂V

∑

i∈S,j /∈S

aij

Let’s present the partitions (S, V/S) by vectors x ∈ {−1, 1}n with xi = 1

only if i ∈ S. Denote e as the vector of ones. Using the Laplacian L of G,

defined as

L := diag(Ae)− A

it can be checked that

1

4
xt

sLxs =
∑

i∈S,j /∈S

aij

if xS ∈ {−1, 1}n represent the partition (S, V/S). Therefore the max-cut

problem is a special case of quadratic problem (1.1).

The SDP relaxation for max-cut problem is based on the following simple

observation

xtLx = trL(xxt)

Let F = {−1, 1}n denote the feasible set of the max-cut problem. We

consider the set PC := conv{xxt : x ∈ F}, the so-called cut polytope. With

this notation the max-cut problem can be written as

max tr(LX) s.t. X ∈ PC

Since we can not precisely describe the polyhedron PC, we may instead

approximate it by the following:
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X ∈ PC ⇒ X º 0, diag(X) = e

The set {X º 0 : diag(X) = e} is called elliptope. Then we have the basic

SDP relaxation,

ϕ(G) = max tr(LX) s.t. X º 0, diag(X) = e

The above problem is a standard SDP problem and can be solved in poly-

nomial time using the ellipsoid method. Goemans and Williamson [10] shown

the following results in term of the output of the SDP relaxation problem.

Theorem 2.3.1. [10] If G is a graph on nonnegative edge weights, then

ϕ(G) ≤ 1.138mc(G)

Laurent and Poljak [28] studied the geometry of the set and improved if

the adjacency matrix A has the form A = aat.

Theorem 2.3.2. [28] Let G be a graph with adjacency matrix A = aat and

a ≥ 0, then ϕ(G) ≤ 1.138mc(G)

Though theoretically SDP relaxation is promising, the computational ef-

forts needed to solve a SDP problem is too much, especially when the size of

problem become large. Some improvements have been done by incorporating

SDP with cutting plane approach [9].

Researchers have employed semidefinite relaxations extensively for combi-

natorial problems with binary variables, including values in {−1, 1} or {0, 1}.
For the {−1, 1} model, some strong results include Goemans and Williamson

[10] and Han et al. [8]. The {0, 1} model was used for the quadratic knapsack

problem by Helmberg [29]. It is known by Laurent et al. [30] that the {−1, 1}
or {0, 1} models essentially will lead to equivalent semidefinite relaxations.
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CHAPTER 3

A SECOND-ORDER CONIC
OPTIMIZATION RELAXATION FOR BQP

PROBLEM

This section consists of two parts. In the first subsection, we introduce a new

relaxation for BQP based on the so-called second-order conic optimization.

In the second subsection, we report some numerical results based on the new

relaxation.

3.1 A second-order conic optimization relaxation for

BQP

In this subsection, we introduce a new simple relaxation model for problem

(1.7). Throughout this section, we make the following assumption

Assumption 3.1.1. The matrix Q has only zero diagonal elements.

The above assumption holds without loss of generality. This is because if

the matrix Q has nonzero diagonal elements, we can then use the relation

x2
i = xi to rewrite the objective function in 1.7 with another matrix with

zero diagonal elements.

Let λmin(Q) denote the minimal eigenvalue of the matrix Q. Under As-

sumption 3.1.1, one can easily verify that λmin(Q) ≤ 0. Moreover, by the

choice of λmin(Q), we have

Q1 = Q− λmin(Q)I º 0.

Now let us consider the following binary convex quadratic programming prob-
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lem:

min
x

xT Q1x + qT x + kλmin(Q) (3.1)

s.t.

n∑
i=1

xi = k

Ax = b

x ∈ {0, 1}n.

It is straightforward to prove the following result.

Theorem 3.1.2. The two binary quadratic programming problems are iden-

tical in sense that they enjoy a common set of optimal solutions and have the

same objective value at the optimal solution.

Based on the above theorem, we can relax the binary constraint in problem

3.1 to linear constraint x ∈ [0, 1]n. The solution of the resulting simple convex

quadratic programming problem will provide a lower bound to problem 3.1.

To further enhance the relaxation model, we introduce an artificial variable

α = xT Qx and rewrite problem 3.1 as follows:

min
x

α + qT x (3.2)

s.t.
n∑

i=1

xi = k

Ax = b

xT Q1x ≤ α− kλmin(Q)

x ∈ {0, 1}n,

and its relaxation

min
x

α + qT x (3.3)

s.t.

n∑
i=1

xi = k

Ax = b

xT Q1x ≤ α− kλmin(Q)

x ∈ [0, 1]n,
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We next discuss how to add extra constraints to model 3.3 to improve the

lower bound. For this purpose, we first note that under Assumption3.1.1, we

can cast the matrix Q as the weight matrix of a graph G. Suppose that x∗

is the optimal solution of problem1.7. Then α∗ = (x∗)T Qx∗ will be the total

weight of the minimum weight k-subgraph of G. In other words, the total

weight of the minimum weight k-subgraph of G will provide a valid lower

bound for α. We next describe how to use this observation to derive some

simple bounds on α.

Let Qi,: denote the i-row column of Q. We define the matrix Q(2) as follows

Q(2) = [q
(2)
ij ] ∈ <n×n, q

(2)
ij =

1

2

k∑

l=1

[sort(Qi,: + Qj,:)]l, ∀ i 6= j. (3.4)

Here sort(v) is a vector generated by rearranging the elements of v in an non-

decreasing order. We also then compute a constant c2 by taking the sum of

the smallest C2
k
1 elements in Q(2). One can easily see that the constant c2

provides a valid bound for α, i.e., α > c2.

Similarly we can compute a cubic matrix Q(3) by

Q(3) = [q
(3)
ijl ] ∈ <n×n×n, q

(3)
ijl =

1

3

k∑
m=1

[sort(Qi,: + Qj,: + Ql,:)]m, (3.5)

∀ i 6= j 6= l

Then we can obtain a lower bound c3 for α by computing the sum of the

smallest C3
k elements in Q(3).

In a similar vein we can construct a four-dimensional matrix Q(4), and

compute a lower bound c4 for α if k ≥ 4. Since the computation cost of such

a process grows exponentially in term of the dimensionality of the matrix,

in this paper, we use the lower bound from c2, c3 and c4 as they can provide

a valid constraint at a reasonable computation cost. Consequently, we can

add the constraint

α ≥ c4. (3.6)

to model 3.3.

1Here Cl
k denotes the combinatorial function of selecting l items out of a set of k items.
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3.2 Numerical result

In this subsection, we present some numerical results based on our quadratic

programming relaxation model and compare it with the popular SDP relax-

ation based on the (-1,1) representation of problem1.7 by using the transform

y = 2x − e ∈ {−1, 1}n or x = 1
2
(y + e). In such a case, we can rewrite the

objective in problem1.7 as 1
4
yT Qy + 1

2
yT (Qe + q) + 1

4
eT Qe. We then use the

following SDP relaxation

(
1 yT

y Y

)
º 0, diag(Y ) = 1, (3.7)

with additional constraints on y derived from the constraints in problem1.7.

All numerical experiments have been carried out on Intel Core 2 Duo CPU

E6850 3.00GHz processor with 2048 MBytes of RAM. The problems are

solved by CVX 1.2 Build 710 solver under Matlab R2008a. Since there is no

general public BQP library available, we generate most problems randomly.

In the tables below, we compare two lower bounds and the computational

time to compute these bounds. In table 3.1, we use random matrices of

size 50 and 80, whose elements are uniformly distributed between 0 and 1.

We also mention that in our experiments, we only add the simple constraint

α ≥ c2 (as discussed at the end of Section 2.1) to the relaxation model 3.3.

As one can see from Table 3.1, the bound provided by our simple QP

relaxation is always below what obtained from the SDP relaxation. But

the gap between these two bounds are very small, while the CPU time to

compute the QP bound is around half of the CPU time used in the SDP

relaxation model.

In Table 3.2, we list our experimental results for random problems whose

size are from 100 to 300. As one can see from the table, competitive bounds

have been observed for these test problems, while the CPU time to compute

the QP bound is only about one quarter of the CPU time for the SDP

relaxation model. It should also be mentioned that for problems whose size

is about n = 300 or above, the CVX solver we used failed to solve the SDP

relaxation due to the memory limit, while it solved the QP relaxation model

for much larger scale problems up to n ≈ 1000.

Finally, we also report some numerical results for BQP problems where

the matrix Q has (0,1) elements. As one can see from Table 3.3, competitive
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bounds can be obtained by solving the simple QP relaxation model 3.3 with

less CPU time.
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Problem Quadratic Relaxation SDP Relaxation
no. k bound Time bound Time

M50 1 20 142.742 2.8437 146.268 3.5877
M50 1 30 376.29 2.7928 380.051 3.7433
M50 1 40 727.89 3.037 731.792 3.8349
M50 2 15 69.9186 2.7262 74.1151 3.5493
M50 2 30 396.188 2.6996 401.978 3.5852
M50 2 45 996.301 2.988 999.413 3.9945
M80 1 20 116.942 3.117 126.025 5.5962
M80 1 40 665.914 2.963 675.859 5.6839
M80 1 60 1670.82 3.0119 1678.6 5.8015
M80 2 20 111.551 3.0574 121.901 5.4771
M80 2 40 645.984 3.2572 656.494 5.5974
M80 2 60 1625.33 3.1622 1633.71 5.7996
M80 3 10 10.1747 3.1224 8.24968 5.3421
M80 3 30 327.111 3.0837 333.843 5.4922
M80 3 50 1076.13 3.3122 1085.57 5.6676

Table 3.1: SOCO model for the BQP problem: small case

Problem Quadratic Relaxation SDP Relaxation
no. k bound Time bound Time

M100 1 20 105.259 3.2383 116.98 7.5186
M100 1 50 1082.4 3.091 1096.35 8.3739
M100 1 70 2294.12 3.2223 2307.94 7.9505
M100 2 30 315.107 3.3196 327.195 7.5318
M100 2 60 1599.31 3.208 1610.83 7.9901
M100 2 90 3933.87 3.2861 3942.58 8.32
M200 1 50 905.835 6.446 941.251 32.1381
M200 1 100 4444.53 6.5898 4482.06 37.8778
M200 1 150 10696 7.4001 10733.9 39.3988
M200 2 60 1422.65 6.6772 1449.6 38.7024
M200 2 90 3556.06 6.6628 3583.27 38.3663
M200 2 180 15962.1 7.4515 15987.1 40.2179
M300 1 50 810.163 20.2258 N/A N/A
M300 1 100 4227.98 22.0701 N/A N/A
M300 1 150 10266.1 22.7524 N/A N/A
M300 2 100 4244.87 17.5629 N/A N/A
M300 2 150 10313.8 17.7235 N/A N/A
M300 2 200 19063.2 18.0601 N/A N/A

Table 3.2: SOCO model for the BQP problem: large case
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Problem Quadratic relaxation SDP Relaxation
no. k bound Time bound Time

MB50 1 15 38.0359 3.0425 46.4833 3.6622
MB50 1 30 347.036 2.8773 354.376 3.6933
MB50 1 45 967.06 2.8803 973.523 3.5978
MB50 2 10 8.23E-08 2.7487 -1.80747 3.5593
MB50 2 20 95.6218 2.7796 103.088 3.57
MB50 2 40 684.449 2.886 691.363 3.6251
MB50 3 10 0.254515 2.7143 0.852562 3.4224
MB50 3 20 101.656 2.9615 109.535 3.4748
MB50 3 40 684.344 2.7871 690.387 3.6215
MB100 1 30 88.1464 3.4327 116.653 7.1674
MB100 1 60 935.986 3.3804 958.452 7.1556
MB100 1 90 2665.96 3.4546 2683.03 7.4072
MB100 2 25 88.1464 3.4327 116.653 7.1674
MB100 2 50 935.986 3.3804 958.452 7.1556
MB100 2 75 2665.96 3.4546 2683.03 7.4072
MB100 3 20 88.1464 3.4327 116.653 7.1674
MB100 3 40 935.986 3.3804 958.452 7.1556
MB100 3 80 2665.96 3.4546 2683.03 7.4072

Table 3.3: SOCO model for the BQP problem: binary case
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CHAPTER 4

A CLUSTERING-BASED ALGORITHM
FOR THE DENSEST-K-SUBGRAPH

PROBLEM

In this section, we consider a special variant of problem (1.7)

max xT Qx (4.1)

s.t.
n∑

i=1

xi = k x ∈ {0, 1}n.

Like in Section 2, we also assume that the matrix Q has zero diagonal el-

ements. In such a case, problem(4.1) reduces to the well-known densest

k-subgraph problem, which has been proved to be NP-hard [7]. Moreover,

unless the matrix Q has specific structure or k is as large as O(n), no ap-

proximation algorithms with a constant approximate rate has been reported

in the literature [6, 7]. In this section, we first recast problem as an equiva-

lent specific clustering problem and then propose a simple 2-approximation

algorithm for the resulting clustering problem. The section has three parts.

In the first subsection, we use convex quadratic programming as a geometric

embedding tool to reformulate problem(4.1) as a specific clustering problem.

In the second subsection, we propose a simple approximation algorithm to

the clustering problem and present a local search heuristics to further refine

the solution. In the last subsection, we report some numerical results based

on the proposed algorithm.

4.1 Equivalence between the densest k-subgraph

problem and clustering problem

We start with the following specific clustering problem. Given a data set

V = {vi ∈ <d, i = 1, · · · , n}, we want to find a subset V1 of size k such that

the sum of squares of distances within the subset V1 is minimized, i.e., we
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want to solve the following optimization problem

min
|V1|=k

∑
v∈V1

‖v −
∑

v∈V1
v

k
‖2. (4.2)

Here |V1| denotes the cardinality of the subset V1.

We next discuss how to transfer problem(4.1) into another equivalent prob-

lem of form(4.2). To start, let us recall that Q is a matrix with zero diagonals.

Therefore, there exists a constant λ satisfying Q+λI º 0. One obvious choice

is λ = −λmin(Q), which requires to compute the minimal eigenvalue λmin(Q)

first. In this paper we propose to select a sufficiently large constant λ such

that the matrix Q + λI is diagonal dominant and strictly positive definite.

We then perform the Cholesky decomposition on the matrix Q + λI such

that

Q + λI = V T V Â 0, V = [v1, v2, · · · , vn]. (4.3)

It follows immediately that

‖vi‖2 = λ, i = 1, · · · , n.

In other words, through the above process, we have constructed a data set

whose data points are located on the surface of a sphere with radius
√

λ in

space <n:

V = {vi ∈ <n : ‖vi‖2 = λ, i = 1, · · · , n}, Qij = vT
i vj,∀i 6= j = 1, · · · , n.(4.4)

Now we are ready to state the main result in this section.

Theorem 4.1.1. Suppose V is a data set defined by 4.4. Then the two

problems4.1 and 4.2 are equivalent in the sense that from a global optimal so-

lution of problem(4.1), one can derive a global optimal solution of problem4.2,

and vice verse.

Proof: To prove the theorem, we note that for any given subset V1 of

19



size k, we can rewrite the objective function in problem4.2 as the following

f(V1) =
∑
v∈V1

‖v −
∑

v∈V1
v

k
‖2

=
∑
v∈V1

‖v‖2 − 1

k
‖

∑
v∈V1

v‖2

= (k − 1)λ− 1

k

∑

vi 6=vj∈V1

vT
i vj, (4.5)

where the last equality follows from4.3. Now let us define a binary vector x

by

x ∈ {0, 1}n : xi = 1 if and only if vi ∈ V1. (4.6)

It follows from the above definition and 4.4 that

f(V1) = (k − 1)λ− 1

k
xT Qx,

which further concludes the proof of the theorem.

Before closing this subsection, we would like to point out that although

we considered only problem(4.1) in this subsection, the above reformulation

scheme can be changed slightly to handle a more generic case where the

objective function is xT Qx + qT x. To see this, we first introduce a new

matrix Q1 and lift x to higher dimensional space as below

Q1 =

(
0 1

2
qT

1
2
q Q

)
, x̃ =

(
1

x

)
. (4.7)

It follows

xT Qx + qT x = x̃T Q1x̃.

Consequently, we can solve the following binary QP

max x̃T Q1x̃ (4.8)

s.t.

n+1∑
i=1

= k + 1

x̃1 = 1, x̃i ∈ {0, 1}∀i = 2, · · · , n + 1.
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Recall that in such a case, we can assume without loss of generality that Q1

has only zero diagonal elements. Following a similar vein as in our earlier

discussion, we can assume

Q1 + λI = V T
1 V1, V1 = [v1

1, · · · , v1
n+1]

for a sufficiently large λ > 0. Similarly one can show that solving problem4.8

amounts to find a solution of the following clustering problem

min
|V1|=k+1,v1

1∈V1

∑

v1∈V1

‖v1 −
∑

v1∈V1
v1

k + 1
‖2. (4.9)

4.2 A 2-approximation algorithm

In the last subsection, we have introduced a reformulation scheme to transfer

problem3.2 into a specific clustering problem. In this subsection, we discuss

how to solve problem4.2. To start, we first note that mathematically speak-

ing, problem4.2 can be written as the following bi-level optimization problem

min
c

min
|V1|=k

∑
v∈V1

‖v − c‖2. (4.10)

Like the algorithm in [31], we can solve the above problem in an iterative

manner by subsequently updating c and the subset V1 as follows.

Procedure 1

S1.0 Randomly choose an initial starting point c ∈ <n;

S1.1 Sort all the distances ‖vi − c‖ for all the data points vi and select the

first k (or k − 1 if c ∈ V1) shortest distance points as the subset V1;

S1.2 Computer the geometric center c1 of V1;

S1.3 If c1 = c, then stop and output V1 as the solution; otherwise set c = c1

and go back to S1.1.

Following a similar idea as in [32], we can use any data point in V as the

initial starting point in the above procedure, which leads to the following

procedure.
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Procedure 2

S2.0 For i = 1 : n do

S2.1 Use vi as the initial starting point and run Procedure 1;

S2.2 Set the final objective value from iterative Procedure 1 as f ∗(vi);

S2.3 Find an index i0 = arg mini=1,··· ,n f ∗(vi) and select the corresponding

subset as the final output.

We have

Theorem 4.2.1. Suppose that V∗1 is the global optimal solution of problem4.2

with an objective value f(V∗1 ) and V1 is the solution output by Procedure 2

with an objective value f(V1). Then it holds

f(V1) ≤ 2f(V∗1 ).

Proof. Let us assume that V∗1 = {v∗1, · · · , v∗k} with a geometric center c∗, and

V1 = {v′1, · · · , v′k} centered around c̄∗. Let

v∗0 = arg min
i=1,··· ,k

‖v∗i − c∗‖.

It follows immediately

k∑
i=1

‖v∗i − v∗0‖2 =
k∑

i=1

‖v∗i − c∗‖2 + k‖v∗0 − c∗‖2 ≤ 2
k∑

i=1

‖v∗i − c∗‖2.

Since v∗0 ∈ V , it must have been used as an initial starting center in Procedure

2. Recall that V1 is the solution obtained from Procedure 2, it follws directly

f(V1) ≤
k∑

i=1

‖v∗i − v∗0‖2 ≤ 2f(V∗1 ).

We would like to point out that though a 2-approximation can be provided

by Procedure 2, the obtained solution might be still far away from the global

optimal solution of problem4.2. In order to obtain a better approximation to

problem4.2, we suggest to incorporate a local search heuristics in Procedure

1. This is done by changing S1.3 in Procedure 1 as follows.
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• Modified S1.3 of Procedure 1

S1.3’ If c1 6= c, go back to S1.1; If c1 = c, we search the subset V1 and its

complement V̄1 = V−V1 to find the data point pairs v ∈ V1 and v̄ ∈ V̄1

such that if we replace v by v̄, then the new objective value after the

replacement is reduced. If such a pair is found, then we update the

subset V1 and its geometric center correspondingly. We go back to

S1.1 after the search is done. In case no such pairs is found, output the

current subset V1 as a solution;

Remark: The local search procedure in S1.3’ is rather expensive since we

need to search the space of all possible replacements. To improve the practical

efficiency of the algorithm, we suggest to impose an upper bound on the

number of expensive searches. In our implementation, we restrict us to only

20 expensive searches for large scale problems.

We also point out that all the procedures in this subsection can be modified

to deal with the specific clustering problem4.9. With a certain effort, one can

also establish similar theoretical results as in Theorem4.2.1. The technical

details of such a process are left to interested readers.

4.3 Numerical results

In this section we report some experimental results based on the proposed

algorithm. To check whether the proposed algorithm can find the global

solution or a solution close to it, we compare the proposed algorithm with the

BARON solver. Baron a global optimization solver based on the branch-and-

reduce method supported by GAMS [33]. Since the GAMS/BARON solver

is available on the NEOS Server [34], we compute it directly on the NEOS

Server Version 5.0. In our experiments, we adopted GAMS Distribution 23.0

and GAMS/BARON 7.2.5. Note that the running time of BARON solver

based on the powerful Neos server, while our algorithm is run on a desktop

described in Section 2.2. Therefore, the comparison of CPU time is not

justified in such a case.

We also compare the proposed algorithm with a heuristics for solving dens-

est k subgraph problem suggested by Asahiro et al in [35]. As observed in

[36], such a heuristics works for general weight function and is more stable
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than other heuristics. The heuristics in [35] first find a vertex in the graph

with the minimum weighted degree under the given weight function and re-

move it from the graph until only k vertices are left. Then it performs a local

search as follows:

Heuristics[35]

1. Use the greedy algorithm to find a subgraph Gs = (Vs, Es), which is a

k-vertex induced subgraph of G;

2. Compute the degree Dmin of the least heavy vertex vmin in Gs and

remove it from Gs. Now Gs1 = (Vs1, Es1), where Vs1 = Vs\vmin.

3. Compute the number of connections in G between each vertex in V \Vs

and Vs1. Let Cmax be the maximum of all such numbers and vmax the

associated vertex.

4. If Cmax > Dmin then add vmax to Vs1. Let Vs = Vs1, and go to 2.

Otherwise, output Gs.

Since the above heuristics is very efficient, we also incorporate it into the

first stage of the proposed algorithm in this paper to select the initial cluster.

We first compare all the three algorithms on some random problems where

the symmetric matrix is randomly generated by the so-called Prime modulus

multiplicative linear congruential generators where each element is uniformly

distributed between 0 and 1. The numerical results are listed in Table 4.1.

As one can see from Table4.1, the solution obtained from the proposed

algorithm is very close to the solution provided by BARON. For several test

problems, the solutions derived from the proposed algorithm are even better

that the solutions from BARON (highlighted in the table). It should be

pointed out that BARON failed to solve problems whose size equal 1000 or

above.

We next report our experimental results on graphes with (0,1) weight. For

such a purpose, we first generate a random matrix by the Prime modulus

multiplicative linear congruential generators. Then we reset the values of the

elements of random matrix as follows: if the value of an element is larger than

0.65, we reset it to be 1, otherwise 0. The numerical results are summarized

in Table4.2
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As illustrated by Table 4.2, the solutions obtained from the proposed al-

gorithm are very close to the solutions provided by BARON and sometimes

even better.

We also point out that as shown in Tables4.1 and 4.2, the heuristics in [35]

is able to find very good solutions effectively. This is possibly due to the us-

age of random data and the following fact that as shown in [35], the heuristics

can provide an approximate solution with a ratio around 2n/k for k ≤ n/3

(See also [36]). To illustrate the difference between the proposed algorithm

and the heuristics in [35], we generate another set of testing problems as

follows. We first generate a random matrix Q1 that might be a general (or

0-1) weight matrix of size n associated with a graph G1 and compute the

minimum summation of all the rows in Q1 denoted by minsum(Q1). Then

we set k to be the largest integer less than minsum(Q1)− 1 and associate it

with a completely connected graph G2 whose edges have weight 1. Now let

us consider the joint graph G = G1 ∪G2 and consider the problem of finding

the densest k-subgraph in G, which has an obvious solution G2. Since there

is no connections between the two parts (G1 and G2) of G, the heuristics in

[35] will remove the dense subgraph G2 first and then find a k-subgraph in

G1. However, the proposed algorithm in this paper will find the real optimal

solution G2 easily. For numerical comparison, we reuse the test data sets in

Tables 4.1 and 4.2 and associate them with graph G1 in the above construc-

tion. We then compute k based on G1 and construct a complete subgraph

G2. Table 4.3 lists the solutions obtained from the proposed algorithm in

this paper and the heuristics in [35]. As one can see from Table 4.3, for this

specific class of graphes, the solutions from the heuristics are not as good as

the solutions provided by the algorithm presented in this paper.
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Problem BARON Cluster Alg. Heuristic Alg.
no. k Obj. Time Obj. Time Obj. Time

M100 1 25 394.375 0.003 390.32 0.284 390.323 0.215
M100 1 50 1410.403 0.001 1407.716 0.57 1407.716 0.225
M100 2 20 267.483 0.03 265.804 0.258 265.579 0.307
M100 2 40 938.357 0.036 938.357 0.447 938.151 0.277
M300 1 50 1503.247 0.008 1527.727 3.166 1495.985 0.535
M300 1 100 5518.131 0.002 5587.169 7.538 5505.820 0.524
M300 1 150 11883.081 0.038 12053.459 14.997 11879.158 2.379
M500 1 100 5719.759 0.231 5734.972 19.613 5707.361 2.069
M500 1 200 21438.225 0.01 21437.491 53.611 21421.953 1.85
M750 1 100 5783.016 0.077 5846.048 46.314 5846.048 4.501
M750 1 200 21833.556 0.08 21880.064 132.59 21867 4.067
M750 1 300 47713.9 0.109 47761.029 283.58 47714.503 3.870
M1000 1 100 N/A N/A 5918.5 85.057 5914.295 8.237
M1000 1 200 N/A N/A 22119 217.79 22103.611 8.294
M1000 1 300 N/A N/A 48338 419.19 48326.983 8.005
M1000 1 400 N/A N/A 84381 715.42 84352.284 8.571
M1000 1 500 N/A N/A 130046.323 1085.6 130021.577 7.933

Table 4.1: Densest k-subgraph model for BQP problem: general
weight
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Problem BARON Cluster Alg. Heuristic Alg.
no. k Obj. Time Obj. Time Obj. Time

MB100 1 25 368 0.001 356 0.266 352 0.061
MB100 1 40 807 0.03 799 0.403 799 0.078
MB100 1 50 1165 0.004 1165 0.543 1165 0.072
MB250 1 50 1325 0.008 1321 1.994 1296 0.416
MB250 1 75 2675 0.002 2648 3.256 2648 0.293
MB250 1 100 4416 0.03 4414 5.578 4383 0.270
MB250 1 125 6542 0.003 6545 7.902 6545 0.278
MB500 1 100 4688 0.004 4732 17.746 4708 0.8522
MB500 1 150 9726 0.004 9790 32.68 9788 0.675
MB500 1 200 16470 0.004 16498 54.068 16431 0.6942
MB500 1 250 24763 0.11 24750 80.401 24744 0.694
MB750 1 100 4865 0.178 4926 45.385 4925 2.488
MB750 1 200 17219 0.006 17263 131.72 17232 2.401
MB750 1 300 36264 0.053 36241 265.45 36233 2.054
MB1000 1 10 90 0.007 91 38.525 86 5.611
MB1000 1 20 295 0.008 307 40.26 296 5.604
MB1000 1 50 1425 0.120 1462 49.388 1457 5.652
MB1000 1 100 4994 0.008 4966 81.873 4938 4.631
MB1000 1 200 17378 0.008 17396 207.56 17377 4.598
MB1000 1 300 36745 0.008 36850 422.45 36786 5.248
MB1000 1 400 62853 0.037 62925 719.3 62824 4.758
MB1000 1 500 95437 0.008 95387 1091.7 95340 4.582

Table 4.2: Densest k-subgraph model for BQP problem: binary
case
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Problem Cluster Alg. Heuristic Alg.
no. k Obj. Time Obj. Time

M100 1∗ 11 110 0.273 68 0.165
MB100 1∗ 24 552 0.477 326 0.144
M100 2∗ 8 56 0.322 40 0.188

MB250 1∗ 66 4290 6.661 2118 0.280
M300 1∗ 40 1560 4.780 630 0.814

MB500 1∗ 142 20022 81.225 8856 1.301
M500 1∗ 69 4692 22.976 1628 2.4046

MB750 1∗ 224 49952 333.71 21159 3.275
M750 1∗ 118 13806 112.89 4246 9.0429

MB1000 1∗ 307 93942 827.66 38304 6.896
M1000 1∗ 158 24806 278.09 7182 15.419

Table 4.3: Densest k-subgraph model for BQP problem: special
case
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CHAPTER 5

CORE-SET TECHNIQUE FOR BQP
PROBLEM

Clustering problems have wide applications in the areas of data compression,

machine learning, data mining, VLSI design and so on. The goal is to par-

tition a set of objects into groups, where similar objects grouped together.

Different cost functions are used to guide the clustering. Formally, given a

set of n points P in <d, we want to find a set of k points K (unnecessarily

in P ) s.t. cost(P,K) is minimized:

In the k-Means problem, meanOPT(P, k) = minK⊆P,|K|=k cost(P,K), where

cost(P,K) = mean(P,K) =
∑
p∈P

dist(p,K)2.

In the k-Center problem, cenOPT(P, k) = minK⊆P,|K|=k cost(P,K), where

cost(P,K) = cen(P,K) = max
p∈P

dist(p,K).

In the k-Median problem, medOPT(P, k) = minK⊆P,|K|=k cost(P,K), where

cost(P,K) = med(P,K) =
∑
p∈P

dist(p,K).

In the following, if not specified, for two points x and y in <d, let dist(x, y) =

‖x− y‖2 (the euclidean distance); for two point sets X and Y , let

dist(X,Y ) = min
x∈X,y∈Y

dist(x, y).

If X = {x} or Y = {y}, we also write dist(X,Y ) as dist(x, Y ) or dist(X, y).

If K = {x}, we also simplify notations as cost(P, x), mean(P, x), cen(P, x),

and med(P, x).

We are most interested in the Densest-kPoints problem for its close

connection to the Binary Quadratic Programming problem, which has be
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demonstrated in the previous section. Formally, given a set of n points P in

<d, we want to find a set of k points C ⊆ P s.t. var(C) is minimized:

In the Densest-kPoints-Mean problem, var(C) is the optimal 1-means

of C:

var(C) = meanOPT(C, 1) = min
x∈<d

mean(C, x).

Similarly, in the Densest-kPoints-Center problem,

var(C) = cenOPT(C, 1) = min
x∈<d

cen(C, x).

In the Densest-kPoints-Median problem,

var(C) = medOPT(C, 1) = min
x∈<d

med(C, x).

Given a set of points P , let avg(P ) =
∑

p∈P p

|P | be the centroid of P . We can

easily get:

mean(P, x) = mean(P, avg(P )) + |P | · dist(avg(P ), x)2.

So we have the following lemma which will be used later.

Lemma 5.0.1. For any set P of n points in <d, we have

meanOPT(P, 1) = mean(P, avg(P )).

In the following subsection 5.1, we will do a survey on using core-sets

techniques for clustering. In the Subsection 5.2, we will demonstrate the

connection between the Binary Quadratic Programming problem and the

Densest-kPoints-Mean problem. We propose three classes of algorithms

for the three Densest-kPoints problems in Subsection ??. In particular,

in Subsection 5.2.2, we will apply the core-sets techniques to get (1 + ε)-

approximations.

5.1 A Survey: clustering using core-sets

A class of techniques to find good clustering is: given n points P in <d, using

either construction or sampling, we find small point sets S s.t. |S| ¿ n

(say, O(log n) or some constant parameter independent on n); the task of
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clustering P can be (somehow) guided by the much smaller sets S, and

results in efficient (1 + ε)-approximation algorithms.

This class of techniques have been successfully applied to find (1 + ε)-

approximation to the k-Center/k-Median/k-Means problems [37, 38,

39, 40] and even when the distance measure is NOT metric [41, 42]. We call

this class of methods “Core-Set” techniques (named by [38]). We will first

give a survey on how core-sets is used for clustering in this subsection.

First we list some important papers in this topic: [37] is the first work that

uses randomized core-sets to find good k-Means clustering, but it requires

the clustering to be “balanced”. [38] is the first one that introduces core-

set techniques for k-Center and k-Median. [43] introduces core-set for

projective clustering. [39] proposes faster core-set algorithms for k-Median

and k-Means in data streaming environment. [44] discovers smaller core-sets

for k-Median and k-Means. [45] discovers smaller core-sets for k-Center.

[40] extends to techniques in [37] to find good k-Means clustering in linear

time. Some other followup works include [46, 47, 48]. Two recent works

[41, 42] show that core-set techniques can be applied even with some non-

metric distance measures (which satisfies some properties).

Consider a set of n points P in <n, one can first observe that meanOPT(P, 1)

has intrinsic statistical meanings, that is (recall lemma 5.0.1),

meanOPT(P, 1)

n
=

∑
p∈P ‖p− avg(P )‖2

n
≈ n− 1

n
Var [X]

is a good estimate of Var [X] if P are n points generated from distribution

X (d = 1).

Ideally, sampling a set of m points S ⊆ P by independent draws at random

from P , n
m−1

meanOPT(S, 1) could be a good estimate for meanOPT(P, 1). But

this is NOT true. For example, suppose P has n − 1 points in the same

position, and one point far away from them, then meanOPT(S, 1) is almost

zero with high probability.

Fortunately, avg(S) is a good estimate of avg(P ); we can consider us-

ing mean(P, avg(S)) to estimate mean(P, avg(P )) = meanOPT(P, 1). Inaba,

Katoh, and Imai [37] use this observation to design a randomized core-set

algorithm for the k-Means problem.

Lemma 5.1.1 ([37]). Sampling a set of m points S from a set of n points P
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in <d using m independent draws at random, for any δ > 0,

‖avg(S)− avg(P )‖2 <
1

δm

(∑
p∈P ‖p− avg(P )‖2

n

)

with probability 1− δ.

Proof Sketch. Observe that

E [avg(S)] = avg(P ), E
[‖avg(S)− avg(P )‖2

]
=

1

m

(∑
p∈P ‖p− avg(P )‖2

n

)

and use the Markov inequality. ¤

Lemma 5.1.2 ([37]). Sampling a set of m points S from a set of n points P

in <d using m independent draws at random, for any δ > 0,

mean(P, avg(S)) <

(
1 +

1

δm

)
mean(P, avg(P )) =

(
1 +

1

δm

)
meanOPT(P, 1)

with probability 1− δ.

Proof Sketch. Recall lemma 5.0.1,

mean(P, avg(S)) = mean(P, avg(P )) + |P | · ‖avg(P )− avg(S)‖2,

and use Lemma 5.1.2. ¤

Now we present the algorithm by Kumar, Sabharwal, and Sen [40] for

finding good k-Means clustering use the same core-set, the sampling set S,

but of course, a different (and more complicated) clustering algorithm. We

focus on 2-Means clustering first. Recall P (c∗i ) are the points which are more

closer to c∗i than c∗j (j 6= i) in a point set P , for i = 1, . . . , k. Algorithms

in [40] are based on the following observation: (i) if P is very “unbalanced”

(i.e. one of |P (c∗1)| and |P (c∗2)| is very small), then we can reduce 2-Means

clustering to 1-Means clustering; (ii) at least one of |P (c∗1)| and |P (c∗2)| is

larger than |P |/2. Observation (i) leads to the following definition. (Recall

P (c∗i ) is the set of points which are more closer to c∗i than c∗j (j 6= i).)

Definition 5.1.3 (Mean-Reducible). We say the point that set P is (k, ε)-

irreducible if meanOPT(P, k − 1) ≥ (1 + 32ε)meanOPT(P, k). Otherwise, we
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say it is (k, ε)-reducible.

Let α = ε/64. We assume P is (2, α)-irreducible. Otherwise, directly from

the definition, we can get an (1+ε)-approximation to 2-Means using 1-Means.

We sample a point set S of size O(1
ε
), say |S| = 4

βε
, from P . Consider an

optimal 2-Means clustering K = {c∗1, c∗2} for P . Without loss of generality,

assume that |P (c∗1)| ≥ |P |/2. We can show that |S(c∗1)| ≥ 2
ε

with high

probability. We can guess S(c∗1) (to be precise, its subset of size 2
ε
—cycling

through all such subsets of S), and from Lemma 5.1.2, we can assume that

we have found c1 = avg(S(c∗1)) s.t.

mean(P (c∗1), c1) ≤ (1 + α)mean(P (c∗1), c
∗
1).

Lemma 5.1.4 ([40]). Let dist(c∗1, c
∗
2) = t. We have c∗1 and c1 are closed:

dist(c∗1, c1) ≤ t/4.

Proof. Otherwise (dist(c∗1, c1) > t/4), from lemma 5.1, we have

α ·mean(P (c∗1), c
∗
1) ≥ mean(P (c∗1), c1)−mean(P (c∗1), c

∗
1) (5.1)

= |P (c∗1)|dist(c∗1, c1)
2 ≥ t2|P (c∗1)|

16
; (5.2)

and thus,

mean(P (c∗1), c
∗
2) = mean(P (c∗1), c

∗
1) + |P (c∗1)|t2 (5.3)

≤ (1 + 16α)mean(P (c∗1), c
∗
1). (5.4)

So, mean(P, c∗2) ≤ (1 + 16α)mean(P, {c∗1, c∗2}), i.e., P is (2, α)-reducible

(contradiction).

The previous lemma implies the ball B(c1, t/4) (of radius t/4 centered at c1)

is contained in B(c∗1, t/2). So, B(c1, t/4)∩P ⊆ P (c∗1). We are now interested

in c∗2 and P (c∗2). So we expect P ′ = P − B(c1, t/4) has a good fraction of

points from P (c∗2). Actually, it is true.

Lemma 5.1.5 ([40]). Let P ′
1 = P (c∗1) − B(c1, t/4). Then P ′ = P ′

1 ∩ P (c∗2)

and |P (c∗2)| ≥ α|P ′
1|.
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Proof. The intuition is: if P (c∗2) is small in P ′ still, c∗1 could be a good 1-

Means solution.

Suppose |P (c∗2)| ≤ α|P ′
1|. Notice

mean(P (c∗1), c1) ≥ mean(P ′
1, c1) ≥

(
t

4

)2

|P ′
1| = t2|P ′

1|/16 (5.5)

. Since mean(P (c∗1), c1) ≤ (1 + α)mean(P (c∗1), c
∗
1), we have

t2|P (c∗2)| ≤ αt2|P ′
1| ≤ 16α(1 + α)mean(P (c∗1), c

∗
1) (5.6)

and thus

mean(P, c∗1) = mean(P (c∗1), c
∗
1) + mean(P (c∗2), c

∗
2) + t2|P (c∗2)| (5.7)

≤ (1 + 32α)mean(P, {c∗1, c∗2}), (5.8)

i.e., P is (2, α)-reducible (contradiction).

So the algorithm proceeds as follows: we sample a point set S ′ of size O( 1
α2 )

from P ′. Again, we can show |S ′(c∗2)| ≥ 2
α

with high probability. So we cycle

through all subsets of size 2
α
, and can find a point c2 s.t. mean(P (c∗2), c2) ≤

(1+α)mean(P (c∗2), c
∗
2). Therefore, K = {c1, c2} is an O(1+α)-approximation

to the 2-Means problem.

The only problem is that we do not know dist(c∗1, c
∗
2) = t, and thus cannot

identify P ′ (as well as sample S ′ from P ′). However, we can find c1 without

the knowledge about t, and guess the parameter i s.t. n
2i ≤ |P ′| ≤ n

2i−1 . Let

P ′′ be the n
2i−1 farthest points from c1 in P , and we know P ′′ ⊇ P ′, |P ′′| ≤

2|P ′|. We increase the sample size |S ′| (from P ′′) a bit, and can get the same

result. This algorithm needs O(log n) iterations (guesses i). More involved

analysis shows the running time is linear in n (|P ′′| decreases by half in every

iteration).

Theorem 5.1.6 ([40]). Given a point set P of size n in <d, we can find

(1 + ε)-approximation to the optimal 2-Means with constant probability in

time O(2(1/ε)O(1)

nd). Similar idea applies to k-Means clustering with running

time O(2(k/ε)O(1)

nd).
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5.1.1 Core-sets for k-center clustering

Similar to the core-set for k-Means, given a set of n points P in <d, we want to

find a small set S ⊆ P s.t. the 1-Center of S can be used to approximate the

1-Center of P (somehow). Because of some geometric properties, the core-set

S for k-Center is stronger than the one for k-Means (recall meanOPT(S, 1)

cannot be used to estimate meanOPT(P, 1), but, here, cenOPT(S, 1) approxi-

mates cenOPT(P, 1)); however, S here cannot be obtained by sampling from

P (while most samplings are good), but it can be obtained in a constructive

way.

For a point set P , let cP = arg minx cen(P, x), i.e., cenOPT(P, 1) = cen(P, cP )

(cP is the minimum enclosing ball of P ). cP could be found using convex

programming techniques. We also write cenOPT(P, 1) as rP (the radius of

the minimum enclosing ball of P ).

Lemma 5.1.7 ([38]). There is a subset of points S ⊆ P with |S| = O( 1
ε2

)

s.t. cenOPT(S, 1) ≥ cenOPT(P, 1)/(1 + ε) and

cen(P, cS) ≤ (1 + ε)cen(S, cS) ≤ (1 + ε)cen(P, cP ) = (1 + ε)cenOPT(P, 1).

Proof. We start constructing S with S0 = {x, y} s.t. x, y ∈ P and dist(x, y) ≥
rP . x is the furthest point away from y in P . Clearly, rP /2 ≤ rS0 ≤ rP .

There are two cases:

(i) If there is no point p ∈ P s.t. dist(p, cSi
) ≥ (1+ε)rSi

, it is done: S = Si.

(ii) If there is a point p ∈ P s.t. dist(p, cSi
) ≥ (1+ε)rSi

, set Si+1 = Si∪{p}
and i = i + 1.

We claim rSi+1
≥ (1+ ε2/16)rSi

and thus the above iteration can repeat at

most O( 1
ε2

) times. Finally, S has size O( 1
ε2

) and satisfies the desired property.

This claim can be proved as follows.

If dist(cSi
, cSi+1

) < εrSi
/2, then by triangle inequality,

rSi+1
≥ dist(p, cSi+1

) ≥ dist(p, cSi
)− dist(cSi

, cSi+1
) ≥

(
1 +

ε

2

)
rSi

.

If dist(cSi
, cSi+1

) ≥ εrSi
/2, then let H be the (d− 1)-dim hyperplane that

passes through ci and is orthogonal to cSi
cSi+1

. Let H− be the open half-

space having p inside. Then we know there is a point x ∈ Si in the closed

half-space <d−H− s.t. dist(cSi
, x) = ri (note the minimum enclosing ball of
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Si centered at cSi
) [49]. Therefore,

rSi+1
≥ dist(cSi+1

, x) ≥
√

r2
Si

+
ε2

4
r2
Si
≥

(
1 +

ε2

16

)
rSi

.

So the proof is completed.

The algorithm of 2-Center clustering is as follows. Suppose P is partitioned

into two sets X and Y in the optimal solution. We start from two empty

point sets SX and SY as the core-sets for X and Y , respectively. In each

of the following iterations, we pick a point p furthest away from SX ∪ SY .

From a guessing oracle, if p ∈ X, then put p into SX ; otherwise, put p

into SY . From the above lemma, after O(1/ε2) iterations, we can get an

O(1 + ε)-approximation for 2-Center clustering (K = {cSX
, cSY

}).
To remove the guessing oracle, we enumerate all the possibilities, which

needs 2O(1/ε2). This algorithm can be also extended for general k, and the

running time turns to be kO(k/ε2).

Theorem 5.1.8 ([38]). For any point set P with size n in <d and 0 < ε <

1, an (1 + ε)-approximation of k-Center clustering for P can be found in

2O(k log k/ε2)nd time.

Smaller core-set of size O(1/ε) for the k-Center clustering is found in [45].

5.1.2 Core-sets for k-Median clustering

The construction of core-sets of k-Median clustering is more complicated

than the ones of k-Means and k-Center clustering. Badoiu, Har-Peled, and

Indyk proposed an randomized construction in [38]. Note: the size of core-set

for k-Median might be sublinearly dependent on n (say O(log n)), but is still

small enough for designing efficient algorithms on it.

For a set of n points P in <d, let AvgMed(P, k) = medOPT(P, k)/|P |,
which can be interpreted as the average “radius” of the k-Median clustering.

Specifically, let K∗ = {c∗} be the optimal solution to 1-Median clustering

medOPT(P, 1) on P . The following lemma says, we can find an (1 + ε)-

approximation c′ for medOPT(P, 1) in a space spanned by a small number of

samples from P (also, c′ and c∗ are closed).
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Lemma 5.1.9 ([38]). Let H be a random sample of O(1/ε3 log 1/ε) points

from P . With constant probability, these two events happen: (i) The flat

spanned by H, span(H), contains a (1 + ε)-approximation 1-Median, c′, for

P , and (ii) H contains a point in distance ≤ 2AvgMed(P, 1) from the center

of the optimal solution, c∗.

Proof Sketch. We skip the detailed proof here. But the main idea is similar

to the one in Lemma 5.1.7. First, from the definition, we immediately have

E [dist(si, c
∗)] = AvgMed(P, 1), if si is a point sampled uniformly from P (so

(ii) is true). Let Fi be the flat spanned by the first i samples s1, s2, . . . , si,

i.e., span({s1, . . . , si}), and c′ be the projection of c∗ on Fi. It can be shown

dist(c′, c∗) shrinks very quickly as long as there are enough points in P NOT

closed to Fi. Finally, either dist(c′, c∗) becomes small enough or most points

are closed to Fi; in both cases, c′ could be a good approximation to c∗, and

H = {s1, s2, . . .}. ¤

Before presenting the construction of core-sets for k-Median clustering, we

assume:

(a) The distance between any two points in P is at least one;

(b) The optimal k-Median cost medOPT(P, k) is at most nb for some b =

O(1).

If (a) or (b) is not true, we cover space by a grid of size Lε/(5nd), and snap

points of P to this grid, where L satisfying L/2 ≤ medOPT(P, k) ≤ nL can

be find using an 2-approximation algorithm for the k-Center clustering. The

cost of any k-Median clustering in the new point set differs at most a factor

of (1 + ε/5) from the same one of P .

Now we present the construction of core-sets for k-Median clustering. The

idea is based on (i) and (ii) in Lemma 5.1.9. Let’s first assume we have found

t s.t. t/2 ≤ AvgMed(P, 1) ≤ t. Clearly, t can be found by checking t = 2i

for i = 0, 1, . . . , O(log n) because of (b).

Let H be a random sample of O(1/ε3 log 1/ε) points from P . As in

Lemma 5.1.9 (i), c′ (the projection of c∗ on span(H)) is a good approxi-

mation to the 1-Median solution for P . So our goal is to find a small set of

points S(P,H) (core-set), s.t. some of them is closed to c′ and thus could be

used to approximate 1-Median solution for P . From Lemma 5.1.9 (ii), some

point in H is in distance ≤ 2t from c∗ (and thus ≤ 2t from c′). Therefore,
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we construct a grid near each point of H to locate c′, and the vertices of the

grids form the set S(P,H).

A bit more formally, let Gp(t) be a grid of side length O(εt/|R|) centered

at p on H, and let B(p, 2t) be a ball of radius 2t centered at p. Let S ′(p, t) =

Gp(t) ∩ B(p, 2t). Clearly, if dist(p, c∗) ≤ 2t, then c′ falls into B(p, 2t), and

thus some point in S ′(p, t) can be used as an (1 + ε)-approximation to the

1-Median solution for P .

Finally, S(P,H) =
⋃O(log n)

i=0

⋃
p∈H S ′(p, 2i) and

|S(P,H)| = O
(
2O(1/ε4) log n

)
.

Lemma 5.1.10 ([38]). Let H be a random sample of O(1/ε3 log 1/ε) points

from P . One can compute a point set S(P,H) of size O
(
2O(1/ε4) log n

)
, s.t.

with high probability (over the choice of H), there is a point q ∈ S(P,H) s.t.

med(P, q) ≤ (1 + ε)medOPT(P, 1).

Using the ideas similar to the algorithm for k-Means described before,

one may obtain “efficient” (1 + ε)-approximation algorithms for k-Median

clustering.

Theorem 5.1.11 ([38]). Given a point set P of size n in <n, we can find

(1 + ε) approximation to the optimal 2-Median with high probability in time

O(2(1/ε)O(1)
dO(1)n logO(1) n). Similar idea applies to k-Median clustering with

running time O(2(k/ε)O(1)
dO(1)n logO(k) n).

5.1.3 Core-sets for non-metric distance clustering

Recently, Ackermann, Blömer, and Sohler [41] and their followup work [42]

extend the core-set techniques to the non-metric distance clustering. They

show that if a (maybe non-metric) distance measure is [γ, δ]-sampleable, the

algorithm in [40] can be adapted to find (1 + ε)-approximation to the gener-

alized k-Median problem in linear time.

Note the only different between the generalized k-Median problem and

the k-Median problem is that, in the generalized k-Median problem, we

do NOT require the distance measure to be a metric. We allow dist(x, y) 6=
dist(y, x) and dist(x, y) + dist(y, z) < dist(x.z), but only require dist(x, y) =

0 ⇔ x = y. So the k-Means problem is a special case of the generalized
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k-Median problem if the distance measure is defined to be dist(x, y) =

‖x− y‖2
2.

The algorithm in [41] is nearly identical to the one in [40]. But, a significant

difference between Ackermann et al.’s work and [40] is that the analysis of

Ackermann et al.’s algorithms does NOT depend on the symmetry or the tri-

angle inequality of distance measure, while previous works, like [40], do. Also,

they discuss which (non-metric) distance measures are [γ, δ]-sampleable, and

construct core-sets for these measures.

Below, let cP be the optimal 1-Median of any point set P , i.e. med(P, cP ) =

medOPT(P, 1).

We first state the main result of [41]. Note dist(x, y) is unnecessarily

‖x− y‖2 now.

Theorem 5.1.12. Given an integer k and any ε < 1. Assume that for δ < 1

and β = ε/3, distance measure dist(·, ·) satisfies:

(a) For every finite point set S, an optimal 1-Median cS, i.e. med(S, cS) =

medOPT(S, 1), can be computed in time depending only on |S|.
(b) There exists a constant mγ,δ such that for every point set P of size n

and for every uniform sample multiset S ⊆ P of size mγ,δ, an optimal

1-Median cS of S satisfies

Pr [med(P, cS) ≤ (1 + γ)medOPT(P, 1)] ≥ 1− δ.

Then there exists an algorithm that with constant probability returns an (1 +

ε)-approximation of the k-Median problem w.r.t. dist(·, ·) for input point

set P of size n in time O(n2( k
ε
)O(1)

).

(b) in the above theorem is called superset sampling or core-set sampling

(for S is the so-called “core-set”). Their analysis is even simpler than the

one in [40].

Let’s restate the algorithm for k = 2. Let K∗ = {c∗1, c∗2} be the optimal

2-Median, and P ∗
i = P (c∗i ) be the cluster containing c∗i with |P ∗

1 | ≥ α|P |
(α > 1/4).

1. (Superset sampling) Obtain c1 from P with

med(P ∗
1 , c1) ≤ (1 + γ)medOPT(P ∗

1 , 1)

.

39



2. Let N be the smallest subset of closest points from P towards c1 s.t.

for the remaining points R = P/N , we have |P ∗
2 ∩ R| ≥ α|R|. Assign

N to c1. Note: P ∗
2 ∩R = P ∗

2 /N .

3. (Superset sampling) Obtain c2 from R with

med(P ∗
2 ∩R, c2) ≤ (1 + γ)medOPT(P ∗

2 ∩R, 1)

.

4. Use K = {c1, c2} as a 2-Median solution.

In 1 above, to obtain c1, we take a sample multiset S of size mγ,δ from P

and enumerate all the O(
mγ,δ

α
)-subsets of S. Similar guessing oracle is used

in 3. So if N is known, the running time is O
(
n2( 2

α
mγ,δ)O(1)

)
.

Of course, N is unknown. So N is approximated by partitioning P into

N (1), N (2), . . ., N (dlog ne). Here, N (1) is the n/2 closest points to c1; N (2) is the

next n/4 closest points to c1; N (3) is the next n/8 closest points to c1; . . . . Let

R(j) = P/
⋃j

i=1 N (i), and let v be the minimal value s.t. |P ∗
2 ∩R(v)| ≥ α|R(v)|.

We will approximate N = N (1) ∪N (2) ∪ . . . ∪N (v).

Then,

med(P,K) ≤ med(P ∗
1 , c1) + med(P ∗

2 ∩N, c1) + med(P ∗
2 /N, c2).

Using the following claims:

(i) med(P ∗
2 ∩N, c1) ≤ 8α ·med(P ∗

1 , c1);

(ii) med(P ∗
1 , c1) ≤ (1 + γ) ·med(P ∗

1 , c∗1);

(iii) med(P ∗
2 /N, c2) ≤ (1 + γ) ·med(P ∗

2 /N, c∗2).

(ii) and (iii) are because of the superset sampling technique. (i) is non-

trivial but it is mainly because there are fewer points in N (j) from P ∗
2 (≤ 2α)

than from P ∗
1 (> 1− 2α), if j ≤ v. Then we can conclude:

med(P,K) ≤ (1 + 8α)(1 + γ)med(P ∗
1 , c∗1) + (1 + γ)med(P ∗

2 /N, c∗2)(5.9)

≤ (1 + 8α)(1 + γ)medOPT(P, 2).

In the case that N does not exist, or more precisely, v = dlog ne, we end

up with a single point R(v) = {q}. Let q itself forms a cluster with cost
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0, and the above analysis is still valid. Therefore, this algorithm gives an

(1 + 8α)(1 + γ))-approximation.

Constructing core-sets for non-metric distance. Given the algorithm

above, the rest question is for which non-metric distance measures, the super-

set sampling technique is valid for finding good core-sets. [41, 42] introduce

such sampling techniques for non-metric distance measures like the Kullback-

Leibler divergence, Mahalanobis distance, Bregman divergance, etc. So the

above algorithm is valid for a broad class of distance definitions.

5.2 Densest k-points v.s. BQP problem

The main reason leading us to study the Densest-kPoints-Mean problem

is its interesting connection to the Binary Quadratic Programming problem,

which has been shown early the previous section.

Geometrically, the 2-approximation algorithm mentioned in previous sec-

tion can be interpreted for Densest-kPoints problems (dist(·, ·) is a met-

ric): given a set of n points P , for every point p ∈ P , let Cp be the k nearest

points to p in P (including p itself); among the n choices of Cp’s, we pick the

one that minimize var(Cp). It can be shown this is an 2-approximation algo-

rithm for all the three versions of Densest-kPoints problems (depending

on how var(Cp) is defined): Densest-kPoints-Mean, Densest-kPoints-

Center, and Densest-kPoints-Median.

Theorem 5.2.1. This algorithm gives 2-approximation to Densest-kPoints

problems.

Proof. It is straightforward to prove the performance guarantee for the Cen-

ter version and Median version. Following is the proof for the Means version

(a bit trickier).

Suppose the optimal solution is C∗ = {c∗1, c∗2, . . . , c∗k}, c∗ = avg(C∗) =∑
c∗
i
∈C∗ c∗i
k

is the centroid of C∗. And suppose C ′ = {c′1, c′2, . . . , c′k} is the

solution found by our algorithm, and v0 among P minimizes minimize the

distance to c∗, ‖v0− c∗‖2. Note
∑

c∗i∈C∗(c
∗
i − c∗) = 0. It is clear that we have

41



SOL =
∑

c′i∈C′ ‖c′i − avg(C ′)‖2
2 ≤

∑
c∗i∈C∗ ‖c∗i − v0‖2

2. So,

SOL ≤
∑

c∗i∈C∗
‖c∗i − v0‖2

2

=
∑

c∗i∈C∗
‖(c∗i − c∗) + (v0 − c∗)‖2

2

=
∑

c∗i∈C∗
(‖c∗i − c∗‖2

2 + 2(c∗i − c∗)(v0 − c∗) + ‖v0 − c∗‖2
2)

=


 ∑

c∗i∈C∗
‖c∗i − c∗‖2

2


 +


2(v0 − c∗)T

∑

c∗i∈C∗
(c∗i − c∗)


 + k‖v0 − c∗‖2

2

=


 ∑

c∗i∈C∗
‖c∗i − c∗‖2

2


 + k‖v0 − c∗‖2

2

≤ 2
∑

c∗i∈C∗
‖c∗i − c∗‖2

2 = 2OPT .

The last step is due to v0 is the closed point to c∗ in P . Proofs for the Center

version and Median version are similar and simpler.

5.2.1 (1 + ε)-approximation algorithms using exponential
grids

One idea to improve the approximation ratio 2 is to use the vertices in a grid

to approximate the center of the optimal solution to Densest-kPoints

problems. The problem is there might be too many vertices in the grid we

need to check. We can extend the idea of [50] in high-dimension space to

restrict the search space. Since this algorithm is extended from [50], we will

only introduce the main ideas and state our main results below.

Given a set of n points P in <d, we first use the algorithm introduced above

to get an 2-approximation C ′. Suppose SOL = var(C ′) and OPT = var(C∗),

where C∗ is the optimal solution, then we have SOL ≤ 2OPT. We know

the radius of C∗ (the distance from the center c∗ of C∗ to the farthest point

in C∗) ≤ OPT (or
√

OPT for the Mean version).

So, we first use a grid of size SOL (or
√

SOL for the Mean version) to

cover the point set P . At the first glance, there is an unbounded number

of squares in this grid we need to consider (if the scale of P is unbounded).

42



But, we can observe that an optimal solution C∗ may intersect with at most

3d squares in this grid. Therefore, where are at most n · 3d squares we need

to consider.

For each of these squares we need to consider, we use a smaller grid of

size ε·SOL
2

(or ε·SOL
2k

for the Median version, ε·√SOL√
2k

for the Mean version) to

cover it. We enumerate all the vertices in each small grid as the center of the

solution, and output the best one.

Theorem 5.2.2. Given a set of n points P , there are (1 + ε)-approximation

algorithms with running time O
((

6
ε

)d
n2

)
for Densest-kPoints-Center,

O
((

6k
ε

)d
n2

)
for Densest-kPoints-Median, and O

((
3
√

2k
ε

)d

n2

)

for Densest-kPoints-Mean.

Similar sampling techniques as in [50] might be applied to reduce the com-

plexity from n2 to n. However, when d is large, the grid-based algorithms

discussed above does not scale well. In particular, when we transform the

BQP problem into a Densest-kPoints-Mean problem, the d is equal to

n. In the next subsection, we will show how the core-set techniques can be

used to get faster algorithms, e.g. with running time O(n1/ε) or O(21/εn).

5.2.2 Faster (1 + ε)-approximation algorithms using core-sets

The core-set techniques can be directly applied in Densest-kPoints prob-

lems to get faster algorithms. The main idea is: Consider an optimal solution

C∗ (of size k) for a set of n points P , if C∗ has a core-set S, i.e. the center

of S, cS, is an approximation to the center of C∗, cC∗ , then we can first find

cS for some S, and find the nearest k points to cS in P . It can be shown

this is an (1 + ε)-approximation. The time complexity depends on how S is

obtained (through enumeration or through sampling), and how fast cS can

be computed.

In the following part, we use cost(C, x) to denote mean(C, x), cen(C, x),

or med(C, x). Recall the Densest-kPoints problem is: given a set of n

points P in <d, find C ⊆ P of size k and x ∈ <d s.t. cost(C, x) is minimized.

Fixing a point set S, let cS be the point x ∈ <d that minimizes cost(S, x).

Assumption 5.2.3. For any ε < 1, there exists a constant m(ε) s.t. for any

point set X in <d, there exists a subset (core-set) S ⊆ X of size m(ε): (i)
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we can compute cS in time f(ε); (ii) cost(X, cS) ≤ (1 + ε)cost(X, cX).

Recall the core-set techniques surveyed in Section 5.1, the above assump-

tion is valid the for Means/Center version of cost(·, ·). For the Median ver-

sion, a slightly weaker assumption holds: we can find g(ε, |X|) candidates in

<d based on S without knowing P , s.t. one of these candidates, denoted by

c′S, satisfies cost(X, cS) ≤ (1 + ε)cost(X, cX).

Given n points P and integer k, suppose C∗ of size k is the optimal solu-

tion to the Densest-kPoints problem. From the above assumption, there

exists a core-set S of size m(ε) for C∗. Therefore, our algorithm guess S

by enumerating all m(ε)-subsets of P , and for each possible subset S, we

construct a solution by finding cS and k nearest points to cS in P . Finally,

we pick the best solution. The running time is O(nm(ε) · f(ε) · nk).

For the Median version, we also need to try every candidate for a possible

set S, so the running time is O(nm(ε) · g(ε, k) · nk).

In the Means/Center version, we have m(ε) = 1
ε
, and f(ε) = poly(1

ε
), so

the running time is nO(1/ε). In the Median version, we have m(ε) = O( 1
ε4

)

and g(ε, k) = O(2O(1/ε4) log k), so the running time is nO(1/ε4).

Theorem 5.2.4. There is an (1 + ε)-approximation algorithm with run-

ning time nO(1/ε) for the Densest-kPoints-Mean/Densest-kPoints-

Center problem, or with running time nO(1/ε4) for the Densest-kPoints-

Median problem.

Assumption 5.2.5. For any ε < 1, there exists a constant m(ε) s.t. for

any point set X in <d, from an uniformly random sample multiset (core-set)

S ⊆ X of size m(ε): (i) we can compute cS in time f(ε); (ii) cost(X, cS) ≤
(1 + ε)cost(X, cX) holds with high probability.

As is discussed in Section 5.1, this assumption is valid for the Means ver-

sion. For the Median version, a slightly weaker assumption holds, but the

algorithm and the analysis are similar. So we will focus on the Means version

in the rest part.

Given n points P and integer k, suppose C∗ of size k is the optimal solution

to Densest-kPoints problem. If k ≥ λn, then, with high probability, a

random sample multiset S ′ ⊆ P of size 2
λ·ε contains at least 1

ε
points from C∗

with high probability (from the Makov inequality). Let S ⊆ S ′ denote these
1
ε

points (i.e. S ⊆ C∗ also). From Assumption 5.2.5 (note m(ε) = 1
ε

for the
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Means version), with high probability, cost(C∗, cS) ≤ (1+ε)cost(C∗, cC∗). So

the set of the k nearest points to cS is an (1+ε)-approximation for Densest-

kPoints-Mean with high probability. The only problem is that we do not

know the 1
ε
-subset S ⊆ S ′ that satisfies S ⊆ C∗, so we enumerate all the

1
ε
-subsets of S ′ to guess S.

Our algorithm works as follows. Sample a multiset S ′ of size 2
λ·ε from P .

Enumerate all 1
ε
-subsets S of S ′. For each S, compute cS and find the k

nearest points to cS in P—these k points form a candidate solution. Output

the best among all candidate solutions.

Theorem 5.2.6. If k ≥ λn for some constant λ, there is a randomized

(1 + ε)-approximation algorithm with running time O(2O(1/ε)nk) for

the Densest-kPoints-Mean problem, or with running time O(2O(1/ε4)nk)

for the Densest-kPoints-Median problem.

Using similar analysis and the Chernoff bounds, we can relax the require-

ment on k a bit. It turns out that the problem is hard when k is “small” but

not constant (k ∈ ω(1) ∩ o(log n)).

Theorem 5.2.7. If k = Ω(n log m
m

), there is a randomized

(1 + 1
log m

)-approximation algorithm with running time O(2O(m)nk) for the

Densest-kPoints-Mean problem, or with running time O(2O(m4)nk) for

the Densest-kPoints-Median problem.
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

For the first part of the thesis, we review the quadratic problem and its ap-

plications. Existing algorithms on quadratic problem in literature, especially

linear relaxation and SDP relaxation method, have been discussed.

In the second part we derive a new second-order conic optimization prob-

lem by recasting the convex quadratic programming relaxation of BQPs.

Such a modification allows us to incorporate the classical graph modeling

techniques into the relaxation model to enhance the relaxation model. Nu-

merical performance from the new model is promising in some cases.

The third part propose to use convex QP as a geometric embedding tool

to reformulate the BQP problem as a specific clustering problem. Our new

model not only provides a new approach to efficiently solve BQP problem, but

also opens new avenue for tackling clustering problem. A 2-approximation

algorithm to the new clustering problem is presented. An efficient heuristics

is introduced for the original BQP based on its equivalent clustering model.

Numerical experiments illustrates that the proposed heuristics can locate the

global optimum or a solution very close to the global optimum quickly.

In the forth part, we propose the Densest-kPoints-Mean problems

and approximation algorithms for it. We also did a survey on core-set tech-

niques for clustering, and then use the core-set techniques to obtain (1 + ε)-

approximation algorithms for the Densest-kPoints problems (which are

faster than the grid-based (1 + ε)-approximation algorithms). In particular,

we propose a PTAS for the BQP problem using core-sets.

There are some ways for further improvement. For example the interrela-

tion between certain classes of BQPs and clustering problems can not only

help to better understand the theoretical properties of the underlying BQPs,

but also lead to the development of efficient resolution techniques. In this

paper, we focus only on two special classes of BQPs. It will be interesting to

investigate whether the approaches proposed in this paper can be extended
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to other classes of BQPs or equivalent discrete optimization problems.

Some interesting future work also include:

Is there any faster algorithm for the Densest-kPoints problems when

k ∈ ω(1) ∩ o(log n)? Either when k is constant (then use the naive O(nk)

algorithm) or when k is large (use the core-set techniques), the problem is

easy. It is interesting whether there is faster (1+ ε)-approximation algorithm

when k is in the middle.

It is interesting whether the core-set techniques can be used in other clus-

tering problems, like clustering uncertain data [51, 52] or coclustering prob-

lem [53], to obtain provably good results. We have found core-sets techniques

can be applied in the MinSumRadii problem (minimize the sum of radii of

clusters) to obtain (1 + ε)-approximation (the algorithm is identical to the

one for k-Center clustering, introduced in Section 5.1.1).
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