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ABSTRACT

New depth camera technology has potential to make a significant impact on

computer systems interaction with 3D objects; yet, it is currently limited

due to its poor noise and resolution characteristics. In this thesis we

propose to use depth camera’s strongest characteristic, its video rate

capture speeds, to overcome these limitations. Previous work to utilize

sequences of depth images used 2D super-resolution techniques to combine

chunks of depth images that are close in time in order to increase the

resolution and noise characteristic. This technique took advantage of the

consistency of the scene with respect to small changes in viewpoint. But,

while increasing the resolution and decreasing unbiased noise, this

algorithm increased biased noise. Thus, we are motivated to consider an

algorithm that can first register all depth images to a common 3D

coordinate system and then utilize a 3D superresolution technique, known

as surface reconstruction, to increase the resolution and decrease both

biased and unbiased noise.

This thesis considers the first part of this problem, which is the

registration of a sequence of depth images to a common coordinate frame.

Previous registration methods were developed for high resolution, low noise

point clouds and perform poorly for noisy sequences of depth data. Thus,

from our analysis of ideal signed distance functions, we propose a new

method for finding the closest point to the surface given a signed distance

function and its gradient. Utilizing Implicit Moving Least Squares (IMLS)

and our analysis, we propose a new algorithm that computes the

registration of a set of points to the surface defined by the IMLS function of

another set of points. We also propose a grid based implementation that

allows for bounded computations per time step. Our results demonstrate

that the proposed algorithm is more robust in the presence of realistic

depth noise.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A new technology is currently hitting the market that has potential to

radically change the way humans record the world and interact with 3D

virtual environments. This technology, known as a depth camera, has the

ability to capture raw 3D snapshots at video rate speeds. It is predicted to

become as common as the digital camera, which is found on virtually all

modern phones and laptops. At first, one might wonder what significant

advantage depth information provides. While color images provide

information similar to what our eye records and sends to the brain, depth

images are not intuitively interpretable by the human mind. For starters, in

order to visualize a depth image, false coloration must be applied to

differentiate depth values. Figure 1.1 contains a color and depth image of

the same scene. In the color image, one can read the words on the board

and recognize the person, while the depth image only gives the information

that a person is sitting on a table. By itself depth information adds little to

a person’s perception of a scene. This is because humans generally estimate

the depth to most objects in their scene from the color information alone

through a complex combination of depth cues. In Figure 1.1, it is clear that

there is a human on top of a table. This knowledge is derived from previous

knowledge of the general 3D shape of humans and tables and the ability of

one to occlude and support the other. This same ability is very difficult and

not robust for computer systems. Thus, the main advantage that depth

cameras bring is added information to computer vision algorithms.

These algorithms that previously had to estimate depth through

computationally expense techniques now have access to it at up to 30

frames per second. But, this fast 3D sensing comes as a cost. There exists a
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(a) Color (b) Depth

Figure 1.1: Examples of color and depth images taken of the same
viewpoint.

trade-off between the speed and the quality of the results. Previous 3D

scanners exemplify the excellent resolution and quality of 3D information

captured very slowly. Depth cameras trade these characteristics for speed.

This speed enables new applications, in that objects are no longer

constrained to be static for 3D sensing. The fact that video rate 3D

information can be obtained is very promising, but the noise and resolution

pose very real obstacles to incorporating the new 3D information into

computer vision techniques. Take for example the case of segmenting a

foreground object from the background. This task is often difficult and

computationally expensive for color information alone, but given depth

information, a threshold on the depth can be used to distinguish foreground

from background. The problem is that the depth information is noisy and

of much lower resolution than the color image. Thus, edges in the color

image may exist between information in the depth image. Due to noise,

these edges may be hard to predict as either foreground or background and

edges of the segmentation may change arbitrarily from frame to frame,

causing a flickering of the boundary even for stationary objects. Thus,

processing of the depth information is necessary to overcome the limitations

of noise and resolution.
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1.2 Problem Statement

From the previous section we motivate the necessity of processing depth

image sequences for their incorporation into computer vision algorithms.

We propose to overcome the limitations of noise and resolution by

combining 3D information over time, utilizing the characteristic that is

strongest for the depth cameras, namely, that they can collect 3D

information at real time speeds. For this paper we make three assumptions

that simplify the scope of problem: (1) The objects we are sensing are rigid,

implying that 3D geometry will be preserved over time and that

registration from one frame to the next will only require estimation of a

rigid transformation, which in 3D has 6 degrees of freedom. (2) The relative

movement between the scene and depth camera is small between

consecutive frames. (3) The surfaces being sampled have significant 3D

geometry and are sufficiently smooth.

Ideally we would like to consider registration with arbitrary motion such

that information can be accumulated even in the presence of typical human

body motion. It has been demonstrated in the computer vision tracking

community that human bodies can be well approximated by a set of jointed

rigid bodies. Thus we consider the rigid body case as a first step towards

non-rigid registration. We also restrict the relative speed of the movement

such that we can make the assumption that the previous frame’s

registration is a good initial guess for the current registration. As seen in

Section 3.1 this is a necessary assumption for use with ICP registration

techniques.

Our goal is to design a novel registration and integration algorithm that

has the following characteristics:

Incremental: The algorithm should produce usable results after each

frame of data, enabling its use in real time applications.

Utilizes all Data: All data previously collected should be utilized.

Properly used redundancy should reduce noise and increase effective

resolution.

Efficient: Data collected by a depth camera grows roughly linearly with

time. Therefore, the computational cost and data storage
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requirements of the algorithm should not grow with size of total

collected data.

1.3 Related Work

While there is a large body of research dedicated to the study of 3D

reconstruction from high quality point sets, due to the recent emergence of

depth cameras and their limitations there is only one known attempt to

integrate a sequence of depth images.

In [1], the authors begin by noting that real depth images are too noisy

to perform accurate registration by standard ICP techniques; thus, they

propose to first perform superresolution by a technique known as

LidarBoost [2] on chunks of the depth image sequence. LidarBoost is a 2D

superresolution technique that has been tailored to depth image data. The

assumption is that in small time windows the depth camera will not change

its view significantly, thus allowing 2D image registration. With registered

images, standard image superresolution techniques are employed with a

cost function that is tailored to Time of Flight depth data. Each

superresolution depth image then provides a denser, less noisy point cloud

which is then more amiable to registration. One issue that is encountered

in this approach is that LidarBoost enhances the resolution and decreases

unbiased noise, but it also enhances the biased noise. Frames that are close

in time will have similar biased noise, which typically is caused by artifacts

around the edges. Cui et al. [1] propose to overcome this enhanced biased

noise by a semi-rigid global registration technique that assumes the biased

noise can be modeled such that all depth pixels with the same radial

distance from the center of the depth image have the same bias. This limits

the number of unknowns and makes their registration tractable. In the

process of making this assumption, they also assume that reflectance, edge,

and distance biases can be neglected, which is not usually the case.

One of the issues with the approach of [1] is that they only utilize

information from similar perspectives to reduce noise. Due to the reflective

nature of most depth cameras, the angle at which a surface is oriented with

respect to the camera greatly impacts the noise variance of the sample.

Therefore, surfaces measured at oblique angles will be noisier than surfaces
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measured at perpendicular angles. Thus, information collected around

edges in one frame may present itself again later as a flat surface in

subsequent frames. Based on this intuition, it seems profitable to first

register all frames to a common coordinate reference, and then perform 3D

superresolution, a.k.a. surface reconstruction.

1.4 Thesis Summary

The remainder of this thesis is structured as follows. In Chapter 2, we

present an overview of 3D sensing technologies. Previous technologies

focused on high quality 3D point clouds at the cost that objects to be

scanned were required to be static such that the 3D shape and calibration

would not change over the duration of the scanning process. These high

quality point datasets motivated algorithms that were designed to fully

reconstruct 3D objects given as few viewpoints as possible since each scan

was expensive in time. This leaves room for new techniques that are

motivated by the relatively inexpensive ability of depth cameras to obtain

new viewpoints in real time, but are limited due to their noise and

resolution. This section also provides a detailed look at Time of Flight

depth camera technology.

Chapter 3 examines variations of the dominant registration method,

Iterative Corresponding Point (ICP). It considers the main operation of

point matching and the choice of the error metric used to determine the

optimal rigid transformation each iteration. We also consider the issue of

registration drift for sequences of point datasets. Previous methods require

global optimizations which are not well suited toward incremental

registration and integration.

Chapter 4 considers the problem of integrating depth data over time

through surface reconstruction. It first considers the choices for

representing a surface and then presents two influential surface

reconstruction techniques that both utilize signed distance functions to

implicitly represent the surface.

Chapter 5 contains our analysis of ideal signed distance functions.

Through the analysis we propose a way to define the closest point on the

surface based on the signed distance function and its gradient.
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Chapter 6 details our proposed algorithm from input to output. The

basic framework is that given a new set of points and a representation of

the surface by its signed distance function, new points are registered to the

surface by a novel variant of ICP and then incorporated into the surface

representation. We propose our algorithm based on the signed distance

function described by Implicit Moving Least Squares.

Chapter 7 provides empirical evidence to support our algorithm.

Comparisons are made with respect to dominant variants of ICP on

synthetic depth image sequence derived from a known 3D mesh. The

synthetic sequences allow for ground truth comparisons between methods

and demonstrate that our proposed algorithm is more robust than previous

methods in the presence of noise and low resolution.

Finally, Chapter 8 presents concluding remarks as to the results of the

proposed method.
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CHAPTER 2

3D SENSING TECHNOLOGIES

Depth cameras are not the first devices to provide an output of the 3D

structure of real world objects. This chapter provides an overview of most

3D sensing techniques (see Figure 2.1) and a detailed look at Time of Flight

(ToF) depth camera technology in order to highlight the differences between

the data upon which most previous registration and reconstruction methods

are built and the data received from depth cameras. These differences

motivate the need for novel algorithms particularly suited to depth cameras.

Figure 2.1: Characterization of current 3D sensing technologies.

2.1 Overview

The first order characterization of 3D sensing technologies is whether or not

they require contact with the object to be sensed. Contact based

techniques require a sensing instrument to touch the object, which in turn

generates one point in 3D. Thus, by touching the object all over, a 3D point

cloud is generated. Techniques to generate points upon contact are varied,

but in general contact methods tend to produce very high quality (i.e. low

noise and dense) 3D point clouds, but their applicability is limited in that
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contact is a very intrusive and time-consuming process. Contact methods

are not suited for large objects or pliable surfaces. Depth cameras are a

form of non-contact 3D sensing; therefore, we will further characterize

non-contact techniques.

The second level of characterization for non-contact techniques is based

on whether the scene is actively changed in order to sense 3D structure or if

it is passively observed and 3D information is deduced. Radar is an

example of active sensing in which a signal is broadcast into an area and

the received reflected signals are processed to determine object positions.

On the other hand, non-flash photography is an example of passive sensing

in that no illumination is added to a scene but images are generated from

visible light naturally reflected off objects. The following sections detail the

major active and passive 3D sensing technologies.

2.1.1 Time of Flight

Time of Flight techniques measure distance to an object by measuring the

time it takes for a sensing signal to travel from the source to an object and

back. Provided that the speed of the sensing signal is known, the distance

to the object can be calculated by

distance =
1

2
rate× time

The 1
2
corresponds to the fact that the signal had to travel over the

distance to the object twice. This is the basis for light detection and

ranging (LIDAR) and radar. Differences among Time of Flight techniques

focus on the method upon which the time of flight is estimated. For

estimates that require only large distance scales, or for single estimates, it is

possible to measure the time change directly with modern hardware. As a

frame of reference, to estimate distance to 1 mm accuracy requires

measuring the time of flight to picosecond accuracy. Hardware capable of

measuring changes on that scale is very sensitive to noise and thus must be

sufficiently cooled and shielded. This makes densely packed sensing on a

small scale impractical using direct measurement.

An alternative method is to use a modulated sensing signal and

indirectly measure the time of flight from the difference in phase between
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the sent and received signals. This method benefits from the fact that the

phase difference estimation can be made numerous times in a short interval

given a high frequency sensing signal. Thus, by averaging over many

estimations, noise is reduced. This averaging allows for less precise

individual estimates and thus smaller and more inexpensive sensors. In

fact, phase ToF sensors are small enough that they can be packed into a 2D

camera pattern and operate at video rate speeds to produce a depth

camera. As mentioned, ToF depth cameras utilizing phase differencing will

be expounded in greater detail in Section 2.2. A major limitation of phase

difference time of flight is that the distance it can measure must be limited.

If an object were to be sufficiently far away that the sensing signal’s phase

wraps around to zero before being measured, then the estimate would alias

to a much shorter distance. In practice, phase differencing ToF cameras

typically operate in a range up to 7.5 meters. Two major manufacturers of

ToF depth cameras are PMD Technologies and Canesta.

2.1.2 Triangulation

Given a source and a camera detector that are positioned with known

calibration, triangulation uses the detected position of the source in the

camera image to determine angles in the triangle formed between the

source, detector and object point. Ultimately, based on the calibration of

the source and detector, the distance and direction to the point on the

object can be calculated. The resolution of the triangulation is determined

by how accurately the detector can localize the source reflection in the

image. Using lasers and high resolution imaging devices these scanners

provide millimeter accuracy with high spatial resolution. Scanners utilizing

this technique employed with lasers are often referred to as laser scanners.

Scanners such as these were employed in the Digital Michelangelo Project

[3] and for many of the available models found in the Stanford 3D

Repository [4]. A manufacturer that provides laser scanners is Cyberware.

One limitation to triangulation techniques is that they require a scan over

any object in order to collect 3D points. This is accelerated by scanning

with a laser line over just a solitary point, but at any one point in time only

a local part of any object can be scanned. Multiple scanning devices can be
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employed simultaneously, but in general, scanning requires many seconds to

many minutes depending on desired accuracy and resolution. In comparison

to depth cameras, laser scanners have much higher resolution and better

noise characteristics, but they operate at speeds that require static objects.

2.1.3 Structured Light

Structured light is similar to triangulation in that light is projected onto a

surface and is detected by a camera. But, where triangulation utilizes

precise localization of the source in the image, structured light infers 3D

structure from the deformations of the projected light pattern. The light

pattern can vary from points to 1D stripes to complex 2D patterns. A

rapid succession of these patterns allows algorithms to disambiguate the

sensed distorted patterns and infer depth. The advantages of this method

are that it utilizes CCD cameras which can have very high resolution and

that it can estimate 3D structure for a whole scene all at once. This makes

structured light possible at video rate speeds. A disadvantage is that it

does not directly measure the distances, but rather infers them from

deformations of light patterns. Therefore, the noise of the system is heavily

influenced by the algorithm used to determine deformations rather than by

physical principles. This makes the noise difficult to characterize.

Past implementations of this technique utilized visible light to project the

pattern onto the scene as seen in [5]. One disadvantage to using visible

light is that it requires a quickly varying light pattern which would be very

bothersome to an average human user. Therefore, recent innovations have

produced structured-light depth cameras that utilize near infrared lighting

patterns. This is most notably the technique used in Microsoft’s Kinect.

The Kinect is based on technology from the company Prime Sense. The

Kinect is notable in that it is the first depth camera to hit the mass market.

At this time, its primary uses involve variants of segmentation and 3D

tracking algorithms.
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2.1.4 Photometric

Photometric is a very different approach to 3D sensing. Instead of

estimating depth, it estimates normals, which in turn infer the 3D

structure. Thus 3D structure and orientation are inferred with respect to

the camera, but the relative scale must be injected as prior knowledge. The

basic principle is to take multiple images of the same scene under various

known lighting conditions. If the scene and the camera are static, then for

each lighting condition the normals can be estimated for each pixel. Given

normal estimates under various known lighting conditions, the final normal

estimates are very accurate and robust. Also, with HD cameras, very high

resolution surface normal maps are possible. This technique is most notably

demonstrated in [6] by Paul Debevic’s light stages. With these light stages,

it is possible to light a scene in a very controlled manner at very high

speeds. This, coupled with high speed, high resolution video cameras, has

enabled real-time capture of dynamically changing 3D scenes [7]. This

technology has achieved major success and has been featured in a number

of movies, including the Spiderman movies.

The major disadvantage of this technology is that it requires a very large

and expensive “stage” with expert technical knowledge to run. This,

combined with massive amounts of off-line processing required to interpret

all captured data, leaves photometric 3D sensing only a possibility for the

professionals.

2.1.5 Stereoscopic

Stereoscopic depth sensing, a.k.a. stereo vision, is an estimation of depth

from small differences between two or more images captured of the same

object from various viewpoints. Humans employ stereo vision through the

use of their two eyes directed at the same point but separated by a few

inches. This small separation causes differences, called disparities, between

the images. Objects that are closer will cause a larger disparity, while

objects that approach infinitely far away will have no disparity. Given rigid

calibration between cameras and perfect matching of points between

images, it is possible to calculate the distance to the point from its

disparity. The difficulty of stereo vision is the necessary correspondence
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matching, which is difficult in areas of low texture and requires large

amounts of time for computation for high quality correspondences. There

do exist algorithms that operate in real time, but the quality of the depth

map is quite poor. The advantage of stereo vision is that it is passive and

thus one of the most versatile 3D sensing technologies.

Interestingly, stereo vision is one of the weaker pieces of 3D information

humans use. We perceive depth more through depth cues such as

converging parallel lines, occlusions, perspective shrinking, and perspective

shifts. These cues are what allow us to perceive depth in traditional 2D

television shows. The difficulty in utilizing these same cues for signal

processing is the vast prior knowledge required for their use. Even though

stereoscopic sensing is weak in humans, it has been shown to be very

effective in certain circumstances, such as in [8] for human faces.

2.2 ToF Depth Camera

The previous section describes four 3D sensing technologies capable of

video rate 3D capture: ToF, Structured Light, Photometric, and

Stereoscopic. In this section, we will focus on the state-of-the-art ToF

technology and characterize its noise.

2.2.1 State of the Art

The state-of-the-art ToF depth camera technology is the Photonic Mixer

Device (PMD). These devices are small and capable of being fabricated

similar to CCD pixels. Due to their similarity to CCD pixels,

PMDTechnologies, a leader in commercializing depth cameras utilizing

PMD technology, call these devices “smart” pixels [9]. Each smart pixel is

significantly larger than a CCD pixel preventing the resolution of depth

cameras from being on par with color cameras. The current state-of-the-art

resolution is 204 × 204 found in PMDTechnology’s CamCube 2.0 depth

camera, which is the depth camera used to generate real depth images in

this thesis.

The PMD technology smart pixel can be seen in Figure 2.2. It is a five

terminal device with two photo-gates in the middle. It works by driving

12



Figure 2.2: PMDTechnology’s smart pixel diagram [9].

electrons to the left or right readout channel based on the differences in

phase between the driving signal um and the received echo signal. This

process can be modeled as the cross correlation between the received echo

signal and the sent reference signal. If we consider the sent modulation

signal, s(t), as a rectangle wave and the received echo signal, r(t), as a

sinusoid (which is reasonable given the low-pass characteristics of

IR-LEDs), then

s(t) =
∞
∑

n=−∞

rect

(

2t

T
− 2n

)

r(t− TL) = a0 cos(ω(t− TL)) + B

which makes the cross correlation function

ϕ(τ) = (s⊗ r)(τ) =
k

T

∫ T/2

t=−T/2

s(t)r(t+ τ)dt

= k

[

a0
π

cos (w(τ − TL)) +
B

2

]

where k is a constant corresponding to the number of periods per

integration time. In order to make the phase estimation invariant to the

amplitude and offset of the received signal, a state-of-the-art four phase
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algorithm is employed [10]. It requires that four measurements be taken

corresponding to ωτ = {0◦, 90◦, 180◦, 270◦}. Using these four delays the

phase difference between s(t) and r(t) can be calculated as

φ = arctan

(

ϕ0◦ − ϕ180◦

ϕ90◦ − ϕ270◦

)

Along with phase, it is also possible to calculate a0 and Bk, where Bk is the

accumulated offset.

a0 =

√

(ϕ0◦ − ϕ180◦)2 + (ϕ90◦ − ϕ270◦)2

2/π

Bk =
ϕ0◦ + ϕ90◦ + ϕ180◦ + ϕ270◦

2

Figure 2.3 gives a good visual of the relationship between the various

calculated values. The amplitude corresponds to the height of the received

signal above the offset, and the offset represents the accumulation of light

not corresponding to the modulated signal, i.e. background illumination

and object diffuse reflectivity. These additional values are provided at

minimal additional computations, but grant much more information about

the scene. The amplitude of a measurement is related to the strength of the

received signal and also to the uncertainty of the measurement. Thus it can

be used as a threshold to discard outlying points, and as a weighting

function to place more emphasis on more confident terms. The offset

information can be thought of as a grayscale picture of the scene which is

conveniently acquired from exactly the same viewpoint as the depth

information. The grayscale information is often used for denoising and/or

calibration.

2.2.2 Uncertainty

There are three major sources of noise for ToF measurements: (1) photon

shot noise, (2) photo charge conversion noise, and (3) quantization noise

[11]. As the number of incoming photons increases, photon shot noise

eventually dominates the other forms of noise. Shot noise is described by

the Poisson distribution corresponding to the photon arrival process.

In [12], Lange determines that the resolution of the depth measurement is
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Figure 2.3: The cross correlation function between the received echo signal
and the sent reference signal for a single modulation period.

described by

∆D =
∆ϕ

2π

c

2fmod

=
c

4
√
8fmod

√
B

a0

where c/(2fmod) is the distance before the phase wraps around. Since it is

possible to estimate B and a0, each measurement contains within itself the

information of its own reliability [9].
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CHAPTER 3

REGISTRATION

Registration is the process of transforming different data sets into a

common coordinate frame. This problem is not new to depth cameras. All

of the 3D sensing techniques described in Chapter 2 are limited by their

viewpoint. Therefore, in order to develop full 3D models, multiple 3D point

sets are required from various viewpoints. Each of these sets must then be

registered to the others. Therefore, there exist techniques that effectively

solve this problem for high quality (a.k.a. low noise and high resolution)

point cloud data sets. Our problem is to design a registration technique

that can effectively and efficiently register depth camera data which is of

significantly lower quality than previous data. In this chapter we review

previous techniques in order to understand and motivate our proposed

method in Chapter 6.

3.1 Variants of ICP

The dominant method for the rigid registration of two sets of points is the

technique known as ICP [13]. Originally, ICP stood for Iterative Closest

Point [14], but it has developed and is now a class of techniques more

appropriately labeled Iterative Corresponding Point. The basic idea of ICP

is to match a subset of points in one set to points from the other set and to

determine the best rigid transformation in the least squared sense. This

process is repeated until a maximum number of iterations or until some

convergence criterion is met. Thus, the major variations of ICP consider

different methods to match points and different methods to determine the

optimal rigid transformation. All forms of ICP include the following six

categories:

1. Point selection
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2. Point matching

3. Weighting

4. Rejection

5. Choice of error metric

6. Method of minimization

Rusinkiewicz and Levoy presented a nice overview and comparison of the

many variations of ICP in [13]. Considering a base implementation of ICP

they systematically vary only one of the previous six categories and explore

the effects of the variations on the convergence, specifically with a look at

speed of convergence. In particular they find that the point matching and

error metric have the greatest contribution to the convergence rate, while

point selection, weighting and rejection have more to do with robustness.

The method of minimization is not studied, but chosen appropriate to the

choice of error metric.

ICP operates on two assumptions. The first is that good initial

registrations are available. This is important for the inherent non-linear

optimization involved in ICP; it will always converge, but it is possible that

it will get stuck in a local minimum and not find the true registration. As

seen in non-linear optimization, a good initial guess is often sufficient to

avoid spurious local minima. The second is that the two point sets contain

sufficient overlap. This assumption is clear from the standpoint of the point

selection algorithms. If the point sets do not contain sufficient overlap, then

correct point correspondences will never be generated. If either of these

assumptions is invalid, ICP will still converge, but most likely to a false

registration.

3.1.1 Point Matching

If corresponding pairs of points were known a priori, it would take only one

iteration of ICP to determine the optimal rigid body transformation. The

problem with registering two 3D point sets is that we must determine both

correspondence and registration at the same time. ICP separates these

goals by first determining the “optimal” correspondences and then
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determining the optimal registration in the least square sense. The optimal

correspondences are a heuristic. Given the assumption that there exists a

good initial guess for the rigid transformation between the two point sets,

then it is reasonable to assume that the point closest in Euclidean distance

may be a good choice for correspondence. This assumption becomes more

valid as the estimated registration becomes closer to the actual registration.

Thus, the beginning iterations may contain many incorrect yet close

correspondences, but assuming the registration estimate is converging to

the correct registration the final iterations will contain mostly correct

correspondences.

One problem with closest point correspondence is the computations

required to determine it. Given N points in both sets, the computations to

find the closest points require O (N2) computations. This can be sped up

by utilizing a k-d tree [15] to O (N logN), but this is still very slow for a

large number of points. Therefore, two other methods are explored in [13]:

Projection [16] and Normal Shooting [14].

The projection method [16] for determining correspondences utilizes the

fact that typical 3D point sets come from scanning devices that often utilize

a camera. A point set that comes from a particular viewpoint can be

projected onto the image plane of the camera used for capture and create

what is known as a range image, essentially similar to depth images. The

idea of projection correspondence matching is to project a new point set

onto the range image of another point set. Then the corresponding points

are those that are closest on the 2D range image. The advantage of this

method is that projection is constant in computation time. Thus,

corresponding points are determined magnitudes faster than by the closest

point method. The disadvantage is that 3D points are being matched in

2D. This loss of dimension implies that the correspondences may be more

prone to error, but they still have the property that as registration error

approaches zero the matches should approach optimal. Rusinkiewicz and

Levoy [13] showed that the projection method typically required more

iterations than the closest point method, but the projection method is so

much faster that it still converges magnitudes faster.

The normal shooting method determines correspondences by following

the ray starting at a point in the direction of its normal and finding its

intersection with the surface described by the other set of points. Normal
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shooting requires a surface description of one of the sets of points, typically

a mesh, and it requires an efficient method to compute the intersection of

rays with that surface, typically a ray tracing method. The results of [13]

show that normal shooting is faster than closest point ICP but not as fast

as projection ICP.

3.1.2 Error Metric

Given a set of matched pairs from one of the point matching methods, let

pi ∈ S1 represent the ith point matched to qi ∈ S2. Then the simplest ICP

error metric is the sum of squared distances between pi and qi with respect

to rigid transformations of rotation, R, and translation, t.

R̂, t̂ = argmin
R, t

∑

i

‖Rpi + t− qi‖22 (3.1)

The minimization of this error metric has been solved in many ways

[17, 18, 19]. But it was shown in [20] that these methods are essentially

equivalent in terms of numerical accuracy and stability. One nice result of

these methods is that they present closed form solutions to Equation (3.1).

An alternative error metric was proposed in [14] that minimizes the point

to plane distance between matched points. Equation (3.1) can be

considered a point to point error metric and it was shown that this metric

provides slow convergence for planes sliding across one another. The issue

is that in order for one plane to slide across another plane it incurs a

penalty at all of the points matched on the flat part. This can be overcome

if the error metric considers not distance from point to point, but from a

point to the plane defined by a point. This method uses the surface

normals associated with each point and considers only the distance between

points in the direction of the normal. It is formulated as follows:

R̂, t̂ = argmin
R, t

∑

i

[

(Rpi + t− qi)
Tni

]2
(3.2)

The disadvantage of this error metric is that it does not admit a closed

form answer. One solution is to solve it by some iterative non-linear

method. Another option is to linearize R using the small angle assumption,
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cos θ ≈ 1 and sin θ ≈ θ. This approximation is reasonable since for large

angles the solution error is likely to be dominated by error due to

mis-matched points, not the small angle approximation, and as the

registration becomes better the small angle approximation becomes more

valid. It was shown in [13] that using the linearization of R method to

solve Equation (3.2) provides an increased convergence rate and more

robustness over the point to point error metric of Equation (3.1).

3.2 Registration Drift

In this section, we consider the problem of registering three or more 3D

point sets. One straightforward extension of ICP is to choose one point set

as the basis and to register by ICP all other point sets to the basis. This

solution works if a suitable basis can be found which does not violate the

assumptions of ICP. In many cases, such a basis cannot be found such as in

the reconstruction of an entire 3D model. In this case, for whatever

viewpoint is considered the basis, the points on the opposite side of the

object will have few points in common with the basis. Thus, registration

between these point sets would violate the second assumption of ICP and is

likely to fail.

An alternative extension is to order the point sets such that adjacent

point sets have sufficient overlap. Then by registering the adjacent point

sets in order, a common coordinate frame can be obtained by propagating

registrations. For example, from the registration of the first and second

sets, the second set can be transformed into the coordinate frame of the

first set. From the registration of the second and third sets, the third set

can be transformed into the coordinate frame of the second set, but then it

can also be transformed into the coordinate frame of the first set. Likewise,

the last point set can be propagated through all previous registrations to

the first coordinate frame. It is possible to propagate the registrations and

only apply the propagated registration once to bring any frame to the

desired coordinate frame. This method is often used in practice.

Registration drift is the result of small errors in each pair registration

that accumulate through registration propagation. For example, consider

the task of obtaining a full 3D model. If the ordered point sets are
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generated from viewpoints that make a complete circle around the object,

then registration drift would be when the surface does not connect upon a

full rotation around the object. Registration drift is a significant problem

when there are large numbers of point sets.

One way to combat registration drift is to determine all of the

registrations simultaneously. Neugebauer [16] demonstrates a method for

simultaneous registration by first determining good initial estimates of each

registration and then considering the final registration to be only

determined by a local linearized correction factor. Simultaneous

registration is performed through a global least squares solution for all

correction factors.

Another approach is to diffuse the pairwise registration errors evenly

across all registration pairs. Shih et al. [21] achieve this by first performing

pairwise registrations and then using these as constraints for a multiview

registration, while [22] represents the multiview registration problem as a

graph and converts it to a quadratic programming problem of Lie algebra

parameters.

The final approach is through the building of intermediate surfaces

representations. Huang et al. [23] utilize a partition of unity surface built

from piecewise quadratic functions defined on octree cells. A prototype

surface is constructed for the given level of the octree. Each point set

registration is refined according to prototype surface. Then the level of the

octree is increased by one and the surface is reconstructed and new

registrations are generated. This is repeated for the desired number of

octree levels. Claes et al. [24] begin by converting each point set to a

variational implicit surface (VIS) model and proceed with all levels of

registration from crude to fine utilizing this model. In particular, they solve

the multiview registration problem in terms of these VIS models.

3.3 Depth Camera Registration

The previous sections detail the approaches previously taken to solve the

registration problem for high quality sets of 3D points. In particular we are

interested in the registration of 3D point sets produced by a depth camera.

This implies that our data will have considerably higher noise and lower
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resolution. It will also be important to consider the registration drift

problem since depth cameras produce a very large number of point sets, but

it would make real time applications intractable if we required a global

registration with each new set of data. Therefore an ideal registration

technique suited for depth cameras is one that:

• Incorporates smoothing and denoising

• Determines an accurate registration without having to correct all past

registrations
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CHAPTER 4

INTEGRATION

In Section 1.2 we proposed to combat the limitations, low resolution and

high noise, of a single capture from a depth camera by integrating data over

multiple time instances. The desire to integrate is a perspective change

from the viewer-centered representation available through each frame of the

depth camera to an object-centered representation [25]. In the

viewer-centered representation, the 3D data acquired at each time instant

must be considered essentially distinct objects. While in the

object-centered representation, data acquired at each time instant is

recognized as a distinct view of the same surface. Thus, with proper

alignment it may be possible to combine data from many samples in order

to recover the surface. This problem of surface reconstruction from a set of

measurements of the surface is a well studied problem in computer

graphics. Surface reconstruction methods range from construction of a

mesh [26], to implicit surfaces [27, 28], to point set surfaces [29, 30]. In

some cases there may be more points than necessary to adequately define a

surface; thus, [31, 32] consider the problem of consolidating a large point

set to a smaller more representative point set with less noise and more

uniform sampling over the surface.

In this chapter, we consider the various ways in which a surface can be

represented and expound on two influential methods of surface

reconstruction.

4.1 Surface Representation

There are two ways that a surface can be represented: explicitly or

implicitly.
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4.1.1 Explicit Representation

The explicit form of a surface is a graph of a set of functions of two

variables. An adaptation of the definition from [25] is:

Definition 4.1. Let gi : Ui ⊆ R
2 7→ R be a set of functions used to describe

the surface and Ti : R
3 7→ R

3 be a set of 3D rigid transformations; i.e., it

applies a rotation and translation to every point. Then

Surface =
⋃

i

Ti([Ui, gi(Ui)])

A simple way to understand this definition is that an explicit

representation is a set of 3D patches made from localized 2D functions. A

straightforward example is a mesh representation of a 3D object. Meshes

consist of finite support, constant, 2D functions positioned between three

points in 3D. Meshes are significant due to their popularity in computer

graphics, 3D modeling, and 3D movie animation. More elaborate surfaces

are possible by considering more complicated 2D functions such as B-splines

and Bézier surfaces or Non-Uniform Rational B-Splines (NURBS).

Explicit 3D patches are usually defined by a set of control points. For

example, meshes are built from the interpolation between vertices, which

are control points on the surface. An explicit surface built from higher

order functions such as quadratics or B-splines may be defined by control

points not on the surface.

The advantage of an explicit representation is that the surface is clearly

defined with known properties such as differentiability. In the case of

meshes, the property that the surface is defined by the interpolation

between sets of surface points allows for efficient storage and rendering.

The disadvantage of explicit surfaces is that only the surface is defined.

Information about points not on the surface must be computed with

respect to the explicit surface. Another disadvantage particular to

incremental integration is that given an explicit surface derived from one

set of points it is difficult to update the surface given an additional set of

points. The best solution is often to discard the previous surface and

construct a new explicit surface from the combined set of points.
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4.1.2 Implicit Representation

The implicit form of a surface corresponds to a function of the form

f : R3 7→ R | f(x, y, z) = constant

Fundamentally, the explicit form is a special case of the implicit form since

all explicit forms can be transformed into an implicit form but not vice

versa. The implicit function most often considered in surface reconstruction

is the signed distance function. If f(x) is a signed distance function, then

|f(x)| is the distance from x to the closest point on the surface and

sign(f(x)) denotes whether the point is inside or outside the surface. For

signed distance functions, the surface is defined as the set

{x ∈ R
3 : f(x) = 0}.

The advantage of an implicit surface is that it is defined for all points in

R
3. Thus, it contains more information. The disadvantage is that the

storage of all this information can be expensive. Often, given an implicit

definition of a surface, an explicit mesh representation is derived from the

implicit surface using the marching cubes algorithm [33].

In terms of incremental integration, since the implicit form is based on

continuous functions defined at all points, it is possible to combine the

implicit information at each point to derive a new implicit surface. Thus,

implicit surfaces are better suited to incremental updating.

4.2 Reconstruction Algorithms

Since implicit surfaces are better suited to incremental integration, we now

expound on two surface reconstruction techniques that utilize signed

distance implicit functions and that form the basis of our proposed

integration algorithm.

4.2.1 Volumetric Reconstruction

“A volumetric method for building complex models from range images” [26]

was presented at SIGGRAPH in 1996, and it remains one of the dominant
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methods to reconstruct a 3D model from a set of high quality depth images.

It is based upon the following set of desirable properties:

• Representation of range uncertainty

• Utilization of all range data

• Incremental and order independent updating

• Time and space efficiency

• Robustness

• No restrictions on topology

• Ability to fill holes in the reconstruction

These desirable properties also apply to the integration of depth camera

data except that we define the order to be sequential in time. The

combination of the ability to utilize all data while being incremental and

time and space efficient is what makes this method particularly practical.

As stated in the title, the algorithm is based on a volumetric sampling

method. In this case, they define a continuous scalar function which is a

weighted signed distance function. This function is sampled in a regular

volume pattern. Each new frame of depth data is first converted into a

mesh by simply connecting neighboring points in the depth image. The

weighted signed distance is then calculated for each point of the volumetric

grid using this mesh. The signed distances and weights are then combined

through the following formulas:

D(x) =

∑

i wi(x)di(x)
∑

i wi(x)

W (x) =
∑

i

wi(x)

where i indicates the index of the frame, wi are the volumetric weights

calculated for each frame, and di are the volumetric signed distances

calculated for each frame. The nice part about this formulation is that it is

extremely easy to add new data, since assuming that D(x) and W (x) are
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saved separately, then new distances and weights can be calculated as

D̂(x) =
W (x)D(x) + wi+1(x)di+1(x)

W (x) + wi+1(x)

Ŵ (s) = W (x) + wi+1(x)

The final mesh is determined by the marching cubes on the volumetric

sampled signed distance function. The main advantage of the overall

algorithm is that it contains all of the desired properties mentioned above.

The disadvantage is that it is designed for high quality depth data. Given a

noisy low res depth frame, the resulting signed distance function would be

very noisy and could result in erroneous and non-robust surfaces. The main

problem is that the signed distance function for each frame is calculated in

a non-rigorous way. The weighting functions are included in order to handle

uncertainty in the measurements, but these are heuristically defined.

4.2.2 Implicit Moving Least Squares

Implicit Moving Least Squares (IMLS) was originally proposed as a method

for interpolating and approximating polygon soup [27]. It is based on the

interpolation technique Moving Least Squares (MLS), which is a method

that fits planes to local neighborhoods of points in a least squares fashion.

Unlike traditional MLS which is often considered a projection operator,

IMLS constructs localized planes, or functions, at each input point, as seen

in Figure 4.1. The sum of these functions approximates the signed distance

function. It has been shown in [34] that IMLS is a provably good estimate

of the surface given proper sampling conditions. IMLS is defined by the

function f : Rn → R such that

f(x) =

∑

i∈I n
T
i (x− si)φi(x)

∑

i∈I φi(x)
(4.1)

φi(x) = exp

(−||x− si||2
2σ2

i

)

In this equation, I is a set of indexes to points, ni are the normals defined

for each point, si are the position of each point, and σi is the local

smoothing parameter which can either be constant or different for each i.
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(a) Visualization of Moving Least Squares. Plane mini-
mizing the local projection distance.

(b) Visualization of Implicit Moving Least Squares. Lo-
calized planes fit to each point.

Figure 4.1: Visualization of MLS and IMLS.

This function is extremely similar to the signed distance function defined in

[26], but instead of i signifying the distance calculated from entire meshes,

now i corresponds to each of the input points. Thus, each input point is

considered as a local observation of a plane. The weighting term is used to

produce a globally smooth function, but the algorithm is very sensitive to

σi. Too much smoothing will lose significant geometric features, while too

little will let noise produce erroneous results.

Similar to the signed distance function of [26], the IMLS definition can be

incrementally updated. Given the value of the signed distance function

f(x) and w(x) =
∑

i φi(x), then for new points J

f̂(x) =
w(x)f(x) +

∑

j∈J n
T
j (x− sj)φj(x)

w(x) +
∑

j∈J φj(x)

This incremental update property allows for efficient updating and storage

of f(x) in a volumetric grid.

One advantage of IMLS over the signed distance function of [26] is that it

can be derived from Local Kernel Regression [28]. Let f(x) : Rn → R be a

function that we wish to approximate from noisy observations
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yi = f(xi) + ǫ. The Taylor expansion of f(xi) around x is given by

f(xi) ≈ f(x) + (xi − x)T∇f(x) +
1

2
(xi − x)THf (xi − x) + · · ·

where Hf is the Hessian of f and ∇f is the gradient. If we consider only a

second order approximation, then the goal is to find f(x) and ∇f(x) that

minimize the local least squares fit.

argmin
f(x),∇f(x)

∑

i

[

yi −
(

f(x) + (xi − x)T∇f(x)
)]2

φi(x)

where φi(x) is a localizing weighting function. Next we make two

simplifying assumptions. First, assume that the input points are close to

the surface such that yi ≈ 0. Second, set ∇f(x) = ni, where ni are the

normals associated to each input point i; then this second order

minimization becomes a first order of the form

argmin
f(x)

∑

i

[

f(x) + (xi − x)Tni

]2
φi(x)

Taking the derivative and setting equal to zero gives the solution found in

Equation (4.1).

Using this derivation from local kernel regression, [28] was able to

implement a more robust version of IMLS which they termed Robust

Implicit Moving Least Squares (RIMLS). RIMLS has the advantage that it

solves a robust minimization instead of least squares and it utilizes a

bilateral filtering with respect to the normals. This enables RIMLS to have

sharper features than IMLS since IMLS uses an isotropic smoothing

function. The disadvantage of RIMLS is that it requires an iterative

solution to solve the robust minimization; thus RIMLS is no longer able to

be incrementally updated.

Another advantage of IMLS is that, because the signed distance function

is analytically defined, it is possible to derive the gradient of f(x).

∇f(x) =

∑

i n
T
i (x− si)∇φi(x) +

∑

i φi(x)ni −
∑

i f(x)∇φi(x)
∑

i φi(x)

Unlike f(x), ∇f(x) is not incrementally additive. This is because it is a

function of f(x) which changes given new data. A small approximation can
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solve this problem. If we assume that f (i)(x) ≈ f (i+1)(x), then we can

combine gradients as follows:

∇f̂(x) =
∇f (i)(x)w(i)(x) +∇f (i+1)(x)w(i+1)(x)

w(i)(x) + w(i+1)(x)

If the assumption f (i)(x) ≈ f (i+1)(x) is violated, it is probably because one

set does not have very many points close to x; thus more weight is applied

to the estimate with points closer.

The IMLS signed distance function is a theoretically sound and practical

signed distance function which is capable of being incrementally updated

when sampled in a volumetric grid. Thus, IMLS will form the surface

representation basis used for integration and registration with our proposed

method.
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CHAPTER 5

SIGNED DISTANCE REGISTRATION:

THEORY

In this chpater we analyze an ideal signed distance function in order to

motivate a method for registering a set of points to a signed distance

representation of a surface. In particular, we consider how to find the

closest point to the surface given the signed distance function and its

gradient.

5.1 Properties of a Signed Distance Function

In order to register a new set of points to the signed distance model, we

utilize properties of ideal signed distance functions.

Definition 5.1 (Projection). A Projection PS(x) is the point on the

surface S closest to x, i.e.,

‖x− P S(x)‖ ≤ ‖x− s‖ ∀s ∈ S

Theorem 5.2 (Existence of Projection). Let S be a compact, orientable

surface (i.e. 2-manifold); then there always exists at least one ŝ ∈ S such

that for x ∈ R
n

‖x− ŝ‖2 ≤ ‖x− s‖2 ∀s ∈ S

Define

P (x) = ŝ

Proof. Let

δ = inf
s∈S

‖x− s‖2

By the definition of inf there exists a sequence {sn}∞n=1 ⊆ S such that

lim
n→∞

‖x− sn||2 = δ
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Because S is compact there exists a convergent subsequence {snk
}∞k=1 such

that

lim
k→∞

snk
= ŝ ∈ S

Thus ‖ŝ− x‖2 = δ which implies that

‖x− ŝ‖2 ≤ ‖x− s‖2 ∀s ∈ S

�

Assume for the rest of our analysis that S is a compact, orientable

surface.

Definition 5.3 (Uniqueness of Projection). A projection P (x) is unique if

‖x− P S(x)‖ ≤ ‖x− s‖ ∀s ∈ S

with equality iff s = P (x).

Definition 5.4 (Ideal Signed Distance Function). Let f : R3 7→ R be the

signed distance function associated with surface S ⊆ R
3. Then

f(x) = ‖x− P (x)‖2Ψ(x) (5.1)

where Ψ(x) is the sign function determining whether x is inside or outside

the surface.

For the rest of this analysis we will consider only a subset of the domain

{x ∈ R
3 : Ψ(x) ≥ 0}. Thus, we will work with

f(x) = ‖x− P (x)‖2 (5.2)

Results apply for {x ∈ R
3 : Ψ(x) ≤ 0} with appropriate sign changes.

Property 5.5. The ideal signed distance function (sdf) f : R3 7→ R is well

defined and continuous

Proof. The ideal sdf is well defined due to Theorem 5.2 since there always

exists a projection and the 2-norm is well defined.
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The function f is continuous ⇔ ∀ ǫ > 0 ∃ δ > 0 such that for x,y ∈ R
3

and ‖x− y‖2 < δ implies that |f(x)− f(y)| < ǫ

‖y − P (y)‖2 ≤ ‖y − P (x)‖2
≤ ‖y − x‖2 + ‖x− P (x)‖2
⇒ ‖y − P (y)‖2 − ‖x− P (x)‖2 ≤ ‖y − x‖2

By symmetry a similar inequality can be derived starting at ‖x− P (x)‖2,
which implies that

|f(x)− f(y)| =
∣

∣‖x− P (x)‖2 − ‖y − P (y)‖2
∣

∣ ≤ ‖x− y‖2 ≤ δ = ǫ

�

Theorem 5.6. Let X ⊆ R
3 be the set such that P (x) for x ∈ X is unique.

Then for x ∈ X and y = (1− λ)x+ λP (x) ∀ λ ∈ [0, 1]

P (x) = P (y)

and y ⊆ X.

Proof. By definition

‖x− P (x)‖2 < ‖x− s‖2 ∀ s ∈ S, s 6= P (x)

Thus,

‖y − P (x)‖2 = ‖x− P (x)‖2 − ‖x− y‖
< ‖x− s‖2 − ‖x− y‖2
≤ ‖y − s‖2 ∀ s ∈ S, s 6= P (x)

⇒ P (y) = P (x)

and P (y) is unique. �

Theorem 5.7 (Derivative of Signed Distance Function). Let X ⊆ R
3 be the

set such that P (x) for x ∈ X is unique. The gradient of the signed distance

function ∇f on X is equal to

∇f(x) =
x− P (x)

‖x− P (x)‖2
(5.3)
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Proof. On X, P : X 7→ S is a valid function. Thus we can write

∇f(x) = ∇‖x− P (x)‖2

=
1

2

∇‖x− P (x)‖22
‖x− P (x)‖2

=
[I − P ′(x)](x− P (x))

‖x− P (x)‖2

=
(x− P (x))− P ′(x)(x− P (x))

‖x− P (x)‖2

where P ′(x) is the Jacobian matrix of the projection.

Claim 5.8. If P ′(x) exists, then P ′(x)(x− P (x)) = 0 on X

By definition of the total derivative

lim
‖h‖2→0

‖P (x+ h)− P (x)− P ′(x)(h)‖2
‖h‖2

= 0

Let h = −δ(x− P (x)). Then

lim
δ→0

‖P (x− δ(x− P (x)))− P (x) + P ′(x)(δ(x− P (x)))‖2
|δ|‖(x− P (x))‖2

= 0

By Theorem 5.6, 0 ≤ δ ≤ ‖x− P (x)‖ implies that

P (x− δ(x− P (x)))− P (x) = 0. Thus

lim
δ→0

|δ|‖P ′(x)(x− P (x))‖2
|δ|‖(x− P (x))‖2

= 0

which implies that

P ′(x)(x− P (x)) = 0

�

For completeness we note that P ′(x) is not a continuous function and

that there exist discontinuities where P ′(x) is not technically defined. We

neglect these cases since the limit of ∇f(x) as it approaches these points

exists even if P ′(x) is not defined.

Corollary 5.9. For x ∈ X

P (x) = x− f(x)∇f(x) (5.4)
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Proof. By simple manipulation of Equation (5.3) �

35



CHAPTER 6

SIGNED DISTANCE REGISTRATION:

ALGORITHM

In this chapter we propose a novel registration algorithm based on the

analysis of signed distance functions from the previous chapter, which we

call Signed Distance Registration (SDR). Instead of the ideal signed

distance function described in Equation (5.1), which is not available from a

sampling of surface points, we utilize the IMLS definition described in

Equation (4.1). The algorithm consists of registering a new frame of data

to a previous IMLS representation of the surface. Once registered, the new

frame is incrementally integrated into the IMLS representation. It is then

ready for the registration of the next frame.

6.1 Flow Diagram

The following is the overall flow diagram for our algorithm. For notation,

let the superscript (i) denote the information and functions associated with

the ith frame from the depth camera. Therefore,

• I(i) denotes the set of indices pertaining to data gathered in the ith

frame by the camera. For example, let nj ∀j ∈ I(i) denote the

normals of ith frame.

• T (i) denotes the transformation of I(i) to the coordinate frame of

f (i−1); thus, T (i)(I(i)) includes a transformation of all points and

normals indexed by I(i).

• f (i) is the definition of IMLS utilizing the set of transformed sets
{

T (i−1)(I(i−1)), T (i−2)(I(i−2)), ..., T (2)(I(2)), I(1)
}

.

The algorithm is illustrated in Figure 6.1. As shown, the first data set

I(1) is used to generate the first IMLS model f (1), which is then used with
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the next set of data I(2) to estimate the transformation from I(2) to f (1).

Then this transformation is used with I(2) to generate the next IMLS

model. Thus, given any IMLS model f (i) and the next set of points I(i+1),

we determine the registration transformation and the next IMLS

representation.

Figure 6.1: Flow diagram for signed distance registration algorithm.

6.2 Input

The input necessary for our proposed algorithm is a sequence of 3D point

sets with associated surface normals. In practice, the depth camera only

provides a sequence of 3D point sets; therefore, it is necessary to estimate

surface normals. In the absence of noise, one could consider a rough

approximation of the surface as the quadrilateral mesh formed by

connecting 3D points adjacent in the depth image. In this case, surface

normal could be estimated by typical methods employed by meshes. But,

when one starts to consider depth images with significant noise, mesh

approximations quickly fail. Therefore, we employ a more generic method,

PlanePCA described in [35], designed for estimating surface normals for

general point clouds. The PlanePCA method was shown to be one of the

simpler and higher quality, in terms of speed and accuracy, surface normal

estimation schemes. PlanePCA is computed for a point p ∈ R
3 by

considering points qi in the neighborhood around p. Let

Q = [q1, q2, . . . , qn,p]
T be the matrix of the neighbors of p including p

itself. Then PlanePCA solves

argmin
n

‖(Q− Q̄)n‖22 (6.1)

where Q̄ is the matrix where all of the rows are equal to the centroid of the

points filling Q. Equation (6.1) can be solved by selecting the right singular
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vector corresponding to the smallest singular value of (Q− Q̄). PlanePCA

can be understood as fitting the plane that passes through the centroid and

has its normal in the direction of minimum covariance. An often

computationally heavy task of determining the neighborhood of a given

point is simplified by only considering the neighborhood defined on the 2D

depth image. In practice, we consider a 5× 5 block with p positioned in the

middle. In order to not include points across depth boundaries, we also

utilize a threshold within the 5× 5 block. This threshold is set relative to

the size of the scene and is typically 5 to 10 times the average spacing

between points in 3D.

One difficulty encountered when fitting a plane to a set of points is that

the estimated normal has two equally valid polarities. Normals for adjacent

points sampled from a plane can be opposite of one another. Typically this

problem is solved by propagating the polarity starting at some arbitrary

point. We overcome this difficulty by comparing the direction of the normal

with the direction to the center of the camera. If the angle between the

normal and the direction to the camera is greater than 90◦, then it would

have been impossible to capture this point from the depth camera;

therefore, we flip the polarity.

6.3 Building a Model

The coordinate frame of the first set of points constitutes the base

coordinate frame. All other frames will be registered to the base; therefore,

no registration is required with the first frame. The first step of the

algorithm is to build a surface representation from the first set of points.

As stated in Equation (4.1), the IMLS signed distance function f(x) is

computed as the weighted sum of signed distances in the direction of the

normals for each point. One way to construct the signed distance function

is to accumulate points that contribute to this sum. In a similar way, one

could consider accumulating points to represent a model that could be

utilized by closest point ICP. This is often the simple approach taken to

combat registration drift. While this approach allows one to utilize all

previous data to combat drift, it means that the computations required to

match points will increase over time. Therefore, we consider a way to
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implement our algorithm in a space and time efficient manner.

6.3.1 Time and Space Efficient

One of the key challenges of integrating depth camera data over time is

managing the large influx of data. In Section 1.2, we state that one of our

goals is the use of all available data. If we assume a point accumulation

model as a method to use all data, then letting M be the number of

relevant 3D points collected each frame, the amount of data that must be

considered after N frames is O (NM). If we consider the closest point ICP

variant, its computational costs are linear in the number of considered

points. Thus, the longer the algorithm is running, the more computation

required and the slower the algorithm will run. Along with computation

time, there is also the issue of storing all the previous data. Given

M = 5000 points/frame, a frame rate of 20 frames/sec and 48 bytes/point,

then after only one minute of recording we would have 6, 000, 000 points

requiring 274 MB of storage space. Modern storage limits make this a

manageable amount, but the real difficulty is that all this data would need

to be accessed each frame. Therefore, memory bandwidth comes into play

and may cause further slowdowns. In order to address the issues of space

and time efficiency we propose to sample and store the IMLS model in a

volumetric grid of samples, similar to [26].

As mentioned in Section 4.2.2, it is possible to sample the IMLS function

and its derivative and incrementally update them given new information. A

drawback to this approach is that instead of evaluating the IMLS function

at M points each frame, it must be evaluated at G3 points, where G is the

size of one side of a cube defining the volumetric sampling area. But the

advantage is that the IMLS signed distance function can then be evaluated

in constant time through a tri-linear interpolation of the grid. Thus, by

incrementally updating the samples of a grid it is possible to bound the

amount of computations required at each frame. This is demonstrated in

Figure 6.2 which is a plot of the amount of time necessary to compute the

registration indexed by the frame. As can be seen, both the basic SDR and

closest point methods grow roughly linearly with time, with SDR growing

much faster. But the gridded SDR approach has roughly constant time

39



performance. Given this bound, optimized parallel algorithms can be

developed that have the potential to make this registration perform in real

time. An additional bonus is that the gridded IMLS function can be easily

converted into a mesh through marching cubes. Thus, after each frame it is

possible to view the representative surface.
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Figure 6.2: Comparison of implementation timing.

The addition of the grid is nice in that it constrains the necessary time

and storage, but it also introduces another parameter into the algorithm,

namely the grid spacings. Figure 6.3 visualizes IMLS surfaces for three

different grid spacings. As the number of samples per unit length increases,

more details of the model can be seen. Figure 6.4 compares the registration

error for various grid sizes with the error obtained without using a grid and

evaluating the IMLS exactly from the set of all previous points. It can be

seen from this graph that there reaches a point where the grid is dense

enough. This is most likely due to the fact that small details contribute

little to the overall registration and that most of the registration is

dominated by the macro structure. Further research will need to be done to

identify the conditions under which sampling the signed distance function

still gives accurate conditions for convergence.
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(a) 50× 100× 50 (b) 150× 300× 150 (c) 250× 500× 250

Figure 6.3: Visualization of surface using three different grid spacings.
Each grid spacing is in terms of the number of elements in x, y, z.

6.4 ICP Variant

6.4.1 Point Matching

From Corollary 5.4, we are now able to propose a new method of point

matching for ICP. Given a signed distance function f : R3 7→ R and a set of

points P , we consider P̂ = {p ∈ P : p ∈ X} and define a set of matching

points Q to be the projection of P̂ onto the surface defined by f , i.e. pj ∈ P̂

qj = P (pj) = pj − f(pj)∇f(pj) (6.2)

This is similar to the closest point criterion originally proposed for ICP

except that we are matching points to a continuous surface instead of
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Figure 6.4: Comparison of registration error due to grid spacing.

another set of points. Thus, we would expect that for an ideal signed

distance function this matching would be at least as good as closest point

matching for the same surface densely sampled.

6.4.2 Error Metric

Given this new definition of point matching we can write the ICP objective

function. We will consider the point to plane error metric described in

Section 3.1.2.

R̂, t̂ = argmin
R,t

∑

j

[

(

Rpj + t− qj

)T ∇f
(

qj

)

]2

(6.3)

Typically, point to plane error metric is solved by linearizing R. This can

be done using the Rodrigues angle formula.

R = (1− cos θ)zzT + cos θI + sin θ[z]×

Here z is a unit vector denoting the axis of rotation. By the small angle

approximation,

R ≈ I + θ[z]×
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Thus, if we let

r = θz and

∇f(qj) = nj

then

=
(

Rpj + t− qj

)T
nj

=
[

pj + r × pj + t− qj

]T
nj

= (pj − qj)
Tnj + tTnj + (pj × nj)

Tr

Thus the final objective function is

argmin
r,t

∑

j

[

(pj − qj)
Tnj + tTnj + (pj × nj)

Tr
]2

(6.4)

This can be formulated as a matrix times the unknown parameters r and t

and solved using least squares or total least squares.

6.5 Output

The output of our algorithm is a grid representation of the signed distance

function. This uniform grid representation is the necessary format to run

the marching cubes algorithm that takes an implicit function and converts

it to a mesh. The mesh visualization of the output of our algorithm for

three different stages of reconstruction can be seen in Figure 6.5.
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(a) 1 Frame (b) 5 Frame (c) 20 Frame

Figure 6.5: Visualization of the surface after different numbers of integrated
frames. Each visualization is a mesh created from the isosurface function in
MATLAB (MATLAB’s marching cube implementation) applied to the zero
set of the IMLS function sampled in a 150× 300× 150 voxel grid.
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CHAPTER 7

NUMERICAL RESULTS

In this section we provide results from simulations of our algorithm utilizing

synthetic depth images created from high quality 3D mesh models. These

simulations allow for a ground truth comparison between previous state of

the art registration methods. We provide results utilizing noiseless points

and normals, as well as normals calculated from points. We also test our

algorithm with depth images that have been perturbed by Gaussian noise

with different variances.

7.1 Synthetic Depth Images

In order to have a ground truth registration for comparison of various

registration methods, we computed synthetic depth image sequences from

known high quality 3D mesh models. OpenGL and other graphic rendering

programs often utilize a depth image of 3D meshes in order to speed up

renderings. We avoid these depth images since they are often

approximations utilized solely for rendering speed purposes. Therefore, we

construct our synthetic depth images by projecting each triangle of the

mesh onto a user defined image plane. Then for each pixel that the triangle

covers we compute a depth from weighted averages of the depths to all of

the vertices. The closest depth and corresponding surface normal are saved

for each pixel. The synthetic depth maps that we construct are of similar

resolution as real depth cameras, 204× 204. The depth image sequences are

taken with the camera stationary and the 3D model rotating and

translating in space. The real advantage of synthetic depth images is that

these transformations are known and provide a ground truth for

comparison. Another advantage is that the synthetic depth images are

essentially noise free. Thus, we can also test the response of the registration
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algorithms under known noise variance.

7.2 Registration Error Metric

Given a ground truth registration, we would like to compare the error of our

algorithm against previous state-of-the-art registration techniques. In order

to have a comparison we need an error metric. This error metric should be

invariant to the particular object being registered, but should consider the

scale of the object since registration includes a translation vector which is

scale dependent. Thus, we propose the following error metric:

ǫ(R, t) =
1

λ
(λ‖R−R∗‖2 + ‖t− t∗‖2) (7.1)

where λ is the scale of the object, R∗ and t∗ are the ground truth

registrations, and the norms are the matrix and vector norms respectively.

For practical purposes we can consider λ ≈ 1
2
max{width, length, height} of

the object we are considering. The motivation of our metric is that the

matrix norm

‖A‖2 = max
‖x‖2=1

‖Ax‖2

implies ‖R−R∗‖2 ≤ 2 since rotation matrices are unitary. Thus, λ scales

the matrix norm such that it is proportional to the translation error.

7.3 Comparisons

In this section we compare three variants of ICP registration: SDR, Closest,

and Projection. Our comparisons are based on 48 frames of synthetic data

created as described above.

7.3.1 Noise-Free

Our first experiment is with noise-free points and normals. The results can

be seen in Figure 7.1. The errors presented in Figure 7.1 are negligible and

all methods provide indistinguishable registrations. Figure 7.2 shows a view

of the point cloud from SDR from the front and back as well as a view of
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the original mesh that produced the depth images. The holes in the point

cloud are from areas where the depth images never covered. Figure 6.5

demonstrated a front view of the mesh produced from the IMLS function

evaluated with 20 frames of data. Through all these figures it can be seen

qualitatively and quantitatively that all methods provide excellent results.
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Figure 7.1: Noise-free comparison between ICP variants.

7.3.2 Estimated Normals

Real data would not have ground truth normals along with the data. Thus

the first natural extension is to compare the registration methods utilizing

noise-free points with estimated normals. For all estimated normals we

utilize the normal estimation procedure described in Section 6.2. The

results of this experiment can be seen in Figure 7.3. Again, the errors are

negligible and all methods perform roughly equivalently. Since the normals

are estimated from neighborhoods around each point, Figure 7.4

demonstrates the smoothing effect on the normals even though the points

are very accurate. Figure 7.5 looks at the IMLS surface constructed after 1,

5, and 20 frames of data are registered and incorporated into the model.
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(a) SDR (b) SDR (c) Original (d) Original

Figure 7.2: Visualization of the set of points registered using SDR with
noise-free synthetic data, alongside the original model used to generate
synthetic depth images.
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Figure 7.3: Comparison of ICP variants with noise-free points and
estimated normals.

7.3.3 Gaussian Noise

Real depth data is also not noise free. Thus in the following set of

experiments we demonstrate the performance of our three methods under
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(a) Front (b) Back

Figure 7.4: Visualization of the set of points registered using SDR with
noise-free synthetic points and estimated normals.

Gaussian noise applied to the depth image. In this way, 1D Gaussian noise

applied at each pixel creates noise in the viewing direction of each pixel,

which is an accurate depiction of real noise from depth images. Gaussian

noise is reasonable since the shot noise described in Section 2.2.2 will tend

to Gaussian noise for sufficiently large numbers of photons, which is

generally the case. Real depth images can be modeled as having Gaussian

noise with changing variance depending on the amplitude of the received

signal. In these experiments we only consider Gaussian noise with a

constant variance.

Figure 7.6 compares the registration errors under σ = 0.001 variance

noise. Even for this case of a small amount of noise it is clear that our SDR

algorithm begins to provide more accurate registration. In general, it is

expected that SDR and closest point ICP would outperform projection ICP

since the former two incorporate past information while projection ICP is
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(a) 1 Frame (b) 5 Frames (c) 20 Frames

Figure 7.5: Visualization of the mesh constructed from the gridded IMLS
function after 1, 5, and 20 frames of data have been incorporated into the
model. Points are noise free with estimated normals.

only frame-to-frame registration, but from this figure we can see that

projection ICP is slightly better than closest point ICP. This can be

explained by the fact that even though closest point ICP is utilizing past

data, the noise thickens the surface and will cause closest point ICP to

register only to the outside of the thick surface. Thus, after each frame the

surface continues to thicken and sway the registration results. Projection

ICP does not have this problem since it only considers pair-wise frames.

Figure 7.7 compares the registration errors under σ = 0.002 variance

noise. In this case, SDR proves much more robust than either of the other

methods. This can be seen in Figures 7.8, 7.9, and 7.10 which display

visible errors for both the closest point and projection ICP methods. An

interesting view is the IMLS surface used in the SDR method visualized in

Figure 7.11. This demonstrates the smoothing properties of IMLS and
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Figure 7.6: Comparison of ICP variants with point noise of variance
σ = 0.001 and estimated normals.

provides insight into why it maintains accurate registration where the other

two methods fail.
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Figure 7.7: Comparison of ICP variants with point noise of variance
σ = 0.002 and estimated normals.

The results for Gaussian noise of variance σ = .04 can be seen in Figure
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(a) SDR (b) Closest (c) Closest

Figure 7.8: Front view of the qualitative comparison of ICP variants with
point noise of variance σ = 0.002 and estimated normals.

(a) SDR (b) Closest (c) Closest

Figure 7.9: Top view of the qualitative comparison of ICP variants with
point noise of variance σ = 0.002 and estimated normals.

7.12. Under this heavy noise, all registration methods show significant

error, but SDR shows the least. Errors of this measure are the difference

between registration artifacts and total registration failure.

52



(a) SDR (b) Closest (c) Closest

Figure 7.10: Side view of the qualitative comparison of ICP variants with
point noise of variance σ = 0.002 and estimated normals.
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(a) SDR (b) Closest (c) Closest

Figure 7.11: Visualization of the mesh constructed from the gridded IMLS
function after 1, 5, and 20 frames of data have been incorporated into the
model. Points have noise variance of σ = 0.002 and the normals are
estimated.
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Figure 7.12: Comparison of ICP variants with point noise of variance
σ = 0.004 and estimated normals.
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CHAPTER 8

CONCLUSION

In this thesis we propose a combined approach to registration and

integration of a streaming depth image sequence in order to overcome the

low quality (low resolution and high noise) found in real depth images.

Previous methods had either considered these problems separately or not

considered a method that could be extended to the necessary streaming

nature of depth cameras. The low quality of depth cameras is the current

limiting factor to its prolific use in consumer applications. Thus, we

propose to combine information over time in order to capitalize on the

speed of depth camera technology and overcome its limitations.

We presented current state-of-the-art algorithms that consider the

problem of registration and integration separately but are well suited for

streaming data and the merging of these algorithms. In particular, current

state-of-the-art ICP variants are either fast or capable of utilizing past data

but not both. And current state-of-the-art integration methods grow

computationally cumbersome after only a few frames of integration. Thus,

we present a method that can bound the amount of necessary computations

per frame and is well suited for parallel implementation. Thus it is capable

of utilizing all previous data and still maintaining a consistent speed over

time.

Our analysis in Chapter 5 demonstrated a method for finding the closest

point to the surface from the signed distance function and its gradient.

Utilizing this analysis, we proposed a new method for point matching in the

ICP framework which utilizes the approximate signed distance function

defined by IMLS. We also propose a volumetric sampling methodology for

storing and updating the IMLS function that allows for bounded

computations per time step even after an arbitrary amount of time. As an

added bonus, the necessary computations to calculate the IMLS function in

a grid at each time step are also the computations needed to run the
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marching cubes algorithm for quick production of a mesh each frame. Thus,

this registration technique, incorporated into a real-time point rendering

system, can share computations.

Finally, we demonstrate through the use of synthetic depth sequences the

robustness of our proposed method over both projection and closest point

ICP.
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