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ABSTRACT

In multi-agent systems, the knowledge of agents about other agents’ knowledge

often plays a pivotal role in their decisions. In many applications, this knowledge

involves uncertainty. This uncertainty may be about the state of the world or

about the other agents’ knowledge. In this thesis, we answer the question of how

to model this probabilistic knowledge and reason about it efficiently.

Modal logics enable representation of knowledge and belief by explicit refer-

ence to classical logical formulas in addition to references to those formulas’ truth

values. Traditional modal logics (see e.g. [Fitting, 1993; Blackburn et al., 2007])

cannot easily represent scenarios involving degrees of belief. Works that combine

modal logics and probabilities apply the representation power of modal operators

for representing beliefs over beliefs, and the representation power of probability

for modeling graded beliefs. Most tractable approaches apply a single model that

is either engineered or learned, and reasoning is done within that model.

Present model-based approaches of this kind are limited in that either their se-

mantics is restricted to have all agents with a common prior on world states, or

are resolving to reasoning algorithms that do not scale to large models.

In this thesis we provide the first sampling-based algorithms for model-based

reasoning in such combinations of modal logics and probability. We examine a

different point than examined before in the expressivity-tractability tradeoff for

that combination, and examine both general models and also models which use

Bayesian Networks to represent subjective probabilistic beliefs of agents. We
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provide exact inference algorithms for the two representations, together with cor-

rectness results, and show that they are faster than comparable previous ones when

some structural conditions hold. We also present sampling-based algorithms,

show that those converge under relaxed conditions and that they may not con-

verge otherwise, demonstrate the methods on some examples, and examine the

performance of our algorithms experimentally.
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CHAPTER 1

INTRODUCTION

The study of knowledge in artificial intelligence is both theoretical and applied.

Answers to “what do we know?”, “what can be known?”, and “what does it mean

to say that someone knows something?” apply to many important areas [Aumann,

1986; Fagin et al., 1995]. Formal models of reasoning about knowledge use modal

operators and logic to express knowledge and belief. These enable agents to take

into account not only facts that are true about the world, but also the knowledge

of other agents.

Reasoning about knowledge of other agents plays an important role in contexts

ranging from conversations to imperfect-information games. For example, in a

bargaining situation, the seller of a car must consider what the potential buyer

knows about the car’s value. The buyer must also consider what the seller knows

about what the buyer knows about the value, and so on. Another example is the

card game of poker when a player may bluff (bet or raise with an inferior hand) to

cause other players to believe she has a dominant hand, and thus they all fold.

1.1 Reasoning about the Knowledge of Agents

Traditional formal models of reasoning about knowledge use modal logic [Hin-

tikka, 1962; Kripke, 1963] to express knowledge and belief. Modal logics enable

representation of knowledge and belief by explicit reference to classical logical

formulas in addition to references to those formulas’ truth values. They reify for-
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mulas with the aid of special language constructs called modal operators. Those

modal operators, such as 2, �, K,B in common applications, allow discussion in

the logic about knowledge (e.g. by agents) of formulas and also allow relating

such knowledge to properties that hold in the world. They enable discussion in

the logic about nested knowledge and belief, including statements such as player

1 believes that if player 2 has $100 then player 2 does not believe that player 1

has $100, or if a cure for cancer exists, then company A knows that it exists, but

does not know what that cure is.

In many applications, it is important to consider more graded forms of knowl-

edge than complete knowledge or lack thereof (e.g. not true in any accessible

state). For example, a car salesman may not know the buyer’s estimate of the car’s

value, but may have a probability distribution over the buyer’s estimate. Also, a

poker player may not know for sure if his opponent is bluffing, but he may “be-

lieve so with some likelihood1” because he believes that the opponent has low

cards and the opponent believes that the player does not think so.

Traditional modal logics (see e.g. [Fitting, 1993; Blackburn et al., 2007]) can-

not easily represent scenarios involving degrees of belief or probabilistic notions.

This is most clearly seen in the Kripke semantics for modal logics. There, a

modal operator is interpreted to refer to truth values across all accessible states

or the existence of at least one state satisfying a formula. There is little room in

the language or semantics of propositional modal logics for notions between all

(necessarily) and at-least-one (possibly). One can apply first-order modal logics

and explicit axiomatizations of probabilities, but those quickly become expensive

computationally and sometimes undecidable (e.g. [Wolter, 1999]).

Probabilistic representations (e.g. [Pearl, 1988]) can represent graded degrees

of belief in natural ways. They can represent beliefs over beliefs using distribu-

1We do not refer here to any formal statement but rather to an intuitive notion.
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tions over distributions (e.g., Dirichlet priors over multinomial distributions [Blei

et al., 2003]). However, a standard Bayesian network does not naturally support

modeling the beliefs of multiple agents (e.g. consider modeling poker in such a

way). Furthermore, reasoning with these representations is computationally hard

because they mix structure, different continuous variables, and sometimes also

discrete variables.

Works that combine modal logics and probabilities [Fine, 1972; Fattorosi-Barnaba

and Amati, 1987; Fagin and Halpern, 1994; Milch and Koller, 2000; Heifetz and

Mongin, 2001; Ferreira et al., 2008] combine the best of both worlds, applying

the representation power of modal operators for representing beliefs over beliefs,

and the representation power of probability for modeling gradual beliefs. These

works enable representation of probabilistic beliefs over probabilistic beliefs us-

ing a language that combines probabilities with belief statements and a semantics

that extends Kripke structures with probabilities.

Such systems are expressive, but they are not tractable for large general mod-

els. Presently, most works that combine modal logic with probabilities enable

automatic reasoning based on axiomatizations of different languages and seman-

tics. Reasoning from axioms (when that is possible) is many times expensive for

large domains. A competing approach [Harsanyi, 1967; Milch and Koller, 2000],

prefers to have a single model that is either engineered or learned, and reasoning

is done within that model (sometimes extending the model as part of inference).

Present model-based approaches of this kind are limited in their semantics in

that they allow only models in which all agents have a common prior on world

states. There are elegant algorithms for inference in such models when the com-

mon prior is represented as a Bayesian Network of low treewidth, but this effi-

ciency deteriorates when one wishes to simulate with such systems general dif-

ferent beliefs for different agents (which can be done to some degree using ob-
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servations in those models). Finally, such models and inference are limited in

scalability by the low-treewidth requirement.

1.2 The Technical Results in this Thesis

In this thesis we examine a different point than examined before in the expressivity-

tractability tradeoff for the combination of modal logics and probability. Here,

we examine general models and also models which use Bayesian Networks to

represent subjective probabilistic beliefs of agents. We provide exact inference

algorithms for the two representations, together with correctness and convergence

results, show that they are faster than comparable previous ones when some struc-

tural conditions hold. We also present example applications, and examine their

performance experimentally. Throughout, we compare with the closest related

work. Towards the end of the thesis we put this work in broader perspective and

also summarize the differences between this thesis and the closest related work.

We focus on a special case of models in the logic of knowledge and belief de-

fined by Fagin and Halpern [Fagin and Halpern, 1994] that still permits different

agents having different subjective beliefs. Our models are more expressive than

those presented by Milch and Koller [Milch and Koller, 2000], but we keep our

language more restricted than theirs in that we do not permit observations (obser-

vations can still be simulated in a restricted way by compilation into the model,

and possible expansion of the model). Otherwise, our language is similar to the

one presented in [Milch and Koller, 2000] and includes modal operators Bel≤ra ,

Bel≥ra , and Bel=ra . Formulas such as Bel≤ra (ψ) correspond to the intuition “agent

a believes that the probability of ψ is at most r”.

For these models we provide basic exact reasoning algorithms of two kinds

– one more efficient with larger state spaces, and the other more efficient with
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shallow nesting of modal operators in queries (i.e. the largest number of modal

operators in root-to-leaf paths in expression trees of queries is small). The first

algorithm is a top-down recursive approach for evaluating query formulas in a

model M and state s, taking time O(l · Nm), where N is the maximum number

of accessible states (states whose subjective probability is greater than 0) from

any state s′, m is the nesting height of modal operators in the query (the largest

number of modal operators in a path from any leaf of the expression tree of the

query to its root), and l is the size of the query. These algorithms serve as a starting

point for exploring the rest of the algorithms developed here.

A second exact algorithm works in a bottom-up fashion, and takes timeO(l·|S|)

for probabilistic knowledge (a special case in which subjective probabilities are

the same in an equivalence class of states, and all states external to this class have

subjective probability 0), and O(|S|2 · l) for general models. Here, |S| is the size

of the state space.

We also introduce sampling-based algorithms for those models, and show that

they converge to correct answers under some conditions on the query formula. We

assume for those that for every subformula of the forms Bel≤ra (ψ) or Bel≥ra (ψ)

of our query no state s′ has the subjective probability of a being exactly r (i.e.

Bel=ra (ψ) does not hold in any state s′). We show that when this condition fails,

the answers may not converge and sometimes are guaranteed (almost surely) not to

converge. Otherwise, the algorithms converge in probability to the correct answer,

and take timeO(l ·nm), where n is the number of samples used per evaluation of a

modal operator, and m, l as above. The exponential term is the result of sampling

compounding with larger nesting heights.

A computationally attractive representation of these models uses Bayesian Net-

work fragments (called Graphical Kripke Models (GKMs)) to represent agents’

subjective probability distributions over the world states. We present one way of
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formulating such models, namely, a presentation in which all subjective probabil-

ities of an agent are represented with a single Bayesian Network fragment (our

Bayesian Network fragment does not include a prior over real-world states, and

only gives such a distribution given that the agent is in a world state.)

Using Bayesian Network fragments to represent agents’ subjective probabil-

ity is an important contribution, in that it provides a factored representation of

a Kripke model without requiring the common prior assumption of Milch and

Koller [Milch and Koller, 2000] (MK). Instead, a GKM represents state-specific

probability distributions using these Bayes Net fragments.

In fact, GKMs do more than lift the assumption that all agents share a common

prior. They remove what MK call the “observation assumption”, which asserts

that each agent has a prior distribution and an agent’s probability distribution in

each state can be derived by conditioning that prior on some observations. GKMs

do not require an agent’s probability distributions in different equivalence classes

of states to be related to each other in any way.

For this representation (GKMs) we provide an exact method and a sampling

method for answering queries as well. Our exact method applies variable elimi-

nation for Bayesian Networks that are constructed during computation. The algo-

rithm is based on our basic bottom-up approach mentioned above, and constructs

solutions for modal subformulas from the bottom up. It also embeds a dynamic-

programming computation in which we find solutions for many possible queries

to the same Bayesian Network. As pointed out above, those Bayesian Networks

represent in a factored form the subjective probabilities of agents. In the algorithm

presented here, they are augmented to include queries of interest and the results

of runs of the algorithm on subformulas of the present one.

Finally, we also introduce a sampling method that is tractable on larger models

for which the exact method is intractable. This sampling method is based on
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our results for general models. It samples n states for every subformula of our

query whose expression tree is rooted in a modal operator. For each sample it

evaluates the subformula in a recursive fashion. The main difference between this

one and the sampling approach for our first representation of models is that when

we evaluate conditional probabilities we do so on the Bayesian Network, hence

saving space while keeping computation time at a similar comparable (|Φ| · l ·nm),

for Φ the number of random-variable symbols defining a domain.

1.3 Logic Useful in Reading this Thesis

In this section we review the framework of modal logic. This helps put in context

some of the results that we report in this thesis.

Modal logic tries to capture qualified truths. Modalities in different logics in-

clude operators that are named necessary, obligatory, true after an action, known,

knowable, believed, provable, from now on, so far, since, and until after the func-

tionality that they intend to serve. Each one of these has its own truth semantics.

Since there are many modal logics, it is useful to specify a particular logic by

the set of valid formulas in the language of modal logic.

The possible worlds semantics was introduced independently by [Kanger, 1957;

Hintikka, 1962], and were widely spread after a paper by [Kripke, 1963].

Definition 1 A modal propositional logic is called normal if it meets the follow-

ing conditions:

Prop (Rule: Propositional truths) Includes every tautology

K (Axioms: Kripke) 2(P → Q)→ (2P → 2Q).

MP (Rule: Modus-Ponens) If it includes X,X → Y then it also includes Y .
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N (Rule: Necessitation) If it includes X then it also includes 2X .

Definition 2 A Kripke model is a triple M = 〈G,R, v〉, where G is the set of

worlds in the model, R is the accessibility relation, and v is the valuation of

propositional letters. 〈G,R〉 is called a frame, and intuitively represents a the-

ory including the restrictions on R and G (i.e., the restriction that G includes these

worlds). We say thatM is based on the frame 〈G,R〉.

We writeM, s 
 ϕ for ϕ is true in the world s in the modelM.

Definition 3 ϕ is valid in a model M iff ∀s ∈ M M, s 
 ϕ. ϕ is valid in a

collection C of models (said ϕ is C-valid) iff ∀M ∈ C ϕ is valid inM. Given a

frame F , it is treated as the collection of all models based on that frame.

The following conditions are used to define standard classes of modal logics for

different applications.

K The class of all frames. This is the weakest normal modal logic.

K : 2(P → Q)→ (2P → 2Q)

T The class of all reflexive frames. The motivation is of 2 as knowable or neces-

sary.

T : 2P → P

Together with K, T characterizes T: S |=T U → X ⇐⇒ S ∪ [[T ]] |=K

U → X where [[T ]] refers to the set of axioms T applied to every formula P

in the language.

K4 The class of all transitive frames.

4 : 2P → 22P
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Intuitively, 2 refers to known, and it is also called positive introspection.

S4/KT4 The class of all reflexive transitive frames. S |=S4 U → X ⇐⇒

S ∪ [[T ]] ∪ [[4]] |=K U → X .

KB The class of all symmetric frames.

B : P → 2 � P

S |=KB U → X ⇐⇒ S ∪ [[B]] |=K U → X .

B/KBT The class of all symmetric reflexive frames. S |=B U → X ⇐⇒

S ∪ [[B]] ∪ [[T ]] |=K U → X .

S5/KT45/KT4B The class of all symmetric, reflexive, transitive frames.

5 : ¬2P → 2¬2P

This is negative introspection. S |=S5 U → X ⇐⇒ S ∪ [[T ]] ∪ [[4]] ∪

[[B]] |=K U → X ⇐⇒ S ∪ [[T ]] ∪ [[4]] ∪ [[5]] |=K U → X .

Read alone, 5 is the condition of euclidity: ∀s, t, u R(s, t) ∧ R(s, u) =⇒

R(t, u).

D The class of all frames having idealization (i.e., every possible world has a

possible world accessible from it)2. Intuitively 2 is obligatory.

D : 2P → �P

It is true iff �TRUE.

D4 The class of transitive idealized frames.
2Also called serialization.
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DB The class of symmetric idealized frames.

Representing modal logics in first-order logic (FOL) is rather simple for normal

logics. The translation follows the principle of axiomatizing the restrictions on

R in FOL. We transform every proposition in modal logic into a predicate, and

follow recursively with the standard connectives. The only modification needed

is: 2Z goes to (∀y)(R(x, y) → Z(y)) where x stands for the world that we are

examining right now.

Theorem 4 X is K-valid iff ∀x τ(X, x) is valid (where τ is the translation men-

tioned above).

The translation to FOL from other modal logics can be carried by stating the

restrictions on R as preconditions for the goal formula. For example, for `T X

we write (∀x R(x, x))→ ∀x τ(X, x).

Modal logics have other semantics than the simple Frame/Relation/Possible-

worlds semantics. We briefly outline them below.

Algebraic semantics uses a boolean algebra A, and a mapping from A to A to

give valuations of the 2 operator.

General Frames are like Frames, but defining the propositions to be the set of

worlds in which they hold. The set of propositions is then closed under the

usual operators for sets.

Neighborhood frames semantics uses the General Frames idea, and instead of

having a set of accessibles for every world, having the set of propositions

N , that are necessary in that world. We then define M, s 
 2X ⇐⇒

{s′|M, s′ 
 X} ∈ N (s). This semantics can express normal modal logics,

but also others. They are sometimes called minimal models.
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Epistemic Structures Generalize over the Neighborhood semantics, defining a

possible world to be a pair of propositions and their valuations, rather than

a syntactic object. We then get a kind of recursive definition. Possible

worlds then fall naturally into levels of complexity.

Propositional K,T,S4 are decidable and PSPACE-complete. Propositional S5

is decidable and NP-complete.

1.4 Plan of this Thesis

The rest of the thesis is organized as follows. In Chapter 2 we provide the syntax

and semantics that will be used throughout this thesis. This includes both our

basic representation and the factored one using Bayesian Networks. Chapter 3

presents exact and approximate (sampling-based) reasoning algorithms for the

basic representation, and also our approximation convergence and soundness of

reasoning under the condition mentioned above. Chapter 4 presents exact and

approximate (sampling-based) algorithms for our models’ factored representation.

Chapter 5 discusses related work, and we conclude with Chapter 7.

1.5 Publication Notes

Below is the list of my publications in chronological order and where they are

used in this thesis:

• [Shirazi and Amir, 2005]

• [Shirazi and Amir, 2007]: Modified and improved in sections 2.1, 3.1, 3.2,

and 3.3.
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• [Shirazi and Amir, 2008]: Modified and improved in Sections 2.2, 3.5, 4.1

3, and 4.4.

• [Hajishirzi et al., 2009]

• [Shirazi et al., 2009]

• [Shirazi and Amir, 2011]

3The algorithm appeared in the thesis only gets its idea from this paper, we improved it here
and fixed part of it.
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CHAPTER 2

AGENTS’ PROBABILISTIC BELIEFS
ABOUT OTHER AGENTS’ BELIEFS

We define Probabilistic Belief about Belief Logic (PBBL) to be a special case

of the logic of knowledge and belief defined by Fagin and Halpern [Fagin and

Halpern, 1994] (hereforth FH). We adopt a restricted version of the syntax of

the logic PEL [Milch and Koller, 2000] with the main difference being that we

consider only non-conditioned belief formulas, and have no accessibility relation

or observation sets. Our semantics is slightly more general than available there in

that it allows agents to have different probability distributions at different states.

We expand on the relationship between PBBL and PEL in Section 2.3.

2.1 Language and Semantics of PBBL

The language of PBBL is parameterized by a nonempty, finite set Φ of random-

variable symbols, each with an associated finite domain, dom(X); and a nonempty

set A of agents.

Given these parameters, the language of PBBL consists of the following well-

founded formulas (formulas):

• atomic formulas of the form >, ⊥, or X = v, where X ∈ Φ and v ∈

dom(X) (the domain of X).

• formulas of the form ¬ϕ and ϕ∨ψ, where ϕ and ψ are PBBL formulas; we

use ϕ ∧ ψ as an abbreviation for ¬(¬ϕ ∨ ¬ψ).
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• formulas of the form Bel≤ra (ϕ), Bel≥ra (ϕ), and Bel=ra (ϕ), where a ∈ A,

r ∈ [0, 1], and ϕ is a PBBL formula. (We refer to Bel≤ra , Bel≥ra , Bel=ra as

modal operators.)

This definition of well-founded formulas follows a standard line of defining

well-founded formulas in logics at large (the interested reader can examine stan-

dard textbooks such as [Shoenfield, 1967]). Such constructions imply several

properties that are worth pointing out: every formula has a finite length; every

formula can be represented by a tree of connectives, modal operators, and atomic

formulas, with the latter at the leaves and the former (connectives and modal oper-

ators) at the inner nodes of the tree; the set of (well-founded) formulas in a PBBL

is of countable cardinality (assuming a countable number of r’s are allowed in

modal operators).

Our atomic formulas play the same role as propositions in the FH logic. The

modal formula Bel≤ra (ϕ) (similarly, Bel≥ra (ϕ) and Bel=ra (ϕ)) should be read as

“according to agent a, the probability of ϕ is at most r.” (or “... at least r”, or

“exactly r”, respectively).

In the following we proceed with definitions that include only Bel≤ra (ϕ) and

omit the developments forBel≥ra (ϕ) andBel=ra (ϕ), which are done in an identical

manner. Nonetheless, in later chapters we point out subtle differences and careful

considerations with reasoning about Bel=ra (ϕ), but those are irrelevant until then.

We will provide formal semantics for these statements after defining a model

theory for PBBL. Notice that our belief statements are more restricted than those

available with PEL in that they do not contain observations. One may compile

observations into distributions available in the models defined below. Also notice

that the FH logic is more expressive in that it allows probabilities to be related by

arbitrary linear inequalities.
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Definition 5 A Probabilistic Kripke Model (PKM)M of the PBBL language hav-

ing random variables Φ and agents A is a tuple (S, π,P) in which

• S is a nonempty finite set of possible states of the world;

• π is a value function mapping each random-variable symbol X ∈ Φ to a

discrete random variable XM which is a function from S to dom(X). Thus,

the sample space of XM is dom(X), and every s ∈ S determines a specific

value x taken by XM in s.

• P = {Pa}a∈A, and every Pa ∈ P is a function from S to probability distri-

butions over S (the subjective probability distributions for agent a)

Thus, every PKM specifies a set of states and maps each random-variable sym-

bol to a random variable defined on those states. Regarding those, in the rest of the

paper we sometimes refer to a random variable XM simply as X , and the context

would make it clear that X is not a random-variable symbol.

For a ∈ A and s ∈ S, Pa(s) is a probability distribution over S. Pa(s)(s′)

specifies the probability that agent a assigns to state s′ when the agent is in fact

in state s. In what follows, it is sometimes more convenient to write Pa,s(s′) for

Pa(s)(s
′). Thus, Pa,s is agent a’s subjective probability distribution at s. When A

has only one agent a, we omit the agent’s subscript from Pa and write P instead.

We say that s′ is accessible from s according to agent a in PKMM , if Pa,s(s′) >

0.

The semantics of PBBL is similar to ones for normal modal logic. We introduce

a satisfaction relation |= (aka logical entailment) such that (M, s) |= ϕ means the

formula ϕ is satisfied at world s in model M . We also define the set of states

satisfying formula ϕ in model M as [ϕ]M = {s ∈ S | (M, s) |= ϕ}.
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Definition 6 For Φ,A as above, a PKM M = (S, π,P), state s ∈ S, and formula

ϕ in PBBL, (M, s) |= ϕ if one of the following holds:

• ϕ is an atomic formula >.

• ϕ is an atomic formula X = v and X(s) = v.

• ϕ = ¬ψ and (M, s) 6|= ψ.

• ϕ = ψ ∨ ξ and (M, s) |= ψ or (M, s) |= ξ.

• ϕ = Bel≤ra (ψ) and Pa,s([ψ]M) ≤ r.

There are applications such as MAIDs [Milch and Koller, 2003] in which one

is interested in a satisfaction relation from models alone with an unknown state,

e.g. M |= ϕ. MK include a prior probability over states in models of PEL to

provide such satisfaction relations among others. In PBBL one can provide such

a prior by introducing an external agent, a0, into A, and specifying queries from

a0’s perspective. We show how to do so in more detail in Section 2.3.

There are philosophical and practical reasons to assume that each Pa adheres

to some rules. For example, the agent can know that he is in an equivalence class

of states purely by noticing his probability distribution and the value it assigns to

every s′ ∈ S. Therefore, it is useful to distinguish a class of PKMs that addresses

such an intuition.

Definition 7 (Probabilistic Knowledge) A PKM M = (S, π,P) is a probabilis-

tic knowledge model, if for every a ∈ A there is an equivalence relation Ra ⊆

S × S such that

∀s1, s2, s ∈ S Pa,s1(s) = Pa,s2(s) whenever R(s1, s2)
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and Pa,s(s′) = 0 for every s, s′ ∈ S such that ¬Ra(s, s
′). (We use the notation

¬Ra(x, y) as a shorthand for 〈x, y〉 6∈ Ra.)

Thus, in a probabilistic knowledge model M every agent a ∈ A has an iden-

tical subjective distribution for every two states in the same equivalence class of

Ra. This implies some properties reminiscent of the modal logic S5, such as the

following (we bring this as an example; full comparison with S5 is outside the

scope of this thesis).

Proposition 8 For M a probabilistic knowledge model, s a state in M , and ϕ a

PBBL formula,

M, s |= Bel=1
a (Bel=1

a (ϕ)) ⇐⇒ Bel=1
a (ϕ)

PROOF First, we prove a lemma about the connective ⇐⇒ , which holds in

all PKMs (this holds as a result of our Definition 6, and also follows from the fact

that our models are special cases the models of Kripke Structures for Knowledge

and Probability of FH).

Lemma 9 Let M be a PKM, s a state in M , and ϕ, ψ formulas. Then M, s |=

ϕ ⇐⇒ ψ iff (M, s |= ϕ iff M, s |= ψ).

PROOF For the forward direction assume M, s |= ϕ ⇐⇒ ψ. ϕ ⇐⇒ ψ is

a shorthand for (ϕ∧ψ)∨ (¬ϕ∧¬ψ), so the rules in Definition 6 apply as follows.

M, s |= ϕ ⇐⇒ ψ implies that M, s |= ϕ ∧ ψ or M, s |= ¬ϕ ∧ ¬ψ. Without

loss of generality assume the first case holds. Then M, s |= ϕ and M, s |= ψ. The

needed conclusion (M, s |= ϕ iff M, s |= ψ) holds.

For the backward direction assume M, s |= ϕ iff M, s |= ψ. Thus, if M, s |= ϕ

holds, then also M, s |= ψ holds and hence (by Definition 6) also M, s |= ϕ ∧ ψ.
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This implies M, s |= ϕ ∧ ψ ∨ (¬ϕ ∧ ¬ψ) which is our wanted conclusion. A

similar argument applies for the case that M, s 6|= ϕ.

The proof of Proposition 8 continues.

Let ψ1 = Bel=1
a (Bel=1

a (ϕ)) and ψ2 = Bel=1
a (ϕ). According to the lemma, it

is enough to prove that M, s |= ψ1 iff M, s |= ψ2. Assume that ψ1 holds in M, s

(M, s |= ψ1), and we shall prove that ψ2 also holds in M, s.

Assume to the contrary. Then M, s 6|= ψ2. This implies that Pa,s([ϕ]M) <

1. Thus, there must be a state s′ ∈ S such that Ra(s, s
′) and M, s′ 6|= ϕ and

Pa,s(s
′) > 0.

By the definition of probabilistic knowledge models, Pa,s′([Bel=1
a (ϕ)]M) =

Pa,s([Bel
=1
a (ϕ)]M) < 1 for this s′. Thus, M, s′ 6|= Bel=1

a (ϕ). Since Pa,s(s′) > 0,

this means that Pa,s([Bel=1
a (ϕ)]M) < 1. We conclude that M, s 6|= ψ1, and our

proposition is proved in the forward directions. The argument in the opposite

direction is similar, only is carried in a reverse order.

For most of our development in this thesis (which focuses on inference) such

assumptions and restrictions (e.g. of probabilistic knowledge) are welcome but

not necessary. When we need such assumptions (e.g. to provide a faster algorithm

for inference in Chapter 3), we point them out explicitly. The interested reader can

look at [Fagin and Halpern, 1994] for a more detailed examination of conditions

one could or should make on such models.

2.2 A Factored Representation for Probabilistic
Kripke Models

A Bayesian Network (BN) is a pair G,C, with G = (V,E) being a directed

acyclic graph in which nodes represent random variables, and C = {CX}X∈V are

conditional probability distributions (CPDs), with CX a conditional distribution
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over dom(X) given values for X’s parents in G. The joint distribution over vari-

ables in V is defined by Pr(X1, . . . , Xm) =
∏m

i=1 Pr(Xi|pa(Xi)), where pa(X)

denotes the set of variables which are parents of X in G.

Definition 10 A Unified Representation of a PKM M = (S, π,P) of the PBBL

language having random variables Φ and agents A is the tuple (S, π,P) such that

• for every a ∈ A we create a fresh Xa (actual state) and Xh (hypothesized

state) random variables defined on S; and

• P = {Pa}a∈A, and every Pa ∈ P is a CPD over Xh given Xa such that

Pa(Xh = s′ | Xa = s) = Pa,s(s
′)

We use a Unified Representation of PKM M to capture for every agent a all the

subjective probability distributions within a single probabilistic structure. Xa, Xh

serve the technical purpose of denoting the actual state (Xa) and the possible state

(Xh), allowing us to define Pa as a conditional probability.

In the following we write Φa for a set of fresh random-variable symbols {Xa
1 ,

..., Xa
n} corresponding to the random-variable symbols in Φ = {X1, ..., Xn}, only

with superscript a. We write Φh for a similarly fresh random-variable symbols

set with superscripts h. For the reader familiar with Dynamic Bayesian Networks

(DBNs), the following factored representation (product of conditional probability

distributions here) will seem familiar and similar to the transition model used in

DBNs.

Definition 11 (Factored Representation of PKMs) A graphical Kripke model

(GKM) M of the PBBL language having random variables Φ and agents A is

a tuple (S, π,G, C) such that
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• S =
∏

X∈Φ dom(X).

• π is a value function mapping each random variable symbol Xi ∈ Φ to a

random variable XM
i as above, with the restriction that XM

i (s) = xi, for

s = 〈x1, ..., xm〉 ∈ S.

• G = {Ga}a∈A, with Ga a directed acyclic graph (DAG) over vertices

Φa ∪Φh such that edges always arrive into Φh vertices (thus, Φa are always

parents, and Φh are either parents or children or both in the DAG Ga).

• C = {Ca}a∈A, with Ca = {Ca,Xh}Xh∈Φh CPDs over Xh ∈ Φh given Xh’s

parents in G.

A GKM represents a Unified Representation of a PKM, with a factored repre-

sentation (the product of CPDs) for the state-to-state CPDs in P. As with BNs, fac-

tored representations assert conditional independence assumptions between vari-

ables and non-descendants given parent variables. Since our framework inherits

all the relationships between factored models and their independence assump-

tions, we omit those relationships here, and only note that we inherit them from

the theory of Bayesian Networks [Pearl, 1988].

Several insights are worth mentioning about GKMs: The graphical models pro-

vided by G, C are different for each agent; Also, every PKM has an equivalent

GKM (to see this, notice that every Unified Representation of a PKM can be rep-

resented with a GKM).

2.3 Comparing PBBL and PEL

In this section we compare our PBBL language with Milch and Koller’s [Milch

and Koller, 2000] PEL language.
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One example that can be expressed in PEL of [Milch and Koller, 2000] and

cannot straightforwardly be expressed in our PBBL is the formula BelCond≤r1a (

BelCond≤r2a (ϕ|ψ)), i.e. the (unconditioned) beliefs of agent a about his beliefs

once he observes ψ. Our PBBL language is more restricted than PEL in that PEL

can represent observations of agents in the language. However, we can simulate

those observations in a limited way by adding extra random-variable symbols as

we show now.

In PEL conditioned beliefs are represented with the operatorBelCond≤ra (ϕ|ψ).

To simulate conditional belief operatorBelCond≤ra (ϕ|ψ) we add a new agent, aψ,

to the PBBL representation. The intuition here is that this agent is the same as

agent a with the difference that this agent has observed formula ψ. To define this

agent mathematically, we need to define Paψ ,s as follows:

Paψ ,s(s
′) =


Pa,s(s′)

Pa,s([ψ]M )
if s′ ∈ [ψ]M ;

0 otherwise.

when s ∈ [ψ]M . However, when s is not in [ψ]M , Paψ ,s(s
′) = 1 when s = s′ and

0 otherwise. Note that the second case is when it is not possible for agent a to

observe ψ. Since PEL assumes that observations are not noisy it is impossible to

observe that in s and therefore the equivalence class of state s would only include

state s. Then BelCond≤ra (ϕ|ψ) = Bel≤raψ (ϕ ∧ ψ).

To see the effects of this simulation, observe the following example. Assume

that there are 4 states of the world s1, s2, s3, and s4. We have two boolean random

variables X and Y in Φ. Let X be true in s1, s2 and false in s3, s4. Also, let Y
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be true in s1, s3 and false in s2, s4. Let Pa,s be defined as follows:

Pa,s(s
′) =


.4 if s′ ∈ {s1, s4};

.1 otherwise.

Now to simulate BelCond≤ra (Y = true|X = true) we add a new agent

aX=true. This agent stands for agent a when he observes that X is true which

means that agent a knows that he is either in s1 or s2. With the above explanation

the new subjective probability distribution is defined as follows:

PaX=true,s(s
′) =


.4
.5

= .8 s1;

.1

.5
= .2 s2;

when s is either s1 and s2. ThenBelCond≤ra (Y = true|X = true) = Bel≤raX=true
(

Y = true ∧X = true) which is true when r is greater than or equal to .8.

Another difference between PEL and PBBL is that PBBL’s models are less re-

stricted than PEL’s in that PBBL allows different (arbitrary) distributions for every

agent at every state. PEL assumes that agents have a common prior probability

distribution over states of the world, and an agent’s local probability distribution

at state s is equal to this global distribution conditioned on the set of states the

agent considers possible at s.

For example, assume that there is a lamp and a switch and two agents. PEL

assumes that there is a common prior probability distribution that the agents hold

about the state of the world. Assume for example that given that the switch is

on, the probability of the lamp being on is .9 and this probability is 0 given that

the switch is off. Now if agent 1 has information that the power might be off in

the area with some probability, he might have a different subjective probability
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distribution than that of agent 2. For example, according to agent 1’s distribution,

the probability of the lamp being on given that the switch is on might is .4. This

second scenario can be handled with our model but not easily in PEL. We present

a more detailed example towards the end of this section.

As a result of this difference, PBBL’s usage of Bayesian Networks is in a differ-

ent way (hence making different assumptions) than PEL. We factor the subjective

probability models of every agent, whereas PEL factors the prior distribution.

Consequently, the BN fragments used here are different in their meaning and

usage from the common-prior BNs used by MK. One implication of this is that

if the number of equivalence classes (as described above) is large, the total size

of the BN fragments in a GKM could be much larger than MK’s single BN. The

individual fragments may be simpler than a prior BN if the variables known to

the agent induce useful independence properties; conversely, they may be more

complex if the agent’s observations add dependencies (e.g., between parents of an

observed node).

A third difference between the two languages is that our PBBL models do not

have a prior distribution over states where PEL does, but we can simulate this prior

distribution by adding one extra agent to our language. With a prior probability

distribution, [Milch and Koller, 2000] shows how to compute the probability of

an arbitrary PEL formula without a specified state, i.e. defining and computing

satisfaction queries of the form M |= ϕ.

To be able to define and compute the probability of a query of this form, we

add an agent 0 to our model. Our intuition is that this agent corresponds to us, an

outside observer of the system, or nature. We require P0,s(s
′) to satisfy

P0,s(s
′) = P0,s′′(s

′) for all s′′ ∈ S
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In other words, P0,s(s
′) is a prior distribution that nature has over S. Now

M, s |= Bel≤r0 (φ) for any s ∈ S is defined to be the meaning ofM |= φ. Comput-

ing whether such a query has value true is the same as comparing the probability

of an arbitrary unconditioned PEL formula φ with r.

In Chapter 3, when we present reasoning methods for computing satisfaction

of a PBBL formula φ, we show that we can also find an r′ for which Bel=r′a (ϕ) is

true. To understand this r’s relationship to PEL note that (M, s) |= Bel=ra (ϕ)

if and only if Pa,s([ϕ]M) = r. Bel=ra (ϕ) is an abbreviation for Bel≤ra (ϕ) ∧

Bel≤1−r
a (¬ϕ). The value of r is exactly the probability of an arbitrary uncon-

ditioned PEL formula.

Finally, below is an example of a PKM model that cannot be modeled with

PEL unless we add an extra variable. Assume that Φ = {X1}, and there are

two agents, a1, a2. Thus, there are two states, s0, s1, with X1 = 0 in s0 and

X1 = 1 in s1. dom(X1) = {0, 1}, and a GKM M specifies Pa1,s1(X1) = 0.2 and

Pa2,s1(X1) = 0.6.

Representing this example in PEL we can distinguish between the agents by

specifying different observation sets. An observation set for a1 is either {} (the

empty set) or {X1}, and the same goes for a2. Thus, one of the agents, e.g. a2,

must have observation set {X1}, and therefore has in PEL that Pa2,s1 = 1. This

does not agree with our GKM M . This shows that without further variables PEL

cannot represent this M.

If one wishes to add variables to a model to represent different agents in PEL,

one can do so at the price of creating a complex model as follows: we add one

variable to the GKM that we call agent-identity, with the intuition that this variable

switches between the agents. This variable then is added as a parent in the PEL

BN to the rest of the variables, switching their CPTs from one agent to another.

A more difficult part to model, however, is the representation of agents sub-
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jective probabilities pertaining to each state. In our last example above, even a

single agent GKM M as above cannot be represented in PEL without additional

variables. To see this, let agent a1 (our only agent here) have in M different

probability over S when the agent is in s1, s2: Pa1,s2(X1) = 0.3. Since the only

observation variable possible is X1, PEL cannot represent this scenario because

one state must have the observation set {X1} in PEL. To represent this in PEL

one may add a variable X11 to the model such that the probability of X1 in the

prior of PEL is dependent on X11, which will act as a switching variable, i.e.

PrPEL(X1|X11 = 0) = 0.2 and PrPEL(X1|X11 = 1) = 0.3.

Finally, observe that as the number of variables in our GKM M grows, rep-

resentation with PEL becomes exponentially harder. For Φ = {X1, . . . , Xn} we

have 2n states in S. Let Ca1,Xh
j

in GKM M be such that Xh
j has a single parent

Xa
1+[(j−2) mod n]. Then, the switching variable mentioned above for a PEL model

may need to have 2n values, one for each state. Modeling this with n additional

binary RVs instead does not solve the problem because some of the CPTs in the

new PEL model will have n parents. Thus, such a representation with PEL in this

way will take spaceO(2n), whereas a GKM would take spaceO(n). It remains an

open question whether any PEL that can represent the different subjective proba-

bilities in this M would have an exponential-size representation.

2.4 Example

An application of this framework is modeling a Hold’em game (Texas Hold’em

poker). In Hold’em, players receive two downcards as their personal hand, after

which there is a round of betting. Three boardcards are turned simultaneously and

another round of betting occurs. The next two boardcards are turned one at a time,

with a round of betting after each. A player may use any five-card combination
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from the board and personal cards. Ranking rules of the game determine the

winner.

Suppose that in a two player Hold’em game, the boardcards are K♣K♥Q♥

3♠2♣, Player 1 has A♦K♦, and player 2 has K♠3♣. From the perspective of

player 1, player 2 can have any card except the boardcards and the cards in player

1’s hand. In Hold’em, the possible worlds are all the possible ways the cards could

have been distributed among the players. Initially, a player may consider possible

all deals consistent with the cards in her hand with equal probability. Players

may acquire additional information in the course of the game that allows them

to eliminate some of the worlds they consider possible or change the probability

distribution of the others.

We have 9 random-variable symbols in our Hold’em example, Φ = {X1, X2,

. . . , X9}whereX1 andX2 are player 1’s cards,X3 andX4 are player 2’s hand and

the rest are the boardcards. dom(Xi) = {A♥, 2♥, . . . K♥, . . . , A♦, . . . , K♦}.

In this example there are two playersA = {a, b} (Alice and Bob, respectively).

Figure 2.1 shows their perspective in a Hold’em game. Bel≤0.2
a ((X3 = A♥) ∨

(X4 = A♥)) is an example of a formula in this language whose truth value can

be evaluated on the current state of the world. This should be read as “according

to Alice, the probability of Bob having A♥ (Ace of hearts) is at most 0.2”.

In Hold’em, Bel≥0.9
b (Bel≤0.2

a (X3 = A♥ ∨ X4 = A♥)) is also an example of

a formula. This query refers to “according to Bob, with high probability (at least

0.9) according to Alice the probability of Bob having Ace of hearts is low (at most

0.2)”. Therefore, if Bob has Ace of hearts and it is the best possible hand, he can

raise and Alice might call because she might assume he is bluffing.

Note that in our example we need a subjective probability distribution for each

player. We model our Hold’em example with PKM (S, π,P) in which S is the

set of all possible states, that includes a state corresponding to each possible com-
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Figure 2.1: Alice and Bob perspective in Hold’em example.

Figure 2.2: Ga of the GKM of Hold’em. Acyclic graph for Alice.

bination of player hands and boardcards. Since Alice knows the boardcards and

her cards and does not know Bob’s hand, Pa,s(s′) is positive when s is a state in

which the value of random-variables are A♦K♦ K♠3♣ K♣K♥Q♥3♠2♣ and

s′ corresponds to A♦K♦ K♠3♣ K♣K♥Q♥3♠2♣. We assume that Pa,s(s′)

is uniform on the states that are possible to a. This is the assumption that poker

players make at the beginning of a game when the cards are dealt since there is

only one card of each type in the deck.

Figure 2.2 shows Ga of the GKM of our Hold’em example. The nodes in the
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first row correspond to the actual state of the world, whereas the second row cor-

responds to a possible state of the world from the perspective of Alice. Each node

takes values from {A♥, 2♥, . . . K♥, . . . , A♦, . . . , K♦}. The first and the second

nodes are observed by player 1 to have values K♠, J♣, respectively. In each row,

the first two nodes correspond to Alice’s hand, the second two nodes correspond

to Bob’s hand, and the last five are the boardcards. From the perspective of Alice,

Bob can have any cards except the boardcards and the cards in her hand. In Ga,

this is shown by the edges to the third and forth nodes in Xh. The boardcards

and player 1’s hand cards are the same in the actual state of the world and the

hypothetical state of the world.

Ca,Cb are defined as follows:

Ca,Xh
1
(Xh

1 = v′|Xa
1 = v) =


1 if v′ = v;

0 otherwise.
and the same for X2, X5, . . . , X9

Ca,Xh
3
(Xh

3 = v|Xa
1 = v1, X

a
2 = v2, X

a
5 = v5, . . . , X

a
9 = v9) =

1

α


1 if v 6∈ {v1, v2, v5, . . . , v9};

0 otherwise.

As shown in the above equation, Xh
3 given its parents has a uniform distribution.

α is the normalization factor. The conditional probability function for Xh
4 given

its parents is similar toXh
3 except thatXh

4 is a child ofXh
3 and should not be equal
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to Xh
3 as well.

Ca,Xh
4
(Xh

4 = v|Xa
1 = v1, X

a
2 = v2, X

h
3 = v3, X

a
5 = v5, . . . , X

a
9 = v9) =

1

α


1 if v 6∈ {v1, v2, v3, v5, . . . , v9};

0 otherwise.

Note that this model is most useful when the size of the largest Conditional

Probability Table (CPT) is much smaller than |S|2 or when the CPTs can be rep-

resented compactly (e.g., uniform distribution). In those cases, the size of the

GKM is much smaller than the size of the corresponding PKM (O(|S|2)).
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CHAPTER 3

REASONING WITH A PROBABILISTIC
KRIPKE MODEL

In Chapter 2 we described the logic PBBL and a semantics for it. We described

PKMs, models that capture some intuitions about agents reasoning about each

others’ probabilistic knowledge. Specifically, we defined PBBL formulas and

what it means for a PBBL formula to hold in a PKM and a world state in that

PKM.

In this chapter we are concerned with computational aspects of answering queries

of the form M, s |= ϕ, where M is a PKM, s is a state in M , and ϕ is a PBBL

formula (we keep the parameters of the language, Φ and A, implicit in this dis-

cussion).

The following sections present two main methods for reasoning with PKMs:

exact reasoning (a bottom-up approach and a top-down approach), and approxi-

mate reasoning by sampling. The exact reasoning methods are relatively straight-

forward, but require careful attention to ensure correctness of the method for our

semantics. The sampling approach provides a reasoning method for large models

or large queries with deeply nested formulas (many nested applications of modal

operators in PBBL).
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3.1 Exact Reasoning with a PKM: a Top-Down
Approach

In this section we provide exact reasoning algorithms for answering queries about

state s in PKM M . We focus on satisfaction queries of the form M, s |= ϕ, for ϕ

a formula in PBBL.

Figure 3.1 presents Function Top-Down (ToDo), a top-down approach to an-

swering our satisfaction queries. It works as follows.

We represent a query formula ϕ with an expression tree [Kozen, 1997]. In

an expression tree, the root is the query itself and the leaves are propositional

primitives. Function Top-Down (ToDo) of Figure 3.1 starts from the root of the

query’s expression tree and recursively computes the value of its subformulas on a

given state. The running time of the function grows exponentially with the number

of nested modal operators in our query.

Theorem 12 (Soundness of ToDo) For PKM M , state s in M , and formula ϕ in

PBBL, ToDo(M ,s,ϕ) always terminates and returns a value in {true, false}. It

returns a value true iff M, s |= ϕ.

PROOF The definition of formulas of PBBL implies that every formula cor-

responds to one of the 6 cases listed in ToDo (lines 1 through 6). The program

terminates because (a) ϕ is a formula and thus of finite length; (b) every one of the

recursive-call steps 4-6 decreases the size of the formula sent down the recursion;

(c) once the recursive call reaches atomic formulas (steps 1-3), these steps always

return with a value in {true, false}. Finally, the returned value from steps 4-6 is

also in {true, false}, and we conclude the first part of the theorem (the program

terminates and returns a value in {true, false}.

We now prove the second part of the theorem, namely, the soundness of ToDo

with respect to our semantics. We prove this by induction on the structure of the
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FUNCTION ToDo(PKM M , State s, Query ϕ)

1. if ϕ = > then return true

2. if ϕ = ⊥ then return false

3. if ϕ is an atomic formula X = v, then return true if X(s) = v and false
otherwise.

4. if ϕ = ¬ψ then return true if ToDo(M , s, ψ) return false, and return
false otherwise.

5. if ϕ = ψ ∨ ξ then return true if one of ToDo(M , s, ψ) or ToDo(M , s, ξ)
returns true; return false otherwise.

6. ϕ is of the form Bel≤ra (ψ) [respectively, Bel≥ra (ψ), Bel=ra (ψ)]. Do the
following:

(a) prob← 0

(b) for all states s′ ∈ S such that Pa,s(s′) > 0 do
(c) if ToDo(M , s′, ψ) returns true, then prob← prob+ Pa,s(s

′)

(d) return true if prob ≤ r [respectively, prob ≥ r, prob = r]; Other-
wise, return false

Figure 3.1: A Top-Down (ToDo) reasoning algorithm for answering satisfaction
queries of the form M, s |= ϕ with PKM M , state s, and PBBL formula ϕ.

formula ϕ.

In the base of our induction ϕ is an atomic formula. Assume that M, s |= ϕ.

If ϕ = >, then Step 1 returns true. ϕ cannot be ⊥ because Definition 6 implies

M, s 6|= ⊥. Finally, ϕ can be of the form X = v, in which case M, s |= ϕ implies

that X(s) = v, so ToDo will return true at Step 3. A similar argument shows the

base of our induction for M, s 6|= ϕ.

For the induction step, the connectives ¬ and ∨ are treated by Steps 4,5 which

correspond precisely to the definition of semantics for ϕ = ¬ψ and ϕ = ψ ∨ ξ.

The proof for ¬ is the following. ϕ = ¬ψ for some ψ. Assume M, s |= ϕ.

Then, M, s 6|= ψ. From our induction hypothesis, ToDo(M , s, ψ) must return

false. So, Step 4 of ToDo(M , s, ϕ) will return true, and our induction step is

32



complete for this case. The case of M, s 6|= ψ is argued in a similar way.

The induction step for ∨ is similar to ¬. We develop in more detail the argument

about the modal operators, focusing on ϕ = Bel≤ra (ψ) (the induction step for the

other modal operators follows in the same way).

Assume that M, s |= ϕ. Then, Pa,s([ψ]M) ≤ r. The loop in Step 6 (a-c)

sums up in prob the probabilities Pa,s(s′) of all s′ such that Pa,s(s′) > 0 and

ToDo(M ,s′,ψ) returns true. From our induction hypothesis, ToDo(M ,s′,ψ) re-

turns true iff M, s′ |= ψ. M, s′ |= ψ iff s′ ∈ [ψ]M , so

prob =
∑

s′∈[ψ]M

Pa,s(s
′) = Pa,s([ψ]M).

From the definition of semantics of PKM, M, s |= ϕ implies that prob ≤ r, so

Step 6(d) returns true, concluding our induction step. A similar argument holds

for the case of M, s 6|= ϕ and the other modal operators.

The converse follows the same argument in reverse and our proof is done.

Function ToDo traverses a recursion tree, with recursion steps occurring at

Steps 4-6. The nesting height of modal operators in ϕ is the largest number of

modal operators in a path from any leaf of the expression tree of ϕ to its root.

This nesting height of modal operators dominates the computational cost of com-

puting logical entailment with PKM M , state s, and formula ϕ, as we show in the

following proposition.

The length of ϕ, denoted |ϕ|, is the total number of atomic-formula instances,

modal operator instances, and connective instances in ϕ.

Proposition 13 Let ϕ be a query whose value on state s in PKM M we want

to compute. Let l = |ϕ|, let m be the nesting height of modal operators in ϕ,

and let n be the maximum number of states accessible from any state. Function
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ToDo(M ,s,ϕ) terminates in time O(l · nm).

PROOF We prove the proposition by induction on the structure of ϕ, showing

that Time(l, n,m) ≤ Clnm for some constant C that is the time taken for 5 (an

arbitrary number that is large enough for our purposes) basic instructions in our

algorithm.

For l = 1, ϕ is an atomic formula (and alsom = 0), in which case ToDo returns

in time ≤ C = C · 1 · 1.

For l > 1 and ϕ = ψ ∨ ξ, Step 5 is taken for ϕ, and

Time(l, n,m) ≤ Time(|ψ|, n,m) + Time(|ξ|, n,m)

≤ C|ψ|nm + C|ξ|nm + 1

≤ C · l · nm

A similar argument holds for ϕ = ¬ψ.

For ϕ = Bel≤ra (ψ),

Time(l, n,m) ≤ n · (Time(|ψ|, n,m− 1) + 1)

≤ n · C(l − 1) · n(m−1) + 1

≤ C · l · nm

Our induction step is complete, and the proposition holds.

For queriesϕ = Bel=ra (ψ) we can also find the value of r thatM, s |= Bel=ra (ψ).

To do that we can change our algorithm slightly. In addition to returning the truth

value of a formula we also return a number between 0 and 1. We only return this

number when our query is ϕ = Bel=ra (ψ). This number is the r that satisfies this

formula. To return that, we change line 6(d) of Function ToDo to return prob if
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ϕ = Bel=ra (ψ). This prob is the sought out r. It is useful when a player wants to

know the actual probability of the set of states that satisfy ψ.

3.2 Exact Reasoning with a Probabilistic Knowledge
PKM: a Bottom-Up Approach

In Function ToDo, duplicate computations arise when the same state s′ is visited

from many different states s, and a subformula is evaluated in s′ each time. We

can overcome this inefficiency, if we take a bottom-up approach. There, we start

from the bottom of the query’s expression tree and avoid computing a subformula

multiple times.

Function Knowledge-Bottom-Up (KBU) is described in Figure 3.2 and com-

putes the value of a satisfaction query with a probabilistic knowledge PKM M

while avoiding some recomputations.

Function KBU finds the answer to a satisfaction query given Probabilistic Knowl-

edge PKM M , the equivalence relations for M (together with a precomputed set

of equivalence classes), and a state s in M . It computes the value of an inner-

most modal-operator-rooted subformula of ϕ (with no nested modal function in

it) for all equivalence classes, and associates the result with all the states in their

respective equivalence classes.

We implement this precomputation and caching (line 2(c) in Function KBU)

with a new random-variable symbol and a new random variable mapping every

state s ∈ S to {true, false}. We replace the modal-operator-rooted subformula

ξ in ϕ with this new random-variable symbol. We continue this replacement in

a bottom-up fashion from the bottom of the formula’s expression tree to its top,

replacing subformulas with new random-variable symbols.

From Proposition 13 we know that ToDo(M ,s,ϕ) returns in time O(|ϕ|), so
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FUNCTION KBU(Probabilistic Knowledge PKM M , R = {Ra}a∈A equiva-
lence relations for M , state s, formula ϕ)

1. m← 1

2. while there is a modal operator in ϕ, do

(a) Select ξ a subformula rooted in a modal operator, ξ = Bel≤ra (ψ) (or
the other modal operators Bel≤ra or Bel=ra ) such that ψ has no modal
operator

(b) Let Xm be a fresh random-variable symbol, and extend π in M to in-
terpret Xm as a random variable with dom(Xm) = {true, false} (a
function from S to {true, false} – we define its values on S below)

(c) for every e equivalence class of Ra do

i. t←
(∑

s′∈e,ToDo(M,s′,ψ)=true Pa,s′(s
′)
)

ii. for every s′ ∈ e define Xm(s′) = true if t ≤ r and false other-
wise

(d) replace ξ in ϕ with Xm = true

(e) m← m+ 1

3. return ToDo(M , s, ϕ)

Figure 3.2: Bottom-Up reasoning algorithm about satisfaction queries with
Probabilistic Knowledge PKMs

each call for Function ToDo in Lines 2(c)i and 3 takes linear time. Computation in

KBU becomes more expensive with every run of 2(c), which calls Function ToDo

O(|S|) times. That part replaces modal operators with new random variables.

Thus, in Function KBU, we visit each state once for each modal operator instance

in ϕ.

Theorem 14 (Soundness and Time of KBU) For Probabilistic Knowledge PKM

M , equivalence relations R onM , state s inM , and formula ϕ in PBBL, KBU(M ,

R, s, ϕ) always terminates in timeO(|ϕ|·|S|) and returns a value in {true, false}.

It returns a value true iff M, s |= ϕ.

PROOF To show that KBU always terminates with a return value in {true,
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false} first notice that every step of the while loop (Step 2) terminates. This is

because steps 2(a),2(b) are simple linear operations in |ϕ|; and 2(c) takes O(|S|)

calls to Function ToDo, each one on a formula without modal operators, thus

taking time O(|ψ|), where ψ is the subformula being replaced by a new variable

in this stage of the iteration.

The while loop terminates because the size of ϕ decreases with each iteration by

at least |ψ| because we replace the subformula ξ (with length |ξ| = |ψ|+1) with an

atomic formula with length 1. Let Sel be the set of all ψ such that ξ = Bel≤ra (ψ)

is selected at Step 2(a) of the algorithm. Then, the time taken by the loop is

O(
∑

ψ∈Sel |ψ| · |S|) = O(|ϕ| · |S|). This proves the first part of the theorem.

To prove soundness of KBU, first look at the case M, s |= ϕ, and we prove

that KBU(M ,R,s,ϕ) returns true. We prove this by induction on the number m of

modal operators in ϕ.

For m = 0, the algorithm returns ToDo(M, s, ϕ), so true (by Theorem 12).

For the induction step, m > 0. Let ξ be the first subformula chosen at step

2(a) of KBU. In the same loop iteration, let ϕ0,M0 be the original inputs to KBU,

and let ϕ1, M1 be the resulting ϕ,M at Step 2(d). We show that M1, s |= ϕ1 (we

already assume M0, s |= ϕ0), and the induction hypothesis will ensure that the

rest of the run in KBU will return true.

Assume to the contrary that M1, s 6|= ϕ1. Notice that ϕ1, ϕ0 differ only on ξ

being replaced by Xm = true. From the recursive construction in Definition 6

(the semantics of any PKM) it must be that that at some s1 X
M1
m (s1) = true and

Pa,s1([ψ]M0) 6≤ r or XM1
m (s1) 6= true and Pa,s1([ψ]M0) ≤ r.

Let s1 be such a state, and assume the first case (XM1
m (s1) = true and PM0

a,s1
(

[ψ]M0) 6≤ r). From the way we constructedXm in steps 2(b),2(c) we get that t ≤ r

at step 2(c)ii. Let e be the equivalence class of s1 (notice that equivalence classes
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of PM0 are still equivalence classes of PM1). Then,

PM0
a,s1

([ψ]M0) =∑
s′∈S,(M0,s′)|=ψ P

M0
a,s1

(s′) =∑
s′∈S,ToDo(M0,s′,ψ)=true P

M0
a,s1

(s′) =∑
s′∈S,ToDo(M0,s1,ψ)=true P

M0
a,s1

(s′) =∑
s′∈e,ToDo(M0,s′,ψ)=true P

M0

a,s′ (s
′) ≤ r

(notice that the replacement of s′ by s1 in the 3rd equality is possible because

ψ has no modal operators. The replacement of s1 with s′ in the 4th equality is

warranted by a similar argument and noticing that we restrict the summation now

to s′ ∈ e.)

Thus, PM0
a,s1

([ψ]M0) ≤ r, contradicting our assumption of the first case. There-

fore, we proved the induction hypothesis for the first case. The symmetric case of

XM1
m (s1) 6= true is argued in a similar way, and so is the case of M0, s 6|= ϕ0, so

our proof is done.

Compared to the runtime of function ToDo which is exponential in the number

of nested modal operators, the runtime of KBU is linear in the length of the query

(i.e. total number of modal functions). As a drawback, KBU is linear in the

total number of states. When the number of nested modal operators is small,

function ToDo is faster than KBU. To choose the best method for our application,

we compare nm with |S| and decide whether to use ToDo or KBU.

3.3 Exact Reasoning with a general PKM: a
Bottom-Up Approach

The bottom-up approach can be extended to general PKMs. The General-Bottom-

Up (GBU) algorithm for reasoning in PKMs without the Probabilistic Knowledge
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FUNCTION GBU(PKM M , state s, query ϕ)

1. m← 1

2. while there is ξ = Bel≤ra (ψ) subformula of ϕ where ψ has no modal
operator do

(a) Add a fresh random-variable symbol Xm to Φ with dom(Xm) =
{true, false}, and map π(Xm) to a fresh random variable XM

m tak-
ing value in dom(Xm) for every s ∈ S (we set those values in Step
2(c) below).

(b) for every s2 ∈ S, set todos2 ← ToDo(M ,s2,ψ)

(c) for every s1 ∈ S do
i. Set ts1true ←

∑
s2∈S,todos2=true Pa,s1(s2);

ii. set Xm(s) to true if ts1true ≤ r; and to false otherwise

(d) Replace ξ in ϕ with Xm = true

(e) m← m+ 1

3. return ToDo(M, s, ϕ)

Figure 3.3: General-Bottom-Up (GBU) reasoning algorithm for satisfaction
queries M, s |= ϕ with PKM M , state s, and formula ϕ.

assumption is shown in Figure 3.2.

Theorem 15 (Soundness and Time of GBU) For PKM M , state s in M , and

formula ϕ in PBBL, GBU(M ,s,ϕ) always terminates in time O(|S|2 · |ϕ|) and

returns a value in {true, false}. It returns a value true iff M, s |= ϕ.

PROOF To show that GBU always terminates with a return value in {true,

false} first notice that every step of the while loop (Step 2) terminates. This is

because steps 2(a),2(d),2(e) are simple linear operations in |ϕ|; and Step 2(b) takes

O(|S|) computations of Function ToDo (each one on a formula without modal

operators, thus taking time O(|ψ|), where ψ is the subformula being replaced by a

new variable in this stage of the iteration) and step 2(c)i takes O(|S|2). Thus, the

time for every iteration of the loop is O(|S| · (|S|+ |ψ|)).
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The while loop terminates because the size of ϕ decreases with each iteration

by at least |ψ| because we replace the subformula ξ (with length |ξ| = |ψ| + 1)

with an atomic formula with length 1. Let Sel be the set of all ψ such that ξ =

Bel≤ra (ψ) is selected at Step 2 of the algorithm. Then, the time taken by the loop

is O(
∑

ψ∈Sel(|S|2 + |ψ| · |S|)) = O(|S|2 · |ϕ|). This proves the first part of the

theorem.

To prove soundness of GBU, first look at the case M, s |= ϕ, and we prove

that GBU(M ,R,s,ϕ) returns true. We prove this by induction on the number m of

modal operators in ϕ.

For m = 0, the algorithm returns ToDo(M, s, ϕ), so true (by Theorem 12).

For the induction step, m > 0. Let ξ be the first subformula chosen at step 2 of

GBU. In the same loop iteration, let ϕ0,M0 be the original inputs to GBU, and let

ϕ1, M1 be the resulting ϕ,M at Step 2(d). We show that M1, s |= ϕ1 (we already

assume M0, s |= ϕ0), and the induction hypothesis will ensure that the rest of the

run in GBU will return true.

Assume to the contrary that M1, s 6|= ϕ1. Notice that ϕ1, ϕ0 differ only on ξ

being replaced by Xm = true. From the recursive construction in Definition 6

(the semantics of any PKM) it must be that that at some s1 X
M1
m (s1) = true and

Pa,s1([ψ]M0) 6≤ r or XM1
m (s1) 6= true and Pa,s1([ψ]M0) ≤ r.

Let s1 be such a state, and assume the first case (XM1
m (s1) = true and PM0

a,s1
(

[ψ]M0) 6≤ r). From the way we constructed Xm in steps 2(a),2(b),2(c) we get that

ts1true ≤ r at step 2(c)ii. Notice that ts1true = PM0
a,s1

([ψ]M0) by the definition of [ψ]M .

Thus, PM0
a,s1

([ψ]M0) ≤ r, contradicting our assumption of the first case. There-

fore, we proved the induction hypothesis for the first case. The symmetric case of

XM1
m (s1) 6= true is argued in a similar way, and so is the case of M0, s 6|= ϕ0, so

our proof is done.

40



Although the bottom-up algorithms are faster than our top-down method when

the number of nested modal operators grows, bottom-up methods are still costly

when the number of states is large.

3.4 Sampling Subgraphs

In this section we provide a reasoning method that uses sampling to answer queries

on probabilistic knowledge structures. As we showed in the previous section, the

running time of the bottom-up reasoning methods depend on the number of states.

Sometimes this number of states can be very large, such as when the state space

is defined by the cross product of random-variable domains in a large Bayesian

Network. In those cases when the number of accessible states from every state is

large, the approaches that we described above are intractable.

The bottleneck of those approaches, making them intractable for such domains,

is the need for evaluation of terms on all states (or all accessible states) in the

domain. This need is related to the evaluation of formulas rooted with a modal

operator. If the number of states accessible from state s in PKM M is too large,

evaluating M, s |= Bel≤ra (ψ) on that state needs to evaluate M, s′ |= ψ on all s′

accessible from s.

Figure 3.4 presents Function ApxToDo, which samples from the states in S to

estimateM, s |= Bel≤ra (ψ) andM, s |= Bel≥ra (ψ). It samples uniformly from that

set, and assumes that such a uniform sampler is given to us. Also, we assume that

the query formula ϕ includes no modal operators of the form Bel=ra , the reason

being convergence rather than computational – our sampler will almost always

(in a statistical sense) converge to false for a subformula rooted in such a modal

operator for all r besides possibly 0 or 1. For the propositional connectives ∨ and

¬ and the atomic formulas ApxToDo behaves in an identical manner to Function
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FUNCTION ApxToDo(PKM M , State s, Query ϕ) ϕ a formula in PBBL with-
out the modal operator Bel=ra

1. if ϕ = > then return true

2. if ϕ = ⊥ then return false

3. if ϕ is an atomic formula X = v, then return true if X(s) = v and false
otherwise.

4. if ϕ = ¬ψ then return true if ApxToDo(M , s, ψ) return false, and return
false otherwise.

5. if ϕ = ψ ∨ ξ then return true if one of ApxToDo(M , s, ψ) or
ApxToDo(M , s, ξ) returns true; return false otherwise.

6. ϕ is of the form Bel≤ra (ψ); [respectively, Bel≥ra (ψ), but not Bel=ra (ψ)].
Set prob← 0

7. for all i ∈ {1, ..., n} (n is the number of sample states that we wish to
generate and use per modal operator)

(a) Select s′ ∈ S an independently drawn sample from a uniform distri-
bution over S.

(b) if ApxToDo(M , s′, ψ) returns true, then prob← prob+ Pa,s(s
′)

8. return true if prob · |S|/n ≤ r; [respectively, prob ≥ r]; Otherwise, return
false

Figure 3.4: Sampling-based Top-Down (ApxToDo) reasoning algorithm for
answering satisfaction queries of the form M, s |= ϕ with PKM M , state s, and
PBBL formula ϕ.

Todo.

Function ApxToDo traverses a recursion tree, with recursion steps occurring at

Steps 4-7. Similar to Function ToDo, the nesting height of modal operators domi-

nates the computational cost of computing logical entailment with PKM M , state

s, and formula ϕ, as we show in the following proposition. The main difference

here is that the base of the exponential term is now n, the number of samples we

choose for evaluating Step 7 in ApxToDo (compared with |S| in Step 6 of ToDo).

Proposition 16 Let ϕ be a query whose truth value on state s in PKMM we want

42



to compute. Let l = |ϕ|, let m be the nesting height of modal operators in ϕ, and

let n be the number of sampled states chosen in Step 7. Function ToDo(M ,s,ϕ)

terminates in time O(l · nm).

PROOF The present proof follows the proof of Proposition 13, only replacing

n with n = the number of sampled states at each visit to Step 7.

Recall that a series {Xi}i ∈ N of random variables converges in probability

towards X if for all ε > 0

lim
n→∞

Pr(|Xn −X| ≥ ε) = 0

In the following theorem we state convergence in probability to truth values true

or false. In fact, what we mean is that when the numerical values 1, 0 replace

true, false, then convergence holds as is stated in the definition of the conver-

gence in probability.

Theorem 17 (Soundness of ApxToDo) For PKM M , state s in M , and formula

ϕ in PBBL, ApxToDo(M ,s,ϕ) always terminates and returns a value in {true,

false}. Assume further that all modal operators in ϕ are of the form Bel≤ra or

Bel≥ra , and that for every subformula ξ = Bel≤ra (ψ) of ϕ, M, s′ 6|= Bel=ra (ψ)

(NOTICE: “=” intended here).

Then, if M, s |= ϕ, its returned value converges to true in probability (taking

true to be the numerical value 1 and false to be the numerical value 0) as n→∞.

Similarly, If M, s 6|= ϕ, its returned value converges to false in probability as

n→∞.

Before we prove this theorem notice that any subformula of the form Bel=ra (ψ)

can be simulated by Bel≤ra (ψ) ∧Bel≥ra ). We assume that there is no such subfor-

mula of ϕ because the only value it may converge on is false.
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PROOF The first part of the theorem follows in a similar way to the proof of

Theorem 12.

We now prove the second part of the theorem, namely, the convergence of

ToDo to the correct semantics. We prove this by induction on the structure of

the formula ϕ. For this, we prove that for every PBBL formula ϕ there is a

monotonically decreasing function fϕ(n) such that fϕ(n) → 0 as n → ∞ and

Prob(ApxToDo(M, s, ϕ) 6= ToDo(M, s, ϕ)) ≤ fϕ(n).

In the base of our induction ϕ is an atomic formula. No samples are considered

and the proof follows in an identical manner to that of Theorem 12. Here, fϕ(n) =

0.

For the induction step, the connectives ¬ and ∨ are treated by Steps 4,5 which

correspond precisely to the definition of semantics for ϕ = ¬ψ and ϕ = ψ ∨ ξ.

The proof for ¬ is the following. ϕ = ¬ψ for some ψ. Assume M, s |= ϕ.

Then, M, s 6|= ψ. From our induction hypothesis, ToDo(M , s, ψ) returns false

with probability ≥ 1 − fψ(n), for fψ(n) as above. So, Step 4 of ToDo(M , s, ϕ)

will return true in those times, and our induction step is complete for this case.

The case of M, s 6|= ψ is argued in a similar way.

For Step 5, ϕ = ψ ∨ ξ. Assume M, s |= ϕ. Then, M, s |= ψ or M, s |= ξ.

Without loss of generality, assume the former. From our induction hypothesis,

ToDo(M , s, ψ) returns true with probability≥ 1− fψ(n), for fψ(n) as above. So,

Step 5 of ToDo(M , s, ϕ) will return true in those times, and our induction step is

complete for this case, with fϕ(.) = fψ(.).

Now, assume the second case, namely, that M, s 6|= ϕ. Then, M, s 6|= ψ and

M, s 6|= ξ. From our induction hypothesis, ToDo(M , s, ψ) returns false with

probability ≥ 1 − fψ(n), for fψ(n) as above. Similarly, ToDo(M , s, ξ) returns

false with probability ≥ 1− fξ(n), for fξ(n) as above.

Step 5 of ToDo(M , s, ϕ) will return true in those times in which both recursive
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calls return false. Take fϕ(n) = 1− (1− fψ(n)) · (1− fξ(n)), i.e. the probability

of failure in our ApxToDo being the (independent) failure for either of ψ or ξ (or

both). Thus, our induction step is complete for this case.

Finally, we regard the modal operators, focusing on ϕ = Bel≤ra (ψ) (the induc-

tion step for Bel≥r follows in the same way).

Assume that M, s |= ϕ. Then, Pa,s([ψ]M) ≤ r. The loop in Step 7 (a-b) sums

up in prob the probabilities Pa,s(s′) of all sampled s′ such that Pa,s(s′) > 0 and

ApxToDo(M ,s′,ψ) returns true.

We consider the number of times ApxToDo(M ,s′,ψ) returns an incorrect an-

swer. It returns true with probability ≥ 1 − fψ(n) whenever M, s′ |= ψ. Also,

it returns false with probability ≥ 1 − fψ(n) whenever M, s′ 6|= ψ. Thus, the

probability of error is ≤ fψ(n) for each sample s′.

Let probe =
∑

s′∈[ψ]M
Pa,s(s

′) = Pa,s([ψ]M), the exact summation which we

are trying to approximate with prob in Step 7. Let ε = r − probe. From our

assumption in the theorem statement, ε > 0.

Notice first that our induction hypothesis implies that the mean of ApxToDo(M ,

s′, ψ) approaches the mean µ = probe/|S| as n→∞ (again, we take ToDo(M , s′,

ψ)= true to have value 1 and otherwise value 0). Thus, also prob/n approaches

this mean (mean of expectations).

Importantly, our induction hypothesis implies that the convergence of each sam-

ple (viewed as a random variable) to its expected value is in probability. Using the

weak law of large numbers we get convergence in probability of the mean of our

samples to the mean’s expectation, i.e.,

lim
n→∞

Pr

(∣∣∣∣probn − probe
|S|

∣∣∣∣ < ε

|S|

)
= 1

Thus, also the convergence of prob·|S|/n to probe is in probability (and reaches
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closer to probe than ε distance), and there is a function fϕ(.) as needed by our

induction step.

A similar argument holds for the case of M, s 6|= ϕ and the other modal opera-

tor, and our proof is done.

3.5 Properties of PKMs: Non-Convergence of
Sampling

Our theorem above left open cases in which one could suspect that sampling may

not converge. In this section we show that the estimated values of some queries

almost surely does not converge at all when the number of samples increases.

Consequently, the only way to answer these queries is to use an exact method.

The following theorem states this result.

Let ϕ(s) stand for 1 when M, s |= ϕ and 0 otherwise.

Theorem 18 Let Bel≤ra (ϕ) be a query, s be a state, and s1, s2, . . . be a sequence

of independent and identically distributed states sampled from Pa,s(s
′). Define

B̂elm = ϕ(s1)+...+ϕ(sm)
m

to be the observed value of Pa,s([ϕ]M) using m samples.

Pr( lim
m→∞

(B̂elm ≤ r) does not exist ) = 1

when r = Pa,s([ϕ]M) = 1
2
.

PROOF Let Xm denote the random variable defined by

Xm =

 1 B̂elm ≤ r

0 otherwise

Thus, we wish to show Pr( lim
m→∞

Xm does not exist ) = 1
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First, recall that to show lim
m→∞

Xm does not exist it is enough to show that

∀N > 0 there are n1, n2 ≥ N such that Xn1 = 1 and Xn2 = 0. Thus, to

show Pr( lim
m→∞

Xm does not exist ) = 1 it is enough to show that

Pr(∀N > 0 ∃n1, n2 ≥ N Xn1 = 1, Xn2 = 0) = 1

We apply a known solution for the Gambler’s Ruin (Ruin for short) problem for

generalized one-dimensional random walks [Feller, 1968] (page 366). The Ruin

problem is stated as follows.

At each step a particle has finite domain of motions, in which with probability

pk the particle moves from any point x to x+k, where the k may be zero, positive,

or negative. Let Xstep designate the random step taken by this particle. Hence,

Pr(Xstep = k) = pk.

Given a > 0 (the gambler’s goal), the Ruin problem is the problem of finding

the probability uaz , such that starting from a position z such that 0 < z < a the

particle will arrive at some position ≤ 0 before reaching any position ≥ a.

Theorem 19 ([Feller, 1968], page 366) The solution of the Ruin problem satis-

fies the following inequality if Xstep has zero mean. Let µ+ and ν− be de-

fined, respectively, as the largest and the smallest k for which pk 6= 0. (Thus,

Pr(Xstep = µ+) > 0 and Pr(Xstep = ν−) > 0.) Then,

a− z
a+ ν− − 1

≤ uaz ≤
a+ µ+ − z − 1

a+ µ+ − 1

We map our problem on the Ruin problem as follows. We have a particle that

at each step moves either µ+ = 1 − r with probability r or ν− = −(r) with

probability 1− r. This problem has mean zero because rµ+ = −(1− r)ν−, so we

can use Theorem 19.
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The probability that the particle reaches the origin from position z before going

over a is uaz . By Theorem 19

lim
a→∞

Pr(reaching the origin before going over a) = lim
a→∞

uaz = 1

Now, recall that we are trying to prove

Pr(∀N > 0 ∃n1, n2 ≥ N Xn1 = 1, Xn2 = 0) = 1

Let ν−n be the number of ν− occuring until and including step n. Let zn =

(ν−n · ν−) + (µ+
n · µ+).

Notice that zn > 0 iff Xn = 0. To see this, observe that zn = (ν−n · ν−) + (µ+
n ·

µ+) = (1 − r)µ+
n − rν−n = (1 − r)µ+

n − r(n − µ+
n ) = µ+

n − rn = nB̂eln − rn.

Then for Xn = 0 we have B̂eln > r, so zn = nB̂eln − rn > 0.

Let N > 0, and we find (in probability) n ≥ N such that Xn = 1. If zN ≤ 0,

take n = N , and we have found Xn = 1 as needed.

Otherwise, zN > 0 and we find n > N as needed in the following.

Pr(Xn = 0 for all n > N) = Pr(zn > 0 for all n > N).

We notice that zn reaching position ≤ 0 for n > N for any a implies that

“zn ≥ 0 for all n > N” does not hold for the sequence.

Let ε > 0. Since lima→∞ u
a
z = 1 for z = zN , there is a such that uaz ≥ 1− ε.

Pr(zn > 0 for all n > N) =

1− Pr(zn ≤ 0 for at least one n > N) ≤

1− Pr(zn ≤ 0 for at least one n > N , n < n′ and n′ > N first such that zn′ ≥ a) =

1− uaz ≤

1− (1− ε) = ε
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Thus Pr(zn > 0 for all n > N) ≤ ε for every ε > 0. Thus, Pr(zn >

0 for all n > N) = 0.

Thus,

Pr(∀N > 0 ∃n ≥ N Xn = 1) = 1

A similar proof shows the opposite side, namely,

Pr(∀N > 0∃n Xn = 0) = 1

This concludes our proof.

3.6 Example

In our Texas Holdem example of Chapter 2, Bel≥0.9
b (Bel≤0.2

a (X3 = A♥ ∨X4 =

A♥)) is an example of a query formula. If Alice and Bob are players a and b

respectively, this query refers to Bob’s belief about Alice’s belief. This query

refers to “according to Bob, with probability at least 0.9 Alice’s probability of

Bob having Ace of Hearts is low (at most 0.2)”.

Computing the truth value of a query on a PKM is straightforward in theory.

Given the PKM, answering a satisfaction query with no modal operator is done

in O(the length of the query). The expensive part of computing the truth value of

a satisfaction query is the part with modal operator. Assume that the number of

possible states with probability greater than zero from a state is n (i.e, the number

of s′ that Pa,s(s′) > 0). For query Bel≥0.9
a (X3 = A♥ ∨ X4 = A♥), the number

of states on which the value of X3 = A♥ ∨ X4 = A♥ should be calculated is

n. Therefore if we have m nested belief operators we might need to calculate

formulas on O(nm) states.

We explain ToDo with an example. Assume that we want to compute the truth
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K♠ 3♣A♦ K♦

3♠ 2♣K♣ K♥ Q♥

K♠ 3♣A♠ 2♠

3♠ 2♣K♣ K♥ Q♥

K♠ 3♣A♥ 2♥

3♠ 2♣K♣ K♥ Q♥

K♠ 3♣Q♦ K♦

3♠ 2♣K♣ K♥ Q♥

4♠ 5♠A♠ 2♠

3♠ 2♣K♣ K♥ Q♥

A♥ 2♥A♠ 2♠

3♠ 2♣K♣ K♥ Q♥

Q♦ K♦A♠ 2♠

3♠ 2♣K♣ K♥ Q♥

Figure 3.5: Alice and Bob perspective in Holdem example.

value of ϕ = Bel≥0.9
b (Bel≤0.2

a (X3 = A♥ ∨ X4 = A♥)) on PKM of Section

2.4. Assume that s is A♦K♦ K♠3♣ K♣K♥Q♥3♠2♣. We want to answer if

M, s |= Bel≥0.9
b (Bel≤0.2

a (X3 = A♥ ∨ X4 = A♥)) holds or not. In this example

ϕ is Bel≥0.9
b (ψ) for ψ = Bel≤0.2

a (X3 = A♥ ∨ X4 = A♥), and so we need to

compute the truth value of ψ on all states such that Pb,s(s′) > 0. This probability

is the subjective probability of Bob. Since Bob knows his cards and boardcards,

the only states that he considers possible with positive probability are those that

correspond to different cards for Alice which is shown in the middle column of

Figure 3.5.

As shown in Figure 3.5, we need to compute Bel≤0.2
a (X3 = A♥ ∨X4 = A♥)

on all the states in the middle column. Now for each of these states we recursively

compute the value of Bel≤0.2
a (X3 = A♥ ∨ X4 = A♥). We show all the states

accessible from one of them in the rightmost column of Figure 3.5. Note that this

time Pa,s′(s) should be greater than 0 which is the subjective probability of Alice.

The value of X3 = A♥ ∨ X4 = A♥ is computed on the states of right-
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most column. We add Pa,s of the states in this column for which the value of

X3 = A♥ ∨ X4 = A♥ is true. Since the probability distribution is uniform,

we can just count those states and divide the number by total number of states.

This number is then compared with 0.2. Here, there are 44 states in which X3

is A♥ (because 8 cards are known and 44 cards are remained in the deck) and

there are 44 states in which X4 is A♥. This means that 88 out of 45 × 44 states

evaluates to true. This probability adds up to 88
45×44

= 0.02 which is smaller than

0.2. Therefore the value of Bel≥0.9
b (Bel≤0.2

a (X3 = A♥ ∨ X4 = A♥)) on state

A♠2♠ K♠3♣ K♣K♥Q♥3♠2♣ is true.

Similarly, we compute satisfaction query Bel≤0.2
a (X3 = A♥ ∨ X4 = A♥) on

all of the other middle column states. Then we use these values to compute the

value of Bel≥0.9
b (Bel≤0.2

a (X3 = A♥ ∨X4 = A♥)) which is true in this example.

In function ToDo subformulas of a query might be computed several times. We

can overcome this inefficiency if we take a bottom-up approach instead. There,

we start from the bottom of the query’s expression tree and avoid recomputing a

subformula. Functions KBU and GBU are designed for this purpose.

In KBU, we compute the value of all innermost modal operators (with no nested

modal operator in them) for all equivalence classes, and associate the results with

all the states in their respective equivalence classes. In function KBU, we visit

each state once for each subformula.

To compute our example explained above, we first compute X3 = A♥ ∨X4 =

A♥ on all states in S. Then for each equivalence class of Alice we compute

Bel≤0.2
a (X3 = A♥ ∨ X4 = A♥). An equivalence class of Alice is shown in

right column of Figure 3.5. We associate the value computed for each equiva-

lence class to all the states in that class. Next, we use these values to compute

Bel≥0.9
b (Bel≤0.2

a (X3 = A♥ ∨X4 = A♥)) on equivalence classes of Bob (one of

them shown in the middle column of Figure 3.5).
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Although the bottom-up approaches are faster than the top-down method for

queries with large height of nested modal operators, it is slower when the height

is small and the number of states is large.

We also provide a reasoning method that uses sampling to answer queries on

PKMs. As we showed above, the running time of KBU and GBU depends on the

number of states (linear and quadratic, respectively).

In our Holdem example, the number of states is 529. However, if both players

have observed the boardcards we can define a PKM with a smaller state space. We

assume that the domain of each of the boardcards has only one value in it, which

is the actual value observed by both players and the domain of the players’ cards

has the 47 remaining cards in it. In that case, the number of states is equal to 474

which makes the bottom-up approach tractable. However, in a two player game

with hundreds of cards when each player has tens of cards, it is not practical to

use a bottom-up approach that computes the value of each subformula on all the

states of the world.

The other option is to use ToDo. However, all the states accessible from a state

should be visited to evaluate a satisfaction query. If the number of states accessible

from a state is too large, evaluating Bel≥0.9
a (X3 = A♥ ∨X4 = A♥) on that state

would be expensive. To avoid this expensive computation, Alice (based on her

hand) only samples a few possible hands of Bob and computes the probability of

transitioning to those hands and based on that gets an estimate of the actual value

of Bel≥0.9
a (X3 = A♥ ∨ X4 = A♥). We proved that this value converges to the

actual value when the number of samples grows.

We explain ApxToDo on the same example. Let the satisfaction query be

ϕ = Bel≥0.9
b (Bel≤0.2

a (X3 = A♥ ∨ X4 = A♥)) and s be A♦K♦ K♠3♣

K♣K♥Q♥3♠2♣. Again, we want to answer if M, s |= Bel≥0.9
b (Bel≤0.2

a (X3 =

A♥ ∨X4 = A♥)) holds or not.
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As shown in Figure 3.5, in an exact method we need to compute Bel≤0.2
a (X3 =

A♥∨X4 = A♥) on all the states in the middle column. However, we sample only

n states from the middle column and compute our subformula only on those states.

Now for each of these states we recursively compute the value of Bel≤0.2
a (X3 =

A♥ ∨ X4 = A♥). Let’s assume that the top state of middle column is one of

our samples. Now, instead of computing X3 = A♥ ∨X4 = A♥ on all rightmost

states, we again only sample n of those states. Then to compute the truth value

of Bel≤0.2
a (X3 = A♥ ∨X4 = A♥) we sum Pa,s′(s) for the states in which X3 =

A♥ ∨X4 = A♥ is true and multiply by |S|
n

. Assume that n = 10 and in none of

the samples Bob has A♥, so we compare 0× |S|
10

with 0.2 and return true.

Similarly, we compute satisfaction query Bel≤0.2
a (X3 = A♥ ∨ X4 = A♥) on

other sampled states of the middle column. Then we use these values to compute

the value of Bel≥0.9
b (Bel≤0.2

a (X3 = A♥ ∨X4 = A♥)).
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CHAPTER 4

REASONING WITH A FACTORED
GRAPHICAL KRIPKE MODEL

In this chapter we provide reasoning methods for answering queries over GKMs.

Recall that in Chapter 2 we defined GKMs to be factored representations of PKMs.

A GKM includes a factored representation akin to a set of Bayesian Networks

of the subjective probabilities held by agents at different states, representing all

the subjective probabilities of any one agent with a single product of conditional

distributions arranged in a DAG structure.

Our previous chapter showed that using GKMs potentially reduces the size of

the model exponentially. The reasoning methods given in Chapter 3 for PKMs can

be used on GKMs. However, these algorithms apply explicit enumeration of all

states in the PKM, so applying them for GKMs may take exponential amount of

time in the size of the model, rendering their usage for models of many variables

impractical.

In this chapter we present algorithms for reasoning with GKMs that take ad-

vantage of GKMs’ factored representations for faster inference. We will show

that these algorithms are more efficient than their counterparts for PKMs. In Sec-

tions 4.1 and 4.2 we provide exact and sampling algorithms for answering PBBL

queries of the form M, s |= ϕ, for ϕ a formula in PBBL.
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4.1 Ordered Variable Elimination for GKMs

In this section we provide an algorithm to answer PBBL queries of the form

M, s |= ϕ. The algorithm that we introduce has a main subroutine called Or-

dered Variable Elimination for GKMs (GKMOVE), and the overall algorithm is

called sGKMOVE, for GKMOVE value on state s. Function sGKMOVE and its

main subroutine, GKMOVE, are shown in Figure 4.1.

Subroutine GKMOVE is given a GKM M and a formula ϕ, and computes a

table with columns corresponding to a subset of Φ (the way this subset is deter-

mined will be explained shortly) and a final column with values in {true, false}.

Note that Φ is the set of random-variable symbols. Let that subset of Φ be

Γ = {X1, ..., Xu}. Then, every row in the table includes at column i ≤ u a value

in dom(Xi), and at column u+ 1 a value in {true, false}. The table is complete

in the sense that it has exactly one row for every 〈x1, ..., xu〉 ∈
∏u

i=1 dom(Xi).

sGKMOVE takes the table computed by GKMOVE, finds the (unique) row

〈x1, ..., xu, t〉 such that X1(s) = x1, ..., Xu(s) = xu, and returns t.

GKMOVE works by recursion and subsequent variable elimination (VE) in

Bayesian Networks generated during computation. It always returns a structure

of the form 〈Γ, T 〉, where Γ is a set of random-variable symbols from Φ and T is

either true or false (in which case Γ = ∅), or a table as described above.

At a high level, GKMOVE examines the expression-tree structure of ϕ, and

recursively calls GKMOVE with subtrees of that expression tree. Whenever it en-

counters an atomic subformula or one whose expression tree is rooted in a propo-

sitional connective, it returns an easy-to-compute value (for atomic subformulas)

or the result of the corresponding logical operation on tables and variable sets

returned from recursive calls with subformulas of ϕ.

The interesting computation occurs when the GKMOVE receives (in the pro-
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cess of recursive computation) ϕwhich is of the formBel≤ra (ψ) (or another modal

operator). There, it computes a table Tψ by calling GKMOVE recursively on ψ,

creates a copy of the Bayesian Network fragment defined byGa,Pa with variables

Xa, Xh, updates this network with values available in Tψ, and performs a VE on

that Bayesian Network. The set of variables returned there is Γψ.

The VE performed on this BN fragment first identifies a set of variable symbols

Γϕ such that their corresponding variables in Xa, Γaϕ, will separate future com-

putations from the one for ψ here. It then performs standard VE (e.g. [Dechter,

1996]) on the Bayesian Network such that Γaϕ remains.

The result of this VE is a table that includes probabilities for ψ conditioned

on different values of Γaϕ. We compare those with r and build the resulting table

Tϕ which we return together with Γϕ (the random-variable symbols in Φ which

correspond to Γaϕ, i.e. the same symbols only without superscript a).

The computational benefit of this method (which we examine below) comes

in two forms. First, let Xa
rest be those variables in Xa that are not in Γaϕ. Let

Xh
rest be the descendants of Xa

rest that are not in Γψ. Then summing out Xh
rest

and Xa
rest results in a constant 1, regardless of the distribution governing Xa

rest

(which remains unspecified in this BN fragment). So, we can easily remove them

from the BN fragment. Second, the VE in the BN can be done efficiently with

traditional methods if the BN has a bounded, small treewidth [Amir, 2010].

4.1.1 Algorithm GKMOVE Detailed

Subroutine GKMOVE works by recursion as follows.

If ϕ is an atomic formula then, then GKMOVE returns structures 〈Γ, T 〉 with

Γ = ∅ (when ϕ = > or ϕ = ⊥) or Γ with the single random-variable symbol that

appears in ϕ.
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When ϕ is of the form ¬ψ, GKMOVE calls recursively for GKMOVE with ψ to

compute the structure 〈Γψ, Tψ〉. Then, it performs the logical negation operation

on Tψ, which returns a table that has the rows of Tψ updated with opposite truth

values in the last column. It returns the resulting table together with the same set

of variables.

When ϕ is ψ ∨ ξ, the algorithm recursively computes tables for ψ and ξ. If

combines these two truth table as follows. Let truth table for ψ be 〈Γ1, T1〉 and

truth table for ξ be 〈Γ2, T2〉. GKMOVE returns a truth table whose variables is

Γ1 ∪ Γ2 and its values is disjunction of the values of the two truth table. Similarly

we can compute the truth table for formula ¬ψ.

Finally, when ϕ is Bel≤ra (ψ), GKMOVE recursively computes the table Tψ and

set of variable symbols 〈Γ, T 〉 for ψ. Let Xa and Xh be the random variables

denoting the actual state and possible state (notions termed in Definition 10) of

agent a respectively. Also assume that Γh is the set of variable symbols in Xh that

corresponds to variables in Γ. Now, we define Γaϕ as the set of variables in Xa that

are ancestors of variables in Γψ.

Then, for every value vector γaϕ for Γaϕ we compute pr(γaϕ) := (Pr(ψh | Γaϕ =

γaϕ), where ψa is the formula ψ whose variable symbols are replaced with respec-

tive variable symbols with superscript h. We compare pr(.) to r and create the

table Tϕ. Finally, GKMOVE returns 〈Γϕ, Tϕ〉.

Theorem 20 (Soundness) Let ϕ be a formula in PBBL, M a GKM, and s a state.

The row of the table that GKMOVE returns that corresponds to s has value true

iff (M, s) |= ϕ.

PROOF We prove this by structural induction on ϕ. We assume that the

theorem holds for all sub formulas of ϕ. GKMOVE returns true and false for >

and ⊥ respectively which is correct. If ϕ is an atomic formula X = v, GKMOVE
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returns 〈{X}, T 〉 and computes the truth value of X = v for all different values

of X which is correct.

If ϕ is ψ ∨ ξ then the algorithm recursively computes the truth table for ψ and

ξ (〈Γξ, Tξ〉 and 〈Γψ, Tψ〉). GKMOVE returns a truth table whose variables are

Γψ ∪ Γξ and its values are disjunction of the values of the values appearing in the

two truth table. For any s ∈ S the values appearing in the table are the disjunction

of corresponding values of ψ and ξ. A similar argument holds for ϕ = ¬ψ.

If ϕ is equal to Bel≤ra (ψ), GKMOVE recursively computes the truth table for

ψ (〈Γψ, T 〉) by calling Subroutine BelVE. By Definitions 5 and 11 we know that

(M, s) |= ϕ holds if
∑

s′∈S Pa(Xh = s′|Xa = s)ψ(s′) ≤ r.

At Steps 2-3 of Subroutine BelVE we create a BN B using Ga and Ca. Now

we add a node Xψ to this BN. The parents of ψ are Γhψ. Note that Γhψ is the

set of variable symbols in Xh that corresponds to variables in Γψ. We set the

CPD on Xψ so that it agrees with T . In this BN, Pr(Xψ = true|Xa = s) =∑
s′∈S,ψ(s′)=truePa(Xh = s′|Xa = s).

In B, Xψ is d-separated from Xa \ Γaϕ. Let X1, ..., Xu be the variable symbols

in Γaϕ. Then,

Pr(Xψ = true|Xa = s) = Pr(Xψ = true|Γaϕ = 〈s1, ..., su〉)

for every s ∈ S where we choose s1 = X1(s), ..., su = Xu(s).

So, (M, s) |= Bel≤ra (ψ) if
∑

s′∈S Pa(Xh = s′|Xa = s)ψ(s′) ≤ r which is

equal to Pr(Xψ = true|Xa = s) ≤ r. Thus returning truth value for all possible

value vectors γaϕ of Γaϕ using Steps 6(a),6(b) is correct.

There are several simple ways to speed up this function. For example, there

are methods to encode the tables in this program in much smaller tables. For

example, when ϕ = (X = v) and |dom(X)| = n, we can hold only two rows,
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one for value v and another one for ¬v. One should keep in mind though that this

may complicate merging two truth tables.

Proposition 21 Let q be a query, s be a state, v be the maximum size of the

domain of random variables. Function GKMOVE calculates the value of q on s in

O(vt) time, for t the largest number of columns in a table generated through the

algorithm.

The worst-case running time of this algorithm is the same as the running time

of GBU of Section 3.1.

4.2 GKM Sampling

In this section we provide a sampling method for answering queries on GKMs.

Function ApxGKMOVE shown in Figure 4.4 presents our sampling method.

We use a similar method to GKMOVE but instead of using a form of dynamic

programming for computing an entire table of values at each stage, we sample the

states. For queries with no modal operator function, ApxGKMOVE calculates the

value of ϕ on s precisely (using the ToDo algorithm which is embedded here) and

returns 1 if ϕ = true and 0 otherwise.

For queries with modal operators such as ϕ = Bel≤ra (ψ), ApxGKMOVE re-

peats the following step n times for each modal operator (thus compounding the

number of samples exponentially when modal operators are nested in ϕ). It sam-

ples values for Xh. For each sampled value vector (state) ApxGKMOVE recur-

sively computes the value of ψ on this state.

Theorem 22 (Soundness of ApxGKMOVE) For GKM M , state s in M , and

formula ϕ in PBBL, ApxGKMOVE(M ,s,ϕ) returns a value in {0, 1}. Assume
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further that all modal operators in ϕ are of the form Bel≤r, and that for every sub-

formula ξ = Bel≤r(ψ) of ϕ, M, s′ 6|= Bel=r(ψ) (NOTICE: “=” intended here).

Then, if M, s |= ϕ, its returned value converges to 1 in probability as n → ∞.

Similarly, IfM, s 6|= ϕ, its returned value converges to 0 in probability as n→∞.

PROOF We apply the result of Theorem 17. We show that the probability

distribution that we sample from and the number of samples and the calculation is

the same as ApxToDo and therefore when the number of samples goes to infinity

the returned value converges to the correct value.

The proof is with structural induction on ϕ. If ϕ is>,⊥, orX = v we return the

actual value. Therefore the theorem holds. If ϕ is ¬ψ both algorithms compute the

value of ψ and return the negation of that. If ϕ is ψ ∨ ξ both algorithms compute

the values of ψ and ξ and return 1 if one of the values is 1.

If ϕ is Bel≤r(ψ) both sample from a uniform distribution over S and compute

the value of ψ on those states. They both then use those values in the same way

to compute the result. The only difference here is that the computation of value

of Pa(Xh = si |Xa = s) is done on the BN instead of explicitly creating the

subjective probabilities for all s, s′.

Proposition 23 Let ϕ be a query whose truth value on state s in GKM M we

want to compute. Let m be the nesting height of modal operators in ϕ, and let

n be the number of sampled states. Function ApxGKMOVE terminates in time

O(|Φ| · |ϕ| · nm).

PROOF The proof follows in an almost identical manner to the proof of

Proposition 16. The main difference is the time taken to evaluate Pa(Xh =

si | Xa = s), which now takes time O(|Φ|), the number of conditional proba-

bility terms in our product of factors. Notice that we can do this in linear time

because Xa are all the parents of Xh, and there are no other variables)
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Function ApxGKMOVE takes more time than Function ApxToDo because of

the need for computation of conditional probability Pa(Xh = si | Xa = s). We

pay this price because we save on space, which is exponentially larger when using

ApxToDo. Note that this is due to the size of the tables Pa,s(s′).

4.3 Example

Consider the query Bel≥0.9
b (Bel≤0.2

a (X3 = A♥ ∨ X4 = A♥)) in our Holdem

example as described in the previous chapters where players Alice and Bob are

represented by a and b respectively. Again, this query refers to “according to

Bob, with high probability (at least 0.9) according to Alice the probability of Bob

having Ace of hearts is low (at most 0.2)”.

Assume that we want to compute the above satisfaction query for the GKM de-

fined in 2.4 and on state s that corresponds toA♦K♦ K♠3♣ K♣K♥Q♥3♠2♣.

This query is calculated as follows:

(∑
s′∈S

Pb(Xh1 = s′ | Xa1 = s)
(
Bel≤0.2

a (X3 = A♥ ∨X4 = A♥)(s′)
))
≥ 0.9

which is:

(∑
s′∈S

Pb(Xh1 = s′′ | Xa1 = s)((∑
s′′∈S

(X3(s′′) = A♥ ∨X4(s′′) = A♥)

Pa(Xh2 = s′′ | Xa2 = s′)
)
≤ 0.2

))
≥ 0.9

Notice that we created a fresh random variable for each Bel in the query.

To compute this satisfaction query we use GKMOVE. In the above formula

we cannot move
∑

s′∈S inside
∑

s′′∈S , since the latter participates in an inequal-
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ity. GKMOVE performs variable elimination on this formula in two rounds. It

eliminates variables s′′ in the first round and variables s′ in the second round.

GKMOVE is a recursive function which first computes a table for X3 = A♥

and a table for X4 = A♥ as follows:

X3 X3 = A♥

A♥ true

2♥ false

. .

. .

. .

K♦ false

X4 X4 = A♥

A♥ true

2♥ false

. .

. .

. .

K♦ false

Then it computes a table for X3 = A♥ ∨X4 = A♥ as follows.
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X3 X4 X3 = A♥ ∨X4 = A♥

A♥ A♥ true

A♥ 2♥ true

. . .

. . .

. . .

A♠ A♠ false

A♠ 2♠ false

. . .

. . .

. . .

K♦ Q♦ false

K♦ K♦ false

Each row shows the value of the column variable and the final column is the

value of sub-formula for those value combinations. The value of a sub-formula

on state s only depends on the value of these variables.

Now to compute Bel≤0.2
a (X3 = A♥ ∨X4 = A♥) we construct the bottom BN

fragment of Figure 4.5. As you can see since the value of X3 = A♥ ∨X4 = A♥

depends only on X3 and X4, we add a node whose parents in the possible state are

Xh
3 and Xh

4 . Note that this BN corresponds to Alice. The ancestors of this new

node are Xa
1 , X

a
2 , X

a
5 , . . . , X

a
9 . Therefore for each possible combination of values

for these variables we compute Bel≤0.2
a (X3 = A♥ ∨ X4 = A♥) using variable

elimination and return a table whose variables are Xa
1 , X

a
2 , X

a
5 , . . . , X

a
9 .

In the same manner we compute the value ofBel≥0.9
b (Bel≤0.2

a (X3 = A♥∨X4 =

A♥)) using BN fragment shown in the top part of Figure 4.5.

Using GKMOVE we answer queries with higher height of modal operators such

as Bel=1
a (Bel≥0.9

b (Bel≤0.2
a (X3 = A♥ ∨X4 = A♥))). The BN fragments for this
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query is shown in Figure 4.6, 4.7 and 4.8. The BN node creation is as follows.

To compute Bel≤0.2
a (X3 = A♥ ∨X4 = A♥) we copy the BN fragment of Alice

(as shown in Figure 4.8) and add a node whose parents are X3 and X4. Since

the ancestors of this node are X1, X2, X5, . . . , X9, the parents of the new node to

compute Bel≥0.9
b (Bel≤0.2

a (X3 = A♥ ∨X4 = A♥)) are those nodes (as shown in

Figure 4.7). Notice that this is added to BN fragment for Bob.

At the end, to compute Bel=1
a (Bel≥0.9

b (Bel≤0.2
a (X3 = A♥ ∨ X4 = A♥))) we

add a new node for Bel≤0.2
a (X3 = A♥ ∨X4 = A♥)) to BN fragment of Alice as

shown in Figure 4.6. The parents of this node in the BN fragment of Alice are the

ancestor of the new node of BN fragment of Bob (shown in Figure 4.7).

4.4 Experimental Results

In this section we compare the running time of all our algorithms on our two-

player Poker example. The queries that our algorithms evaluate are the followings:

X3 = A♥ ∨X4 = A♥

Bel≤r1a (X3 = A♥ ∨X4 = A♥)

Bel≤r2b (Bel≤r1a (X3 = A♥ ∨X4 = A♥))

Bel≤r3a (Bel≤r2b (Bel≤r1a (X3 = A♥ ∨X4 = A♥)))

. . .

Bel≤r10
b (. . . Bel≤r2b (Bel≤r1a (X3 = A♥ ∨X4 = A♥)))

We run ToDo, KBU, and ApxToDo on a Poker PKM for queries with different

heights of nested modal operators as explained above. As shown in Figure 4.9,

the running time of the ToDo algorithm grows exponentially with the number of

nested modal operators while KBU grows linearly. For this example the number
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of states in the state space is 474 so computation with many queries is practical in

all methods, and it takes less than a second to compute a formula with no modal

operator on all states. Therefore, KBU is a better option for this application.

However, if we know that the height of queries of interest are limited and the state

space is large, ToDo might be a faster option.

We also experiment with ApxToDo with different number of samples. The

number next to ApxToDo is the number of samples. We sample the states uni-

formly from the state space. As shown in the figure, even with 100 samples,

ApxToDo is tractable for queries of height at most 4. Usually in an application

like Poker, the height of queries of interest is not more than 4. ApxToDo is also

exponential in height of nested modal operators. Note that in typical real-world

situations the degree of nesting in queries is small (e.g., in Poker a player at most

cares about what the opponent knows about what the player knows).

We also compare the running time of GKMOVE and ApxGKMOVE with KBU,

ToDo, and ApxToDo. This confirms the theoretical results of section 3, 4 about

the running time of our algorithms. As shown in the figure, GKMOVE and KBU

grow linearly with the height of nesting and they both take less than a second

to compute our satisfaction queries of size up to 10. Both approximate methods

(ApxToDo and ApxGKMOVE) grow exponentially with the height of nesting.

The running time of these methods are similar for our example, so we only show

one in the figure. The difference between ApxGKMOVE and ApxToDo is that

ApxGKMOVE saves in space while keeping computation time at a similar com-

parable O(|Φ| · l ·nm) compared to O(l ·nm) for |Φ| being the number of variable

symbols defining the domain. Here |Φ| is 9.
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Subroutine GKMOVE(PKM M , Query ϕ)

1. if ϕ = > return 〈∅, true〉; else if ϕ = ⊥ return 〈∅, false〉

2. if ϕ is an atomic formula X = v then

• return 〈{X}, T 〉 where T is a table with two columns labeled X
and f respectively, with rows 〈v, true〉 and 〈v′, false〉 for every v′ ∈
dom(X) such that v′ 6= v.

3. if ϕ = ¬ψ then

(a) Set 〈Γψ, Tψ〉 ← GKMOVE(M,ψ)

(b) return 〈Γψ,NEGATION(Tψ)〉

4. if ϕ = ψ ∨ ξ then

(a) Set 〈Γψ, Tψ〉 ← GKMOVE(M,ψ)

(b) Set 〈Γξ, Tξ〉 ← GKMOVE(M, ξ)

(c) return 〈Γψ ∪ Γξ,DISJUNCTION(Tψ, Tξ)〉

5. return BelVE(M ,ϕ)

Function sGKMOVE(PKM M , State s, Query ϕ)

1. Set 〈Γϕ, Tϕ〉 ← GKMOVE(M,ϕ)

2. Γϕ = {X1, ..., Xu} for some X1, ..., Xu ∈ Φ.

3. Find 〈x1, ..., xu, t〉 ∈ T such that Xi(s) = xi for all i ≤ u

4. return t

Figure 4.1: Ordered Variable Elimination for GKM (GKMOVE) algorithm. This
algorithm receives M,ϕ and returns a table that maps value vectors for a
restricted set of variables to {true, false}. sGKMOVE evaluates M, s |= ϕ by
searching in the table returned from GKMOVE for the variable values
corresponding to s.
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Subroutine NEGATION(Table T )

1. Set Tneg ← ∅

2. for every row 〈x1, ..., xu, true〉 in T for some x1, ..., xu, add a row
〈x1, ..., xu, false〉 to Tneg.

3. for every row 〈x1, ..., xu, false〉 in T for some x1, ..., xu, add a row
〈x1, ..., xu, true〉 to Tneg.

4. return Tneg
Subroutine DISJUNCTION(Table T1, Table T2)

1. Set Tdisj ← T1 1all columns but f T2, where 1all columns but f is the
natural join on database tables that keeps both columns from T1 and T2

labeled f (we name them f1, f2 in T ).

2. Create column f in Tdisj , and for every row 〈x1, ..., xu, t1, t2〉 ∈ Tdisj set
the f -column value to the truth value of t1 ∨ t2

3. Drop columns f1, f2 from Tdisj

4. return Tdisj

Figure 4.2: Subroutines NEGATION and DISJUNCTION perform logical
negation and disjunction on the f columns of their respective tables.
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Subroutine BelVE(GKM M , Query ϕ)

1. ϕ is of the formBel≤ra (ψ); Set Tϕ ← ∅; Set 〈Γψ, Tψ〉 ←GKMOVE(M,ψ)

2. Let B be a copy of the BN fragment over Xa and Xh for Agent a in M

3. Change B as follows: create a new node Xh
ψ with parents Γhψ, where Γhψ is

Γψ with superscript h added to the variable symbols (thus, now designating
variables in B); for every vector of values γhψ to Γhψ, if Tψ(Γhψ = γhψ) =

false, set the CPD value for Xh
ψ to 0. For all other values γhψ to Γhψ set the

CPD value for Xh
ψ to 1.

4. Set Γaϕ ← ancestors(Γhψ) in B

5. Set Γϕ the set of variable symbols in Φ that correspond to Γaϕ (i.e. without
superscript a)

6. for every vector of values γaϕ to Γaϕ do

(a) p← V E(B|Γaϕ = γaϕ)

(b) Let t← true if p ≤ r, and false otherwise.

(c) Add 〈γaϕ, t〉 to Tϕ

7. return 〈Γϕ, Tϕ〉

Figure 4.3: Subroutines NEGATION and DISJUNCTION perform logical
negation and disjunction on the f columns of their respective tables.
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FUNCTION ApxGKMOVE(GKM M , State s, Query ϕ)

1. if ϕ = > return 1; otherwise if ϕ = ⊥ return 0

2. if ϕ is an atomic formula X = v then

• return 1 if X(s) = v and 0 otherwise

3. if ϕ = ¬ψ then

• return 1− ApxGKMOVE(M, s, ψ)

4. if ϕ = ψ ∨ ξ then

(a) pψ ← ApxGKMOVE(M, s, ψ)

(b) pξ ← ApxGKMOVE(M, s, ξ)

(c) if return 1− ((1− pψ) · (1− pξ))

5. It must be that ϕ = Bel≤ra (ψ); Set T ← empty list (possibly with repeti-
tions or contradicting entries);

6. for j ← 1 to n

(a) Select sj ∈ S an independently drawn sample from a uniform distri-
bution over S

(b) Set pψ ← ApxGKMOVE(M, sj, ψ)

(c) Add 〈sj, pψ〉 to T at position j (notice that we allow T to have du-
plicate entries or contradicting entries (ones in which the same state
receives different truth values).)

7. Let B be a copy of the BN fragment over Xa and Xh for Agent a in M

8. Set p to 1 if |S|
n
×
∑n

i=1 T (i)Pa(Xh = si |Xa = s) ≤ r holds and 0
otherwise, where we compute Pa(Xh = si |Xa = s) by the definition
(product of conditional probabilities) of Pa in Definition 11.

9. return p

Figure 4.4: ApxGKMOVE sampling algorithm.
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Figure 4.5: BN fragments that GKMOVE creates for computing the truth value
of Bel≥0.9

b (Bel≤0.2
a (X3 = A♥ ∨X4 = A♥)). The bottom node in the upper

fragment is Xh

Bel≤0.2
a (X3=A♥∨X4=A♥)

. The bottom node in the lower fragment is

Xh
X3=A♥∨X4=A♥. The function first computes the lower fragment and then the

upper fragment.

70



Figure 4.6: Alice’s BN fragment for
Bel=1

a (Bel≥0.9
b (Bel≤0.2

a (X3 = A♥ ∨X4 = A♥))). The bottom node
Xh

Bel≥0.9
b (Bel≤0.2

a (X3=A♥∨X4=A♥))
.

Figure 4.7: Bob’s BN fragment for Bel≥0.9
b (Bel≤0.2

a (X3 = A♥ ∨X4 = A♥)).
The bottom node Xh

Bel≤0.2
a (X3=A♥∨X4=A♥)

.

Figure 4.8: Alice’s BN fragment for Bel≤0.2
a (X3 = A♥ ∨X4 = A♥). The

bottom node Xh
X3=A♥∨X4=A♥.
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Figure 4.9: Running time.
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CHAPTER 5

RELATED WORK

Our work is most closely related to works on combining modal logics with no-

tions of probability or counting. Further, it takes ideas and is relevant to works on

combining FOL and probabilities, nested probabilistic knowledge in dynamic do-

mains, modeling languages for probabilistic programs, and decisions in POMDPs.

5.1 Combining Modal Logics with Probabilities

5.1.1 Reasoning with one Model

Our work is most closely related to the work of Milch and Koller [Milch and

Koller, 2000] (MK hereforth). Compared to MK, the easiest distinction might be

that our work is the first to consider sampling for inference in such models. This

is not considered by MK’s framework, or by the frameworks of others working on

combining modal logic and probability. Comparison with respect to other factors

of this thesis is detailed below.

As we pointed out in Chapter 2, our work is similar to theirs in that we use a

similar language. Their work and ours derive semantics as a restricted form of

semantics presented by [Fagin and Halpern, 1994] and that can be traced back

to [Harsanyi, 1967] (in the context of type spaces and multi-agent games rather

than modal logics). Our language is more restricted than MK’s in that we do not

include observations as an integral part.
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The semantics of MK applies observation sets that are used to derive an agent’s

subjective probability from a prior on world states shared by all agents. They

connect those observation sets later to models for multi-agent decisions based on

influence diagrams, MAIDs (a concept introduced more generally in later papers).

In MAIDs observation sets refer to observations assumed to be available to agents

in influence diagram.

While not incorporating observations into our semantics, our semantics is more

general than that of MK in that it allows agents that have different subjective prob-

ability models. The agents’ models do not even need to be derived by conditioning

an agent-specific prior. As pointed out in Section 2.3, there are ways for each sys-

tem (MK’s and ours) to simulate the other one, but those are limited and have

computational ramifications.

With regards to computational considerations, there again is a close relationship

between the two works. MK’s reasoning is done in the model as is ours. As we

do, they also describe algorithms for inference with a Bayesian Network (BN)

representation of joint probability available in their models. However, there are

important differences between their models’ assumptions and ours, and hence the

computational properties that result are different.

Specifically, MK use BNs to represent the prior shared by all agents about the

world states. In contrast, our work uses BNs to represent the subjective probabil-

ities of agents, namely, the probability held by each agent that he is at s′ when in

fact he is in s. If we take a model described in MK’s framework, and wish to con-

vert it into a GKM, we need to perform inference in MK’s BN, and then construct

a different BN to represent the resulting subjective distribution (which may have

very different independence properties than the prior).

The other direction (from ours to theirs) is not directly possibly (though may

be possible by adding variables to their model). Thus, sans observations, our
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algorithms can address models in their framework.

Reasoning within a model relies on semantics first presented by [Harsanyi,

1967] in the context of type spaces and multi-agent games rather than modal log-

ics. The main difference between our work and that literature is that these models

are extended and used to examine different questions in game theory in an ad-hoc

fashion. The examination of those models in the framework of a logic (hence, per-

mitting automated reasoning about them) has been developed in the last 15 years

[Heifetz and Mongin, 1998; Aumann, 1999a; 1999b; Heifetz and Mongin, 2001;

Aumann and Heifetz, 2002], but has taken an approach that seeks to find prop-

erties of such models in general and reason about them. We examine this line of

work in more detail in Section 5.1.2.

5.1.2 Axioms and Validity

A body of works [Fattorosi-Barnaba and Amati, 1987; Fagin and Halpern, 1994;

Heifetz and Mongin, 1998; 2001; Cao, 2007; Ferreira et al., 2008] is concerned

more broadly than above on creating formal systems (including language, models,

axioms, and decision procedures where possible) that represent the knowledge of

agents about other agents’ knowledge appropriately. These represent uncertainty

and shortage of knowledge as a probability.

An expressive logic presented by Fagin and Halpern in [Fagin and Halpern,

1994] extends work by [Fagin et al., 1990] and includes both an accessibility

relation and probability measures, and is able to represent and discuss in the

logic probabilities of statements and also linear combinations of those. Fagin

and Halpern present a sound and complete axiomatization and several extensions

that capture conditions of interest to works in distributed systems, cryptography,

and analysis of probabilistic programs.
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They show that their system has the finite-model property (if there is a model

satisfying some axioms, there is also a finite-sized model satisfying the same ax-

ioms), hence reasoning there is decidable. Further, they show that finding if ϕ, a

formula in their language, is valid is EXPTIME-complete in their system with or

without most of their extended sets of axioms. For two subsets they show better

tractability, namely, PSPACE completeness and NP completeness (when reason-

ing about a single agent), respectively. [Fagin et al., 1990] shows that satisfiability

for a more restricted language without the combination of nested modalities and

linear combinations of probabilities (that still includes ours) is NP-complete.

In contrast to these works, our work is limited to reasoning with a given model,

so our task is much simpler. This is most evident by observing the relatively low

(typically linear in |ϕ| instead of exp(|ϕ|) of [Fagin and Halpern, 1994]) com-

putation time for our algorithms. Otherwise, our language and semantics can be

seen as derived from theirs. One could consider using some of our techniques for

reasoning with their logic, if representative models can be enumerated or sampled

efficiently. This is beyond our scope here.

A related set of works rooted in economics [Heifetz and Mongin, 1998; 2001]

seeks to formalize type systems [Harsanyi, 1967] and presents formal systems

that can be seen as restrictions of those of [Fagin et al., 1990; Fagin and Halpern,

1994]. Their language includes modal operators for comparing the probability

of a formula with numbers in [0, 1], in a manner very similar to the one used

in this thesis. They provide an axiomatization that unlike [Fagin et al., 1990;

Fagin and Halpern, 1994] does not allow formulas involving linear combinations

of probabilities. They examine several families of type systems, and show that

their axiomatization for some such families is sound and complete, and their logic

is decidable for those.
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5.1.3 Other Combinations of Modal Logic with Probability-Like
Structures

The strings of works on graded modal logics [Goble, 1970; Fine, 1972; Fattorosi-

Barnaba and de Caro, 1985] includes a somewhat different modal operator that

concerns the number of states accessible from a state (instead of a subjective

probability distribution over states). These logics are the subject of research with

applications in formal methods among others [Tobies, 2000; Kazakov and Pratt-

Hartmann, 2009].

Clearly, the languages for these logics are different from ours and the body of

works on probabilistic modal logics, but there are still similarities. In particular,

using such logics one can represent a limited version of our semantics, namely,

one in which we assume a uniform distribution as a subjective probability, and the

size of the set provides the degree of certainty we attribute to each possible state.

In Figure 5.1, we summarize different representations for nested knowledge and

nested probabilistic knowledge. In Figure 5.2, we show how different examples

are represented using the syntax of different logics.

5.2 Combining First-Order Logic and Probabilities

Many applications of AI have both stochastic and non-stochastic elements. For

example, robot control can include high-level specifications in logic and a lower-

level probabilistic sensing model. Also, Natural Language Processing wishes to

apply high-level knowledge in logic with lower-level probabilistic models of text

and spoken signals. Many databases and database views are logical in nature,

while relationships between those databases (e.g., if two database columns refer

to the same concept) are uncertain.

The last 20 years have seen much work in the AI community and the Databases
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Figure 5.1: Different Representations for Nested Knowledge.

community on the combination of first-order logic and probabilistic expressivity.

These works present languages that can express probability distributions together

with explicit references to objects, functions, and relationships, as in First-Order

Logic (FOL) (e.g., [Nilsson, 1986; Halpern, 1990; Pfeffer et al., 1999; Kersting

and Raedt, 2000; Milch et al., 2005]). These languages are useful frameworks

for many machine learning applications, and recent works also show that they are

useful for computational efficiency of inference [Poole, 2003; de Salvo Braz et

al., 2006].

Research on the combination of logic and probability is ongoing. Current chal-

lenges include (a) applying relational structure in speeding up inference and treat-

ing probabilistic models over many objects, (b) combining knowledge bases that

are given already in probabilistic or logical form, and (c) extending representation

languages to include functions and equality of objects in sound and simple ways.

The work reported in this thesis is similar to those works in that it includes
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Figure 5.2: How different examples are represented using different syntaxes.
Example: Assume that there is a coin that is either fair or two-headed. The coin
is tossed and our agent does not see the outcome.

elements from logical representations and elements from probabilistic representa-

tions. It differs from those works in the elements of logic that are combined with

probabilities and the probabilistic frameworks with which they are combined. We

give some details in the following paragraphs.

A body of works [Pfeffer et al., 1999; Kersting and Raedt, 2000; Jaeger, 1997;

Ng and Subramanian, 1992; Ngo and Haddawy, 1995; Friedman et al., 1999;

Koller and Pfeffer, 1998] focuses on combining relational representations with

Bayesian Network probability representations. These combinations take the form

of logic programs extended with probabilistic interpretations of rules, or a frame-

based view in which objects instantiate classes, and the objects may have un-

certainty over elements or uncertainty over their connections. They all have a

rather direct Bayesian Network interpretation. We (and our closer works men-

tioned above) differ from those works in that we do not consider relational aspects

in logic but rather a Kripke-structure like accessibility relation which our models

exchange for subjective probability distributions.

Another important body of works [Nilsson, 1986; Halpern, 1990; Bacchus

et al., 1994; Richardson and Domingos, 2006] focuses on combining FOL ex-
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pressivity (quantified statements, set of models instead of a single model, func-

tions) more directly with probability. Some of these works (e.g. [Nilsson, 1986;

Halpern, 1990]) extend FOL with probability statements about FOL statements.

[Halpern, 1990] noticed that there are two kinds of probabilistic statements that

one may wish to have in such contexts, and he axiomatized the resulting logic,

pointing out that some of them cannot be axiomatized in a recursively enumerable

way. Others (e.g. [Bacchus et al., 1994; Richardson and Domingos, 2006]) in-

troduce assumptions such as maximum entropy or a known domain size on top of

an FOL sentential representation and derive a single model. We differ from all of

those works in that we do not consider first-order (not even relational) elements in

our representation, as pointed out above.

5.3 Nested Probabilistic Knowledge in Dynamic
Domains (When Actions Change the World State)

In games such as Poker and Rock-Paper-Scissors, each agent performs actions

and receives observations during the course of the game that affect his belief state.

Therefore, the model of the world needs to be dependent on the actions that are

performed by agents. An example of such games is Kuhn’s Poker - a simple game

in which the players can benefit from reasoning about each other’s probabilistic

knowledge.

A line of research focuses on applying probabilistic knowledge to decision

making [Milch and Koller, 2000; Koller, 2001; Koller and Milch, 2001; Milch

and Koller, 2003]. These works on models called MAIDs model the dynamics of

the system as an extension of Influence Diagrams by adding updates of agents’

knowledge to the model and making agents’ decisions take into account other

agents’ decisions (modeling the latter as decisions instead of random variables).
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These works assume that (1) the agents do not forget observations they have made

(perfect recall assumption) and (2) the value of the variables do not change from

stage to stage. Another work in this category is [Gal and Pfeffer, 2008] on net-

works of influence diagrams (NIDs), which lift some of the common-prior and

rationality assumptions of MAIDs.

Our work does not concern decisions and cannot represent observations as inte-

gral parts of our model. However, by compiling observations into our model, our

work can serve as a subroutine in the representations of agents’ knowledge and

the inference needed about them throughout the solutions of MAIDs. We did not

explore this direction further in this thesis, but we postulate that such an extension

would be more expressive than present systems.

Different works provided models of opponents in dynamic games in which ac-

tion and observation model are known or learned. [Richards and Amir, 2007;

Bard and Bowling, 2007] use particle filtering as part of a modeling approach in

which a dynamic opponent applies actions and changes the state of the world.

[Bard and Bowling, 2007] assumes that the dynamic model of the system has a

known structure (e.g. the distribution is Normal) and the parameters are unknown.

[Richards and Amir, 2007] assumes that the transition model is fully known. Our

work can fit within those by adding our more expressive agent models to those

frameworks, yielding better opponent models.

A large group of works concerns modeling the knowledge of agents’ in stochas-

tic dynamic worlds. Closest to ours are works that use logic to represent and rea-

son about such domains, e.g. [Bacchus et al., 1999; Kooi, 2003; van Benthem et

al., 2009; Sack, 2009]. These works consider updating the probabilistic knowl-

edge of agents after performing actions, where probabilistic knowledge means a

subjective distribution over possible world states as considered by [Fagin et al.,

1990].
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[Bacchus et al., 1999] presented a simple axiomatization that captures an agent’s

state of belief and the manner in which these beliefs change with (deterministic

or probabilistic) actions. They build on a general logical theory of action de-

veloped by Reiter and others [Reiter, 2001], formalized in the situation calculus

[McCarthy and Hayes, 1969]. They add a few fluents includingK to situation cal-

culus in which K(s, s′) means situation s and s′ are indistinguishable to the agent

(as in modal logic). Then they quantify the notion of possibility (K fluent) by

associating with each world state the agent considers possible the agent’s degree

of belief that that is the actual world.

Our work differs from these in that we have a single (static) probabilistic model,

whereas their framework is that of situation calculus, and reasoning is about a set

of models. For technical reasons their model of agents’ knowledge in a situation

is not required to be a probability, but there is a simple normalization that brings

it into the same frameworks as discussed above. Our work can be combined with

this line of works and help make them more computationally tractable by assum-

ing a single a single probabilistic model for actions and knowledge, and reasoning

in that model.

The works of [Kooi, 2003; van Benthem et al., 2009; Sack, 2009] take a similar

approach to [Bacchus et al., 1999], but are focused further on probabilistic beliefs

over beliefs in dynamic logic. These works apply semantics that is more general

than ours in that it includes both a subjective probability per agent per state and

also an accessibility relation. The language of [van Benthem et al., 2009] includes

both a knowledge (all accessible worlds) and a probabilistic (probability equals to

p) modal operator, but not a comparison operator (probability at most p). They

consider actions that change agents’ knowledge by observation models, and they

present complete axiomatizations of these languages, but do not consider com-

plete computational issues with reasoning in a model. Our results may apply to
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their system, if our semantics is extended properly.

5.4 Languages that Model Probabilistic Programs

Propositional probabilistic variants of temporal logic were studied in [Lehmann

and Shelah, 1983; Hart and Sharir, 1984]. These works’ semantics is similar to

the one we adopt here, but the focus on temporal verification of programs yields

a different language. Specifically, they are interested in formulas about infinite

paths of states (e.g., paths along which either proposition q always holds or else

q holds until the first time r holds). These models are mainly used to analyze

transition from state to state and a path in such models is interpreted as temporal

transition between states. The main application that is discussed in these papers

is analyzing probabilistic programs.

A more expressive semantics and syntax are introduced by [Kozen, 1983; Feld-

man, 1986] for a similar purpose, namely, the verification and analysis of proba-

bilistic programs. Their syntax is richer than [Lehmann and Shelah, 1983; Hart

and Sharir, 1984] in that they allow explicit probability statements rather than just

talking about probability 0 and 1. However, they do not consider beliefs over

beliefs in the way that we (and closer works to ours) do. Therefore, the two lan-

guages are not easily comparable.

In these systems transition models are probabilistic. Following those works,

the probabilistic-programs verification community focused on nondeterminism

(demonic uncertainty) instead of probabilistic. Recent works (e.g. [Morgan and

McIver, 1999]) revive the old topic by combining probabilistic and nondetermin-

istic uncertainty, but the probabilistic parts of those models and methods remain

the same.
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5.5 Related Works on Partially Observable Markov
Decision Processes(POMDPs)

A group of related work models agents’ beliefs about other agents’ beliefs to a

finite level of nesting. This includes work on interactive POMDPs, such as [Gmy-

trasiewicz and Doshi, 2005; Doshi et al., 2009]. They extend the framework of

partially observable Markov decision processes (POMDPs) to multi-agent settings

by incorporating the notion of agent models into the state space. Agents maintain

beliefs over physical states of the environment and over models of other agents,

and they use Bayesian update to maintain their beliefs over time. However, this

only allows agents to reason about other agents’ models and not deeper than that

while our model does not restrict the height of nested modal operators.

Another line of work is work in the AI community on partially observable

stochastic games and their cooperative counterparts, decentralized POMDPs, which

includes [Hansen, 2004; Bernstein et al., 2000; Zettlemoyer et al., 2008]. Among

these, only work of [Zettlemoyer et al., 2008] focuses on filtering of infinitely

nested beliefs. They define an infinite sequence of nested beliefs about the state

of the world at the current time, and present a filtering algorithm that maintains a

finite representation which can be used to generate these beliefs. The main differ-

ence between this work and ours is that we allow finite nested modal operators.

On the other hand, in [Hansen, 2004; Bernstein et al., 2000] policies are repre-

sented as direct mappings from observation histories to actions. That approach

removes the need for the agents to perform any kind of filtering, but requires the

specification of some particular class of policies that return actions for arbitrarily

long histories.
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CHAPTER 6

FUTURE WORK

In this chapter, we provide a few directions for future work. We provide motivat-

ing examples and background information for these directions.

One direction of future work is to implement a Poker player using this frame-

work. This player can be played against other AI Poker players. Using algorithms

in this thesis, the Poker player can use the knowledge he acquires in the course of

the game to play better.

As shown in this thesis, a game such as Poker can be modeled with our frame-

work. However we need to be able to model the actions of other players to be

able to reason about a game. For example, a player should be able to change his

model when he sees that the other player raises. In order to do that we need an

action model that enables a player to transit from one model to another. Then in

this new model we can use the same efficient algorithms developed here to answer

satisfaction queries. However the transition model should be simple and should be

efficient to reason with. Possibly filtering algorithms can be developed to transit

from one model to another with an action.

Another direction of future work is defining a decision making model. A player

can answer queries using our framework but he does not know how he can benefit

from it or what should he do if the world model satisfies a query. A line of research

exists that focuses on applying probabilistic knowledge to decision making [Milch

and Koller, 2000; Koller, 2001; Koller and Milch, 2001; Milch and Koller, 2003].

They model the dynamics of the system as an extension of Influence Diagrams by
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making agents’ decisions take into account other agents’ decisions. Investigating

this direction using our syntax and semantics is another area that can be explored

in future.

Another direction is opponent modeling which can be viewed as learning for-

mulas. This is useful when we know that a player makes his decisions based on

the truth value of some formula. Learning that formula can help the first player to

reason about the world. Assume that a player has some outside knowledge about

the other player’s strategy. For example assume that player 1 knows that player

2 raises when he believes that his probability of winning is greater than 0.7 and

checks otherwise and when player 2 raises he folds if his probability of winning is

less than 0.4 and calls otherwise. If we assume that player 1 knows that player 2

raises when he believes that his probability of winning is greater than some num-

ber and checks otherwise, learning that number is straightforward. However there

are many other scenarios that might be the case in this game. For example, player

1 might raise if his winning probability is between two numbers A and B, and

checks if his winning probability is greater than B to trap the other player into

raising.

All of these possibilities can be modeled with a formula encoded in our lan-

guage. However, learning such formulas is not straightforward. One direction of

future work is to provide fast algorithms to learn such formulas. Then a player

can use those to update his knowledge and use his knowledge to make decisions.
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CHAPTER 7

CONCLUSION

In this thesis we provided a framework for representing and reasoning with prob-

abilistic knowledge of agents about other agents. We provided a language that is

based on [Fagin and Halpern, 1988] and we explained how it can be used for rep-

resenting different examples. We also provided tractable exact and approximate

reasoning algorithms for our model.

Our language can be used for representing nested probabilistic knowledge of

agents about the world and about the knowledge of each other. The formulas

represented with our language can have as many nested knowledge operators as

we wish. Our reasoning algorithms can evaluate the value of a satisfaction query

on a given state and a given model in a tractable time and space. If the number

of states are large, our exact algorithms might be slow, therefore we provided

approximate algorithms for such cases.

Our syntax and semantics for reasoning with nested probabilistic knowledge is

an extension of previous models of probabilistic knowledge. We provide two dif-

ferent models, PKMs and GKMs. GKMs are a factored representation for prob-

abilistic modal structures (PKMs). The main contribution is defining graphical

Kripke models (GKMs). It provides a factored representation of a Kripke model

without requiring the common prior assumption of Milch and Koller [Milch and

Koller, 2000] (MK). In addition to removing this assumption, GKMs remove “ob-

servation assumption”, which asserts that each agent has a prior distribution and

an agent’s probability distribution in each state can be derived by conditioning
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that prior on some observations. GKMs do not require an agent’s probability dis-

tributions in different equivalence classes of states to be related to each other in

any way.

We provided both exact and approximate algorithms for evaluating satisfaction

queries on PKMs. We provided exact algorithms of two kinds. One of them is

more efficient with larger state spaces, and the other one is more efficient with

shallow nesting of modal operators in queries (i.e. the largest number of modal

operators in root-to-leaf paths in expression trees of queries is small). We also

introduced a sampling algorithm for PKMs, and showed that it converges to the

correct answer under some conditions on the query formula. We proved that when

this condition fails, the answers may not converge and sometimes are guaranteed

(almost surely) not to converge.

We also introduced exact and approximate reasoning methods for answering

queries on GKMs. Our exact method uses variable elimination to determine the

value of the satisfaction query. Here, our model is more compact than PKMs and

therefore enables larger-scale applications.

We discovered there are applications that modal logic is not good enough to

deal with such as Poker. However, these applications can be treated with adding

probability to modal logic. We also discovered that although theoretically it is

straightforward to evaluate the value of a formula on a probabilistic knowledge

model, experimentally we need to develop fast algorithms (exact/approximate) to

scale up to large domains. It means that when we have very many states in our

model, computing queries with nested modal functions is not tractable. Therefore

to compute these queries we might need to sample the state space and estimate the

value instead.

We also discovered that probabilistic independence assumptions can be ported

to probabilistic modal logic models. In these models the accessibility relation can
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benefit from encoding with BN fragments. These independence assumptions can

be used in developing tractable model checking algorithms.

We discovered that for the purpose of reasoning, it is easier to represent a world

with a model than a set of axioms. To check if a query is implied with a set of

axioms, we need to have a sound and complete axiomatization. However, if you

represent a world with a model, the truth value of a query can be computed easily

theoretically. We provided algorithms that can compute it fast as well.

In conclusion, we showed how the framework described in this thesis can be

used to model a game such as Poker in which players reason about each others’

probabilistic nested knowledge. Therefore, we can use this framework and reason-

ing algorithms to model and reason about games such as Poker in which players

usually decide based on what they know about the state of the game and other

players’ knowledge.
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