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ABSTRACT

Dipole moments are ubiquitous in nature. Studying dipole moments is the first stepltonder-
standing phase behavior of various colloids with strong dipole moments. ®iedgipolar Hard
Sphere fluid (DHS) is the simplest model described by dipolar interactitrdyisg this model is
fundamentally important for understanding the structures and thermodysafiolar fluids. A
variety of unsolved scientific questions arises when the dimensionality of tlislisochanged and
when other species are introduced in this model. Finally, the last part ofifisisrthtion discusses
the diffusion behavior of adsorbed polymers over the full concentrasinge.

In Chapter 2, | study the phase behavior of dipolar fluids by means oféfoarlo simulations.
My goal in this chapter is to examine the possibility of phase separation in a difothsystem
and to use quantitative structural information to shed light on this contpudmsv dimensionality
affects the phase behavior of dipolar fluids is also an interesting quedtious, in Chapter 3, |
examine the possibility of phase separation in quasi-2-dimensional dipdlds.flutn Chapter 4, |
proceed to binary systems. Since | have excluded the possibility of pepaeasion in the DHS
system and it is well known that the RPM system exhibits phase separatse, rissults naturally
lead to the question whether phase separation takes place in mixtures ttzén ¢oms as well as
dipolar particles. | map out the phase diagrams by varying the strength fdtie dipolar to the
ionic interaction and | also locate the critical points.

In Chapter 5, | turn to a rather different research topic, namely therdipseof adsorbed poly-
mers. | employ molecular dynamics to investigate the relation between surfacgaiifand con-

formation of adsorbed polymers over the full coverage range.
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CHAPTER 1

INTRODUCTION

Dipole moments are ubiquitous in nature. Studying dipole moments is the first stepitonder-
standing phase behavior of various colloids with strong dipole moments.[5id¢e the Dipolar
Hard Sphere fluid (DHS) is the simplest model described by dipolar intensctgiudying this
model is fundamentally important for understanding the structures and ttgnamics of polar
fluids. A variety of unsolved scientific questions arises when the dimerigjonathis model is

changed and when other species are introduced in this model. In thistalisset present the
results of simulation research on the phase behavior of the DHS in threegional (3D) and
two-dimensional (2D) space, and on mixtures that contain ions as well akslipFurthermore,
the last part of this dissertation discusses the diffusion behavior oftztspolymers over the full
concentration range, from the dilute to the concentrated regime.

This thesis is organized as follows: In Chapter 2, | study the phase ioelwdvdipolar fluids
by means of Monte Carlo simulations. It is well established that simple fluids ddbiex liquid—
vapor phase transition due to short-range van der Waals attractior@&d@lombic interactions can
also induce phase separation in ionic solutions [6, 7]. By contrast, thereoce of liquid—vapor
phase separation driven by anisotropic dipolar interactions is still a mattksbatte. Although de
Gennes and Pincus suggested the possibility of such a phase transitioolam flipds [8], evidence
for a liquid—vapor phase transition in this system has been hardly fouratioug simulation stud-
ies [9-14]. Interestingly, however, Cangpal. found evidence from grand-canonical Monte Carlo
simulations that the dipolar fluid may have a liquid—vapor phase transitionlfi#fje same paper,
their results were confirmed by independ® T andNV T simulations. My goal in this chapter
is to examine the possibility of phase separation in a dipolar fluid system ane tuastitative
structural information to shed light on this controversy.

In Chapter 3, | examine the possibility of phase separation in quasi-2D dihatis. In quasi-



2D systems the centers of the dipolar spheres are confined to a plarexdnpilie dipole moments
can rotate in full 3D space. Studying this system can be a potential startingtpainderstand
the appearance of unexpected stripe patterns of dipolar nanoroddanea[B]. Furthermore, the
fact that Coulombic interactions in different dimensions can induce diftéypes of phase separa-
tion [6, 7,15-20] introduces an interesting question regarding how dioreilgy affects the phase
behavior of dipolar fluids. The simulation results of the previous chaptéinéo3D DHS system ex-
clude the possibility of liquid—vapor phase separation for a large regittmedemperature—density
plane, whereas theory has predicted that 2D dipolar disks underge gkaaration [21]. In the
guasi-2D DHS model [22, 23], the occurrence of phase separatiditi Bnsopen question, and |
want to contribute to this problem.

In Chapter 4, | proceed to binary systems. Since | have excluded tk#jhits of phase sepa-
ration in the DHS system and it is well known that the RPM system exhibits gegseation, these
results naturally lead to the question whether phase separation takes plaigtuires that contain
ions as well as dipolar particles. According to the Gibbs phase rule, addimgnore component
gives one additional degree of freedom and leads to a more comples giaagam [24-28]. It is
also known [25-27] that the van der Waals (vdW) equation of state exkikitgincipal classes of
phase diagram when the parameters of the vdW model are varied, andfriieeste predicted phase
diagrams have been discovered experimentally. However, phasadretfaen—dipole binary sys-
tems is not fully understood yet. Therefore, | hope to improve our utatadsg of the phase
diagrams of ion—dipole mixtures and the influence of physical parameterslferge and dipole
moment) on the topologies of these phase diagrams. Because of the complexifyicomponent
systems, mapping out the entire phase diagram for these mixtures wouldgeMglzitive amount
of simulation time. Instead, | have opted to focus on the most interesting tenesi@tthis mix-
ture. Then, | map out the phase diagrams by varying the strength ratio dipblar to the ionic
interaction and | also locate the critical points.

In Chapter 5, | turn to a rather different research topic, namely therdipseof adsorbed poly-
mers. Studying the behavior of polymers near surfaces is important leetagsapplicable to
surface coating, adhesives and tribology, and because it helps ¢éostertl a basic property of
polymers [29-32]. Recently, intensive efforts have been made to stadersurface diffusion prop-

erties of polymers, both by experiments [33—38] and by simulations [39E4&h though the effect



of the presence of multiple chains on the polymer dynamics near a surfa¢endamentally im-

portant question, existing simulation studies only focus on single-polymeviehin the dilute

regime. In 2004, Zhao and Granick investigated polymer lateral diffusanfanction of surface
coverage [46]. Their results showed that the lateral diffusion caefiégncreases with increasing
surface coverage until monolayer coverage is reached, followed bBprapt decrease in the diffu-
sion rate. This anomalous behavior is possibly related to conformationagebabut this cannot be
confirmed in the experimental setup. In this chapter, | employ molecular dysamimovestigate the
relation between surface diffusion and conformation of adsorbed posyower the full coverage

range.
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CHAPTER 2

DIPOLAR HARD-SPHERE FLUID

The occurrence of liquid—vapor phase separation driven by dipdkaictions is still a controver-
sial topic despite extensive theoretical debate [1-9].elNg. published the first simulation study
of this system and found phase separation [10]. However, their stutyt ieliable because they
used a very small system size and did not use Ewald summation for long-digaar interactions.
Furthermore, after this study, extensive simulation efforts have failed dolifinid—vapor phase
separation in this system [11-15]. Interestingly, however, Cairgb. presented evidence from
grand-canonical Monte Carlo (GCMC) simulations for fluid—fluid phasesiteons at densities of
0.072+ 0.008, Q17 + 0.02, and 28 + 0.04 atT* = 0.14 [16]. The same paper confirms these
findings with independend PT and NV T simulations. Therefore, | seek to resolve this contro-
versy. To accomplish this goal | implement a biased Monte Carlo (MC) methahwhmples with
high efficiency. Besides, | take advantage of greatly increased compgduwgr compared to what
was available several years ago. In this Chapter, | search for @dadiphase separation in dipolar

fluids and investigate the structural properties of this system.

2.1 Simulation methodology

The dipolar hard-sphere (DHS) model represents dipolar particleardsspheres of diameter
with an embedded central point dipole that can freely rotate in 3D spa@epdihpotential in the

DHS system is expressed by

2
Uij = Uns(rij) — mw(bi i) (Py - i) — (B - Py, (2.1)

whereUys(rij) is the hard-sphere interactionjs the dielectric constant of the mediumy, is the

dielectric permeability of the vacuunp, is the dipole momentp, is the unit vector indicating the



dipole orientation of particle, f;; is the unit vector along the interparticle vectgy, andr; is its
magnitude. | use reduced parameters in this study, i.e., | define the redemsityp* = No3/V,

the reduced temperatuiie’ = 4mreoskgTo 3/ p?, the reciprocal temperatugd = 1/T*, the re-
duced dipole momenp* = 1/4/T*, the reduced chemical potentjat = ©T*/kgT, and the re-
duced system size* = L /o, whereN is the number of dipolar hard spheres in the systéns, the
volume of the system, arlg; is Boltzmann’s constant. The Ewald summation method is employed
for the calculation of long-range dipolar interactions with periodic boundanditions [17, 18].

To investigate the claim of Cargt al. [16], | focus on temperatures in the rangé = 0.11—
0.5. I scan the chemical potential at each temperature and find the chentimatigls that produce
average number densities in the range @0Q < p* < 0.30 and simulate longer runs for these
chemical potentials to calculate the heat capacity, compressibility and the deissitiyution of
each system. | confirm that the chemical potential in my GCMC code showbsagyeement with
the calculated chemical potential from the Widom insertion method [18, 19sol\ary system
sizes in the range* = 4-40 to examine finite-size effects. My simulation is performed using 50%
grand-canonical moves and 50% canonical moves, because | fincatanical moves accelerate
relaxation of the chain structure. In each MC step, a GCMC move or a ahomove is selected
at random. A GCMC move is either an insertion attempt or a deletion attempt, ancooeical
move consists of an orientational move of the dipole moment and a translationalvaity 0.20
maximum displacement. To examine the efficiency, | determine the required CPtbti&in one
independent sample. My test results show that the combination of half GGM@alf canonical
move is 2.2 times more efficient than only GCMC move$ at= 0.20.

One of the difficulties encountered in simulating the DHS system is the low acceptate.
Particles have the lowest pair energyy £ —26*kg T) when they form a head-to-tail conformation.
At the critical temperature predicted by Cardpal. [16], T} = 0.15-Q16, the pair potential is
already—12.5kg T. Therefore, once dipolar hard spheres adopt a chain conformatisijfficult
to insert or delete a particle unless the inserted particle is located near &ingegtsain or the
deleted patrticle is not part of the chain. To increase the acceptanckuséethe orientational-bias
method, originally developed by Miyatake [20]. In the conventional orienal-bias method, a
finite numberk of orientations{by, by, - - - , bx} for the dipole moment are created instead of one

random orientation when a particle insertion is attempted [18]. One of théedreaentations is



selected with a probabilit? (b,) = exgd—BU%(by)]/ le(:l expg—pU%(bj)], whereU°'(by) is
the energy associated with the orientatiphand 8 = 1/kgT. This probability ensures that a
configuration of lower energy is more likely to be selected. However, twlolick of this approach
is that additional computing time is required to calculate each ok ttiéerent Boltzmann factors.
Miyatake suggested an enhancement of this bias method for the Heisapliierpodel [20] and
Caillol first used it for the DHS system [11]. Namely, the energy of anrtedadipole in the electric
field of all other dipoles in the system can be expressed as the dot pafdtscdipole momentp,

and the local electric fielé (r;) induced by all other dipolep; at positionr;,

N

_pi'E(ri):_pbi‘Z|:r£3{3fij(bj‘fij)_bj}i| : (2.2)
j=1 L i

Thus, onceE(ri) is known, the sum of Boltzmann factors can be calculated analytically by inte-

grating over all possible orientations of the dipole,

2siniBp E]

, 2.3
BR E 23)

/n expBp; - E(ri)lsin6do =
0

wherep, = | p;|, E = |E(ri)|, andd denotes the angle between the dippjeand the electric field
E(ri). Then, the probability that the dipole is placed under an afglih respect to the direction

of the electric field follows from

P©) expBp; E cosf]

- . 2.4
2 SinMBp El/1BP El 24)

In the conventional-orientational bias method, increasing the numberaiédrerientations yields a
better chance to select a configuration of lower energy. However, tinoedo generate orientations
is needed. In contrast, Eq. 2.4 makes it possible to produce the optimalbiligbby a single

calculation, equivalent to an infinite numberloin the conventional approach. Furthermore,&os

can be chosen according to the above probability from the following eguatio

cosh = ,BpLE log[2Z sinh(Bpi E) + exp(—Bp )], (2.5)

whereZ is a random number generated uniformly i@ < 1. Now, energetically favorable con-



figurations are generated frequently; however, the acceptance bidsiesd generating trial moves
should obey detailed balance [18]. Therefore, when imposing detailaddsg an insertion move
is selected with a probability

1/2

P=min|1 -5 _~
[ PO) N +1

X - fAU)| 2.6)
whereP (0) is the probability to have an angbebetween a dipole moment of an inserted particle
and the electric field andU is the difference in configurational energphU = —p, - E(ry)). The
factor 1/2 indicates the probability of generating a random orientatiam the ideal gas reservoir
representing the inverse probability of grand-canonical move (Siqué[ §in6dd = 1/2). Ina
similar way, a deletion attempt is accepted with a probability

o P@) N
P = min [1, Wv exp(—Bu — ﬁAU)} , (2.7

whereP(0) is the probability to have an angbebetween a dipole moment of a deleted particle
and the electric field andU = p; - E(r;). | also implement the bias method for the canonical

ensemble, where the acceptance criterion becomes

o P(QOId)
P = min [1, w exp(—ﬁAU)] , (2.8)

whereP (0™%) is the probability of the configuration with an angléetween a randomly displaced
sphere’s dipole moment and the electric field &@°'?) is the probability of the original configu-
ration. AtT* = 0.20, my efficiency test shows that the simulation with the bias method is 3.1 times
more efficient than the simulation without biasing.

Typically, 4.0 x 10° MC steps are needed to equilibrate the systefirat 0.14, u* = —1.315
(which corresponds to a densjpy = 0.0555+ 0.0004) andL* = 8, from a random initial config-
uration. To obtain 5000 independent configurations after equilibratisimuilate 10 x 10'* MC
steps for the same system. The acceptance rate for the GCMC moves is 0@T9€ acceptance
rate for the canonical moves is 15.40% for this system. The total CPU time eddoiobtain all
data atL* = 8, T* = 0.14 is 14800 hours and that bt = 10, T* = 0.14 is 27900 hours if |

use one core of an Intel Xeon EM64T 3.0GHz. In total, | have us&8 CPU years to perform all
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T*1025 020 0.18 0.17 0.16
L* | - 10 12 12 15

Table 2.1: At various temperatures, the largest system size wheresitdgap still exists is indicated in this
table.

simulations for this project.

2.2 Density distribution

| first study the density distribution along isotherms by means of histogramighting [21]. If
phase separation happens, we expect two distinct peaks in the densibutia if the chemical
potential is sufficiently close to its coexistence value. Even though Ghaip[16] found multiple
phase transitions at* = 0.14, my results folL* = 8 [Fig. 2.1(a)] show that the average density
increases continuously with increasing chemical potential and that the diitrilhas a single peak
for all simulated chemical potentials. Interestingly, an unexpected gap inetigty distribution

is observed in the very low-density regime. | find that this gap shows a tatoperand system-
size dependence. Firstly, the gap becomes shallower with increasing &unpeias seen from
Figs. 2.1(a) and (b), which shows the density distributidriat 0.14 andT* = 0.16, respectively.

| also note that this gap only appears when the average density of thenggdtav. Secondly, the
gap also becomes shallower and eventually even disappears as thesystemreases, as verified
for T* = 0.16 atL* = 10, 12, 15 (data not shown). Figure 2.1(c) shows the density distributions
for T* = 0.16 andL* = 20; it is observed that a gap no longer exists. Table 2.1 shows the
largest system size for which a gap exists at various temperatures. thamperature is higher
thanT* = 0.25, a gap does not exist even for the smallest simulated systemLsize, 4. For

temperatures less thdit = 0.16, system siz&* = 15 still shows a gap in the low-density regime.

The location of the sharp peak indicated by the arrows in Fig. 2.1 providiedor a possible
explanation of this density gap. Namely, the location of the peak eguiads 1/L*2. Since my
simulations are performed with periodic boundary conditions, the dipolarspltan align to form
an infinite loop parallel to one of the Cartesian axes of the box. The nundeitg at which

this chain can form corresponds to the location of the sharp peak. B8errdor this behavior
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Figure 2.1: The isothermal density distribution of a dipolar hard-geHtuid at various chemical potentials.
The density distribution curves display only one maximumddixed chemical potential and
shift continuously with changing chemical potential. &) = 0.14 andL* = 8. The density
distributions for the chemical potentials® = —1.316 —1.309, —1.304, —1.298 —1.284 cor-
respond to the average densitggs~ 0.05, 0.10, 0.15, 0.20, 0.30, respectively. (bY* = 0.16
andL* = 8. The density distributions fon* = —1.242 —1.235 —1.230, —1.223 represent
p* =~ 0.05,0.10,0.15, 0.20, respectively. (cJ* = 0.16 andL* = 20. The density distri-
butions foru* = —1.255 —1.250 —1.246, —1.243 represenp* ~ 0.002 0.004, 0.01, 0.02,
respectively.
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can be explained as follows. If the simulation box is small, the system can easéy it3 energy

by forming an infinite loop rather than having a ring or a short chain. Feame®, the energy per
particle of an infinite loop of 8 particles is2.408*kg T, that of a ring of 8 particles is2.208*kg T,

and that of a finite chain of 4 particles s1.678*kg T whenL* = 8. Therefore, if the system
size is small, the infinite loop is highly favorable. According to Ref. [22], l@h@ins start to
dominate the system frop > 0.01 atT* = 0.13, because rings can easily be broken up through
interactions with other particles with increasing density. When 8 particlesasemt in the system
atL* = 8, the density already equats = 0.0156. Then, an infinite chain formation is more
favorable than a ring configuration. Thus, this density distribution gaptiamoindication of phase
separation but just a finite-size effect. This finite-size effect for th&Blstem has been reported

only recently [23]. Therefore, | believe that it might affect the simulatiesutts of Ref. [16].

2.3 Specific heat

In the grand-canonical ensemble, the heat capacity is obtained frgm [24

U
Cv = (ﬁ) (2.9)
\Y
1 ((pU) — (p)(U))?
= u2—u2—{ }) 2.10
kg T2 <{< = (p2) — (p)? (2.10)

The specific heaCy, /(Nkg), of the DHS is plotted along an isochore for a wide range of tem-
peratures, A1 < T* < 0.5 in Fig. 2.2. Figures 2.2 (a) and (b) represent the specific heat curve
for the densitiep* = 0.05 and 010, respectively. It is known that the heat capacity curve shows a
divergence at the critical temperature and a discontinuity at the transitiortatage if phase sep-
aration happens [25]. Simulation results of ionic fluids showed that the thefighaximum of the
specific heat diverges and that the position of this maximum shifts to the ctéioglerature at crit-
ical density with increasing system size [26]. However, such a sizendepee is not observed for
the DHS fluid. The specific heat converges for different system &zesl simulated temperatures
as shown in Fig. 2.2.

Figure 2.3(a) shows the specific heat of the DHS as a function of dendity-a 0.14 for three

different system sizes. Although it is reported in Ref. [16] that posgibbese transitions occur at
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Figure 2.2: The specific heaCy /Nkg, of the DHS as a function of * at constant density. Simulations are
performed for a range of temperaturesl < T* < 0.5 for three different system sizes. The
heat capacity is calculated by histogram reweightingp{a) 0.05. (b)p* = 0.10.

densities 72+ 0.008, Q17+ 0.02, and 28 & 0.04, the specific heat curves are flat and smooth
near those three densities as well as for a wide range of densild®s<0p* < 0.30. There is no
divergence or system size-dependent maximum. Interestingly, the sgegiti curves show a peak
at very low density. Figure 2.3(b) enlarges Fig. 2.3(a) for densitieswbeto= 0.005. It is seen that
the height of the peak saturates when the system size is largdrthar8. Similar behavior is found
for T* = 0.18, as shown in Fig. 2.4. In Ref. [11], the possibility of phase separatidri = 0.18
has already been excluded in the basidN®? T simulations. The specific heat curveTat = 0.18

still has a peak at very low-density regime and curves coincide in the deasigo* > 0.01. The
height of this peak clearly decreases with increasing system size. Sitftéhle specific heat of
T* = 0.14 andT* = 0.18 have maxima but do not diverge, these peaks in the specific heat do no
represent any evidence of phase transitions but arise from finitefemts. Therefore, | conclude
that there is no phase separation in arandd & T* < 0.5, despite the estimates of Carap

al. [16, 22] for the critical density and temperatupg,~ 0.10 andT; = 0.15-016.
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Figure 2.4: The specific heat of the DHS alofAg® = 0.18 isotherm forp* < 0.20. System sizé& * varies
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Figure 2.5: The compressibility,y, of the DHS as a function of * at constant density. Simulations are
performed for a range of temperatured D< T* < 0.5. The compressibility is calculated by
histogram reweighting. (&* = 0.10. (b)p* = 0.15.

2.4 Compressibility

The compressibilityy, of the DHS fluid is calculated at constant density fakl0< T* < 0.51in

this section. The compressibility is derived from

x =V —(p)? = ke Tp*Kr, (2.11)

whereK+ is the isothermal compressibility [27, 28]. Figure 2.5 represents the cosilpitids for

the densitiep™* = 0.10 and 015, respectively. Unlike the results of the heat capacity, the height of
the peaks shows a divergence with increasing system size for the sragdliesh sizes, which could
suggest phase separation. However, ultimately, they converge at $gggem size. | find that the
peak in the compressibility curve converges at smaller system sizes in thedmgtlty region and
shows a stronger divergence in the low-density region. One coule aingiti this is consistent with

the occurrence of phase separation in the low-density system, beaaitseaiie effects become
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Figure 2.6: The head-to-tail conformation of the dipolesTat = 0.14 andp* = 0.09. One can see several
chains in this snapshot. At this low temperature, the diptdad to form chain conformations
and simulations require a very long time due to the low acueg rate.

stronger when the system approaches the critical density. Howeveig.i.E(c), there is only
one peak in the density distribution for this low-density region, which indicadesvidence for the
phase transition.

This phenomenon can again be explained from the density distribution gage tBe density
gap effect becomes more severe when the density is low, Fig. 2.5 shavemges divergence at
low-density regime. On the other hand, the distribution shows no ghp at 8 when the average
density is larger thap* ~ 0.15 as shown in Fig. 2.1, and the compressibility for = 0.15
indeed converges when the system size is larger thian= 8. Therefore, | conclude that the
divergence in the compressibility appears only when the gap affects thawd does not indicate

phase separation.

2.5 Structure

The self-assembled structure of dipolar fluids is quantitatively analyzeddrséction. Unlike
isotropic ionic interactions, anisotropic dipolar interactions induce heaalitconformations at
low temperature as can be seen in Fig. 2.6. The classification of clustersatiuasin Fig. 2.7,
proceeds as follows [12, 29]. The first, second, and third neaeighinor distances (respectively,
rij, rzj, andrs;) of each particlej are calculated; if1; > re, j is a free particle, if1; < rc and
r>j > re, j is an end patrticle, if;; < re andrs; > re, thenj is an interior particle, and, finally, if

rsj < fre, j is ajunction particle. A ring is defined as a cluster with interior particles onlpaénc

17



Figure 2.7: Various conformations in the DHS system at low temperat@kains, rings and networks of
various sizes are observed.

is a cluster with two ends, and a network has at least one junction partidlasIstudy, the cutoff
distance is defined ag = 1.125 [30].

Figure 2.8(a) shows the fraction of particles belonging to chains, rirefgyanks and infinite
loops as a function of temperature and at the density= 0.10. With decreasing temperature,
the number of monomers decreases monotonically and the numbers of bothpahicles and
network particles increase as the dipolar attraction increases. Intehgstipgn further decrease
of the temperature, chains show a maximum and merge into large networkse Big(b) shows
that, at the lower density gf* = 0.01, chain conformation is always more favorable than network
formation even in the low-temperature region. For this low-density systemafhigly increasing
number of infinite chains corresponds to the density gap. The fracticart€les belonging to each
cluster is plotted as a function of density at temperattires= 0.14 andT* = 0.30 in Fig. 2.9. At
T* = 0.30, most of the particles remain isolated since the dipolar interactions areebiatieak
at this high temperature. Fa@r* > 0.08, the fraction of chains is comparable to the fraction of
monomers; however, chains are not long, and are typically just pairgpofed. AtT* = 0.14,
chains dominate the system in the low-density regime, and merge into a netwarkistras the
density is increased. Since most theoretical studies [6—8] only take imamicchains and rings, a
new theory that includes the effect of network structures is clearlyateed

Since anisotropic dipolar interactions lead to polymer-like chain structuvey bolymer the-
ory [31-34] is often used to explain the behavior of dipolar fluids [8328,and the polymerization

transition is used to understand self-assembly in systems such as the Steckmay35], the quasi

18



1.0

MONOMEY »+wwwwes
chain ===
0.8 ring -
network
infinite
f, 0.6 |
0.4
0.2

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
O
T

1.0

(b)
0.8 |

f, 0.6

0.4 ¢

0.2 ¢

0.0 s e . . .
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0
T

Figure 2.8: (a) Fraction of particles belonging to monomers, chaimggj networks and infinite loops. Prop-
erties are measured as a function of temperature at cortganity p* = 0.10 andL* = 10.
Black, orange, pink, blue and cyan color correspond to mampichain, ring, network, and
infinite loop, respectively. (b) Same figure at constant itens = 0.01.
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Figure 2.10: Circles are the polymerization transition temperaturésutated from the maximum in the heat
capacity. Triangles indicate the polymerization tempeest from the inflection point of the
extent of polymerization and a dotted gray line is a fittinggli

two-dimensional DHS [30], as well as polymer systems [36]. Howeveastiot been applied in the
3D DHS system. The polymerization transition is defined in two different wa§s36]. One way

to define the polymerization transition temperatdig, is to identify it with the peak of the heat ca-
pacity. Figure 2.10 shows simulation results for the DHS systgmncreases whep* < 0.05 and
decreases at higher densities. For the Stockmayer fluid, increasiagitwetf T, at low densities
(p* < 0.0637) are also observed [35]. The second way to define the polyrmenizansition line is
through the extent of polymerizatio®, = N,/N, whereN, is the number of aggregated particles.
Here, the polymerization temperaturg;, is defined as the inflection poii2®/3dT*?) |,= 0.
Below this temperature, the average chain length in the system become$yrtmnmger than 2.

In Fig. 2.10,Tg always appears abovE;, consistent with simulation results for the Stockmayer

fluid [35].

2.6 Summary and conclusions

The heat capacity, compressibility, and density distribution have beenataeldfior the DHS system
to investigate the possibility of phase separation using GCMC simulations. | sinthikei®ystem
for temperatures as low 85 = 0.11, despite the long equilibration times associated with the low
acceptance rate. The density distribution displays only a single peaklatkamical potential,
suggesting that there is no phase separation. In addition, my calculatioa bé#t capacity and

compressibility does not indicate any evidence for phase separation.
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Interestingly, recent simulation studies used extrapolation from othernsyst@stimate the
critical temperature of the DHS fluid [23, 37]. Both references estimatedritieal temperature
at T} ~ 0.15, supporting simulation data of Carapal. [16]. Ganzenriller and Camp simulated
a fluid of charged hard dumbbells (CHD), where each dumbbell is cordpafsavo oppositely
charged hard spheres at a center—center distén28]. Whend/o = 1, the CHD shows ionic
phase separation. Ao — 0, the CHD system becomes the DHS system. They found that the
critical temperature increases with decreasing a center—center didtandextrapolated the critical
temperature of the DHS system. Almaetal. simulated mixtures of hard spheres and dipolar hard
spheres [37]. When the pressure of this mixture is decreased, thespizede density decreases
and this mixture becomes a pure DHS system. Since they found the critical sgamgsrof this
mixtures at different pressures, they could extrapolate the critical teperof the DHS system.
However, both Refs. [23,37] did not have simulation data for the pur8 By$tem. Therefore, these
extrapolation methods does not guarantee the existence of phasetisaparéthe DHS system.
My simulation results of the DHS system clearly exclude the occurrenceasfepbeparation for a
large region of the temperature—density plane, and if phase separgbpensait would be below

T*=0.11.
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CHAPTER 3

QUASI-2-DIMENSIONAL DIPOLAR
HARD-SPHERE FLUID

A recent experiment on dipolar colloids confined to a plane showed ititegestripe patterns in-
duced by phase separation [1]. A simulation study of 2D dipolar fluids cangmdential starting
point to understand this experimental result. Furthermore, it is well estatligtat Coulombic
interactions in different dimensions can induce different types of pbeysaration [2—9]; it is a fun-
damental question to understand the phase behavior of dipolar fluidsenediffdimensions. The
simulation results of the previous Chapter for the 3D dipolar hard-splEi&) system exclude
the possibility of liquid—vapor phase separation for a large region of thedeane—density plane.
Next interesting DHS system with different dimensionality would be a quadbBB fluid because
the dipole moment can rotate in full 3D space like for the 3D DHS model, but thierseof the
dipolar spheres are confined to a plane. Thus, how this dimensionattiestchanges the phase
behavior of DHS fluids is a fundamentally interesting question. Since therecme of phase sepa-

ration in the quasi-2D DHS fluid is still an open question [10-16], | investithasein this Chapter.

3.1 Simulation methodology

To study the quasi-2D DHS model, | use the same simulation methodology as ddsariBhap-
ter 2. Reduced parameters = No2/L2, T*, L*, andu* are used in this simulation as in Chapter 2.
Ewald summation method is implemented to calculate the long-range dipole-dipolectimiera
where the centers of the dipoles are restricted to a plane and the dipole marotms are fully
3D [12,17]. Since the quasi-2D system does not have a periodicitgirection, now long-range
interactions can be separated into an in-plane component and an datiefgpmponent. Thus, a
different derivation for Ewald summation is necessary for the quasiyaizs [17].

To investigate the possibility of phase separation, | simulate the system ovideaamge of

temperature3 * = 0.1322-050 and densities.05 < p* < 0.20. Finite-size effects are investigated
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Figure 3.1: Typical conformation of dipolar spheres confined to a plan&‘a= 0.1322,L* = 80 and
p* = 0.16. At low temperature, dipoles form head-to-tail confotimras, and ring and network
structures are observed in this snapshot.

by varying the system size* = 8-80. As in Chapter 2, this simulation is performed using a
combination of grand-canonical and canonical moves. The orientatiaslmethod is used to
increase efficiency [18,19].

About 50 x 10'° MC steps are needed to equilibrate the systeffirat 0.1322,1* = —1.3395
(which corresponds to a planar density ~ 0.093) andL* = 30, starting from a random initial
configuration. To obtain 5000 independent configurations after ecatikior, | simulate ® x 102
MC steps for the same system. The acceptance rate for the GCMC moves%s @ntlsthe ac-
ceptance rate for the canonical moves is 16.20% for this system. The tdtatiGPe required to
obtain all data at.* = 30, T* = 0.1322 is 16 years for a single core of an Intel Xeon EM64T
3.0GHz. In total, | have used140 CPU years to perform all simulations for this project. A typical
configuration of the quasi-2D DHS fluid &t = 0.1322 is depicted in Fig. 3.1.

3.2 Thermodynamic properties

In Chapter 2, | have disproved phase separation for the 3D DHS acticting the evidence of Camp
etal. atT* = 0.14 [20]. Interestingly, slightly below this temperature [16], a theoretic@ination
of Tavareset al. suggested the occurrence of a second-order phase transition efasie2dp DHS
system afT* = 0.1322 [16]. Therefore, | want to focus on the temperaftite= 0.1322 and

T* = 0.14 to investigate the occurrence of a phase transition.
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Figure 3.2: Isothermal density distribution of the quasi-2D dipolaridiiat various chemical poten-
tials. (@ T* = 0.14 andL* = 15. The density distributions for the chemical poten-
tials u* = —1.309Q —1.301Q —1.295Q —1.2880 correspond to the average densipés~
0.05,0.10, 0.15,0.20, respectively. (b)l/* = 0.14 andL* = 30. The density distribu-
tions for u* = —1.304Q —1.2988 —1.2932 —1.2870 represenp* ~ 0.05,0.10, 0.15, 0.20,
respectively. (c)T* = 014 andL* = 60. The density distributions fopu* =
—1.3028 —1.298Q —1.2926 —1.2870 represent™ ~ 0.05, 0.10, 0.15, 0.20, respectively.
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Figure 3.3: Specific heatCy /Nkg, of the quasi-2D DHS as a function ©f at constant density. Simulations
are performed for a range of temperature§3@2 < T* < 0.5 for three different system sizes.
The specific heat curves are calculated by histogram rewegf21]. (a)o* = 0.05. (b)p* =
0.15.

Figure 3.2 shows the density distributions of the quasi-2D dipolar fluids*at 0.14 and
various chemical potentials. Similar to Chapter 2, a density gap appears iartbigyddistribution,
with a temperature and system-size dependence. The approximate locétienpanks are,, ~
1/L*? andpgeq~ 1/L* (which corresponds to a single horizontal or vertical spanning looghto
3D and 2D systems, respectively. Thus, the gap in the 2D system is btbadethat in 3D at the
same system size. At* = 15, Fig. 3.2(a) shows thatsacond peak arises gy, ~ V2/L*, which
corresponds to a single diagonally spanning infinite loop. The gap efextsathe distribution of
the system att* = —1.288 (which corresponds to an average dengityx 0.20). In Fig. 3.2(b),
the density gap becomes shallowerdt = 30. The gap is only visible for densities lower than
p* =~ 0.10. Finally, atL* = 60, Fig. 3.2(c) shows that the density gap disappears. Since the density
gap effect is severe in 2D, large system size are required to eliminate ttassiire effect, making

the total simulation cost comparable to that of the 3D system.
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reweighting. (b) Isothermal specific heat of the quasi-2DfHids at densitiep™ < 0.002.

At T* = 0.14, the finite-size gap effects are eliminated by chookihg- 60, and for this system
Only a single peak is observed in the density distribution as shown in Fig) 3a&ttherefore there
is no sign of phase separation. Further simulations indicate that, e#en-at0.1322, there is a
single peak in the density distribution at various chemical potentials thatspomd to a wide range
of average densities* = 0.05—-Q20.

Figures 3.3(a) and (b) show the specific h€st/Nkg, of the quasi-2D DHS as a function of
T* at densitiesp* = 0.05 andp* = 0.15. The specific heat curves for the different system sizes
coincide. | study several densities betweddbt0< p* < 0.20, and do not observe any evidence for a
maximum that diverges with system size or a discontinuity in the specific heatscun Fig. 3.3(a),
the maximum of the curve fdr* = 15 is slightly higher than the maxima of other curves. As shown
in the density distribution, the results far = 15 are strongly affected by the gap at low density.

Therefore, this deviation in the maximum can be interpreted as a finite-sex. eff
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Figure 3.5: Compressibilityy of the quasi-2D DHS as a function of temperature at constansgity. Sim-
ulations are performed for a range of temperaturd8Z2 < T* < 0.5. (a) p* = 0.05.
(b) p* = 0.20.

| also check the specific heat as a function of densifiy*at 0.1322 for three different system
sizes in Fig. 3.4. For densities in the rangé3< p* < 0.20, | do not find any discontinuity and the
curves for three different system sizes almost coincide. Like for th®BIS system, the specific
heat curves of the quasi-2D DHS system also display a peak at verydogitgd Figure 3.4(b)
enlarges this low density regime, confirming that the height of these pealeades with increasing
system size as observed in the 3D DHS.

Figures 3.5(a) and (b) show the compressibijityf the quasi-2D DHS system as a function
of T* at densitieso* = 0.05 and 020, respectively. Ap* = 0.05, the compressibility appears to
diverge due to the finite-size density gap effect similar to the 3D case. Meigydnce disappears
when p* = 0.20 because the density gap occurs at lower densities. Once the ges affe re-
moved, the compressibility curves are smooth and converge. Therdferepmpressibility of the
guasi-2D DHS system does not indicate any phase separation.

Tavareset al. [16] calculated the chemical potential as a function of correspondingitgeat
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T* = 0.1322, finding a cusp in the curve. Consequently, the second deeiadtihe free energy,
(%)T = ("BZT‘S)T shows a discontinuity at a finite density. Since my simulation is performed in
grand-canonical ensemble, the average density at each chemicdlagaseneasured, then chemi-
cal potentials and corresponding densities are calculated by histogresiginéing [21] as shown in
Fig. 3.6. Curves for small system sizes show a finite-size dependanidbgelcurves fol.* = 60
andL* = 80 coincide almost perfectly and can thus be viewed as representative timetimody-

namic limit. Since no discontinuity is observed in Fig. 3.6, | conclude that theatgtiediction is

not reliable in a range of densitiedB < p* < 0.20 atT* = 0.1322.

3.3 Summary and conclusions

I have excluded the possibility of phase separation in the 3D DHS system jmeti@us Chapter.
How dimensionality affects the phase behavior of dipolar fluids is a fundhemmportant ques-
tion. Interestingly, furthermore, theoretical prediction has shown thsilpiby of a second-order
phase transition in the quasi-2D DHS systenT at= 0.1322 [16]. In this Chapter, | have investi-
gated the possibility of phase separation in the quasi-2D DHS system. | bdweenped simulations
for a large temperature—density region, and calculated the density distnibb&at capacity, and
compressibility. The behavior of those properties is comparable to theiterpaints in the 3D DHS
system, and | do not find any evidence of phase separation in the D@43 system. Despite the
theoretical prediction of a phase transition, | exclude this for temperatigriesv asT* = 0.1322.

At this temperature, the binding energy of a head-to-tail conformation isndre15kgT. Thus,
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if this strong chain formation preempts the existence phase separation, itghiathat phase

separation can not be occurred below this temperature because oftroagdysbonded chains.
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CHAPTER 4

|ION-DIPOLE MIXTURES

The phase behavior of binary van der Waals mixtures has been studieetibally and experimen-
tally, and a classification of phase diagrams has been established [1eWwgver, our knowledge
of phase behavior driven lgtectrostatic interactions is far from complete. While it is known that
Coulombic interactions can induce phase separation [6, 7], | have exttbd possibility of fluid—
fluid phase separation in purely dipolar fluids in Chapter 2. The nextalajuestion is whether
phase separation takes place in mixtures that contain ions as well as digaialep. Theoretical
studies for ion—dipole mixtures are not reliable since they start from thergin that dipoles
have a liquid—gas phase transition [8—10]. Previous simulation studie$4]Lficr ion—dipole mix-
tures were performed for high dipole densities and weak dipolar interactom only focused on
structural information. In this Chapter, | present results for a broagleraf dipole and ion densities
using various dipolar to ionic interaction ratios. | map out the phase diagritimsse mixtures and

locate their critical points.

4.1 Simulation methodology

To study ion—dipole binary mixtures, | use a combination of the dipolar hdrdreg DHS) and the
restricted primitive model (RPM) to model the dipoles and ions, respectiVelyyDHS is described
in Chapter 2, and the RPM represents ions as hard spheres with equatatidhat carry a positive
or negative charge of identical magnitude. The system is charge ndltliegpair potential between

charged particles is
Qi q;

U = Ups(rij) + ———

, 4.1)
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and the pair potential between a charge and a dipole is

i pCp; - fij)

U = Ups(rij) +
Y Hs(fiy) Aot

(4.2)

whereUys(rij) is the hard-sphere interactionjs the dielectric constant of the mediumy, is the
dielectric permeability of the vacuung; is the charge of iom, p is the dipole momentp; is the
unit vector indicating the dipole orientation of particld;; is the unit vector along the interparticle
vectorrij, andrj; is its magnitude. | use reduced properties in this study, i.e., | define theagduc
total densityp;,,, = No3/V, the reduced ionic density;,, = Niono3/V, the reduced dipolar
densitypj;ipole = Ndipo|eo3/ V, the reduced temperatufie’ = 4regeoks T /g2, the reciprocal tem-
peratureg* = 1/T*, the reduced dipole momemt = p/(qo), the reduced chemical potential
w* = uT*/(kgT), and the reduced system sizé& = L /o, whereN is the total number of spheres
in the systemNon is the sum of the number of positive and negative id¥gyole is the number of
dipoles,o is the diameter of a dipole or ioW, is the volume of the system, alg is Boltzmann'’s
constant. The dipole moment in this Chapter is related to the dipolar temperatdranShapter 2
asTi,s = T*/p*2 Ewald summation is employed for the calculation of long-range dipolar, ionic
and ion—dipole interactions with periodic boundary conditions [16, 17].

To study these binary systems, | focus on the reciprocal tempegitute21.0 (T* = 0.04762),
where Coulombic interactions are strong enough to induce a liquid—gas prhasition [6, 7]. My
goal in this Chapter is to investigate the phase behavior of mixtures whenslgeledded to ionic
fluids. Certainly, the interaction between ions and dipoles will affect theghahavior of such
ion—dipole mixtures. Thus, to change the ion—dipole interactions, the dipole m@waried in the
rangep* = 0—-060. At p* = 0, “dipoles” become hard spheres without any additional interactions.
The dipolar temperature 1§, = 0.132 whenp* = 0.60. As explained in Chapter 2, dipoles form
strong head-to-tail conformation at this dipolar temperature. Since this isaaylinixture, both
the chemical potentialg;,, e and iy, need to be tuned. To find phase coexistence, | first find the
ionic chemical potentiak;; . that leads to phase separation in pure ionic fluids. Then, a reasonable
Kdipoler that results in a small amount of dipoles in the system, is also found from sinmsatio

Subsequentlyginge is kept fixed, andu,, is varied, and each set of chemical potentials produces

*
ion

an average ion compositiofon = Nion/(Nion + Naipotle). The occurrence of phase separation is
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determined by calculating the density distribution of each system. Once theneeisté phase
separation is determined at fixed}j,oe: Hgipole IS iNCreased to increase the amount of dipoles and
ui, is varied again. Thus, the phase diagram is mapped out. The correspendetween the
chosen chemical potentials and the actually measured densities is checkeslWi@lom insertion
method [16, 18]. | use system sizes in the rahge= 8-15 to explore finite-size effects.

As in Chapter 2, this simulation is performed using a combination of grandatai@and canon-
ical moves. To maintain charge neutrality in this mixture, a positive ion and negati are inserted
or deleted together. At low temperature, most of the ions are found aghkdlrpairs, and it is en-
ergetically cost to break such ionic pairs. To maintain a reasonable acceptde for ionic moves,
the distance bias method [6] is implemented. For dipolar moves, | use the orieatdiias method
described in Chapter 2. Typically,5x 10'° Monte Carlo (MC) steps are needed to equilibrate the
system aff* = 0.04762,p* = 0.60, pigip0e = —0.5044, uf,, = —1.3534 (which correspond to
densitiespgi,qe ~ 0.07 , pig, ~ 0.04), andL* = 12. To obtain 10000 independent configurations
after equilibration, | simulate.® x 10*?> MC steps for the same system. For this system, the accep-
tance rate for GCMC moves of ionic pairs is 8.6%, that for GCMC moves of&lps 2.2%, that
for canonical moves of ions is 47.2%, and that for canonical moves ofadips 19.9%. The total
CPU time required to obtain all datalat = 12, T* = 0.04762, andp* = 0.60 is 63 years for a
single core of an Intel Xeon EM64T 3.0GHz. In total, | have us€d0 CPU years to perform all

simulations for this project.

4.2 Demixing with zero or weak dipole moment

| first want to investigate the simplest case. Namely, when “dipoles” do ang hiny interactions,
how does the presence of hard spheres affects the phase belattier“@n—dipole” mixture?
Figure 4.1(a) shows the density distributions of ions and hard spheres at —1.3214,u}\s =
—0.1322,T* = 0.04762, and_* = 12. The distribution for hard spheres has two distinct peaks
corresponding to densities ats ~ 0.02 andpj;s ~ 0.05, and the distribution for ions has two
peaks at average densitig§,, ~ 0.01 andp;, ~ 0.22. Two clearly observed peaks for both
species indicates phase separation. The coexistence chemical poteatiakalated by using the

equal-volume criterion [19, 20]. Figure 4.1(b) displays the two-dimensibesity distribution for
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Figure 4.1: (a) Density distribution of an ion—hard sphere mixture arofcal potentialgey, = —1.3214,
s = —0.1322,T* = 0.04762, and.* = 12. Two distinct peaks for each species indicate
phase separation. (b) Two-dimensional density distloutf a mixture is plotted for same
conditions as for (a). (c) Top view of the two-dimensionahsi¢y distribution.
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this mixture. Whenu , is scanned, the volume under each of the peaks in this figure varies as
well. Phase coexistence corresponds to the situation where both voluenegual. Figure 4.1(c)
shows the top view of this distribution. Figures 4.1(b) and (c) show thei@nliquid phase and

the ion-poor gas phase, which has been reported earlier by simulaticen@theory [22].

This type of phase separation is a demixing process. In the dense liqud, gtha ionic inter-
actions serve to lower the system energy at the cost of lower entroggisiphase, hard spheres
cannot help to lower the system energy. Therefore, when the ionsdatense phase, few hard
spheres are present. In the gas phase, the total density is low andtdm@ &@s a high entropy.
Most of the hard spheres prefer to be in this gas phase to avoid mixing wijvidrich would cause
an increase in the energy of this system. For a very weak dipole mamient.1, the same demix-
ing phase behavior is still observed. Indeed, in this system, the dipolar tameeisT3,s = 4.8,

i.e., the dipolar interaction is still very weak and the dipoles hardly interact watfotis.

4.3 lonic phase separation with intermediate dipole moment

The previous section discussed demixing phase separation inducediby hdrd spheres to ionic
fluids. The next question is whether dipoles with an intermediate strength diifibke moment
can also cause phase separation. The dipole moment is increap&d={00.30, corresponding
to a dipolar temperature of,s = 0.53. As shown in Chapter 2, this dipole moment is still
too weak to induce chain formation and isolated dipoles dominate the pure DidS Hawever,
dipoles start to interact with ions and other dipoles and this system clears shiferent behavior
compared to the system wigh* = 0. Figure 4.2 shows the density distribution of each species at
T* =0.04762 and_* = 12. Distinct peaks in the ion density distributigsf(, ~ 0.02 and 016) are
observed; however, the dipolar distribution has only a single low-densétly atog;,,e ~ 0.005. At
this intermediate dipolar interaction, dipoles start to connect with ions to lowesydtem energy,
and demixing is prevented. Since pure ionic fluids can have a liquid—ga® praasition at this

temperature, the ions still display phase separation when only a few dipelgseaent as impurities.

In Fig. 4.3(a), | first fix the chemical potential for the dipoles and varydtemical potential
for the ions, thus changing the ionic composition. kgt = —0.1510,—0.1735, and-0.2070,
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single density peak at;;ipole ~ 0.005. (b) Top view of the two-dimensional density distrilouti
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only homogeneous phases are found. These are indicated in Fig. 4.8 fifetth squares. When
Kdipoe = —0.2185, | find phase coexistence between two ionic compositions, indicategdsy
blue squares. Changing the horizontal axis from the ionic composition tortfeedensity, dipolar
density or total density provides additional information. Figure 4.3(b) shitv ionic coexisting
densities at dipolar chemical potential§,,. < —0.2185. On the other hand, the dipolar density
remains almost constant upon phase separation, as shown in Fig. 4.3(c).

Since | find phase separation in this mixture, the location of the critical pairibeaetermined.
To calculate the critical point, the Binder parameter (fourth-moment amplitucg [&, 23, 24] is

introduced,

, (4.3)

wherem = p — (p). Itis known that when the system size goes to infinity, for the single phase
region, the distribution op becomes Gaussian, aQ — % [7,23,24]. In the two-phase region,
QL — 1 on the coexistence diametgr = %(,o+ + p7), wherep™ and p~ are the coexisting
densities of liquid and gas at < T.. At criticality, Q, approaches a nontrivial universal valQg
which is Q. = 0.62362) for the Ising universality class [25]. The RPM sho@g = 0.624(2),
indicating that it belongs to this universality class [7]. In a single compofgnis calculated as
follows. At fixed temperatureQ, is scanned by varying the chemical potential and the maximum
of Q. is recorded. This is repeated for various temperatured. At T;, these maxima are found
near the diametés. Q-loci on whichQ_ is maximum at fixed can be plotted for different system
sizes, and the intersectioiig (L) between those curves are measured. In the thermodynamic limit,
To(L) — T¢ and the corresponding critical val@ (Tc) goes toQc [7].

Now, | want to apply this method to ion—dipole mixturesy,, is fixed first and themj,, is
varied to find the maximum value @, . In Figs. 4.3(b) and (d), open pink squares indicate the
coexistence diameters and red squares are the maxima of the Binder par@mek®r /15,06 <
Igipolecs this locus of the maximun®, is located near the coexistence diameter Figure 4.4
displaysQ_ on the Q-loci at fixedugipOle for L* = 8,12 15. Since | only have-loci for three
different system sizes, | simply measure the intersection of the curvesfer 12 andL* = 15,
and roughly estimate the critical valug oo ~ Kipole o(L™ = 19 ~ —0.245, uj, . ~ —1.337,
and Q. ~ 0.631. Thus, this approach has not only provided the location of the crtaiat, but

also shows that the critical behavior belongs to the Ising universality. classrestingly, phase
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separation still happens above the bulk critical point (a gray squae}d(finite-size effects in
Fig. 4.3. As the system size increases, | find that the maximum dipolar chepoiaitial that

produces a liquid—gas phase transition decreases toward the meagigaidoint.

4.4 Phase separation with strong dipole moment

When the dipole moment is increased furthempto= 0.55 (which corresponds td;,,5 = 0.16),
dipoles tend to form chain structures and the nature of the phase sepafadioges. As shown
in Fig. 4.5(a), the dipolar density distribution shows phase separation, amgike for the mixture
at p* = 0.30, and both ions and dipoles have two peaks in the density distribution. ctere
interestingly, Fig. 4.5(b) indicates that the gas phase has a low-densibytoibins and dipoles, and
the liquid phase has a high-density of both ions and dipoles, unlike the imhsplaere mixtures. In
ion—dipole mixtures at dipole momept = 0.55, the dipole—ion interaction energy-isl1.5kg T,
much lower than the interaction at = 0.30, where it is—3.8kg T. Consequently, dipoles tend to
strongly bind to ions, both phases have a similar ratio of ions to dipoles use geparation.
Figures 4.6(b) and (c) show that both ions and dipoles show a low-deargity high-density
phase, whereas dipoles pt = 0.30 do not show phase separation in Fig. 4.3(c). In Fig. 4.6(a),
the composition for both phases is almost the same. Although, this compositiea s&ong the

coexistence curve, the total densities in both the liquid and the gas phase reaghly constant,
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see Fig. 4.6(d). Finally, with decreasing ionic composition, phase sepathsappears when the
dipoles make up than 54% of the mixture. Figures 4.6(b), (c), and (d) #faitheQ-loci obtained
using the method described in the previous section are indeed located @eaekistence diame-
ters. In Fig. 4.7, the critical point is estimated from the intersectio@#@bci using system sizes

L* =10 and 12: this yieldg o6 c ~ —0.387, ujg, . ~ —0.381, andQc ~ 0.602. Lastly, at dipole
momentp* = 0.6 (T3,s ~ 0.13), dipoles bond even more strongly with ions and dipoles. As a

result, the maximum dipole concentration that induces phase separatioto 6568%.

45 Structure

In the previous sections, | have found that the phase diagram of iorediprtures changes dra-
matically upon variation of the dipole moment. In this section, | will give quantitatescriptions
of the structure of these ion—dipole mixtures. As in Chapter 2, the basioroafions of interest
include rings, chains, and network clusters. Now, the ion and dipole csitrgyoof these clusters
are also considered. In each capé £ 0, 0.3, 0.6), there is phase separation, and the gas phase is
identified as the phase with low total density. The fractions of particles bi@lgrng ion clusters,
dipole clusters, ion—dipole clusters, ion monomers and dipole monomers indipbgse at various
dipole moments are shown in Fig. 4.8. Wheh= 0, the “dipoles” mostly remain as monomers
because they do not have any interactions. pAt= 0.30, the fraction of ion—dipole clusters in
the gas phase becomes larger even though only few dipoles are pilessnise of the increased
strength of the dipolar interactions. Since ion neutral pairs dominate thersgstew temperature,
a large portion of ion clusters is evident [6, 26]. Whgh= 0.60, the majority of structure is the
ion—dipole clusters. This is consistent with the observation in the previat®is¢hat ions and
dipoles are strongly bonded.

A resemblance of the structural properties of ion—dipole mixtures canurelfim the dipole—
hard sphere mixture [27, 28]. Phase separation occurs but longscraimot present in the dipole—
hard sphere mixture. Indeed, at strong dipole mompht= 0.60, if | compare the pure DHS

system withpg;e = 0.12 and the mixture withpg,, = 0.08 andpg,,e = 0.04, the pure DHS

_*
on

system has an average chain lengtt8Mhile the mixture has an average chain lenggh(8hains

include ions and dipoles). This confirms that when mixtures undergo gleaseation, long chains
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Typical structures of ion clusters, dipole clusters, and-gipole clusters are illustrated.

are not present, unlike the system of the pure DHS. It seems that sttmmgled long chains in the
pure DHS system have some role preventing phase separation, in agt@gthearlier theoretical

suggestions [29-31].

4.6 Summary and conclusions

In this simulation study, temperature controls the strength of ionic interactindt ia kept fixed at
T* = 0.04762, where phase separation happens in pure ionic fluids. | invedtiggphase behavior
of ion—dipole mixtures with various dipole moments. Qualitatively different phdiagrams are
found by varying the ratio of the dipolar to the ionic interaction. When the dipmenent is very
weak, demixing is observed. At intermediate dipole strength, phase sepatisappears in a large
region of the [1gi,0e- Xion) Plane, and there are few dipoles present when phase separatfmembkap
When the dipole moment is strong enough to bond ion—dipole pairs, a liquighhgas transition
returns. In this mixture, the relative ion—dipole fraction is roughly consi@nboth coexisting
phases, and the ionic compaosition can be less than 50%. This type of gpasat®on is neither
demixing nor ionic phase separation, but the same ratio of the number of idhs tmmber of

dipoles undergoes phase separation. This behavior has not beeteddpefore.
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CHAPTER 5

DIFFUSION OF ADSORBED POLYMERS

Understanding the lateral diffusion of adsorbed polymers at a solid-liqtg@dace is important for
a wide range of applications—from coatings and adhesives to tribologyvethas from a funda-
mental point of view. Although this topic has received considerable atteatienthe past decade,
both experimentally [1-6] and from computer simulations [7—12], most waskiticused on single-
chain behavior under dilute conditions. Tt ective diffusive behavior of adsorbed polymers has
received comparatively little attention. Zhao and Granick [13] studied thgsthih of polyethylene
glycol (PEG) on silica surfaces that were rendered hydrophobie, fasiction of surface cover-
age. Remarkably, they observed that the lateral diffusion coeffizierdases monotonically with
surface coverage, followed by a sudden drop once a thresholdage/éas been reached. This
threshold is tentatively associated with the onset of monolayer coverdggeas the initial in-
crease of the diffusivity is ascribed to conformational changes of therbdd polymers. In view
of the difficulty of testing these interpretations experimentally, and givendheeisy of results for
collective diffusion of adsorbed polymers in even the simplest computationdgls\d investigate
these properties by means of molecular dynamics (MD) simulations. | do ndbairoorporate all
aspects of the experimental system, but rather wish to elucidate the bebbgigystem that can
serve as a reference in the interpretation of these and future experiments

Prior simulation studies for dilute chains have shown that various paramietdusling surface
corrugation [12], the presence of obstacles [8, 11], and the includiemplicit solvent [10], can
affect diffusive properties. It is plausible that these parameters wil laésimportant at higher
surface coverage. Nevertheless, since extant work at suchag@sgealmost exclusively focuses
on static properties for the simplest models [14, 15], | feel justified to cenfigself here to the
dynamic behavior of polymers adsorbed on a smooth, obstacle-freesurnf the presence of an

implicit solvent.
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Figure 5.1: Snapshot of adsorbed polymers with= 20, ¢, = 3¢a, ¥m = 0.09. Each sphere represents a
Kuhn segment and each polymer is adsorbed onto a flat surface.

5.1 Simulation methodology

| study a bead-spring model of monodisperse linear chains, which isnshowig. 5.1. The
monomers represent Kuhn segments and interact via a shifted-truncaedrt-Jones (LJ) po-
tential,

4e [(%)12 - (%)6] +e ifr<re

Uu(r) = .
0 ifr >re

(5.1)

Here,r = |r; — | is the center-to-center distance between monomansl j. | use the monomer
diameters as the unit of length anglas the unit of energy. The cutoff distance is satte: 2V/%0,

i.e., at the minimum of the LJ potential. Therefore, the system is always in tltegmeent regime.
Adjacent monomers on the same chain are bonded via a finite extensible noelagtic (FENE)

potential [16],

1 r\?
Urene(r) = —=kR3In|1—( =) | . 5.2
FeNe(") > Ro |: <R°>i| (5.2)
| select the parameteRy = 1.50, k = 30¢/02, permitting a reasonably large time step [16]. The
total pair interaction between connected monomers is the sum of the shiftedtied LJ potential
and the FENE potential, with a minimumrat:s 0.93c. The simulation cell has dimensiohs« L x

D and is periodically replicated in theandy directions. Two surfaces, oriented parallel to Xre

plane, are placed at the top and the bottom of the cell, respectively. Tgie loé the simulation

cell is kept fixed atD = 500 and the linear system size ranges fram= 400 to L = 400s.
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To avoid finite-size effectd., is always chosen to exceed four times the end-to-end distarafe
an individual chain. The surfaces are treated as a continuum, so thatehections between the

monomers and the surface can be represented through a 9—-3 Ldonasipotential [17],

Owm o Owm 3
Uw(z) =& |:<T) —q (T) :| > (53)

wherez is the vertical distance from the surface ang, = 0.6494. The top surface is purely
repulsive,g = 0, whereas the bottom surface represents the adsorbing interface, with5. The
surface interaction takes its minimuty, ~ —7.91s,, atzmin = (3/9)Y%0,m ~ 0.560. | investigate
both weak and strong adsorption regimes, choosing 2¢,, 3¢a, 44, and &5, whereg, indicates
the adsorption threshold energy.

To estimate the adsorption threshold energy, | first perform confignedtltias Monte Carlo
(CBMC) simulations [18] of a single chain with one end grafted to the attrastiviace, and deter-

mine the radius of gyration parallel and perpendicular to the surface,

Ry = (0.5(RZ, + RENYZ, (5.4)

RQJ- = (Réz>l/2- (5.5)

Here Ryy, Ryy and Ry, are thex,y andz components of the radius of gyration. Near the adsorption

threshold, the ratidy, /Ry is predicted to scale as [17]

const X — 400
Ryt o const Xx=0 (5.6)
Ry

|72/ X — —o0

wherex = tN¥ (t = 1 — &,/¢a), va=2 = 3 is the scaling exponent in two dimensions, gnet
is the crossover exponent [17,19]. Thus, when the ia§io/ Ry is plotted as a function of,, the
curves for different chain lengths are predicted to converge, in the lifdtge chain length, to zero
for strong adsorption energies and to a finite constant for weak adsognergies. Ak, = ¢,
the curves intersect. This is confirmed in Fig.5.2. | find slightly different ggetion points for

different pairs of chain lengths and adopt the arithmetic mean; 0.002475+ 0.000006, as my
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Figure 5.2: Ratio Ry /Ry versus adsorption energy,, for four different chain lengths. Symbols are calcu-
lated from simulations and curves are calculated by histogeweighting [20]. The intersection
between the four curves provides the threshold adsorptierggss = 0.002475+ 0.000006.

estimate for the adsorption threshold.

In my simulations, the strongest adsorption energy,is= 6¢,, corresponding to a “sticking
energy” of approximately-0.12kg T per monomer. This is not strong enough to reach monolayer
coverage (I achieve a maximum surface coverage of approximately, i@%itle with the fact that
this value is significantly below the estimated sticking energy of PEG on silicacasf0.5kg T
per monomer [4]. | deem a monomer adsorbed if it lies within a distared..30 from the bottom
interface. The surface monomer density is then defineghas= Ny,/L?, whereNy, is the total
number of adsorbed monomers. For all four choices of the adsorptemgsirc,, | investigate a
large number of surface coverage®D < ¢, < 0.7, for five different chain lengthd\ = 20,
40, 60, 80, and 160, comparable to the experimental degree of polytiwrizd 244 [13] (the
persistence length of PEG corresponds to only a few monomers). Tteensysontain between 10
and 72 polymer chains. Table 5.1 summarizes the linear systemlsiaed number of chainbl,
used in the different simulations, along with the surface monomer coveragedhld result if all
monomers would adsorfma, = NNg/L2.

Since the relaxation time increases rapidly with chain length and surfaceageyd employ
CBMC simulations to efficiently create initial configurations for all these casagsequently, |
use the resulting configurations, in which now all constraints are lifted,rfonpe MD simulations
using the LAMMPS package [21]. Prior to sampling any properties, theesysare further equili-
brated using MD. Typical configurations are depicted in Fig. 5.3. The tineistér = 0.003r,
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N =20 N =40 N = 60 N =80 N =160
émax | Ne L Ne L Ne L Ne L Nc L
0.01| 20 200| 40 400| 24 380| 20 400| 10 400
01 | 18 60| 25 100| 24 120| 18 120| 18 170
02 |36 60| 32 80|48 120| 36 120| - -
04 | 72 60| 36 60|54 90|50 100 25 100
06 |48 40|54 60|49 70| 48 80| 39 102
08 | 64 40| 50 50| 48 60|36 60| — -

Table 5.1: Simulation parameters for different chain lengths andasrfdensities. The system sikeis
decreased for higher densities to avoid simulations withlaoge a number of chains. However,
to prevent self interactions between a chain and its periotigesL is always chosen to exceed
four times the end-to-end distance.

Figure 5.3: Typical configurations at low surface coverage. (a) Snapiiahain lengthN = 40, adsorp-
tion energye,, = 6¢4, and surface densityy, = 0.1. As illustrated, “flat” conformations are
observed at high adsorption energy and low surface covefbp&ypical configuration for chain
lengthN = 80, adsorption energy;, = 2¢5, and surface densiigm = 0.07. At this lower ad-
sorption strength, “loop—train—tail” conformations ateserved, causingm to be smaller than
¢Ymax = 0.1.
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wherer = (6°2m/¢)¥/2, andm is the monomer mass. The sampling interval is chosen to be roughly
the characteristic time for the center of mass of a polymer chain to move ovedite-@md dis-
tance. This sampling interval varies fronbk 10°At to 25 x 10°Ar and depends on chain length,
adsorption energy, and surface density. After the system has ba#ibraged, 1250-25000 sam-
ples are recorded. The diffusion coefficient is calculated from thedlatezan square displacement

of the polymers,
Ne

Oemi (V) = — Z <[Ri,cmn (t 4+ to) — Ricm) (to)]2> : (5.7)

i=1
Here,Ri cm(t) denotes the center-of-mass position of chiaat timet and(-) means the ensem-
ble average over all time origirts. Assuming that the polymers undergo Brownian motion, the
diffusion coefficientD can be measured from the mean square displacemenbDtia=4gcm (1).

The temperature is fixed ks T/ = 1 using a Langevin thermostat. The equation of motion

for monomerj is [22]
2

d=r; dr;
mﬁ:Fj(rj)—ymd—tJJer(t). (5.8)

The first term,F;(r;), is the force on monomey induced by the pairwise interactions between
monomers. The remaining contributions to the force result from the implicit selm@nomer
interactions. Solvent molecules drag the monomer with a friction coefficiem. , Friction = —¢V;j,
wherev; is the monomer velocity. The friction coefficient is related to the collision fraque
y = ¢/mand | choosey = 0.1r7! [16]. In addition, the random forcR|(t) represents the

collisions with solvent molecules, resulting from thermal fluctuations.

5.2 Diffusion coefficient

Experimentally, various power-law dependences on chain length haveftwend for the diffusion
coefficient in the dilute regime. For polymers diffusing on lipid bilayers, theusgidn coefficient
scales aP ~ N~1[1,5]. However, on a solid surfade was found to scale ad ~1° [3]. To clarify

the situation for my model, | first simulate the surface diffusion of chains in theedregime,
¢m = 0.01, for N between 20 and 320. As shown in Fig. 5.4, | find strong evidence fonanse
linear proportionalityD ~ N—101&0.009,

Figure 5.5(a) shows the lateral diffusion coefficient as a function dhse monomer density
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Figure 5.4: Lateral diffusion coefficienD in the dilute regime ¢, = 0.01, ¢, = 6¢3) as a function of

chain lengthN (20 < N < 320), on a logarithmic scale. The diffusion coefficient ssahs
D ~ N—101&:0.009

for N = 40 and all four adsorption strengths. The diffusion coefficient dessrgmonotonically
with increasing surface monomer coverage. Moreover, the data feraliff adsorption energies
coincide. However, since | omit data for conditions where chain desarptiours (indicated by
the arrows in Fig. 5.5(a)), the data extend to larger surface covesafher adsorption strengths.
The diffusion of adsorbed chains is typically assumed to be related to th€oromation. However,
coinciding diffusion coefficients at identical surface coverageadamply identical chain config-
urations. This is illustrated in Fig. 5.5(b), which displays the lateral diffusioefficientversus
the fraction of adsorbed monomers. Since both panels in Fig. 5.5 employnteeveatical scale,
the relation between chain conformation and surface monomer covenadme aeduced. At low
adsorption strength,, = 2¢4, already in the dilute regimdX ~ 0.25) chains are only partially ad-
sorbed, adopting so-called “loop—train—tail” conformations where thenarals are typically not
adsorbed and the other monomers alternate between short sequeadssrbid units (“trains”)
and desorbed units (“loops”) [23]. For higher adsorption strengtiese than 90% (increasing with
increasings,,) of the monomers is adsorbed in the dilute regime, corresponding to “flafigesn
rations. Nevertheless, these chains display the same center-of-masdiffoefficient if the total
number of adsorbed monomers is the same as for systems with lower adsetggingths. In ad-
dition, Fig. 5.5(b) shows that initially thizaction of adsorbed monomers remains almost constant
with increasing coverage, even though the diffusion rate decreakas, lMnfer from these results

that the mobility of adsorbed polymers is controlled by the total number of bedanonomers. In-
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Figure 5.5: (a) Lateral diffusion coefficienD(02/7) as a function of surface monomer coverage for chain
lengthN = 40 and various adsorption energigs Error bars are smaller than the symbol size.
(b) Lateral diffusion coefficient versus the fraction of adseed monomers.

&7 28, —B—
0.12 3 @ =68, o 012 ® %
0.08 0.08
D D
0.04 0.04
o }
o i
0 0
0 0.2 0.4 0.6 0.8 05 06 07 08 09 10
#n Ny / (NN

Figure 5.6: (a) Lateral diffusion coefficientD as a function of surface monomer coverage for chain
length N = 80 and various adsorption energigs. (b) Lateral diffusion coefficient versus
the fraction of adsorbed monomers.

deed, ultimately, just prior to the onset of desorption, the fraction of @dslamonomers decreases
and chains adopt “loop—train—tail” conformations even at high adsorptiengths. However, this
conformational change does not lead to an increased mobility. | also iruestige diffusion be-
havior for different chain lengths. As illustrated in Fig. 5.6 fr= 80, longer chains have a higher
maximum surface coverage at the same adsorption eneggy=(2¢,). Fore, = 6g,, | do not
simulate the system at surface densities higher #har = 0.6 because of the computational cost.
The overall behavior of diffusion and conformational change is similardodhults for chain length
N = 40.

| repeat these simulations for chain lengths= 40, 60, 80, and 160. Figure 5.7 reveals several
remarkable properties of the diffusion coefficient. First, the behaviseied in Fig. 5.5(a) foN =

40 is accurately described by an exponential function of surfacaagee Secondly, this behavior
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Figure 5.7: Logarithmic diffusion coefficient as a function of surfacemomer density for different chain
lengths.

is recovered for other chain lengths (with a statistical accuracy that diremisith increasing chain
length, owing to computational costs), with an exponential decay thatiépendent of N. Thus,

as a corollary, the /N dependence observed in the dilute regipeesists with increasing surface
coverage. FoN = 20, | find D o exp(—b¢m) with b = 3.65 + 0.08, and the straight lines in
Fig. 5.7 represenD o« N~!exp(—b¢m). My results can be viewed as a generalization of earlier
findings (obtained via MC simulations) for polymers confined to a narrow séf. [24] found an
exponential increase of the relaxation timevith increasing polymer density, which is consistent
with my findings, sinceD ~ R?/z. For branched polymers, Ref. [25] also observed an exponential
decrease of the diffusion coefficient. Most importantly, none of thesknfijs indicates an increase

of the diffusion coefficient with increasing concentration.

5.3 Summary and conclusions

My simulations provide compelling evidence that adsorbed polymers diffieggrgssively slower
with increasing surface coveragerespective of conformational changes that occur as the envi-
ronment becomes more crowded. This is at variance with the argumentryatd in Ref. [13],
namely that a decreased number of adsorption sites per chain leads toastesh mobility. Evi-
dently, this still leaves the original experimental findings to be explained. Ithaten the pertinent

regime the experimental uncertainties are rather large, making it difficulteguivocally claim an
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increasing trend (although there is no evidence of a systematic decitt&se & he second anoma-
lous feature observed in the experiment, namely an abrupt decreasedifftision coefficient near
monolayer coverage [13], is out of reach for the adsorption stremgtipdoyed here, which limit
the surface coverage to approximately 70%. Despite this limitation, my findimgsecaiewed as a
reference for the collective diffusion behavior of model polymers btraonolayer coverage.
Finally, I comment briefly on recent simulation studies [26, 27] that appeeggmduce the
experimental findings of Ref. [13]. These simulations do not only employwigrs that are far
shorter than the chains in the experiment, but also focus on the poonsobgime where the
chains for a single globular phase [27]. This is in stark contrast with thergrents, for which it

is explicitly reported that no aggregation is observed.
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