
 

 
 
 

A SHORT-TERM ENSEMBLE WIND-SPEED FORECASTING SYSTEM FOR 
WIND POWER APPLICATIONS 

 
 
 
 

 
BY 
 

JUSTIN JOSEPH TRAITEUR 
 
 
 
 
 
 
 

THESIS 
 

Submitted in partial fulfillment of the requirements 
for the degree of Master of Science in Atmospheric Sciences 

in the Graduate College of the 
University of Illinois at Urbana-Champaign, 2011 

 
 
 

 
Urbana, Illinois 

 
 
Adviser: 

 
Assistant Professor Somnath Baidya Roy 



ii 
 

Abstract 

Accurate short-term wind speed forecasts for utility-scale wind farms 

will be crucial for the U.S. Department of Energy’s (DOE) goal of providing 

20% of total power from wind by 2030.  For typical pitch-controlled wind 

turbines, power output varies as the cube of wind speed over a significant 

portion of the power output curve.  Therefore, small improvements in wind-

speed forecasts would constitute much larger improvements in wind power 

forecasts.  In addition, communicating the level of uncertainty in these wind 

speed forecasts will allow the industry to better quantify the level of financial 

risk inherent with these forecasts.  In this study, a computationally efficient 

and accurate forecasting system is developed.  This system uses a 21-

member ensemble of the Weather Research and Forecasting Single-Column 

Model (WRF-SCM V3.1.1) to generate a probability distribution function (PDF) 

of 1-hour forecasts at a 90m height location in West/Central Illinois. The 

WRF-SCM ensemble was initialized by the 20 km Rapid update Cycle (RUC) 

00h forecast and perturbed by both perturbations in the initial conditions and 

physics options.  The PDF was calibrated using Bayesian Model Averaging 

(BMA) where the individual forecasts were weighted according to their 

performance.  This combination of a mesoscale numerical weather prediction 

ensemble system and Bayesian statistics allowed for both accurate prediction 

of 1-hour wind speed forecasts and their level of uncertainty. 
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1. INTRODUCTION 
 

In order for wind power to be a viable solution to the global 

carbon and fossil fuel problem, accurate forecasts of wind speed will be 

vital for the growth of the wind power industry.  Errors in wind speed 

forecasts lead to errors in forecasting for both demand of electricity and 

power supply from wind farms [McSharry et al., 2005].  For typical 

pitch-controlled wind turbines, power output varies as the cube of wind 

speed over a significant portion of the power output curve (Figure 1.1).  

Therefore, small improvements in wind-speed forecasts constitute much 

larger improvements in wind power forecasts. A 10%-20% 

improvement in wind power generation forecasts equates to hundreds 

of millions to billions of dollars in savings in annual operating costs.  

Since power output of a wind farm is a function of the wind-speed, 

power generation can vary from timescales of less than a minute to 

several days or weeks [Lew et al., 2010].  The wind power industry thus 

needs accurate wind-speed forecasts for the timescale of several 

minutes to several years for a wide range of applications including 

turbine blade pitch control, conversion systems control, load scheduling, 

maintenance scheduling and resource planning [Stetsos, 2000; Costa et 

al., 2008].  Errors in the application of these processes constitute 

financial risks to companies resulting from inaccurate forecasts. 
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Figure 1.1 The top figure shows a power curve for a Gamesa 2 MW 
wind turbine.  The cut-in speed at which the turbine starts to produce 
power is 4 m/s, the cut-out speed or the furling speed, which is the 
wind speed at which the machine shuts down to avoid damage is 
25m/s.   The bottom figure is the amount of power produced compared 
to the theoretical limit.  At low wind speeds the machine is very efficient 
at capturing energy from the flow but decreases as the wind approaches 
the cut-out speed. 
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Accurate wind forecasts are of particular importance to the U.S. 

wind power industry. The U.S. Department of Energy’s (DOE) goal of 

providing 20% of total power from wind by 2030 is considered an 

Engineering Grand Challenge.  In order to reach the goal of 20% wind 

power penetration, wind power installations would need to increase to 

more than 16,000 MW per year by 2018 and continue at that rate until 

2030  [USDOE, 2008].  At such a high level of market penetration, wind 

farms must be integrated with the grid [Georgilakis, 2008]. To 

accomplish this task, wind farms must guarantee a fixed amount of 

electricity generation over different time scales [Smith et al., 2004]. 

Over the short-medium time horizon, the following 3 timescales are of 

interest for operation of the utility system and the structure of the 

competitive electricity markets [Smith et al., 2004]: 

• Unit-commitment horizon of 1 day to 1 week 

• Load-following horizons of 1 to several hours 

• Regulation-horizon of 1 minute to 1 hour 

The unit-commitment time frame encompasses decisions 

regarding the scheduling of unit startup and shutdown while retaining 

system reliability at minimum cost.  If the wind farm deviates from their 
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day ahead schedules by more that ±1.5% then financial penalties are 

imposed under FERC 888 [NARUC, 2007]. 

The load-following time frame spans from 1 to several hours in 

length.  In this time frame, utilities must be able to ramp units up and 

down to follow the load resulting from random fluctuations in the 

combined load and wind plant output. 

The focus of this paper is to develop a wind speed forecasting 

system for the regulation horizon.  In the regulation horizon time frame, 

sufficient regulating capacity must be available from the units on 

regulating duty to hold deviations within the tolerance prescribed by the 

North American Electric Reliability Council.  The statistically accepted 

deviations are quantified in the Control Performance Standards 1 and 2 

(CPS-1 and CPS-2) [Smith et al., 2004].  Only with accurate wind speed 

forecasts that can also predict ramp up and down events at the 1-hour 

level or less will the problem of the regulation scheduling diminish. 
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1.1 Current Forecasting Techniques 

Currently, many forecasting techniques exist for short-term 

forecasting of wind speed at the 1-hour level.  Numerical Weather 

Prediction (NWP), statistical models, and artificial neural networks 

(ANN) can be used individually or in concert with each other to provide 

wind speed forecasts.  A brief discussion of each forecasting technique 

is discussed in the next few paragraphs. 

NWP has recently been the major focus of the literature for wind 

speed prediction.  NWP models operate by solving a system of 3-

dimensional conservation equations of mass, momentum and energy in 

the atmosphere at given locations on a spatial grid.  They also include 

subgrid-scale turbulent transfer and microphysical processes.  The 

models are initialized by observations taken both in situ and remotely.  

The numerical model then solves the system of equations to provide a 

forecast of temperature, wind velocity, pressure and precipitation for a 

future time.  NWP models are very complex and can take minutes to 

hours to complete.  The more sophisticated models require a large 

computing infrastructure and are typically run by large governmental 

agencies such as the Global Forecast System (GFS) at the National 

Center for Atmospheric Research (NCEP). 
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A major factor that influences the accuracy of the NWP models is 

the resolution of the grid and uncertainty in the initial observations and 

parameterization schemes.  Finer spatial grid spacing than general 

forecasting NWP models, such as the GFS, is needed in order to provide 

sufficient results for wind speed power forecasting.  These higher 

resolution models are able to better capture the smaller-scale 

atmospheric and geographic features that are inherently different at 

each forecast site.  For any numerical model, a minimum of five grid 

points are required to resolve a wave’s structure.  Therefore only NWP 

models of at least 20 km resolution or less can adequately capture 

mesoscale atmospheric structures. 

Deterministic single-valued forecasts from NWP models contain 

uncertainties primarily due to errors in model initialization and/or model 

imperfections in parameterization schemes and resolution. These 

uncertainties can be minimized by conducting ensemble simulations 

where multiple forecasts are generated by (i) adding small 

perturbations to the initial conditions; (ii) using different 

parameterizations for geophysical processes; (iii) using multiple models 

[Molteni et al., 1996; Toth and Kalnay, 1997; Buizza et al., 2005].  The 

ensemble mean can now be considered the most likely forecast [Buizza, 

et al., 1999; Palmer 2000]. Recent studies have proposed 



7 
 

improvements over the conventional ensemble averaging method. 

Linear averaging of outputs from individual ensemble members 

assumes that the individual forecasts are equiprobable and hence can 

underestimate uncertainty [Taylor, 2004; Taylor and Buizza, 2006]. To 

improve the quantification and further reduce the effects of uncertainty, 

the individual ensembles can be calibrated against observations. 

While NWP models solve a set of prognostic equations to forecast 

the future state of the atmosphere, statistical models predict the future 

of several meteorological variables based on past events at the forecast 

site.  These models study the past spatial-temporal evolution of 

weather variables such as wind, temperature and pressure to discover 

patterns relative to each other at a given site.  There are a wide range 

of methods employed for statistical forecasting such as linear and non-

linear regression, autoregressive model, moving average model, 

autoregressive average model, autoregressive integrated moving 

average model, kalman filter, spatial correlation method and 

persistence [Duran et al., 2007; Costa et al., 2008; Riahy and Duran, 

2008; Lei et al., 2009; Taylor et al., 2009].  This forecasting technique 

has shown promising results for forecasting timescales less than several 

hours in length. 



8 
 

Another forecasting technique used by wind farm operators 

incorporates the use of Artificial Neural Networks (ANN).  Artificial 

Neural Networks are very similar to other statistical techniques in that 

they used for very short forecasting time periods (<3 hours) and learn 

from the difference between NWP forecasts and observations.  There 

are some important differences however.  While most statistical 

methods are auto-recursive, i.e. use the difference between the 

predicted and actual wind speeds immediately past to tune the 

parameters in the model, ANN use past data taken over a given time-

frame to learn the relationships between the input data and output wind 

speeds to learn historic patters in order to predict future patterns.  

Since it is increasingly difficult to obtain measurements that are highly 

correlated to the long-term wind forecast, the accuracy of these models 

degrades with increasing prediction time.  Therefore, NWP models will 

be needed in order to give accurate wind power forecasts for 

increasingly longer timescales [Potter et al., 2004]. 

 

1.2 Ensemble Forecasting With Bayesian Model Averaging 

NWP models can sometimes have an advantage over statistical 

and ANN models forecasting systems.  Since statistical models only 
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predict the future state of the atmosphere by looking at the past, they 

commonly fail when a component of the atmosphere is changing.  For 

example, empirically identified relationships that govern wind speed are 

likely to change with changes in the synoptic scale flow regime, climate 

or land use/cover.  Therefore, NWP models that are initialized with 

current observations will be able to solve the prognostic equations that 

govern atmospheric flow and provide a forecast for atmospheric 

dynamic and thermodynamic variables that will routinely beat other 

statistical forecasting methods.  Introducing an NWP ensemble 

forecasting system will then give the user a better understanding of the 

uncertainty in the forecast due to errors in initialization or model 

parameterization resulting in ensemble spread. Usually one or several 

ensemble members will do, on average, better than the other members 

in the ensemble system.  When this occurs, using a linear average of 

the ensemble members is no longer the best deterministic forecasting 

method.  Another statistical solution to the problem is therefore needed. 

The use of Bayesian statistics can calibrate an ensemble 

forecasting system to give better forecasts than the linear average 

technique alone.  One such calibration technique is Bayesian Model 

Averaging [Raftery et al., 2005] where weights are calculated for each 

ensemble member based on their performance during a training period. 
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Therefore the weighted ensemble average forecast constitutes the most 

skillful forecast. Studies show that BMA-calibrated ensemble forecasts 

outperform conventional linear-averaged ensemble forecasts [Raftery et 

al., 2005]. 

For this study, I will devise an efficient system to provide accurate 

1-hour forecasts of wind speed in the load-following horizon. A 1-

dimensional column model is computationally much faster than 

traditional 3-dimensional NWP models and hence allows us to rapidly 

generate a large number of ensemble forecasts.  Use of this modeling 

tool will show that the BMA-calibrated ensemble-average forecast is 

significantly better than a linear averaged ensemble forecast.  In 

addition, I will also demonstrate that the improvements are greater if 

separate weights are estimated for different stability regimes. 

Experiments will also be conducted to test if the nature and length of 

training period can affect the calibration and further improve the 

forecasts. 

 

 

 



11 
 

1.3 Research Question 

The goal of this study is to develop an ensemble forecasting 

system of the Weather Research and Forecasting Single Column Model 

(WRF-SCM V3.1.1) calibrated by Bayesian Model Averaging (BMA) that 

can provide accurate and computationally efficient forecasts of wind 

speed at a 90 m height location.  This forecasting system must also 

communicate the level of uncertainty inherent in the forecast in order to 

make informed decision to minimize financial risks.  The paper will 

begin with a description of the methodology, and then proceed to a 

description of the model and simulations.  Next will be a description of 

how the WRF-SCM ensemble was calibrated and how the forecasts were 

evaluated.  I will then discuss the effects of using different training 

windows for BMA ensemble forecasts and final conclusions of the study.  

Finally, I will conclude the paper with plans of future work regarding 

BMA averaged forecasts. 
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2. METHODS 

2.1 Study Site 

In this study, I will use a site located in west/central Illinois to 

forecast wind speeds for the summer months of 2008.  Illinois was 

chosen because publicly available tower wind observations were 

available at 90 meters height.  These observations are sometimes 

difficult to ascertain due to the privacy rights of many wind power 

companies.  In addition, Illinois has considerable wind energy resources 

that are in close proximity to large population centers (e.g. Chicago, St. 

Louis, Davenport) that can lessen the burden on existing electrical 

utilities (Figure 2.1).  Also, large expanses of rural countryside and 

farmland exist in Illinois where large utility-scale wind farms can be 

developed.  Illinois is also seeing massive expansion in wind energy 

development.  Current estimates predict that more than 12,000 MW of 

new wind energy utilities are currently in planning for Illinois (IWEA, 

2011). 

For this study I used wind speed data from a 90m meteorological 

tower located in Chalmers Township (40.41N, 90.72W) in West/Central 

Illinois.  This data is available publicly by the Illinois Wind 

(http://illinoiswind.org), a project of the Illinois Institute for Rural  
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Figure 2.1 annual average wind speeds at 80m for Illinois.  Wind speed 
values over 6.5 m/s are considered optimal for utility scale wind farms.   
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Affairs, which collects and disseminates wind data to promote and 

assist wind energy projects in Illinois.  This data is available at a 10-

minute frequency for a 3-month period during the summer months of 

2008 (June 1st – August 31st).  Data from the first 2 months 

(06/01/2008-07/31/2008) are used on to “train” the ensembles, i.e. to 

calculate the weights for the individual ensemble members.  The 

ensemble is used to forecast wind speeds for the 08/01/2008-

08/31/2008 period and the forecasts are evaluated using the 

corresponding observations. 

 

2.2 Time Period 

Meteorological boreal summer (June-August) is usually dominated 

by weaker and less frequent cyclone activity over the North American 

continent due to decreases in Eddy Available Potential Energy (EAPE).  

This is due to the seasonal northward retreat of the location of the polar 

front and subsequent storm track [Min et al., 1982; McCabe et al., 

2001].  This then simplifies the problem of ensemble calibration due to 

the benign nature of synoptic scale motions.  In this tranquil weather 

regime Bayesian model averaging is allowed to better differentiate 
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which ensemble members consistently perform better than the others.  

In addition, electricity demand also peaks in summer months due to the 

increased cooling demand by the residential and commercial sectors.  

This study can also be expanded to other times of the year, but this is 

outside the scope of this study. 

Summer is also characterized by large fluctuations in the diurnal 

temperature range [Sun et al., 2006].  Therefore, large fluctuations in 

atmospheric stability will be present in the lower atmospheric levels 

throughout the diurnal cycle.  In addition, boundary layer wind speeds 

are a strong function of atmospheric stability [Sumner and Masson, 

2006].  In order to quantify the diurnal range of wind speeds in the 

lower levels, vertical profiles of equivalent potential temperature were 

computed to estimate stability as a function of local standard time (LST) 

(Figure. 2.2).  Based on this analysis, the study period was divided into 

4 different categories: (i) daytime unstable (0900-1700 LST), (ii) 

evening transition (1800-2000 LST), (iii) nocturnal stable (2100-0500 

LST), and finally (iv) morning transition (0600-0800 LST).  As seen in 

figure 2.2, during the day and evening time periods the atmospheric 

thermodynamic profiles are characterized by mainly unstable conditions 

due to the strong solar heating at the surface.  The evening transition 

period seems characterized by a gradual transition to a more neutral  
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Figure 2.2 Histogram of the difference in equivalent potential 
temperature between 975 mb and the surface for Chalmers Township 
from 06/01/08 – 08/31/08.  Top Left:  Morning transition regime (6a-8a 
LST). Top Right: Day convective regime (9a-5p LST).  Bottom Left:  
Evening transition regime (6p-8p LST).  Bottom Right:  Night stable 
regime (9p-5a LST).  Negative values are inherent of a 
thermodynamically unstable environment.  Positive values characterize 
a thermodynamically stable environment.  
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state as the emission of surface longwave radiation exceeds the 

absorption of shortwave radiation.  During the nocturnal and early 

morning periods, strong static stability is seen due to the development 

of a surface based inversion before transitioning to a more neutral 

profile as late morning arrives. 4 different sets of weights corresponding 

to these 4 stability regimes were calculated. 

 

2.3 WRF-SCM Ensemble 

The single-column version of the Weather Research and 

Forecasting (WRF-SCM) model was used to generate wind speed 

forecasts at 90m height. WRF-SCM is a 1-dimensional stand-alone 

implementation of the WRF mesoscale numerical weather prediction 

model [Skamarock et al., 2005; Hacker et al., 2007]. The WRF-SCM is 

just like the WRF 3-dimensional model, which also has a wide range of 

parameterizations for turbulent mixing and closure, radiation, 

microphysics and surface fluxes. The options include different sub grid 

parameterizations for the surface layer and the planetary boundary 

layer (PBL) that can simulate different stability regimes. 
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The model domain is centered on the location of the 

meteorological tower in Chalmers Township, IL. The vertical domain 

spans from the surface to a height of 12 km and encompasses 120 

vertical levels. With 6-7 layers in the lowest 100 m, the model is 

capable of adequately resolving the lower PBL where the wind speed 

sensor is located.  Since the model forecast wind speeds for pressure 

levels, the model forecasts are linearly interpolated to 90 m height in 

order to compare with the tower observations. 

The model is initialized with horizontal winds, potential 

temperature, moisture, surface pressure, soil temperature, and soil 

moisture fraction from the hourly-updated 20 km RUC 0-hour forecast 

data for the RUC model grid cell containing the study site. The RUC 0-

hour forecast is essentially a 3-dimensional real-time meteorological 

analysis dataset that assimilates observations from a wide range of 

surface, tower and remote sensing instruments. The model is 

numerically integrated at 1 s time steps for 1-hour to generate the 

forecast. 

A 22-member ensemble forecast of wind speeds was constructed 

to predict wind speeds at the Chalmers Township tower location (Table 

2.1). The ensemble consists of a baseline run (member 1), 12 initial  
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No. Perturbation Surface Layer 

Physics 
Boundary Layer 
Physics 

1 No perturbation Monin-Obukhov YSU 

2 -1 σ Temperature Monin-Obukhov YSU 

3 +1 σTemperature Monin-Obukhov YSU 

4 -1 σ U Wind  Monin-Obukhov YSU 

5 +1 σ U Wind  Monin-Obukhov YSU 

6 -1 σV Wind  Monin-Obukhov YSU 

7 +1 σ V Wind  Monin-Obukhov YSU 

8 -1 σ Spec. Hum. Monin-Obukhov YSU 

9 +1 σ Spec. Hum. Monin-Obukhov YSU 

10 -1 σ Soil Moisture Monin-Obukhov YSU 

11 +1 σ Soil Moisture Monin-Obukhov YSU 

12 -1 σ Soil Temp. Monin-Obukhov YSU 

13 +1 σ Soil Temp. Monin-Obukhov YSU 

14 No perturbation Monin-Obukhov 
(Janjic) 

Mellor-Yamada-Janjic 

15 No perturbation Quasi-Normal Scale 
Elimination 

Quasi-Normal Scale 
Elimination 

16 No perturbation Monin-Obukhov MYNN 2.5 Level 

17 No perturbation Monin-Obukhov 
(Janjic) 

MYNN 2.5 Level 

18 No perturbation MYNN Surface Layer MYNN 2.5 Level 

19 No perturbation Monin-Obukhov MYNN 3rd Level 

20 No perturbation Monin-Obukhov 
(Janjic) 

MYNN 3rd Level 

21 No perturbation Monin-Obukhov 
(Janjic) 

Bougeault and 
Lacarrere 

22 Not applicable Not applicable Not applicable 

Table 2.1 Ensemble members 1-21 perturbations and model physics 
options.  Ensemble member 22 is persistence. 
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condition perturbation runs (members 2-13), 8 model physics variation 

runs (members 14-21) and a persistence model (member 22). The 

baseline case was run with the Monin-Obukov surface layer [Monin and 

Obukhov, 1954] and the YSU boundary layer physics schemes [YSU; 

Hong et al. 2006] and initialize it with the RUC model analysis as 

described above.  The RRTM scheme [Mlawer et al., 1997] for longwave 

radiation, the Dudhia [Dudhia, 1989] scheme for shortwave radiation 

and the Unified Noah land-surface model to represent land-surface 

processes was used for all of the other physics options. 

For the perturbation cases the baseline model was run with 

perturbation in the initial conditions. The role of the perturbation runs is 

to incorporate realistic errors in initialization in the ensemble to produce 

a realistic estimate of uncertainty in the forecasts. [Roquelaure and 

Bergot, 2007] It has been have shown that forecast uncertainty and 

errors in initialization are correlated with the intrinsic variability of the 

initial conditions. Instead of using random perturbations in the initial 

vertical profiles, perturbations were calculated as the standard deviation 

of the data estimated from the 3-month long study period. The initial 

conditions are obtained by adding a perturbation equal to ± 1 standard 

deviation to the vertical profiles of one of the following parameters: air 



21 
 

temperature, air specific humidity, zonal and meridional winds and soil 

moisture and temperature. For example, if the initial temperature T(k) 

at the k-th atmospheric level for ensemble member 2 is given by T(k) = 

T0(k) - σ(k), where T0(k) and σ(k) are the observed unperturbed 

temperature and standard deviation of temperature calculated from 

RUC analysis, respectively. 

To account for uncertainties due to model imperfections, a set of 8 

model physics runs were conducted using various combinations of 4 

surface layer physics schemes and 4 PBL schemes.  Compatibility 

checks were conducted to make sure that the surface layer and PBL 

schemes are compatible with each other. In addition, a persistence 

model was implemented for the assumption that that the wind speed 

remained constant for the simulation period. 

The WRF-SCM was chosen in this study due to the 

computationally efficiency of 1-dimensional models and accuracy of the 

WRF-SCM antecedent, the WRF 3-dimensional model.  The generation 

of the WRF-SCM deterministic forecast and calibration by BMA using a 

sequential LINUX operating system can be completed in less than a 

minute. 
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Using this configuration a total of 46368 hour-long simulations 

were conducted. Out of these 30744 are used to calibrate the 

ensembles and the remaining 15624 simulations are used to evaluate 

the forecasts. 

 

2.4 BMA Calibration 

The 22 members of the WRF-SCM ensemble system can be 

considered as independent estimates of wind speeds for a particular 

time at the given location. However, these estimates may not be 

equally likely and hence the ensemble needs to be calibrated. The 

ensemble was calculated using the BMA technique following the 

algorithm developed by Raftery et al. (2005). A public-domain code is 

available at http://cran.r-project.org/web/packages/ensembleBMA.  

In BMA, the overall forecast PDF is a weighted average of forecast 

PDF’s based on each of the individual member’s forecasts.  The weights 

are the estimated posterior model probabilities and reflect the models’ 

forecast skill in the training period.  The BMA deterministic forecast is 

just a weighted average of the forecasts from the ensemble.  The BMA 

forecast variance decomposes into two components, corresponding to 
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between-model and within-model variance.  The ensemble spread 

captures only for first component.  This decomposition provides a 

theoretical explanation and quantification of the behavior observed in 

several ensembles, in which a significant spread-skill relationship 

coexists with a lack of calibration. 

To solve the problem of underestimating uncertainty in an 

ensemble forecasting system, Bayesian model averaging conditions the 

ensemble not on a single “best” model but on the entire ensemble of 

dynamical and/or statistical models (Leamer 1978; Kass and Raftery 

1995; Hoeting, Madigan, Raftery, and Volinsky 1999).  We represent 

the quantity to be forecasted as 

€ 

y.  Each ensemble member 

deterministic forecast, 

€ 

fk , can be bias-corrected, yielding a bias-

corrected forecast 

€ 

fk
~

.  The forecast 

€ 

fk  is then associated with a 

conditional PDF, 

€ 

gk (y | fk )
~

, which can be interpreted as the conditional 

PDF of 

€ 

y  conditional on 

€ 

fk
~

, given that 

€ 

fk  is the best forecast in the 

ensemble. The BMA predictive model is then, 

€ 

p(y | f1,..., fk ) = wkgk (y | fk )
~

k=1

K

∑  (1) 
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€ 

wk  is the posterior probability of forecast 

€ 

k  being the best one, and is 

based on forecast 

€ 

k ’s skill in the training period.  The 

€ 

wk ’s are weights 

so they must add up to 1 [Raftery et al., 2005]. 

€ 

wk =1
k=1

K
∑  (2) 

For simplicity we approximate the wind speed forecast using a 

normal distribution centered on 

€ 

fk
~

, so that 

€ 

gk (y | f
~

k )  is a normal PDF 

with mean 

€ 

f
~

k  and a member specific standard deviation 

€ 

σ k .  We 

represent this situation by, 

€ 

y | f
~

k ~ N( f
~

k,σ k
2)  (3) 

The BMA predictive mean is just the conditional expectation of 

€ 

y  given 

the forecasts, namely 

€ 

E[y | f1,..., fk ] = wk fk
~

k=1

K

∑  (4) 

Equation (4) can now be viewed as a deterministic forecast since it is 

just the summation of the weighted ensemble-member specific forecast 

times their individual forecasts.  This deterministic forecast can now be 
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compared to other forecasts to measure performance [Raftery et al., 

2005].  

We now consider how to estimate the model parameters, 

€ 

wk  and 

€ 

σ 2, from 

€ 

k=1,...,

€ 

K , on the basis of training data.  We represent the set 

of BMA model parameters to be estimated by 

€ 

θ .  We denote space and 

time by subscripts s and t, so that 

€ 

fkst  denotes the kth forecast in the 

ensemble for place s and time t, and 

€ 

yst denotes the corresponding 

verification. 

We estimate 

€ 

θ  by maximum likelihood [Fisher, 1922] from the 

training data.  The likelihood function is defined as the probability of the 

training data given 

€ 

θ , viewed as a function of 

€ 

θ .  The maximum 

likelihood estimator is the value of 

€ 

θ  that maximized the likelihood 

function such as the value of the parameter under which the observed 

data were most likely to have been observed [Caselia and Berger, 

2001]. 

It is convenient to maximize the logarithm of the likelihood 

function rather than the likelihood function itself, for reasons of both 

algebraic simplicity and numerical stability.  The log-likelihood function 

for is  
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€ 

(θ) = log( wkgk (yst | fkst ))
~

k=1

K

∑
s,t
∑  (5) 

where the summations is over values of s and t that index observations 

in the training set.  This cannot be maximized analytically, and it is 

complex to maximize numerically using direct nonlinear maximization 

methods such as Newton-Raphson and its variants.  Instead, we 

maximize it using the expectation-maximization, or EM algorithm 

[Dempster, Laird, and Rubin 1977; McLachlan and Krishman 1997]. 

The EM algorithm is a method for finding the maximum likelihood 

estimator when the problem can be recast in terms of “missing data” 

such that, if we knew the missing data, the estimation problem would 

be straightforward.  The missing data does not have to be actual 

missing data.  Instead, they are often latent or unobserved quantities, 

knowledge of which would simplify the estimation problem.  The BMA 

model is a finite mixture model (McLachlan and Peel 2000).  Here we 

introduce “missing data” 

€ 

zkst  where 

€ 

zkst=1 if ensemble member 

€ 

k  is the 

best forecast for verification place s and time t, and 

€ 

zkst=1 otherwise. 

For each (s, t) only one of {

€ 

z1st ,...,zkst } is equal to 1; the others are all 

zero [Raftery et al., 2005]. 
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The EM algorithm is iterative, and alternates between two steps, 

the E (or expectation) step, and the M (or maximization) step.  It starts 

with an initial guess, 

€ 

θ (0), for the parameter vector 

€ 

θ .  In the E step, the 

€ 

zkst   are estimated given the current guess for the parameter; the 

estimates of the 

€ 

zkst  are not necessarily integers, even though the true 

values are 0 or 1.  In the M step, 

€ 

θ  is estimated given the current 

values of the 

€ 

zkst . 

For the normal BMA model, the E step is  

 (6) 

where the superscript 

€ 

j  refers to the 

€ 

jth  iteration of the EM algorithm 

€ 

g(yst | f
~

kst,σ k
( j−1))  is a normal density with mean 

€ 

f
~

kst, and standard 

deviation 

€ 

σ k
( j−1) evaluated at 

€ 

yst .  The M step then consists of 

estimating the 

€ 

wk and the 

€ 

σ k  using as weights the current estimates of 

€ 

zkst , i.e. 

€ 

ˆ z kst
( j ) .  Thus  

€ 

wk
( j ) =

1
n

ˆ z kst
( j )

s,t
∑  (7) 
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€ 

σ k
2( j ) =

s,t ˆ z kst
( j )(yst − ˜ f kst )

2∑
s,t ˆ z kst

( j )∑  (8) 

where n is the number of observations. 

The E and M steps are iterated to convergence, which we defined 

as changes no greater than 1e-8 in any of the log-likelihood, the 

parameter values, or the 

€ 

ˆ z kst
( j )

 in one iteration.  The log-likelihood is 

guaranteed to increase at each EM iteration (Wu 1983), which implies 

that in general it converges to a local maximum of the likelihood. How 

fast this algorithm takes to arrive at a solution is strongly dependent on 

the initial starting values [Raftery et. al., 2005]. 

Using data from the 06/01/2008-07/31/2008 period, 4 sets of 

weights were estimated for each ensemble member corresponding to 

the 4 different stability regimes discussed earlier.  Next, a dynamic 

training period approach was used where the forecasts for a particular 

day are calculated from an ensemble that is calibrated with training 

data from the previous 60 days. Finally, sensitivity simulations were 

conducted by changing the training period from 2 months to 2 weeks. 

In the dynamic training period approach, the calibration weights 

are constantly updated by incorporating new information and discarding 
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old information. This approach can lead to better forecasts if the wind 

regime is changing, e.g., if the wind regime during August is 

significantly different from that during June-July. A shorter training 

period that emphasizes latest information can further improve the 

forecasts in a rapidly changing environment. 

 

2.5 Forecast Quality Control 

This study is only valid for non-precipitation time periods at the 

study location.  This was done in order to simplify the problem of weight 

calibration.  Summer time precipitation events are usually convective, 

which allow for the formation of gust fronts, microbursts, and other 

mesoscale or microscale features.  Since these events have very 

different weather characteristics compared to dry and docile conditions 

they were subsequently removed.  Table 2.2 shows the times and dates 

removed due to precipitation.  Precipitation time periods were identified 

by using Iowa Environmental Mesonet available at: 

(http://mesonet.agron.iastate.edu/current/mcview.phtml).  If 

precipitation occurred at or in close proximity to the study location from 

June 1st – August 31st those times were discarded from weight 

calibration and forecast verification. 
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2.6 Observation Quality Control 

Another source of possible uncertainty in this study stems from 

the use of imperfect observations from the 90m tower at the site 

location.  At 90m height the tower possessed two sensors, one on the 

westward face and one on the eastward face of the tower.  As you can 

see from figure 2.3, wind speed measured by the two sensors is a 

strong function of direction.  When the wind originated from 270 

degrees (westerly wind) sensor 1 recorded, on average, a larger 

measurement of around 2.5 m/s.  When the wind originated from 90 

degrees (easterly wind) sensor 2 recorded a larger average 

measurement of around 2.5 m/s.  It is believed that the tower caused 

some distortion in the wind field as the wind propagated by the sensors.  

In this study, the higher tower sensor observation was used in order to 

try and eliminate another possible source of uncertainty caused by flow 

obstruction. 

 

2.7 Forecast Evaluation 

Ensemble simulations with the WRF-SCM to forecast 90 m wind 

speeds at the Chalmers Township tower location for the 08/01/2008 

08/31/2008 period were conducted. The linear mean of the forecasts 
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Date Start Time End Time Date Start Time End Time 
2-Jun 9:00 AM 11:00 PM 3-Jul 6:00 AM 8:00 AM 
3-Jun 12:00 AM 11:00 PM 7-Jul 2:00 AM 4:00 AM 
4-Jun 12:00 AM 10:00 AM 8-Jul 1:00 AM 9:00 AM 
5-Jun 12:00 AM 9:00 AM 8-Jul 12:00 PM 11:00 PM 
6-Jun 12:00 AM 10:00 AM 12-Jul 2:00 PM 7:00 PM 
7-Jun 12:00 PM 5:00 PM 18-Jul 7:00 PM 12:00 AM 
8-Jun 9:00 PM 11:00 PM 19-Jul 1:00 AM 3:00 AM 
9-Jun 12:00 AM 11:00 PM 20-Jul 1:00 AM 3:00 AM 
10-Jun 12:00 AM 4:00 AM 21-Jul 4:00 AM 8:00 AM 
11-Jun 12:00 AM 2:00 AM 21-Jul 7:00 PM 11:00 PM 
12-Jun 1:00 PM 1:00 PM 22-Jul 12:00 AM 12:00 AM 
13-Jun 12:00 AM 11:00 PM 24-Jul 3:00 AM 2:00 PM 
13-Jun 6:00 PM 7:00 PM 27-Jul 7:00 PM 12:00 AM 
15-Jun 2:00 PM 4:00 PM 28-Jul 3:00 AM 6:00 AM 
21-Jun 5:00 AM 7:00 AM 29-Jul 5:00 PM 12:00 AM 
22-Jun 2:00 PM 4:00 PM 30-Jul 12:00 AM 7:00 AM 
24-Jun 1:00 PM 12:00 AM 3-Aug 4:00 AM 11:00 AM 
25-Jun 12:00 AM 9:00 AM 5-Aug 6:00 AM 12:00 PM 
25-Jun 11:00 PM 11:00 PM 5-Aug 5:00 PM 7:00 PM 
26-Jun 12:00 AM 8:00 AM 12-Aug 6:00 PM 7:00 PM 
27-Jun 4:00 AM 2:00 PM 14-Aug 4:00 PM 7:00 PM 
28-Jun 2:00 AM 4:00 AM 20-Aug 9:00 PM 12:00 AM 
28-Jun 3:00 PM 4:00 PM 21-Aug 12:00 AM 2:00 PM 
2-Jul 7:00 AM 9:00 AM 28-Aug 8:00 AM 12:00 PM 
2-Jul 5:00 PM 11:00 PM 28-Aug 7:00 PM 11:00 PM 
Table 2.2 Precipitating time periods that were eliminated from the 
weight calibration and verification. 
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from individual ensemble members constitutes the uncalibrated 

ensemble forecast. The calibrated ensemble was calculated with the 

BMA-calibrated ensemble forecasts using the weights estimated from 

the training simulations. The performance of the uncalibrated and 

calibrated ensemble forecasts were evaluated by comparing them with 

observations and computing 3 statistics: mean absolute error (MAE) 

root mean square error (RMSE) and Bias The statistical significance of 

the performance improvements are estimated using the Students’ t 

test. Only results valid at 80% or higher levels will be considered 

statistically significant  

€ 

MAE =
1
n

|Fi −Oi |
i=1

n

∑  (9)
  

€ 

RMSE =
1
n

(Fi −Oi)
2

i=1

n

∑  (10)
 

€ 

BIAS =
1
n

(Fi −Oi)
i=1

n

∑  (11)  
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Figure 2.3 Tower wind observations during the study period.  The blue 
dots represent sensor bias from 0° to 359°.  The red line represents a 
5-degree moving average centered on the wind direction angle. 
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3. RESULTS 

3.1 Example Forecast 

Since it is impossible to plot the results of all 46368 simulations, 

an example the vertical profiles of wind speed forecasts from all models 

for 9 am LST on 08/01/2008 is shown in Figure 3.1.  All the simulated 

profiles are qualitatively similar, with wind speed decreasing with 

height, and distributed around the observed value at 90m height.  The 

corresponding PDF from the BMA-calibrated ensembles for the same 

period is more evenly distributed around the observed value that the 

uncalibrated ensemble PDF (Figure 3.2).  The BMA-calibrated ensemble 

PDF is essentially the weighted sum of the individual ensemble 

member’s PDF.  Thus simple visual inspection indicates that BMA 

calibration improves ensemble predictability for this case. 

 

3.2 Calibrated vs. Uncalibrated Ensemble 

For a comprehensive evaluation of the performance of the 

calibrated ensemble forecast error statistics for the entire month of 

August 2008 were calculated (Table 3.1).  The statistics show that the 

calibrated ensemble forecasts convincingly outperform the uncalibrated  
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Regime Forecast Method RMSE MAE Bias 

Uncalibrated 3.384 2.8855 -2.7979 
Calibrated 1.1456 0.8655  0.2405 

Morning Transition 
0600-0800 LST 

Persistence 1.255 0.9559  0.5188 

Uncalibrated 1.1307 0.8978 -0.4645 
Calibrated 0.9249 0.7192 -0.0821 

Unstable 
0900-1700 LST 

Persistence 1.0348 0.7884  0.0232 

Uncalibrated 2.7015 2.2088 -2.0755 
Calibrated 1.1478 0.9479 -0.4735 

Afternoon 
Transition 
1800-2000 LST 

Persistence 1.0809 0.9042 -0.2664 

Uncalibrated 4.4229 4.0831 -4.0698 
Calibrated 1.2328 0.8668 -0.1 

Stable 
2100-0500 LST 

Persistence 1.2391 0.8691 -0.0723 

Table 3.1 Score statistics for the 60-day fixed window for each 
time/stability regime 
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Figure 3.1.  WRF-SCM 1-hour forecast wind speed for all 21 members 
valid August 1st 2008 at 9am LST.  The black circle represents the 90 m 
wind speed observation.  The outlying ensembles (green, brown) are 
the +1 STD U wind and -1 STD U wind respectively. 
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Figure 3.2. Probability density function of the uncalibrated (blue bars) 
and calibrated (red line) ensemble forecast for 08/01/2008 at 9a LST.  
The grey vertical line denotes the value of the observation 
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ensemble forecasts in all 4 regimes.  Calibration significantly reduces 

forecast errors in all three error measures by 20%-100% with bias 

being the greatest improvement.  Maximum percentage improvements 

are observed during the nocturnal stability regime while the diurnal 

convective regime shows the least improvement.  This is due to the 

change in the weight, and subsequent performance, of persistence will 

be described in detail in a later section.  All these improvements are 

statistically significant at 99% or higher level of significance using the 

Student’s T-Test. 

 

3.3 RUC Model Bias Effects 

Amongst the 3 error measures, the BMA calibration produces the 

strongest improvement in bias.  It is clear from the results that the 

uncalibrated forecast significantly and consistently under predicts wind-

speed.  The likely reason behind this phenomenon is the initial 

conditions obtained from the RUC model have a strong negative bias in 

wind speed compared to the tower observations (Figure 3.3). 

The negative bias in the initial conditions during the morning, day, 

evening and night regimes are -4.18 m/s, -2.85 m/s, -1.43 m/s and     

-3.51 m/s respectively.  These biases are all statistically significant at 

higher than the 99.99% level of significance.
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Figure 3.3. Scatter plot of the wind speed measured by the sensor at 
90 m height on the Chalmers township tower and the wind speed 
interpolated to 90 m height from the RUC model 0-hour analyses. The 
grey line is the linear fit between the 2 datasets. 
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3.4 Calibrated Ensemble Member Performance 

The weights given to the different ensemble members can be very 

different and can range several orders of magnitude.  The weights from 

the ensemble calibration (Table 3.2) can be used as a quantitative 

measure of the performance of each ensemble member.  It is clearly 

evident that the persistence model consistently outperforms the 

numerical models in all 4 stability regimes.  Amongst the numerical 

models, members 2, 4, 5, and 7 provide meaningful results with some 

degree of consistency.  These ensemble members all reside in the initial 

condition perturbation group with members 5 and 7 representing +1σ U 

and V wind perturbations. 

 

3.5 Convective Daytime Regime 

The numerical models perform the best during the diurnal 

unstable regime.  Even though the persistence model performs better, 

its assigned weight during this period is 66%.  This implies that with a 

combined weight of 34%, the numerical models make a significant 

contribution to the calibrated ensemble forecasts.  Strong convection 

during the summer leads to high-frequency turbulent variability in wind 

speeds during the daytime.  The persistence model by itself cannot 

adequately capture this variability.  The numerical models perform 
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reasonably well in simulating the daytime convective boundary layer.  

Due to strong contribution from the numerical models, the calibrated 

ensemble forecasts show and 11% improvement in RMSE over the 

persistence model statistically significant at the 85% level (Table 3.1).  

This result implies that a calibrated ensemble approach that blends 

persistence and numerical models is the best approach in generating 

hourly wind speed forecasts in unstable convective environments. 

 

3.6 Stable Nocturnal and Transition Regimes 

The calibrated ensemble does not produce any statistically 

significant improvement over the persistence model in the nocturnal 

and transition regimes.  The aggregated weights of the numerical 

models are quiet low, ranging between 1-13% during these regimes 

(Table 3.2).  The relatively poor performance of numerical models like 

WRF in nocturnal stable regimes is not unusual and has been reported 

by other studies [Draxl et al., 2010; Shin and Hong, 2011].  Improving 

numerical models will be the key to improving the performance of the 

calibrated ensemble forecasts in stable and transition environments. 
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 Weights from BMA calibration 
Ensemble  
 

No. 

Morning 
Transition 
0600-0800 

LST 

Unstable 
0900-1700 

LST 

Afternoon 
Transition 
1800-2000 

LST 

Stable 
2100-0500 

LST 

1 2.34E-11 9.46E-05 7.27E-08 1.21E-68 
2 4.75E-06 0.04546314 0.02034182 1.32E-63 
3 1.06E-10 0.2033106 2.55E-06 5.78E-58 
4 0.02711173 0.02630156 4.09E-16 7.57E-21 
5 0.03361364 0.009373185 7.48E-35 0.000187818 
6 2.62E-09 1.02E-83 4.10E-91 1.70E-27 
7 0.0654014 0.05530994 3.77E-45 0.01248482 
8 1.50E-10 1.22E-07 1.12E-05 1.99E-68 
9 1.05E-08 0.001934105 7.95E-04 8.33E-54 
10 8.62E-11 0.00017959 9.83E-10 9.74E-69 
11 9.85E-12 6.43E-05 1.26E-05 1.26E-68 
12 2.76E-10 6.66E-05 2.82E-06 9.38E-68 
13 2.97E-09 0.000158572 5.57E-13 1.24E-66 
14 1.13E-17 2.12E-16 5.36E-02 1.29E-27 
15 8.85E-20 2.12E-30 7.85E-23 1.26E-29 
16 4.99E-20 8.40E-53 1.37E-19 1.82E-24 
17 1.32E-23 3.98E-81 4.43E-19 2.39E-23 
18 2.61E-16 4.37E-27 2.04E-10 3.47E-24 
19 4.99E-20 8.40E-53 1.37E-19 1.82E-24 
20 1.32E-23 3.98E-81 4.43E-19 2.39E-23 
21 2.97E-18 1.25E-82 0.01544482 9.23E-65 
22 0.8738686 0.6578446 0.9042015 0.9873274 

Table 3.2 Ensemble member weights for the 60-day fixed window for 
each time/stability regime. 
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3.7 Training Window Sensitivity 

The results discussed so far are based on ensembles calibrated 

using observations from June 1 – July 31 2008 and evaluated against 

observations from August 2008.  I studied the importance of training on 

the calibrated forecasts by using the following 3 other training periods: 

i. 2-week training period 

ii. 2-month moving training period and 

iii. 2-week moving training period. 

The results of the sensitivity studies are shown in Table 3.3.  In 

the first sensitivity study, the ensembles are calibrated using a 2-week 

period (July 17-July 31) instead of the 2-month training period used 

above.  Using a shorter training period significantly degrades the 

forecast bias during the morning transition and nocturnal stable regime.  

However, this improvement is small (~0.01 m/s) and the statistical 

significance is primarily due to a change in sign of the bias error from 

negative in the 2-month training period study to positive in the 2-week 

training period.  Differences in other error measures are small and not 

statistically significant. 

The final 2 sensitivity studies involve moving training periods 

where each forecast is calibrated with a unique dataset.  For example, 

in the second sensitivity study, the ensemble forecast for each day is  
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Regime Training 

Period 
RMSE MAE Bias 

2 weeks 
fixed 

1.255 0.9559 0.5188 

2 months 
moving 

1.1404 0.8652 0.1432 

Morning 

2 weeks 
moving 

1.1749 0.8922 0.2028 

2 weeks 
fixed 

0.9113 0.7025 -0.0765 

2 months 
moving 

0.9177 0.7128 -0.0023 

Day 

2 weeks 
moving 

0.9290 0.7132 -0.2778 

2 weeks 
fixed 

1.0827 0.9037 -0.3433 

2 months 
moving 

1.1128 0.9252 -0.2651 

Afternoon 

2 weeks 
moving 

1.0802 0.9040 -0.2596 

2 weeks 
fixed 

1.2224 0.8772 -0.2596 

2 months 
moving 

1.2293 0.8651 -0.1425 

Night 

2 weeks 
moving 

1.2283 0.8783 -0.2412 

Table 3.3 Score statistics of the 3 sensitivity window for the month of 
August 2008 broken down by time/stability regime.  
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calibrated with data from the previous 60 days.  Similarly, the third 

sensitivity study uses data from the previous 2 weeks to calibrate each 

day’s forecast.  Results of these sensitivity studies (Table 3.3) show 

that the 60-day moving period generates and improved forecast and 

the 2-week moving training period generates a degraded forecast when 

compared with the 60-day fixed training period.  However, these 

changes are small in magnitude and statistically insignificant except the 

degradation in forecast with the 2-week moving training period during 

the nocturnal stable regime. 
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4. CONCLUSIONS AND DISCUSSIONS 

In this work a computationally efficient and accurate method to 

provide wind speed forecasts over 1-hour timescales for wind energy 

applications is developed.  For this purpose I used an adaptive blended 

statistical-dynamical ensemble forecast system that is calibrated with 

and evaluated against data from a potential wind farm site.  This 

system provides significantly more accurate forecasts than the 

uncalibrated ensemble for all stability environments and better 

forecasts than the persistence model during daytime convective stability 

regimes.  In particular, the BMA calibration method largely eliminates 

the strong negative bias in the forecasts due to the negative bias in the 

model initialization. 

This approach is computationally much more efficient compared 

to traditional mesoscale NWP models.  NWP models require enormous 

computing resources, especially for conducting ensemble simulations.  

In contrast, this system can generate a calibrated ensemble forecast in 

less than 1 minute on a single processor LINUX PC.  Hence, this 

forecast system can easily be adopted by small wind farm 

owner/operators with limited financial resources. 

This study demonstrates that there is a strong need for improving 

the capabilities of numerical models to simulate the stable boundary 
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layer and the stable-unstable transition periods.  Until numerical models 

improve significantly, persistence will continue to be the method of 

choice for forecasting nocturnal wind speeds.  It needs to be pointed 

out that persistence is far from a perfect solution because forecast 

errors are quite high.  However, an ensemble of persistence and 

improved numerical model forecasts calibrated with the BMA technique 

can potentially reduce the forecast errors. 

Sensitivity studies with different training periods to calibrate 

different ensembles did not produce conclusive results.  The goal of the 

training is to assign weights depending on the performance of each 

model under a wide range of meteorological conditions.  A very short 

training period will not be able to capture the range of natural variability 

in wind speeds and hence will lead to poor quality forecasts.  The 

results suggest that a 2-week training period may be too short and a 2-

month training period is probably required to produce quality forecasts.  

Figure 4.1 cast further light that there exists a 18 day cycle of wind 

speeds which would not be adequately captured by the 2 week training 

window.  In addition, a 31-day cycle is also present which may suggest 

that the 2-month window may be too long of a training window.  

Moving training periods that emphasize new information at the expense 

of old information are expected to produce better forecasts if the  
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Figure 4.1 Power spectra of wind speeds during the study period.  As 
you can see there is evidence of a diurnal cycle in wind speed as well 
as another cycle of around 18 days.  In addition, there is also 
evidence of a planetary scale influence on wind speeds of around 31 
days.  It is not known what atmospheric phenomena applies to the 
3.5-6 days wind speed cycle but frequent occurrences of Mesoscale 
Convective Systems in the vicinity of the study site were common 
during this study period. 
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meteorological regimes are changing.  In this study, I did not find any 

statistically significant evidence of this phenomenon.  The impact of a 

moving training period can be adequately tested only if the 

meteorological conditions during the training period and forecast period 

are radically different.  I speculate that if the forecast training period 

were extended by many months, the benefit of using a moving versus a 

fixed training period would become more readily apparent. 

Overall, this study demonstrates that BMA calibration of ensemble 

forecasts of wind speeds can significantly improve forecast quality.  

More work is required to find the most appropriate training periods that 

will provide the maximum improvement over uncalibrated forecasts. 
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5. FUTURE WORK 

It is evident that Bayesian Model Averaging is a powerful 

statistical technique for calibrating ensemble prediction models.  With 

the projected rapid future growth of the wind power industry, 

ensemble-forecasting techniques will be essential in the reduction of 

cost and financial risks associated with the difficulty of wind prediction. 

Future work might explore the effectiveness of the calibrated 

ensemble system at forecasting for other time periods.  Calibration for 

transition seasons such as spring and fall may rely heavily on a moving 

window since the synoptic weather regime at the beginning of the 

season may be drastically different from the end.  In this case, it is 

quite likely that the performance of the individual ensemble members 

will change drastically throughout the study period.  Cold season 

forecasting should also be explored.  It would be interesting to see how 

the NWP models handle the semi-permanent presence of a surface 

inversion. 

Exploring different training window lengths should also be 

researched.  In this study, a 2-week and two month training window 

was implemented.  In figure 4.1 there was a strong power peak at 31-

days.  Therefore, a 1-month training window may be the optimal 

window length.  
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In addition, different study site locations may also be explored to 

see if the forecasting system is also geographically robust.  

Implementation of this forecasting system in other highly desirable wind 

power locations will be needed. 

Better understanding the degree to which BMA reduces the level 

of uncertainty in the forecast should also be explored.  If the standard 

deviation of the calibrated with respect to the uncalibrated probability 

distribution function decreases then calibration reduces uncertainty in 

the forecast.  This is will be extremely valuable for operators who need 

a range of possible scenarios to help with the decision process for their 

business. 

Wind power operators also need accurate forecasts of high wind 

events to prevent damage to their equipment.  Preliminary work has 

shown that the BMA calibrated ensemble is able to capture some of the 

ramp events that the uncalibrated ensemble cannot.  More work is 

needed to better understand how well BMA can capture the probability 

of high wind events to protect wind farm operators from unnecessary 

equipment damage. 
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