
c© 2010 Wojciech Jan Truty

DESIGN AND IMPLEMENTATION OF A FLOATING POINT UNIT
FOR RIGEL, A MASSIVELY PARALLEL ACCELERATOR

BY

WOJCIECH JAN TRUTY

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Adviser:

Associate Professor Sanjay Patel

ABSTRACT

Scientific applications rely heavily on floating point data types. Floating point operations

are complex and require complicated hardware that is both area and power intensive. The

emergence of massively parallel architectures like Rigel creates new challenges and poses new

questions with respect to floating point support. The massively parallel aspect of Rigel places

great emphasis on area efficient, low power designs. At the same time, Rigel is a general

purpose accelerator and must provide high performance for a wide class of applications. This

thesis presents an analysis of various floating point unit (FPU) components with respect to

Rigel, and attempts to present a candidate design of an FPU that balances performance,

area, and power and is suitable for massively parallel architectures like Rigel.

ii

TABLE OF CONTENTS

LIST OF ABBREVIATIONS . iv

CHAPTER 1 INTRODUCTION . 1
1.1 Notation . 2
1.2 Thesis Organization . 2
1.3 Rigel: A Massively Parallel General Purpose Accelerator 2
1.4 Motivation . 4

CHAPTER 2 FLOATING POINT REPRESENTATION 6
2.1 Introduction . 6
2.2 IEEE 754 Standard . 7
2.3 Floating Point Operations . 11

CHAPTER 3 FPU DESIGN AND IMPLEMENTATION 21
3.1 Methods . 21
3.2 Design Space Exploration . 21
3.3 Adder Implementation . 30
3.4 Multiplier Implementation . 34
3.5 Fused Multiply and Add Implementation . 37
3.6 Comparator . 43
3.7 Format Conversion . 44
3.8 Implementation Conclusions . 45

CHAPTER 4 PERFORMANCE EVALUATION . 48
4.1 Methods . 48
4.2 Fused Multiply and Add Performance Analysis 49
4.3 Dense Matrix Multiply . 53
4.4 Sobel Edge Detection . 58
4.5 Convolution . 60
4.6 Scaled Vector Addition . 62
4.7 MRI . 62
4.8 Conclusion . 63

REFERENCES . 64

iii

LIST OF ABBREVIATIONS

ASIC Application specific integrated circuit

CPU Central processing unit

FMACC Fused multiply and accumulate

FMADD Fused multiply and add

FPU Floating point unit

GPU Graphics processing unit

IEEE The Institute of Electrical and Electronics Engineers, Inc.

LSB Least significant bit

MIMD Multiple instruction, multiple data

MSB Most significant bit

RNE Round to Nearest, Ties to Even

SPMD Single program, multiple data

iv

CHAPTER 1

INTRODUCTION

Ever since Jack Kilby built the first integrated circuit, scientists and engineers have been

pushing hard to fit as many components as possible on silicon wafers, and to operate them

as fast as possible. Until recently, obtaining higher performance from digital logic was

synonymous with increasing the operating frequency. However, overall performance of any

hardware element is not solely a function of the operating frequency. The architecture of the

hardware plays a crucial role in how “fast” it will operate. The architecture becomes even

more critical as frequency scaling slows down due to increasing power and heat concerns.

In a processor, performance is affected by the number of cores, amount of cache memory,

instruction issue bandwidth, and the operations that the processor supports. Some pro-

cessors are designed for general purpose, every day tasks and are architected to minimize

latency (seconds
instruction

). Others are designed to perform exceptionally well at specific tasks and

maximize throughput (instructions
second

). The latter are known as accelerators and are used in

applications such graphics, audio, video, and signal processing. Accelerators are architected

to take advantage of the characteristics of their target domain.

A new class of accelerators has emerged. These compute accelerators are designed for a

broader set of applications and include general purpose GPUs [1], Cell [2], and Larrabee

[3]. They attain high throughput by executing applications on multiple processing units

in parallel. Applications targeted for compute accelerators involve a significant number of

operations on floating point data types. Floating point computation is complex and presents

challenges to hardware designers who are trying to balance high performance with low area

and power requirements. As the number of parallel processing units increases, floating point

unit (FPU) architectures need to adapt to stricter area and power budgets while continuing

to meet the high throughput demands of accelerators.

1

1.1 Notation

Throughout this thesis it is necessary to refer to individual bits, and bit ranges of multi-bit

signals. A notation similar to that used in Verilog is used throughout this thesis. For an

n-bit signal x, the LSB refers to the right-most bit, and is denoted as x[0]. The MSB refers

to the left-most bit and is denoted as x[n − 1]. To indicate that a portion of signal x is

accessed, the notation x[a : b] is used, where a indicates the starting bit of the range, b is

the ending bit in the range, and a and b satisfy the condition a > b. For example, for an

8-bit signal sum, the notation sum[7 : 5] indicates that the most significant three bits are

accessed.

1.2 Thesis Organization

This thesis is organized in the following way. The rest of this chapter is devoted to describing

Rigel and providing motivation for the investigation. Chapter 2 describes the floating point

system as well as algorithms behind floating point operations. Chapter 3 covers implemen-

tation of each FPU component including an initial investigation using DesignWare blocks.

It also presents a candidate design. Finally, Chapter 4 evaluates the performance of the

candidate design using a Rigel benchmark suite.

1.3 Rigel: A Massively Parallel General Purpose Accelerator

1.3.1 Introduction

Rigel [4] is a MIMD compute accelerator targeted toward task oriented applications in the

areas of visual computing, signal processing, and computational science. The architectural

objective of Rigel is to provide high compute throughput with a minimum per-core area

while still supporting a SPMD parallel model. Compared to existing accelerators which con-

tain domain-specific hardware, specialized memories, and restrictive programming models,

Rigel is more flexible and provides a more straightforward target for a broader set of appli-

2

Cluster View Chip Level View

Core Core Core Core
GDDR

Global Cache BanksTile View

In
te

rf
ac

e
to

in
te

rc
on

ne
ct

Cluster Cache

Core Core Core Core

Interconnect

Interconnect

In
te

rc
on

ne
ct

I$ I$ I$ I$

II I$ I$

Figure 1.1: Diagram of the Rigel processor.

cations. Rigel’s low-level programming interface adopts a single global address space model

where parallel work is expressed in a task-centric, bulk-synchronized manner using minimal

hardware support [5]. A block diagram of Rigel is shown in Figure 1.1.

The fundamental processing element of Rigel is an area-optimized dual-issue fine-grained

in-order processing core. The cores execute a 32-bit RISC-like instruction set with 32 general-

purpose registers. Cores are organized as clusters of eight cores attached to a shared write-

back data cache called the cluster cache. The cores, cluster cache, core-to-cluster-cache

interconnect and the cluster-to-global interconnect logic make a single Rigel cluster. Clusters

are connected and grouped logically into a tile. Clusters within a tile share resources on a

tree-structured interconnect. Tiles are distributed across the chip and are attached to global

cache banks via a multi-stage crossbar interconnect. The global caches provide buffering for

high-bandwidth memory controllers and are the point of coherence for memory.

1.3.2 Core Design

As mentioned previously, the Rigel core is a dual-issue in-order processing core. The pipeline

is divided into several stages: a Fetch stage, a Decode stage, a four stage Execution phase,

and a Writeback stage. Figure 1.2 illustrates the core pipeline.

In the Fetch stage, two instructions are loaded from the instruction cache. In the De-

code stage, both instructions access the four-ported general purpose register file, and are

dispatched to their respective execution units. The scheduler can dual-issue up to two in-

structions as long as no dependencies or structural hazards exist, and both instructions

3

Fetch Decode
Exec 1

(Int)

Mem 2

FPU 1

CCRead

RegFile

L1
I-Cache

L1
D-Cache

WB

Mem3

Score-
Board

Bypass
Network

Exec 2

FPU 2 FPU 3 FPU 4

ClusterNet
(Bus)

ClusterNet
(Arb)

(empty) (empty)

SPRF

Exec Mem FPU CCRead

Mem 1
(EA)

Figure 1.2: Diagram of the Rigel core pipeline.

belong to different execution pipes. The Execution pipeline is divided into three separate

pipes: Integer/ALU, Floating Point, and Memory. To achieve high throughput, all three

pipes are fully bypassed.

1.4 Motivation

Previous works [6], [7], [8], [9] provide a thorough investigation and description of FPU

designs. However, the emergence of highly parallel processing units creates new challenges

not previously seen or considered. In the past, higher performance could be obtained by

increasing the operating frequency or by utilizing faster yet larger hardware designs. In

a massively parallel processor like Rigel, area and power concerns make it necessary to

investigate other options for increasing performance. The design of the core is simplified by

not supporting traps or exceptions in hardware.

Additionally, performance of an accelerator like Rigel is measured in a different domain

than performance of a general purpose CPU. Whereas the architecture of the latter is de-

signed to minimize latency (seconds
instruction

), an accelerator is designed for the highest throughput

(instructions
second

). At the chip level, Rigel achieves high throughput by utilizing over 1000 cores.

At the core level, high performance is achieved by dual-issuing instructions and bypassing

4

results. The goal of this thesis is to develop a clear picture of an FPU design which bal-

ances performance, area, and power. Although the design is intended for Rigel, the results

obtained in the analysis should serve as a guide for any massively parallel system.

5

CHAPTER 2

FLOATING POINT REPRESENTATION

2.1 Introduction

In an ideal world, all data would be an integer. It could then be represented in the binary

format with ease. However, scientific, digital signal processing (DSP), and many other

general purpose applications must handle inputs with fractional components. This poses a

question: how does one represent a fractional number in binary, a system that is designed

to work with whole values from the beginning? One solution is to use fixed binary point

representation where some bits represent the whole part of the number and some represent

the fractional part. One drawback to this approach, however, is that a highly precise fixed

point representation has a limited range since a set number of bits is used to represent the

decimal portion. Conversely, a fixed point representation with large range has low precision

because fewer bits are used to represent the fractional component.

To address this issue, one needs a format which can represent a large range of values

by varying the precision. Generally, numbers closer to zero need to be represented with

higher precision, while large numbers are not expected to be as precise. For example, if one

considers buying a $1,000,000 house, the cent amount is insignificant. But when deciding

whether to buy gasoline at $2.00 per gallon versus $2.99 a gallon, the exact price makes a

difference. Such representation is called floating point representation since the radix point

“floats” and its location is not static as it is with fixed point representation. One form

of floating point representation which is broadly used in industry follows the IEEE 754

Standard for Floating-Point Arithmetic [10].

6

2.2 IEEE 754 Standard

The IEEE standard defines a method of representing fractional values in binary, and it

outlines numerous operations on floating point operands. Furthermore, the standard sets

rules on how to handle abnormalities, as well as irregular operands and results, such as square

roots of negative numbers. The standard has been updated and revised several times, and

its latest major revision was in 2008.

2.2.1 Representation

As shown in Figure 2.1, a floating point number conforming to the IEEE standard is made

up of a sign (S), an exponent (E), and a mantissa (M) field. The value represented by any

given IEEE Floating Point number may be obtaining by using Equation (2.1).

value = (−1)S ∗ 2E−bias ∗M (2.1)

The IEEE standard defines several levels of precision: binary32 (single precision), binary64

(double precision), and binary128 (extended precision). The bit length of each field varies

based on the precision of the floating point number and is outlined in Table 2.1.

S E M

Figure 2.1: IEEE floating point representation.

The sign bit S is needed because IEEE Floating Point numbers are stored in a sign-

magnitude format. S is zero for positive numbers, and one for negative numbers. The

mantissa M is normalized such that it satisfies the condition 1.02 ≤ M < 10.02. Because of

Table 2.1: IEEE 754 Floating Point Bit-Lengths

Format Sign Bit Exponent Mantissa Total Size
binary32 1 8 23 32
binary64 1 11 52 64
binary128 1 15 112 128

7

this property, the MSB of the mantissa M is always implied to be one, so it is not stored as

part of the floating point number. However, with this assumption in place a problem exists:

M cannot hold values in the range [0, 1.0). As outlined by Figure 2.2, this creates a large

discontinuity between the number zero and the next representable value in a region where

high precision is expected. To address this issue, the IEEE 754 standard defines an exception

to the rule for numbers whose exponent value is zero. For such numbers the implied MSB

of the mantissa is zero. The numbers whose exponent E is zero and mantissa M is non-zero

are known as denormalized numbers. They allow IEEE Floating Point numbers to have

high precision for the whole region near the number zero. Their inclusion in the standard

is controversial because, as will be noted in further sections, they add more complexity to

IEEE Floating Point computations.

−2 −1 0 1 2−0.8 −0.6 −0.4 0.4 0.6 0.8

Figure 2.2: The effects of the implied one notation in the mantissa on number
representability. Numbers very close to zero cannot be represented.

The exponent E is obtained by adding an offset to the 2’s complement representation of the

number of right shifts needed to normalize the mantissa. For an N-bit exponent, a bias value

2N−1−1 is used as an offset. Biasing the exponent gives the IEEE Floating Point numbers a

monotonically increasing property which enables the use of unsigned comparators to compare

two IEEE Floating Point numbers [11]. Unsigned comparators are more advantageous than

2’s complement comparators because of their smaller hardware size and reduced complexity.

IEEE Floating Point numbers may also express special values. Not-a-number (NaN) is

used to identify a result of an illegal operation, such as 0/0 or
√
−1. Section 2.2.4 describes

NaNs and illegal operations in more detail. The values ±∞ are used to represent numbers

which are out of range. To represent a special value, the N-bit exponent E field is set to

the value 2N − 1. The mantissa field is set to zero to represent an out of range value. To

represent a NaN, the mantissa field is set to a non-zero value.

8

2.2.2 Operations

The IEEE 754 standard defines several required operations on floating point numbers, and

suggests some operations which may be implemented, but are not required by the standard.

Among the required are the common operations such as multiplication, addition, division,

square root, and conversion between integer and IEEE Floating Point data types.

2.2.3 Rounding

Many times a floating point operation produces a result which cannot be precisely rep-

resented using IEEE Floating Point numbers. Multiplication of two N-bit numbers, for

example, may produce a product which requires 2N bits to represent. Only N bits may be

kept in the final product, however, and a decision must be made whether or not to round

the result based on the truncated bits.

The IEEE 754 standard defines five rounding modes which specify how to generate the

final result. In the Round to Nearest, Ties Break to Even (RNE) mode, the result is rounded

to the nearest representable number, with ties rounding to an even number. In the Round

Away from Zero mode, the result is rounded to the nearest representable number, with ties

rounding to the number of greater magnitude. In the Round to Zero mode the extra bits

of the result are discarded, therefore rounding to a number with smaller magnitude. This

method is also known as Truncation. The Round to Positive Infinity mode specifies that

the final answer must be no smaller than the exact result. Finally, the Round to Negative

Infinity mode specifies that the rounded result must be no greater than the infinitely precise

result. The standard also specifies that a way to select any rounding mode during execution

must be provided. By default, the Round to Nearest Even mode is selected. As an example,

Table 2.2 shows the effects of each rounding mode on several values, assuming that the end

result must be rounded to a whole number.

A common method of preserving precision without having to perform computations on

arbitrarily wide operands is to use three status bits: guard, sticky, and round. The guard

bit is the most significant bit that was shifted out and will not be a part of the final answer.

The round bit is the second most significant bit that was shifted out. Finally, the sticky bit

9

Table 2.2: Effects of Rounding Modes on Results
Exact Value To Nearest Even Away from Zero To Zero To +∞ To −∞

-3.5 -4 -4 -3 -3 -4
-1.12 -1 -1 -1 -1 -2
1.5 2 2 1 2 1
2.5 2 3 2 3 2
2.51 3 3 2 3 2

is the result of ORing all the other shifted out bits. These three bits are all that is needed

to generate a properly rounded result.

2.2.4 Handling Exceptions

The IEEE 754 standard specifies how to handle cases when it is not possible to generate a

correct result. There are several times when this occurs. One is when operands have invalid

values. This occurs when any of the operands are NaN, when multiplying zero by ±∞,

when the divisor is zero, or the input into the square root function is negative, for example.

Second is when valid operands generate an invalid result. This occurs when multiplication of

two values generates a result which is too large to represent in a given format, for example.

The IEEE 754 standard does not specify how the system should behave after detecting

an exception. However, it states that a method for signaling when exceptions occur needs

to be provided. There are five flags which are used for this: Invalid Operation, Division by

Zero, Overflow, Underflow, and Inexact.

As mentioned previously, the standard provides the NaN values to represent results of

invalid operations. There are two types of NaNs: quiet NaN, and signaling NaN. Quiet

NaNs are used to represent results when the Invalid Operation flag is set. With some

exceptions, operations on quiet NaNs do not generate any exception flags. The result of

operations on quiet NaNs is a quiet NaN whose bit pattern is the same as one of the NaN

inputs. Signaling NaNs are usually used to represent uninitialized variables, and operations

on signaling NaNs raise the Invalid Operation flag.

10

2.3 Floating Point Operations

This section describes the most common operations required by the IEEE standard in detail,

and explains the algorithms for implementing them.

2.3.1 Multiplication

Multiplication of two floating point values follows basic algebraic concepts [12]. A number x

may be rewritten as shown in Equation (2.2), where xn is a normalized mantissa of x, base

is the number base (10 for decimal and two for binary), and exp is the number of shifts the

radix point was shifted to the left to normalize x.

xn × baseexp (2.2)

From Equation (2.1), it is clear that any IEEE Standard Floating Point number may be

written in this manner, and the format provides all the components directly. Given this

notation, the product of two numbers x and y may be obtained by the following procedure:

product = x ∗ y

= xn × baseexp1 ∗ yn × baseexp2

= xn ∗ yn × baseexp1+exp2

This splits the multiplication process into two parallel data paths. The first calculates

the sum of the exponents, while the second calculates the product of the two mantissas.

Because both data paths operate on standard integer values, they may be implemented

using conventional hardware methods. A more detailed discussion with regards to hardware

implementation may be found in Section 3.4.

When dealing with IEEE Floating Point numbers, the multiplication process involves

several additional steps which are outlined in Figure 2.3. In the Unpack Operands (UO)

stage, the mantissa and exponent fields of each operand need to be evaluated in order to

correctly generate the implied MSB of the mantissa. To reiterate, the MSB is implied to be

11

Se

P
R/ENR

MM

AE

UO

Se

P
Ma

Mb

Eb

Ea
B

A
Result

Signa

Signb

Figure 2.3: Data flow diagram for the IEEE 754 floating point multiply operation.

one for all cases except when the exponent is zero. If the exponent is zero and the mantissa

is greater than zero, the exponent is set to one since this indicates that the operand is a

denormalized number.

After unpacking, the 2n-bit product (P) is generated in the Multiply Mantissas (MM)

stage by multiplying the two n-bit mantissas. In parallel, the exponent sum (Se) is obtained

in the Add Exponents (AE) stage by adding the biased exponents together and subtracting

the exponent bias. The latter is needed because without the subtraction the sum would be

Se = (expa + bias) + (expb + bias) = 2 ∗ bias+ expa + expb, which would not be correct. The

sign of the product is determined by XORing the sign bits of the two operands.

The Normalize Result (NR) stage follows next. Here, P is normalized to obtain a mantissa

which conforms to the IEEE Floating Point format. Remembering basic algebra rules of

multiplying two decimal numbers, if the first number contains a digits before and b digits

after the radix point, and the second number contains o digits before and p digits after the

radix point, the product of the two numbers will contain up to a+ b digits before and b+ p

digits after the radix point. An n-bit mantissa contains one bit before and n − 1 bits after

the binary point. Therefore, the product of two n-bit mantissas will contain 2n bits. Bits

P [2n− 3 : 0] are fractional bits, while P [2n− 1 : 2n− 2] represent the whole number. If the

MSB of P is one, the binary point is shifted one position to the left by right-shifting P and

incrementing Se. If P > 0 and Se < 1, P needs to be right-shifted, and for each right shift

Se needs to be incremented until either P = 0 or Se = 1. This occurs when the product is

12

a denormalized number. If denormalized operands are present, it is necessary to locate the

leading one in P . This is done by left-shifting P and decrementing Se for every shift until

Se = 1 or P [2n − 2] = 1, whichever happens first. If, after shifting, P [2n − 2] is zero and

P > 0, the result is a denormalized number. After normalization, bits P [2n − 2 : n − 1]

become the candidate mantissa.

Denormalized values introduce additional complexity. Therefore, some implementations

which do not fully conform to the IEEE 754 standard flush all denormalized operands and

results to zero. This simplifies the normalization hardware greatly, because at most only one

right shift may have to be performed (which can be implemented using multiplexers). And

in all cases where Se < 0, the result is set to zero and treated as an underflow.

The next phase is the Rounding/Exception Handling (R/E) stage. Here the result is

rounded following the guidelines described in Section 2.2.3. After rounding it may be nec-

essary to re-normalize the mantissa, and to modify the exponent of the result accordingly.

If the rounded result is a denormalized number, the exponent is set to zero. Additionally,

the result is checked for validity as described in Section 2.2.4 so that the proper Exception

Flags may be set. For example, if the product is a denormalized number, the Underflow

Flag needs to be set, and the exponent of the result needs to be set to zero. On the other

hand, if one of the operands was zero and the other ∞, then the Invalid Flag needs to be

raised and the result is changed to a quiet NaN.

2.3.2 Addition

Addition is a conceptually simple operation. Humans can perform this task without much

difficulty, even on floating point numbers. Computers, on the other hand, have a much

more difficult time summing floating point values. Floating point addition requires multiple

dependent steps which must be executed serially, making it a long latency task.

For the IEEE Floating Point operands the basic floating point addition algorithm can be

broken down into the following steps [13]:

1. Operand Unpacking: The signs, exponents, and mantissas of both operands are

separated. The appropriate MSB is appended to each mantissa. Normally, the MSB is

13

one for a non-zero operand. However, in the case of denormalized numbers, the MSB

is set to zero and the exponent is set to one. The effective operation is determined by

evaluating the sign bits as well as the opcode of the instruction. If the instruction is

an addition and the signs of the operands differ, or if the instruction is a subtraction

and the signs of the operands are the same, then the effective operation is subtraction.

Otherwise the effective operation is addition. The mantissas are also converted from

sign magnitude form to 2’s complement representation based on their respective signs.

2. Operand Swapping: The exponents are compared to determine which exponent is

bigger (Emax) and which one is smaller (Emin). The operands are swapped so that

Mmax is the mantissa of the operand with the bigger exponent, and Mmin becomes the

mantissa of the operand whose exponent is Emin. This is done so that the exponent

difference (calculated in the next step) is always positive.

3. Operand Alignment: Here, the operand whose exponent is Emin needs to be aligned

so that its exponent is equal to Emax. This is done by first computing the difference

of the two exponents: d = Emax − Emin. Next, the mantissa Mmin is right-shifted by

d places. The tentative exponent of the sum is Emax.

4. Mantissa Addition: The two mantissas are added together. Due to swapping, the

resulting operation becomes Mmax + Mmin in the case of addition, and Mmax −Mmin

in the case of subtraction. If the result is negative, a 2’s complement operation needs

to be performed to convert it to sign magnitude format. This involves a negation and

addition.

5. Normalization: The sum needs to be normalized so that the MSB is one, or in the

case of denormalized numbers the exponent is one. This involves finding the most

significant one and then left-shifting the sum. For each left shift Emax is decremented

by one.

6. Rounding: The sum must be rounded correctly (see Section 2.2.3). This involves an

optional incrementation of the sum.

14

7. Renormalization: It may be necessary to normalize the rounded sum by right-

shifting it, and incrementing Emax.

8. Exception Detection/Final Result Generation: Based on the inputs and the

final value of the result, the exception flags are generated. Additionally, if any of the

operands were NaNs or infinities, the appropriate result is generated. The final sum

is generated based on the input operands, the effective operation, rounded result, and

any exceptions which were detected.

Figure 2.4(a) illustrates the above steps. Reducing the latency of addition can only happen

if the number of these serial steps is reduced. There are several key observations which aid

in optimizing addition:

1. It is possible to reduce the number of 2’s complements to one. When the effective

operation is subtraction, by swapping the operands so that the smaller number is

subtracted from the larger number, 2’s complement no longer needs to be performed

on both operands in step 1 and on the result in step 4. Instead, only Mmin is negated

(1’s complement) and a carry is added in step 4 to perform the 2’s complement on the

smaller number.

2. As shown in Figure 2.4(b) the Operand Alignment step involves a large right shift,

and the Normalization step involves a large left shift. These shifts are mutually ex-

clusive [9]. The initial left shift is needed only when the operands are very different

in magnitudes; more concretely, when the exponent difference d is greater than one.

The right shift during Normalization is needed only when subtraction causes most of

the most significant bits of the result to be zero, known as “massive cancellation.” It

happens only when the magnitudes of the two operands are similar; more concretely, d

is less than or equal to one. Therefore, it is possible to split the addition path into two

parallel paths: a CLOSE path for d ≤ 1 and the FAR path for d > 1. Figure 2.4(c)

illustrates the modified data path.

3. It is possible to parallelize a portion of the Normalization step with the Mantissa

Addition step. In particular, the leading zero counter can be replaced with a leading

15

zero anticipator which operates in parallel with the addition process [14].

4. Not all operands require that every step be executed to generate the proper result.

Therefore, it is possible to output the sum earlier for some values [15].

5. It is also possible to speed up the rounding step by pre-computing all of the possible

results using a specialized adder [16].

Unpack

Swap

Align

Add

Normalize

Round

Handle Exceptions

A B

Sum

(a)

Add

Norm.

Align

Right Shift Mantissa

Add Mantissas

Count
Leading Zeros

Exponent
Difference

Left Shift Mantissa

Swap

Round

(b)

Right Shift Mantissa

Add Mantissas

Exponent
Difference Add Mantissas

Count
Leading Zeros

Left Shift Mantissa

Swap

Round

Far Close

(c)

Figure 2.4: An illustration of the steps involved in the basic IEEE Floating Point addition
process (a). The Align, Add, and Normalization stages are shown in greater detail (b) to
show how they can be optimized using the dual path implementation (c).

It is important to remember that the IEEE standard dictates that the sum must be either

exact or precisely rounded if it cannot be represented exactly. It may seem, then, that

due to the arbitrarily long right shifting during alignment the addition must be done on

infinitely wide operands. However, that is not the case. For an n-bit mantissa, it is possible

to retain all the necessary information to generate a precisely rounded result by summing

two (n + 1)-bit operands. In the Alignment step both mantissas are first appended with a

zero at the LSB. This is done so that the proper value is returned during subtraction due

to 2’s complement. Mmin is then right-shifted d places (where d is the exponent difference),

but the values of the bits which were shifted out are noted. After the alignment shift is

16

completed, the most significant bit that was shifted out becomes the guard bit, and the

result of ORing the other shifted out bits is known as the sticky bit. The guard and sticky

bits are used in the rounding process to determine whether the number should be rounded

up or down [12]. After alignment, the (n+ 1)-bit Mmax and Mmin are added or subtracted

together (depending on the effective operation). This is best illustrated in Figure 2.5.

Mmin

Mmax

Msum

+ ...
...

Guard Sticky

0 ... 0

n+1

0

Figure 2.5: An illustration of the alignment process.

2.3.3 Fused Multiply and Add

Multiply and add operations are among the most common floating point operations [8]. In

many cases the result of a multiply operation is subsequently added to some other number.

Often several products are added together, or accumulated, into a running sum. The dot

product takes the form x = a0∗b0+a1∗b1+...+ai∗bi and is one of the most obvious examples

of multiplication and accumulation. In pseudo code, the dot product can be expressed as a

series of multiply and add pairs as shown in Figure 2.6(a).

mul temp0,a0,b0
mul x,a1,b1
add x,x,temp0
mul temp0,a1,b1
add x, x, temp0
.....
mul temp0, ai,bi
add x, x, temp0

(a)

mul x,a0,b0
fmadd x,a1,b1,x
fmadd x,a2,b2,x
...
fmadd x,ai,bi,x

(b)

Figure 2.6: Pseudo code for calculating the dot product using separate multiply and add
operations (a), and using fused multiply-add operations (b).

17

Because accumulating the products is an extremely common task in scientific computations

[17], computer architects combined the separate multiplication and addition operations into

a single fused multiply-add operation (FMADD). With the FMADD operation in place, the

dot product can be streamlined into the code shown in Figure 2.6(b).

Originally, the IEEE 754 standard did not support a fused multiply-add operation on

floating point numbers, so each manufacturer which chose to support it was free to imple-

ment this functionality in their own way. This opened doors to inconsistencies since some

implementations rounded the intermediate product, while others added the exact product

to the sum before rounding the final answer. As of its 2008 revision, the IEEE 754 standard

supports a floating point FMADD operation, and dictates the exact way it should be imple-

mented and executed. In the code in Figure 2.6(a), each time a multiplication is performed

the product is rounded. When an add operation is executed, the sum is rounded as well.

Therefore, there are two rounding steps for each pair of multiply and add operations. This

results in decreased precision and introduces greater rounding errors for long streams of com-

putations. The IEEE 754 standard FMADD operation, on the other hand, only rounds the

final sum and not the intermediate product. The data path for an FMADD implementation

conforming to the IEEE standard is shown in Figure 2.7.

R
o
u
n
dMultiply

Add
A

B

D

C

D = (A * B) + C

Figure 2.7: Fused multiply-add data flow.

Besides the increased precision, the fused multiply and add operation provides a greater

benefit in terms of reduced code size and an increased instruction issue bandwidth. As can

be seen by looking at the two dot product implementations in Figure 2.6, each FMADD

operation replaces two separate instructions yielding a speedup of up to two. Section 4.2

contains an in depth analysis of the performance benefits of the FMADD operation.

18

2.3.4 Comparison

The ability to compare two floating point numbers is invaluable because it gives programmers

the freedom to use floating point data types in control structures such as loops or if/else

statements. One way to compare two floating point numbers when a hardware comparator

is not available, is to write a software algorithm which uses an integer comparator. However,

this method may require several cycles before the result of the comparison is ready. This is

not an ideal solution for an accelerator because any conditional statements depending on the

result of the floating point comparison will stall. Therefore, a fast hardware floating point

comparator is needed.

The method for comparing two floating point numbers is straightforward and does not

require complicated hardware. Because IEEE Floating Point numbers are stored in a sign-

magnitude, monotonically increasing format, an unsigned integer comparator with some ad-

ditional control logic is all that is needed to produce the correct result [11]. When comparing

two positive values, the result of the comparator is directly fed to the output. However, when

either of the numbers is negative, the results of the comparator’s “less than” and “greater

than” outputs are inverted before being passed to the final output. Additionally, one must

consider special cases such as the existence of positive and negative zeros, as well as infinities

and NaNs. In the case of zeros, their signs are ignored and two zero values are treated as

equal. In the case of infinities, the unsigned comparator produces the correct result except

for the “equal to” case. This comparison raises the invalid flag, as does any comparison on

a NaN. A schematic of the complete floating point comparator is shown in Figure 2.8.

2.3.5 Division and Square Root

Division of floating point values and the square root function are complex, and therefore long

latency, operations. Many implementations have been proposed for division and square root

algorithms, and they are evaluated by Oberman [7]. The most common implementations

are based on iterative digit recurrence algorithms. These offer smaller and less complex

hardware at a cost of longer latency and low throughput. To obtain shorter latency, look-up

tables may be used. Another method to lower the latency of division is to first compute the

19

a < b a = b a > b

a b

Unsigned Comparator

<= < >= = > Compare
Type

Zero
Detector

Negative
Detector

Number A Number B

Result

Exception
Detector

Exception
Flags

Figure 2.8: IEEE floating point comparator.

reciprocal of the divisor. The quotient is the product of the dividend and the reciprocal.

The principal characteristics of the square root algorithm are similar to division [7].

2.3.6 Absolute Value

Absolute value is a very simple operation on IEEE Floating Point numbers. Since the values

are stored in sign-magnitude format, all that is needed to compute the absolute value of a

floating point number is to change the sign bit to zero. Additionally, it is important to check

for exceptions.

20

CHAPTER 3

FPU DESIGN AND IMPLEMENTATION

3.1 Methods

Rigel is implemented using the Synopsys ASIC flow targeted for a commercial 40 nm process

at 1.2 GHz. All synthesis was performed with an operating voltage set to 0.9 V with nominal

conditions and targeted for minimum area. Initial design investigation (see Section 3.2.2)

used DesignWare components synthesized using Design Compiler with automatic repipelin-

ing turned on. Most of the FPU was implemented using the Arithmatica CellMath suite

using the SAVI Language. The SAVI implementation was synthesized using Arithmatica

with ultra high effort and automatic repipelining turned on. The resulting netlist was in-

tegrated into the Rigel pipeline by performing an ultra high effort incremental compilation

with automatic repipelining in Design Compiler’s topographical mode. The design was veri-

fied using the Arithmatica generated bit accurate C-model of the design. The outputs from

the model were compared to the outputs of a separate C program.

3.2 Design Space Exploration

3.2.1 Targeted Applications

Rigel is a massively parallel general purpose accelerator. It is designed for computationally

intensive applications in the area of visual computing, signal processing, and scientific com-

putation. Tasks such as vector scaling, dot products, and vector addition are very common

in the targeted applications. As indicated by Oberman [8], multiplication and addition are

the most common floating point operations performed by such applications; therefore, it is

21

critical to optimize the adder and multiplier for best performance. Additionally operations

such as division, square root, absolute value, and conversion between the integer and floating

point format need to be supported either by using software emulation or, ideally, directly in

the hardware.

3.2.2 DesignWare Study

The Rigel group uses a Synopsys based design flow with access to Synopsys DesignWare

Intellectual Property (IP). DesignWare is a collection of pre-designed logic blocks licensed

by Synopsys. Of particular interest are the floating point units, such as an adder/subtracter,

multiplier, square root unit, and dividers. All of these units are parametrized and offer

features such as IEEE compliant rounding modes, optional denormalized number support,

and various precisions. It is possible to use DesignWare blocks to implement a fully functional

FPU. However, given the fact that the group also has access to Arithmatica, the decision

was made to implement the whole FPU in Arithmatica.

However, before attempting to design a full FPU in Arithmatica, it was important to

determine what the base parameters should be. DesignWare floating point adder/subtracter

(DW fp addsub), multiplier (DW fp mult), square root (DW fp sqrt), and reciprocal

(DW fp recip) blocks were characterized to obtain the expected area, power, and latency

estimates for the overall design. Synthesis was performed at various frequencies: 750 MHz,

1.0 GHz, 1.2 GHz, 1.5 GHz. For all these frequencies, single and double precision were

investigated. For all these, all DesignWare supported rounding modes [18] were varied. De-

normalized number support was turned on and off. Finally, latency was varied from one to

four stages. Since the DesignWare blocks in question contain no sequential logic, registers

were added at the outputs and automatic repipelining was turned on in Design Complier.

DW fp addsub

Table 3.1 shows a summary of results from characterizing the DesignWare adder/subtracter.

At 750 MHz, a single and double precision single-stage adder/subtracter is possible. At 1.0

GHz and 1.2 GHz at least two stages are needed for either precision. At 1.5 GHz, at least

22

two stages are needed for single precision; however, double precision requires at least three

stages. Figure 3.1 shows the estimated area of a single precision adder/subtracter for various

latencies and frequencies with no denormalized number support with RNE rounding mode.

The area savings obtained by not supporting double precision are illustrated in Figure 3.2

for each configuration of frequency, latency, rounding, and denormalized number support;

the figure shows how much smaller (in percent) the area is when the precision is changed from

double to single. On average, a double precision adder/subtracter requires about twice as

much area as a single precision adder/subtracter with identical parameters. The shaded area

shows the region within half a standard deviation away from the mean. The large deviations

from the mean are a consequence of the synthesis process when automatic repipelining is

turned on.

Figure 3.3 illustrates how much smaller (in percent) the area of an adder/subtracter which

flushes denormalized values to zero is than a fully compliant single precision IEEE Floating

Point adder/subtracter. On average, the area of an adder/subtracter which does not support

denormalized values is between 10 and 23 percent smaller than that of a fully compliant

adder/subtracter. The large variance is once again a fault of the synthesizing with automatic

repipelining.

Figure 3.4 shows the area savings (in percent) obtained by truncating the result instead

of implementing the RNE mode. An additional 5 to 11 percent more area is required if RNE

mode is implemented. This is consistent with the fact that although rounding requires an

extra adder and additional control logic, these do not require a lot more extra area.

Table 3.1: DW fp addsub Characterization Summary

Frequency Precision Stages Required Power Consumption (mW)
750 MHz Single 1 1.5
750 MHz Double 1 3.1
1.0 GHz Single 2 2.4
1.0 GHz Double 2 4.0
1.2 GHz Single 2 3.2
1.2 GHz Double 2 5.6
1.5 GHz Single 2 3.7
1.5 GHz Double 3 7.1

23

Number of Stages vs Area for Various Frequencies

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4

Number of Stages

4

750MHz

1.0GHz

1.2GHz

1.5GHz

A
re

a
(µ

m
)2

Figure 3.1: The estimated area of a single precision adder/subtracter with Round to Nearest
Even mode and no denormalized number support for varying latencies and frequencies.

Area Saved by not Supporting Double Precision for
Varying Frequencies, Latencies, and Rounding Modes

0

10

20

30

40

50

60

70

80

A
re

a
S

av
in

g
s

(%
)

Higher Frequency Lower Frequency

Figure 3.2: Area savings (in percent) in an adder/subtracter obtained from not supporting
double precision for various frequencies, latencies, and rounding modes. The shaded region
indicates area within half a standard deviation.

DW fp mult

Table 3.2 shows a summary of results from characterizing the DesignWare multiplier. At

750 MHz, a single stage, single and double precision multiplier is possible. At 1.0 GHz

and 1.2 GHz at least two stages are needed for either precision. At 1.5 GHz, at least two

24

Area Saved by Not Supporting Denormalized Numbers
for Varying Frequencies, Latencies, and Rounding Modes

0

10

20

30

40

50

60

70

A
re

a
S

av
in

g
s

(%
)

Higher Frequency Lower Frequency

Figure 3.3: The area saved (in percent) by flushing all denormalized operands and results to
zero in an adder/subtracter instead of supporting them according to the IEEE 754 Standard.
The shaded region indicates area within half a standard deviation.

Area Saved by Truncating Instead of RNE
for Various Precisions, Latencies, and Frequencies

0

5

10

15

20

25

30

A
re

a
S

av
in

g
s

%

Higher Frequency Lower Frequency

Figure 3.4: The area saved (in percent) by truncating the results of an adder/subtracter
instead of rounding them to nearest even. The shaded region indicates area within half a
standard deviation.

stages are needed for single precision; however, double precision requires at least three stages.

Figure 3.5 shows the estimated area of a single precision multiplier for various latencies and

frequencies. Denormalized number support was turned off and Round to Nearest Even mode

was selected.

The area saved by not supporting double precision is illustrated in Figure 3.6. For every

25

Table 3.2: DW fp mult Characterization Summary

Frequency Precision Stages Required Power Consumption (mW)
750 MHz Single 1 1.9
750 MHz Double 1 10.3
1.0 GHz Single 2 4.0
1.0 GHz Double 2 15.1
1.2 GHz Single 2 5.3
1.2 GHz Double 2 23.8
1.5 GHz Single 2 6.3
1.5 GHz Double 3 31.7

configuration of frequency, latency, rounding, and denormalized number support, the figure

shows how much smaller (in percent) the area is when the precision is changed from double

to single. On average, a single precision multiplier requires about 75 percent less area than

a double precision multiplier with identical parameters. The shaded area shows the region

within half a standard deviation away from the mean. The large deviations from the mean

are a consequence of the synthesis process when automatic repipelining is turned on.

Number of Stages vs Area
for Various Frequencies

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4

Number of Stages

750MHz

1.0GHz

1.2GHz

1.5GHz

A
re

a
(µ

m
)2

Figure 3.5: The estimated area of a single precision multiplier with Round to Nearest Even
mode and no denormalized number support for varying latencies and frequencies.

Figure 3.7 illustrates how much smaller (in percent) the area of a multiplier which flushes

denormalized values to zero is than that of a fully compliant single precision IEEE Floating

Point multiplier. The area saved by flushing all denormalized operands and results to zero

26

Area Saved by not supporting Double Precision for
Varying Frequencies, Latencies, and Rounding Modes

0

10

20

30

40

50

60

70

80

90

A
re

a
S

av
in

g
s

(%
)

Higher Frequency Lower Frequency

Figure 3.6: Area savings (in percent) in a multiplier obtained from not supporting double
precision for various frequencies, latencies, and rounding modes. The shaded region indicates
area within half a standard deviation.

is between 10 and 23 percent.

Area Saved by not supporting Denormalized Numbers
for Varying Frequencies, Latencies, and Rounding Modes

0

10

20

30

40

50

60

70

A
re

a
S

av
in

g
s

(%
)

Higher Frequency Lower Frequency

Figure 3.7: The area savings from not supporting denormalized numbers in a multiplier.
The shaded region indicates area within half a standard deviation.

Figure 3.8 shows the area savings (in percent) associated with truncating the product

instead of implementing the RNE mode. Between 4 and 9 percent of area is saved. As was

the case with the adder/subtracter, these savings are consistent with the fact that rounding

requires an extra adder and additional control logic, neither of which takes up a significant

27

portion of the area.

Area Savings by Truncating instead of RNE
 for Various Precisions, Latencies, and Frequencies

0

5

10

15

20

25

30

A
re

a
S

av
in

g
s

(%
)

Higher Frequency Lower Frequency

Figure 3.8: The area saved (in percent) by truncating the results of a multiplier instead of
rounding them to nearest even. The shaded region indicates area within half a standard
deviation.

DW fp sqrt

Table 3.3 shows a summary of results from characterizing the DesignWare Square Root unit.

At 750 MHz, at least three stages are required for single precision. At 1.0 GHz, four stages

are needed for single precision. At 1.2 GHz, at least five stages are needed; however, if

Truncate mode is selected a four stage square root unit is feasible. At 1.5 GHz, six stages

are required for RNE mode, while five are required if Truncation is used. Figure 3.9 shows

the estimated area of a single precision square root unit for various latencies and frequencies.

Denormalized number support was turned off and RNE mode was selected.

Table 3.3: DW fp sqrt Characterization Summary

Frequency Precision Stages Required Power Consumption (mW)
750 MHz Single 3 4.5
1.0 GHz Single 4 6.3
1.2 GHz Single 5 (4 with Truncation) 9.1
1.5 GHz Single 6 (5 with Truncation) 13.5

28

Number of Stages vs Area
for Various Frequencies

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5

Number of Stages

750MHz

1.0GHz

1.2GHz

1.5GHz

A
re

a
(µ

m
)2

Figure 3.9: The estimated area of a single precision square root unit with RNE mode selected
and no denormalized number support for varying latencies and frequencies.

DW fp recip

Table 3.4 shows a summary of results from characterizing the DesignWare Reciprocal unit.

At 750 MHz, at least two stages are required for single precision. At 1.0 GHz and 1.2 GHz,

at least three stages are needed. Although timing was met with two stages at 1.0 GHz, the

area was about 60 percent smaller when latency was set to three stages. At 1.5 GHz at least

four stages are required. Figure 3.10 shows the estimated area of a single precision reciprocal

unit for various latencies and frequencies. Denormalized number support was turned off and

RNE mode was selected.

Table 3.4: DW fp recip Characterization Summary

Frequency Precision Stages Required Power Consumption (mW)
750 MHz Single 2 5.3
1.0 GHz Single 3 6.1
1.2 GHz Single 3 9.6
1.5 GHz Single 4 14.8

As far as rounding is concerned, implementing the RNE mode requires about 4 to 6 percent

more area than Truncation. At high frequencies, the choice of a rounding mode becomes

more critical because several short latency configurations which met timing with truncation

did not meet timing when RNE mode was selected. One interesting feature of this block

29

is the ability to turn on “Faithful Rounding.” This introduces a small error into the result,

but it saves about 35 percent in area and improves the ability to meet timing with fewer

stages at high frequencies. For example, with Faithful Rounding turned on, a three-stage

reciprocal unit meets timing at 1.5 GHz.

Number of Stages vs Area
for Various Frequencies

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5

Number of Stages

750MHz

1.0GHz

1.2GHz

1.5GHz

A
re

a
(µ

m
)2

Figure 3.10: The estimated area of a single precision reciprocal unit with Round to Nearest
Even mode selected and no denormalized number support for varying latencies and frequen-
cies.

3.3 Adder Implementation

The DesignWare study on an adder/subtracter (see Section 3.2.2) provided a direction for

implementing a custom adder/subtracter in Arithmatica. Not only was a design which fit

into the targeted four stages possible, but an adder/subtracter with a two-cycle back-to-back

latency was not out of the question. The results showed that the additional area required

to support double precision floating point numbers as well as denormalized values was too

much for Rigel. Therefore, the goal was to implement a single precision adder/subtracter

with no denormalized number support and two to three cycle latency.

As mentioned in Section 2.3.2, floating point addition is a multi-step process and several

designs have been proposed to reduce its latency. Most of the time, however, the reduced

latency comes at a cost of more area. This is due to either duplicating hardware units

30

when computing several sums in parallel [16] [9], or using hardware such as a leading zero

anticipator (LZA) to predict the outcome of operations [14]. Because of the massively parallel

nature of Rigel, area is of the utmost concern. At the same time, being an accelerator, Rigel

favors higher throughput and places less emphasis on shorter latency.

Two designs were implemented. The first one was the dual path design which incorporates

the CLOSE and FAR paths [9] and it is illustrated in Figure 3.11. The second design used the

single path approach and is shown in Figure 3.12. The dual path design was investigated

in case the single path design did not meet timing at lower latencies. In both designs

the operands were swapped such that only one 2’s complement had to be performed in

case of subtraction (refer to Section 2.3.2). For both designs, the area impact of RNE was

investigated. Additionally, denormalized values were flushed to zero. Automatic repipelining

was used in Arithmatica; therefore, the adder was implemented as one combinational block

with movable registers at the outputs.

Operand
Swap

A B

Unpack Sa Ea Ma Sb Eb Mb

Oper

A B

A>B

-

1'B0

+
LZC

-

Operand
Align

Add

Normalize

Round +

1

Exception
Handling Renormalization / Exception Detection

Sum
Exception

Flags

+

Right Shift

1's Comp

1'B0

Rounding
Control

1's Comp

Eff. Op. Eff. Op.

Eff. Op.

Exp. Diff.
Exp. Diff. [0]

{1'b0,[24:1]}

[24:0]

Left Shift

E
m

ax

EmaxLZC

-

Emax

Figure 3.11: Diagram of the dual path adder implemented in Arithmatica.

31

Operand Swap

A B

Unpack Sa Ea Ma Sb Eb Mb

Oper

A B

A>B

-

26'B01'B0

+
Leading Zero Counter

-

Operand Align

Add

Normalize

Round +

1

Rounding
Detection

Exception Handling Renormalization / Exception Detection

Sum

Left Shift

Exception
Flags

Right Shift

1's Comp

Figure 3.12: Diagram of the single path adder implemented in Arithmatica.

Both designs meet timing at 1.2 GHz. Figure 3.13 shows the area and power consump-

tion of the dual path and the single path implementations at varying latencies with RNE

rounding mode. At low latency the difference in areas between the two implementations

is only 5 percent. This is because the single path design was upsized significantly to meet

timing at the short latency. However, at higher latencies the difference is greater. At longer

latencies the dual path design is not needed, and the second path takes up unnecessary

space. Additionally, the dual path adder consumes between 20 and 30 percent more power.

These results make the single path implementation a clear winner at 1.2 GHz.

Although a two stage adder/subtracter meets timing, a three stage design looks more ideal

in terms of area and power. The combinational area reaches a minimum of around 4,100

µm2 at three stages. As the number of stages increases past three, the combinational area

stays constant, but the sequential area increases because more latches are added to increase

the number of stages. The breakdown of area by combinational logic and sequential logic

for the single path and dual path implementations is shown in Figure 3.14.

32

Adder Area vs Implementation at 1.2GHz

0

1000

2000

3000
4000

5000

6000

7000

8000

9000

2 3 4 5
Number of Stages

1 Path

2 Path

A
re

a
(μ

m
)2

(a)

Adder Power vs Implementation at 1.2GHz

0

1

2

3

4

5

6

7

8

2 3 4 5

Number of Stages

P
o

w
er

 (
m

W
)

1 Path

2 Path

(b)

Figure 3.13: The areas and power consumption of the single precision adder/subtracter
implemented in Arithmatica using the single path and dual path methods at 1.2 GHz.

Area Breakdown by Logic Type

for a Single Path Adder with RNE at 1.2GHz

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 3 4 5

Number of Stages
Sequential

Combinational

A
re

a
 (

μ
m

)

2

(a)

Area Breakdown by Logic Type

for a Dual Path Adder with RNE at 1.2GHz

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2 3 4 5

Number of Stages
Sequential

Combinational

A
re

a
 (

μ
m

)

2

(b)

Figure 3.14: The area breakdown by logic type for the Arithmatica generated single and
dual path adder implementations at 1.2 GHz.

33

The area and power results obtained from comparing rounding modes in the single path

implementation are shown in Figure 3.15. The savings by truncating the sum instead of

rounding to nearest even are between 10 and 13 percent. The difference in power consump-

tion for the two rounding modes is insignificant and is lost in the synthesis noise.

Adder Area vs Rounding Mode at 1.2GHz

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 3 4 5
Number of Stages

RNE

Truncate

A
re

a
(μ

m
)2

Figure 3.15: A comparison of areas of the Arithmatica-generated single path
adder/subtracter for two rounding modes at 1.2 GHz.

Figure 3.16(a) shows the area comparison for the dual and single path adders at 1.5 GHz.

At this frequency the dual path design meets timing with two stages while the single path

design requires at lest three stages. For both designs, four stages yield the smallest area.

The higher frequency caused the area to increase by around 10 percent for a pipe with

more stages, and by 30 percent for an adder with shorter latency. The power consumption

increased by 25 percent for longer latencies and 40 percent for the shorter pipe.

3.4 Multiplier Implementation

As with the adder/subtracter, the results obtained in the DesignWare study show that double

precision and denormalized number support in a multiplier are too expensive to implement

on an area constrained system like Rigel. The study also shows that the target latency is

around two to three stages.

The diagram of the multiplier implementation is shown in Figure 3.17. As described in

Section 2.3.1, the datapath consists of two parallel sections, one which adds the exponents

34

Adder Area vs Implementation at 1.5GHz

0

2000

4000

6000

8000

10000

12000

14000

16000

2 3 4 5
Number of Stages

1 Path

2 Path

A
re

a
(μ

m
)2

(a)

Adder Power vs Implementation at 1.5GHz

0

2

4

6

8

10

12

2 3 4 5

Number of Stages

P
o

w
er

 (
m

W
)

1 Path

2 Path

(b)

Figure 3.16: The areas and power consumption of the single precision adder/subtracter
implemented in Arithmatica using the single path and dual path methods at 1.5 GHz.

and one which multiplies the mantissas. The exponent addition portion utilizes a simple 8

bit unsigned adder.

*

Sa Ea Ma Sb Eb Mb

+

-127

[4
7]

[4
6,

24
]

[4
5,

23
]

Round

+[2
2,

0] [23]

Exception Handling

Product

[2
2,

0]

[21,0]

A B

Figure 3.17: Diagram of the floating point multiplier implemented in Arithmatica.

The mantissa multiplier may be implemented using various multiplier architectures. Mul-

tiplication in hardware follows a process similar to that of doing multiplication by hand.

When two numbers A and B are multiplied together, A is multiplied by each digit in B

to generate several partial products. Afterwards, these partial products are added together

35

to generate the final result [12]. Various techniques were developed to generate the partial

products [19] and reduce the amount of summations [20], [21] in order to decrease the la-

tency and area of the hardware. The speed and size of the floating point multiplier unit

depends greatly on the performance of the mantissa multiplier. Arithmatica offers several

Booth encoded multiplier architectures [12] and was configured to automatically choose the

most efficient design.

The multiplier design was simplified by flushing denormalized values to zero. Figure 3.18

shows the areas and estimated power consumption of the synthesized multiplier with RNE

mode and with Truncation. As the number of stages increases past three, the areas of both

implementations rise as well. This is mostly due to the increased sequential area from adding

more latches, as shown in Figure 3.19. The combinational area increases slightly as well, due

to fanout of the logic to the increased number of latches and buffers needed to meet hold

constraints. A similar trend has been observed in the DesignWare study.

Multiplier Area vs Latency
for Two Rounding Modes at 1.2 GHz

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

2 3 4 5

Number of Stages

RNE

Truncate

A
re

a
(μ

m
)2

(a)

Multiplier Power vs Latency
for Two Rounding Modes at 1.2 GHz

0

1

2

3

4

5

6

7

8

9

2 3 4 5

Number of Stages

P
o

w
er

 (
m

W
)

RNE

Truncate

(b)

Figure 3.18: The areas and power consumption of the single precision multiplier implemented
in Arithmatica using RNE and Truncate rounding modes at 1.2 GHz.

With two stages, Truncation offers about 15 percent in area savings over RNE mode. At

this low latency the timing budget is tight and the additional step associated with RNE has

a significant impact on the ability to meet timing; therefore, hardware is upsized. However,

with three stages and more, the savings are reduced to about 3 percent. Although the

combinational area savings from truncation are about 7 percent at the higher latencies, the

sequential logic generated by automatic repipelining takes away from these savings. Although

36

a two stage multiplier meets timing with both rounding modes, a three stage design offers

minimum area for a multiplier with RNE mode.

Area Breakdown by Logic Type

for a Multiplier with RNE at 1.2 GHz

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2 3 4 5

Number of Stages
Sequential

Combinational

A
re

a
 (

μ
m

)

2

(a)

Area Breakdown by Logic Type

for a Multiplier with Truncation at 1.2 GHz

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2 3 4 5

Number of Stages
Sequential

Combinatory

A
re

a
 (

μ
m

)

2
(b)

Figure 3.19: The area breakdown by logic type for the Arithmatica generated multiplier
implementations at 1.2 GHz.

Figure 3.20 shows the area and power consumption for the multipliers with different round-

ing modes at 1.5 GHz. With two stage latency, Truncation offers significant area savings over

RNE. However, as the timing is relaxed due to a longer pipeline, the difference between RNE

and Truncation becomes insignificant. As was the case at 1.2 GHz, a three stage latency

offers the smallest area at 1.5 GHz. The area increased about 15 percent due to the higher

frequency, and the power consumption increased by about 46 percent due to the increase in

frequency.

3.5 Fused Multiply and Add Implementation

As described in Section 2.3.3 the FMADD operation fuses the multiply and add instructions

into one operation. One of the most commonly used cases for the FMADD operation is

to accumulate several products together, such as in the dot product. An FMADD unit

design which offers high throughput is critical. There are several approaches to achieving

high throughput. One is to make the latency of the FMADD very short, so that dependent

37

Multiplier Area vs Latency
for Two Rounding Modes at 1.5 GHz

0

2000

4000

6000

8000

10000

12000

14000

2 3 4 5

Number of Stages

RNE

Truncate

A
re

a
(μ

m
)2

(a)

Multiplier Power vs Latency
for Two Rounding Modes at 1.5 GHz

0

2

4

6

8

10

12

14

2 3 4 5

Number of Stages

P
o

w
er

 (
m

W
)

RNE

Truncate

(b)

Figure 3.20: The areas and power consumption of the single precision multiplier implemented
in Arithmatica using RNE and Truncate rounding modes at 1.5 GHz.

operations can issue back-to-back. The second approach is to split up the single multiply and

accumulate chain into several independent accumulations. In the case of a dot product, for

example, instead of accumulating all products into the same sum, it is possible to accumulate

some products into one sum and accumulate the other products into other sums. At the end

of the process all that is needed is to add all of these sums together to generate the final

answer.

The latter approach hides the latency of individual FMADD operations so that it is

possible to achieve a throughput of one instruction per clock cycle even if the latency of

an FMADD operation is longer than one cycle. The drawback to this approach, however,

is that it requires that multiple registers be available to store several concurrently running

sums. The drawback to the first approach is that it may not always be possible to implement

a one cycle FMADD unit at a given frequency.

The IEEE 754 standard [10] specifies that rounding may only be performed at the end

of the addition step. This means that the exact product needs to be added. So, for n-bit

mantissas, a 2n-bit product will be generated. Therefore, as mentioned in Section 2.3.2,

the adder will need to sum two 2n+ 1-bit operands. This not only increases the size of the

adder implemented in Section 3.3, but may increase its latency as well.

The overall back-to-back latency of the FMADD depends mostly on the latency of the

adder, since the result of accumulation can be bypassed directly to the adder input in

38

parallel with multiplication. Several approaches have been proposed to reduce the FMADD

latency. Nielsen et al. [22] propose a design based on a redundant number representation

[23] with back-to-back latency of as little as two cycles. Other approaches rely on the adder

optimizations mentioned in Section 2.3.2. The FMADD unit implemented in Arithmatica

utilizes the single path adder design implemented in Section 3.3.

Another issue that needs to be considered is whether the accumulator resides in the general

purpose register file or whether a separate accumulator file exists for this purpose. Both

implementations have some advantages and disadvantages, and both impact the instruction

set architecture (ISA) and microarchitecture of the processor.

If the accumulator resides in the general purpose register file, the fused accumulator file

design, then other instructions can access its value directly, which is a major advantage. The

separate accumulator file design, on the other hand, requires that data be moved from the

accumulator file to the general purpose register file and vice versa. This requires the ISA

to have specific instructions which perform this task. Additionally one must decide which

instructions besides the FMADD, if any, have direct access to the accumulator file. The

compiler must be aware of all these specifications so that it can generate proper code.

A disadvantage of the fused accumulator file design is that register space may be limited

and there may not be enough registers to allocate a portion to be used as accumulators with-

out evicting some values. Additionally, since the FMADD operation reads three operands

at a time, in a superscalar design like Rigel register port conflicts may arise. One solution is

to increase the number of register file ports, but this is not always an ideal solution since it

increases the register file area and access latency. If no additional ports are added, it may

not be possible to issue multiple instructions at a time if the non-FMADD instruction reads

more than one operand.

On the other hand, with the separate accumulator file design it is possible to dual-issue an

FMADD instruction with all other instructions since there are no port conflicts. Additionally,

a separate accumulator file offers extra register space, which is advantageous in applications

that are register starved.

The FMADD unit implemented in Arithmatica was designed independent of where the

accumulator resides. Figure 3.21 shows a top level diagram of the implementation. To

39

Latch

Latch

Latch

Latch

Add Stage N

Add Stage 1

Acc. Source
SelectorMult. Stage K

Mult. Stage 1

Latch

...

...

Input from
Acc. File

Input A Input B

Output to the
Acc. File

P
ip

e
Le

ng
th

K
+

N
 S

ta
ge

s

A
dd

er
 L

at
en

cy
N

 S
ta

ge
s

M
ul

t.
La

te
nc

y
K

 S
ta

ge
s

Figure 3.21: A top level diagram of the FMADD implementation. If the overall pipeline has
k + n stages, then the multiplier has a latency of k cycles, and the adder has the latency
of n cycles. Since the accumulator result is bypassed directly from the adder output, this
FMADD implementation yields a n cycle back-to-back latency.

decrease latency, the accumulator input is either bypassed directly from the adder output

or obtained from the accumulator file. As mentioned before, if the accumulator result is

bypassed, the back-to-back latency of the FMADD operation becomes the function of the

adder latency. It is important to note that the exact latency of the multiplication phase

is not known since Arithmatica repipelined the data path to meet timing, and thus some

multiplication logic may have been fused into the addition phase.

Two overall pipeline latencies were modeled: four and six stages. This allowed me to

investigate two and three cycle back-to-back latencies using a four stage pipeline, and four

and five cycle latencies using the six stage pipeline. In the implementation, denormalized

numbers were not supported and were flushed to zero. Additionally, RNE and Truncate

modes were separately implemented to investigate their impact on area and power.

The areas, including a breakdown by logic type, and the power consumptions of the

40

FMADD Area vs Back-to-Back Latency

with RNE

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2 3 4 5

Back-to-Back Latency
Sequential

Combinational

A
re

a
 (

μ
m

)

2

(a)

FMADD Area vs Back-to-Back Latency

with Truncation

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2 3 4 5

Back-to-Back Latency
Sequential

Combinational

A
re

a
 (

μ
m

)

2

(b)

FMADD Power Consumption vs Back-to-Back
Latency at 1.2GHz

0

2

4

6

8

10

12

14

2 3 4 5

Back-to-Back Latency

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

m
W

)

RNE

Truncate

(c)

Figure 3.22: Area breakdown by logic type and power consumption for the FMADD unit
for two rounding modes with varying back-to-back latencies at 1.2 GHz.

FMADD unit for varying back-to-back latencies and separate rounding modes are shown

in Figure 3.22. For RNE the combinational area reaches a minimum with the back-to-

back latency of four. The combinational area for Truncation reaches a minimum with three

cycle back-to-back latency. The sequential area increases due to the increased number of

stages. Consequently, the overall area rises for back-to-back latencies greater than 3 for both

rounding modes. Truncation offers about 7 percent in area savings at low latencies; however,

at latencies higher than four the area savings are insignificant and are lost in the noise.

To investigate the area and power impact of the separate accumulator file design, a variable

41

FMADD Area vs Number of Accumulators

with RNE and 3 Cycle Back-to-Back Latency

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8 4 2 1

Number of Accumulators
Sequential

Combinational

A
re

a
 (

μ
m

)

2

(a)

FMADD Area vs Number of Accumulators

with RNE and 4 Cycle Back-to-Back Latency

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8 4 2 1

Number of Accumulators
Sequential

Combinational

A
re

a
 (

μ
m

)

2

(b)

Figure 3.23: The area breakdown by logic type for the FMADD unit at 1.2 GHz with varying
number of accumulators and back-to-back latencies.

sized accumulator file was implemented. The addressability of each accumulator entry is 32

bits. Figure 3.23 shows how the area is impacted by varying the number of accumulators

for an FMADD unit with constant back-to-back latency. Figure 3.23(a) shows the area for

an FMADD unit with a three cycle back-to-back latency, while Figure 3.23(b) shows a four

cycle back-to-back implementation. The sequential area increases as expected due to the

additional flip-flops used as accumulators. The combinational area increases slightly due to

additional logic such as multiplexors in the accumulator file as well as address comparators

at the accumulator source selector.

As mentioned previously, high throughput is very important when considering a design

for Rigel. Since it was not possible to reduce latency below two to three cycles, the only

way to obtain the high throughput is by providing enough accumulators so that independent

instructions can be issued every cycle. Figure 3.24 shows the breakdown of areas by logic

type for various back-to-back latencies. However, for each latency, the number of accumu-

lators was set to an amount which would guarantee a throughput of one. Therefore, for

two cycle latency, two accumulators were synthesized. For, three and four cycle latency,

four accumulators were synthesized. Finally, for five cycle latency, eight accumulators were

synthesized.

42

FMADD Area vs Back-to-Back Latency

with RNE and Throughput of 1

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

2/2 3/4 4/4 5/8

Back-to-Back Latency / Number of Accumulators
Sequential

Combinational

A
re

a
 (

μ
m

)

2

Figure 3.24: The area breakdown by logic type of the FMADD unit at 1.2 GHz with a
guaranteed throughput of one for varying back-to-back latencies.

Although the FMADD unit outputs an IEEE Floating Point single precision value and

meets timing with two and three cycle back-to-back latency, a different implementation was

investigated in case the original does not meet timing after placement and routing. In this

implementation additional three status bits, which act as pre-decode flags, are output with

each result to indicate whether the result is zero, NaN, or infinity. These bits reduce the

latency of the unpacking phase of the adder. The impact on the overall area was insignificant

because the combinational area saved from not having to implement an extra comparator

was lost in the extra sequential area needed to store the flags.

3.6 Comparator

The comparator was implemented by a method very similar to that outlined in Section 2.3.4.

However, in order to save area the comparator only generated the less than (LT) and equal

(EQ) flags. The greater than (GT) flag was generated by NORing the LT and EQ flags. At

1.2 GHz the comparator latency is one; therefore, its result may be bypassed to the integer

stage in order to resolve conditional branches. The area occupied by the comparator is about

1,640 µm2.

43

3.7 Format Conversion

IEEE Floating Point to signed integer (f2i) and signed integer to IEEE Floating Point (f2i)

units were also implemented in order to provide a method for fast conversion between the

two formats. In order to perform an f2i conversion, the number needs to be unpacked to

decode the sign bit (S), exponent (E), and the mantissa (M). Additionally, the proper MSB

of M must be generated and eight 0s need to be appended to M to make it a 32-bit number.

Next, M must be right-shifted d places, where d = 158−Exp. If d ≤ 0 the magnitude of the

number is greater than 231 and cannot be represented using the integer format. Similarly, if

d ≥ 32 the magnitude of the number is between zero and one. In f2i conversion, Truncation

is implemented. Therefore, a floating point value less than one will result in an integer value

of zero. For the cases where d ≤ 0 or if the input is a NaN, the value zero is also output

and an invalid operation exception is raised. Additionally, based on the sign bit, the shifted

value may need to be converted to 2’s complement form of representation. Figure 3.25 shows

the diagram of the f2i unit.

-

158 ES M

MSB

8'b0

Right Shift

2's Comp.

Exception
Detection

Result Exeption
Flags

Figure 3.25: IEEE Floating Point to Integer Unit implementation diagram.

Integer to floating point conversion is a similar but reverse process. First the integer

value must be converted to sign magnitude form. Next, the most significant one needs to be

located so that the mantissa M may be normalized by left-shifting it d places, where d is the

number of leading zeros. Then, the least significant seven bits are truncated to normalize

the mantissa to 24 bits. The RNE mode is implemented; therefore, the mantissa needs to

be properly added. Next, the exponent needs to be generated. This is done by subtracting

44

d from 158. If the rounding step denormalized the mantissa, the exponent is incremented.

Finally, the sign bit will be generated based on the MSB of the input. Figure 3.26 shows

the diagram for the unit. Flags

2's Comp.

Left Shift

Leading
Zero Ctr.

-

158

Rounding

Exception
Detection

S E M Exception
Flags

Figure 3.26: Integer to IEEE Floating Point Unit implementation diagram.

Both, f2i and i2f units meet timing with one cycle latency. The Format Conversion unit

has an area of 3,510 µm2; however, its area is reduced to about 3,200 µm2 when the latency

of the i2f unit is increased. Since i2f is not as common an operation, the latency of the i2f

unit was set to be the same as the latency of the adder and multiplier to reduce pipeline

complexity.

3.8 Implementation Conclusions

The results obtained from synthesizing the individual units give a clearer picture as to

the implementation constraints and area and power specifications of the whole FPU. A

three cycle latency for the multiplier and adder/subtracter offers the best area/latency trade

off. Additionally, a four stage FMADD unit with three cycle back-to-back latency has the

smallest footprint. The absolute value, comparator, and f2i units have a latency of one cycle,

45

and their results can be bypassed for immediate use. Additionally, the i2f unit should have

the same latency as the multiplier and adder/subtracter to simplify the datapath.

The diagram of the FPU is shown in Figure 3.27. When synthesized with four accumula-

tors, the area occupied by the FPU is 23,782 µm2. When synthesized without the FMADD

unit, the FPU takes up around 13,100 µm2. The final area is less than the sum of the in-

dividual units because logic reuse was utilized by Arithmatica. Additionally, the individual

units include many shared pipeline structures. To add square root and division capabilities

it is possible to include the DesignWare Square Root and Reciprocal units. However this was

not done as part of this thesis. Additionally, the output from the exception flags needs to

be stored in a status register. Since Rigel does not support exceptions or traps in hardware,

an instruction must be provided that reads the contents of the exception status register.

Compare

Abs. Val.

f2i

i2f

Add

Multiply

i2f

Add

Multiply

FMADD

i2f

Add

Multiply

FMADD FMADD

(empty) (empty)

Control

(empty)

Result
(to RF)

Result
(to AF)

Input A

Input B

Result
(to Bypass)

Input from
Accumulator

Opcode

Status

Figure 3.27: An architectural diagram of the proposed FPU design for Rigel.

In the future, it may be beneficial to consider shorter latency designs. Although units

with two cycle latency were shown to have significantly larger area than longer latency de-

signs, implementation of fine-grained multithreading may offset these costs due to simplified

scheduling and thread swapping logic. Additionally, the investigations in this thesis used

the 0.9 V operating voltage which is well below the operating conditions of commercially

46

available products. A higher operating voltage may yield more attractive area and latency

results, although at a cost of increased power consumption.

47

CHAPTER 4

PERFORMANCE EVALUATION

4.1 Methods

Performance evaluation for the design was done on a cycle accurate simulator of the Rigel

architecture. The simulator models all levels of Rigel, from the two-wide core pipeline up to

global cache. The fused multiply and add functionality was added to the simulator. Both

accumulator file designs were implemented: the separate accumulator file (FMACC), and

the fused accumulator file (FMADD) designs. The fused accumulator file design properly

modeled register file port contention with four available ports. The scheduler did not dual-

issue instructions if a pair of instructions required more than four ports to execute. All

benchmarks were simulated on a single cluster. The cache parameters were set as follows:

2 kB 2-way set associative Level 1 data cache with 32 words per line, and one cycle access

latency. Level 2 cache was a 65 kB 8-way set associative with access latency of two cycles.

The Rigel Benchmark Suite is composed of several kernels parallelized using the Rigel Task

Model (RTM): A 512x512 blocked dense-matrix multiply (DMM); Sobel edge detection filter

(Sobel); A 13x13 Gaussian filter (Convolve); Scaled vector addition (SVA); and a medical

image reconstruction kernel (MRI) [24]. For a detailed description of these benchmarks refer

to [4] and [5].

All of the benchmarks are written in C with RTM extensions. They are compiled using

the LLVM compiler into Rigel assembly. A GNU Binutils toolset is used to assemble the

code into Rigel executable binary. Because the compiler does not support the FMACC

implementation, the assembly was hand optimized to implement it properly. Performance

is based on the execution length of the critical loops (in cycles).

This chapter presents the results of performance analysis using the Rigel benchmarks.

48

Initial analysis was performed to develop a picture of the theoretical performance improve-

ments offered by the fused multiply and add instruction. The results of the analysis are

presented in the next section, and the results from the benchmarks are presented in the

following sections.

4.2 Fused Multiply and Add Performance Analysis

As mentioned in Section 2.3.3, an important benefit of the operation is that it increases the

instruction issue bandwidth since a single operation may be used to perform the function of

two separate operations. However, the resulting speedup depends greatly on the algorithm of

the code in question, operand availability due to register allocation and cache misses, as well

as other system factors. This section evaluates the performance benefits of the FMADD

operation for several common scenarios on two machines. The first machine models an

architecture capable of issuing up to one instruction per cycle. The second is a superscalar

machine capable of issuing up to two instructions from different functional units per cycle,

and is used to model the Rigel architecture.

The most basic multiply and add pair calculates X = A + B ∗ C. The separate multiply

and add implementation of this computation (Figure 4.1(a)) will take at least two cycles to

execute on either machine, while the FMADD implementation (Figure 4.1(b)) will take at

least one cycle to execute on either machine, thus yielding a maximum speedup of two.

mul d, b, c
add x, d, a

mul temp0, ai,bi
add x, x, temp0

(a)

fmadd x, b, c, a

mul temp0, ai,bi
add x, x, temp0

(b)

Figure 4.1: The most basic multiply and add pair using separate multiply and add operations
(a), and using a single fused multiply-add operation (b)

However, this implementation assumes that the operands A, B, and C may be accessed

directly by the operations. Usually operands must first be placed in registers by loading

them from memory. Figure 4.2(a) shows a more common implementation which assumes A

is already stored in a register, while B and C must be loaded from memory. Assuming an

ideal system where the loads take one cycle each, the multiply and add version would take

49

at least four cycles on either machine, while the FMADD implementation shown in Figure

4.2(b) would take three cycles. For both machines, if the latency of the multiply, add, and

FMADD instructions is one, the speedup decreases to 1.33. Under non-deal conditions, if B

or C are not in the cache for example, the speedup is lower.

load b, location_b
load c, location_c
mul d, b, c
add x, d, a

l
l
f

(a)

load b, location_b
load c, location_c
fmadd x, b, c, a

(b)

Figure 4.2: The more commonly used case for a multiply and add function using separate
multiply and add instructions (a), and using a single fused multiply-add instruction (b).
Unlike the implementation in Figure 4.2, the operands must first be loaded from memory
here.

On many occasions, the number of elements which need to be multiplied and added is

significantly greater. When multiplying two N ×N matrices, for example, each element in

the resulting matrix is computed using a dot product of two vectors with N elements each.

The computation is of the form X = A1 ∗B1 +A2 ∗B2 + ...+AN ∗BN and requires 2N loads,

N multiplies and N − 1 additions. Therefore, the total number of operations for computing

the dot product of two N-element vectors using the separate multiply and add approach is

4N − 1. An FMADD implementation requires 3N operations. For the single issue machine,

the speedup approaches an asymptotic maximum of 1.33 as the number of elements in the

vectors increases. Figure 4.3 illustrates this relationship.

For a dual issue machine like Rigel, the analysis becomes more complex. The separate

multiply and add code can be organized as shown in Figure 4.4(a) requiring 3N cycles of

execution. As shown in Figure 4.4(b), the FMADD implementation can be organized in

such a way that the latency is 2.5N for even N , and 2.5N + 0.5 for odd N . Therefore, the

speedup is 1.2 for even number of elements, and approaches an asymptotic maximum of 1.2

as N approaches infinity for odd number of elements.

As can be seen from Figure 4.3, the speedup from using the FMADD operation is nowhere

near the expected two. This is because for each multiply and add pair, there are two load

instructions that exist in both implementations. However, if the algorithm is modified such

50

Figure 4.3: Vector length vs. speedup for the dot product code. A comparison between
the speedup that FMADD offers on a single issue machine and a dual issue machine.

load a1, location_a1
load b1, location_b1

mul temp, a1, b1
load a2, location_a2

load b2, location_b2
mul x, a2, b2

add x, x, temp
load a3, location_a3

load b3, location_b3
mul temp, a3, b3

add x, x, temp
load a4, location_a4
...
load bN, location_bN
mul temp, aN, bN

add x, x, temp

1
2

3
4

5
6

7
8

9
10

11
11
...
4N-3
4N-2

4N-1

SI
Cycle

1
2

3
3

4
5

6
6

7
8

9
9
...
3N-1
3N-1

3N

DI
Cycle

(a)

l
l

m
l

l
m

a
l

l
m

a
l
.
l
m

SI
Cycle

load a1, location_a1
load b1, location_b1

mul x, a1, b1
load a2, location_a2

load b2, location_b2
fmadd x, a2, b2, x

load a3, location_a3
load b3, location_b3

fmadd x, a3, b3, x
load a4, location_a4

load b4, location_b4
fmadd x, a4, b4, x
...
load bN, location_bN
fmadd x, aN, bN, x

1
2

3
4

5
6

7
8

9
10

11
12
...
3N-1
3N

1
2

3
3

4
5

6
7

8
8

9
10
...

2.5N-1 (+0.5)*
2.5N (+0.5)*

DI
Cycle

(b)

Figure 4.4: Example code which implements the function: X = A1 ∗B1 +A2 ∗B2 + ...+AN ∗
BN , implemented using the separate multiply and add instructions (a) and the FMADD
instruction (b). The cycle number when each instruction is expected to execute is shown for
the single issue machine (SI Cycle), and the dual issue machine (DI Cycle). * For odd N.

that the ratio between the number of loads and multiply-and-add operations is reduced, the

speedup will increase. It is possible to do so in situations where multiple operations share

51

the same operands. For example, when multiplying two matrices, instead of calculating the

resulting matrix one element at a time, one can perform several dot products in parallel

as shown in Equation (4.1). This way, some values are reused, thus requiring fewer load

operations.

X0 = A0 ∗B00 + A1 ∗B01 + A2 ∗B02 + ...+ AN ∗B0N

X1 = A0 ∗B10 + A1 ∗B11 + A2 ∗B12 + ...+ AN ∗B1N

... (4.1)

Xi = A0 ∗Bi0 + A1 ∗Bi1 + A2 ∗Bi2 + ...+ AN ∗BiN

If this approach is taken, the expected speedup may be computed as follows. Given N

elements in each vector, each dot product requires N multiplications, N − 1 additions, and

N load operations. Additionally, N operands need to be loaded only once since they will

be reused by all of the dot products. Therefore, given i parallel dot products, the separate

multiply and add implementation requires iN multiplications, i(N−1) additions, and iN+N

loads, or (i + 1)N + 2iN − i operations. On the other hand, the FMADD implementation

requires (i + 1)N + iN operations. The expected speedup for various values of i and N on

a single issue machine is illustrated in Figure 4.5.

For a dual issue machine the analysis is once again more complex because code organization

has a big influence on performance. As shown in Figure 4.6(a) for i parallel dot products

of N-element vectors, where i > 1, the separate multiply and add implementation can be

written in such a way that all load operations (except the first three) are overlapped with

the multiply and add instructions. In that case the total number of cycles required for the

computation is 3 + iN + i(N − 1) = 2Ni − i + 3 cycles. The FMADD implementation, as

shown in Figure 4.6(b), requires N(i+1) load operations and iN FMADD operations. Since

all but one FMADD instruction can be overlapped with load instructions, the minimum

number of cycles this computation requires is N(i+ 1) + 1. The speedup for various values

of i and N is illustrated in Figure 4.7.

It is important to note that the aforementioned speedup is only possible under ideal

52

Figure 4.5: A comparison between the speedup that FMADD offers on a single issue machine
for computing several dot products in parallel.

conditions - where there are no stalls due to cache misses, for example. Additionally, the

code organization shown in Figure 4.6(b) is not always feasible due to register pressure.

Under non-ideal conditions, the expected speedup is lower.

4.3 Dense Matrix Multiply

Matrix multiplication can be defined as a series of dot products. To compute matrix C,

which is the product of two matrices A and B, for each element Cyx in matrix C, a dot

product of Rowy in matrix A with Columnx in matrix B is computed. This is illustrated in

Figure 4.8(a). Blocked matrix multiplication follows a similar concept, except that instead of

computing one dot product on a whole row and column, different processing units calculate

a dot product on a portion of a row and column. The individual dot products are then

added together to generate the final result as shown in Figure 4.8(b).

DMM attains peak performance by exploiting data locality within the blocks. As shown

in Figure 4.9(a), only enough elements of Rowy in matrix A are allocated to fill a cache

line. This results in a 1× j block of cached elements, where j is the cache line size. As each

element i in Columnx of matrix B is accessed, j elements of Rowi in matrix B also get cached.

53

load a0, location_a0
load b0, location_b0

load c0, location_c0
nop

load a1, location_a1
mul t0, a0, b0

load b1, location_b1
mul t1, a0, c0

load c1, location_c1
mul x, a1, b1

load a2, location_a2
mul y, a1, c1

load b2, location_b2
add x, t0, x

load c2, location_c2
add y, t1, y

load a3, location_a3
mul t0, a2, b2

load b3, location_b3
mul t1, a2, c2
 ...
mul t0, aN, bN
mul t1, aN, cN

add x, x, t0
add y, y, t1

1
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11
...

2iN-i+2
2iN-i+2

2iN-i+3
2iN-i+3

DI
Cycle

(a)

load a0, location_a0
load b0, location_b0

load c0, location_c0
mul x0, a0, b0

load a1, location_a1
mul x1, a0, c0

load b1, location_b1
nop

load c1, location_c1
fmadd x0, a1, b1, x0

load a2, location_a2
fmadd x0, a1, c1, x1

load b2, location_b2
nop

load c2, location_c2
fmadd x0, a2, b2, x0

load a3, location_a3
fmadd x1, a2, c2, x1

load b3, location_b3
nop
 ...
load cN, location_ci
fmadd x0, aN, bN, x0

fmadd x1, aN, cN, x1

1
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11
...

N(i+1)
N(i+1)

N(i+1)+1

DI
Cycle

(b)

Figure 4.6: Implementation of the parallel dot product in Equation (4.1) implemented using
the separate multiply and add instructions (a) and the FMADD instruction (b). The cycle
number when each instruction is expected to execute is shown for the dual-issue machine
(DI Cycle).

54

Figure 4.7: A comparison between the speedup that FMADD offers on a dual issue
machine for computing several dot products in parallel.

=*

Matrix A Matrix B Matrix C

y

x

Cyx

y

y

y

(a)

*

Matrix A Matrix B

Matrix C

y

x

Cyx*

Matrix A Matrix B

y

x

*

Matrix A Matrix B

y

x

x

+ =

(b)

Figure 4.8: An illustration of basic matrix multiplication (a) and blocked matrix multipli-
cation (b).

55

This generates a j × j block of cached matrix B elements. Therefore, the partial result of

element Cyx is a dot product of j elements of Rowy in A and j elements of Columnx in B.

Since Columnx+1 through Columnx+j−1 of B are cached (assuming no evictions occured),

on the next iteration a partial result for element Cy,x+1 will be computed. After Cy,x+j−1 is

computed, j elements in Rowy+1 of A are cached, and the process repeats to calculate Cy+1,x

through Cy+1,x+j−1.

Instead of calculating the result of one element in C at a time, it is possible to parallelize

DMM to calculate Cy,x through Cy,x+k simultaneously, where k is some integer such that

0 ≤ k < j. However, this requires a large number of free registers to hold all the pointers

and values necessary. Given a cache line size of j elements and k parallel dot products, j+ 2

address pointers are needed, k + 1 data registers are needed to hold the multiplicands, and

k data registers are needed to hold the partial dot products. This makes DMM a register

limited application. The parallelised matrix multiplication approach is illustrated in Figure

4.9(b). Matrix A

=*

Matrix A Matrix B Matrix C

y

x

Cyx

j
j

j

(a)

x A Matrix B

=*

Matrix A Matrix B Matrix C

y

x

j j

j

k
k

(b)

Figure 4.9: An illustration of data locality for a non-parallel implementation (a) and how
parallelism exploits this locality (b).

The results from the benchmark for various levels of parallelism are shown in Figure

4.10(a). For the non-parallel implementation, the speedup from the FMADD is around 1.19

while the speedup from FMACC is 1.08. The lower FMACC performance is due to the extra

moves required between the general purpose register file and accumulator file. Additionally,

the code offers enough room to align the instructions such that no register port conflicts

exist in the FMADD implementation.

As the number of parallel dot products increases, so does the speedup from FMACC. As

shown in Section 4.2 this is the expected trend. However, the speedup from the FMADD

56

DMM Performance

0

1

2

3

4

5

6

Non-Parallel 2 Parallel 4 parallel 8 parallel

Parrallelism

G
F

L
O

P
S

FMACC

FMADD

Normal

(a)

DMM Speedup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Non-Parallel 2 Parallel 4 parallel 8 parallel

Parrallelism

S
p

ee
d

u
p

FMACC

FMADD

(b)

Figure 4.10: The performance (a) and speedup (b) for various parallelized versions of the
DMM benchmark obtained from the use of the fused multiply and add instruction for the
separate accumulator file (FMACC) and fused accumulator file (FMADD) design.

implementation peaks at around 1.24 and then decreases as parallelism increases past two.

As shown in the performance graph, the standard and FMADD implementation performance

decreases as parallelism increases. This is a consequence of register starvation. From earlier

analysis, given eight parallel dot products and a cache line size of eight words, at least 25

registers are needed just to hold all the required information inside the critical loop. This

is in addition to registers required to store other constants such as the stack pointer, loop

iterators, etc. Since the FMADD implementation uses the general purpose register file,

some register values get evicted and pushed onto the stack. Additionally, without extra free

registers it is difficult, if not impossible, to schedule the code such that load latencies are

hidden.

Referring back to the Expected Speedup analysis from Section 2.3.3, the speedup with the

non-parallel and 2-parallel implementations should have been slightly higher than what was

obtained in the real benchmark. This occured for two reasons. First, the analysis was done

under ideal conditions: the latency of each load was assumed to be one. However, in reality

cache misses cause the latency of some loads to be significantly higher. And second, the

analysis did not take into account all the code necessary for loop execution and calculating

the locations of the pointers. When a perfect cache is modeled, the speedup increases by

three to four percent.

57

Table 4.1 compares the number of lines of code in the critical loops for each implementation

to show that the resulting performance is comparable to the expected performance.

Table 4.1: Number of Lines in the Critical Loop of DMM for Varying Parallelism and
Implementation

Non-Parallel 2-Parallel 4-Parallel 8-Parallel
MUL/ADD 39 65 120 262

FMADD 34 51 94 172
FMACC 37 55 96 180

The results from DMM show that there is an added benefit from having extra registers.

Additionally, having a unified register and accumulator file improves performance, without

having a negative effect on the ability to dual-issue instructions since port conflicts can be

avoided with proper code optimization.

4.4 Sobel Edge Detection

The Sobel benchmark convolves an image with two 3x3 sized filters. Thus, every pixel in

the resulting image is calculated using two 9-element dot products. Figure 4.11 shows the

effect of the Sobel filter on an image of Trogdor [25].

Figure 4.12(a) illustrates the process of convolution using a single filter; Sobel performs

two of these per pixel. As was the case with DMM, the way to maximize performance is

to exploit data locality and parallelism. Sobel is easily parallelizable and allows for a lot

of data sharing. Figure 4.12(b) shows how to parallelize the Sobel benchmark and shows

the implicit data sharing. Instead of solving one resulting pixel at a time, it is possible to

perform several convolutions in parallel to obtain values of several resulting pixels at once.

The performance comparisons for the various levels of parallelism are shown in 4.13(a).

The speedup obtained from the FMADD and FMACC implementations is almost the same.

For the FMACC, the moves between the register file and accumulator file are hidden between

other operations. Also, unlike DMM which requires a move to and from the accumulator

file on every iteration, these moves are only required every nine iterations in Sobel.

The speedup peaks at around 1.2 with eight parallel dot products. Modeling perfect

58

(a) (b)

Figure 4.11: An illustration of the edges detected using the Sobel filter on an image of
Trogdor [25].

Original Image

Resulting Image

Filter

(a)

Original Image

Resulting Image

Filter

(b)

Figure 4.12: An illustration of convolving a single filter with an image one pixel at a time
(a), and several pixels in parallel (b).

59

caches did not increase the speedup noticeably. This is due to the fact that Sobel shares

data accross computations and is therefore not memory limited. The lower than expected

speedup is caused by the small number of elements in the 3x3 filter. Sobel does not offer a lot

of computational room for a bigger speedup because the ratio of computational instructions

to loop control instructions is small. Table 4.2 shows the resulting number of lines of code

in the critical loops for each implementation. The increased lines of code for the FMACC

implementation is caused by the transfer instructions.

Sobel Performance

0

0.5

1

1.5

2

2.5

3

Not Unrolled 3 Parallel 4 parallel 8 parallel

Parrallelism

G
F

L
O

P
S

FMACC

FMADD

Normal

(a)

Sobel Speedup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Not Unrolled 3 Parallel 4 parallel 8 parallel

Parrallelism

S
p

ee
d

u
p

FMACC

FMADD

(b)

Figure 4.13: The performance (a) and speedup (b) for various levels of parallelism in Sobel
obtained from the use of the fused multiply and add instruction for the separate accumulator
file (FMACC) and fused accumulator file (FMADD) design.

Table 4.2: Number of Lines in the Critical Loop of Sobel for Varying Parallelism and Im-
plementation

Non-Parallel 3-Parallel 4-Parallel 8-Parallel
MUL/ADD 32 44 50 74

FMADD 30 38 42 58
FMACC 34 50 58 90

4.5 Convolution

Sobel offered much more data parallelism than DMM, but it did not offer a long enough

computational capacity to take advantage of this data parallelism. The Convolve benchmark

convolves a 13x13 filter with another 512x24 element matrix. Such filters can be used

60

to blur an image, for example. Due to the filter size, Convolve offers significantly more

computations within the critical loop which, combined with data sharing, offers significant

speedup potential. It is parallelized in the same manner as Sobel.

Performance results are shown in Figure 4.14(a) and the resulting lengths of the critical

loop are shown in Table 4.3. Like in Sobel, moves between the general purpose register file

and the accumulator file in the FMACC implementation are few and can be hidden between

other operations. The speedup with eight parallel dot products is around 1.45. Like with

Sobel, perfect caches did not increase the speedup. It is important to note that a higher

speedup may be possible if the inner loop is unrolled even further.

Convolve Performance

0

1

2

3

4

5

6

7

Not Unrolled 3 Parallel 4 parallel 8 parallel

Parrallelism

G
F

L
O

P
S

FMACC

FMADD

Normal

(a)

Convolve Speedup

0
0.2
0.4
0.6
0.8

1

1.2
1.4
1.6
1.8

2

Not Unrolled 3 Parallel 4 parallel 8 parallel

Parrallelism

S
p

ee
d

u
p

FMACC

FMADD

(b)

Figure 4.14: The performance (a) and speedup (b) for various parallelized versions of the
Convolve benchmark obtained from the use of the fused multiply and add instruction for
the separate accumulator file (FMACC) and fused accumulator file (FMADD) design.

Table 4.3: Number of Lines in the Critical Loop of Convolve for Varying Parallelism and
Implementation

Non-Parallel 3-Parallel 4-Parallel 8-Parallel
MUL/ADD 15 21 24 36

FMADD 14 18 20 28
FMACC 16 24 28 44

61

4.6 Scaled Vector Addition

SVA is a benchmark which multiplies each element of two vectors by some factor and then

adds the corresponding scaled elements together. In other words, for two vectors A and B,

and scaling factors F0 and F1, each element i in the resulting vector C would be obtained by

performing: F0Ai + F1Bi. To parallelize SVA, it is possible to unroll the inner loop to find

several results in parallel. However, this benchmark does not have any data sharing; there-

fore, it strides through memory and becomes limited by the lack of data locality. FMACC

does not offer any speedup since the moves between the general purpose register file and the

accumulator file outweigh any benefit from fusing multiplication with addition. FMADD

offers a speedup of around 1.15 when the loop is unrolled by a factor of four, which is a

consequence of being memory limited and having no data sharing. When perfect caches are

modeled, the speedup increases to around 1.19.

4.7 MRI

The inner loop of MRI is dominated by sine and cosine calculations. These occur through

function calls. When only the code within the inner loop of MRI is rewritten using FMADD

and FMACC implementations, the speedup is insignificant. However, when the sine and

cosine functions are recompiled with FMADD, the speedup is about 1.12. Because the com-

piler does not support the FMACC implementation, no analysis was done on implementing

this functionality within the sine and cosine functions. However, the speedup from the

FMACC implementation is expected to be about the same, or slightly lower due to moving

data between two register files.

The small speedup is not surprising. The computations within the inner loop do not fol-

low a “dot-product” like pattern which can take advantage of fusing the multiply and add

instructions. Unrolling the inner loop in an attempt to exploit parallelism is not advanta-

geous because MRI is register limited, and unrolling by a factor of two causes registers to

be evicted to the stack.

62

4.8 Conclusion

Fusing multiplication with addition has the potential to improve performance. However,

due to the general purpose nature of Rigel, the benefits are limited. Even though certain

applications see a significantly improved performance, this improvement is nowhere near the

ideal speedup. The cost of memory accesses and register file size places limits on perfor-

mance. Although extending the register space with a separate accumulator file helps in some

cases, usually the cost of moving data between two register files hides the benefit of fusing

multiplication with addition. For most applications, fusing multiplication with addition will

offer some performance improvement.

For an accelerator like Rigel, the metric used to determine the overall benefit of the fused

multiply and add unit is FLOPS/mm2. An FMADD unit adds about 12 percent in core

area, and offers between 5 percent and 50 percent performance improvement. Therefore,

a fused multiply and add unit offers higher performance per area. Although the separate

accumulator file boosts performance by increasing register space, already present compiler

support for the fused design makes the latter more attractive. Additionally, increasing the

size of the general purpose register file can offset the lack of a separate accumulator file.

63

REFERENCES

[1] NVIDIA, “NVIDIA GeForce 8800 GPU architecture overview,” Tech. Rep. TB-02787-
001-v01, November 2006.

[2] M. Gschwind, “Chip multiprocessing and the cell broadband engine,” in CF ’06: Pro-
ceedings of the 3rd Conference on Computing Frontiers, 2006, pp. 1–8.

[3] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,
A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan,
“Larrabee: A many-core x86 architecture for visual computing,” ACM Trans. Graph.,
vol. 27, no. 3, pp. 18:1–18:15, August 2008.

[4] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy, A. Mahesri,
S. S. Lumetta, M. I. Frank, and S. J. Patel, “Rigel: An architecture and scalable
programming interface for a 1000-core accelerator,” SIGARCH Comput. Archit. News,
vol. 37, no. 3, pp. 140–151, 2009.

[5] D. R. Johnson, J. H. Kelm, N. C. Crago, M. R. Johnson, W. Tuohy, W. Truty, S. Kof-
sky, S. S. Lumetta, W.-M. W. Hwu, M. I. Frank, and S. J. Patel, “Rigel: A scalable
architecture for 1000+ core accelerators,” presented at 2009 Symposium on Application
Accelerators in High Performance Computing, Urbana, IL, USA, 2009.

[6] S. Oberman, H. Al-Twaijry, and M. Flynn, “The SNAP project: Design of floating point
arithmetic units,” in Proceedings of the 13th IEEE Symposium on Computer Arithmetic,
July 1997, pp. 156–165.

[7] S. Obermann and M. Flynn, “Division algorithms and implementations,” IEEE Trans-
actions on Computers, vol. 46, no. 8, pp. 833–854, August 1997.

[8] S. F. Oberman, “Design issues in high performance floating point arithmetic units,”
Ph.D. dissertation, Stanford University, Stanford, CA, USA, 1997.

[9] P. M. Farmwald, “On the design of high performance digital arithmetic units,” Ph.D.
dissertation, Stanford University, Stanford, CA, USA, 1981.

[10] IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754-2008, 2008.

[11] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors: A Hands-on
Approach. Burlington, MA, USA: Morgan Kaufmann, 2010.

64

[12] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs. Oxford, UK:
Oxford University Press, 2000.

[13] J. Hennessy and D. Patterson, Computer Architecture - A Quantitative Approach,
3rd ed., D. Penrose, Ed. San Francisco, CA, USA: Morgan Kaufmann, 2003.

[14] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase, K. Mashiko, and T. Sumi, “Leading-zero
anticipatory logic for high-speed floating point addition,” IEEE Journal of Solid-State
Circuits, vol. 31, no. 8, pp. 1157–1164, August 1996.

[15] S. F. Oberman and M. J. Flynn, “A variable latency pipelined floating-point adder,”
Stanford, CA, USA, Tech. Rep. CSL-TR-96-68, 1996.

[16] A. Beaumont-Smith, N. Burgess, S. Lefrere, and C. C. Lim, “Reduced Latency IEEE
Floating-Point Standard Adder Architectures,” in ARITH ’99: Proceedings of the 14th
IEEE Symposium on Computer Arithmetic, 1999, pp. 35–42.

[17] J.-M. Muller, “Some functions computable with a fused-mac,” in ARITH ’05: Proceed-
ings of the 17th IEEE Symposium on Computer Arithmetic, 2005, pp. 52–58.

[18] Datapath - Floating Point Overview, Synopsys, Inc., March 2010. [Online]. Available:
https://www.synopsys.com/dw/doc.php/doc/dwf/datasheets/fp overview2.pdf

[19] O. Macsorley, “High-speed arithmetic in binary computers,” Proceedings of the IRE,
vol. 49, no. 1, pp. 67–91, January 1961.

[20] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on Electronic
Computers, vol. EC-13, no. 1, pp. 14–17, February 1964.

[21] K.-Y. Khoo, Z. Yu, and A. N. Willson, Jr., “Improved-booth encoding for low-power
multipliers,” in ISCAS ’99: Proceedings of the 1999 IEEE International Symposium on
Circuits and Systems, vol. 1, July 1999, pp. 62–65.

[22] A. M. Nielsen, D. W. Matula, C. Lyu, and G. Even, “An IEEE compliant floating-
point adder that conforms with the Pipelined Packet-Forwarding paradigm,” IEEE
Transactions on Computers, vol. 49, pp. 33–47, 2000.

[23] E. Normale, S. Lyon, M. Daumas, M. Daumas, D. Matula, and D. Matula, “Recoders
for partial compression and rounding,” Ecole Normale Superieure de Lyon, LIP, Tech.
Rep. 97-01, 1997.

[24] S. S. Stone, J. P. Haldar, S. C. Tsao, W. W. Hwu, B. P. Sutton, and Z. P. Liang,
“Accelerating advanced MRI reconstructions on GPUs,” J. Parallel Distrib. Comput.,
vol. 68, no. 10, pp. 1307–1318, 2008.

[25] H*R web site. [Online]. Available: http://www.homestarrunner.com

65

