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ABSTRACT

Dipole moments are ubiquitous in nature. Studying dipole moments is the first step toward under-

standing phase behavior of various colloids with strong dipole moments. Sincethe Dipolar Hard

Sphere fluid (DHS) is the simplest model described by dipolar interactions, studying this model is

fundamentally important for understanding the structures and thermodynamics of polar fluids. A

variety of unsolved scientific questions arises when the dimensionality of this model is changed and

when other species are introduced in this model. Finally, the last part of this dissertation discusses

the diffusion behavior of adsorbed polymers over the full concentrationrange.

In Chapter 2, I study the phase behavior of dipolar fluids by means of Monte Carlo simulations.

My goal in this chapter is to examine the possibility of phase separation in a dipolar fluid system

and to use quantitative structural information to shed light on this controversy. How dimensionality

affects the phase behavior of dipolar fluids is also an interesting question.Thus, in Chapter 3, I

examine the possibility of phase separation in quasi-2-dimensional dipolar fluids. In Chapter 4, I

proceed to binary systems. Since I have excluded the possibility of phase separation in the DHS

system and it is well known that the RPM system exhibits phase separation, these results naturally

lead to the question whether phase separation takes place in mixtures that contain ions as well as

dipolar particles. I map out the phase diagrams by varying the strength ratio of the dipolar to the

ionic interaction and I also locate the critical points.

In Chapter 5, I turn to a rather different research topic, namely the dynamics of adsorbed poly-

mers. I employ molecular dynamics to investigate the relation between surface diffusion and con-

formation of adsorbed polymers over the full coverage range.
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CHAPTER 1

INTRODUCTION

Dipole moments are ubiquitous in nature. Studying dipole moments is the first step toward under-

standing phase behavior of various colloids with strong dipole moments [1–4]. Since the Dipolar

Hard Sphere fluid (DHS) is the simplest model described by dipolar interactions, studying this

model is fundamentally important for understanding the structures and thermodynamics of polar

fluids. A variety of unsolved scientific questions arises when the dimensionality of this model is

changed and when other species are introduced in this model. In this dissertation I present the

results of simulation research on the phase behavior of the DHS in three-dimensional (3D) and

two-dimensional (2D) space, and on mixtures that contain ions as well as dipoles. Furthermore,

the last part of this dissertation discusses the diffusion behavior of adsorbed polymers over the full

concentration range, from the dilute to the concentrated regime.

This thesis is organized as follows: In Chapter 2, I study the phase behavior of dipolar fluids

by means of Monte Carlo simulations. It is well established that simple fluids can exhibit a liquid–

vapor phase transition due to short-range van der Waals attractions [5].Coulombic interactions can

also induce phase separation in ionic solutions [6, 7]. By contrast, the occurrence of liquid–vapor

phase separation driven by anisotropic dipolar interactions is still a matter ofdebate. Although de

Gennes and Pincus suggested the possibility of such a phase transition in dipolar fluids [8], evidence

for a liquid–vapor phase transition in this system has been hardly found in various simulation stud-

ies [9–14]. Interestingly, however, Campet al. found evidence from grand-canonical Monte Carlo

simulations that the dipolar fluid may have a liquid–vapor phase transition [14].In the same paper,

their results were confirmed by independentN PT andN V T simulations. My goal in this chapter

is to examine the possibility of phase separation in a dipolar fluid system and to use quantitative

structural information to shed light on this controversy.

In Chapter 3, I examine the possibility of phase separation in quasi-2D dipolar fluids. In quasi-
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2D systems the centers of the dipolar spheres are confined to a plane; however, the dipole moments

can rotate in full 3D space. Studying this system can be a potential starting point to understand

the appearance of unexpected stripe patterns of dipolar nanorods in a plane [3]. Furthermore, the

fact that Coulombic interactions in different dimensions can induce different types of phase separa-

tion [6,7,15–20] introduces an interesting question regarding how dimensionality affects the phase

behavior of dipolar fluids. The simulation results of the previous chapter for the 3D DHS system ex-

clude the possibility of liquid–vapor phase separation for a large region ofthe temperature–density

plane, whereas theory has predicted that 2D dipolar disks undergo phase separation [21]. In the

quasi-2D DHS model [22, 23], the occurrence of phase separation is still an open question, and I

want to contribute to this problem.

In Chapter 4, I proceed to binary systems. Since I have excluded the possibility of phase sepa-

ration in the DHS system and it is well known that the RPM system exhibits phaseseparation, these

results naturally lead to the question whether phase separation takes place inmixtures that contain

ions as well as dipolar particles. According to the Gibbs phase rule, addingone more component

gives one additional degree of freedom and leads to a more complex phase diagram [24–28]. It is

also known [25–27] that the van der Waals (vdW) equation of state exhibitssix principal classes of

phase diagram when the parameters of the vdW model are varied, and mostof these predicted phase

diagrams have been discovered experimentally. However, phase behavior of ion–dipole binary sys-

tems is not fully understood yet. Therefore, I hope to improve our understanding of the phase

diagrams of ion–dipole mixtures and the influence of physical parameters (ion charge and dipole

moment) on the topologies of these phase diagrams. Because of the complexity of multicomponent

systems, mapping out the entire phase diagram for these mixtures would take aprohibitive amount

of simulation time. Instead, I have opted to focus on the most interesting temperature for this mix-

ture. Then, I map out the phase diagrams by varying the strength ratio of thedipolar to the ionic

interaction and I also locate the critical points.

In Chapter 5, I turn to a rather different research topic, namely the dynamics of adsorbed poly-

mers. Studying the behavior of polymers near surfaces is important because it is applicable to

surface coating, adhesives and tribology, and because it helps to understand a basic property of

polymers [29–32]. Recently, intensive efforts have been made to understand surface diffusion prop-

erties of polymers, both by experiments [33–38] and by simulations [39–45]. Even though the effect
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of the presence of multiple chains on the polymer dynamics near a surface is afundamentally im-

portant question, existing simulation studies only focus on single-polymer behavior in the dilute

regime. In 2004, Zhao and Granick investigated polymer lateral diffusion as a function of surface

coverage [46]. Their results showed that the lateral diffusion coefficient increases with increasing

surface coverage until monolayer coverage is reached, followed by an abrupt decrease in the diffu-

sion rate. This anomalous behavior is possibly related to conformational changes, but this cannot be

confirmed in the experimental setup. In this chapter, I employ molecular dynamics to investigate the

relation between surface diffusion and conformation of adsorbed polymers over the full coverage

range.
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CHAPTER 2

DIPOLAR HARD-SPHERE FLUID

The occurrence of liquid–vapor phase separation driven by dipolar interactions is still a controver-

sial topic despite extensive theoretical debate [1–9]. Nget al. published the first simulation study

of this system and found phase separation [10]. However, their study isnot reliable because they

used a very small system size and did not use Ewald summation for long-range dipolar interactions.

Furthermore, after this study, extensive simulation efforts have failed to find liquid–vapor phase

separation in this system [11–15]. Interestingly, however, Campet al. presented evidence from

grand-canonical Monte Carlo (GCMC) simulations for fluid–fluid phase transitions at densities of

0.072± 0.008, 0.17± 0.02, and 0.28± 0.04 atT ∗ = 0.14 [16]. The same paper confirms these

findings with independentN PT and N V T simulations. Therefore, I seek to resolve this contro-

versy. To accomplish this goal I implement a biased Monte Carlo (MC) method which samples with

high efficiency. Besides, I take advantage of greatly increased computingpower compared to what

was available several years ago. In this Chapter, I search for evidence of phase separation in dipolar

fluids and investigate the structural properties of this system.

2.1 Simulation methodology

The dipolar hard-sphere (DHS) model represents dipolar particles as hard spheres of diameterσ

with an embedded central point dipole that can freely rotate in 3D space. The pair potential in the

DHS system is expressed by

Ui j = UHS(ri j ) − p2

4πε0εr3
i j

[3( p̂i · r̂ i j )( p̂ j · r̂ i j ) − ( p̂i · p̂ j )] , (2.1)

whereUHS(ri j ) is the hard-sphere interaction,ε is the dielectric constant of the medium,ε0 is the

dielectric permeability of the vacuum,p is the dipole moment,̂pi is the unit vector indicating the
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dipole orientation of particlei , r̂ i j is the unit vector along the interparticle vectorr i j , andri j is its

magnitude. I use reduced parameters in this study, i.e., I define the reduceddensityρ∗ = Nσ 3/V ,

the reduced temperatureT ∗ = 4πε0εkB T σ 3/p2, the reciprocal temperatureβ∗ = 1/T ∗, the re-

duced dipole momentp∗ = 1/
√

T ∗, the reduced chemical potentialµ∗ = µT ∗/kB T , and the re-

duced system sizeL∗ = L/σ , whereN is the number of dipolar hard spheres in the system,V is the

volume of the system, andkB is Boltzmann’s constant. The Ewald summation method is employed

for the calculation of long-range dipolar interactions with periodic boundary conditions [17,18].

To investigate the claim of Campet al. [16], I focus on temperatures in the rangeT ∗ = 0.11–

0.5. I scan the chemical potential at each temperature and find the chemical potentials that produce

average number densities in the range of 0.001 ≤ ρ∗ ≤ 0.30 and simulate longer runs for these

chemical potentials to calculate the heat capacity, compressibility and the densitydistribution of

each system. I confirm that the chemical potential in my GCMC code shows good agreement with

the calculated chemical potential from the Widom insertion method [18, 19]. I also vary system

sizes in the rangeL∗ = 4–40 to examine finite-size effects. My simulation is performed using 50%

grand-canonical moves and 50% canonical moves, because I find thatcanonical moves accelerate

relaxation of the chain structure. In each MC step, a GCMC move or a canonical move is selected

at random. A GCMC move is either an insertion attempt or a deletion attempt, and one canonical

move consists of an orientational move of the dipole moment and a translational move with 0.2σ

maximum displacement. To examine the efficiency, I determine the required CPU timeto obtain one

independent sample. My test results show that the combination of half GCMC and half canonical

move is 2.2 times more efficient than only GCMC moves atT ∗ = 0.20.

One of the difficulties encountered in simulating the DHS system is the low acceptance rate.

Particles have the lowest pair energy (U = −2β∗kB T ) when they form a head-to-tail conformation.

At the critical temperature predicted by Campet al. [16], T ∗
c = 0.15–0.16, the pair potential is

already−12.5kB T . Therefore, once dipolar hard spheres adopt a chain conformation,it is difficult

to insert or delete a particle unless the inserted particle is located near an existing chain or the

deleted particle is not part of the chain. To increase the acceptance rate,I use the orientational-bias

method, originally developed by Miyatake [20]. In the conventional orientational-bias method, a

finite numberk of orientations{b1, b2, · · · , bk} for the dipole moment are created instead of one

random orientation when a particle insertion is attempted [18]. One of the created orientations is
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selected with a probabilityP(bn) = exp[−βU or(bn)]/
∑k

j=1 exp[−βU or(b j )], whereU or(bn) is

the energy associated with the orientationbn and β = 1/kB T . This probability ensures that a

configuration of lower energy is more likely to be selected. However, the drawback of this approach

is that additional computing time is required to calculate each of thek different Boltzmann factors.

Miyatake suggested an enhancement of this bias method for the Heisenbergspin model [20] and

Caillol first used it for the DHS system [11]. Namely, the energy of an inserted dipole in the electric

field of all other dipoles in the system can be expressed as the dot product of its dipole momentpi

and the local electric fieldE(r i ) induced by all other dipolesp j at positionr i ,

− pi · E(r i ) = −p p̂i ·
N

∑

j=1

[

p

r3
i j

{3r̂ i j ( p̂ j · r̂ i j ) − p̂ j }
]

. (2.2)

Thus, onceE(r i ) is known, the sum of Boltzmann factors can be calculated analytically by inte-

grating over all possible orientations of the dipole,

∫ π

0
exp[β pi · E(r i )] sinθdθ = 2 sinh[βpi E]

βpi E
, (2.3)

wherepi = | pi |, E = |E(r i )|, andθ denotes the angle between the dipolepi and the electric field

E(r i ). Then, the probability that the dipole is placed under an angleθ with respect to the direction

of the electric field follows from

P(θ) = exp[βpi E cosθ]
2 sinh[βpi E]/[βpi E] . (2.4)

In the conventional-orientational bias method, increasing the number of created orientations yields a

better chance to select a configuration of lower energy. However, moretime to generate orientations

is needed. In contrast, Eq. 2.4 makes it possible to produce the optimal probability by a single

calculation, equivalent to an infinite number ofk in the conventional approach. Furthermore, cosθ

can be chosen according to the above probability from the following equation

cosθ = 1

βpi E
log[2Z sinh(βpi E) + exp(−βpi E)] , (2.5)

whereZ is a random number generated uniformly in 0≤ Z ≤ 1. Now, energetically favorable con-
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figurations are generated frequently; however, the acceptance of thisbiased generating trial moves

should obey detailed balance [18]. Therefore, when imposing detailed balance, an insertion move

is selected with a probability

P = min

[

1,
1/2

P(θ)

V

N + 1
exp(βµ − β1U )

]

, (2.6)

whereP(θ) is the probability to have an angleθ between a dipole moment of an inserted particlei

and the electric field and1U is the difference in configurational energy (1U = − pi · E(r i )). The

factor 1/2 indicates the probability of generating a random orientationθ in the ideal gas reservoir

representing the inverse probability of grand-canonical move (since 1/
∫ π

0 sinθdθ = 1/2). In a

similar way, a deletion attempt is accepted with a probability

P = min

[

1,
P(θ)

1/2

N

V
exp(−βµ − β1U )

]

, (2.7)

whereP(θ) is the probability to have an angleθ between a dipole moment of a deleted particlei

and the electric field and1U = pi · E(r i ). I also implement the bias method for the canonical

ensemble, where the acceptance criterion becomes

P = min

[

1,
P(θold)

P(θnew)
exp(−β1U )

]

, (2.8)

whereP(θnew) is the probability of the configuration with an angleθ between a randomly displaced

sphere’s dipole moment and the electric field andP(θold) is the probability of the original configu-

ration. AtT ∗ = 0.20, my efficiency test shows that the simulation with the bias method is 3.1 times

more efficient than the simulation without biasing.

Typically, 4.0× 109 MC steps are needed to equilibrate the system atT ∗ = 0.14,µ∗ = −1.315

(which corresponds to a densityρ∗ = 0.0555± 0.0004) andL∗ = 8, from a random initial config-

uration. To obtain 5000 independent configurations after equilibration, Isimulate 1.0 × 1011 MC

steps for the same system. The acceptance rate for the GCMC moves is 0.95% and the acceptance

rate for the canonical moves is 15.40% for this system. The total CPU time required to obtain all

data atL∗ = 8, T ∗ = 0.14 is 14800 hours and that atL∗ = 10, T ∗ = 0.14 is 27900 hours if I

use one core of an Intel Xeon EM64T 3.0GHz. In total, I have used∼18 CPU years to perform all

10



T ∗ 0.25 0.20 0.18 0.17 0.16
L∗ – 10 12 12 15

Table 2.1: At various temperatures, the largest system size where a density gap still exists is indicated in this
table.

simulations for this project.

2.2 Density distribution

I first study the density distribution along isotherms by means of histogram reweighting [21]. If

phase separation happens, we expect two distinct peaks in the density distribution if the chemical

potential is sufficiently close to its coexistence value. Even though Campet al. [16] found multiple

phase transitions atT ∗ = 0.14, my results forL∗ = 8 [Fig. 2.1(a)] show that the average density

increases continuously with increasing chemical potential and that the distribution has a single peak

for all simulated chemical potentials. Interestingly, an unexpected gap in the density distribution

is observed in the very low-density regime. I find that this gap shows a temperature and system-

size dependence. Firstly, the gap becomes shallower with increasing temperature, as seen from

Figs. 2.1(a) and (b), which shows the density distribution atT ∗ = 0.14 andT ∗ = 0.16, respectively.

I also note that this gap only appears when the average density of the system is low. Secondly, the

gap also becomes shallower and eventually even disappears as the systemsize increases, as verified

for T ∗ = 0.16 atL∗ = 10, 12, 15 (data not shown). Figure 2.1(c) shows the density distributions

for T ∗ = 0.16 andL∗ = 20; it is observed that a gap no longer exists. Table 2.1 shows the

largest system size for which a gap exists at various temperatures. Whenthe temperature is higher

than T ∗ = 0.25, a gap does not exist even for the smallest simulated system size,L∗ = 4. For

temperatures less thanT ∗ = 0.16, system sizeL∗ = 15 still shows a gap in the low-density regime.

The location of the sharp peak indicated by the arrows in Fig. 2.1 provides aclue for a possible

explanation of this density gap. Namely, the location of the peak equalsρ∗ ≈ 1/L∗2. Since my

simulations are performed with periodic boundary conditions, the dipolar spheres can align to form

an infinite loop parallel to one of the Cartesian axes of the box. The number density at which

this chain can form corresponds to the location of the sharp peak. The reason for this behavior
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Figure 2.1: The isothermal density distribution of a dipolar hard-sphere fluid at various chemical potentials.
The density distribution curves display only one maximum for a fixed chemical potential and
shift continuously with changing chemical potential. (a)T ∗ = 0.14 andL∗ = 8. The density
distributions for the chemical potentialsµ∗ = −1.316,−1.309,−1.304,−1.298,−1.284 cor-
respond to the average densitiesρ∗ ≈ 0.05, 0.10, 0.15, 0.20, 0.30, respectively. (b)T ∗ = 0.16
and L∗ = 8. The density distributions forµ∗ = −1.242,−1.235,−1.230,−1.223 represent
ρ∗ ≈ 0.05, 0.10, 0.15, 0.20, respectively. (c)T ∗ = 0.16 andL∗ = 20. The density distri-
butions forµ∗ = −1.255,−1.250,−1.246,−1.243 representρ∗ ≈ 0.002, 0.004, 0.01, 0.02,
respectively.
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can be explained as follows. If the simulation box is small, the system can easily lower its energy

by forming an infinite loop rather than having a ring or a short chain. For instance, the energy per

particle of an infinite loop of 8 particles is−2.40β∗kB T , that of a ring of 8 particles is−2.20β∗kB T ,

and that of a finite chain of 4 particles is−1.67β∗kB T when L∗ = 8. Therefore, if the system

size is small, the infinite loop is highly favorable. According to Ref. [22], longchains start to

dominate the system fromρ∗ ≥ 0.01 atT ∗ = 0.13, because rings can easily be broken up through

interactions with other particles with increasing density. When 8 particles are present in the system

at L∗ = 8, the density already equalsρ∗ = 0.0156. Then, an infinite chain formation is more

favorable than a ring configuration. Thus, this density distribution gap is not any indication of phase

separation but just a finite-size effect. This finite-size effect for the DHS system has been reported

only recently [23]. Therefore, I believe that it might affect the simulation results of Ref. [16].

2.3 Specific heat

In the grand-canonical ensemble, the heat capacity is obtained from [24]

CV =
(

∂U

∂T

)

V

(2.9)

= 1

kB T 2

(

{〈U 2〉 − 〈U 〉2} −
{

(〈ρU 〉 − 〈ρ〉〈U 〉)2

〈ρ2〉 − 〈ρ〉2

})

. (2.10)

The specific heat,CV /(NkB), of the DHS is plotted along an isochore for a wide range of tem-

peratures, 0.11 ≤ T ∗ ≤ 0.5 in Fig. 2.2. Figures 2.2 (a) and (b) represent the specific heat curve

for the densitiesρ∗ = 0.05 and 0.10, respectively. It is known that the heat capacity curve shows a

divergence at the critical temperature and a discontinuity at the transition temperature if phase sep-

aration happens [25]. Simulation results of ionic fluids showed that the height of maximum of the

specific heat diverges and that the position of this maximum shifts to the criticaltemperature at crit-

ical density with increasing system size [26]. However, such a size dependence is not observed for

the DHS fluid. The specific heat converges for different system sizesfor all simulated temperatures

as shown in Fig. 2.2.

Figure 2.3(a) shows the specific heat of the DHS as a function of density at T ∗ = 0.14 for three

different system sizes. Although it is reported in Ref. [16] that possiblephase transitions occur at
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Figure 2.2: The specific heat,CV /NkB , of the DHS as a function ofT ∗ at constant density. Simulations are
performed for a range of temperatures, 0.11 ≤ T ∗ ≤ 0.5 for three different system sizes. The
heat capacity is calculated by histogram reweighting. (a)ρ∗ = 0.05. (b)ρ∗ = 0.10.

densities 0.072± 0.008, 0.17± 0.02, and 0.28± 0.04, the specific heat curves are flat and smooth

near those three densities as well as for a wide range of densities, 0.05 ≤ ρ∗ ≤ 0.30. There is no

divergence or system size-dependent maximum. Interestingly, the specific heat curves show a peak

at very low density. Figure 2.3(b) enlarges Fig. 2.3(a) for densities below ρ∗ = 0.005. It is seen that

the height of the peak saturates when the system size is larger thanL∗ = 8. Similar behavior is found

for T ∗ = 0.18, as shown in Fig. 2.4. In Ref. [11], the possibility of phase separationat T ∗ = 0.18

has already been excluded in the basis ofN PT simulations. The specific heat curve atT ∗ = 0.18

still has a peak at very low-density regime and curves coincide in the densityrangeρ∗ ≥ 0.01. The

height of this peak clearly decreases with increasing system size. Since both the specific heat of

T ∗ = 0.14 andT ∗ = 0.18 have maxima but do not diverge, these peaks in the specific heat do not

represent any evidence of phase transitions but arise from finite-sizeeffects. Therefore, I conclude

that there is no phase separation in a range 0.11 ≤ T ∗ ≤ 0.5 , despite the estimates of Campet

al. [16,22] for the critical density and temperature,ρ∗
c ≃ 0.10 andT ∗

c = 0.15–0.16.
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Figure 2.3: (a) The specific heat of the DHS along theT ∗ = 0.14 isotherm for 0≤ ρ∗ ≤ 0.35. System sizes
L∗ = 6, 8, 10 are marked as circles, triangles and diamonds, respectively. Points and error bars
indicate the results from GCMC simulations and lines are calculated by histogram reweighting.
(b) The isothermal specific heat of the DHS fluids at densitiesρ∗ ≤ 0.005.
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Figure 2.4: The specific heat of the DHS alongT ∗ = 0.18 isotherm forρ∗ ≤ 0.20. System sizeL∗ varies
from 6 to 20.
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Figure 2.5: The compressibility,χ , of the DHS as a function ofT ∗ at constant density. Simulations are
performed for a range of temperatures 0.11 ≤ T ∗ ≤ 0.5. The compressibility is calculated by
histogram reweighting. (a)ρ∗ = 0.10. (b)ρ∗ = 0.15.

2.4 Compressibility

The compressibility,χ , of the DHS fluid is calculated at constant density for 0.11 ≤ T ∗ ≤ 0.5 in

this section. The compressibility is derived from

χ = V 〈(ρ − 〈ρ〉)2〉 = kB Tρ2KT , (2.11)

whereKT is the isothermal compressibility [27, 28]. Figure 2.5 represents the compressibility for

the densitiesρ∗ = 0.10 and 0.15, respectively. Unlike the results of the heat capacity, the height of

the peaks shows a divergence with increasing system size for the smallestsystem sizes, which could

suggest phase separation. However, ultimately, they converge at larger system size. I find that the

peak in the compressibility curve converges at smaller system sizes in the high-density region and

shows a stronger divergence in the low-density region. One could argue that this is consistent with

the occurrence of phase separation in the low-density system, because finite-size effects become
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Figure 2.6: The head-to-tail conformation of the dipoles atT ∗ = 0.14 andρ∗ = 0.09. One can see several
chains in this snapshot. At this low temperature, the dipoles tend to form chain conformations
and simulations require a very long time due to the low acceptance rate.

stronger when the system approaches the critical density. However, in Fig. 2.1(c), there is only

one peak in the density distribution for this low-density region, which indicatesno evidence for the

phase transition.

This phenomenon can again be explained from the density distribution gap. Since the density

gap effect becomes more severe when the density is low, Fig. 2.5 shows a stronger divergence at

low-density regime. On the other hand, the distribution shows no gap atL∗ = 8 when the average

density is larger thanρ∗ ≈ 0.15 as shown in Fig. 2.1, and the compressibility forρ∗ = 0.15

indeed converges when the system size is larger thanL∗ = 8. Therefore, I conclude that the

divergence in the compressibility appears only when the gap affects the data and does not indicate

phase separation.

2.5 Structure

The self-assembled structure of dipolar fluids is quantitatively analyzed in this section. Unlike

isotropic ionic interactions, anisotropic dipolar interactions induce head-to-tail conformations at

low temperature as can be seen in Fig. 2.6. The classification of clusters, illustrated in Fig. 2.7,

proceeds as follows [12, 29]. The first, second, and third nearest-neighbor distances (respectively,

r1 j , r2 j , andr3 j ) of each particlej are calculated; ifr1 j > rc, j is a free particle, ifr1 j < rc and

r2 j > rc, j is an end particle, ifr2 j < rc andr3 j > rc, then j is an interior particle, and, finally, if

r3 j < rc, j is a junction particle. A ring is defined as a cluster with interior particles only, a chain
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Figure 2.7: Various conformations in the DHS system at low temperature.Chains, rings and networks of
various sizes are observed.

is a cluster with two ends, and a network has at least one junction particle. Inthis study, the cutoff

distance is defined asrc = 1.125σ [30].

Figure 2.8(a) shows the fraction of particles belonging to chains, rings, networks and infinite

loops as a function of temperature and at the densityρ∗ = 0.10. With decreasing temperature,

the number of monomers decreases monotonically and the numbers of both chain particles and

network particles increase as the dipolar attraction increases. Interestingly, upon further decrease

of the temperature, chains show a maximum and merge into large networks. Figure 2.8(b) shows

that, at the lower density ofρ∗ = 0.01, chain conformation is always more favorable than network

formation even in the low-temperature region. For this low-density system, the rapidly increasing

number of infinite chains corresponds to the density gap. The fraction of particles belonging to each

cluster is plotted as a function of density at temperaturesT ∗ = 0.14 andT ∗ = 0.30 in Fig. 2.9. At

T ∗ = 0.30, most of the particles remain isolated since the dipolar interactions are relatively weak

at this high temperature. Forρ∗ > 0.08, the fraction of chains is comparable to the fraction of

monomers; however, chains are not long, and are typically just pairs of dipoles. At T ∗ = 0.14,

chains dominate the system in the low-density regime, and merge into a network structure as the

density is increased. Since most theoretical studies [6–8] only take into account chains and rings, a

new theory that includes the effect of network structures is clearly needed.

Since anisotropic dipolar interactions lead to polymer-like chain structures, living polymer the-

ory [31–34] is often used to explain the behavior of dipolar fluids [8,29,35], and the polymerization

transition is used to understand self-assembly in systems such as the Stockmayer fluid [35], the quasi
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Figure 2.8: (a) Fraction of particles belonging to monomers, chains, rings, networks and infinite loops. Prop-
erties are measured as a function of temperature at constantdensityρ∗ = 0.10 andL∗ = 10.
Black, orange, pink, blue and cyan color correspond to monomer, chain, ring, network, and
infinite loop, respectively. (b) Same figure at constant density ρ∗ = 0.01.
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Figure 2.10: Circles are the polymerization transition temperatures calculated from the maximum in the heat
capacity. Triangles indicate the polymerization temperatures from the inflection point of the
extent of polymerization and a dotted gray line is a fitting line.

two-dimensional DHS [30], as well as polymer systems [36]. However, it has not been applied in the

3D DHS system. The polymerization transition is defined in two different ways [34–36]. One way

to define the polymerization transition temperature,T ∗
p , is to identify it with the peak of the heat ca-

pacity. Figure 2.10 shows simulation results for the DHS system.T ∗
p increases whenρ∗ ≤ 0.05 and

decreases at higher densities. For the Stockmayer fluid, increasing behavior of T ∗
p at low densities

(ρ∗ ≤ 0.0637) are also observed [35]. The second way to define the polymerization transition line is

through the extent of polymerization,8 = Np/N , whereNp is the number of aggregated particles.

Here, the polymerization temperature,T ∗
8, is defined as the inflection point(∂28/∂T ∗2) |ρ= 0.

Below this temperature, the average chain length in the system becomes roughly longer than 2.

In Fig. 2.10,T ∗
8 always appears aboveT ∗

p , consistent with simulation results for the Stockmayer

fluid [35].

2.6 Summary and conclusions

The heat capacity, compressibility, and density distribution have been calculated for the DHS system

to investigate the possibility of phase separation using GCMC simulations. I simulatethis system

for temperatures as low asT ∗ = 0.11, despite the long equilibration times associated with the low

acceptance rate. The density distribution displays only a single peak at each chemical potential,

suggesting that there is no phase separation. In addition, my calculation of the heat capacity and

compressibility does not indicate any evidence for phase separation.
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Interestingly, recent simulation studies used extrapolation from other system to estimate the

critical temperature of the DHS fluid [23, 37]. Both references estimated thecritical temperature

at T ∗
c ≈ 0.15, supporting simulation data of Campet al. [16]. Ganzenm̈uller and Camp simulated

a fluid of charged hard dumbbells (CHD), where each dumbbell is composed of two oppositely

charged hard spheres at a center–center distanced [23]. Whend/σ = 1, the CHD shows ionic

phase separation. Asd/σ → 0, the CHD system becomes the DHS system. They found that the

critical temperature increases with decreasing a center–center distanced and extrapolated the critical

temperature of the DHS system. Almarzaet al. simulated mixtures of hard spheres and dipolar hard

spheres [37]. When the pressure of this mixture is decreased, the hard-sphere density decreases

and this mixture becomes a pure DHS system. Since they found the critical temperatures of this

mixtures at different pressures, they could extrapolate the critical temperature of the DHS system.

However, both Refs. [23,37] did not have simulation data for the pure DHS system. Therefore, these

extrapolation methods does not guarantee the existence of phase separation in the DHS system.

My simulation results of the DHS system clearly exclude the occurrence of phase separation for a

large region of the temperature–density plane, and if phase separation happens, it would be below

T ∗ = 0.11.
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CHAPTER 3

QUASI-2-DIMENSIONAL DIPOLAR
HARD-SPHERE FLUID

A recent experiment on dipolar colloids confined to a plane showed interesting stripe patterns in-

duced by phase separation [1]. A simulation study of 2D dipolar fluids can bea potential starting

point to understand this experimental result. Furthermore, it is well established that Coulombic

interactions in different dimensions can induce different types of phaseseparation [2–9]; it is a fun-

damental question to understand the phase behavior of dipolar fluids in different dimensions. The

simulation results of the previous Chapter for the 3D dipolar hard-sphere (DHS) system exclude

the possibility of liquid–vapor phase separation for a large region of the temperature–density plane.

Next interesting DHS system with different dimensionality would be a quasi-2DDHS fluid because

the dipole moment can rotate in full 3D space like for the 3D DHS model, but the centers of the

dipolar spheres are confined to a plane. Thus, how this dimensional restriction changes the phase

behavior of DHS fluids is a fundamentally interesting question. Since the occurrence of phase sepa-

ration in the quasi-2D DHS fluid is still an open question [10–16], I investigatethis in this Chapter.

3.1 Simulation methodology

To study the quasi-2D DHS model, I use the same simulation methodology as described in Chap-

ter 2. Reduced parametersρ∗ = Nσ 2/L2, T ∗, L∗, andµ∗ are used in this simulation as in Chapter 2.

Ewald summation method is implemented to calculate the long-range dipole-dipole interaction,

where the centers of the dipoles are restricted to a plane and the dipole momentvectors are fully

3D [12, 17]. Since the quasi-2D system does not have a periodicity inz direction, now long-range

interactions can be separated into an in-plane component and an out-of-plane component. Thus, a

different derivation for Ewald summation is necessary for the quasi-2D system [17].

To investigate the possibility of phase separation, I simulate the system over a wide range of

temperaturesT ∗ = 0.1322–0.50 and densities 0.05 ≤ ρ∗ ≤ 0.20. Finite-size effects are investigated
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Figure 3.1: Typical conformation of dipolar spheres confined to a plane at T ∗ = 0.1322, L∗ = 80 and
ρ∗ = 0.16. At low temperature, dipoles form head-to-tail conformations, and ring and network
structures are observed in this snapshot.

by varying the system sizeL∗ = 8–80. As in Chapter 2, this simulation is performed using a

combination of grand-canonical and canonical moves. The orientational-bias method is used to

increase efficiency [18,19].

About 5.0×1010 MC steps are needed to equilibrate the system atT ∗ = 0.1322,µ∗ = −1.3395

(which corresponds to a planar densityρ∗ ≈ 0.093) andL∗ = 30, starting from a random initial

configuration. To obtain 5000 independent configurations after equilibration, I simulate 5.0 × 1012

MC steps for the same system. The acceptance rate for the GCMC moves is 0.15% and the ac-

ceptance rate for the canonical moves is 16.20% for this system. The total CPU time required to

obtain all data atL∗ = 30, T ∗ = 0.1322 is 16 years for a single core of an Intel Xeon EM64T

3.0GHz. In total, I have used∼140 CPU years to perform all simulations for this project. A typical

configuration of the quasi-2D DHS fluid atT ∗ = 0.1322 is depicted in Fig. 3.1.

3.2 Thermodynamic properties

In Chapter 2, I have disproved phase separation for the 3D DHS, contradicting the evidence of Camp

et al. at T ∗ = 0.14 [20]. Interestingly, slightly below this temperature [16], a theoretical estimation

of Tavareset al. suggested the occurrence of a second-order phase transition of the quasi-2D DHS

system atT ∗ = 0.1322 [16]. Therefore, I want to focus on the temperatureT ∗ = 0.1322 and

T ∗ = 0.14 to investigate the occurrence of a phase transition.
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Figure 3.2: Isothermal density distribution of the quasi-2D dipolar fluid at various chemical poten-
tials. (a) T ∗ = 0.14 and L∗ = 15. The density distributions for the chemical poten-
tials µ∗ = −1.3090,−1.3010,−1.2950,−1.2880 correspond to the average densitiesρ∗ ≈
0.05, 0.10, 0.15, 0.20, respectively. (b)T ∗ = 0.14 and L∗ = 30. The density distribu-
tions for µ∗ = −1.3040,−1.2988,−1.2932,−1.2870 representρ∗ ≈ 0.05, 0.10, 0.15, 0.20,
respectively. (c)T ∗ = 0.14 and L∗ = 60. The density distributions forµ∗ =
−1.3028,−1.2980,−1.2926,−1.2870 representρ∗ ≈ 0.05, 0.10, 0.15, 0.20, respectively.
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Figure 3.3: Specific heat,CV /NkB , of the quasi-2D DHS as a function ofT ∗ at constant density. Simulations
are performed for a range of temperatures, 0.1322≤ T ∗ ≤ 0.5 for three different system sizes.
The specific heat curves are calculated by histogram reweighting [21]. (a)ρ∗ = 0.05. (b)ρ∗ =
0.15.

Figure 3.2 shows the density distributions of the quasi-2D dipolar fluids atT ∗ = 0.14 and

various chemical potentials. Similar to Chapter 2, a density gap appears in the density distribution,

with a temperature and system-size dependence. The approximate locations of the peaks areρ∗
peak≈

1/L∗2 andρ∗
peak≈ 1/L∗ (which corresponds to a single horizontal or vertical spanning loop) for the

3D and 2D systems, respectively. Thus, the gap in the 2D system is broader than that in 3D at the

same system size. AtL∗ = 15, Fig. 3.2(a) shows that asecond peak arises atρ∗
peak≈

√
2/L∗, which

corresponds to a single diagonally spanning infinite loop. The gap even affects the distribution of

the system atµ∗ = −1.288 (which corresponds to an average densityρ∗ ≈ 0.20). In Fig. 3.2(b),

the density gap becomes shallower atL∗ = 30. The gap is only visible for densities lower than

ρ∗ ≈ 0.10. Finally, atL∗ = 60, Fig. 3.2(c) shows that the density gap disappears. Since the density

gap effect is severe in 2D, large system size are required to eliminate this finite-size effect, making

the total simulation cost comparable to that of the 3D system.
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Figure 3.4: (a) Specific heat of the quasi-2D DHS along theT ∗ = 0.1322 isotherm for 0≤ ρ∗ ≤ 0.22.
System sizesL∗ = 15, 30, 60 are marked as circles, triangles and diamonds, respectively. Points
and error bars indicate the results from GCMC simulations and lines are calculated by histogram
reweighting. (b) Isothermal specific heat of the quasi-2D DHS fluids at densitiesρ∗ ≤ 0.002.

At T ∗ = 0.14, the finite-size gap effects are eliminated by choosingL∗ = 60, and for this system

Only a single peak is observed in the density distribution as shown in Fig. 3.2(c), and therefore there

is no sign of phase separation. Further simulations indicate that, even atT ∗ = 0.1322, there is a

single peak in the density distribution at various chemical potentials that correspond to a wide range

of average densitiesρ∗ = 0.05–0.20.

Figures 3.3(a) and (b) show the specific heat,CV /NkB , of the quasi-2D DHS as a function of

T ∗ at densitiesρ∗ = 0.05 andρ∗ = 0.15. The specific heat curves for the different system sizes

coincide. I study several densities between 0.05 ≤ ρ∗ ≤ 0.20, and do not observe any evidence for a

maximum that diverges with system size or a discontinuity in the specific heat curves. In Fig. 3.3(a),

the maximum of the curve forL∗ = 15 is slightly higher than the maxima of other curves. As shown

in the density distribution, the results forL∗ = 15 are strongly affected by the gap at low density.

Therefore, this deviation in the maximum can be interpreted as a finite-size effect.
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Figure 3.5: Compressibilityχ of the quasi-2D DHS as a function of temperature at constant density. Sim-
ulations are performed for a range of temperatures 0.1322 ≤ T ∗ ≤ 0.5. (a) ρ∗ = 0.05.
(b) ρ∗ = 0.20.

I also check the specific heat as a function of density atT ∗ = 0.1322 for three different system

sizes in Fig. 3.4. For densities in the range 0.03 ≤ ρ∗ ≤ 0.20, I do not find any discontinuity and the

curves for three different system sizes almost coincide. Like for the 3DDHS system, the specific

heat curves of the quasi-2D DHS system also display a peak at very low density. Figure 3.4(b)

enlarges this low density regime, confirming that the height of these peaks decreases with increasing

system size as observed in the 3D DHS.

Figures 3.5(a) and (b) show the compressibilityχ of the quasi-2D DHS system as a function

of T ∗ at densitiesρ∗ = 0.05 and 0.20, respectively. Atρ∗ = 0.05, the compressibility appears to

diverge due to the finite-size density gap effect similar to the 3D case. This divergence disappears

whenρ∗ = 0.20 because the density gap occurs at lower densities. Once the gap effects are re-

moved, the compressibility curves are smooth and converge. Therefore,the compressibility of the

quasi-2D DHS system does not indicate any phase separation.

Tavareset al. [16] calculated the chemical potential as a function of corresponding density at
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T ∗ = 0.1322, finding a cusp in the curve. Consequently, the second derivative of the free energy,
(

∂µ

∂ρ

)

T ∗
≡

(

∂2G
∂ρ2

)

T ∗
shows a discontinuity at a finite density. Since my simulation is performed in

grand-canonical ensemble, the average density at each chemical potential is measured, then chemi-

cal potentials and corresponding densities are calculated by histogram reweighting [21] as shown in

Fig. 3.6. Curves for small system sizes show a finite-size dependence, but the curves forL∗ = 60

andL∗ = 80 coincide almost perfectly and can thus be viewed as representative in the thermody-

namic limit. Since no discontinuity is observed in Fig. 3.6, I conclude that theoretical prediction is

not reliable in a range of densities 0.05 ≤ ρ∗ ≤ 0.20 atT ∗ = 0.1322.

3.3 Summary and conclusions

I have excluded the possibility of phase separation in the 3D DHS system in theprevious Chapter.

How dimensionality affects the phase behavior of dipolar fluids is a fundamentally important ques-

tion. Interestingly, furthermore, theoretical prediction has shown the possibility of a second-order

phase transition in the quasi-2D DHS system atT ∗ = 0.1322 [16]. In this Chapter, I have investi-

gated the possibility of phase separation in the quasi-2D DHS system. I have performed simulations

for a large temperature–density region, and calculated the density distribution, heat capacity, and

compressibility. The behavior of those properties is comparable to their counterparts in the 3D DHS

system, and I do not find any evidence of phase separation in the quasi-2D DHS system. Despite the

theoretical prediction of a phase transition, I exclude this for temperaturesas low asT ∗ = 0.1322.

At this temperature, the binding energy of a head-to-tail conformation is around−15kB T . Thus,
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if this strong chain formation preempts the existence phase separation, it is plausible that phase

separation can not be occurred below this temperature because of more strongly bonded chains.
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CHAPTER 4

ION–DIPOLE MIXTURES

The phase behavior of binary van der Waals mixtures has been studied theoretically and experimen-

tally, and a classification of phase diagrams has been established [1–5]. However, our knowledge

of phase behavior driven byelectrostatic interactions is far from complete. While it is known that

Coulombic interactions can induce phase separation [6,7], I have excluded the possibility of fluid–

fluid phase separation in purely dipolar fluids in Chapter 2. The next natural question is whether

phase separation takes place in mixtures that contain ions as well as dipolar particles. Theoretical

studies for ion–dipole mixtures are not reliable since they start from the assumption that dipoles

have a liquid–gas phase transition [8–10]. Previous simulation studies [11–15] for ion–dipole mix-

tures were performed for high dipole densities and weak dipolar interactions, and only focused on

structural information. In this Chapter, I present results for a broad range of dipole and ion densities

using various dipolar to ionic interaction ratios. I map out the phase diagrams of these mixtures and

locate their critical points.

4.1 Simulation methodology

To study ion–dipole binary mixtures, I use a combination of the dipolar hard sphere (DHS) and the

restricted primitive model (RPM) to model the dipoles and ions, respectively.The DHS is described

in Chapter 2, and the RPM represents ions as hard spheres with equal diameter that carry a positive

or negative charge of identical magnitude. The system is charge neutral.The pair potential between

charged particles is

U qq
i j = UHS(ri j ) + qi q j

4πε0εri j
, (4.1)
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and the pair potential between a charge and a dipole is

U qp
i j = UHS(ri j ) +

qi p( p̂ j · r̂ i j )

4πε0εr2
i j

. (4.2)

whereUHS(ri j ) is the hard-sphere interaction,ε is the dielectric constant of the medium,ε0 is the

dielectric permeability of the vacuum,qi is the charge of ioni , p is the dipole moment,̂pi is the

unit vector indicating the dipole orientation of particlei , r̂ i j is the unit vector along the interparticle

vectorr i j , andri j is its magnitude. I use reduced properties in this study, i.e., I define the reduced

total densityρ∗
total = Nσ 3/V , the reduced ionic densityρ∗

ion = Nionσ
3/V , the reduced dipolar

densityρ∗
dipole = Ndipoleσ

3/V , the reduced temperatureT ∗ = 4πε0εσkB T/q2, the reciprocal tem-

peratureβ∗ = 1/T ∗, the reduced dipole momentp∗ = p/(qσ), the reduced chemical potential

µ∗ = µT ∗/(kB T ), and the reduced system sizeL∗ = L/σ , whereN is the total number of spheres

in the system,Nion is the sum of the number of positive and negative ions,Ndipole is the number of

dipoles,σ is the diameter of a dipole or ion,V is the volume of the system, andkB is Boltzmann’s

constant. The dipole moment in this Chapter is related to the dipolar temperature used in Chapter 2

asT ∗
DHS = T ∗/p∗2. Ewald summation is employed for the calculation of long-range dipolar, ionic

and ion–dipole interactions with periodic boundary conditions [16,17].

To study these binary systems, I focus on the reciprocal temperatureβ∗ = 21.0 (T ∗ = 0.04762),

where Coulombic interactions are strong enough to induce a liquid–gas phase transition [6, 7]. My

goal in this Chapter is to investigate the phase behavior of mixtures when dipoles are added to ionic

fluids. Certainly, the interaction between ions and dipoles will affect the phase behavior of such

ion–dipole mixtures. Thus, to change the ion–dipole interactions, the dipole moment is varied in the

rangep∗ = 0–0.60. At p∗ = 0, “dipoles” become hard spheres without any additional interactions.

The dipolar temperature isT ∗
DHS = 0.132 whenp∗ = 0.60. As explained in Chapter 2, dipoles form

strong head-to-tail conformation at this dipolar temperature. Since this is a binary mixture, both

the chemical potentialsµ∗
dipole andµ∗

ion need to be tuned. To find phase coexistence, I first find the

ionic chemical potentialµ∗
ion that leads to phase separation in pure ionic fluids. Then, a reasonable

µ∗
dipole, that results in a small amount of dipoles in the system, is also found from simulations.

Subsequently,µ∗
dipole is kept fixed, andµ∗

ion is varied, and each set of chemical potentials produces

an average ion compositionxion = Nion/(Nion + Ndipole). The occurrence of phase separation is
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determined by calculating the density distribution of each system. Once the existence of phase

separation is determined at fixedµ∗
dipole, µ∗

dipole is increased to increase the amount of dipoles and

µ∗
ion is varied again. Thus, the phase diagram is mapped out. The correspondence between the

chosen chemical potentials and the actually measured densities is checked viathe Widom insertion

method [16,18]. I use system sizes in the rangeL∗ = 8–15 to explore finite-size effects.

As in Chapter 2, this simulation is performed using a combination of grand-canonical and canon-

ical moves. To maintain charge neutrality in this mixture, a positive ion and negative ion are inserted

or deleted together. At low temperature, most of the ions are found as neutral 1–1 pairs, and it is en-

ergetically cost to break such ionic pairs. To maintain a reasonable acceptance rate for ionic moves,

the distance bias method [6] is implemented. For dipolar moves, I use the orientational-bias method

described in Chapter 2. Typically, 7.5 × 1010 Monte Carlo (MC) steps are needed to equilibrate the

system atT ∗ = 0.04762, p∗ = 0.60, µ∗
dipole = −0.5044,µ∗

ion = −1.3534 (which correspond to

densitiesρ∗
dipole ≈ 0.07 , ρ∗

ion ≈ 0.04), andL∗ = 12. To obtain 10000 independent configurations

after equilibration, I simulate 1.5 × 1012 MC steps for the same system. For this system, the accep-

tance rate for GCMC moves of ionic pairs is 8.6%, that for GCMC moves of dipoles is 2.2%, that

for canonical moves of ions is 47.2%, and that for canonical moves of dipoles is 19.9%. The total

CPU time required to obtain all data atL∗ = 12, T ∗ = 0.04762, andp∗ = 0.60 is 63 years for a

single core of an Intel Xeon EM64T 3.0GHz. In total, I have used∼150 CPU years to perform all

simulations for this project.

4.2 Demixing with zero or weak dipole moment

I first want to investigate the simplest case. Namely, when “dipoles” do not have any interactions,

how does the presence of hard spheres affects the phase behavior of the “ion–dipole” mixture?

Figure 4.1(a) shows the density distributions of ions and hard spheres atµ∗
ion = −1.3214,µ∗

HS =

−0.1322,T ∗ = 0.04762, andL∗ = 12. The distribution for hard spheres has two distinct peaks

corresponding to densities atρ∗
HS ≈ 0.02 andρ∗

HS ≈ 0.05, and the distribution for ions has two

peaks at average densitiesρ∗
ion ≈ 0.01 andρ∗

ion ≈ 0.22. Two clearly observed peaks for both

species indicates phase separation. The coexistence chemical potentials are calculated by using the

equal-volume criterion [19,20]. Figure 4.1(b) displays the two-dimensional density distribution for
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Figure 4.1: (a) Density distribution of an ion–hard sphere mixture at chemical potentialsµ∗
ion = −1.3214,

µ∗
HS = −0.1322,T ∗ = 0.04762, andL∗ = 12. Two distinct peaks for each species indicate

phase separation. (b) Two-dimensional density distribution of a mixture is plotted for same
conditions as for (a). (c) Top view of the two-dimensional density distribution.
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this mixture. Whenµ∗
ion is scanned, the volume under each of the peaks in this figure varies as

well. Phase coexistence corresponds to the situation where both volumes are equal. Figure 4.1(c)

shows the top view of this distribution. Figures 4.1(b) and (c) show the ion-rich liquid phase and

the ion-poor gas phase, which has been reported earlier by simulation [21] and theory [22].

This type of phase separation is a demixing process. In the dense liquid phase, the ionic inter-

actions serve to lower the system energy at the cost of lower entropy. Inthis phase, hard spheres

cannot help to lower the system energy. Therefore, when the ions forma dense phase, few hard

spheres are present. In the gas phase, the total density is low and the system has a high entropy.

Most of the hard spheres prefer to be in this gas phase to avoid mixing with ions, which would cause

an increase in the energy of this system. For a very weak dipole momentp∗ = 0.1, the same demix-

ing phase behavior is still observed. Indeed, in this system, the dipolar temperature isT ∗
DHS = 4.8,

i.e., the dipolar interaction is still very weak and the dipoles hardly interact with the ions.

4.3 Ionic phase separation with intermediate dipole moment

The previous section discussed demixing phase separation induced by adding hard spheres to ionic

fluids. The next question is whether dipoles with an intermediate strength of thedipole moment

can also cause phase separation. The dipole moment is increased top∗ = 0.30, corresponding

to a dipolar temperature ofT ∗
DHS = 0.53. As shown in Chapter 2, this dipole moment is still

too weak to induce chain formation and isolated dipoles dominate the pure DHS fluid. However,

dipoles start to interact with ions and other dipoles and this system clearly shows different behavior

compared to the system withp∗ = 0. Figure 4.2 shows the density distribution of each species at

T ∗ = 0.04762 andL∗ = 12. Distinct peaks in the ion density distribution (ρ∗
ion ≈ 0.02 and 0.16) are

observed; however, the dipolar distribution has only a single low-density peak atρ∗
dipole ≈ 0.005. At

this intermediate dipolar interaction, dipoles start to connect with ions to lower thesystem energy,

and demixing is prevented. Since pure ionic fluids can have a liquid–gas phase transition at this

temperature, the ions still display phase separation when only a few dipoles are present as impurities.

In Fig. 4.3(a), I first fix the chemical potential for the dipoles and vary thechemical potential

for the ions, thus changing the ionic composition. Forµ∗
dipole = −0.1510,−0.1735, and−0.2070,
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Figure 4.2: (a) Density distribution of an ion–dipole mixture at chemical potentialsµ∗
ion = −1.3364,

µ∗
dipole = −0.2690, T ∗ = 0.04762, p∗ = 0.30 andL∗ = 12. The ionic distribution has

two peaks with average densitiesρ∗
ion ≈ 0.02 andρ∗

ion ≈ 0.16, whereas the dipoles display a
single density peak atρ∗

dipole ≈ 0.005. (b) Top view of the two-dimensional density distribution
of a mixture at the same conditions as for (a).
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Figure 4.3: Phase diagrams of an ion–dipole mixture withp∗ = 0.30 andT ∗ = 0.04762, for various planes
of parameters. Filled squares indicate a single phase, openblue squares indicate coexisting
phases (ρ∗+, ρ∗− are calculated directly from the observed distinct two peaks of the density
distribution function), and open pink squares indicate thecoexistence diameterρ∗. Red squares
locate the maximum point of the Binder parameterQ at fixed dipolar chemical potentials and the
gray square is the critical point. (a) Phase diagram of the ion–dipole mixture in the (µ∗
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plane. (b) Same figure in the (µ∗
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ion) plane. (c) Same figure in the (µ∗

dipole, ρ∗
dipole) plane.

(d) Same figure in the (µ∗
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total) plane.
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only homogeneous phases are found. These are indicated in Fig. 4.3 by the filled squares. When

µ∗
dipole ≤ −0.2185, I find phase coexistence between two ionic compositions, indicated byopen

blue squares. Changing the horizontal axis from the ionic composition to the ionic density, dipolar

density or total density provides additional information. Figure 4.3(b) shows the ionic coexisting

densities at dipolar chemical potentialsµ∗
dipole ≤ −0.2185. On the other hand, the dipolar density

remains almost constant upon phase separation, as shown in Fig. 4.3(c).

Since I find phase separation in this mixture, the location of the critical point can be determined.

To calculate the critical point, the Binder parameter (fourth-moment amplitude ratio) [7, 23, 24] is

introduced,

QL = 〈m2〉2

〈m4〉 , (4.3)

wherem = ρ − 〈ρ〉. It is known that when the system size goes to infinity, for the single phase

region, the distribution ofρ becomes Gaussian, andQL → 1
3 [7, 23, 24]. In the two-phase region,

QL → 1 on the coexistence diameterρ ≡ 1
2(ρ

+ + ρ−), whereρ+ and ρ− are the coexisting

densities of liquid and gas atT < Tc. At criticality, QL approaches a nontrivial universal valueQc

which is Qc = 0.6236(2) for the Ising universality class [25]. The RPM showsQc = 0.624(2),

indicating that it belongs to this universality class [7]. In a single componentQc is calculated as

follows. At fixed temperature,QL is scanned by varying the chemical potential and the maximum

of QL is recorded. This is repeated for various temperatures. AtT < Tc, these maxima are found

near the diameterρ. Q-loci on whichQL is maximum at fixedT can be plotted for different system

sizes, and the intersectionsTQ(L) between those curves are measured. In the thermodynamic limit,

TQ(L) → Tc and the corresponding critical valueQL(Tc) goes toQc [7].

Now, I want to apply this method to ion–dipole mixtures.µ∗
dipole is fixed first and thenµ∗

ion is

varied to find the maximum value ofQL . In Figs. 4.3(b) and (d), open pink squares indicate the

coexistence diameters and red squares are the maxima of the Binder parameter QL . For µ∗
dipole <

µ∗
dipole,c, this locus of the maximumQL is located near the coexistence diameterρ∗. Figure 4.4

displaysQL on theQ-loci at fixedµ∗
dipole for L∗ = 8, 12, 15. Since I only haveQ-loci for three

different system sizes, I simply measure the intersection of the curves forL∗ = 12 andL∗ = 15,

and roughly estimate the critical valueµ∗
dipole,c ≈ µ∗

dipole,Q(L∗ = 15) ≈ −0.245,µ∗
ion,c ≈ −1.337,

and Qc ≈ 0.631. Thus, this approach has not only provided the location of the criticalpoint, but

also shows that the critical behavior belongs to the Ising universality class. Interestingly, phase
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Figure 4.4: Maximum Binder parameterQL at fixedµ∗
dipole plotted as a function of dipolar chemical po-

tential atT ∗ = 0.04762 for three different system sizes. The intersection point between two
different system sizes yields the critical pointµ∗

dipole,c, µ∗
ion,c, as well asQc.

separation still happens above the bulk critical point (a gray square) due to finite-size effects in

Fig. 4.3. As the system size increases, I find that the maximum dipolar chemicalpotential that

produces a liquid–gas phase transition decreases toward the measured critical point.

4.4 Phase separation with strong dipole moment

When the dipole moment is increased further top∗ = 0.55 (which corresponds toT ∗
DHS = 0.16),

dipoles tend to form chain structures and the nature of the phase separation changes. As shown

in Fig. 4.5(a), the dipolar density distribution shows phase separation again, unlike for the mixture

at p∗ = 0.30, and both ions and dipoles have two peaks in the density distribution curve. More

interestingly, Fig. 4.5(b) indicates that the gas phase has a low-density of both ions and dipoles, and

the liquid phase has a high-density of both ions and dipoles, unlike the ion–hard sphere mixtures. In

ion–dipole mixtures at dipole momentp∗ = 0.55, the dipole–ion interaction energy is−11.5kB T ,

much lower than the interaction atp∗ = 0.30, where it is−3.8kB T . Consequently, dipoles tend to

strongly bind to ions, both phases have a similar ratio of ions to dipoles upon phase separation.

Figures 4.6(b) and (c) show that both ions and dipoles show a low-densityand a high-density

phase, whereas dipoles atp∗ = 0.30 do not show phase separation in Fig. 4.3(c). In Fig. 4.6(a),

the composition for both phases is almost the same. Although, this composition varies along the

coexistence curve, the total densities in both the liquid and the gas phase remain roughly constant,

43



 0

 0.02

 0.04

 0.06

0.00 0.05 0.10 0.15 0.20 0.25 0.30

ρ∗

(a)

P(ρ∗)

dipolar hard spheres
ions

(b)

ρ∗
dipoles

 0  0.05  0.1  0.15  0.2  0.25

ρ∗
ions

 0

 0.05

 0.1

 0.15

 0.2

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

Figure 4.5: (a) Density distribution of an ion–dipole mixture atµ∗
ion = −1.3626,µ∗
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see Fig. 4.6(d). Finally, with decreasing ionic composition, phase separation disappears when the

dipoles make up than 54% of the mixture. Figures 4.6(b), (c), and (d) showthat theQ-loci obtained

using the method described in the previous section are indeed located near the coexistence diame-

ters. In Fig. 4.7, the critical point is estimated from the intersection ofQ-loci using system sizes

L∗ = 10 and 12: this yieldsµ∗
dipole,c ≈ −0.387,µ∗

ion,c ≈ −0.381, andQc ≈ 0.602. Lastly, at dipole

momentp∗ = 0.6 (T ∗
DHS ≈ 0.13), dipoles bond even more strongly with ions and dipoles. As a

result, the maximum dipole concentration that induces phase separation risesto 67%.

4.5 Structure

In the previous sections, I have found that the phase diagram of ion–dipole mixtures changes dra-

matically upon variation of the dipole moment. In this section, I will give quantitativedescriptions

of the structure of these ion–dipole mixtures. As in Chapter 2, the basic conformations of interest

include rings, chains, and network clusters. Now, the ion and dipole composition of these clusters

are also considered. In each case (p∗ = 0, 0.3, 0.6), there is phase separation, and the gas phase is

identified as the phase with low total density. The fractions of particles belonging to ion clusters,

dipole clusters, ion–dipole clusters, ion monomers and dipole monomers in the gas phase at various

dipole moments are shown in Fig. 4.8. Whenp∗ = 0, the “dipoles” mostly remain as monomers

because they do not have any interactions. Atp∗ = 0.30, the fraction of ion–dipole clusters in

the gas phase becomes larger even though only few dipoles are present,because of the increased

strength of the dipolar interactions. Since ion neutral pairs dominate the system at low temperature,

a large portion of ion clusters is evident [6, 26]. Whenp∗ = 0.60, the majority of structure is the

ion–dipole clusters. This is consistent with the observation in the previous section that ions and

dipoles are strongly bonded.

A resemblance of the structural properties of ion–dipole mixtures can be found in the dipole–

hard sphere mixture [27,28]. Phase separation occurs but long chains are not present in the dipole–

hard sphere mixture. Indeed, at strong dipole moment,p∗ = 0.60, if I compare the pure DHS

system withρ∗
dipole = 0.12 and the mixture withρ∗

ion = 0.08 andρ∗
dipole = 0.04, the pure DHS

system has an average chain length 11.3 while the mixture has an average chain length 3.2 (chains

include ions and dipoles). This confirms that when mixtures undergo phaseseparation, long chains
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are not present, unlike the system of the pure DHS. It seems that stronglybonded long chains in the

pure DHS system have some role preventing phase separation, in agreement with earlier theoretical

suggestions [29–31].

4.6 Summary and conclusions

In this simulation study, temperature controls the strength of ionic interactions, and it is kept fixed at

T ∗ = 0.04762, where phase separation happens in pure ionic fluids. I investigate the phase behavior

of ion–dipole mixtures with various dipole moments. Qualitatively different phase diagrams are

found by varying the ratio of the dipolar to the ionic interaction. When the dipolemoment is very

weak, demixing is observed. At intermediate dipole strength, phase separation disappears in a large

region of the (µ∗
dipole, xion) plane, and there are few dipoles present when phase separation happens.

When the dipole moment is strong enough to bond ion–dipole pairs, a liquid–gasphase transition

returns. In this mixture, the relative ion–dipole fraction is roughly constantfor both coexisting

phases, and the ionic composition can be less than 50%. This type of phase separation is neither

demixing nor ionic phase separation, but the same ratio of the number of ions tothe number of

dipoles undergoes phase separation. This behavior has not been reported before.
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CHAPTER 5

DIFFUSION OF ADSORBED POLYMERS

Understanding the lateral diffusion of adsorbed polymers at a solid–liquidinterface is important for

a wide range of applications—from coatings and adhesives to tribology—aswell as from a funda-

mental point of view. Although this topic has received considerable attentionover the past decade,

both experimentally [1–6] and from computer simulations [7–12], most work has focused on single-

chain behavior under dilute conditions. Thecollective diffusive behavior of adsorbed polymers has

received comparatively little attention. Zhao and Granick [13] studied the diffusion of polyethylene

glycol (PEG) on silica surfaces that were rendered hydrophobic, asa function of surface cover-

age. Remarkably, they observed that the lateral diffusion coefficientincreases monotonically with

surface coverage, followed by a sudden drop once a threshold coverage has been reached. This

threshold is tentatively associated with the onset of monolayer coverage, whereas the initial in-

crease of the diffusivity is ascribed to conformational changes of the adsorbed polymers. In view

of the difficulty of testing these interpretations experimentally, and given the scarcity of results for

collective diffusion of adsorbed polymers in even the simplest computational models, I investigate

these properties by means of molecular dynamics (MD) simulations. I do not aimto incorporate all

aspects of the experimental system, but rather wish to elucidate the behaviorof a system that can

serve as a reference in the interpretation of these and future experiments.

Prior simulation studies for dilute chains have shown that various parameters, including surface

corrugation [12], the presence of obstacles [8, 11], and the inclusionof explicit solvent [10], can

affect diffusive properties. It is plausible that these parameters will also be important at higher

surface coverage. Nevertheless, since extant work at such coverages almost exclusively focuses

on static properties for the simplest models [14, 15], I feel justified to confine myself here to the

dynamic behavior of polymers adsorbed on a smooth, obstacle-free surface in the presence of an

implicit solvent.
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Figure 5.1: Snapshot of adsorbed polymers withN = 20, εw = 3εa , φm = 0.09. Each sphere represents a
Kuhn segment and each polymer is adsorbed onto a flat surface.

5.1 Simulation methodology

I study a bead–spring model of monodisperse linear chains, which is shown in Fig. 5.1. The

monomers represent Kuhn segments and interact via a shifted-truncated Lennard-Jones (LJ) po-

tential,

ULJ(r) =











4ε

[

(

σ
r

)12 −
(

σ
r

)6
]

+ ε if r ≤ rc

0 if r > rc

. (5.1)

Here,r = |r i − r j | is the center-to-center distance between monomersi and j . I use the monomer

diameterσ as the unit of length andε as the unit of energy. The cutoff distance is set torc = 21/6σ ,

i.e., at the minimum of the LJ potential. Therefore, the system is always in the good-solvent regime.

Adjacent monomers on the same chain are bonded via a finite extensible nonlinear elastic (FENE)

potential [16],

UFENE(r) = −1

2
k R2

0 ln

[

1 −
(

r

R0

)2
]

. (5.2)

I select the parametersR0 = 1.5σ , k = 30ε/σ 2, permitting a reasonably large time step [16]. The

total pair interaction between connected monomers is the sum of the shifted-truncated LJ potential

and the FENE potential, with a minimum atr ≈ 0.93σ . The simulation cell has dimensionsL ×L ×

D and is periodically replicated in thex andy directions. Two surfaces, oriented parallel to thex–y

plane, are placed at the top and the bottom of the cell, respectively. The height of the simulation

cell is kept fixed atD = 50σ and the linear system size ranges fromL = 40σ to L = 400σ .
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To avoid finite-size effects,L is always chosen to exceed four times the end-to-end distanceR of

an individual chain. The surfaces are treated as a continuum, so that theinteractions between the

monomers and the surface can be represented through a 9–3 Lennard-Jones potential [17],

Uw(z) = εw

[

(

σwm

z

)9

− q

(

σwm

z

)3
]

, (5.3)

wherez is the vertical distance from the surface andσwm = 0.6494σ . The top surface is purely

repulsive,q = 0, whereas the bottom surface represents the adsorbing interface, withq = 7.5. The

surface interaction takes its minimumUw ≈ −7.91εw at zmin = (3/q)1/6σwm ≈ 0.56σ . I investigate

both weak and strong adsorption regimes, choosingεw = 2εa, 3εa, 4εa, and 6εa, whereεa indicates

the adsorption threshold energy.

To estimate the adsorption threshold energy, I first perform configurational-bias Monte Carlo

(CBMC) simulations [18] of a single chain with one end grafted to the attractivesurface, and deter-

mine the radius of gyration parallel and perpendicular to the surface,

Rg‖ ≡ 〈0.5(R2
gx + R2

gy)〉1/2 , (5.4)

Rg⊥ ≡ 〈R2
gz〉1/2 . (5.5)

HereRgx , Rgy andRgz are thex ,y andz components of the radius of gyration. Near the adsorption

threshold, the ratioRg⊥/Rg‖ is predicted to scale as [17]

Rg⊥
Rg‖

∝























const x → +∞

const′ x = 0

|x |−νd=2/ϕ x → −∞

, (5.6)

wherex = τ Nϕ (τ = 1 − εw/εa), νd=2 = 3
4 is the scaling exponent in two dimensions, andϕ = 1

2

is the crossover exponent [17,19]. Thus, when the ratioRg⊥/Rg‖ is plotted as a function ofεw, the

curves for different chain lengths are predicted to converge, in the limit of large chain length, to zero

for strong adsorption energies and to a finite constant for weak adsorption energies. Atεw = εa

the curves intersect. This is confirmed in Fig.5.2. I find slightly different intersection points for

different pairs of chain lengths and adopt the arithmetic mean,εa = 0.002475± 0.000006, as my
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Figure 5.2: Ratio Rg⊥/Rg‖ versus adsorption energyεw for four different chain lengths. Symbols are calcu-
lated from simulations and curves are calculated by histogram reweighting [20]. The intersection
between the four curves provides the threshold adsorption energyεa = 0.002475± 0.000006.

estimate for the adsorption threshold.

In my simulations, the strongest adsorption energy isεw = 6εa, corresponding to a “sticking

energy” of approximately−0.12kB T per monomer. This is not strong enough to reach monolayer

coverage (I achieve a maximum surface coverage of approximately 70%), in line with the fact that

this value is significantly below the estimated sticking energy of PEG on silica surfaces,−0.5kB T

per monomer [4]. I deem a monomer adsorbed if it lies within a distancez = 1.3σ from the bottom

interface. The surface monomer density is then defined asφm = Nm/L2, whereNm is the total

number of adsorbed monomers. For all four choices of the adsorption strengthεw I investigate a

large number of surface coverages 0.01 ≤ φm ≤ 0.7, for five different chain lengths,N = 20,

40, 60, 80, and 160, comparable to the experimental degree of polymerization of 244 [13] (the

persistence length of PEG corresponds to only a few monomers). The systems contain between 10

and 72 polymer chains. Table 5.1 summarizes the linear system sizesL and number of chainsNc

used in the different simulations, along with the surface monomer coverage that would result if all

monomers would adsorb,φmax ≡ N Nc/L2.

Since the relaxation time increases rapidly with chain length and surface coverage, I employ

CBMC simulations to efficiently create initial configurations for all these cases. Subsequently, I

use the resulting configurations, in which now all constraints are lifted, to perform MD simulations

using the LAMMPS package [21]. Prior to sampling any properties, the systems are further equili-

brated using MD. Typical configurations are depicted in Fig. 5.3. The time step is 1τ = 0.003τ ,
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N = 20 N = 40 N = 60 N = 80 N = 160
φmax Nc L Nc L Nc L Nc L Nc L
0.01 20 200 40 400 24 380 20 400 10 400
0.1 18 60 25 100 24 120 18 120 18 170
0.2 36 60 32 80 48 120 36 120 – –
0.4 72 60 36 60 54 90 50 100 25 100
0.6 48 40 54 60 49 70 48 80 39 102
0.8 64 40 50 50 48 60 36 60 – –

Table 5.1: Simulation parameters for different chain lengths and surface densities. The system sizeL is
decreased for higher densities to avoid simulations with too large a number of chains. However,
to prevent self interactions between a chain and its periodic images,L is always chosen to exceed
four times the end-to-end distance.

Figure 5.3: Typical configurations at low surface coverage. (a) Snapshot for chain lengthN = 40, adsorp-
tion energyεw = 6εa , and surface densityφm = 0.1. As illustrated, “flat” conformations are
observed at high adsorption energy and low surface coverage. (b) Typical configuration for chain
lengthN = 80, adsorption energyεw = 2εa , and surface densityφm = 0.07. At this lower ad-
sorption strength, “loop–train–tail” conformations are observed, causingφm to be smaller than
φmax = 0.1.

55



whereτ = (σ 2m/ε)1/2, andm is the monomer mass. The sampling interval is chosen to be roughly

the characteristic time for the center of mass of a polymer chain to move over its end-to-end dis-

tance. This sampling interval varies from 1.5×1041τ to 2.5×1051τ and depends on chain length,

adsorption energy, and surface density. After the system has been equilibrated, 1250–25000 sam-

ples are recorded. The diffusion coefficient is calculated from the lateral mean square displacement

of the polymers,

gcm‖(t) = 1

Nc

Nc
∑

i=1

〈

[

Ri,cm‖(t + t0) − Ri,cm‖(t0)
]2

〉

. (5.7)

Here,Ri,cm‖(t) denotes the center-of-mass position of chaini at time t and〈·〉 means the ensem-

ble average over all time originst0. Assuming that the polymers undergo Brownian motion, the

diffusion coefficientD can be measured from the mean square displacement via 4Dt = gcm‖(t).

The temperature is fixed tokB T/ε = 1 using a Langevin thermostat. The equation of motion

for monomerj is [22]

m
d2r j

dt2
= F j (r j ) − γ m

dr j

dt
+ R j (t) . (5.8)

The first term,F j (r j ), is the force on monomerj induced by the pairwise interactions between

monomers. The remaining contributions to the force result from the implicit solvent–monomer

interactions. Solvent molecules drag the monomer with a friction coefficientζ , i.e.,Ffriction = −ζv j ,

wherev j is the monomer velocity. The friction coefficient is related to the collision frequency

γ = ζ/m and I chooseγ = 0.1τ−1 [16]. In addition, the random forceR j (t) represents the

collisions with solvent molecules, resulting from thermal fluctuations.

5.2 Diffusion coefficient

Experimentally, various power-law dependences on chain length have been found for the diffusion

coefficient in the dilute regime. For polymers diffusing on lipid bilayers, the diffusion coefficient

scales asD ∼ N−1 [1,5]. However, on a solid surfaceD was found to scale asN−1.5 [3]. To clarify

the situation for my model, I first simulate the surface diffusion of chains in the dilute regime,

φm = 0.01, for N between 20 and 320. As shown in Fig. 5.4, I find strong evidence for an inverse

linear proportionality,D ∼ N−1.018±0.009.

Figure 5.5(a) shows the lateral diffusion coefficient as a function of surface monomer density
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Figure 5.4: Lateral diffusion coefficientD in the dilute regime (φm = 0.01, εw = 6εa) as a function of
chain lengthN (20 ≤ N ≤ 320), on a logarithmic scale. The diffusion coefficient scales as
D ∼ N−1.018±0.009.

for N = 40 and all four adsorption strengths. The diffusion coefficient decreasesmonotonically

with increasing surface monomer coverage. Moreover, the data for different adsorption energies

coincide. However, since I omit data for conditions where chain desorption occurs (indicated by

the arrows in Fig. 5.5(a)), the data extend to larger surface coverage for higher adsorption strengths.

The diffusion of adsorbed chains is typically assumed to be related to their conformation. However,

coinciding diffusion coefficients at identical surface coverage donot imply identical chain config-

urations. This is illustrated in Fig. 5.5(b), which displays the lateral diffusioncoefficientversus

the fraction of adsorbed monomers. Since both panels in Fig. 5.5 employ the same vertical scale,

the relation between chain conformation and surface monomer coverage can be deduced. At low

adsorption strength,εw = 2εa, already in the dilute regime (D ≈ 0.25) chains are only partially ad-

sorbed, adopting so-called “loop–train–tail” conformations where the chain ends are typically not

adsorbed and the other monomers alternate between short sequences ofadsorbed units (“trains”)

and desorbed units (“loops”) [23]. For higher adsorption strengths,more than 90% (increasing with

increasingεw) of the monomers is adsorbed in the dilute regime, corresponding to “flat” configu-

rations. Nevertheless, these chains display the same center-of-mass diffusion coefficient if the total

number of adsorbed monomers is the same as for systems with lower adsorptionstrengths. In ad-

dition, Fig. 5.5(b) shows that initially thefraction of adsorbed monomers remains almost constant

with increasing coverage, even though the diffusion rate decreases. Thus, I infer from these results

that the mobility of adsorbed polymers is controlled by the total number of adsorbed monomers. In-
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Figure 5.5: (a) Lateral diffusion coefficientD(σ 2/τ) as a function of surface monomer coverage for chain
lengthN = 40 and various adsorption energiesεw. Error bars are smaller than the symbol size.
(b) Lateral diffusion coefficient versus the fraction of adsorbed monomers.

 0

 0.04

 0.08

 0.12

 0  0.2  0.4  0.6  0.8
φm

(a)

D

εw=2εa
εw=6εa

 0

 0.04

 0.08

 0.12

0.5 0.6 0.7 0.8 0.9 1.0
Nm / (NNc)

(b)

D

Figure 5.6: (a) Lateral diffusion coefficientD as a function of surface monomer coverage for chain
length N = 80 and various adsorption energiesεw. (b) Lateral diffusion coefficient versus
the fraction of adsorbed monomers.

deed, ultimately, just prior to the onset of desorption, the fraction of adsorbed monomers decreases

and chains adopt “loop–train–tail” conformations even at high adsorptionstrengths. However, this

conformational change does not lead to an increased mobility. I also investigate the diffusion be-

havior for different chain lengths. As illustrated in Fig. 5.6 forN = 80, longer chains have a higher

maximum surface coverage at the same adsorption energy (εw = 2εa). For εw = 6εa, I do not

simulate the system at surface densities higher thanφmax = 0.6 because of the computational cost.

The overall behavior of diffusion and conformational change is similar to the results for chain length

N = 40.

I repeat these simulations for chain lengthsN = 40, 60, 80, and 160. Figure 5.7 reveals several

remarkable properties of the diffusion coefficient. First, the behavior observed in Fig. 5.5(a) forN =

40 is accurately described by an exponential function of surface coverage. Secondly, this behavior
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Figure 5.7: Logarithmic diffusion coefficient as a function of surface monomer density for different chain
lengths.

is recovered for other chain lengths (with a statistical accuracy that diminishes with increasing chain

length, owing to computational costs), with an exponential decay that isindependent of N . Thus,

as a corollary, the 1/N dependence observed in the dilute regimepersists with increasing surface

coverage. ForN = 20, I find D ∝ exp(−bφm) with b = 3.65 ± 0.08, and the straight lines in

Fig. 5.7 representD ∝ N−1 exp(−bφm). My results can be viewed as a generalization of earlier

findings (obtained via MC simulations) for polymers confined to a narrow slit. Ref. [24] found an

exponential increase of the relaxation timeτ with increasing polymer density, which is consistent

with my findings, sinceD ∼ R2/τ . For branched polymers, Ref. [25] also observed an exponential

decrease of the diffusion coefficient. Most importantly, none of these findings indicates an increase

of the diffusion coefficient with increasing concentration.

5.3 Summary and conclusions

My simulations provide compelling evidence that adsorbed polymers diffuse progressively slower

with increasing surface coverage,irrespective of conformational changes that occur as the envi-

ronment becomes more crowded. This is at variance with the arguments put forward in Ref. [13],

namely that a decreased number of adsorption sites per chain leads to an enhanced mobility. Evi-

dently, this still leaves the original experimental findings to be explained. I notethat in the pertinent

regime the experimental uncertainties are rather large, making it difficult to unequivocally claim an
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increasing trend (although there is no evidence of a systematic decrease either). The second anoma-

lous feature observed in the experiment, namely an abrupt decrease of the diffusion coefficient near

monolayer coverage [13], is out of reach for the adsorption strengthsemployed here, which limit

the surface coverage to approximately 70%. Despite this limitation, my findings can be viewed as a

reference for the collective diffusion behavior of model polymers at sub-monolayer coverage.

Finally, I comment briefly on recent simulation studies [26, 27] that appear toreproduce the

experimental findings of Ref. [13]. These simulations do not only employ oligomers that are far

shorter than the chains in the experiment, but also focus on the poor-solvent regime where the

chains for a single globular phase [27]. This is in stark contrast with the experiments, for which it

is explicitly reported that no aggregation is observed.
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