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Abstract

This thesis aims to investigate vibrational characteristics of magnetic resonance elastography (MRE) of the

brain. MRE is a promising, non-invasive methodology for the mapping of shear stiffness of the brain. A

mechanical actuator shakes the brain and generates shear waves, which are then imaged with a special

MRI sequence sensitive to sub-millimeter displacements. This research focuses on exploring the profile of

vibrations utilized in brain elastography from the standpoint of ultimately investigating nonlinear behavior

of the tissue. The first objective seeks to demonstrate the effects of encoding off-frequency vibrations using

standard MRE methodologies. Vibrations of this nature can arise from nonlinearities in the system and

contaminate the results of the measurement. The second objective is to probe nonlinearity in the dynamic

brain system using MRE. A non-parametric decomposition technique, novel to the MRE field, is

introduced and investigated.

ii



Acknowledgments

I appreciate the many people who supported me during my time at the University of Illinois. Many thanks

to my adviser, Dr. John G. Georgiadis, who saw my enthusiasm and willingness to work and gave me the

opportunities to make this work happen. I also want to thank all of my group members for their guidance

and special thanks to Dr. Dimitrios C. Karampinos and Mr. Danchin Chen for their continued help

despite all the long scan sessions, and Mr. Max Snow and Mr. Eeshan Kumar for their assistance in the

lab. I am grateful to all my friends for their support and contributions to my work. Finally, thanks to my

family for all their love and for support during my studies and through my life.

iii



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Magnetic Resonance Elastography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 MRE Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 MRE Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 MRE Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 MRE Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 On the Effect of Off-Frequency Encoding in MR Elastography . . . . . . . . . 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Phantom and Brain Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3 Proper Orthogonal Decomposition for Improved Assessment of Brain MR
Elastography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Phantom and Brain Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Signal Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iv



List of Tables

2.1 Summary of estimated stiffness results of simulations at different frequency ratios: percent
difference in mean stiffness compared to matched case, and percent maximum variation com-
pared to mean stiffness with the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Summary of energy fractions carried by the FT and POD modes . . . . . . . . . . . . . . . . 22

v



List of Figures

1.1 (a) Shaker, rod, and rocker system used for brain MRE; (b) detail of rocker with subject’s head 4
1.2 Modified EPI sequence for MRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Results of the numerical solutions for different frequency ratios (Ω): 0.8, 0.9, 1.0, 1.1, and 1.2.
Measured amplitude of the first harmonic versus spatial position. . . . . . . . . . . . . . . . . 12

2.2 Results of the numerical solutions for different frequency ratios (Ω): 0.8, 0.9, 1.0, 1.1, and 1.2.
Estimated stiffness versus spatial position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Results of the numerical solutions for different frequency ratios (Ω): 0.8, 0.9, 1.0, 1.1, and 1.2.
Spectra of captured energy fraction, with detail of harmonic of interest (inset). . . . . . . . . 14

2.4 Stiffness maps for phantom experiment (top row) and corresponding mode shapes (bottom
row) for frequency ratios: 0.8 V (a,b); 1.0 V (c,d); and 1.2 V (e,f). . . . . . . . . . . . . . . . 15

2.5 Stiffness maps for brain experiment (top row) and corresponding mode shapes (bottom row)
for frequency ratios: 0.8 V (a,b); 1.0 V (c,d); and 1.2 V (e,f). . . . . . . . . . . . . . . . . . . 16

3.1 Mode shapes for the phantom experiment obtained with both FT (top row) and POD (bottom
row) for actuation intensities: 2.5 V (a,d); 2.0 V (b,e); and 1.5 V (c,f). . . . . . . . . . . . . . 22

3.2 Mode shapes for the brain experiment obtained with both FT (top row) and POD (bottom
row) for actuation intensities: 2.5 V (a,d); 2.0 V (b,e); and 1.5 V (c,f). . . . . . . . . . . . . . 23

3.3 Captured energy fractions for modes obtained with both FT and POD in the phantom for all
actuation intensities vs. number of included bases. . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Captured energy fractions for modes obtained with both FT and POD in the brain for all
actuation intensities vs. number of included bases. . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



Chapter 1

Introduction

1.1 Magnetic Resonance Elastography

The use of mechanical properties of biologic tissue as biomarkers for disease and pathology has a long

history. For example, the first step in detection of a breast lesion or liver fibrosis is often manual palpation

of the tissue, which can be followed by imaging and biopsy. Palpation provides a qualitative assessment of

the stiffness of the tissue, but quantitative stiffness measures could allow for improved detection of

pathology, and could also provide information regarding the staging of the disease. Additionally, palpation

is not an option for tissues that are protected by bony structures, such as the brain or heart.

Magnetic resonance elastography (MRE) is an emerging technique for quantitatively probing the

mechanical properties of tissue non-invasively [1, 2]. MRE utilizes magnetic resonance imaging (MRI) to

capture displacement and deformation of materials being imaged. The displacement is generated externally

through periodic mechanical actuation, which induces shear waves in the tissue of interest. Snapshots of

the local displacements associated with the shear wave motion are obtained by synchronizing the MRI

acquisition. The shear wave patterns are the inputs to a wave inversion technique to extract the elastic

properties of the material [3]. MRE methods have been used to investigate the stiffness of a variety of

tissues in vivo including liver [4, 5, 6], breast [7, 8, 9], skeletal muscle [10, 11, 12, 13], heart [14, 15], and

brain [16, 17, 18, 19, 20, 21, 22].

The work presented in this thesis focuses on brain, and the specific challenges the MRE investigator

faces when examining the tissue. The human brain is a complex organ with tissue which exhibits complex

physiological and mechanical properties. Our scope here is limited to the passive mechanical properties of

brain tissue. The dynamic brain system, comprising the cranium, blood, cerebrospinal fluid, and brain

parenchyma, may exhibit nonlinearities in dynamic response [23, 24, 25, 26]. These nonlinearities

unquestionably introduce poor repeatability and reproducibility of MRE results in the brain. As is the case

with engineered systems, these problems are caused by incomplete definition of the dynamic system and its
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constraints.

MRE techniques are in an infantile state relative to similar methods for nondestructive evaluation of

engineered materials. Much of the MRE literature refers to wave motion and propagation, which indicate

transient phenomena, whereas the displacements measured are technically vibrations because the

phenomenon has achieved steady-state. Further, the described wave propagation, governed by the

imaginary part of the signal, actually provides evidence of complex modes of vibration. Complex modes

themselves are an indication of non-proportional damping in the material [27], a consequence of the

viscoelastic nature of biologic tissues.

Modes of vibration are intrinsic characteristics of dynamic systems arising from system parameters such

as stiffness and damping [28], which are of interest in MRE experiments. The dynamic response of a

system is a combination of all the excited modes, which are determined by the type of external forcing [29].

In the case of traditional MRE, the forcing used has a constant amplitude and a single frequency. For

linear systems, the response to periodic forcing is at the same frequency, with the excited mode depending

on that frequency. When the system is nonlinear, the excited mode is still governed by the external

forcing, though determining the specific response is more complicated. The frequency of the forcing still

has a significant impact, yet the dynamic response will depend on whether the system is stable at its

equilibrium points. The dynamic response is further governed by frequency-amplitude relationships near

these points, and is highly dependent on amplitude of forcing and other initial conditions. The dependence

on specific properties of the system as well as parameters of the forcing can be modeled by employing

bifurcation theory [30].

The methodologies of clinical MRE have been based on linear, or linearized, dynamics of the system

and have largely ignored the deleterious effects of nonlinearities corrupting the assumed linear response.

This work aims to serve as the basis for future nonlinear investigations of clinical MRE so as to further the

methodology and improve the reliability of the results.

1.1.1 Objectives

The following chapters seek to demonstrate and study how incorrect assumptions regarding the brain can

confound standard MRE results, with the aim of informing the future advances in the field of brain MRE.

In chapter two, we investigated the effects of conducting MRE experiments with inappropriate

assumptions regarding the mechanical excitation and specifically the frequency of vibration. Current

methods in MRE rely on the harmonic nature of the displacement to simplify the wave inversion process,

but also in designing the data acquisition scheme. The aim of this chapter is to elucidate errors in shear
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stiffness estimates when MRE experiments are performed assuming an incorrect frequency of vibration, a

possible scenario when considering the complexities of the dynamic brain system.

Classical MRE methods utilize the Fourier transform to calculate wave displacement patterns given a

set of rigid assumptions. In chapter three, we demonstrate an improved data processing method to extract

vibration modes from wave images in brain MRE. The aim is to investigate how nonlinearities in the

system can lead to irreproducible results, and to outline the use of an alternative methodology in the form

of the proper orthogonal decomposition.

1.2 MRE Methodology

1.2.1 MRE Hardware

One of the most important considerations in MRE is how shear waves are generated in the tissue of

interest [31, 32]. In order to be compatible with MRI, a certain number of limitations are introduced in the

mechanical actuation system. Specifically, the system must not be composed of metal parts unless properly

shielded, and even then it must not cause interference with the imaging through the MRI scanner. In

addition, the tissue to be actuated is located within the bore of the scanner, and thus there is very little

room to place components of the actuator near the tissue itself. Due to these limitations, the majority of

MRE hardware falls in to one of three categories: electromechanical [33, 34], piezoelectric [35], and

pneumatic [36].

For the brain, as opposed to other tissues, shear wave generation is made difficult by the lack of ability

to actuate the tissue directly. Shear waves are generated through inertial forces by vibrating the subject’s

cranium, and significant forces are required to obtain the necessary displacements transmitted to the brain

tissue itself. To this end, most published brain MRE work use electromechanical actuation systems in

either local [16, 18] or remote configurations [17, 37].

Local configurations consist of a device attached to the inside of the head coil in the MRI scanner and

actuation is performed by utilizing the static B0 magnetic field of the scanner. Controlled electrical current

is pulsed through the actuator to generate displacement. A bite bar is driven by the actuator to induce

motion of the subject’s head in the left-right direction. The local bite bar configuration provides improved

control of the imposed motion due to improved coupling of the system, but it is a more complicated system

that is known to be uncomfortable for subjects [16, 20].

The remote configuration involves an electromechanical shaker and amplifier system which are located

far from the scanner and placed in a Faraday cage as to allow for the inclusion of active, metal components
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while maintaining safety and removing interference in the imaging. The shaker is attached to a head rocker

that is attached inside the head coil through by means of a long rod, as shown in Figure 1.1(a). The

subject’s head rests on the rocker, as shown in Figure 1.1(b), and the remote shaker provides motion in the

“nodding” direction. This remote configuration is convenient, flexible, and can be modified more easily

than the local configurations. The remote configuration has been used in the majority of previous studies,

and is employed in this work.

(a) (b)

Figure 1.1: (a) Shaker, rod, and rocker system used for brain MRE; (b) detail of rocker with subject’s head

1.2.2 MRE Imaging

MRE is a phase-contrast MRI technique that incorporates motion-encoding gradients in to standard MRI

sequences in order to map displacement through phase. In the presence of magnetic field gradients, any

displacement of spins in the direction of the gradients causes the spins to accumulate phase [1]. The

amount of phase acquired depends on the integral of displacement in time and the strength of the gradient

field. By controlling the period of the motion and the applied gradients, the amount of actual displacement

can be back calculated from the phase map.

In the classic dynamic MRE experiment, shear waves are generated through harmonic actuation at a

known frequency, typically in the acoustic range of 50-200 Hz [3]. By applying bipolar gradients with the

same frequency and period of motion, MRE is capable of capturing the displacement at the same

frequency, while maximizing contrast and maintaining gradient balance. By locking the period of the

gradients with the period of the motion, the following expression can be derived for the accumulated

phase, φ, in terms of displacement (Eq. 1.1):

φ (r) =
2γ · τ ·G · u0cos (r)

π
sin (k · r) , (1.1)
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where γ is the gyromagnetic ratio of the spins, τ is the period of motion, G is the gradient strength, and u0

is the displacement amplitude. The phase is a function of both spatial position, r, and wave number, k.

In typical MRE experiments, the procedure for acquiring a single wave image is repeated in time to

investigate wave propagation through space [38]. By synchronizing the imaging sequence to the motion

generation, the phase of the imaged wave can be controlled by manipulating a small delay. The delay, ∆t,

causes a phase offset in the motion, θ, based on the vibration period, and the resulting MRI phase from

Eq. 1.1 is now given by Eq. 1.2 [1]:

φ (r, θ) =
2γ · τ ·G · u0cos (r)

π
sin (k · r + θ) , (1.2)

The imposed phase offsets generally span a single period of actuation, and the resulting time series of

displacements at each voxel are Fourier transformed to isolate the harmonic of interest [3, 7]. This

processing step serves to provide information about complex wave propagation, but also as a de-noising

technique to remove higher harmonics [39].

Virtually any MRI sequence can be modified to include the gradients necessary for MRE

experiments [40, 41, 42, 43, 44, 45]. The major considerations for designing a sequence are speed,

resolution, contrast, and tissue type. Speed is the most important of considerations as it directly relates to

patient comfort. Since the tissue of interest is mechanically shaken for nearly the entire scan time,

minimizing the required scanning time is of utmost importance. Maximizing speed comes at the cost of

resolution, which has different requirements for different tissues depending on the spatial order of

magnitude of the features of interest. Some sequences, such as balanced steady-state free precession, have

very complicated phase models, making their application to MRE very difficult. Other sequences, such as

echo-planar imaging, have poor responses to fat content in the tissue, thus limiting usefulness in fatty

tissue, such as the breast.

For brain MRE, the comfort of the subject is critical, since the brain is more sensitive to mechanical

actuation than other organs. To address this issue, this work uses an EPI-MRE sequence, a diagram of

which is shown in Figure 1.2. Due to the low fat content of brain tissue this is an acceptable sequence, and

also allows for a short scan time of approximately one minute. EPI does have a relatively low spatial

resolution, obscuring some of the finer spatial features in the brain, but it allows for a higher temporal

resolution in order to investigate the vibrational response of the system.
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Figure 1.2: Modified EPI sequence for MRE

1.2.3 MRE Inversion

The final step in MRE techniques is to determine the mechanical properties of material from the wave

image. This requires the inversion of the appropriate wave equation governing the material. In general, all

materials in MRE experiments are assumed to be linear, homogeneous, and isotropic in order to simplify

the inversion process [3, 46], though some work has been done to incorporate more complex material

models into inversion schemes [12, 47, 48, 49].

The wave equation governing the displacements in MRE is derived from the elastic material

constitutive law (Eq. 1.3):

ρ
∂2ui
∂t2

= µ
∂2ui
∂x2

j

+ (µ+ λ)
∂2uj
∂xi∂xj

, (1.3)

where λ is the first Lamé coefficient and µ is the second, also known as the shear modulus. Fluid-filled

biological materials are nearly incompressible, which simplifies the elastic wave equation to the Helmholtz

Equation (Eq. 1.4):

ρ
∂2ui
∂t2

= µ
∂2ui
∂x2

j

. (1.4)

By further recognizing that the motion, u, is harmonic at the imposed frequency, ω, we can express it as

(Eq. 1.5)
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ui (t) = uicos (ωt) , (1.5)

and the time dependence of the Helmholtz Equation cancels, further simplifying it to (Eq. 1.6):

−ρω2ui = µ
∂2ui
∂x2

j

. (1.6)

This equation directly relates the measured displacement to the shear modulus by means of the driving

frequency and material density.

There are two major techniques for inverting the Helmholtz Equation in MRE methodology: local

frequency estimation (LFE) [50, 51] and algebraic inversion of the direct equation (AIDE) [46, 52]. LFE

techniques seek to derive the spatial frequency of the wave propagation and relate it to stiffness. Its

applicability is found in incompressible and homogeneous materials, and has been shown to provide robust

and useful estimates of shear modulus in MRE. The AIDE technique does not seek to estimate spatial

frequency, but rather tries to solve the simplified wave equation directly. Direct inversion is beneficial

compared to LFE by allowing for more complicated material property models, such as viscoelasticity, to be

incorporated more easily, but suffers from the drawback of requiring the calculation of spatial derivatives

from pointwise data. In this work, LFE inversion processes were employed [53].
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Chapter 2

On the Effect of Off-Frequency
Encoding in MR Elastography

2.1 Introduction

The feasibility of extracting meaningful information regarding stiffness of tissue with MRE hinges on the

ability to invert the acquired image using the appropriate wave theory. In order to perform a valid

inversion, a number of simplifications must be made regarding the material properties. Specifically,

assumptions about the tissue’s anisotropy, viscoelasticity, and linearity must all be accounted for in the

wave inversion procedure. Advanced acquisition and reconstruction schemes have been used to investigate

anisotropic and viscoelastic properties of tissues with MRE in order to achieve a more accurate

understanding of the underlying tissue properties. Nonlinear material behavior of the tissue is expected,

and has been investigated previously with MRE [54], but the assumption of linearity holds for the small

displacements that are generally used.

In addition to assumptions regarding the materials being imaged, there are assumptions regarding the

applied motion to the tissue. In dynamic elastography the motion is assumed to be harmonic at the

controlled input driving frequency. The control of the input frequency is used to not only achieve optimal

wave profiles in the tissue, but it also determines the required imaging parameters. The input frequency is

typically used to determine the encoding gradient duration [41], the timing delay for phase offsets [38], and

traditional imaging parameters such as the echo time (TE) and the repetition time (TR) [7]. For the actual

vibration frequency to be different than the input, the dynamic system will need to be nonlinear. In many

applications of MRE, the method of actuation can be assumed linear because of adequate mechanical

coupling with the tissue. When actuation remote systems are used, the presence of nonlinearities is more

likely, but work has been done to characterize the mechanical input spectra of such systems [55]. However,

in brain MRE, the coupling between the actuator and the tissue is more complex, and the cranium,

cerebrospinal fluid, and tissue geometry can account for nonlinearities in the system.

In this work we investigated the effects of performing MRE experiments with a driving frequency
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assumed incorrectly. Numerical simulations, phantoms, and in vivo brain experiments were performed in

order to demonstrate how stiffness estimates could be skewed on both a global and local level by tailoring

an MRE experiment to the wrong frequency.

2.2 Theory

During time-harmonic elastography, the motion of mechanically actuated tissue or material is mapped by

encoding the displacement of the water proton spins. The motion of each spin, u, is sinusoidal and can be

described by the following function (Eq. 2.1):

u (t) = u0cos (k · r + ωt) , (2.1)

where u0 is the amplitude of the spin displacement, ω is the angular frequency of the vibrations, k is the

wave vector, and r the spatial position of the spin. The product of k and r describes the spatial phase of a

wave at a given point. It is now useful to reformulate the displacement to include the offset phase between

mechanical vibration and motion encoding, θ, as well as to amplify the effect of the vibration frequency

(Eq. 2.2):

u (t) = u0cos (k · r + ωvt+ θ) , (2.2)

where ωv is the angular frequency of the oscillatory spin displacement, as opposed to the frequency of

motion encoding, ωg, during MRE. In the presence of motion encoding magnetic field gradients, G, which

are used to store the magnitude of spin displacement along a given direction, the spins accumulate phase,

φ, which is given by the expression (Eq. 2.3):

φ = γ

∫
G (t) · u0cos (k · r + ωvt) dt, (2.3)

where γ is the gyromagnetic ratio, and τ is the period of the encoding gradients given by τ = 2π
ωg

. The

typical MRE experiment uses a train of bipolar gradients that flip polarity with a specified frequency, ωg.

We will consider periodic gradients with trapezoidal lobes, which can be simplified to rectangular lobes

with a constant amplitude G. With this representation of the bipolar gradients, the accumulated phase

(for a single point in space) can be expressed as follows (Eq. 2.4):

φ =
γ ·G · u0 · τ

πΩ
sin (θ − πΩ) [1− cos (πΩ)] ,Ω =

ωv
ωg
, (2.4)
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where Ω is the ratio between the spin vibration and MRE encoding frequencies. When the motion encoding

is synchronized with the vibration, the two frequencies are equal (Ω = 1), and Eq. 2.4 takes a familiar form

reported previously [1]. On the other hand, an encoding frequency that differs from the vibration

frequency may be utilized to increase phase contrast [41], to shorten gradient length [14], or to encode

multiple frequencies [56]. To capture wave propagation in time, the controlled phase offset θ is typically

varied in even intervals across one period of vibration, or during a certain period, in order to obtain the

desired spectral resolution when decomposing the encoded signal. However, if the vibration frequency is

unknown, or if it differs from the expected frequency, there is no guarantee that the phase offsets will no

longer be properly spaced, and the expression for phase should be adjusted to reflect this uncertainty. The

phase offsets imposed through the sequence will be denoted by θg, and the resulting phase offset relative to

the vibration will be θv = Ωθg. The expression for phase can now be written as follows (Eq. 2.5):

φ =
γ ·G · u0 · τ

πΩ
sin (θg − πΩ) [1− cos (πΩ)] . (2.5)

The above expression for phase accumulation applied to the case of encoding a vibration characterized

by the resulting frequency ωv, with MRE encoding gradients at an encoding frequency ωg, in general

different than ωv. The distinction made between the two frequencies is necessitated by the influence of the

cerebrospinal fluid and neck muscles on the head motion, or dynamic mismatch between the shaker and

vibration transmission. Although the mechanical actuator is vibrating the cranium at one frequency, the

brain, in principle, can vibrate at another. Because the desired phase offsets are no longer assumed to

match the actual offsets for the vibration pattern, when the signal is decomposed using the Fourier

transform [3] there will be errors in the output which affect the wave inversion procedure used to obtain

the mechanical properties of the sample.

2.3 Methods

In order to investigate the effects of encoding off-frequency, two types of experiments were performed.

First, numerical simulations were performed for a variety of frequency ratios. Second experiments were

performed on a phantom as well as a human brain in vivo. The results were then compared to gain insight

into the phenomenon of frequency mismatch.
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2.3.1 Numerical Simulations

Displacement fields were simulated for shear waves propagating in a single direction through an elastic

material. The material was modeled as a linear, homogenous, and isotropic medium with a shear stiffness

of 3 kPa. The input (actuation) was an oscillatory 1D motion of the boundary with an amplitude of 100

µm, but without attenuation caused by viscoelastic damping. Wave patterns corresponding to actuation

frequencies of 40, 45, 50, 55, and 60 Hz were simulated and MRE-encoded with a frequency of 50 Hz. This

resulted in simulated MRE data sets for values of Ω at 0.8, 0.9, 1.0, 1.1, and 1.2, respectively.

The simulated encodings were based on acquisition schemes synchronized with 50 Hz, a typical value

for a brain MRE experiment. Phase offsets were acquired over a single period of vibration at 50 Hz, and

the data was processed using the same frequency. The simulated wave images were temporally

Fourier-transformed and processed using a local frequency estimation inversion algorithm to determine the

stiffness of the material.

2.3.2 Phantom and Brain Experiments

Experiments were performed with a closed, cylindrical agar gel phantom composed of a softer (2% agar)

annulus surrounding a stiffer (3% agar) center column. The phantom was placed so that the cylindrical

axis was in the anterior-posterior direction, and the entire phantom was vibrated in a rocking motion in

the same direction using a homemade actuation system. A cradle that pivots along a structure attached to

the head coil and a remote shaker made up the MRE actuation hardware system. The system was also

used for the in vivo brain experiments on a single volunteer. The subject lies supine with the head resting

on the cradle, which results in actuation in a nodding motion of the head.

A single-shot spin-echo echo-planar imaging (EPI) sequence, modified to include bipolar motion

encoding gradients, was used in all experiments. Coronal images were acquired for the phantom, which

provided a cross-sectional slice of the cylinder, and axial images were taken for the brain. All experiments

were conducted using an encoding frequency of 50 Hz and forty phase offsets, while was performed at the

same set of frequencies described in the numerical simulations section, above. Encoding was performed on

a single axis (through-plane), with a motion encoding gradient amplitude of 30 mT/m. Other important

imaging parameters included: FOV = 192 mm (240 mm for brain); matrix size = 64× 64; TR/TE =

1000/90 ms; slice thickness = 5 mm. All experiments were performed on a Siemens 3T Allegra head-only

scanner (Siemens Medical Systems, Erlangen, Germany) at the Beckman Institute of the University of

Illinois at Urbana-Champaign.

The acquired phase data was subtracted, unwrapped, and spatially filtered using a Butterworth
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bandpass filter to remove effects of bulk motion and noise. Finally, Fourier-transformed wave patterns were

used as inputs to the same inversion algorithm described in the previous section.

2.4 Results

Figure 2.1 presents the apparent measured amplitude of the each simulated wave pattern in space,

corresponding to the frequency ratios (Ω) described previously. The amplitude presented here is the

magnitude of the complex signal at the first harmonic, as obtained from the temporal Fourier transform.

Figure 2.2 shows the apparent elastic stiffness of the simulated material as would be measured with MRE

for the different frequency ratios. For the frequency ratios that differ from the matched case (Ω = 1.0),

differences can be seen in the mean estimated stiffness across the material, as well as in local fluctuations

within the sample. The variations in shear stiffness for the different frequency ratios relative to the

matched case are summarized in Table 2.1. The total energy fractions of the harmonic spectra from the

simulations are shown in Figure 2.3, with the inset depicting a detail of the first harmonic.

Figure 2.1: Results of the numerical solutions for different frequency ratios (Ω): 0.8, 0.9, 1.0, 1.1, and 1.2.
Measured amplitude of the first harmonic versus spatial position.

The results of the phantom experiments are summarized in Figure 2.4. Wave images reconstructed

from the first harmonic are presented along with the reconstructed stiffness maps for two“unmatched”

frequency ratios, 0.8 and 1.2, for comparison with the matched frequency ratio, Ω = 1.0. The results for
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Figure 2.2: Results of the numerical solutions for different frequency ratios (Ω): 0.8, 0.9, 1.0, 1.1, and 1.2.
Estimated stiffness versus spatial position.

brain experiments are presented in Figure 2.5, in the same format.

2.5 Discussion

MRE has been used to determine the stiffness of biological tissues in vivo and non-invasively, including the

human brain. However, MRE methodology depends strictly on the knowledge of the driving frequency of

mechanical actuation, and invalid assumptions regarding the dynamic system can lead to errors in

acquisition parameters. In this work we have looked at how encoding at the incorrect frequency can

manifest itself as artifacts in the computed stiffness map of the measured tissue.

It was shown through numerical simulations that encoding at a frequency other than that of either the

actuator or vibrations resulting from actuation can lead to incorrect determination of the amplitude of

vibration at the specific frequency of interest. As discussed previously, the acquisition of wave images in

time is tailored specifically to the encoding frequency, and if the driving frequency is not strictly matched,

a different portion of the vibration period will be acquired. When the data is decomposed into a Fourier

series, the amplitude of the first harmonic will vary with spatial position, as demonstrated in Figure 2.1.

Variations of the signal amplitude in space directly influence the stiffness estimates at the same points

in space. MRE inversion algorithms utilize the elastic wave equation to determine the stiffness from
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Figure 2.3: Results of the numerical solutions for different frequency ratios (Ω): 0.8, 0.9, 1.0, 1.1, and 1.2.
Spectra of captured energy fraction, with detail of harmonic of interest (inset).

Table 2.1: Summary of estimated stiffness results of simulations at different frequency ratios: percent
difference in mean stiffness compared to matched case, and percent maximum variation compared to mean
stiffness with the sample

Frequency Ratio 0.8 0.9 1.0 1.1 1.2
Difference in Mean Stiffness(%) 56.7 24.1 0.00 17.6 30.6

Max. Variation from Mean Stiffness(%) 6.88 7.67 0.00 4.16 2.66

acquired displacement fields, and thus require the estimation of second derivates of the displacement in

space. Local variations in wave amplitude are translated to locally stiffer or softer tissue; therefore,

variations stemming from experimental errors will lead to the appearance of spurious stiffness variations in

the medium, as demonstrated in Figure 2.2. Local variations up to 7.67% relative to the mean measured

stiffness were found. In general, the variations were elevated for frequency ratios less than 1.0, and were

the highest for the cases nearest matched frequencies. These results are summarized in Table 2.1.

Decomposition of the signal using the Fourier transform can reduce noise and is intended to isolate

vibrations only at the frequency of interest, or the first Fourier harmonic. The total energy fractions for

the different simulations are presented to demonstrate how small variations from the expected frequency

are handled by the Fourier transform decomposition. Since the Fourier transform is a parametric technique

with spectral results defined by acquisition parameters, leakage of the response at frequencies other than

one specifically sampled for will be spread to other harmonics. It can be seen in Figure 2.3 that for all the
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(a) (c) (e)

(b) (d) (f)

Figure 2.4: Stiffness maps for phantom experiment (top row) and corresponding mode shapes (bottom row)
for frequency ratios: 0.8 V (a,b); 1.0 V (c,d); and 1.2 V (e,f).

simulations, with small variations in frequency, the first harmonic still carries a significant majority of the

signal energy, and these variations are likely undetectable given signal-to-noise ratios in MRE experiments.

Knowledge of the driving frequency is essential for acquisition design, but is also important in the

inversion process, as the inversion of the elastic wave equation involves multiplying measured magnitudes

by the known frequency. When the entire MRE experiment is conducted with the “wrong” frequency, the

calculated stiffness maps will be multiplied by the incorrect scalar value resulting in global inaccuracies.

The estimated stiffness values presented in Figure 2.2 show mean values for the material stiffness that

differ from the matched frequency case. Mean stiffness values were found to differ from the value of the

sample by 56.7% for the ratio of 0.8 and 30.6% for the ratio of 1.2, and will be greatest for ratios furthest

from 1.0. In addition to those regarding the stiffness variations in space, the results for mean stiffness are

collected in Table 2.1.

The results of the phantom experiment demonstrate the consequences of performing an actual MRE

experiment while encoding at the wrong frequency. When the frequencies are matched, the estimated

stiffness of the material is as expected and the stiff center core is clearly distinguishable from the softer gel

15



(a) (c) (e)

(b) (d) (f)

Figure 2.5: Stiffness maps for brain experiment (top row) and corresponding mode shapes (bottom row) for
frequency ratios: 0.8 V (a,b); 1.0 V (c,d); and 1.2 V (e,f).

surrounding it. Consistent with the simulations, the global stiffness estimate for the experiment with the

smaller frequency ratio is greater than the matched case, and for the larger ratio, the gel is estimated to be

softer. It can also be noted that the variations of stiffness in space demonstrated in the simulation are

present in the annulus for the off-frequency experiments, while the matched experiment shows the actual

uniform distribution.

The wave patterns of the first harmonic are used in the inversion process to estimate the stiffness of the

material. The acquired patterns for both the phantom and brain experiments are presented here to

demonstrate that for the different frequency ratios there is no qualitative difference in measured

displacements between the cases, other than what could be described as an arbitrary phase shift in the

vibration period.

Experiments conducted on the human brain showed the same trends in global shear stiffness with

changing frequency ratio as the phantom experiments. With the brain however, it becomes more difficult

to distinguish the stiff structures that are in the brain from those that appear in the stiffness estimate due

to off-frequency encoding. The stiffness maps estimated from experiments with all frequency ratios are not
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qualitatively different from published results in this area, making it difficult to discern which is the truest

representation of stiffness [16, 17, 18]. This further demonstrates that based on wave patterns and stiffness

maps alone, there is not enough information to determine if the experiment has been conducted accurately.

2.6 Conclusions

In this section, we have demonstrated how synchronizing an MRE experiment to the incorrect mechanical

frequency can lead to errors in the estimated stiffness of the imaged tissue. Off-frequency encoding, which

can be caused by nonlinearities in the tissue or actuation system, can distort the estimates of both global

and local shear stiffness. For the human brain, where dynamic nonlinearities are most likely, it was shown

that an MRE experiment at the wrong frequency might produce results that are ambiguous or unreliable.

Based on these findings, it is recommended that future MRE methods and studies account for the

possibility of the presence of mismatched frequencies.
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Chapter 3

Proper Orthogonal Decomposition for
Improved Assessment of Brain MR
Elastography

3.1 Introduction

One of the major issues surrounding MRE of the brain in recent studies has been its relative inability to

provide reproducible results [16]. Depending on the specifics of the MRE methodologies used in brain

experiments, in vivo results generally do not agree across clinical sites and studies [16, 17, 18]. The

prevailing reason for this is that there are many MRE techniques that have been developed over the

history of the method, and some provide better results than others. However, the complexity of the brain

and its dynamic system may be the result of these discrepancies, not simply methods alone. MRE

techniques rely on controlling the input displacement, and tailoring the experiment to match [3]. In a

linear system, this is a straightforward task that should be relatively independent of experimental design.

On the other hand, in a nonlinear system, which the brain ostensibly is [57, 58, 59], the dynamic response

of the tissue to stimuli could be highly sensitive to minor changes in test parameters. These nonlinearities

can occur both within the cranium as force is transmitted to the tissue and in the external mechanical

actuation system, and can have a significant impact on MRE findings.

Typical MRE methodologies sample wave propagation in time, and use a Fourier transform (FT) to

extract the displacements at the driving frequency of interest. In nonlinear systems, the FT is inadequate

for decomposing the signal as it makes certain assumptions that cannot be guaranteed in a nonlinear

system. Instead, a non-parametric technique called the proper orthogonal decomposition

(POD) [60, 61, 62] is proposed in order to probe the dynamics of the nonlinear system with MRE. When

investigating a nonlinear system, it is most useful to extract invariant manifolds or modes that are a

low-order definition of the system dynamics, which can be the basis for larger dynamic models to be

constructed. POD can be used to find these modes of the system by identifying those that carry the most

vibrational energy through autocorrelation in both space and time [60, 63]. In contrast, FT modes are

determined based only on the signal profile in time, and are largely dependent on the signal sampling
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procedure. Achieving accurate and reproducible results through MRE for a nonlinear system using

standard FT techniques could require a very large number of experiments to be performed, each with a

different tailored acquisition scheme. However, finding the intrinsic response of the system could be

obtainable through MRE with a single experiment if POD is used, which could lead to a fast, accurate,

and repeatable estimate of the tissue properties.

In this work we investigated the nonlinearity of dynamic systems in MRE through both FT and POD

methods. Phantom experiments were performed to provide a linear contrast to the ostensibly nonlinear

brain system. The performance of the POD was also explored and quantified relative to the FT method to

determine the optimal method for decomposing brain MRE data.

3.2 Theory

POD, also know as Karhunen-Loève decomposition, is a procedure for extracting a set of basis functions

for modal decomposition from a series of signals in time and space [60]. POD has traditionally been

applied in many fields of engineering including fluid dynamics [64], structural mechanics [65], and recently,

medical imaging [66]. It is primarily used for model reduction in order to describe infinite-dimensional

complex systems through a low-dimensional series of bases in order to probe the underlying dynamics of

the system. In contrast to traditional modal analysis techniques, such as FT methods, POD is

non-parametric and is not affected by nonlinearities or by closely spaced modes. To this end, POD has

been shown to be the optimal decomposition technique in terms of capturing the most energy in the signal

through the least number of extracted modes [60].

POD methods work by describing a temporally and spatially varying field using time-invariant spatial

bases multiplied by spatially invariant temporal coefficients. In terms of its use in image processing, a time

series of images denoted by φ can be decomposed according to Eq. 3.1:

φ (xi, yj , tn) =
K∑
k

ξk (xi, yj) ak (tn) . (3.1)

The spatial bases are denoted by ξ, and the temporal coefficients are denoted by a. The POD returns a

number of bases and corresponding time series equal to the number of time points in the original series, N .

Since it is the main use of POD lies in model order reduction, the number of included bases, K, is often

less than N , thus providing a truncated approximation of the signal.

In a practical sense, POD modes are the eigenfunctions of the autocorrelation matrix, A, of the image

field. The matrix A of a series of MxM images is constructed by organizing the spatial data into columns
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for each time point, resulting in a M2xN matrix A. The spatial bases are then determined by solving the

eigenvalue problem (Eq. 3.2):

ATAξ = ηξ, (3.2)

where η is the eigenvalue, or energy, associated with each mode. The time coefficients for each mode are

further determined by projecting the base on to the original image series (Eq. 3.3):

ak (tn) =
M∑
i

M∑
j

ξk (xi, yj)φk (xi, yj , tn) . (3.3)

The POD mode shapes are further used as the basis for investigating the true dynamics of the system

through Galerkin projection methods seeking to solve the governing differential equation associated with

the physical phenomenon [60, 67, 68, 69, 70].

3.3 Methods

To demonstrate how POD methods perform with MRE data, comparisons between POD and typical

Fourier decompositions were made for both phantom and in vivo brain experiments.

3.3.1 Phantom and Brain Experiments

MRE experiments were performed with a homemade actuation system that comprises a remote shaker and

rocker apparatus. The rocker was attached to the inside of the head coil and was connected to the shaker

by means of a long rod [17], and the same system was used for both phantom and in vivo brain

experiments. A closed, cylindrical agar gel phantom was used, which was composed of a softer (2% agar)

annulus surrounding a stiffer (3% agar) center column. All experiments were performed on a Siemens 3T

Allegra head-only scanner (Siemens Medical Systems, Erlangen, Germany) at the Beckman Institute of the

University of Illinois at Urbana-Champaign.

Both the phantom and brain were actuated at a frequency of 50 Hz, with a range of input amplitudes

corresponding to voltage levels from a function generator in LabVIEW (National Instruments, Austin,

Texas). Separate experiments were performed using inputs of 1.5 V, 2.0 V, and 2.5 V, while all other

experimental parameters were held constant.

A single-shot spin-echo echo-planar imaging (EPI) sequence, modified to include bipolar motion

encoding gradients, was used in all experiments. Motion was encoded at 50 Hz with forty equally spaced
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phase offsets over a single period of vibration. Encoding was performed on a single axis (thru-plane), with

a motion encoding gradient amplitude of 30 mT/m. Imaging parameters included: FOV = 192 mm (240

mm for brain); matrix size = 64x64; TR/TE = 1000/90 ms; slice thickness = 5 mm. Acquired phase data

was subtracted, unwrapped, and spatially filtered using a Butterworth bandpass filter to remove effects of

bulk motion and noise.

3.3.2 Signal Decomposition

All data sets were decomposed in time using the Fourier transform, as is standard in MRE processing.

Fourier mode shapes were obtained from the real and imaginary parts of the signal at the first harmonic

for each voxel. The first harmonic corresponds to the driving frequency of the experiment, and if the

system is linear, the mode shapes will be invariant with amplitude.

Data sets were also decomposed using the POD method. POD mode shapes were constructed in a

similar fashion to the Fourier modes, by combining the first and second POD bases, which are the two

highest energy-carrying bases returned by the decomposition. The two POD bases roughly correlate to the

real and imaginary Fourier bases, as the found modes are complex. If the measured MRE response is an

intrinsic property of the system, the POD modes should be invariant with amplitude, regardless of linearity.

To better quantify the performance of the two decomposition methods in capturing the vibrational

response of the system, the energies of the modes were compared. The energy of the Fourier modes is

defined by the square of the amplitude of the response at the first harmonic, summed over the image. The

energies of the POD modes are the corresponding eigenvalues associated with the eigenvectors, or bases.

Energy fractions are determined by dividing the energy of the mode of interest by the total energy in the

system.

3.4 Results

The results of the phantom experiments are shown in Figure 3.1. The top row shows the Fourier mode

shapes of the phantom acquired with MRE. These mode shapes are compared to the POD mode shapes

extracted from the same data sets on the bottom row. The actuation intensities corresponding to the mode

shapes are shown in decreasing order from left to right. The results from the brain experiments are

presented in the same format in Figure 3.2.

Results of the energy fraction comparison for the phantom are presented in Figure 3.3. The fractional

energy is plotted against the combination of the most energy-rich bases captured. The captured energy is
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(d) (e) (f)

Figure 3.1: Mode shapes for the phantom experiment obtained with both FT (top row) and POD (bottom
row) for actuation intensities: 2.5 V (a,d); 2.0 V (b,e); and 1.5 V (c,f).

compared for both Fourier and POD modes across all actuation intensities. The same comparison is

performed for the brain experiments, and the results are presented in Figure 3.4. To compare the modes of

interest, the energy fractions of the two most energy-rich bases were compared. For the phantom, the

Fourier mode energy fraction, averaged across all actuation intensities, was found to be 84.7± 1.5%, while

the POD modes carried an energy fraction of 87.4± 1.0%. For the brain modes, the Fourier modes had an

energy fraction of 59.3± 3.4%, while the POD returned an energy fraction of 73.7± 1.9%. These results

are summarized in Table 3.1.

Table 3.1: Summary of energy fractions carried by the FT and POD modes
Phantom Brain

FT Mode Energy Fraction (%) 84.7± 1.5 59.3± 3.4
POD Mode Energy Fraction (%) 87.4± 1.0 73.7± 1.9
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(d) (e) (f)

Figure 3.2: Mode shapes for the brain experiment obtained with both FT (top row) and POD (bottom row)
for actuation intensities: 2.5 V (a,d); 2.0 V (b,e); and 1.5 V (c,f).

3.5 Discussion

One of the fundamental assumptions of MRE is that the dynamic system is linear. This assumption

implies that the intrinsic response of the system is invariant, and that displacement patterns will only scale

with amplitude. If nonlinearities are introduced in the dynamic system, the response will depend on

actuation amplitude, and the results obtained with MRE with a given actuation would not be the same as

with another. In this work, we have used POD to investigate nonlinearity in MRE, and sought to quantify

the performance of the method.

The results from the phantom experiment were used to compare FT and POD mode shapes. Based on

visual inspection of Figure 3.1, it can be seen that, based on visual inspection, the FT mode shapes are

very similar across all actuation intensities. Small changes in overall shape can possibly be attributed to

relative contrast-to-noise ratio changes with amplitude. The same observations can be made when

comparing the POD modes across intensity. More importantly, the FT and POD mode shapes agree at

each level of actuation intensity. Since the FT modes would only be invariant and correlate with the POD
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Figure 3.3: Captured energy fractions for modes obtained with both FT and POD in the phantom for all
actuation intensities vs. number of included bases.

modes in the case of dynamic linearity, the results confirm that the phantom system is linear, as expected.

Comparing the captured energy profiles from both decomposition methods further confirms the

phantom results. As seen in Figure 3.3, the captured energy fractions are very similar for both methods,

with POD performing slightly better. It can also be observed that the energy fractions are nearly the same

for both methods for all intensity levels. When looking at a single mode of interest, both methods capture

a very large fraction of energy, with POD capturing more energy and with only a small variation with

intensity. The observation of linearity is further confirmed in this case, and POD is shown to be a better

method of decomposition of MRE results.

Upon examination of the results of the brain experiments, it is evident that the FT mode shapes,

shown in Figure 3.2, are not invariant as actuation intensity changes. With decreasing intensity, the modes

change shape, and they no longer correlate with the POD mode shapes. However, the POD shapes are

seemingly invariant with actuation intensity, similar to the phantom experiment. Based on this

observation, it appears that the dynamic brain system is nonlinear, as expected, and that the POD modes

may represent an intrinsic response of the system.

The captured energy fractions are compared for the two methods across actuation intensities to provide

a quantification of the brain results. In Figure 3.4 it is clearly demonstrated that POD modes carry

significantly more energy than the corresponding FT modes. It is also notable that for the mode of

interest, neither method captured the same energy fraction across intensity, but the POD modes had much

less variation. This further suggests that the POD mode may be intrinsic to the system, and again

confirms the performance of POD over Fourier decomposition.
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Figure 3.4: Captured energy fractions for modes obtained with both FT and POD in the brain for all
actuation intensities vs. number of included bases.

3.6 Conclusions

This section addressed the performance of MRE techniques in the presence of nonlinearities in the dynamic

system of interest. MRE experiments on a nonlinear dynamic system may result in errors in the stiffness

results due to the amplitude dependent response of the system, and results may be irreproducible with

different conditions. We have shown through comparison of Fourier and POD modes that the human brain

as a dynamic system demonstrates nonlinear behavior, as compared to experiments on a phantom. POD

was shown to optimally capture the vibrational energy in MRE experiments, and the POD modes appear

to provide information about the intrinsic properties of the system and its response to mechanical

actuation. These POD modes may then be used as the basis for a Galerkin projection, or other

computational technique, to generate a low-dimensional model of the dynamic brain system, and provide a

more accurate assessment of the mechanical properties of brain tissue with MRE.
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Chapter 4

Summary and Conclusions

The scope of this thesis was the investigation of the effect of nonlinearity of the system on magnetic

resonance elastography. Brain elastography can provide quantitative estimates of the shear modulus of

brain tissue in vivo, and in that sense it is extremely useful to both clinicians and researchers alike.

Despite the success MRE methods have enjoyed in investigating tissues such as liver and breast, care must

be taken to ensure that accurate results are being obtained when applying the methods to more complex

tissues, like the brain. The inherent nonlinearity of the brain dynamic system can introduce MRE

artifacts. In this work, we focused on the effects of uncertainties in actuation frequency and amplitude.

The presence of vibrations at unknown or undesired frequencies was shown to have a significant effect

on estimates of shear stiffness obtained with MRE on both local and global scales. Experiments driven

with frequency difference from the encoding frequency were shown to result in spurious local spatial

variations in shear stiffness, and to misrepresent global stiffness across the tissue. In brain MRE studies

investigating lesions or diffuse diseases, these erroneous results can give false positives or false negatives.

The proper orthogonal decomposition method was implemented to further study the nonlinear behavior

of the dynamic brain system, and was shown to elucidate the nonlinear effects in the response of the

system to different amplitudes of forcing. The dependence of POD modes across actuation levels was

studied to demonstrate that they could indeed represent intrinsic modes of system response because they

remain invariant with amplitude of actuation. Our results indicate that POD is a better method of signal

decomposition than standard Fourier techniques, and could lead to more accurate and reproducible

estimates of the mechanical properties of brain tissue.

Investigating nonlinear effects with MRE is not new, but most of the work done has focused on

nonlinearity of the tissue per se, and not on the overall dynamic system comprising actuator, cranium, and

brain. It has been shown in this work that the overall nonlinear behavior can have a significant impact on

MRE results and must be considered when investigating the brain. As methodologies grow and mature for

brain MRE, the complexities of the tissue and actuation system must be accounted for through
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modifications to acquisition schemes, mechanical actuation hardware, tissue deformation models, and

property extraction methodologies. With POD, we propse a tool to understand the dynamic response of

the overall system. Future work in this area will focus on system reduction by using the POD modes in a

Galerkin projection to construct a low-dimensional model of the dynamics of the overall system. The inputs

of the system are the MRE snapshots and not the detailed local dynamical models of the components,

which are fraught with uncertainty. This model could lead to significant improvements in brain MRE, both

in accuracy and reproducibility, and can be the next step in MRE methodology for the brain.
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