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Abstract

Many private enterprises and public agencies have faced the problem of locating facilities over

spatial dimensions to provide certain service functions. In the supply chain context, we often

need to locate a variety of private or public facilities (e.g., manufacturing, assembly plants,

schools and hospitals) to serve distributed customers. In the traffic engineering context,

various types of surveillance sensors (e.g., induction loops, video cameras and radio frequency

transponders) are deployed in transportation networks to estimate real-time traffic states,

which are valuable information for both private sectors (e.g., tracking fleets for trucking

companies, providing real-time traveler information) and public agencies (e.g., congestion

mitigation, accident management). In every case, the operational efficiency and system

benefit depend on the choices of facility locations. A good location design can maximize the

system benefit while saving as much infrastructure investment as possible.

Due to natural disasters or human hazards (e.g., power outages, operational accidents,

labor actions or terrorist attacks), facility disruptions are frequently observed in many con-

texts in the real world. These disruptions often adversely impair the benefit from these

facilities. Proper redundancy in the location design is helpful to enhance system reliability

and mitigate losses from such disruptions. However, reliable facility location problems are

difficult mainly due to the large number of possible failure scenarios. In this Ph.D. research,

we will overcome this challenge by developing a range of innovative modeling methods, and

then generalize the methodologies to address supply chain design and traffic surveillance

sensor location problems.

Traditional discrete location models (where customers and candidate facility locations are

represented by discrete points) are NP-hard; i.e., they are suitable for small-scale problem

instances, but suffer from excessive computational burden when problem size becomes large.

To improve computational tractability, continuum approximation models (where customers

and facilities are approximated by continuous spatial densities) are developed to approximate

problems in a continuous metric space and provide good approximate solutions to large-scale

instances.

We propose a continuum approximation (CA) model for the reliable uncapacitated fixed

charge facility location problem to determine optimal facility locations that minimize the one-

time investment for facility constructions and the long-run expected transportation costs for

serving spatially distributed customers under correlated facility failures. Complex facility

failure mechanisms such as spatial correlation or cascading failure effect are addressed. We

identified a few interesting properties of the CA model and developed effective solution

algorithms. We have tested this model over different types of numerical examples, and
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useful managerial insights on how failure correlation impacts the location design are drawn.

There are many connections between supply chain facility location problems and sensor

location design problems in the traffic surveillance context. For example, in traffic surveil-

lance, we can view traffic surveillance sensors as facilities and traffic OD flow paths as cus-

tomers being served (or inspected) by these facilities. For a traffic surveillance sensor system,

benefits are generated by estimating the real-time traffic states with collected samples at in-

stalled sensors, and hence costs come from estimation errors, i.e., the differences between

the estimated and the actual traffic states. Based on these connections, this research uses

methodologies for supply chain facility location problems to determine surveillance sensor

location design in a traffic network. We propose a discrete reliable sensor location model

that takes into account the surveillance benefit from not only individual sensor data but

also synthesized information from multiple sensors under probabilistic sensor failures. Like

many other location design problems, the deterministic version of the sensor location model

is already complex; considering an exponential number of possible failure scenarios will fur-

ther increase the difficulty. Hence we propose efficient customized solution algorithms based

on greedy heuristic and Lagrangian relaxation. We compare their performance with that of

well-known commercial software (e.g., CPLEX). Numerical examples including a full-scale

railroad wayside sensor location design are presented to show that the innovative model

significantly improves the state of practice, and the proposed algorithms solve the problem

efficiently even when commercial software fails to provide reasonable solutions. We further

encapsulated the solution algorithm into a piece of stand-alone software for railroad wayside

sensor location design, which has been adopted by the industry.

This sensor location model is further extended to generalize surveillance effectiveness mea-

sures and accommodate site-dependent failure probabilities. In the extended sensor location

design framework, traffic surveillance effectiveness is defined as the reduction of “generalized

estimation errors” on all highway segments between neighboring sensor pairs, such that most

existing measures can be expressed as special cases. The problem is first formulated into a

compact mixed-integer program, and we develop a variety of solution algorithms (including

a custom-designed Lagrangian relaxation algorithm) and analyze their properties. We also

propose alternative formulations including a continuum approximation model for single cor-

ridor problems and reliable fixed-charge sensor location models. Numerical case studies are

conducted to test the performances of the proposed algorithms and draw managerial insights

on how different parameter settings (e.g., failure probability and spatial heterogeneity) affect

the optimal sensor deployment and the overall surveillance effectiveness.
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Chapter 1

Introduction

1.1 Motivation

Most private enterprises and public agencies have faced the problem of locating facilities

over spatial dimensions to provide certain service functions to their distributed clients or

customers. Industrial firms need to locate a variety of facilities in the supply chain including

manufacturing and assembly plants, warehouse and retail outlets. Government agencies

must determine locations of public service facilities such as schools, hospitals, fire stations,

ambulance bases and landfill. In every case, the operational efficiency and system benefit

depend on the choices of facility locations. A good location design could maximize the service

benefit while saving as much infrastructure investment as possible.

Uncertainties such as demand fluctuations and probabilistic facility disruptions are often

observed in many real-world contexts and impose significant challenges to facility location

planning. Although demand uncertainties have been extensively studied in the past few

decades, only limited research has been conducted on the uncertainties of facilities. In

reality, facility operations may be disrupted from time to time due to reasons such as natural

disasters, power outages, operational accidents, labor actions or terrorist attacks. The failure

of a facility will force its customers to either seek service at some other functioning facility

(albeit less convenient) or completely give up service. Either way, system operation cost

increases and service quality deteriorates. The adverse effect may be further exacerbated if

multiple facilities fail simultaneously. Furthermore, many facility disruption cases exhibit

not only site-dependent failure probabilities but also strong spatial correlations (e.g., due to

shared exposure to common hazards). All these challenges and complexities raise the need

for a reliable facility design framework that hedges against all possible scenarios of facility

failures.

In the traffic engineering context, facility problems are also quite common. Sensing and
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information technologies have been successfully applied in many ways and hold the promise

for efficient estimation, monitoring, and management of many complex engineering systems.

Traffic surveillance technologies, which are critical components of intelligent transportation

systems, are also getting mature. A variety of sensor technologies, such as induction loops,

video cameras and radio frequency identification (RFID), have been applied in transportation

networks. These technologies can provide crucial real-time information and help improve

estimation of transportation states. Such information is valuable for both private sectors

(e.g., tracking fleets for trucking companies, providing real-time traveler information) and

public agencies (e.g., congestion mitigation, accident management). Real-time information

enables road users to choose routes that avoid congestion, traffic operators to promptly

respond to congestion patterns and efficiently select control strategies, and the homeland

security to locate most hazardous parts of a large transportation network in real time and

carry out preventive actions.

Compared to the facilities in supply chains, traffic surveillance sensors have different

types of service and benefit measures. For example, supply-chain facilities provide service to

discretely or continuously distributed customer demand in a space while traffic surveillance

sensors inspect traffic flows along O-D paths in a network. The utility of supply-chain

facilities is quantified by the reduction of logistic cost such as inventory holding cost and

customer traveling cost while the benefit of traffic surveillance sensors is measured by the

improvement of network traffic state estimation by sensor data. In addition, different types

of sensors provide different data and may have different benefit measures. Traditional traffic

surveillance sensors (e.g., loop detectors) usually provide aggregated statistical data such as

volume count and vehicle speed. Newer sensors (e.g., RFID) can identify individual vehicle

and enable synthesis of disaggregated data from multiple sensors.

Properly locating surveillance sensors is critical to accurate real-time traffic estimation

over transportation networks. Ideally, sensors can be densely deployed over a transportation

network and each of them collects real-time traffic data around its location. Then the esti-

mation for the whole network can be obtained by merging and interpolating local estimates

by each individual sensors, which apparently has very high accuracy and can promptly cap-

ture anomalous traffic states (e.g, traffic accident detection). However, implementing such

a sensor system requires enormous infrastructure investment, which is not realistic given

limited resources. Furthermore, like many other IT technologies, most sensors are subject

to performance disruptions due to technology flaws, system errors, adverse weather condi-

tions, or intentional sabotages (Rajagopal and Varaiya, 2007; Carbunar et al., 2005). Such

failures may substantially impair traffic network coverage and surveillance effectiveness. A

practical solution would be to utilize available samples from a number of operational sensors
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to reconstruct traffic states of the entire network based on traffic fundamental properties. In

this case, the sensor locations are critical to obtain the most representative information over

a network that maximizes expected estimation accuracy. A reliable sensor location frame-

work shall be established that optimizes the trade-off between infrastructure investment and

expected surveillance benefit across all possible sensor failure scenarios.

1.2 Objectives

This study will investigate location design for both supply chain facilities and traffic surveil-

lance sensors. We will first review existing studies on facility location problems with both

discrete and continuous modeling techniques in the supply chain context. Discrete models,

though well developed, are generally not suitable for large-scale problem instances, especially

those involving complex facility failure patterns. In this thesis, we first propose a continuum

approximation (CA) approach to solve large-scale facility location problems with facility

failure correlations.

We also aim to adapt these methodologies into those suitable for traffic sensor location

problems. We propose a discrete reliable sensor location model for travel time estimation

over general transportation networks. The model is extended to address a variety of sensor

technologies, general surveillance benefit measures and complex sensor failure mechanisms.

A continuum approximation approach for sensor location design along highway corridors is

also proposed, and it is shown to be computationally very efficient.

1.3 Contribution Statement

This work proposes methodologies that address reliable location design in both supply chain

and traffic surveillance contexts. In spite of decades of efforts on facility location problems,

reliable location design that hedges against facility failures is still a challenging research topic

due to the difficulty associated with modeling an exponential number of possible facility

failure scenarios.

Building on the continuum approximation approach, this study proposes a continuous

model to solve the reliable supply chain location problem under general facility failure prob-

abilities. Compared to discrete models, this continuous model significantly reduces com-

putational complexity and allows for more complex failure mechanisms such as spatially

correlated failures. Numerical experiments are conducted to illustrate how the proposed

model can be used to optimize facility location design, and how spatial correlations influence

the total system cost.
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This study also applies the reliable location methodologies to deploy surveillance sensors

over transportation networks. We try to address the question on how to deploy surveil-

lance sensors in a transportation network to maximize the utility (or minimizing the estima-

tion error) from integrating disaggregated vehicle information from multiple locations. We

have formulated novel mixed-integer mathematical programming models that optimize traffic

surveillance benefits under different surveillance effectiveness measures (e.g., traffic volume

coverage, vehicle-mile coverage and traffic state estimation error). These models also allow

sensors to be subject to probabilistic failures (e.g., due to technical flaws or environmental

hazards), even with complex failure patterns such as site-dependent failures. To our best

knowledge, no existing literature has addressed these two issues in the context of traffic sen-

sor deployment. Alternative models including single corridor continuum approximation and

fixed charge location models are also formulated so as to investigate general properties of this

class of problems and provide more flexible methodologies for various relevant applications.

We will develop a set of efficient customized solution algorithms (greedy, interchange,

linear relaxation, Lagrangian relaxation) and discuss their performances on the proposed

models versus that of well-known commercial software CPLEX. Numerical examples (in-

cluding full-scale railroad wayside detector location design and Chicago intermodal network

sensor location design) are presented to show that these innovative models significantly im-

prove the state of practice, and the proposed algorithms solve these problems efficiently

when commercial optimization software fails to provide reasonable solutions. This leads to

the development of a piece of stand-alone software, Railroad Wayside Detector Location

Solver (RWDLS) (Li and Ouyang, 2007), which has been adopted by the industry. With nu-

merical examples, we also draw managerial insights on how optimal sensor deployment and

surveillance benefits vary with the surveillance effectiveness measure and system parameters

(e.g., sensor failure patterns and investment budget).

In summary, from an academic point of view, our study advances the knowledge on

reliable location design in both supply chain and traffic surveillance contexts; from a practice

point of view, it lays the foundation for the development of decision supporting tools (e.g.,

RWDLS) for the deployment of reliable facility (or sensor) systems.

1.4 Outline

This dissertation is organized as follows. Chapter 2 reviews discrete and continuous modeling

techniques for supply chain facility location problems. Traditional discrete models formulate

facility location problems into integer linear programs. They in general suffer from huge

computational burdens for large problem instants. Continuous models significantly improve
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computational tractability by approximating problems in a continuous metric space, and they

are more suitable for large-scale instances. Recently, significant disbenefits from probabilis-

tic facility disruptions have been recognized. Hence, researchers have become increasingly

interested in reliable versions of these models.

Building on the continuum approximation approach, Chapter 3 proposes a continuous

uncapacitated fixed charge location model for reliable facility location design under correlated

probabilistic disruptions. This model seeks optimal facility locations to minimize the one-

time investment for facility constructions and the long-run transportation costs for serving

spatially distributed customers. This model greatly reduces computational complexity and

provides flexibility to model general failure patterns (including correlated failures).

Chapter 4 adapts the methodologies for reliable location problems to address traffic sensor

location design in a general transportation network. A reliable sensor deployment model is

proposed to find optimal locations for advanced vehicle ID identification sensors (which can

synthesize disaggregated vehicle information from multiple locations) under potential sensor

failures. We consider the cases where the traffic surveillance benefit is from both individual

sensor flow coverage (e.g., for traffic volume statistics) and synthesized sensor pairs (e.g., for

travel time estimation) and sensors fail independently with an identical failure probability.

Efficient solution algorithms are proposed and tested with numerical examples. A simplified

version of this model has been encapsulated into a piece of stand-alone software, which have

been adopted by the railroad industry.

Chapter 5 extends the sensor location model into a more general framework that incor-

porates general surveillance effectiveness measures and site-dependent sensor failure proba-

bilities. We define a novel surveillance effectiveness measure that encompasses flow coverage,

path coverage and estimation error reduction and formulate the design problem into a com-

pact model. Alternative formulations including fixed-charge location and continuum approx-

imation models are investigated. A range of customized solution algorithms are developed

to solve this problem efficiently.

Chapter 6 summarizes this dissertation and recommends a few future research directions.
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Chapter 2

Facility Location Problem Review

This chapter reviews several major discrete and continuous facility location models. Discrete

models, which are most-commonly seen in facility location literature, formulate facility loca-

tion problems into integer linear programs. Discrete models can be solved with commercial

solvers or customized algorithms if the problem sizes are small. Continuous models signifi-

cantly improve computational tractability by approximating problems in a continuous metric

and are more suitable for large-scale instances. Experiments have shown that the solution

quality of continuous models is comparable to that of discrete models if system parameters

only vary slowly across the spatial domain.

2.1 Discrete Models

Facility location studies can be traced back to its original formulation in 1909 and the We-

ber Problem (Weber, 1957). Daskin (1995) and Drezner (1995) have systematically intro-

duced classic discrete location models for deterministic problems including covering problems

(Christofides, 1975; Church and ReVelle, 1974), center and median problems (Hakimi, 1964)

and fixed-charge location problems (Cornuejols et al., 1977; Mirzain, 1985). These models

are later extended to handle reliable problems that allow possible facility failures (Daskin,

1983; Snyder and Daskin, 2005; Cui et al., 2009). All these models are NP hard, and known

algorithms (or commercial software) can only solve small-size instances to exact optimal so-

lutions efficiently. Solving large-scale problems generally relies on heuristic algorithms that

usually yield near-optimal solutions.
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2.1.1 Classic Models

This section, mainly referring to Daskin (1995), reviews a set of classical facility location

problems including covering, center, median, fixed charge facility location problems. In all of

these problems, customer demand is distributed in a set of nodes I and each i ∈ I generates

λi units of demand. Facilities can be built at locations in candidate set J to serve demand.

The set covering problem aims to find the facility location design with minimum number

of facilities that can serve all demand. In this problem, a facility can only cover (or serve)

a portion of demand. We use {aij}i∈I,j∈J to represent the coverage relationship such that

demand at i can (not) be served by a facility at j if aij = 1 (aij = 0). The binary integer

decision variables x = {xj}j∈J indicate where to build facilities; i.e., a facility is built at

j if xj = 1. The objective is to minimize the total number of facilities that can provide a

complete coverage. The mathematical model can be written as follows

min
x

∑
j∈J

xj, (2.1a)

subject to

∑
j∈J

aijxj ≥ 1, ∀i ∈ I, (2.1b)

xj ∈ {0, 1},∀j ∈ J , (2.1c)

When the total coverage requirement is relaxed and budget limit is imposed, the above

model (2.1) becomes the maximum covering problem. In this problem, no more thanN < |J |
facilities can be built in total due to the budget constraint. A set of binary auxiliary variables

y = {yi}i∈I are introduced such that yi = 1 indicates that demand at i is covered or yi = 0

otherwise. Note that once facility deployment x are given, all auxiliary variables are uniquely

determined. This is also true for other auxiliary variables in all the following models in this

chapter. Now the objective is to maximize the served demand.

max
x,y

∑
i∈I

λiyi, (2.2a)

subject to

∑
j∈J

xj ≤ N, (2.2b)
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∑
j∈J

aijxj ≥ yi,∀i ∈ I, (2.2c)

xj ∈ {0, 1},∀j ∈ J , (2.2d)

yi = {0, 1}, ∀i ∈ I. (2.2e)

Model (2.2) can be adapted to other problems if travel distance is taken into account. The

center problem tries to minimize the maximum travel distance of a customer and is suitable

for locating facilities of public services such as hospitals and schools where the service level

and equity are priorities. Let dij denote the travel distance from customer i to facility j,

and the auxiliary variables become y = {yij}i∈I,j∈J , where yij = 1 if customer i is served by

facility j. The center problem is formulated as follows.

min
x,y

W, (2.3a)

subject to

∑
j∈J

xj ≤ N, (2.3b)

∑
j∈J

yij = 1,∀i ∈ I (2.3c)

yij ≤ xj, ∀i ∈ I, j ∈ J , (2.3d)

W ≥
∑
j∈J

dijyij, ∀i ∈ I, (2.3e)

xj ∈ {0, 1},∀j ∈ J , (2.3f)

yij = {0, 1}, ∀i ∈ I, j ∈ J . (2.3g)

As compared to social benefit or equity that concerns public sectors, private agencies who

provide delivery services to customers are concerned more about their own profits. Thus
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reducing the operating cost, which is closely related to the total travel distance between

facilities and customers, is the primary consideration. This fits the median problem model

that aims to minimize the total travel distance for all trips (or deliveries). After minor

modification of model (2.3), the median problem is formulated as follows.

min
x,y

∑
i∈I

∑
j∈J

λidijyij, (2.4a)

subject to

∑
j∈J

xj ≤ N, (2.4b)

∑
j∈J

yij = 1,∀i ∈ I (2.4c)

yij ≤ xj, ∀i ∈ I, j ∈ J , (2.4d)

xj ∈ {0, 1},∀j ∈ J , (2.4e)

yij = {0, 1}, ∀i ∈ I, j ∈ J . (2.4f)

In addition to operating cost, one-time facility investment is sometimes a significant

component of the total system cost. We can prorate one-time facility investment over years

or aggregate long-term operating cost together to unify facility cost and operating cost. It is

intuitive that these two costs form a trade-off; i.e., the more facilities, the better accessibility

customers will have and thus the less operating cost. The fixed charge facility location

problem is looking for a balance of this trade-off in order to minimize total system cost. Let

fj denote the unified one-time building cost of a facility at j. The uncapacitated fixed charge

facility location (UFL) model can be obtained by adding facility cost to objective (2.4a),

min
x,y

∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

λidijyij, (2.5a)

subject to

(2.4b)− (2.4f). (2.5b)
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Constraint (2.4b) can be relaxed in the UFL model if the consideration of minimizing

the total system cost dictates the allocation of the budget. In problems where the facility

capacities restrict the location design, we add one more constraint to the model (2.5),∑
j∈J

λiyij ≤ kjxj,∀j ∈ J ,

where kj is the capacity of facility at j. The new model is called capacitated fixed charge

location problem.

Models (2.1)-(2.5) lay the foundation of many location models that have been used in

locating public and private facilities in various application contexts. These models can

be extended in a variety of ways to deal with more realistic situations. Multiobjective

optimization techniques are needed in case more than one conflicting or competing objectives

are present. Distinguishing facility types is necessary when the system involves multiple types

of facilities in a hierarchy. In complex supply chain systems, multiple stages of service and

interactions among facilities may be considered. Sometimes, the distribution cost can not

be simply measured by the direct shipment distance between facilities and customers, but

detailed delivery routing has to be taken into account.

2.1.2 Reliable Models

The traditional facility location models assume that facilities, once built, will remain oper-

ational forever (or at least within the life cycle). However, in reality, one or more of the

facilities may become unavailable from time to time—for example, due to adverse weather,

natural disasters, labor action, or failure of a related infrastructure system. Well-known

examples include the 2005 Hurricane Katrina that idled all industrial and transportation

facilities in the entire U.S. Gulf Coast region (Godoy, 2007), the 2002 west-coast port lock-

out that strangled all U.S. freight shipment routes and supply lines (D’Amico, 2002), and

the 2003 power outage that disabled all transportation systems in the New England area

(Schewe, 2004). In addition, transportation infrastructure (such as surveillance sensors —

for real-time information provision and traffic management) presents inferior performance

under adverse environments; for example, more than 40% of the loop detectors on California

highways are not functioning properly at any time (Rajagopal and Varaiya, 2007). Per-

formance of the more advanced radio frequency identification systems is often impaired by

factors such as radio frequency interference (Carbunar et al., 2005).

Early models considering system uncertainties focus on mitigating the facility congestions

from stochastic demand by increasing the system availability through redundant coverage
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(Daskin, 1982, 1983; Revelle and Hogan, 1989; Ball and Lin, 1993; Batta et al., 1989).

Recently, facility disruptions due to unexpected events gains more attentions (Snyder and

Daskin, 2005; Berman et al., 2007; Cui et al., 2009). Kleindorfer and Saad (2005) discussed

the difference of these two types of risks and addressed conceptual strategies to counteract

risks of facility disruptions. Mathematical models have been developed to determine reliable

facility locations hedging against adverse impact of possible facility disruptions. Snyder

and Daskin (2005) studied the reliable uncapacitated fixed charge location problem, RUFL,

assuming that facility disruptions occur independently with equal probability. The problem

is formulated into a mixed integer program and solved with Lagrangian relaxation. Cui et al.

(2009) further developed mixed integer program models to allow site-dependent disruption

probabilities. Compared with traditional UFL, these new models have significantly improved

system reliability and reduced the expected overall cost across normal and failure scenarios.

These models are recently applied to deploy sensors for network traffic surveillance (Ouyang

et al., 2009; Li and Ouyang, 2010).

In reliable models, the failure of a supply chain facility will force its customers to either

travel longer distances to obtain service from another facility, or give up service and incur a

penalty. Either way, system operation cost increases and customer satisfaction deteriorates.

Traffic sensor failures will decrease traffic flow network coverage and compromise real-time

traffic surveillance benefit (e.g., estimation of traffic volume, speed, and travel time). This

may lead to significant societal disbenefits due to ineffective traffic control practice. Such

adverse effects may be further exacerbated if multiple facilities fail simultaneously. Hence,

planning of facilities requires careful consideration about possible failure scenarios such that

the facility location design not only is optimized for the normal non-failure scenario, but

also hedges against potential cost increase (or benefit reduction) under rare and unexpected

disruptions.

Reliable Models with Identical Failure Probability

Model (2.2) can be extended to a reliable problem in the following way. Each facility now

may fail independently with an identical failure probability q. We allow multiple facilities

at the same location (i.e., xj can be greater than one) as back-ups to each other. Demand

at a location is served if and only if at least one functioning facility covers it. The binary

auxiliary variables become y = {yir}i∈I,r=0,1,··· ,N−1 such that yir = 1 indicates that demand

at i is covered by no less than r+1 facilities. The objective is to maximize the total expected

served demand. The mathematical model can be written as follows
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max
x,y

∑
i∈I

N−1∑
r=0

(1− q)qrλiyir, (2.6a)

subject to

∑
j∈J

xj ≤ N, (2.6b)

∑
j∈J

aijxj ≥
N−1∑
r=0

yir,∀i ∈ I, (2.6c)

xj ∈ {0, 1, 2, · · · , N},∀j ∈ J , (2.6d)

yir = {0, 1},∀i ∈ I, r = 0, 1, · · · , N − 1. (2.6e)

In the same way, (2.4) can be adapted to a reliable problem with independent and identically

distributed facility failure probabilities. For each facility j, customers can be partitioned to

levels starting with 0 such that customers at level r have other r closer facilities and can

be served by j only if all these r facilities fail. Accordingly, we introduce binary auxiliary

variables y = {yijr}i∈I,j∈J ,r=0,1,··· ,N−1 such that yijr = 1 indicates that demand at i is served

by facility j at level r. To guarantee every customer gets service, NN emergency facilities

that will never fail are installed at locations among the emergency candidate location set JN

while no more than NF regular fallible facilities with failure probability q can be installed

at locations among JF , where JN

∪
JF = J . The cost for emergency facilities to serve

customers can be alternatively interpreted as penalty cost when these customers do not

receive regular service. The model formulation is

max
x,y

∑
i∈I

λi

[∑
j∈JN

N−1∑
r=0

qrλidijyijr +
∑
j∈JF

N−1∑
r=0

(1− q)qrdijyijr

]
, (2.7a)

subject to

∑
j∈JF

xj ≤ NF , (2.7b)

∑
j∈JN

xj = NN , (2.7c)

∑
j∈J

yijr +
∑
j∈JN

r−1∑
s=0

yijs = 1,∀i ∈ I, r = 0, 1, · · · , N − 1, (2.7d)
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yijr ≤ xj,∀i ∈ I, j ∈ J , r = 0, 1, · · · , N − 1, (2.7e)

N−1∑
r=0

yijr ≤ 1, ∀i ∈ I, j ∈ J , (2.7f)

xi ∈ {0, 1},∀i ∈ I, (2.7g)

yijr = {0, 1},∀i ∈ I, j ∈ J , r = 0, 1, · · · , N − 1. (2.7h)

In a similar manner, other models can be also modified to the reliable version with

independently and identical failure probabilities.

Reliable Models with Site-Dependent Failure Probability

The assumption that all facility locations have identical failure probabilities might not rep-

resent practical situations. In reality, facilities closer to hazard sources are more vulnerable

than those far away. For example, in hurricane related disasters, facilities located in the Gulf

coast area (TX, LA, MS, AL and FL) will have a much higher chance of disruption than those

in other locations. Cui et al. (2009) developed a reliable fixed-charge location model to han-

dle site-dependent failure probabilities. The problem setting is the same as (2.7) except that

(a) facility at j has a site-dependent failure probability qj, (b) no explicit budget constraint

is imposed but building a facility at j will incur a fixed cost fj, (c) and JN is a singleton

{J} with qJ = 0. Assume each customer can potentially go to at maximum R facilities for

service, and if they all fail the customer goes to the emergency facility J (or equivalently

subject to certain penalty cost). A second set of auxiliary variables P = {Pijr}i∈I,j∈J ,r=0,··· ,R

are introduced such that Pijr represents the probability that customer i is served by facility

j at its rth choice. The model can be written as follows.

(NSPC) min
xy,P

∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

R∑
r=0

λidijPijryijr (2.8a)

subject to

∑
j∈J\{J}

yijr +
r−1∑
s=0

yiJs = 1,∀i ∈ I, r = 0, 1, · · · , R, (2.8b)
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yijr ≤ xj,∀i ∈ I, j ∈ J , r = 0, 1, · · · , R, (2.8c)

R∑
r=0

yijr ≤ 1, ∀i ∈ I, j ∈ J , (2.8d)

Pij0 = (1− qj), i ∈ I, j ∈ J (2.8e)

Pijr = (1− qj)
∑

k∈J\{J}

qk
1− qk

Pik(r−1)yik(r−1), ∀i ∈ I, j ∈ J , r = 0, 1, · · · , R (2.8f)

xi ∈ {0, 1},∀i ∈ I, (2.8g)

yijr = {0, 1},∀i ∈ I, j ∈ J , r = 0, 1, · · · , R. (2.8h)

2.1.3 Algorithm Discussion

All the aforementioned models are (or can be converted to) linear mixed-integer programs.

Small-size instances of these models can be solved to exact optimality by commercial software

(e.g., CPLEX) or methodologies such as the branch and bound method. However, since all

these models are known to be NP hard (which means that solution complexity increases

exponentially with the problem size), heuristic algorithms are often applied to obtain near-

optimal solutions for large-scale instances.

Greedy heuristic is a simple algorithm to find a good feasible solution. The greedy

algorithm selects facility locations sequentially. At each step, it enumerates the marginal

objective improvement by adding any extra facility location(or any few extra facilities) and

selects the one (or few) bringing in the best improvement. This is repeated until the budget is

exhausted or no additional facility can bring in any marginal improvement. In all these afore-

mentioned models, once facility locations are given, it is very easy to evaluate the objective,

and the enumeration space for next facility (or next few facilities) is not too large. Thus

the greedy algorithm can efficiently identify the next best facility location (or few locations)

and hence has very small computational burdon. Greedy heuristic is widely applied to many

practical problems not only because of its simplicity but also due to its reasonable practical
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performance (Feige, 1998; Ageev and Sviridenko, 1999).

The greedy algorithm can be improved by an interchange heuristic (or neighborhood

search). Given a feasible solution, the interchange heuristic searches for a better solution

within a certain neighborhood, e.g., only allowing changing one or two facility locations.

This approach can be repeated until no better neighbor can be found. The neighborhood

size needs to be carefully selected. If it is too small, the algorithm can be easily trapped at

some local optimum; if it is too large, the computation will be too time-consuming. With

proper selection of the neighborhood, empirical experience shows that algorithms combining

greedy and interchange heuristics can often yield very good solutions for practical problems.

However, these heuristic algorithms can not give any performance bound to quantify

the solution quality. Linear programming relaxation can be used to find an optimality gap,

which nevertheless is often very loose. Instead, Lagrangian relaxation, a dual algorithm, is

usually adopted in location problems to obtain a tighter optimality gap. The Lagrangian

relaxation usually decomposes a location problem into subproblems which each is simple to

solve. Its overall computational complexity is quite reasonable. Furthermore, a solution of a

relaxed problem, though maybe not feasible for the original problem, can be easily modified

into a feasible solution with certain heuristics, and from experience this feasible solution

is probably very close to the true optimum. Due to all these advantages, the Lagrangian

relaxation algorithm has been frequently adopted by researchers in this field.

2.2 Continuum Approximation (CA) Models

The CA models (Newell, 1971, 1973; Daganzo, 1984a,b; Daganzo and Newell, 1986; Ouyang

and Daganzo, 2006) are often developed to provide good approximate solutions to large-scale

logistics problems in various contexts (Hall, 1984, 1986, 1989; Campbell, 1993a,b; Daganzo,

1999; Dasci and Verter, 2001). See Langevin et al. (1996) and Daganzo (2005) for reviews.

Early CA studies stem from seeking simplified algorithms for the lost size problem with

variable demand (Newell, 1971). Figure 2.1 illustrates this problem. The cumulative demand

is denoted by the solid curve D(t) over the finite time horizon T := [t0, tmax). Curve R(t)

is the count of received items and jumps of R(t) at time points t0, t1, · · · , tmax−1 represent

discrete orders with ordering amounts equal to the step heights. Items are dispatched as

soon as an order takes place and the lead time is ignored. Each dispatch at time t incurs

a fixed cost f(t) and covers demand up to the next ordering period. Each received item is

stored in a warehouse and will be consistently incuring inventory holding cost c per unit time

until consumed by the demand. Thus the total inventory holding cost is proportional to the

shaded area with factor c. This problem aims to design optimal ordering time points and
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Figure 2.1: Lost size problem with variable demand.a

aSource: Daganzo (2005).
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corresponding ordering amounts to minimize the total system cost (including fixed ordering

cost and inventory cost).

Numerical approaches have been developed to solve the lot size problem. However, they

may take excessively long time, especially in the early 1970s when computer technologies

were limited. Newell (1971) proposed a CA approach that can solve such a problem with

slowly-varying setting (i.e., D′(ti) ≈ D′(ti+1) and f(ti) ≈ f(ti+1)) to a near-optimal solution

in much shorter time. Assume that the ordering time points of an optimal solution are

t0, t1, · · · , tmax−1. The total cost in interval Ti := [ti−1, ti) is

Ci :=

∫
Ti

[
f(ti)

As(t)
+

cAs(t)

2
D′(t′i)

]
dt, (2.9)

where As(t) is a step function such that As(t) = (ti − ti−1), if t ∈ Ti, and t′i ∈ Ti satisfies

that 1
2
(ti − ti−1)

2D′(t′i) equals the shaded area in this interval.

Based on the assumption of slow-varying setting, the key of this CA approach is to

approximate D′(t′i) with D′(t) and As(t) with a continuous function A(t). Then the total

cost can be approximated as

C :≈
∫
T

[
f(t)

A(t)
+

cA(t)

2
D′(t)

]
dt. (2.10)

Clearly, the A(t) that minimizes (2.10) minimizes the integrand at every t; thus:

A(t) = [2f(t)/(cD′(t))]
1/2

. (2.11)

Since the continuous function A(t) does not directly specify discrete ordering time points,

the discretization mehod illustrated in Figure 2.2 is taken to determine them. Draw a 45◦

line starting at the origin t0 and find a horizontal segment from a point on the vertical axis,

such as P1 in the figure, to the intersection with the 45◦ line. The elevation of P1 should

be such that the area below the segment equals the area above it. The abscissa of the right

ending point of the segment locates the next ordering time, t1. The construction is repeated

to find every ordering time.

The above one-dimensional CA framework has been extended to solve the facility loca-

tion problem (Newell, 1973; Daganzo and Newell, 1986). For example, Figure 2.1 can be

interpreted as a specific facility location problem in one-dimensional space T. Customer

demand is distributed over T and cumulates to D(t) in [t0, t). Facilities each with opening

cost f(t) are built at locations t = t0, t1, ..., tmax−1. A facility at ti serves demand in Ti

and the travel cost for a unit demand at t to reach the service equals c[t − ti]. Thus the
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Figure 2.2: Discretization of A(t)b.
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Figure 2.3: One-dimensional uncapacitated fixed-charge location problem.

bSource: Daganzo (2005).
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total travel cost can be too represented as the shaded area and the summation of all costs

in Ti can be written as Ci (2.9). Then the same CA approach can be taken to solve the

problem. This model may seem unreasonable due to the assumption that each customer is

always served by its immediate left facility. Nevertheless, it can be easily modified to the

well-known UFL problem by letting each customer be served by its closest facility. Figure 2.3

shows this one-dimensional UFL. Despite that the travel cost or the shaded area is specified

differently, the CA framework is still applicable to the new problem.

This one-dimensional CA approach has been generalized to solve UFL problems in a

two-dimensional space (Daganzo and Newell, 1986; Ouyang and Daganzo, 2006). Figure 2.4

describes this problem. In this two-dimensional space T, a set of facilities, each denoted by

ti, serve distributed customer that has density D′(t), ∀t ∈ T. Since each customer is served

by its closest facility, T is tessellated into regions such that facility ti serves customers in

region Ti (which is also called Voronoi Tessellation). Similar to (2.9), the total cost in Ti

can be written as follows

Ci =

∫
Ti

[
f(ti)

As(t)
+ αi

√
As(t)cD

′(t′i)

]
dt, (2.12)

where As(t) is the area size of Ti if t ∈ Ti, αi is a scaler such that αi

√
As(t) is the average

distance from a unit demand in Ti to ti and t′i is a certain point in Ti such that D′(t′i) is

the average demand over Ti. If everything varies slowly in this space and the space is large

enough such that the boundary shape does not affect too much the tessellation for an optimal

deployment, then each Ti is not too different from a circle and thus each αi ≈ 2
3
√
π
. Then

the total cost C over the whole space T can be approximated in the same way as (2.10),

C ≈
∫
T

[
f(t)

A(t)
+

2c
√
A(t)

3
√
π

D′(t)

]
dt. (2.13)

Again, the minimizer of (2.13) can be solved for each integrand as follows,

A(t) =

[
3
√
πf(t)

cD′(t)

]2/3
. (2.14)

The integrand of (2.13) also represents that each local neighborhood around t ∈ T is ap-

proximated with a plane with homogeneous settings f(t) and D′(t), and in equation (2.14)

the facility density in this plane is simply determined by an economic order quantity (EOQ)

model.

Though it is not as simple to discretize A(t) in the two-dimensional space, a disc model
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has been developed to convert A(t) to discrete facility locations (Ouyang and Daganzo, 2006).

This is illustrated in Figure 2.5. We can determine near-optimal number of facilities N as

the closest integer to
∫
T
1/A(t)dt. We distribute N seed facilities {ti} at random locations

in T. Assign each facility ti a disc T′
i centered at ti whose size approximately equals A(ti).

Then introduce a terminal force Fi that repels T
′
i away from other disc(s) overlapped with

it, and a boundary force Bi that keeps T
′
i within space T. At each step, these forces nudge

each T′
i to a new position and ti, which is bonded to the center of T′

i, also moves with it.

After this movement of ti, A(ti) changes accordingly and the size of T′
i is too updated. Such

movements repelled by Fi and Bi are repeated until the position of each ti converges, which

yields the near-optimal locations for facility installations.

Based on this framework, Cui et al. (2009) developed a reliable CA model as an alterna-

tive for solving large-scale RUFL problems, and compared its performance with that of its

discrete counterparts. Chapter 3 will generalize this reliable CA model by accommodating

correlated facility disruptions.
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2.3 List of Symbols

aij: Demand at i can (not) be served by a facility at j if aij = 1 (aij = 0)

A(t): Continuous function to approximate As(t)

As(t): Size (or length) of Ti that contains t

Bi: Boundary force that keeps T′
i within space T

c: Holding cost factor

Ci: Total cost within Ti

C: Total cost within T

dij: Travel distance from i to j

D(t): Cumulative demand at t

fj: Unified one-time building cost of a facility at j

f(t): Fixed cost at t

Fi: Terminal force that repels T′
i away

i: Index of a demand node or a time point

I: Set of all demand nodes

j: Index of a candidate location

J : Set of all candidate locations

JN : Set of emergency candidate locations

JF : Set of regular candidate locations

N : Maximum number of facilities that the budget allows to build

NN : Number of emergency facilities that will never fail

NF : Number of regular facilities that may probabilistically fail

Pijr: Probability that customer i is served by facility j at its rth choice

P: {Pijr}i∈I,j∈J ,r=0,··· ,R

q: Site-independent failure probability of a regular facility

qj: Site-dependent failure probability of a regular facility at j

r: Index of a facility number or a customer service level

R: Maximum number of facilities that each customer can potentially visit

R(t): Count of received items

t: Point ∈ T

t0: Initial point in a one dimensional space (or time range)

tmax: Ending point in a one-dimensional space (or time range)

T: One-dimensional or two-dimensional space or time span

Ti: Connected subset of T
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T′
i: Disc centered at ti

x = {xj}: xj = 1 (xj = 0) if a facility is (not) built at j

yi: yi = 1 (yi = 0) if demand at i is (not) covered

yij: yij = 1 (yij = 0) if demand at i is (not) served by a facility at j

yir: yir = 0 (yir = 1) if demand at i is covered by (no) less than r + 1 facilities

yijr: yijr = 1 (yijr = 0) if demand at i is (not) served by facility j at level r

y: {yi}i∈I , {yij}i∈I,j∈J , {yir}i∈I,r=0,1,··· ,N−1 or {yijr}i∈I,j∈J ,r=0,1,··· ,N−1

λi: Amount of demand at i
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Chapter 3

A Continuum Approximation

Approach to Reliable Facility

Location Design Under Correlated

Probabilistic Disruptions

Reliable facility location problems have been studied recently with both discrete and con-

tinuous modeling techniques. However, complex facility failure mechanisms such as spatial

correlation have not yet been addressed. Due to the formidable complexity associated with

such complex failure mechanisms, discrete facility models are not suitable to solve (or even

model) such problems. Building on the continuum approximation approach, this chapter

proposes a reliable model for the uncapacitated fixed charge location problem (UFL), which

seeks optimal facility locations to minimize the one-time investment for facility construc-

tions and the long-run transportation costs for serving spatially distributed customers. This

model greatly reduces computational complexity and provides flexibility to model general

failure patterns (including correlated failures). We have tested this model over different types

of numerical examples and useful managerial insights are drawn on how failure correlation

impacts the location design.

3.1 Motivation

In the real world, many facility disruption cases exhibit strong spatial correlations, probably

because neighboring facilities are likely to be exposed to similar hazards. Such correlations

significantly influence the facility failure pattern over space and hence the system operation.
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For example, under positive correlations (e.g., due to natural disasters, power grid outages),

neighboring facilities are more likely to fail simultaneously, and the customers will find it more

costly to reach a functioning facility. In contrast, under negative correlationsa, neighboring

facilities tend to back up each other to avoid long distance travels of the customers.

However, to the authors’ best knowledge, spatial correlation among facility disruptions

has not been addressed in the reliable UFL (RUFL) literature. This chapter aims to fill this

gap by developing a reliable facility location design framework that allows correlated and

site-dependent facility disruptions. Accounting for such correlations in the discrete location

modeling framework generally requires scenario-based formulation, which is computationally

prohibitive due to the exponential number of possible scenarios. Hence we build our model

upon the continuum approximation approach to estimate and design the complex system.

The structure of the spatial correlation is modeled in a variety of ways to provide flexibility

in addressing real-world scenarios. Numerical experiments are conducted to illustrate ap-

plications of the model. Insights are also drawn through comparisons between the optimal

solutions under various spatial correlation patterns and those under independent failures.

The impact of disruption correlation on the total system cost (including yearly-prorated fa-

cility construction cost, expected annual customer traveling and penalty costs) is found to be

significant when both failure probabilities and penalty costs for unserved customer demand

are high.

The remainder of the chapter is organized as follows. Section 3.2 introduces the notation

and problem definition. Section 3.3 presents the formulation and solution techniques for the

CA model. Section 4 presents multiple ways to model spatial correlation under different

application contexts. Section 3.5 applies the CA model to numerical examples and draw

insights into the impact of correlations.

3.2 Model Formulation

In a two-dimensional space S ⊆ R2, the customer demand per unit area is denoted by λ(x),

∀x ∈ S. A facility can be built at any location x ∈ S with a fixed opening cost f(x). The

decision variables are the number of facilities, N , and their locations x := {x1, x2, ..., xN} ⊆
S. Suppose that the transportation cost for facility j to serve a unit demand at x is αt∥x−xj∥,
where αt is a constant factor and ∥x−xj∥ is the Euclidean distance. We further assume that

a customer at x, if served, shall only be served by a facility within a distance D(x); if not

aIn reality, negative failure correlation is rare but possible. For example, the facilities may compete
against each other for limited critical resources (such as material supply or maintenance service), such that
the failure of one facility helps other facilities to survive. In the context of terrorist attacks, the failure of
one facility may raise alert and help prevent other facilities from being attacked.
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served, the customer will incur a penalty cost αpD(x), where αp ≥ αt. Snyder and Daskin

(2005) attributed the penalty cost to lost-sales or emergency-purchases.

We assume that the customers have complete information on facility disruptionsb and

choose facilities for service accordingly. This is different from Cui et al. (2009) where each

customer is preassigned to a sequence of prioritized facilities regardless of the failure scenario.

We also assume, for simplicity, that the failure scenario does not change during the time that

customers are traveling. At any time, customers at x will either visit a functioning facility

within distance D(x) if one is available, or bear the penalty cost αpD(x). The optimal

strategy has the following simple property.

Proposition 1. Given a facility failure scenario, each customer should always visit the

closest functioning facility within distance D(x).

Proof. If a customer visits an operational facility other than the closest one, redirecting this

customer to the closest operational facility will always strictly reduce the transportation

cost. Thus the original solution cannot be optimal. This completes the proof.

Given facility location design x, let P̄ (x|x) denote the probability for the customer at

x not to be served (which occurs if all facilities within distance D(x) from x have failed),

and let P (x, xj|x) denote the probability for this customer to be served by facility j (which

occurs if facility j is functioning, ∥x− xj∥ ≤ D(x), and all facilities closer to x have failed).

The values of these probabilities should always satisfy

P̄ (x|x) +
N∑
j=1

P (x, xj|x) = 1, ∀x ∈ S, (3.1)

because any customer either receives service or incurs the penalty.

The objective is to minimize the expected overall cost with respect to x, as follows,

min
x

N∑
j=1

f(xj) + αp

∫
x∈S

λ(x)D(x)P̄ (x|x)dx+ αt

∫
x∈S

N∑
j=1

λ(x)∥x− xj∥P (x, xj|x)dx. (3.2)

The three terms in (3.2) respectively represent the fixed facility opening costs, the expected

penalty costs for unserved demands and the expected transportation costs for served de-

mands.

bThis assumption is reasonable given the rapid advancement of modern information technologies (such
as Internet- and PDA-enabled service applications). It may not be totally realistic, however, if information
availability is limited in certain situations (e.g., catastrophic disaster).
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Following the ideas in Cui et al. (2009), (3.2) can be transformed by partitioning S
into service areas. From the perspective of a generic facility j, every customer in S can be

assigned a service rank r ∈ {0, 1, 2, ...} if facility j is the (r + 1)th nearest facilities to this

customer. We define the rank-r service area of facility j, Aj,r, as the subset of customers

who are assigned a rank r by facility j. Obviously, the definition of {Aj,r, ∀j, r} are purely

based on the facility locations x. For any j, {Aj,r,∀r} forms a non-overlapping partition of

S when boundaries are ignored, i.e.,

∞∪
r=0

Aj,r = S and Aj,r

∩
Aj,r′ = ∅,∀r ̸= r′.

With this, (3.2) can be rewritten as follows,

min
x

N∑
j=1

f(xj) + αp

∫
x∈S

λ(x)D(x)P̄ (x|x)dx+ αt

N∑
j=1

∑
r

∫
x∈Aj,r

λ(x)∥x− xj∥P (x, xj|x)dx.

(3.3)

For notation convenience, from now on we will use P̄ (x) and P (x, xj) to represent P̄ (x|x)
and P (x, xj|x) respectively.

3.3 Continuum Approximation Framework

This section presents a continuum approximation approach to the RUFL problem. Section

3.3.1 first discusses the optimal solution to an idealized case where the problem is IHI; i.e.,

S is an infinite and homogeneous plane and the facilities fail independently. Building on

the results for IHI, Section 3.3.3 discusses how to incorporate correlated disruptions into the

framework, and Section 3.3.4 further develops the continuum approximation (CA) model for

the general problem where S is finite and heterogeneous.

3.3.1 Building Block: The IHI Problem

In an IHI problem, S is an infinite and homogeneous plane (i.e., S = R2), all relevant

parameters are constant everywhere (i.e, D(x) = D, f(x) = f , λ(x) = λ, ∀x ∈ S), and
every facility fails independently with an equal probability q(x) = q. Some properties of the

optimal solution to IHI have been discussed in the literature. Toth (1959) has proven that

for q = 0, the total cost is minimized when the initial service areas {Aj,0,∀j} form a regular

hexagonal tessellation of S and each facility is located at the centroid of a hexagon. Cui et
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al. (2009) showed that the optimal partition for q > 0 should also follow the same regular

hexagonal tessellation pattern.

The regular hexagonal tessellation pattern and the homogeneity of S imply that the only

decision variable for the optimal design of IHI is the size of the hexagonal initial service area,

which we denote by A. Figure 3.1c illustrates how the service areas for an arbitrary facility

j would partition S. Proposition 2 below shows that all these service areas have the same

size.

Proposition 2. For an IHI problem, |Aj,r| = A, ∀j, r.

Proof. Assume first that S is bounded but sufficiently large so that the boundary effect can

be ignored. Each customer has one and only one facility as its rth choice. This implies

that the service areas of all different facilities with the same service rank form a mutually

exclusive partition of S, i.e.,∪
j

Aj,r = S and Ai,r

∩
Aj,r = ∅,∀i ̸= j, r. (3.4)

Since almost every facility in S is translationally symmetric, |Aj,r| = |Ai,r|, for almost

all i, j (except those near the boundary), Equation (3.4) implies that |Aj,r| ≈ |S|/N for all

service rank r and facility j, where N is the total number of facilities. When S → R2, the

boundary effect can be totally eliminated. Thus |Aj,r| = |Aj,0| = A,∀j, r. This completes

the proof.

A j,6

A j,0

A j,5

A j,4

A j,3

A j,2

A j,1

j

Neighboring
facility locations

Figure 3.1: Service area partition {Aj,r, ∀r} for the IHI problem.

cThis is adapted from Cui et al. (2009).
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The scalability of hexagons on the infinite plane implies that the average travel distance

from the customers in Aj,r to facility j is proportional to A1/2 and does not depend on j. We

denote this average distance by γrA
1/2, where constant scalar γr can be calculated exactly

for all r.d.

γr ≈
2

3
√
π

[
(r + 1)3/2 − r3/2

]
. (3.5)

Figure 3.2(b) plots both the approximation (3.5) and the exact γr values. The approxi-

mation error is no more than 2% except for r = 1, 2, and it vanishes as r increases.
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Figure 3.2: Service cost calculation: (a) Approximation of Aj,r by a ring; (b) Exact and
approximated γr.

Optimizing objective function (3.3) for infinite and homogeneous S is equivalent to min-

imizing the expected total cost per unit area, which includes the unit-area facility opening

cost Cf , the unit-area expected penalty cost Cp, and the unit-area expected transportation

cost Ct. Obviously,

Cf = f/A. (3.6)

The rest of this section provides closed-form approximations for Cp and Ct.

Note thatND(x), the number of facilities that a customer at x can visit within distanceD,

varies slightly with x. Hence, P̄ (x) = qND(x) varies with x as well, Let θ ∈ R+ be the average

value of ND(x) across x ∈ S, and P̄ the average value of P̄ (x). The customer demand

in S that each facility can potentially reach is λπD2, while asymptotically, each facility

corresponds to λA customer demand. Hence λπD2 = λA · θ, which yields θ = πD2/A.

dSee how the exact values are computed numerically in Section 3.3.2
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Customers receiving service
with probability (1 -   )q

D

Customers incurring penalty
with probability 1

Figure 3.3: Customer partition when θ ≤ 1.

If θ ≤ 1 (πD2 ≤ A), the situation is shown in Figure 3.3. Only those customers within

distance D from a facility will receive service with probability (1 − q); they incur penalty

with probability q. All other customers incur penalty with probability 1.e Simple geometry

yields P̄ as follows,

P̄ = [πD2 · q + (A− πD2) · 1]/A = 1− (1− q)θ.

More generally, for θ > 1 (πD2 > A), customers lie in service areas of different ranks, as

shown in Figure 3.1. Exact calculation of P̄ is tedious. However, since ND(x) obviously does

not vary significantly across S, P̄ can be approximated by P̄ ≈ qθ. Hence, we have

P̄ ≈

{
qθ, θ > 1;

1− (1− q)θ, otherwise;
(3.7)

and

Cp = αpλDP̄ , (3.8)

Figure 3.4(a) shows that Equation (3.7) accurately predicts the exact value of P̄ .f The

prediction error is almost 0 for θ > 3 (for most realistic cases) and θ ≤ 1, and no more than

0.04 for θ around 2.

All customers in Aj,r receive service from facility j with equal probability, which we

denote by Pr. Due to the independence of facility failures in IHI,

Pr = P (x, xj) = (1− q)qr,∀x ∈ Aj,r. (3.9)

In case θ > 1 and D → ∞, Proposition 2 implies that Ct can be directly calculated as

eIf θ is very close to 1, there may be a very small fraction of customers near the hexagon boundaries
with ND(x) > 1. This exception is numerically negligible.

fSee Section 3.3.2 for details on how these exact values are computed.
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Figure 3.4: Exact and approximated values of (a) P̄ and (b) Ct.

follows,

Ct = αtλA
1/2

∞∑
r=0

Prγr. (3.10)

For finite D but θ > 1, since θ may not be an integer, interpolation of (3.10) yields

Ct ≈ αtλA
1/2

⌊θ⌋−1∑
r=0

Prγr + θ̄P⌊θ⌋γ⌊θ⌋

 , (3.11)

where ⌊·⌋ is the floor operation and θ̄ = θ−⌊θ⌋. For θ < 1 (see Figure 3.3), almost all served

customers of facility j lie in the circle within Aj0 and their average distance from the facility

is 2
3
D. When facility j does not fail (with probability (1− q)), these customers collectively

incur service cost 2
3
αtλπD

3. Hence, the expected service cost per unit area can be averaged

across Aj0 as follows:

Ct =
2

3
αtλπD

3(1− q)/A =
2

3
αtλA

1/2P0

√
θ3/π. (3.12)

Equations (3.11) and (3.12) can be expressed as

Ct = αtλA
1/2U(θ,P), (3.13)

where P := {Pr : ∀r} and

U(θ,P) ≈

{ ∑⌊θ⌋−1
r=0 Prγr + θ̄P⌊θ⌋γ⌊θ⌋ if θ ≥ 1,

2
3
P0

√
θ3/π otherwise.

(3.14)
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Obviously, the term A1/2U(θ,P) represents the expected travel distance for a customer to

reach a functioning facility. Figure 3.4(b) compares the approximation formula (3.14) with

the exact values.g Again, the error is almost 0% for θ > 3 or θ ≤ 1, while the maximum

percentage error is about 6%.

From (3.6), (3.8) and (3.13), the total cost per unit area for the IHI problem is

C := Cf + Cp + Ct = f/A+ αpλDP̄ + αtλA
1/2U(θ,P). (3.15)

In general, the optimal solution A∗ does not have a simple analytical form because P̄ and

U(θ,P) are both functions of A. Section 3.3.4 introduces a simple bisecting method to find

A∗ efficiently.

3.3.2 Computing Exact Values of γr, Pr, Ct and P̄ for the IHI

Problem

We deploy facilities such that the initial service areas form a regular hexagonal partition

(each with hexagon size A) on a sufficiently large area S (e.g., with |S| > 100A) centered at

(0, 0). Then S is diced into infinitesimal squares (e.g., with size < 0.001A), each representing

a customer neighborhood. To eliminate the influence from the boundary of S, only those

squares sufficiently far away from the boundary are considered. For any given values of q

and θ, we conduct the following computations to obtain exact values of γr, Pr, Ct and P̄ .

Without losing generality, we focus on facility j which is located at xj = (0, 0) and

determine the service area partition {Aj,r, ∀r} as shown in Figure 1. For any customer

neighborhood at x ∈ Aj,r, the travel distance to facility j is ∥x∥ and the corresponding service

probability is (1 − q)qr. For each r, the exact values of γr, Pr are calculated by averaging

∥x∥/A1/2 and (1−q)qr respectively across all the corresponding infinitesimal squares in Aj,r.

The expected total transportation cost to facility j, Ct,j, is the summation of ∥x∥(1−q)qr

across all customer neighborhoods that satisfy ∥x∥ ≤ D. Due to symmetry, the value of Ct,j

is identical for all j, and hence the transportation cost per unit area is Ct =
Ct,j

A
. For every

customer neighborhood at x ∈ Aj,0, also count ND(x), the number of facilities that are

within distance D. Penalty probability P̄ (x) = qND(x), and P̄ is computed as the average

value of P̄ (x) across x.

gSee Section 3.3.2 for details.
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3.3.3 Penalty & Service Probabilities under Correlated Disrup-

tions

In the previous section, Equations (3.7) and (3.9) hold only when the facilities fail indepen-

dently. Using these formulas will cause significant errors if facility disruptions are actually

correlated, as indicated in the following proposition.

Proposition 3. For any facility location design, the existence of positive (or negative) facility

failure correlation increases (or decreases) the expected transportation and penalty cost per

unit demand.

Proof. Any customer at x ∈ S may travel a distance δ ∈ [0, D(x)) to receive service. Define

c(δ),∀δ ≤ D(x) to be the cost for one unit of demand at x; i.e.,

c(δ) =

{
αtδ, δ < D(x);

αpδ, δ = D(x).

Obviously, c(δ) is an increasing function of δ since αp ≥ αt. Under correlated facility failure,

let F (δ) denote the probability for the customer to travel farther than distance δ. The

expected cost for one unit of demand at x is

E[c(δ)] =

∫ D(x)

δ=0

c(δ)d[1− F (δ)] + c(D(x))F (D(x))

=

∫ D(x)

δ=0

F (δ)dc(δ) + c(D(x))F (D(x)). (3.16)

If facility failure is independent, the probability for the customer to travel farther than

distance δ is denoted by FI(δ). The expected cost becomes

EI [c(δ)] =

∫ D(x)

δ=0

c(δ)d[1− FI(δ)] + c(D(x))FI(D(x))

=

∫ D(x)

δ=0

FI(δ)dc(δ) + c(D(x))FI(D(x)). (3.17)

Note that F (δ) and FI(δ) are the probabilities for all facility within distance δ from x

to fail. By definition, for any δ, F (δ) ≥ FI(δ) under positive correlations, or F (δ) ≤ FI(δ)

otherwise. Hence, comparison between (3.16) and (3.17) clearly shows thatE[c(δ)] ≥ EI [c(δ)]

when the correlation is positive; the contrary is also true. This completes the proof.

Hence, accurate estimation of the total cost mandates that the penalty probability P̄
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and the service probability Pr accommodate failure correlations. In the rest of this subsec-

tion, we provide a general formulation framework for P̄ (x) and Pr(x) based on conditional

probabilities.

In the literature, conditional probabilities have been used to model general correlations

of symmetric binary events.h Based on the Pascal’s triangle, probabilities of symmetric

disruptions can be represented as the product of facility failure probabilities conditional on

the number of neighboring disruptions.

On the infinite homogeneous plane, we let {ql, l = 0, 1, 2...} denote the conditional fail-

ure probability of a facility given that (i) this facility is the (l + 1)th closest facility to a

certain customer, and (ii) all l closer facilities to this customer have failed (regardless of

all other facilities on the plane). As such, q0 represents the unconditional individual failure

probability.i Generally, if ql increases with l, the failure correlation is positive. For example,

ql = 1,∀l ≥ 1 yields the case of perfect correlation (i.e., facilities either all survive or all

fail).j On the other hand, facility failure is negatively correlated if ql decreases with l.

When {ql,∀l} is known (e.g., from historical data), from the perspective of a customer,

the probability for all m nearest facilities to fail simultaneously equals
∏m−1

l=0 ql. For general

θ ∈ R+, P̄ can be approximated by interpolating the probabilities for ⌊θ⌋ and ⌊θ⌋ + 1

simultaneous failures, as follows,

P̄ ≈

{
(1− θ̄)

∏⌊θ⌋−1
l=0 ql + θ̄

∏⌊θ⌋
l=0 ql, θ > 1;

1− (1− q0)θ, otherwise,
(3.18)

It is easy to observe that (3.7) bounds (3.18) from below/above under positive/negative

correlations, indicating over-/under-estimation of penalty probability when correlation is

ignored. Probability Pr equals the probability that all r nearest facilities to a customer fail

while the (r + 1)th facility survives; i.e., (3.9) shall be replaced by

Pr ≈ (1− qr)
r−1∏
l=0

ql. (3.19)

In certain cases, the conditional probabilities may be dependent of A especially when the

correlation magnitude is sensitive to the distance among facilities. The modeling framework

described above remains applicable by simply specifying the appropriate {ql(A), ∀l}.
hInterested readers are referred to Bakkaloglu et al. (2002) and Tang and Iyer (1992) for reviews on this

topic.
iIf failure correlation is ignored, P̄ and Pr,∀r, shall be computed from (3.7) and (3.9) with probability

q = q0.
jSuch an extreme case is usually induced by a shared failure source that causes simultaneous disruptions

of all facilities. Examples may include outage in a power grid due to failure of the power plant.
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3.3.4 CA Model for Heterogeneous Space

We assume that in a finite heterogeneous space S ⊂ R2, parameters f(x), λ(x), D(x) vary

slowly over x ∈ S. Instead of looking for x directly, we propose to look for a continuous

function, A(x) ∈ R+, x ∈ S, that approximates the initial service area size of a facility near x;

i.e., A(x) ≈ |Aj,0| if x ∈ Aj,0. We assume that S is far larger than A(x); i.e., |S| ≫ A(x), ∀x ∈
S. When all parameters are approximately constant over a region comparable to the size of

several initial service areas, P̄ (x), Pr(x), θ(x) and A(x) should also be approximately constant

on that scale.k

We apply the cost formulation (3.15) to the neighborhood of x (i.e., imagining that this

neighborhood is part of an infinite and homogeneous plane), while using the values of f(x),

λ(x), D(x) as the parameter input. Incorporating (3.15) into (3.3) yields the following

min
A(x)

∫
x∈S

C(x,A(x))dx, (3.20)

where the total cost per unit area near x is

C(x,A(x)) := f(x)/A(x) + αpλ(x)D(x)P̄ (x) + αtλ(x)A
1/2(x)U(θ(x),P),∀x ∈ S. (3.21)

Since the inverse of A(x) represents the facility density at x, the number of facilities is

N ≈
∫
x∈S

[A(x)]−1dx. (3.22)

For any x, (3.21) has only one scalar decision variable A(x). We shall note that the values

of P̄ (x) and U(θ(x),P) depend on θ(x) and hence on A(x), although P is independent of

A(x) as suggested by (3.9) and (3.19). Intuitively, the second and third terms in (3.21)

should be increasing with A(x), while the first term is decreasing with A(x). Hence, the

function C(x,A(x)) is likely to have a “V” shape with regard to A(x). The optimal solution

A∗(x) can be obtained from a simple bisecting search.

The estimated optimal cost per unit area C(x,A∗(x)) and the optimal facility density

function [A∗(x)]−1 can be integrated across S to yield the total system cost C∗ and the

optimal number of facility N∗, respectively. Function A∗(x), x ∈ S and N∗ can be used in

the disk model (Ouyang and Daganzo, 2006) to design the optimal discrete facility locations.

The disk model exerts repulsive forces toN∗ disks that each represents a facility and its initial

service area, and iteratively adjusts positions and sizes of these disks to achieve optimal

kInterested readers are referred to Sections 4.2, 4.4 and Section B in Cui et al. (2009) for discussions on
the applicability and accuracy of the continuum approximation method.
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layout. Interested readers are referred to Ouyang and Daganzo (2006) and Ouyang (2007)

for more implementation details. These references have also shown that the total cost of the

discrete design obtained from the disk model is very close to that estimated by (3.20).

3.4 Alternative Correlation Structures

Facility failure correlations can be modeled in a variety of ways. This section discusses two

special cases. Section 3.4.1 simplifies the formulation with beta-binomial distributions when

the correlation is always positive. Section 3.4.2 shows how to decompose P̄ (x) and Pr(x)

into scenario-based probabilities in case that the facility failure mechanisms are known.

3.4.1 Positively Correlated Beta-Binomial Facility Failure

The modeling approach in Section 3.2 requires a whole set of conditional failure probabilities

{ql,∀l} to be specified (most likely from historical data). This may be tedious in certain

practical situations. As an alternative, the beta-binomial distribution has been used in

various fields (such as computer science (Bakkaloglu et al., 2002; Goyal and Nicola, 1990)

and biometrics (Griffiths, 1973)) to model positive failure correlations. The beta-binomial

distribution, which we denote by Bn,a,b with a, b > 0, only has three parameters. It is defined

as the distribution for the number of failures in n symmetric success/failure experiments,

while each experiment has a random failure probability p whose probability density function

is
pa−1(1− p)b−1∫ 1

0
pa−1(1− p)b−1dp

, p ∈ [0, 1].

Accordingly, the probability that m out of n experiments fail is

Bn,a,b(m) :=

(
n

m

)
[(a+m− 1)(a+m− 2) · · · a][(b+ n−m− 1)(b+ n−m− 2) · · · b]

(a+ b+ n− 1)(a+ b+ n− 2) · · · (a+ b)
.

(3.23)

Equation (3.23) can be equivalently structured in terms of the general conditional probabil-

ities

ql =
Bl+1,a,b

Bl,a,b

=
a+ l

a+ b+ l
, ∀l. (3.24)

Bn,a,b has mean n a
a+b

and variance n ab
(a+b)2

1+n/(a+b)
1+1/(a+b)

. Compared with the regular bino-

mial distribution with n experiments and independent failure probability a
a+b

, Bn,a,b has the

same mean but a larger variance; the amplification factor 1+n/(a+b)
1+1/(a+b)

captures positive corre-
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lation among facility failure.l The positive correlation can be also seen from (3.24) where ql

obviously increases over l.

For RUFL, we assume that the probability for all n nearest facilities to a customer

at x ∈ S to fail is given by Bn,a(x),b(x)(n) with varying parameters a(x), b(x). Through

interpolation (similar to (3.18)), P̄ (x) can be represented as follows,

P̄ (x) ≈


(1− θ̄)B⌊θ(x)⌋,a(x),b(x)(⌊θ(x)⌋)

+θ̄B⌊θ(x)⌋+1,a(x),b(x)(⌊θ(x)⌋+ 1), θ(x) > 1;

1− [1−B1,a(x),b(x)(1)]θ(x), otherwise,

(3.25)

We also assume that the probability for all n nearest facility to fail but the (n+1)th facility

to survive is given by Bn+1,a(x),b(x)(n), and the service probability Pr(x) can be approximated

by

Pr(x) ≈ Br+1,a(x),b(x)(r). (3.26)

Again, if the facilities fail independently, probabilities P̄ (x) and Pr(x) could be obtained

from (3.7) and (3.9) respectively, with probability q(x) = B1,a(x),b(x)(1) =
a(x)

a(x)+b(x)
.

3.4.2 Correlation Induced from Shared Hazard Exposure

Sometimes the sources and causal mechanisms of facility disruptions are well understood.

In such cases, the disruption probabilities can be conditioned on a set of mutually exclusive

hazard occurrence states, H. Each state h ∈ H corresponds to a possible scenario of hazard

occurrence (e.g., earthquake, hurricane). Suppose state h happens with a probability Qh

(
∑

h∈H Qh = 1 if “no-disaster” is considered one of the states). Conditional on each state

h, each facility near x fails independently with probability χh(x). It should be noted that

although the facilities fail independently within each hazard occurrence state, the overall

facility disruptions (due to all hazards) can be correlated.

In each state h, the penalty probability for a customer at x can be approximated by

(3.7). Based on conditional expectation, the overall penalty probability P̄ (x) across all

possible hazard occurrence state is

P̄ (x) ≈

{ ∑
h Qh[χh(x)]

θ(x), θ(x) > 1∑
h Qh{1− [1− χh(x)]θ(x)}, otherwise.

(3.27)

lA larger value of 1
a+b corresponds to a greater variance and hence more significant correla-

tion (Bakkaloglu et al., 2002). For example, when 1
a+b → 0, facilities fail almost independently; when

1
a+b → ∞, facility failure is almost perfectly correlated.
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Similarly, given h, the service probability at rank r for a customer at x can be approximated

from (3.9). The expected value across all states yields Pr(x) as follows

Pr(x) ≈
∑
h

Qh[1− χh(x)]χ
r
h(x). (3.28)

Note that P̄ (x) and Pr(x) can be expressed equivalently in the form of (3.18) and (3.19),

respectively, by setting

ql =

∑
h Qhχh(x)

l+1∑
h Qhχh(x)l

, ∀l.

Now we briefly discuss how the penalty and service probabilities will be erroneous if

correlations are ignored. Note that the single facility failure probability q(x) =
∑

h Qhχh(x).

P̄ (x) and Pr(x) could be calculated from (3.7) and (3.9) as follows,

P̄ (x) ≈

{
[
∑

h Qhχh(x)]
θ(x) , θ(x) > 1

1− [1−
∑

h Qhχh(x)]θ(x), otherwise
,

Pr(x) ≈

[
1−

∑
h

Qhχh(x)

][∑
h

Qhχh(x)

]r
.

Note that much of the difference in the corresponding probability formulas (with or

without correlations) comes from the fact that

µr(x) :=
∑
h

Qhχ
r
h(x)−

[∑
h

Qhχh(x)

]r
≥ 0,∀r > 2, (3.29)

due to the Jensen’s Inequality. Note that µr(x) becomes even larger as r increases.

3.5 Numerical Examples

This section presents four numerical examples to illustrate how the CA model can be applied

to problems with correlated facility disruptions. Each example uses an aforementioned failure

correlation structure. The space S is a [0, 1] × [0, 1] unit square. Customer demand is

distributed with density function λ(x) = λ̄[1+ τλ cos(ω∥x∥)], and the facility opening cost at

x is f(x) = f̄ [1+ τf cos(ω∥x∥)], where τλ ∈ [−1, 1] and τf ∈ [−1, 1] control the heterogeneity

of λ(x) and f(x) over S, respectively. The scalar ω is selected to normalize the average

customer density and the average facility cost (e.g.,
∫
S λ(x)dx = λ̄ and

∫
S f(x)dx = f̄). The

travel cost factor αt = 1.
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The estimated optimal total cost C∗ and the estimated optimal facility number N∗ are

computed from (3.20) and (3.22) respectively. For comparison, we let AI(x), CI and NI

respectively denote the optimal A(x), total cost, and facility number when correlation is

erroneously ignored. These three values may be relevant to strategic resource allocation and

budget planning. Let CIC denote the actual cost under correlation while solution AI(x) is

implemented. The percentage difference εI =
CI−C∗

C∗ indicates the error in estimated system

cost caused by ignoring correlations, while εIC = CIC−C∗

C∗ indicates the actual cost difference

after implementing the “wrong” design.

3.5.1 Correlation Specified by Conditional Probabilities

Following the framework presented in Section 3.3.3, we set the conditional probabilities to

be

q1(x) = q0(x) + ∆q(x),

ql(x) = min

{
ql−1(x) +

ql−1(x)− ql−2(x)

2
,
ql−1(x) + 1

2

}
, ∀l = 2, 3, ..., (3.30)

Here, positive/negative ∆q(x) yields positive/negative correlations; e.g., perfect correlation

can be specified by setting ∆q(x) = 1−q0(x). For demonstration purposes, we simply assume

q0(x) = q0, ∆q(x) = ∆q, ∀x.
Substituting Equation (3.30) into (3.18) and (3.19) yields the correct penalty and service

probabilities, while the erroneous counterparts can be computed from (3.7) and (3.9). Define

θ∗ = πD2/A∗. Table 3.1 illustrates the results for a range of problem instances with f̄ = 1,

λ̄ = 500, ω = 11.73, τλ, τf ∈ {0, 1}, q0 ∈ {0.05, 0.2}, ∆q ∈ {−q0/2, (1 − q0)/2, 1 − q0},
αp ∈ {1, 10}, and D ∈ {0.1, 0.2}.

It can be observed that N∗, NI , C∗, CI and CIC all increase with q0 in almost all

cases, indicating that facilities should be deployed closer to each other (as back-ups) under

higher failure probabilities, and as a result the total system cost increases. The same trend is

observed as αp increases; this is intuitive because higher αp implies higher penalty cost, which

would motivate a denser facility deployment. As D increases (i.e., reducing the likelihood

for customers to incur penalty), the optimal numbers of facilities, N∗ and NI , both decrease;

however, the values of C∗, CI and CIC may still increase because a larger D also implies a

proportionally larger penalty value.

The optimal total cost C∗ is obviously influenced by the correlation, sometimes dramat-

ically (when q0 and αp are large); positive correlation generally leads to higher total cost.

On the contrary, the optimal number of facilities N∗ decreases under positive correlation
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Table 3.1: CA cost estimation when correlation is specified by conditional probabilities.
# τλ τf q0 ∆q αp D θ∗ N∗ NI C∗ CI CIC εI εIC
1 0 0 0.05 -0.025 1 0.2 2.7 21 21 64 64 64 0 % 0 %
2 0 0 0.05 -0.025 10 0.2 3 24 22 64 64 64 0 % 0 %
3 0 0 0.05 -0.025 10 0.1 1.4 44 44 88 80 88 -9 % 0 %
4 0 0 0.05 0.475 1 0.2 2.6 21 21 65 64 65 -1 % 0 %
5 0 0 0.05 0.475 10 0.2 3.2 26 22 83 64 84 -22 % 1 %
6 0 0 0.05 0.475 10 0.1 1 32 44 89 80 92 -10 % 4 %
7 0 0 0.05 0.95 1 0.2 2.5 20 21 65 64 65 -2 % 0 %
8 0 0 0.05 0.95 10 0.2 2.5 20 22 110 64 110 -42 % 0 %
9 0 0 0.05 0.95 10 0.1 1 32 44 89 80 96 -10 % 8 %
10 0 0 0.2 -0.1 1 0.2 3 24 21 70 70 70 0 % 0 %
11 0 0 0.2 -0.1 10 0.2 3.2 25 31 71 74 72 4 % 1 %
12 0 0 0.2 -0.1 10 0.1 2 64 67 101 110 103 9 % 2 %
13 0 0 0.2 0.4 1 0.2 2.6 21 21 72 70 72 -3 % 0 %
14 0 0 0.2 0.4 10 0.2 4.2 33 31 153 74 154 -52 % 1 %
15 0 0 0.2 0.4 10 0.1 2 64 67 146 110 148 -25 % 1 %
16 0 0 0.2 0.8 1 0.2 2.2 18 21 74 70 74 -5 % 1 %
17 0 0 0.2 0.8 10 0.2 2.2 18 31 254 74 258 -71 % 2 %
18 0 0 0.2 0.8 10 0.1 1 32 67 159 110 185 -31 % 17 %
19 1 0 0.2 -0.1 1 0.2 2.5 20 20 64 64 64 0 % 0 %
20 1 0 0.2 -0.1 10 0.2 3.2 25 28 67 69 68 3 % 1 %
21 1 0 0.2 -0.1 10 0.1 1.6 51 56 92 98 95 6 % 3 %
22 1 0 0.2 0.4 1 0.2 2.3 18 20 66 64 67 -4 % 0 %
23 1 0 0.2 0.4 10 0.2 3.9 31 28 147 69 147 -53 % 1 %
24 1 0 0.2 0.4 10 0.1 1.5 47 56 135 98 137 -28 % 1 %
25 1 0 0.2 0.8 1 0.2 2 16 20 69 64 70 -8 % 1 %
26 1 0 0.2 0.8 10 0.2 2.2 17 28 250 69 254 -72 % 2 %
27 1 0 0.2 0.8 10 0.1 0.9 27 56 156 98 175 -37 % 13 %
28 1 1 0.2 -0.1 1 0.2 3 24 21 70 70 70 0 % 0 %
29 1 1 0.2 -0.1 10 0.2 3.2 25 31 71 73 72 4 % 1 %
30 1 1 0.2 -0.1 10 0.1 2 64 67 101 110 102 9 % 2 %
31 1 1 0.2 0.4 1 0.2 2.6 21 21 72 70 72 -3 % 0 %
32 1 1 0.2 0.4 10 0.2 4.2 33 31 153 73 154 -52 % 1 %
33 1 1 0.2 0.4 10 0.1 2 64 67 146 110 148 -25 % 1 %
34 1 1 0.2 0.8 1 0.2 2.2 18 21 74 70 74 -5 % 1 %
35 1 1 0.2 0.8 10 0.2 2.2 18 31 254 73 258 -71 % 2 %
36 1 1 0.2 0.8 10 0.1 1 32 67 158 110 185 -31 % 17 %

in most of the cases, probably because positively correlated failures weaken the benefit of

having more facilities as backups.

The error |εI | always increases with |∆q|, which means that assuming independent dis-

ruptions yields a poor cost estimation when correlations are actually present. The error is

large in cases of high failure probability q0 and large penalty factor αp. As expected, all εI

values are negative for positive ∆q (leading to underestimation of disruption risks) and non-

negative for negative ∆q. This is consistent with the discussions in Section 3. On the other

hand, the actual cost error εIC is always non-negative. This is not surprising because AI(x)

is suboptimal to the cost-minimization problem. For most of cases, |εIC | is not large. This

is probably because the objective function is quite flat near the optimal solution (similar to

many other facility location problems). Nevertheless, |εIC | is large for large αp and θ∗ ≈ 1,

as the solutions under these scenarios impose a large penalty risk to the customers.

When λ(x) is heterogeneous (i.e., τλ = 1), N∗ and C∗ are lower than those in the
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corresponding homogeneous cases (i.e., τλ = 0). This suggests that uneven distribution of

customers generally reduces the optimal total cost. In addition, heterogeneous λ(x) seems

to slightly inflate |ϵI | under positive correlations and reduce it under negative correlations.

However, when the facility opening cost f(x) varies in proportion to λ(x) (i.e., τf = 1), which

may happen due to higher land prices in areas with high population density, the results are

almost the same as those with homogeneous λ(x) and f(x) (i.e., τλ = τf = 0).

3.5.2 Correlations Specified by the Beta-Binomial Distribution

We assume that all parameters remain the same as those in the previous example, excepted

that the correlations are expressed via beta-binomial distribution with parameters a(x) = a,

b(x) = b, ∀x. Equations (3.25) and (3.26) are used to estimate the penalty and service

probabilities P̄ (x) and Pr(x).

Table 3.2 shows the results for a range of problem instances, where f̄ = 1, λ̄ = 500, ω =

11.73, τλ, τf ∈ {0, 1}, a ∈ {0.1, 0.01}, b ∈ {19a, 4a}, αp ∈ {1, 10}, and D ∈ {0.1, 0.2}. Since
the beta-binomial formulation is simply a special case of the general conditional probability

formulation, the results are consistent with those in Section 3.5.1. Facility number N∗ and

optimal cost C∗ generally increase over the failure probability a
a+b

, the correlation 1
a+b

, and

the penalty factor αp. The estimation error |ϵI | is large, especially when the penalty cost

and the correlation are high, though |ϵIC | is only large for a few cases. Heterogeneities in

the system again help reduce the optimal number of facilities and the total cost.

3.5.3 Flooding Hazard

Now we suppose that facility failure may be caused by a potential flooding hazard, and

the flood, whenever happening, always immerses the whole S.m Following the framework

introduced in Section 3.4.2, there are |H| = 2 exclusive hazard occurrence states; assume

that state h = 1 represents no-disaster, which occurs with a high probability Q1 = 0.9, while

state h = 2 represents flooding disaster, which occurs with a low probability Q2 = 0.1.n For

h = 1, 2, the associated facility failure probability χh(x) = χh for all x ∈ S, where χ1 ≪ 1

and χ2 > 0. Penalty and service probabilities Pr(x) and P̄ (x) are computed from (3.27) and

(3.28) respectively.

Now that we have two hazard occurrence states, we use εIC1 and εIC2 to replace εIC ,

representing the actual total cost error under states 1 and 2, respectively. Table 3.3 shows

mFor problems where only some subareas are subject to such hazards, we can partition S accordingly
and solve a subproblem for each subarea.

nThis is for illustration only; in the real world Q2 should be much smaller.
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Table 3.2: CA cost estimations when correlation is specified by the beta-binomial distribu-
tion.

# τλ τf
a

a+b
1

a+b
αp D θ∗ N∗ NI C∗ CI CIC εI εIC

1 0 0 0.05 0.5 1 0.2 2.4 19 21 68 64 68 -6 % 0 %
2 0 0 0.05 0.5 10 0.2 3.6 28 22 77 64 78 -16 % 2 %
3 0 0 0.05 0.5 10 0.1 1 32 43 89 80 91 -10 % 3 %
4 0 0 0.05 5 1 0.2 2.5 20 21 66 64 66 -10 % 2 %
5 0 0 0.05 5 10 0.2 3 24 22 101 64 101 -60 % 2 %
6 0 0 0.05 5 10 0.1 1 32 43 89 80 95 -31 % 3 %
7 0 0 0.2 2 1 0.2 1.9 15 21 78 70 80 -11 % 0 %
8 0 0 0.2 2 10 0.2 5 40 30 183 74 186 -60 % 0 %
9 0 0 0.2 2 10 0.1 1.1 36 66 159 110 163 -31 % 7 %
10 0 0 0.2 20 1 0.2 2.2 17 21 74 70 75 -6 % 1 %
11 0 0 0.2 20 10 0.2 3 24 30 246 74 247 -70 % 1 %
12 0 0 0.2 20 10 0.1 1 32 66 159 110 182 -31 % 15 %
13 1 0 0.2 2 1 0.2 1.6 12 19 74 64 77 -14 % 4 %
14 1 0 0.2 2 10 0.2 4.6 36 28 175 69 179 -61 % 2 %
15 1 0 0.2 2 10 0.1 1.3 42 55 147 98 151 -34 % 3 %
16 1 0 0.2 20 1 0.2 1.9 14 19 70 64 71 -9 % 2 %
17 1 0 0.2 20 10 0.2 2.7 21 28 241 69 242 -71 % 1 %
18 1 0 0.2 20 10 0.1 0.9 27 55 156 98 172 -37 % 10 %
19 1 1 0.2 2 1 0.2 1.9 15 21 78 70 80 -10 % 2 %
20 1 1 0.2 2 10 0.2 5 39 30 183 73 186 -60 % 2 %
21 1 1 0.2 2 10 0.1 1.1 35 66 158 110 163 -31 % 3 %
22 1 1 0.2 20 1 0.2 2.2 17 21 74 70 75 -6 % 1 %
23 1 1 0.2 20 10 0.2 3 23 30 245 73 247 -70 % 1 %
24 1 1 0.2 20 10 0.1 1 31 66 158 110 182 -31 % 15 %

the results for a range of instances where f̄ = 1, λ̄ = 500, ω = 11.73, τλ, τf ∈ {0, 1},
[χ1, χ2] ∈ {[0, 0.5], [0, 1]}, αp ∈ {1, 10}, and D ∈ {0.1, 0.2}. Recall that µ2 =

∑
h Qhχ

2
h(x)−

[
∑

h Qhχh(x)]
2 indicates the magnitude of positive correlations. We can observe that the

impacts of failure probability, correlation, penalty and parameter heterogeneities on the

optimal number of facilities and the total cost are similar to those seen in the previous

numerical experiments.

3.5.4 Earthquake Hazard

This section considers a heterogeneous case where earthquake hazards impose site-dependent

failure probability over S. The setting is the same as that in Section 3.5.3 except that hazard

occurrence state h = 2 is induced by an earthquake source centered at (0, 0), and ω is set

to be 2.038 to ensure that λ(x) is monotone (either always decreases or always increases) as

we move away from the earthquake center. When an earthquake occurs, a facility at x ∈ S
fails with a probability q(x) = exp(−β∥x∥), where β is a scalar.

Table 3.4 shows the results for a range of instances. Define q̄ =
∫

x∈S

∑
h Qhχh(x)dx and

µ̄2 =
∫

x∈S
µ2(x)dx. The average values of

∑
h Qhχh(x) and µ2(x) are set to be comparable to

those in the flooding examples. As expected, we observe consistent effects of failure proba-

bility, correlation, penalty and heterogeneities. Particularly, the spatial distribution patterns
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Table 3.3: CA cost estimations for flooding hazard.
# τλ τf

∑
h Qhχh µ2 αp D θ∗ N∗ NI C∗ CI CIC εI εIC εIC1 εIC2

1 0 0 0.05 0.02 1 0.2 2.6 21 21 64 64 64 -1 % 0 % 0 % 0 %
2 0 0 0.05 0.02 10 0.2 4.1 33 22 73 64 78 -12 % 6 % -5 % 54 %
3 0 0 0.05 0.02 10 0.1 1 32 44 89 80 91 -10 % 2 % 11 % -14 %
4 0 0 0.1 0.09 1 0.2 2.4 19 21 68 66 68 -3 % 0 % 0 % 2 %
5 0 0 0.1 0.09 10 0.2 2.4 19 25 158 67 159 -58 % 1 % 1 % 1 %
6 0 0 0.1 0.09 10 0.1 1 32 51 112 90 125 -19 % 12 % 19 % 4 %
7 1 0 0.05 0.02 1 0.2 2.3 19 19 59 58 59 -1 % 0 % 0 % 0 %
8 1 0 0.05 0.02 10 0.2 3.6 29 22 67 60 69 -9 % 4 % -3 % 36 %
9 1 0 0.05 0.02 10 0.1 1.1 36 38 83 74 84 -12 % 1 % 2 % -3 %
10 1 0 0.1 0.09 1 0.2 2.1 17 19 63 60 63 -4 % 0 % 0 % 1 %
11 1 0 0.1 0.09 10 0.2 2.3 19 24 154 63 155 -59 % 1 % 1 % 0 %
12 1 0 0.1 0.09 10 0.1 0.9 28 44 109 82 119 -25 % 9 % 14 % 3 %
13 1 1 0.05 0.02 1 0.2 2.6 21 21 65 64 65 -1 % 0 % 0 % 0 %
14 1 1 0.05 0.02 10 0.2 4.1 33 22 73 64 78 -12 % 6 % -5 % 54 %
15 1 1 0.05 0.02 10 0.1 1 32 44 89 80 91 -10 % 2 % 11 % -14 %
16 1 1 0.1 0.09 1 0.2 2.4 19 21 68 66 68 -3 % 0 % 0 % 2 %
17 1 1 0.1 0.09 10 0.2 2.4 19 25 158 67 159 -58 % 1 % 1 % 1 %
18 1 1 0.1 0.09 10 0.1 1 32 51 112 90 125 -19 % 12 % 19 % 4 %

of customer demand λ(x) and facility failure probability q(x) seem to jointly influence the

optimal system design. For example, when customer density increases with the distance

from the earthquake center (i.e., τλ = −1), the optimal cost C∗ drops. This desirable sit-

uation is probably due to not only the demand heterogeneity but also the concentration of

demand in places with lower facility failure risks. On the contrary, when customer density

decreases with the distance from the earthquake center (i.e., τλ = 1), the change of C∗ is

not always monotone. Although the heterogeneity of λ(x) tends to reduce the total cost, the

fact that more customers live in places with higher facility failure risk tends to increase the

total system cost.

Table 3.4: CA cost estimations for earthquake hazard.
# τλ β q̄ µ̄2 αp D θ∗ N∗ NI C∗ CI CIC εI εIC εIC1 εIC2

1 0 1 0.05 0.02 1 0.2 2.6 21 21 64 64 64 -1 % 0 % 0 % 0 %
2 0 1 0.05 0.02 10 0.2 4.1 32 22 75 64 79 -14 % 6 % -5 % 47 %
3 0 1 0.05 0.02 10 0.1 1 32 43 88 80 90 -9 % 3 % 10 % -12 %
4 0 0.05 0.1 0.08 1 0.2 2.5 20 21 68 66 68 -3 % 0 % 0 % 1 %
5 0 0.05 0.1 0.08 10 0.2 3.4 27 25 148 67 149 -55 % 0 % -1 % 1 %
6 0 0.05 0.1 0.08 10 0.1 1 32 51 110 89 122 -19 % 11 % 19 % 2 %
7 1 1 0.05 0.02 1 0.2 2.5 20 20 63 62 63 -1 % 0 % 0 % 0 %
8 1 1 0.05 0.02 10 0.2 4.2 33 22 74 63 80 -16 % 8 % -7 % 60 %
9 1 1 0.05 0.02 10 0.1 1.1 36 43 91 78 92 -14 % 1 % 6 % -8 %
10 1 0.05 0.1 0.08 1 0.2 2.3 19 20 66 64 66 -3 % 0 % 0 % 1 %
11 1 0.05 0.1 0.08 10 0.2 3.2 25 25 148 65 149 -56 % 0 % 0 % 0 %
12 1 0.05 0.1 0.08 10 0.1 1 32 49 111 87 120 -21 % 9 % 15 % 2 %
13 -1 1 0.05 0.02 1 0.2 2.4 19 19 61 61 61 0 % 0 % 0 % 0 %
14 -1 1 0.05 0.02 10 0.2 3.5 28 22 69 62 71 -9 % 3 % -3 % 27 %
15 -1 1 0.05 0.02 10 0.1 1.1 36 41 83 76 84 -8 % 1 % 4 % -7 %
16 -1 0.05 0.1 0.08 1 0.2 2.3 18 19 65 63 65 -3 % 0 % 0 % 1 %
17 -1 0.05 0.1 0.08 10 0.2 4 32 24 140 65 143 -54 % 2 % -6 % 7 %
18 -1 0.05 0.1 0.08 10 0.1 1 31 48 109 86 118 -21 % 8 % 15 % 1 %
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3.6 List of Symbols

A: Size of the hexagonal initial service area in an IHI

AI(x): Optimal A(x) when correlation is ignored

Aj,r: Subset of customers who are assigned a rank r by facility j

Bn,a,b: Beta-binomial distribution

c(δ): Cost for one unit of demand at x to travel δ

C∗: Estimated optimal total cost

Cf : Unit-area facility opening cost

CI : Optimal total cost when correlation is ignored

CIC : Actual cost under correlation when AI(x) is implemented

Cp: Unit-area expected penalty cost

Ct: unit-area expected transportation cost

D(x): Penalty distance at x

f̄ : Parameter to specify average f(x) over space S
f(x): Fixed facility opening cost at x

F (δ): Probability for a customer to travel farther than δ under dependent failures

FI(δ): Probability for a customer to travel farther than δ under independent failures

H: Set of mutually exclusive hazard occurrence states

IHI: infinite and homogeneous plane and the facilities fail independently

N : Total number of facilities

N∗: Estimated optimal facility number

NI : Optimal facility number when correlation is ignored

ND(x): Number of facilities that a customer at x can visit within D

P̄ : Average value of P̄ (x)

P (x, xj|x): Probability for this customer at x to be served by facility j

Pr: Probability that Aj,r receives service from facility j

P̄ (x|x): Probability for the customer at x not to be served

q(x): Failure probability of a facility at x

ql: Conditional failure probability of a facility

Qh: Probability of state h ∈ H
r: Index of a facility number or a customer service level

S: Two-dimensional space

λ̄: Parameter to specify average λ(x) over space S
λ(x): Demand density at x ∈ S
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xj: Location of the jth facility,j = 1, 2, · · ·N
αt: Coefficient of transportation cost

αp: Coefficient of penalty cost

χh(x): Probability that each facility near x fails in state h ∈ H
δ: Variable for distance

∆q(x): Parameter for correlation in conditional probabilities

εI :
CI−C∗

C∗

εIC :
CIC−C∗

C∗

γr: Scalar for the average distance from Aj,r to facility j

θ: SπD2/A

τf : Parameter to specify variation of f(x) across space S
τλ: Parameter to specify variation of λ(x) across space S
ω: Parameter to normalize the average customer density and facility cost
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Chapter 4

Reliable Traffic Surveillance Sensor

Design: Homogeneous Failure

The optimization methodologies for supply chain location problems can be extended to traffic

sensor location problems. This chapter proposes a reliable sensor deployment model for ad-

vanced vehicle ID identification sensors that can synthesize disaggregated vehicle information

from multiple locations. This model optimizes traffic surveillance benefit from synthesized

sensor pairs (e.g., for travel time estimation) in addition to individual sensor flow coverage

(e.g., for traffic volume statistics), while considering probabilistic sensor failures. Customized

greedy and Lagrangian relaxation algorithms are proposed to solve this problem, and their

performance is discussed. We test our algorithm with a moderate-scale network, which shows

that the proposed algorithms solve the problem efficiently. Then we apply it to the Chicago

intermodal network and discuss managerial insights on how optimal sensor deployment and

surveillance benefits vary with surveillance objective and system parameters (such as sensor

failure probabilities).

The proposed model can also be applied to the railroad context. We conduct a case study

on railroad wayside detector deployment. According to railroad specifications, we only need

to consider individual sensor flow coverage of railcars without sensor failures. Our model

(after adaption) is able to solve very large-scale problems with over ten thousand nodes and

around half a million railcars. We have implemented the wayside detector location model

into a standalone solver, which has been used by a class-I railroad to make sensor deployment

decisions.
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4.1 Introduction

Sensor technologies (e.g., loop detectors, surveillance cameras, radio frequency identifica-

tions/RFID) have been widely used on highway networks. Real-time traffic information is

sampled by these sensors to monitor traffic status and to develop control strategies. The

effectiveness of a traffic surveillance system depends on not only the accuracy of the sampled

information but also the coverage over the transportation network. However, implementing

these new technologies usually requires large investment. Accuracy and coverage are often

two conflicting objectives due to limited resources: collecting high-quality information usu-

ally relies on sophisticated and expensive technologies and thus limited budget would restrict

the number of installations; on the other hand, due to the limited effective range of most sen-

sors, complete coverage over a network usually requires dense installations. To balance this

trade-off, intensive studies have been conducted to determine efficient and reliable deploy-

ment of surveillance systems. Early studies mostly focused on deploying traditional sensors

(e.g., inductive loop detectors) that provide aggregated statistics (e.g., vehicle counts) for

purposes related to origin-destination (O-D) flow volume estimation. Lam and Lo (1990)

proposed a heuristic approach to select locations for traffic flow volume counting sensors in

a roadway network. Yang et al. (1991) conducted a robust analysis on the utility of traf-

fic counting point, and Yang and Zhou (1998) proposed a sensor deployment framework to

maximize such utilities. This framework has been extended to accommodate turning traffic

information (Bianco et al., 2001, 2006), existing installations and O-D information content

(Ehlert et al., 2006), the screen line problem (Yang et al., 2006), time-varying network flows

(Fei et al., 2007; Fei and Mahmassani, 2008), railcar inspection under potential sensor fail-

ures (Ouyang et al., 2009), and unobserved link flow estimation (Hu et al., 2009). The

emergence of advanced traffic sensor technologies (e.g., automatic vehicle identification tag

readers, radio frequency identification sensors) that are able to track vehicle identifications

has further enabled flow volume estimation for individual O-D paths. For example, Gentili

and Mirchandani (2005) investigated guidelines for locating advanced traffic sensors that

are able to read both a vehicle’s identification and its route information. Castillo et al.

(2008) proposed a location model to determine the optimal locations of vehicle plate scan-

ning sensors for path flow reconstruction. Recent studies have investigated the potential use

of sensor data for network O-D travel time estimation. The location of traditional sensors

in a single freeway corridor (Bartin et al., 2007; Ban et al., 2009), and deployment of vehicle

identification technologies on a highway network (Sherali et al., 2006; Mirchandani et al.,

2009) have been considered in support of network travel time estimation.

Despite numerous studies on O-D flow coverage, research on the usage of sensors for
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network O-D travel time estimation has been relatively scarce. To the best of our knowledge,

only Ban et al. (2009) developed sensor deployment algorithm for travel time estimation in

a single freeway corridor—little research has addressed the problem in general networks.

Accurate travel time estimation provides important information for decision support in both

private sectors (e.g., tacking fleets for trucking companies, traveler information provision)

and public agencies (e.g., congestion mitigation, accident management). For a transportation

network, we may want to know as much as possible the real-time travel time between all

possible O-D pairs. However, traditional surveillance technologies (e.g., loop detectors)

would encounter significant challenges due to their inability to accurately capture O-D flows

(Kerner and Rehborn, 1996; Li et al., 2010). New sensor technologies, on the other hand,

are able to identify vehicle IDs and therefore hold the promise to overcome these challenges

by synthesizing vehicle ID information from different sensors. For example, the consecutive

time stamps of a vehicle at two sensor locations would provide an accurate estimate of travel

time.

Like many other IT technologies, most existing sensors are subject to performance disrup-

tions due to system errors, adverse weather conditions, or intentional sabotage (Rajagopal

and Varaiya, 2007; Carbunar et al., 2005). Intuitively, such failures may substantially impair

the surveillance effectiveness. Potential disruptions need to be addressed in a reliable design

so that the sensor system not only has a good performance in the normal scenario but also

is resilient against possible loss in failure scenarios. In recent years, reliable facility location

problems have been studied in the supply chain design (Daskin, 1983; Snyder and Daskin,

2005; Cui et al., 2009) and railroad defect detection sensor design contexts (Ouyang et al.,

2009). However, despite these recent efforts, few studies in the network traffic surveillance

context have addressed the possibility of sensor failures.

This chapter aims to fill these gaps. It builds on the reliable facility location literature

and develops a linear integer model to determine optimal locations for vehicle ID inspection

sensors for travel time estimation as well as traffic O-D flow count. The model allows

probabilistic sensor failures in general transportation networks. The formulated problem is

complex by nature, and the real-world instances are generally of large scale. This imposes

prohibitive computational burden if we solve this model with standard solvers. We therefore

propose customized algorithms to solve the problem efficiently. Case studies are conducted

to test the algorithms and to draw insights.

The chapter has the following layout. Section 2 introduces the notation and develops

the mathematical model. Section 3 proposes customized algorithms to solve this problem.

Section 4 conducts numerical experiments to draw managerial insights. Section 5 concludes

this chapter and briefly discusses future study directions.
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4.2 Model Formulation

We select sensor locations in a transportation network to maximize the expected benefit

from both O-D volume estimation and travel time measurement. For any O-D flow, the

total traffic volume can be inspected by a single sensor if and only if the flow passes the

sensor (Yang and Zhou, 1998). In this case, we say that the flow is covered by the sensor

in the sense of flow coverage. Such individual sensor information can also be used to infer

travel time based on speed measurements (Ban et al., 2009). However, sensors (particularly

those with vehicle-ID capabilities) can work in pairs to provide an accurate measurement

of travel time between their installation locations. Assume that the traffic state along the

traffic paths remains relatively stable during the nominal travel time.a Intuitively, accurate

travel time estimation for an O-D path benefits all traffic on this path, while the accuracy

depends on the span of sensors—the wider a pair of sensors span over an O-D path, the larger

portion of the path is measured and the better it helps to estimate travel time of that O-D

path. Thus the travel time surveillance benefit, which we denote by path coverage, depends

on not only the inspected traffic volume but also the lengths of covered O-D paths by sensor

pairs. We assume for simplicity that path coverage for an O-D path is proportional to both

its traffic volume and covered length.

Let I be the set of O-D paths on the network. Each path i ∈ I is specified by its traffic

volume fi, which is assumed to be deterministic and known. Each path i passes a set of

candidate locations, Ji, where sensors can be potentially installed. Each candidate location

j on path i has a corresponding mileage, mij, increasing along the traffic direction of fi.

The collection of all candidate locations over the network is J :=
∪

∀i Ji. For convenience of

notation, let Ij denote the set of paths that pass the same location j. Note that
∪

∀j Ij = I.
Due to limited budget, no more than N sensors can be built on the network. For ∀i ∈ Ij,

fi is inspected if an operational sensor is located at j. Similar to the traditional maximal

covering models (Yang and Zhou, 1998), if fi is inspected by at least one sensor, the benefit of

flow coverage is bcfi, where bc is a nonnegative coefficient. If fi passes at least two sensors, we

can record its travel time between the first functioning (head) sensor it passes, at location jh,

and the last functioning (rear) sensor it passes, at location je. The benefit of path coverage

can be expressed as btfi(mije −mijh), where bt is also a nonnegative coefficient.

In the long run, sensors may be disrupted or malfunctional from time to time. When

sensors fail, the flow coverage and path coverage patterns in the network also change. Hence

we consider the expected surveillance benefit across all sensor failure scenarios in addition

aWithout losing generality a path can be divided into multiple short segments to make this assumption
reasonable.
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to the ideal non-failure scenario. The head (or rear) sensor for each i may vary over different

failure scenarios. In other words, different head (or rear) sensors are assigned to i according

to failure scenarios. Sensors on i can be ranked into different priority levels according to

such head (or rear) assignment such that in any scenario the sensor with the lowest level

among all functioning ones, if available, is the head (or rear) sensor. In the normal scenario

(without any failure), the most upstream sensor on i serves as the head sensor, and thus it is

the level-zero head sensor for i. If this sensor fails, its immediately downstream sensor takes

over to serve i, and thus this second sensor is the level-one head sensor for i. This process

can be repeated to label every installed sensor on i with a unique head sensor assignment

level. Similarly, each sensor on i can be labeled with a unique rear sensor assignment level

that starts from zero for the most downstream sensor and increases upstream. Supposing

that there are Si sensors installed on path i, we see that once the locations with installations

on i are given (i.e., {ji0, ji1, .., jiSi−1} ordered from upstream to downstream), their head and

rear assignment levels are determined by the following simple rule

Definition 1. (Valid assignment rule) A sensor at location jis is the level-s head sensor and

the level-(Si − 1− s) rear sensor for traffic path i.

Since each sensor installed on i receives a unique head (or rear) assignment level to

i, there are at most Ri := min(|Ji|, N) levels of possible head (or rear) assignment. Let

r = 0, 1, · · · , Ri − 1 denote a possible head (or rear) assignment level for a sensor on i.

The primal decision variables x := {xj} determine where to install sensors, where

xj =

{
1, if a sensor is installed at location j;

0, otherwise.

Given x, the auxiliary variables h = {hijr} and e = {eijr} decide how sensors are assigned

to paths according to the valid assignment rule; i.e.,

hijr =

{
1, if a sensor is installed at j and it is assigned to i as a level-r head sensor;

0, otherwise,

and

eijr =

{
1, if a sensor is installed at j and it is assigned to i as a level-r rear sensor;

0, otherwise.

Assume that each sensor fails independently with an identical probability 0 ≤ q < 1.

This probability can be obtained from historic sensor performance statistics (Rajagopal and
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Varaiya, 2007). The objective of this two-sensor-covering problem (TSC) is to maximize the

expected total benefit of flow coverage and path coverage for all O-D paths.

(TSC) max
x

z(x) := max
h,e

∑
i∈I

∑
j∈Ji

Ri−1∑
r=0

qr(1− q)fi[−btmijhijr + (btmij + bc)eijr], (4.1)

subject to ∑
j∈J

xj ≤ N, (4.2)

Ri−1∑
r=0

hijr = xj,∀i ∈ I, ∀j ∈ Ji, (4.3)

Ri−1∑
r=0

eijr = xj, ∀i ∈ I,∀j ∈ Ji, (4.4)

∑
j∈Ji

hijr ≤ 1,∀i ∈ I, r = 0; (4.5a)

∑
j∈Ji

hijr ≤
∑
j∈Ji

hij(r−1),∀i ∈ I, ∀r = 1, · · · , Ri − 1, (4.5b)

∑
j∈Ji

eijr ≤
∑
j∈Ji

hijr,∀i ∈ I, ∀r = 0, 1, · · · , Ri − 1, (4.6)

xj, hijr, eijr ∈ {0, 1},∀i ∈ I, ∀j ∈ Ji,∀r = 0, 1, · · · , Ri − 1. (4.7)

Constraint (4.2) enforces the budget limit, while constraints (4.3)-(4.7) postulate the valid

assignment rule. Constraints (4.3) (or (4.4)) ensure that each installed sensor is assigned

to each of its corresponding paths at one and only one head (or rear) assignment level.

Constraints (4.5) and (4.6) indicate that no more than one head or rear sensor is assigned to

each path at each level, and each rear assignment must be accompanied by a head assignment.

Constraints (4.5) also imply that for each path i, all the implemented head assignment

levels, {r|
∑

j∈Ji
hijr = 1}, start from 0 and form a consecutive sequence. Constraints (4.7)

postulate all decision variables to be binary.

The following proposition reveals the relationship between the above formulation and the

valid assignment rule.

Proposition 4. The optimal solution to the TSC problem (4.1)-(4.7) satisfies the valid

assignment rule.
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Proof. Let x∗, h∗, e∗ denote the optimal solution to TSC. Again locations with installed

sensors on each path i are indexed with {ji0, ji1, .., jiSi−1} from upstream to downstream. Let

Rh
i denote the set of all implemented head assignment levels to i; i.e., Rh

i := {r|
∑

j∈Ji
hijr =

1}. Similarly, let Re
i := {r|

∑
j∈Ji

eijr = 1}. For the case of q = 0, there is no failure and

only the level-0 assignment affects the objective value. It is obvious that the optimal solution

enforces all non-trivial assignments (at level-0) to be consistent with the valid assignment

rule.

Now we consider the case with q > 0. Since each installed sensor on i corresponds to

only one implemented head (or rear) assignment level (from (4.3) and (4.4)) and different

sensors cannot have the same head (or rear) assignment level (from (4.5) and (4.6)), it is

obvious that |Rh
i | = |Re

i | = Si. For the head assignment, due to constraints (4.5), Rh
i

contains a sequence of levels from 0 to Si − 1. Due to constraints (4.6), Re
i ⊆ Rh

i . Thus

Rh
i = Re

i = {0, 1, · · · , Si − 1}, and we denote them by Ri. Therefore on path i, each sensor

jis is labeled with a unique head (or rear) assignment level in Ri. At optimality, a more

upstream sensor shall have a lower head assignment level and a higher rear assignment level.

Thus jis corresponds to the level-s head assignment and the level-(Si−1−s) rear assignment

to i, which is the valid assignment rule.

It shall be noted that the TSC modal can be easily adapted for cases where existing

installations are already present (Ehlert et al., 2006). We simply enforce xj = 1 if a sensor

is already installed at location j; the model still has the same structure and complexity.

4.3 Solution Algorithms

TSC is NP-hard because the maximal covering problem is a special case of TSC (with bt = 0

and q = 0). As we will show in Section 4, commercial optimization software (e.g., CPLEX)

would work well only for small-scale instances but it usually runs into difficulty when problem

size increases. We hence propose customized algorithms to obtain near-optimal solutions for

large-scale problems. The first algorithm is based on a simple greedy heuristic, which can

yield good solutions for many realistic applications. But it does not provide information on

how close these solutions are from the true optima. Hence we propose a second algorithm

based on Lagrangian relaxation (LR), which provides not only good feasible solutions but

also optimality gaps.
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4.3.1 Greedy Algorithm

The greedy algorithm for TSC simply selects sensor locations sequentially based on the best

marginal increase of objective (4.1), until all N installation locations have been selected.

The exact steps are as follows.

Step 0: Initialization. Let the set of selected location indices Q := ∅ and the iteration index

n := 1. Set xj = 0, ∀j ∈ J ;

Step 1: Search for the nth location that will bring the maximum marginal improvement of

objective (4.1); i.e., select

j∗ = arg max
k∈J\Q

{z(x′) : x′
j = 1, iff j ∈ Q

∪
{k}}.

The corresponding marginal objective improvement is denoted by ρn := z(x′) − z(x),

where x′
j = 1, iff j ∈ Q

∪
{j∗}. Let xj∗ = 1 and Q = Q

∪
{j∗}.

Setp 2: If n = N , stop and return x and the corresponding objective value
∑N

n=1 ρn; oth-

erwise, n = n+ 1, and go to step 1.

The greedy heuristic is widely applied to many practical problems not only because of its

simplicity but also due to its reasonable practical performance. For example, in the case of

the classic maximal covering problem (a special case of TSC where q = 0 and bt = 0), Feige

(1998) proved that the objective value of any greedy solution is no smaller than (1− 1/e) of

the true optimum; i.e., the approximation ratio is e/(e − 1). More importantly, no known

polynomial-time algorithm can beat the greedy algorithm in terms of this approximation

ratio bound (Feige, 1998).

We can obtain a similar approximation ratio for the maximal covering problem with

probabilistic facility failures (a special case of TSC where bt = 0 and q > 0), which is stated

in the following proposition.

Proposition 5. For TSC problems with bt = 0 and q > 0, the objective value of the greedy

algorithm solution is no smaller than (1− 1/e) of the true optimum.

Proof. For any J ′ ∈ J , let C(J ′) denote the expected coverage benefit (the objective value

of (4.1)) given that each location in J ′ has a sensor installed. Let jn denote the nth selected

location by the greedy algorithm (n = 1, 2, · · · , N). Define J G
n := {j1, j2, · · · , jn} and

J G
0 := ∅. For convenience of notation, let Br := qr(1 − q)fibc. Since bt = 0, the valid
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assignment rule yields C(J G
n ) =

∑
i∈I(
∑|JG

n

∩
Ji|−1

r=0 Br). Then

ρn = C(J G
n )− C(J G

n−1) =
∑
i∈Ijn

(B|JG
n−1

∩
Ji|) = max

j∈J\JG
n−1:

∑
i∈Ij

(B|JG
n−1

∩
Ji|). (4.8)

Since C(J G
0 ) = 0, zG := C(J G

N ) =
∑N

n=1 ρ
n.

Let the optimal installations be J ∗ := {j∗1 , j∗2 , · · · , j∗N}, which yield the true optimal

objective value z∗ := C(J ∗). Based on the valid assignment rule, z∗ =
∑

i∈I
∑|J ∗ ∩Ji|−1

r=0 Br.

Also,

C({j∗n′}
∪

J G
n−1)− C(J G

n−1) =


∑

i∈Ij∗
n′
(B|JG

n−1

∩
Ji|), if j∗n′ /∈ J G

n−1;

0, otherwise,

which is no greater than ρn based on (4.8).

Then

z∗ − C(J G
n−1) =

∑
i∈I

(

|J ∗ ∩
Ji|−1∑

r=0

Br −
|JG

n−1

∩
Ji|−1∑

r=0

Br)

≤
∑
i∈I

|(J ∗
∩

Ji)\(J G
n−1

∩
Ji)|B|JG

n−1

∩
Ji|

=
∑

j∈J ∗\JG
n−1

∑
i∈Ij

(B|JG
n−1

∩
Ji|)

=
∑
j∈J ∗

[C({j}
∪

J G
n−1)− C(J G

n−1)]

≤
∑
j∈J ∗

ρn = Nρn.

Hence,

ρn ≥
z∗ − C(J G

n−1)

N
, ∀n = 1, 2, · · · , N,

which yields

z∗ − C(J G
n ) ≤ (z∗ − C(J G

n−1))(1− 1/N) ≤ · · · ≤ z∗(1− 1/N)n,

and

zG ≥ z∗[1− (1− 1/N)N ] ≥ z∗(1− 1/e).
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For general TSC, however, the approximation ratio of the proposed greedy algorithm is

not bounded. This can be seen from the following simple example. Suppose a network has

three nodes J = {1, 2, 3}, two links {(1, 2), (2, 3)}, and two consecutive O-D flow paths, i.e.,

I = {a, b} with fa = 0, fb = 1, and Ja = {1, 2} and Jb = {2, 3}. If bc = 0, bt > 0 and N = 2,

a possible solution from the greedy algorithm is Q = {1, 2}, which yields z(x) = 0. Yet

the optimal solution is obviously Q = {2, 3}, which gives a positive objective value. Hence,

the proposed greedy algorithm for TSC does not have a performance bound and we propose

an LR-based algorithm in the next section. In the following we also discuss generalized

greedy algorithms (e.g., selecting k = 2, 3, ... sensor locations simultaneously each time) and

demonstrate that their approximation ratios remain unbounded.

The greedy algorithm described above can be generalized by selecting k = 2, 3, · · · sensor
locations simultaneously, as follows.

Step 0: Initialization. Let Q := ∅ and xj := 0,∀j ∈ J ;

Step 1: Search for the next k (or the maximum number allowed by the budget) locations

that will bring the largest increase of (4.1); i.e., select

J ∗ = arg max
J ′⊂J\Q

|J ′|=min{k,N−|Q|}

{z(x) : xj = 1, iff j ∈ Q
∪

J ′}.

Let xj∗ = 1,∀j∗ ∈ J ∗ and Q := Q
∪
J ∗.

Setp 2: If |Q| = N , stop and return x; otherwise, go to step 1.

Again, the approximation ratio of the generalized greedy algorithm is unbounded below

by any positive number. This can be seen from the example in Figure 4.1, where G(d)

denotes a complete subgraph containing d nodes. The network contains n subgraphs of type

G(k) (n > 1), one subgraph of type G(nk), and n connectors. The length of every edge in

the network is 1. Each edge within a complete subgraph is an O-D flow path. The traffic

volume is 1.1 if the edge is within a type G(k) subgraph, or 1 if it is within the subgraph of

type G(nk). There is no traffic flow on connector edges. Suppose bc = 0, bt > 0 and N = nk.

At each step, the generalized greedy algorithm will select all k nodes from one of the type

G(k) subgraph in order to obtain the maximum marginal improvement of the objective.

As a result, the greedy solution will select all nk nodes from all type G(k) subgraphs,

yielding an objective value of zG = 1.1nk(k − 1)bt/2. However, the true optimal solution is

obviously the set of nodes in the type G(nk) subgraph, with an optimal objective value of

z∗ = nk(nk − 1)bt/2. Since limn→∞ zG/z∗ = 0, the generalized greedy algorithm does not

have a positive approximation ratio bound for large scale cases (i.e., n → ∞).
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Figure 4.1: Example for the performance bound of the generalized greedy algorithm.

4.3.2 LR-based Algorithm

Relaxed Subproblems and Bounds

We relax constraints (4.5) and (4.6), and add them to the objective (4.1) with nonnegative

Lagrangian multipliers λ = {λir} and γ = {γir}, respectively. The relaxed TSC (RTSC)

becomes:

(RTSC) min
λ,γ≥0

zR(λ, γ) := max
x,h,e

[∑
i∈I

∑
j∈Ji

Ri−1∑
r=0

(Hijrhijr + Eijreijr) +
∑
i∈I

λi0

]
(4.9)

s.t. (4.2)-(4.4) and (4.7), where the benefit of an installation at location j as a level-r head

sensor for any i ∈ Ij is

Hijr =

{
−qr(1− q)fibtmij − λir + λi(r+1) + γir, r = 0, 1, · · · , Ri − 2;

−qr(1− q)fibtmij − λir + γir, r = Ri − 1,
(4.10)

and the benefit of this installation as a level-r rear sensor is

Eijr = qr(1− q)fi(btmij + bc)− γir. (4.11)

For any given λ and γ, the exact value of zR(λ, γ) provides an upper bound of (4.1),

and it can be obtained from the following decomposition scheme. When (4.5) and (4.6)

are relaxed, assignments are no longer dependent across j. Constraints (4.3) require that

the rear assignment of each j with sensor installed is conducted at exactly one level for

each i ∈ Ij. Thus to achieve the optimal benefit, j is assigned to i as a head sensor at

the level corresponding to the maximum Hijr across all r. Similarly, the corresponding rear

assignment level is chosen to maximize Eijr across all r. Therefore, in RTSC, the contribution

of installing a sensor at j, in terms of objective (4.9), is
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Bj =
∑
i∈Ij

[max
r

(Hijr) + max
r

(Eijr)]. (4.12)

Obviously, the optimal solution to (4.9) is to set xj = 1 for the N locations with the

largest Bj values, and accordingly, set hijr = 1 (or eijr = 1) if xj = 1 and r maximizes Hijr

(or Eijr) across all r.
b Then the optimal objective value of RTSC is

zR(λ, γ) =
∑
j∈J

Bjxj +
∑
i∈I

λi0. (4.13)

Since the solution obtained from the above procedure is probably not feasible to the origi-

nal TSC problem, heuristic methods are used to construct a feasible solution. Although such

constructive heuristics do not guarantee the exact optimal solution, previous experiments

(Cornuejols et al., 1977; Caprara et al., 1999) yield very good feasible, often exactly optimal,

solutions (and tight lower bounds of the original objectives) if the Lagrangian multipliers

are near convergence. One simple heuristic is that we install all facilities that are obtained

from RTSC, and then apply the valid assignment rule to determine the feasible h and e

accordingly. If the lower bound equals the upper bound at any iteration, then the optimal

solution is found. Otherwise, the difference between these bounds provides an optimality

gap - the difference between the true optimum and the feasible solution is sure to be no

larger than this gap.

For the classic maximal covering problem (q = 0 and bt = 0), Cornuejols et al. (1977)

proved that the relative gap between the optimal LR solution and the optimal TSC solution

is bounded by 1/e. The following proposition provides conditions under which this bound

holds for problems with positive failure probability q > 0.

Proposition 6. For TSC problems with bt = 0 and q > 0, the optimal objective value

(4.1) for the original TSC is no smaller than (1 − 1/e) of the optimal LR objective (4.9) if

q ≤ min{ρn/ρn−1,∀n = 2, 3, · · · , N}.

Proof. The notation follows Proof 4.3.1. Let z∗R denote the optimal LR objective (4.9). Let

un
ir :=

{
Br, r ≤ |J G

n

∩
Ji| − 1;

0, otherwise.
∀n = 0, 1, · · · , N.

Then
∑Ri−1

r=0 un
ir =

∑|J n
G

∩
Ji|−1

r=0 Br represents the expected coverage benefit of J n
G associated

with path i, and thus C(J G
n ) =

∑
i∈I
∑Ri−1

r=0 un
ir.

bTies can be broken arbitrarily.
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For any n ∈ {1, 2, · · · , N}, let

λir =

{
un−1
ir , ∀i ∈ I, r = Ri − 1;

un−1
ir + λi(r+1), ∀i ∈ I,∀r = 0, · · · , Ri − 2,

(4.14)

which yields λi0 =
∑Ri−1

r=0 un−1
ir , and let

γir = un−1
ir ,∀i ∈ I, ∀r = 0, 1, · · · , Ri − 1. (4.15)

It is obvious that λ and γ are nonnegative and feasible for equation (4.9). Since bt = 0,

plug (4.14) and (4.15) into and (4.10) and (4.11), respectively, and we obtain Hijr = 0 and

Eijr = Br − un−1
ir . Hence, equation (4.9) yields,

z∗R ≤ zR(λ, γ) = max∑
j∈J xj=N

∑
j∈J

xj

∑
i∈Ij

max
r∈{0,1,··· ,Ri−1}

(Br − un−1
ir ) +

∑
i∈I

Ri−1∑
r=0

un−1
ir

Note that

max
r∈{0,1,··· ,Ri−1}

(Br − un−1
ir ) =

{
B|JG

n−1

∩
Ji|, if |J G

n−1

∩
Ji| ≤ Ri − 1;

0, otherwise.
(4.16)

Equation (4.8) and (4.16) yield the following: when n = 1,
∑

i∈Ij maxr∈{0,1,··· ,Ri−1}(B
r −

un−1
ir ) ≤ ρn,∀j ∈ J ; when n ∈ {2, 3, · · · , N},

∑
i∈Ij , maxr∈{0,1,··· ,Ri−1}(B

r−un−1
ir ) ≤ ρn,∀j ∈

J \J G
n−1 and

∑
i∈Ij maxr∈{0,1,··· ,Ri−1}(B

r − un−1
ir ) ≤ qρn−1 ≤ ρn, ∀j ∈ J G

n−1. Hence, z∗R ≤

Nρn + C(J G
n−1) and ρn ≥ z∗R−C(JG

n−1)

N
. Similarly, we obtain zG ≥ z∗R(1 − 1/e), and hence

z∗ ≥ zG ≥ z∗R(1− 1/e).

Remark 1. In case that we allow multiple installations at the same location (i.e., xj =

0, 1, 2, · · · ), the approximation bound stated in Proposition 6 will holds for all q ∈ [0, 1). The

greedy algorithm shall allow repeated selection of the same candidate location, and hence∑
i∈Ij maxr∈{0,1,··· ,Ri−1}(B

r − un−1
ir ) ≤ ρn, for all j ∈ J , regardless of whether q ≤ ρn/ρn−1.

It should be noted that the computational time for solving the RTSC problem (4.9) and

for obtaining a feasible solution are bounded by O(N · |I| + |J |
∑

i∈I Ri) and O(N · |I|),
respectively.
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Multiplier Updating

Function zR(λ, γ) is known to be convex over λ and γ. RTSC can be solved with an iter-

ative subgradient search. We update λ and γ iteratively to find the tightest upper bound

minλ,γ≥0 zR(λ, γ). We add subscript k to distinguish variables in iteration k. The initial

values of the multipliers are obtained with heuristics (e.g., the dual solution to the linear

relaxation of the original problem). At the end of each iteration, multipliers are updated as

follows.

λk+1
ir = max

(
0, λk

ir + tk∆λk
ir

)
,∀i ∈ I, ∀r = 0, 1, · · · , Ri − 1, (4.17)

γk+1
ir = max

(
0, γk

ir + tk∆γk
ir

)
,∀i ∈ I, ∀r = 0, 1, · · · , Ri − 1, (4.18)

where the subgradients are ∆λk
ir :=

∑
j∈Ji

hijr −

{
1, r = 0∑

j∈Ji
hij(r−1), otherwise

, and ∆γk
ir :=∑

j∈Ji
(eijr − hijr). Step size tk is usually set to

tk =
µk(zR(λ

k, γk)− zLB)∑
i∈I
∑Ri−1

r=0

[
(∆λk

ir)
2 + (∆γk

ir)
2
] ,

where µk is a control scaler, and zLB is the objective value of the best-known feasible solution.

Traditionally, control scaler µk is determined by setting µ0 = 2 and halving µk if zR(λ
k, γk) is

not improved after a fixed number of iterations (Fisher, 1981). This approach is modified by

Caprara et al. (1999) for faster convergence. The idea is to set µ0 = 0.1, and compare the best

and worst values of zR(λ
k, γk) in every certain number (e.g., 20) of iterations: decrease µk if

the difference is greater than a larger threshold (e.g., 1%) and increase µk if the difference is

less than a smaller threshold (e.g., 0.1%). In our case study, we use the traditional approach

when multipliers are far from their optimal values and then switch to the second approach

near convergence.

In principle, the LR algorithm is terminated if one of the following conditions is satisfied:

(i) the lower bound equals the upper bound, (ii) the optimality gap stops reducing, and

(iii) the solution time exceeds a reasonable limit. Our experience shows that condition (ii)

terminates the algorithm most of the time. In case that happens, we may use the following

branch and bound procedure to further reduce the optimality gap.

Branch and Bound

If the aforementioned LR algorithm ends up having a non-zero optimality gap, we implement

the LR algorithm into a branch and bound framework. We branch on variables x in a
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depth-first manner, and use a greedy heuristic to choose the next variable xj for branching:

installation at j shall bring in the greatest increase of the objective value (4.1) given the

variables that have already been branched. We branch each variable first to 1 (enforcing

installation) and then to 0 (forbidding installation). At each node, we run the LR algorithm

to determine the lower and upper bounds, while extra constraints for already-branched

variables are exerted. If the upper bound is lower than the best feasible solution so far,

the node no longer has potential and is trimmed. If the current node has already had N

enforced or |J | −N forbidden installations, only one non-trivial feasible solution exists and

is returned as both the lower and the upper bounds. At each branching, the multipliers of

a parent node are passed down to its child nodes as their initial multipliers.

4.4 Case Studies

This section presents two numerical examples of the TSC model. All solution algorithms are

implemented on a PC with 2.0 GHz CPU and 2 GB memory. For the LR-based algorithm,

we denote the optimal objective value by z∗, the solution time by T , and the optimality gap

by ϵ. Let zG be the objective value found by the greedy algorithm. For comparison, we solve

the same instances with commercial software CPLEX, and let zC , TC and ϵC be the objective

value, the solution time and the residual optimality gap, respectively. Let α := bt/(bt + bc)

be an indicator of the relative importance of path coverage benefit.c

4.4.1 Sioux-Falls Network

The Sioux-Falls network has 24 vertices and 76 links, as shown in Figure 4.2d. Assume that

all the vertices are candidate locations, i.e., |J | = 24. There are 528 traffic O-D pairs. For

simplicity, we assume that each O-D pair only has one flow path that is determined by the

shortest path algorithme, and hence |I| = 528. Assume too that the sensor at a node can

detect all traffic passing that node from different directions.

We set a solution time limit of 1800 seconds, and run a series of instances for bt = 1,

bc ∈ {0, 1, 10}, N ∈ {3, 5, 7} and q ∈ {0, 0.05, 0.2, 0.5}. The results are summarized in

Table 4.1. As we can see, the LR-based algorithm found optimal solutions for almost all the

instances (ϵ = 0%). CPLEX has a comparable performance only when α is small (i.e., flow

coverage dominates). Otherwise, the performance of CPLEX is significantly worse than the

cNote that once α is fixed, scaling the value of bt (or bc) does not affect the optimal sensor deployment.
dSource: http://www.bgu.ac.il/ bargera/tntp/.
eAn alternative is to obtain traffic flows within a traffic assignment framework. This will not change the

structure of the model though.
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Figure 4.2: The Sioux-Falls test network.

LR-based algorithm: CPLEX cannot find the optimal solution within 1800 seconds for many

instances, and sometimes it cannot even find a meaningful feasible solution (where zC = 0

or ϵC = INF%). The greedy algorithm finds a good feasible solution (i.e., zG ≈ z∗) when

α is small. For most instances with α = 1, however, the results from the greedy algorithm

are quite far from the optima. This implies that the greedy algorithm does not work as

well when path coverage is the dominating objective. This is probably because a sensor’s

contribution to path coverage highly depends on other sensors’ locations.

In Table 4.1, z∗ increases with N and decreases with q, as expected. Figure 4.3 further

reveals their relationships by plotting z∗ over N and q for different parameter values. In

Figure 4.3(a), curves 1 and 2 are for path coverage only (α = 1) and curves 3 and 4 are

for flow coverage only (α = 0). We see that curves 3 and 4 quickly flatten out while curves

1 and 2 almost linearly increase until N is close to |J |. This suggests that path coverage

benefit is more sensitive to value of N . This is probably because the marginal path coverage

benefit depends not only on the additional installation itself, but also on other installations

that form pairs with the additional one. The differences between curves 1 and 2, and that

between 3 and 4 represent the expected coverage loss due to probabilistic sensor failures.

Although such loss is small for flow coverage, it is significant for path coverage. This is

further confirmed by Figure 4.3(b) which shows how z∗ varies with q. Curves 5 and 6 are for

path coverage while curves 7 and 8 are for flow coverage. We see that when q is not too large

(e.g., q < 0.5, which is true for most real-world cases), curves 5 and 6 drop much faster than

curves 7 and 8. This confirms the observation that the benefit loss due to failures is more

significant for path coverage. In this case, sensor failures should be addressed carefully. It

is also interesting to notice that curves 5 and 6 are rather convex while 7 and 8 are rather
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Table 4.1: Results for Sioux-Falls test network.
# N q bc α zG z∗ zC T/s TC/s ϵ ϵC

1 3 0 0 1.00 230600 469200 469200 59 66 0 % 0 %
2 3 0 1 0.50 692800 692800 692800 8 53 0 % 0 %
3 3 0 5 0.17 1.59E+06 1.59E+06 1.59E+06 1 1 0 % 0 %
4 3 0.05 0 1.00 208117 423453 423453 60 414 0 % 0.01 %
5 3 0.05 1 0.50 640371 640371 640371 8 288 0 % 0.01 %
6 3 0.05 5 0.17 1.51E+06 1.51E+06 1.51E+06 2 1 0 % 0 %
7 3 0.2 0 1.00 150426 300288 287168 73 >1800 0 % 18.29 %
8 3 0.2 1 0.50 494320 494320 494320 11 341 0 % 0.01 %
9 3 0.2 5 0.17 1.27E+06 1.27E+06 1.27E+06 2 1 0 % 0 %
10 3 0.5 0 1.00 62000 119838 92925 270 >1800 0 % 86.68 %
11 3 0.5 1 0.50 252775 252775 252775 29 >1800 0 % 3.24 %
12 3 0.5 5 0.17 794675 794675 794675 1 1 0 % 0 %
13 5 0 0 1.00 662800 947800 947800 44 113 0 % 0 %
14 5 0 1 0.50 1.22E+06 1.22E+06 1.22E+06 23 107 0 % 0 %
15 5 0 5 0.17 2.31E+06 2.31E+06 2.31E+06 6 8 0 % 0 %
16 5 0.05 0 1.00 607112 861901 861901 52 >1800 0 % 0.97 %
17 5 0.05 1 0.50 1.13E+06 1.13E+06 1.13E+06 16 270 0 % 0.01 %
18 5 0.05 5 0.17 2.19E+06 2.19E+06 2.19E+06 5 13 0 % 0.01 %
19 5 0.2 0 1.00 507213 625062 588058 123 >1800 0 % 17.26 %
20 5 0.2 1 0.50 872339 872339 865773 35 >1800 0 % 2.05 %
21 5 0.2 5 0.17 1.87E+06 1.87E+06 1.87E+06 4 5 0 % 0 %
22 5 0.5 0 1.00 213788 266725 0 642 >1800 0 % INF %
23 5 0.5 1 0.50 449163 449163 443650 81 >1800 0 % 5.82 %
24 5 0.5 5 0.17 1.18E+06 1.18E+06 1.18E+06 2 2 0 % 0 %
25 7 0 0 1.00 1.28E+06 1.35E+06 1.35E+06 110 125 0 % 0 %
26 7 0 1 0.50 1.65E+06 1.65E+06 1.65E+06 59 176 0 % 0.01 %
27 7 0 5 0.17 2.92E+06 2.92E+06 2.92E+06 30 1 0 % 0 %
28 7 0.05 0 1.00 1.18E+06 1.24E+06 1.24E+06 124 1783 0 % 0.01 %
29 7 0.05 1 0.50 1.54E+06 1.54E+06 1.54E+06 56 599 0 % 0.01 %
30 7 0.05 5 0.17 2.78E+06 2.78E+06 2.78E+06 9 4 0 % 0 %
31 7 0.2 0 1.00 897554 936031 0 376 >1800 0 % INF %
32 7 0.2 1 0.50 1.22E+06 1.22E+06 1.21E+06 111 >1800 0 % 1.04 %
33 7 0.2 5 0.17 2.36E+06 2.36E+06 2.36E+06 8 7 0 % 0 %
34 7 0.5 0 1.00 388425 411363 0 1800 >1800 26 % INF %
35 7 0.5 1 0.50 622325 625738 0 576 >1800 0 % INF %
36 7 0.5 5 0.17 1.48E+06 1.48E+06 1.48E+06 8 7 0 % 0 %

concave, indicating opposite sensitivity behaviors in different q value ranges.

Figure 4.4 shows the impact of α and q on the optimal sensor deployment. The link width

illustrates flow volumes. The dark nodes are the optimal installation locations, which are

generally at places with heavy traffic. The optimal deployment for path coverage (α = 1) is

more spread-out than that for flow coverage (α = 0). This is intuitive because more scattered

sensor pairs can cover longer paths. On the other hand, higher failure probability generally

leads to a higher degree of sensor clustering.

4.4.2 Chicago Intermodal Network

Figure 4.5 shows the geometry of Chicago interstate highway network, which contains 21

highway junctions and 17 railroad terminals, which are the railroad yards to upload and

download intermodal freights. Traffic comes in and goes out of the network through 8

access points. Each highway junction is split into multiple candidate locations (Sheffi, 1985)
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Figure 4.3: Relationship between N , q and z∗ for the Sioux-Falls network.
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(d) α = 1 and q = 0.2

Figure 4.4: Optimal deployment of N = 3 installations in the Sioux-Falls network.
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such that an installation at any candidate location can inspect all passing flows. The final

network representation includes 89 candidate locations and 363 connecting links. The 2002

intermodal freight trafficf originated from or destined to Chicago is grouped into 1046 O-D

paths on this network based on population distribution. Due to lack of detailed information,

we again assume that all O-D flows follow their shortest distance paths.
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Figure 4.5: Chicago intermodal network.

A maximum solution time of 1200 seconds is enforced while the model is applied with a

range of parameter values. Table 4.2 summarizes the results. Due to the increased problem

size, CPLEX cannot even get a meaningful feasible solution for most instances. The LR-

based algorithm always yields a near-optimum solution with a reasonable residual gap (≤
15%). From our experiments, the difference between the near-optimal solution and the

optimum is often much smaller than the residual gap. Thus these solutions are suitable for

engineering practice.

Figure 4.6 shows again that path coverage is much more sensitive to changes of N and q

than flow coverage. Figure 4.7 illustrates how α and q affect the optimal sensor deployment.

Again, the optimal deployment for path coverage tends to be more spread-out, as highlighted

by the solid ellipses. For flow coverage, higher failure probability generally leads to a higher

fData source: Bureau of Transportation Statistics, http://www.bts.gov/.
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Figure 4.6: Relationship between N , q and z∗ for the Chicago intermodal network.

degree of sensor clustering, as highlighted by the dashed ellipses. Such clustering effect is

not as obvious for path coverage probably due to the need for sensors to cover more path

length.

4.5 Full-Scale Implementation in Railroad Networks

The proposed model is applied to a full-scale real problem of railroad wayside defect detec-

tion installations. We obtained empirical data from a major U.S. railroad on its network

topology and traffic information for 30-, 60-, and 90-day intervals. According to the railroad

specifications, we consider individual sensor flow coverage of railcars (bt = 0) only and ig-

nore sensor failures (q = 0). Though model (4.1)-(4.7) now reduces to a maximal covering

problem, the size of the problem is much larger. The original data contain more than 10,000

candidate locations in the network, about half a million distinct railcars conducting about

2 million shipments per month. Because of the large scale, preprocessing was conducted to

eliminate dominated candidate locations and merge railcar flows with the same itinerary.

Since only flow coverage is considered, if Ij′ ⊂ Ij for some j, j′ ∈ J , then location j′ is dom-

inated by location j and can be excluded from the optimal solution because all the railcars

that can be potentially inspected by installing at location j′ could have been equivalently

inspected by installing at j. If Ji′ = Ji for some i, i′ ∈ I, then flow i and flow i′ have exactly

the same itinerary and can be merged into one new railcar flow whose volume equals fi+fi′ .

Also, the huge amount of data is stored in a sparse matrix format and integrated into the

LR algorithm to save memory and increase processing speed. To further improve the effi-

ciency of the LR algorithm, we temporarily store the values of the Lagrangian multipliers at

convergence. These multiplier values can be used as the starting multiplier values for similar

problem instances (e.g., after we slightly vary the installation budget).
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Figure 4.7: Optimal deployment of N = 10 installations in the Chicago intermodal network.
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Table 4.2: Results for Chicago intermodal network.
# N q bc α zG z∗ zC T/s TC/s ϵ ϵC

1 10 0 0 1 3.80E+06 4.22E+06 1.95E+06 1200 1200 5 % 120 %
2 10 0 1 0.5 4.12E+06 4.48E+06 0 1200 1200 4 % INF %
3 10 0 4 0.2 4.84E+06 5.28E+06 0 1200 1200 3 % INF %
4 10 0 1 0 274219 275462 275461 1200 1200 5 % 0 %
5 10 0.2 0 1 2.93E+06 3.00E+06 0 1200 1200 15 % INF %
6 10 0.2 1 0.5 3.14E+06 3.25E+06 0 1200 1200 12 % INF %
7 10 0.2 4 0.2 3.82E+06 3.99E+06 0 1200 1200 9 % INF %
8 10 0.2 1 0 253215 253408 253408 1200 48 5 % 0 %
9 10 0.5 0 1 1.57E+06 1.69E+06 0 1200 1200 15 % INF %
10 10 0.5 1 0.5 1.85E+06 1.85E+06 0 1200 1200 14 % INF %
11 10 0.5 4 0.2 2.38E+06 2.41E+06 0 1200 1200 9 % INF %
12 10 0.5 1 0 203567 203567 203567 1200 6 7 % 0 %
13 20 0 0 1 5.60E+06 5.78E+06 5.82E+06 1200 838 10 % 0 %
14 20 0 1 0.5 6.01E+06 6.08E+06 6.10E+06 1200 820 10 % 0 %
15 20 0 4 0.2 6.86E+06 6.91E+06 6.94E+06 1200 608 10 % 0 %
16 20 0 1 0 283361 283361 0 1200 1200 9 % INF %
17 20 0.2 0 1 4.71E+06 4.75E+06 0 1200 1200 9 % INF %
18 20 0.2 1 0.5 4.95E+06 5.02E+06 0 1200 1200 8 % INF %
19 20 0.2 4 0.2 5.79E+06 5.84E+06 0 1200 1200 7 % INF %
20 20 0.2 1 0 274962 275057 274480 1200 516 7 % 0 %
21 20 0.5 0 1 2.93E+06 2.99E+06 0 1200 1200 5 % INF %
22 20 0.5 1 0.5 3.19E+06 3.22E+06 0 1200 1200 5 % INF %
23 20 0.5 4 0.2 3.90E+06 3.93E+06 0 1200 1200 3 % INF %
24 20 0.5 1 0 244680 244680 240456 1200 49 7 % 2 %

While the branch and bound procedure is no longer efficient due to the huge number of

variables, the designed LR algorithm alone can yield very good results—on a PC with a 2.3

GHz CPU, the LR algorithm can yield near-optimal solutions (optimality gap 3%) in about

1 hour for all computed cases. The objective function values (i.e., the number of inspected

distinct cars) are quite close for 30, 60, and 90 days of traffic. The optimality gap can be

further reduced by increasing computational time, but the marginal computational effort

needed increases dramatically as the gap itself gets closer to 0. For example, if we reduce

the tolerable optimality gap from 3% to 2%, the extra computational time for each problem

instance is about 1 hour on average.

The railroad also provided information on its current wayside detector installations. Com-

pared with the existing installations on this railroad network, the solution from the proposed

model (with the same number of installations) will improve the inspection benefit by a rel-

ative amount ranging from 20% to 60%.

For this wayside defect detection location problem, a stand-alone computer program,

Railroad Wayside Detector Location Solver (RWDLS), was developed to determine the best

set of locations that inspect the maximum number of railcar flows. Figure 4.8 shows the

interfaces. The left dialog box provides flexible input options for problem customization,

the middle one determines the subset of railcars that are inspected by any given set of

locations, and the right one graphically presents the result summary and statistics. For

more information about this software, see Li and Ouyang (2007). Figure 4.9 shows the
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Figure 4.8: Software interface of railroad wayside detection installation locations.

actual railcar coverage for the railroad company under 7 and 12 installations. On the railroad

network, the width of a green (red) segment illustrates the number of covered (uncovered)

railcars passing this location. We see that 7 installations already cover about over 80%

railcars and 12 installations further improve the coverage to over 90%.
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7 installations 12 installations

Figure 4.9: Optimal railcar coverage with N = 7 (left) and N = 12 (right) installations.
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4.6 List of Symbols

bc: Nonnegative coefficient for flow coverage

bt: Nonnegative coefficient for path coverage

Br: qr(1− q)fibc

C(J ′): Expected coverage benefit given sensor installation location set J ′

e = {eijr}: eijr = 1 (eijr = 0) if a sensor is (not) installed at j and it is assigned to i as

a level-r rear sensor

fi: The traffic volume on path i ∈ I
G(d): Complete subgraph containing d nodes

h = {hijr}: hijr = 1 (hijr = 0) if a sensor is (not) installed at j and it is assigned to i as

a level-r head sensor

I: Set of O-D paths on the network

Ij: Set of paths that pass the same location j ∈ J
jh: Location for a head sensor

je: Location for a rear sensor

J : Set of all candidate locations

Ji: Set of candidate locations on path i ∈ I
mij: Mileage of candidate location j ∈ Ji on path i ∈ I
N : Maximum number of facilities that the budget allows to build

q: Site-independent sensor failure probability

Q: Set of locations

Ri: Number of levels of possible head (or rear) assignment for path i ∈ I
Si: Number of sensors installed on path i ∈ I
T : Solution time for the LR algorithm

TC : Solution time for CPLEX

x := {xj}: xj = 1 (xj = 0) if a sensor is (not) installed at j

z(x): Total coverage benefit for sensor deployment x

zC : Optimal CPLEX objective

zG: Total coverage benefit from the greedy algorithm

z∗: Optimal total coverage benefit from the greedy algorithm

z∗R: Optimal LR objective

zLB: Objective value of the best-known feasible solution in LR

α: bt/(bt + bc)

ϵ: Optimality gap for the LR algorithm
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ϵC : Optimality gap for CPLEX

γ = {γir}: Lagrangian multipliers for rear assignments

λ = {λir}: Lagrangian multipliers for head assignments

µk: Control scaler in LR

ρn: Marginal benefit of the nth installation in the greedy algorithm
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Chapter 5

Sensor Deployment under

Site-Dependent Failure and

Generalized Surveillance Effectiveness

Measures

This chapter aims to extend the sensor location model in Chapter 4 into a more generalized

framework that (i) addresses an overarching surveillance effectiveness measure to unify ex-

isting measures; and (ii) allows sensors to fail with site-dependent probabilities. We define

a novel surveillance effectiveness measure based on the reduction of estimation error that

is capable of encompassing many well-known measures (e.g., flow coverage, path coverage

and state estimation error). A compact model is formulated to minimize the total expected

estimation error for all O-D paths on the transportation network across all possible sensor

failure scenarios, subject to site-dependent sensor failures. A range of customized solution

algorithms are investigated to solve this problem efficiently. Case studies are conducted to

test the performance of proposed algorithms and draw useful insights on sensor deployment

benefit.

5.1 Motivating Example

The lack of consideration on a unifying surveillance effectiveness measure and site-dependent

sensor failures may lead to a dramatically different sensor deployment and significantly infe-

rior surveillance effectiveness. Figure 5.1 shows a simple traffic network with two symmetric

100-mile O-D paths that share a 90-mile highway segment. The flow volume on each path
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is equal to 1. Candidate sensor installation locations (marked as squares) are indexed by

their mileposts. Sensors installed at locations 20, 25, · · · 80 (lighter squares) will be perfectly

reliable (i.e., with zero failure probabilities), while those installed at all other locations

(darker squares) fail independently with a 30% probabilitya. Table 1 compares the optimal

surveillance effectiveness of three sensors under different effectiveness measures and different

“perceptions of failure”. Solution 1 is the optimal sensor location design when sensor failure

is completely ignored, solution 2 assumes that all candidate locations are subject to an iden-

tical failure probability of 13% (which is about the average probability across all candidate

locations), while solution 3 takes into account the true site-dependent failure probabilities.

Under the vehicle-mile coverage measure, solution 1 will obviously deploy sensors at the

three ends 0, 1001 and 1002 so as to cover all the vehicle-miles in this network. Solution

2 deploys all three sensors on the shared highway segment so that they can back up each

other against potential failures. Solution 3 installs two sensors at perfectly reliable locations

20 and 80 in consideration of site-dependent senor failures. As a result of misperceptions

of site-dependent sensor failure probabilities, the first two solutions only yield suboptimal

benefits (or effectivenesses) that are respectively 33.8% and 22.5% lower than that from so-

lution 3. Alternatively, we could measure surveillance effectiveness by the squared error of

traffic state estimation (i.e., the smaller the square error, the better the effectiveness). In

this simple illustrative example, we assume that the error is defined in the following way:

for a path segment that is incident to two neighboring functioning sensors, the error equals

the square of the segment length; for a segment that is incident to only one or zero sensor,

the error is four times the squared segment length. Under this measure, sensors tend to be

distributed in the middle of the paths to avoid large squared errors from long path segments.

The actual surveillance effectivenesses for solution 1 and solution 2 are both 76% worse than

that for solution 3.

0 5 10 15 20 85 90

95
1

95
2

1

100
2

O-D Path 1

O-D Path 2

25 80

Origin

Destination 1

Destination 2

Figure 5.1: A motivating example.

Table 5.1 has revealed the drastic impact of effectiveness measures and site-dependent

sensor failure probabilities on the optimal surveillance effectiveness and sensor deployment.

aIt is not rare for loop detectors to have such a high failure probability; see Rajagopal and Varaiya
(2007).
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Table 5.1: Result summary for the motivating example.
Measure type Solution # Optimal sen-

sor locations
Actual surveillance
benefit/error

Percentage
difference

Vehicle 1 0, 1001, 1002 98 33.8%
-mile 2 0, 5, 90 114.66 22.5%
coverage 3 0, 20, 80 148 0%
Squared 1 10, 50, 90 17600 76%
error 2 10, 50, 90 17600 76%

3 20, 50, 80 10000 0%

This highlights the need for a network-level reliable sensor location design framework that (i)

addresses an overarching surveillance effectiveness measure that encompasses most existing

measures; and (ii) allows sensors to fail with site-dependent probabilities. Traffic surveillance

effectiveness is defined as the reduction of “generalized estimation errors” on all highway

segments between neighboring sensor pairs, such that the existing flow volume coverage,

vehicle-mile coverage and squared estimation error measures can all be expressed as special

cases. The objective of the proposed model is to minimize the total expected estimation

error for all O-D paths on the transportation network across all possible sensor failure sce-

narios, subject to site-dependent sensor failures. Like many other location design problems,

the deterministic version of the sensor location model is already complex; considering an ex-

ponential number of failure scenarios will further increase the difficulty—the computational

burden will be prohibitive if we solve this problem with traditional approaches. In this work

we develop an innovative compact mixed integer programming formulation for this problem

and propose a range of customized solution algorithms to solve this problem efficiently. Case

studies are conducted to test the proposed algorithms and to draw useful insights on how the

surveillance measure definitions and various parameters (e.g., sensor failure probability and

its spatial heterogeneity) impact optimal sensor deployment. We also present alternative

problem formulations and algorithms, including a continuous approximation model for the

sensor deployment problem on a highway corridor.

The remainder of the chapter is organized as follows. Section 2 introduces the overar-

ching surveillance effectiveness measure and develops the compact mixed integer program

(MIP) model for optimal sensor location design. Section 3 proposes a range of customized

algorithms to solve this problem. Section 4 presents alternative models including a continu-

ous approximation model and a fixed-charge location model. Section 5 conducts case studies

to test the solution algorithms and draw managerial insights. Section 6 makes concluding

remarks and briefly discusses future research directions.
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5.2 Model Formulation

5.2.1 Generalized Surveillance Effectiveness

Let I be the set of O-D traffic flow paths on the network. Each path i ∈ I with traffic flow

volume vi passes a set of candidate locations J̄i for potential sensor installations. Set J̄ :=∪
∀i J̄i contains all candidate locations for sensor installations. Without loss of generality,

we add two virtual locations u and d to the transportation network, each with an installed

imaginary sensor that never fails. For every path i, connect u (and d) to the origin (and

the destination) of the path with virtual links of zero length, such that under any sensor

deployment design each segment on path i will be incident to exactly two sensors (including

the imaginary sensors). Let Ji := J̄i

∪
{u, d} and J := J̄

∪
{u, d} =

∪
∀i Ji. For each j ∈ Ji,

let Jij+ denote the set of candidate locations downstream to j (not including j) on path i,

and let Jij− denote the set of locations upstream to j (i.e., Jij− = Ji\(Jij+

∪
{j})). Define

Jijk := Jij+\ (Jik+

∪
{k}) , ∀k ∈ Jij+, which denotes the candidate locations between j and

k on path i. For convenience of notation, let Ij denote the set of paths that pass the same

location j, where
∪

∀j Ij = I.

Path i
j k

kj

l

e ijl e ilk

e ijk

Path i

u destination dorigin

u destination dorigin

Figure 5.2: Neighboring sensor estimation error measure.

We define a general traffic state estimation error measure eijk for the segment on path i

in between locations j ∈ Jid− and k ∈ Jij+, if the estimation is based on surveillance data

from sensors at j and k. Widely used estimation approaches include simple interpolation

and Newell’s three detector method (Newell, 1993). Error eijk can be interpreted as the

integral or summation of estimation inaccuracies from all neighborhoods on segment j − k

(or the negative value of coverage benefits, as shown with the examples at the end of this

subsection). As illustrated in Figure 5.2, an additional sensor installation at the intermediate

location l normally will not impair estimation accuracy on segment j − k (in most cases, it

helps improve estimation accuracy); i.e., it is reasonable to assume that eijl+eilk ≤ eijk,∀i ∈
I, j ∈ Jid−, l ∈ Jijd, k ∈ Jil+. Note that the possible contribution of an “outsider” sensor

at location k to error eijl is negligible if two functioning sensors are available at j, l, and
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k /∈ Jijl

∪
{j, l}. In order to minimize the total estimation error along the entire path, only

the immediate neighboring sensors should be used to estimate (or measure) the traffic state

on the segments inbetween. Note that ∀j ∈ J̄i, eiuj (or eijd) actually represents the estimation

error for the segment from the upstream end to location j (or from j to the downstream

end) only with data from one real sensor at j, and eiud is the benchmark estimation error

for the entire path i without using any sensor data.b Suppose that there are Si sensors (in

addition to the two imaginary ones) installed on path i whose locations are ji1, · · · , jiSi
∈ J̄i

ordered from upstream to downstream, and we further define ji0 = u and ji(Si+1) = d. The

surveillance effectiveness measure for path i is defined as eiud−
∑Si

s=0 eijsjs+1 , i.e., the change

of estimation errors with or without the Si sensors. The network surveillance effectiveness

can be expressed as ∑
i∈I

eiud −
∑
i∈I

Si∑
s=0

eijsjs+1 (5.1)

Since the first term is a constant, a sensor location problem of maximizing the network

surveillance effectiveness can be equivalently solved by minimizing the total estimation errors∑
i∈I
∑Si

s=0 eijsjs+1 .

Now we will see how several existing surveillance effectiveness measures can be expressed

in terms of {eijk}. For all j ∈ Jid−, k ∈ Jij+, we let aijk denote the distance from j to k

along path i.

Example 1 The flow volume coverage (FV) assumes that the surveillance benefit is

proportional to the total path flow volume intercepted by all sensors (e.g., Yang and

Zhou (1998), Li and Ouyang (2010)). If path flow i (with volume vi) passes at least

one installed sensor, then it contributes to the total benefit by bcivi, where bci is the

benefit coefficient. The network FV benefit measure is hence
∑

i∈I,Si≥1 b
c
ivi.

It can be easily verified that if the general error measure {eijk} is defined as follows

eiud = bcivi, eij0j1 =
aij0j1 − aiud

aiud
bcivi,

eijsjs+1 =
aijsjs+1

aiud
bcivi,∀i ∈ I, s = 1, 2, · · · , Si, (5.2)

then (5.1) is equivalent to the network FV coverage.

Example 2 The vehicle-mile coverage (VM) measures the total path flow-length that

is covered by sensor pairs (Mirchandani et al., 2009; Li and Ouyang, 2010). The

surveillance benefit for path i is assumed to be btiviaij1jSi
, i.e., the product of coefficient

bThis is possible when other data sources such as historical records are available.
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bti, traffic volume vi, and segment length aij1jSi
. It can be shown that if we specify

{eijk} as follows,

eiud = btiviaiud, eij0j1 = btiviaij0j1 , eijSi
jSi+1

= btiviaijSi
jSi+1

,

eijsjs+1 = 0, ∀i ∈ I, s = 1, 2, · · · , Si − 1, (5.3)

then (5.1) becomes the network VM coverage.

Example 3 The squared-error reduction (SER) measure computes the difference of

the total squared error between (i) traffic state estimation without using sensor data

and (ii) the estimation based on traffic state reconstruction from sensor data (Ban

et al., 2009). Suppose that path i starts from mileage 0 and ends at mileage Mi and

let Mij denote its mileage at candidate location j. Each neighborhood x ∈ [0,Mi]

has a ground-truth traffic state w(x), which is usually unknown. Let ŵ(x) denote the

estimated traffic state using data from either the closest sensor or sensor pair around x.

The squared error of state estimation on path i is then specified as
∫Mi

0
(w(x)−ŵ(x))2dx.

Before sensors are installed on path i, the estimation of w(x), which is denoted by w̄(x),

has to be obtained from offline data only and shall be less accurate than ŵ(x). Hence,

the SER measure for the network is
∑

i∈I
∫Mi

0
[(w(x)− w̄(x))2 − (w(x)− ŵ(x))2] dx,

which is exactly equal to (5.1) by setting

eiud =

∫ Mi

0

(w(x)− w̄(x))2dx,

eijsjs+1 =

∫ Mijs+1

Mijs

(w(x)− ŵ(x))2dx, ∀i ∈ I, s = 1, · · · , Si. (5.4)

5.2.2 Formulation

In the long run, sensors may be disrupted or malfunctional from time to time. We assume

that failures of different sensors are independent, and a sensor installed at location j ∈ J
has a site-dependent failure probability 0 ≤ qj < 1. Recall that both imaginary sensors

are always functioning, i.e. qu = qd = 0, so that under any failure scenario every location

along a path always has functioning sensors upstream and downstream. Given a sensor

deployment on a path i, in any sensor failure scenario, a functioning sensor j ∈ Jid− will

always be paired up with its nearest downstream functioning neighbor in Jij+ (which may

be at different locations under different failure scenarios) to estimate the traffic state on

the path segment inbetween. We rank sensor locations in Jij+ into different levels (starting

with 0) according to the priority for them to pair up with j; i.e., in any scenario when the
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sensor at j is functioning, the sensor at the lowest level location (among all those locations

in Jij+ with functioning sensors) will be paired up with this sensor. In Figure 5.3, the

installation locations on path i are again given as {ji0, ji1, .., ji(Si+1)} ordered from upstream

to downstream with ji0 = u and ji(Si+1) = d. A sensor at jis and its first downstream

neighbor at ji(s+1) will always work together whenever they are both functioning, and we

say that they are paired up at level 0. If the sensor at ji(s+1) fails, the next downstream

sensor at ji(s+2) takes over and pairs up with the sensor at jis at level 1. This process can

be repeated so that each downstream sensor is assigned a unique level to pair up with the

sensor at jis, which is described by the following simple rule.

Definition 2. (Valid pairing-up rule) A sensor at jis ∈ Jid− pairs up with a sensor at

ji(s+r+1) ∈ Jijis+ at level r,∀r = 0, 1, · · ·Si − s.

Level

1

Functioning sensor Failed sensor Sensor at either state

Path i
d

0

S - si

Path i

Path i

jis ji s( +1)

ji s( +2)

ji S( i+1)

Figure 5.3: Pairing-up levels between the sensor at jis and its downstream sensors on path
i.

Due to the budget constraint, no more than N sensors can be installed in the network.

The primary decision variables X := {Xj}j∈J determine sensor locations, where

Xj =

{
1, if a sensor is installed at location j;

0, otherwise.
(5.5)

Based on the valid pairing-up rule, the maximum possible pairing-up level for two sensors

at j ∈ Jid− and k ∈ Jij+ is Rijk := min{|Jij+| − |Jik+| − 1, N}. Also define Rij :=

maxk∈Jij+
Rijk = min{|Jij+| − 1, N}. Given X, the first set of auxiliary variables Y =

{Yijkr|i ∈ I, j ∈ Jid−, k ∈ Jij+, r = 0, · · · , Rijk} decide how sensors are paired up at each

level;

Yijkr =

{
1, if sensors at j and k are paired up at level r on path i;

0, otherwise.
(5.6)
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The second set of auxiliary variables P = {Pijkr|i ∈ I, j ∈ Jid−, k ∈ Jij+, r = 0, · · · , Rijk}
specify the probability that sensors at j and k are paired up at level r on path i given sensor

deployment X.

The objective of this reliable neighboring-sensor-pair-covering problem (RNSPC) is to

determine the optimal sensor deployment that minimizes the expected total estimation errors

for the whole network across all sensor failure scenarios. However, this objective is difficult to

quantify even for a given sensor deployment X because of the exponential number (i.e., 2N)

of possible sensor failure scenarios (combinations of all sensors’ binary states). To address

this challenge, we propose a methodology below to consolidate the failure scenarios such that

we only need to deal with a polynomial number of scenarios.

As illustrated in Figure 5.3, for any r = 0, · · · , Si − s, we can consolidate all scenarios

in which (i) sensors at jis and ji(s+r+1) are functioning and (ii) all r sensors inbetween

(if any) have failed, regardless of the states of all other sensors. The probability of this

consolidated scenario to occur equals (1 − qjis)(1 − qji(s+r+1)
)Πr

r′=1qji(s+r′) , and the expected

error for the segment jis − ji(s+r+1) equals eijisji(s+r+1)
times this probability. For simplicity

of notation, we just associate all these errors between jis and ji(s+r+1), ∀r to the sensor at jis

only. As such, the total expected error associated with the sensor at jis across all scenarios

is
∑Si−s

r=0 eijisji(s+r+1)
(1− qjis)(1−qji(s+r+1)

)Πr
r′=1qji(s+r′) ; i.e., the sum of errors when the sensor

at j pairs up with all its downstream sensors.

The total estimation error for the entire network can be written as a polynomial expres-

sion ∑
i∈I

s=Si∑
s=0

Si−s∑
r=0

eijisji(s+r+1)
(1− qjis)(1− qji(s+r+1)

)Πr
r′=1qji(s+r′)

, (5.7)

and the sensor location model for RNSPC can be formulated as follows,

(RNSPC) min
X

Φ(X) := min
Y,P

∑
i∈I

∑
j∈Jid−

∑
k∈Jij+

Rijk∑
r=0

PijkrYijkreijk (5.8a)

subject to ∑
j∈J̄

Xj ≤ N (5.8b)

Xu = Xd = 1 (5.8c)∑
k∈Jijd|Rijk≥r

Yijkr +
r∑

r′=0

Yijdr′ = Xj, ∀i ∈ I, j ∈ Jid−, r = 0, · · · , Rij (5.8d)

∑
j∈Jik−|Rijk≥r

Yijkr ≤ Xk,∀i ∈ I, k ∈ Jiu+, r = 0, · · · , Riuk (5.8e)
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Rijk∑
r=0

Yijkr ≤ Xk,∀i ∈ I, j ∈ Ji, k ∈ Jijd (5.8f)

Pijk0 = (1− qj)(1− qk),∀i ∈ I, j ∈ Jid−, k ∈ Jij+ (5.8g)

Pijkr =(1− qk)
∑

l∈Jij+|Rijl≥r−1

ql
1− ql

Pijl(r−1)Yijl(r−1),

∀i ∈ I, j ∈ J−id, k ∈ Jij+, r = 0, · · · , Rijk (5.8h)

Xj ∈ {0, 1},∀j ∈ J ′ (5.8i)

Yijkr ∈ {0, 1}, ∀i ∈ I, j ∈ Jid−, k ∈ Jij+, r = 0, · · · , Rijk (5.8j)

0 ≤ Pijkr ≤ 1,∀i ∈ I, j ∈ Jid−, k ∈ Jij+, r = 0, · · · , Rijk. (5.8k)

Constraint (5.8b) enforces the budget. Constraint (5.8c) postulates that the imaginary

sensors are pre-installed. Constraints (5.8d) make sure that a sensor has to pair up with

one and only one downstream sensor at each level until the imaginary sensor d is used.

Constraints (5.8e) and (5.8f) respectively exclude the possibilities that (i) more than one

upstream sensors pair up with this sensor at the same level and (ii) more than one levels

are assigned to the same downstream sensor. Constraints (5.8g) and (5.8h) formulate the

conditional probabilities for two sensors to pair up at different levels. Constraints (5.8i)-

(5.8k) postulate binary and continuous decision variables. Note that constraints (5.8e) are

redundant given (5.8d) and (5.8f), but we still keep them in the formulation because they

are useful to some of the solution techniques in the next section. The following proposition

reveals the relationship between the above formulation and the valid pairing-up rule.

Proposition 7. At least one optimal solution to problem NSPC (5.8a)-(5.8k) satisfies the

valid pairing-up rule. Furthermore, if qj > 0, ∀j ∈ J̄ and eijk < eijl,∀i ∈ I, j ∈ Ji, k ∈
Jij+, l ∈ Jik+, then this rule must be satisfied by all optimal solutions.

Proof. Proof: For the simplicity of notation, in an optimal solution, locations with sensors

installed on each path i are indexed with {0, 1, .., Si + 1} from upstream to downstream,

where u = 0 and d = Si + 1. Constraints (5.8d)-(5.8f) enforce that a sensor 0 ≤ j ≤ Si

pairs up with one and only one downstream sensor at each level until d is used. Let rijd

denote the level for j to pair up d and jr denote the downstream sensor paired up with j

at a valid level r ≤ rijd. Then the expected estimation error associated with the sensor at

j is e
rijd
ij :=

∑rijd
r=0(1− qj)(1− qjr)

∏r−1
r′=0 qjr′eijjr . Note that the objective value (5.8a) equals∑

i∈I
∑

j∈Jid−
e
rijd
ij . We can prove that optimality indicates that there exists an optimal

solution such that eijjr ≤ eijjr+1 for any 0 ≤ r < rijd; otherwise if eijjr > eijjr+1 holds for any
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optimal solutions, exchanging the levels of jr and jr+1 is supposed to result in a suboptimal

solution. However, this exchange reduces e
rijd
ij by

(1− qj)

[
eijjr(1− qjr)

r−1∏
r′=0

qjr′ + eijjr+1(1− qjr+1)
r∏

r′=0

qjr′

−eijjr+1(1− qjr+1)
r−1∏
r′=0

qjr′ − eijjr(1− qjr)qjr+1

r−1∏
r′=0

qjr′

]

= (1− qj)(eijjr − eijjr+1)(1− qjr)(1− qjr+1)
r−1∏
r′=0

qjr′ ≥ 0. (5.9)

This means that the new solution at least preserves optimality, which contradicts the subop-

timality of this solution. Since eijj′ ≤ eijj′′ , for any 0 ≤ j < j′ < j′′ ≤ Si + 1, in this optimal

solution, we can let the paring-up level for j and j′ be no greater than that for j and j′′.

This implies that jr = j + r + 1,∀r < rijr.

If level rijd + 1 is also a feasible level to pair up j and d, then

e
rijd
ij − e

rijd+1
ij = (1− qj)(1− qj+rijd)

rijd−1∏
r′=0

qjj+r′+1
(eijd − eij(j+rijd)) ≥ 0. (5.10)

Thus there exists an optimal solution such that rijd = Ji− 2− j or every sensor downstream

of j is paired up with j, which is consistent with the valid pairing-up rule.

Note that if qj > 0, ∀j ∈ J̄ and eijk < eijl,∀i ∈ I, j ∈ Ji, k ∈ Jij+, l ∈ Jik+, the

inequalities (5.9) and (5.10) become strict. Then the proposed rule must be satisfied for any

optimal solution. This completes the proof.

It shall be noted that the RNSPC model can be easily adapted to accommodate existing

sensor installations: We simply enforce Xj = 1 if a sensor is already installed at location j;

the model still has the same structure and complexity.

5.3 Solution Algorithms

The nonlinear mixed-integer program RNSPC is NP-hard since the well-known maximum

covering problem is an obvious special case. It is often difficult to find its exact optimal solu-

tion when the problem size is large. Instead, heuristics and neighborhood search algorithms

are usually adopted to obtain near-optimal feasible solutions. In order to estimate the qual-

ity of these solutions, relaxation techniques can be used to estimate the optimality residual
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gaps between near-optimal feasible solutions and their dual bounds. The section proposes a

variety of ways to obtain near-optimal feasible solutions and dual bounds to RNSPC.

5.3.1 Greedy and Interchange Heuristics

Greedy heuristic is widely applied to many practical problems not only because of its simplic-

ity but also due to its reasonable practical performance. The greedy algorithm for RNSPC

simply selects sensor locations sequentially based on the best marginal decrease of objective

(5.8a), until all N installation locations have been selected. The exact steps are as follows.

Step G0: Initialization. Let the set of selected location indices Q := ∅ and the iteration

index n := 1. Define XG := {XG
j }j∈J and set

XG
j =

{
0, if j ∈ J̄
1, otherwise.

(5.11)

Step G1: Search for the nth location in J̄ \Q that will bring the maximummarginal decrease

of objective (5.8a); i.e., select

j∗ = arg min
j∈J̄ \Q

{Φ(X) : Xk = 1, iff k ∈ Q
∪

{j}}. (5.12)

Let XG
j∗ = 1 and Q = Q

∪
{j∗}.

Setp G2: If n = N , stop and return XG; otherwise, n = n+ 1, and go to step G1.

For the classic maximum covering problem (Feige, 1998) and the reliable maximal cov-

ering problem (Li and Ouyang, 2010), it has been showed that the greedy solution is no

smaller than (1 − 1/e) of the true optimum. The following paragraph presents a similar

bound analysis for the optimality ratio of the RNSPC problem.

We slightly abuse the notation to let Φ(Q) = Φ(X|Xj = 1, iffj ∈ Q
∪
{u, d}),∀Q ⊆ J̄ .

Let B(Q) := Φ(∅) − Φ(Q) denote the surveillance benefit from sensor installations at Q.

Let Bi(Q) represent the benefit on path i from sensor installations at Q. Note that B(Q) =∑
i∈I Bi(Q). Suppose that Bi(Q),∀Q ⊆ Q is bounded from below by Li(|Q

∩
J̄i|) and from

above by Ui(|Q
∩

J̄i|), i.e., Li(|Q
∩
J̄i|) ≤ Bi(Q) ≤ Ui(|Q

∩
J̄i|). Let Q∗ represent the set

of optimal sensor installation locations. Let QG,n be the first n locations chosen by greedy

solution for n installations. Then the following equation holds

B(QG,n)−B(QG,n−1) ≥
∑

i∈I
[
Bi(Q∗)−

(
Ui(N)− Li(|QG,n−1

∩
J̄i|+ 1)

)
−Bi(QG,n−1)

]
N

.

(5.13)
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This yields

B(QG,n)−B(QG,n−1) ≥ B(Q∗)− Cn−1 −B(QG,n−1)

N
(5.14)

where Cn−1 =
∑

i∈I
(
Ui(N)− Li(|QG,n−1

∩
J̄i|+ 1)

)
. This leads to

B(QG,n) ≥
[
1−

(
N − 1

N

)n]
B(Q∗)− 1

N

n−1∑
k=0

(
N − 1

N

)n−k−1

Ck; (5.15)

Any given feasible solution, e.g. XG, can be further improved by interchange heuristics.

The exact steps are as follows.

Step I0: Initialization. Set the local search step size η to be a small positive integer (usually

η ≤ 2). Let XI := XG.

Step I1: Search for a feasible X′ within η distance from XI (in the solution space {0, 1}N)
that minimizes the objective (5.8a) ; i.e.,

X′ = argmin
X

{Φ(X) : (5.8b), (5.8c), (5.8i),
∑
j∈J̄

|Xj −XI
j | ≤ η}. (5.16)

Setp I2: If X′ = XI , stop and return XI ; otherwise, set XI = X′, and go to step I1.

5.3.2 Linear Programming Based Algorithm

Although the greedy and interchange algorithms normally only require a short solution time

and are simple to implement, they do not yield any information on solution quality. Thus

we propose additional algorithms that not only yield near-optimal solutions but also provide

optimality gaps.

In the RNSPC model, equations (5.8a) and (5.8h) are nonlinear due to the existence of

{PijkrYijkr}, each of which is the product of a continuous variable and a binary variable. We

can linearize the formulation by the technique introduced in Sherali and Alameddine (1992).

For each i ∈ I, j ∈ Ii, k ∈ Iij, r = 0, 1, · · · , Rijk, we replace each PijkrYijkr by a new variable

Wijkr and add the following set of new constraints to enforce Wijkr = PijkrYijkr:

Wijkr ≤ Pijkr (5.17a)

Wijkr ≤ Yijkr (5.17b)

Wijkr ≥ 0 (5.17c)
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Wijkr ≥ Pijkr + Yijkr − 1. (5.17d)

The linearized formulation (LRNSPC) becomes the following:

(LRNSPC) min
X

ΦL(X) := min
Y,P,W

∑
i∈I

∑
j∈Jid−

∑
k∈Jij+

Rijk∑
r=0

Wijkreijk (5.18a)

subject to

Pijkr =(1− qk)
∑

l∈Jij+|Rijl≥r−1

ql
1− ql

Wijl(r−1),

∀i ∈ I, j ∈ Jid−, k ∈ Jij+, r = 0, · · · , Rijk (5.18b)

(5.8b)− (5.8g), (5.8i)− (5.8k), (5.17a)− (5.17d).

For small-size instances, commercial software such as CPLEX may be able to solve the

linear mixed-integer program LRNSPC. But in general, such an approach demands an ex-

cessively long time even for moderate-size instances. Thus we also propose a faster approxi-

mation approach based on linear relaxation.

If the integer constraints (5.8i) and (5.8j) are relaxed and replaced by

0 ≤ Xj ≤ 1, ∀j ∈ J ;

0 ≤ Yijkr ≤ 1, ∀i ∈ I, j ∈ Jid−, k ∈ Jij+, r = 0, · · · , Rijk,
(5.19)

then LRNSPC becomes a linear program and can be solved in polynomial time. The solution

to the relaxed problem XL provides a lower bound to RNSPC, which however may be far

from the true optimum, and XL may be infeasible (i.e., containing fractional variables). We

adopt a simple heuristic method in Ageev and Sviridenko (1999) to round XL into a feasible

integer solution XR as follows.

Step 0: XR = XL

Step 1: If XR is an integer solution, stop and return XR. Otherwise, choose j, k ∈ J , j ̸= k

such that XR
j and XR

k are the two elements closest to 0.5 among all fractional elements

of XR.

Step 2: LetX′ = {XR
1 , · · · , XR

j +ϵ · · · , XR
k −ϵ · · · , XR

|J |} where ϵ equals either−min{XR
j , 1−

XR
k } or min{XR

k , 1−XR
j }, whichever yields a smaller value of ΦL(X′); UpdateXR = X′

and go to Step 1.
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In Step 2, it is tedious to evaluate the value of ΦL(X′) due to the existence of many auxiliary

variables and constraints. Actually, function ΦL(X′) could be replaced by a much simpler

function F (X′) derived from (5.7) as follows,

F (X′) :=
∑
i∈I

∑
j∈Jid−

∑
k∈Jij+

eijk(1− qi)X
′
i(1− qk)X

′
k

∏
l∈Jijk

[1− (1− ql)X
′
l ] (5.20)

Note that F (X′) = ΦL(X′) = Φ(X′) for all integer X′. Further more, from our experience,

F (X′) is likely to be smaller than F (XR) for both ϵ values, i.e., −min{XR
j , 1 − XR

k } and

min{XR
k , 1−XR

j }. Thus function F is a reasonable heuristic function to guide the rounding

direction.

The above steps may not always yield the true optimum. The solution may be potentially

improved by meta heuristics or neighborhood search methods.

5.3.3 Lagrangian Relaxation (LR) Based Algorithm

The linear-relaxation based solutions, especially the lower bounds, may be far from optima.

This section presents a Lagrangian relaxation approach that will always yield better lower

bounds.

We relax constraints (5.8f) and (5.8e), and add them to the objective function (5.8a) with

nonnegative Lagrangian multipliers λ = {λijk} and γ = {γikr}, respectively. The relaxed

problem becomes

(RRNSPC) max
λ,γ≥0

∆(λ, γ) := min
X,Y,P

Γ(λ, γ,X,Y,P)

:=
∑

j∈J\d

∑
i∈Ij

∑
k∈Jij+

Rijk∑
r=0

(Pijkreijk + λijk + γikr)Yijkr −Xj

∑
i∈Ij

 ∑
k∈Jij−

λikj +

Riuj∑
r=0

γijr


(5.21)

subject to (5.8b)-(5.8d), (5.8i),(5.8j).

The optimal solution of RRNSPC provides a lower bound to the original RNSPC problem

(5.8). However, it is not easy to calculate ∆(λ, γ) even for given λ and γ. Thus we propose

an approximate algorithm that bounds RRNSPC from below.

This algorithm is inspired by ideas in Cui et al. (2009). Let j1, j2, · · · j|Jijk| be an ordering

of the candidate locations in Jijk such that qj0 ≤ qj1 ≤ · · · ≤ qj|Jijk| . Then let pijkr =

(1 − qj)(1 − qk)
∏r−1

l=0 qjl . Note that for any feasible solution of the original problem, the

probability variables P satisfy Pijkr ≥ pijkr,∀i ∈ I, j ∈ Ji, k ∈ Jij+, r ∈ 0, 1, · · · , Rijk. We

replace the probability variables P with fixed values p := {pijkr}, and RRNSPC can be

85



approximated by the following

(ARRNSPC) max
λ,γ≥0

∆A(λ, γ) := min
X,Y

Γ(λ, γ,X,Y,p) (5.22)

subject to (5.8b)-(5.8d), (5.8i),(5.8j).

The following proposition states the bounding relationship between ARRNSPC and RN-

SPC.

Proposition 8. The solution to ARRNSPC (5.22) yields a lower bound of RNSPC objective

(5.8a).

Proof. Proof: Let X∗, Y∗ and P∗ be the the optimal solution to (5.8). We construct a new

model from (5.8) by replacing P with p and removing constraints (5.8g), (5.8h) and (5.8k).

Due to the relaxation of these constraints, X∗ and Y∗ shall be also feasible to this new

model. Furthermore, pijkrY
∗
ijkr shall be no greater than P ∗

ijkrY
∗
ijkr, ∀i, j, k, r since pijkr is a

lower bound of any non-trivial (i.e., when Yijkr = 1) Pijkr that satisfies the valid pairing-up

rule. This implies that the optimal objective for the new model is a lower bound of (5.8a).

Note that ARRNSPC (5.22) is actually the Lagrangian relaxed problem of the new model

and thus yields a lower bound of it. Hence, the optimal objective for ARRNSPC (5.22)

bounds (5.8a) from below. This completes the proof.

Note that if qj values for all j ∈ J̄ are identical, ARRNSPC is the same as the RRNSPC.

Hence, when the spatial heterogeneity of qj is not too dramatic, ARRNSPC should be a

good approximation.

Given feasible λ and γ values, ∆A(λ, , γ) can be simplified as follows.

∆A(λ, γ) = min
X

∑
j∈J\{d}

Xj∆
A
j (λ, γ) (5.23)

subject to (5.8b) and (5.8c), where

∆A
j (λ, γ) := min

Y

∑
i∈Ij

 Rij∑
r=0

∑
k∈Jij+|Rijk≥r

(pijkreijk + λijk + γikr)Yijkr −
∑

k∈J̄ij+

λikj −
Riuj∑
r=0

γijr


subject to ∑

k∈Jij+\{d}|Rijk≥r

Yijkr +
r∑

r′=0

Yijdr′ = 1, ∀i ∈ Ij, r = 0, · · · , Rij
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Function ∆A
j (λ, γ) can be simplified as

∑
i∈Ij min0≤r≤Rij

∆A
ijr where

∆A
ijr =

r−1∑
r′=0

min
k∈Jijd|Rijk≥r′

(pijkseijk + λijk + γiks) + (pijdreijd + λijd + γidr)−
∑

k∈J̄ij+

λikj −
Riuj∑
r=0

γijr

Given λ and γ, ∆A(λ, γ) can be easily solved: Select up to N smallest negative ∆A
j (λ, γ)’s

with j ∈ J̄ and set the corresponding Xj’s to be 1; then Yijkr is set to be one if and only if

Xj = 1 and M(pijkr, λijk) ≤ M(pijk′r, λijk′), ∀k′ ∈ Jij+, Rijk′ ≥ r.

Proposition 9. Function ∆A(λ, γ) (5.23) is concave.

Proof. Proof: Since component ∆A
j (λ, γ) is linear except for minimization operations, it is a

concave function. Let (λ1, γ) ≥ 0, (λ2, γ2) ≥ 0 and (λ3, γ3) = α(λ1, γ1) + (1− α)(λ2, γ2) ≥ 0

where scalar 0 ≤ α ≤ 1. Let X1, X2 and X3 be the optimal minimizers for ∆A(λ1, γ1),

∆A(λ2, γ2) and ∆A(λ3, γ3), respectively. Then

α∆A(λ1, γ1) + (1− α)∆A(λ2, γ2) = α
∑
j∈J

X1
j∆

A
j (λ

1, γ1) + (1− α)
∑
j∈J

X2
j∆

A
j (λ

2, γ2)

≤ α
∑
j∈J

X3
j∆

A
j (λ

1, γ1) + (1− α)
∑
j∈J

X3
j∆

A
j (λ

2, γ2)

=
∑
j∈J

X3
j

(
α∆A

j (λ
1, γ1) + (1− α)∆A

j (λ
2, γ2)

)
≤
∑
j∈J

X3
j∆

A
j (λ

3, γ3) = ∆A(λ3, γ3).

Thus ∆A(λ, γ) is a concave function. This completes the proof.

The concavity of ∆A(λ, γ) allows us to solve ARRNSPC with an iterative subgradient

search. We update λ and γ iteratively to find the tightest upper bound minλ,γ ∆A(λ, γ),

while superscript m is added to distinguish variables in iteration m. The initial values λ0

and γ0 are set to zero or obtained from heuristics (e.g., the dual solution to LRNSPC). At

the end of each iteration m, multipliers are updated as follows.

λm+1
ijk = max(0, λm

ijk + tmδmijk),∀i ∈ I, j ∈ Jid−, k ∈ Jij+.

γm+1
ikr = max(0, γm

ikr + tmσm
ikr), ∀i ∈ I, k ∈ Jiu+, r = 0, · · · , Riuk.

where the subgradients δmijk :=
∑Rijk

r=0 Y m
ijkr − Xm

k , σm
ikr :=

∑
j∈Jik−|Rijk≥r Y

m
ijkr − Xm

k and
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Xm,Ym are solutions to ∆A(λm, γm). Step size tm is usually set to

tm =
µm(∆A(λm, γm)− ZLB)∑

i∈I
∑

j∈Jid−

∑
k∈Jij

(
δmijk
)2

+
∑

i∈I
∑

k∈Jiu+

∑Riuk

r=0 (σm
ikr)

2
,

where µm is a control scalar, which generally decreases over iterations and can be updated

in different ways (Fisher, 1981; Caprara et al., 1999). ZLB is the objective value (5.8a) of

the best (or smallest) feasible solution among all known ones. An feasible solution can be

obtained from other algorithms or the following heuristic: Given a LR solution X, determine

Y and P based on the valid pairing-up rule.

If the LR algorithm ends up having a non-zero optimality gap, we embed the LR algorithm

into a branch and bound (BB) framework to further reduce or close the gap. We branch on

variables X to construct a binary tree where a greedy heuristic is used to expand children

branches for each node: the next variable to branch is Xj if an installation at j brings

in the greatest decrease of the objective value given the variables that have already been

branched. We branch each variable first to 1 (enforcing installation) and then to 0 (forbidding

installation). At each node, we run the LR algorithm to determine its feasible solution

and lower bound, while extra constraints for already-branched variables are exerted. The

multipliers of a node are passed down to next node as the initial multipliers. We record the

best feasible solution from all the nodes traversed so far. If the lower bound for the current

node is no smaller than the best feasible solution, the entire subtree rooted at this node no

longer has potential and is trimmed. If the current node has already had N enforced or

|J | −N forbidden installations, only one non-trivial feasible solution exists and is returned

as both the lower and the upper bounds. After finishing both branches of a node, the lower

bounds and upper bounds for the branches can be used to update those for this node. For

moderate-size instances, the tree is traversed in a depth-first manner so as to rapidly trim

branches and close the residual gap. For large-size instances where it is difficult to completely

close the gap, we traverse the tree with a breadth-first search in the hope to obtain a smaller

gap even without traversing the entire tree.

5.4 Alternative Formulations

5.4.1 A Continuous Approximation Approach for a Single Corri-

dor

In many cases, practitioners are faced with the problem of deploying sensors on a freeway

corridor rather than on a complex network (Bartin et al., 2007; Ban et al., 2009); i.e., the
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path set I degrades to a singleton. The proposed RNSPC model and all solution algorithms

are still applicable. However, with the problem scale increases, the computational efficiency

of discrete models in general decreases significantly. An alternative approach with superior

computational tractability is appealing for large scale instances. The single path structure

allows us to adopt a continuum approximation (CA) solution approach that has attractive

computational properties. The CA approach was originally proposed for the fixed-charge

facility location problem in the supply chain design context (Newell, 1971, 1973; Daganzo,

1984a,b; Daganzo and Newell, 1986; Ouyang and Daganzo, 2006). See Langevin et al. (1996)

and Daganzo (2005) for reviews. Recently, Cui et al. (2009) extended the CA method to

address the reliable fixed-charge location problem and compared its performance with its

discrete counterpart. So far, most existing CA models do not involve any explicit budget

constraint. Now we will adapt the CA framework to solve the single corridor RNSPC problem

that has an explicit budget constraint.

We consider a corridor between mileposts 0 and M . We first suppose that sensors can

be installed anywhere on [0,M ] and the sensor installed at any x ∈ [0,M ] has a failure

probability q(x) that satisfies q(0) = q(M) = 0. We allow q(x) to slowly vary along x.

Define A(x) : [0,M ] → R+ to approximate the spacing between two neighboring sensors

near x. Note that the inverse of A(x) indicates the sensor density in the neighborhood of x.

The estimation error of a segment of length a centered at x ∈ [0,M ] is now expressed as a

function e(x, a). We assume that e(x, a),∀x is a strongly super-linear (but sub-exponential)

function increasing with a, and its structure only slowly varies with x ∈ [0,M ].

A x( ) A x( ) A x( )

A x( )

Failure
probability

( )q x

x

q x( )

x0 M Original corridor

IHC

dx

dx

Figure 5.4: IHC for neighborhood x.

We convert sensor installation investment and disbenefits from surveillance errors along

the corridor into unified cost units. The key to the CA approach is that the unit-length cost

at each neighborhood of x is approximated by that of an infinite homogeneous corridor (IHC)

with a similar parameter configuration; see Figure 5.4. On this IHC, sensors are distributed

evenly with spacing A(x), the failure probability is equal to q(x) everywhere, and the error
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measure function is identical to e(x, a) everywhere. Figure 5.5 illustrates all (consolidated)

scenarios on the IHC whenever x is covered by a level r neighboring sensor pair. We see

that on the IHC there are r + 1 exclusive and transitionally symmetric scenarios with two

functioning neighboring sensors shifted from left to right. In each scenario, since the distance

between two functioning neighboring sensors is always (r+1)A(x), the error measure for the

segment inbetween is e(x, (r+ 1)A(x)) and then the unit-length error near x is e(x,(r+1)A(x))
(r+1)A(x)

.

Since each scenario has two functioning sensors and r failed sensors, the probability for this

scenario to occur shall be q(x)r(1 − q(x))2. Thus the total expected unit-length error for x

to be covered by a level r sensor pair is the summation across all the scenarios in Figure 5.5:

r+1∑
s=1

q(x)r(1− q(x))2 · e(x, (r + 1)A(x))

(r + 1)A(x)
=

1

A(x)
q(x)r(1− q(x))2e(x, (r + 1)A(x)). (5.24)

Then the total expected unit-length error for x to be covered by all levels of sensor pairs is

C(x,A(x)) :=
1

A(x)

∞∑
r=0

q(x)r(1− q(x))2e(x, (r + 1)A(x)),∀x ∈ [0,M ], (5.25)

which shall be a finite value since e(x, a) is sub-exponential.

x1
Scenario#

r-12

A x( )

1 rr-1r-2

1 rr-12

1

Functioning sensor

r+1

Failed sensor Sensor at either state

2

( 1) ( )r+ A x

r

Figure 5.5: Scenarios for level r neighboring sensor coverage on the IHC for x.

We use formula (5.25) to approximate the actual unit-length error in the neighborhood

of x of the original corridor. By integrating (5.25) for all neighborhoods x ∈ [0,M ], we

can approximate the total expected error on the original corridor. Then the problem of

determining the optimal sensor locations reduces to the minimization of the total expected
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error, i.e.

min
A(x)>0

∫
x∈[0,M ]

C(x,A(x))dx, (5.26a)

subject to the budget constraint∫
x∈[0,M ]

A(x)−1dx ≤ N + 1, ∀x ∈ [0,M ], (5.26b)

Solution Technique

Model (5.26) is a simple constraint nonlinear optimization problem which can be solved by

Lagrangian relaxation. Relaxing constraint (5.26b) and adding it to the objective (5.25)

with a scalar multiplier ω, (5.26) becomes

max
ω≥0

min
A(x)>0

∫
x∈[0,M ]

Ĉ(x,A(x), ω)dx, (5.27a)

where

Ĉ(x,A(x), ω) := −ω(N + 1)

M
+

ω

A(x)
+ C(x,A(x)), ∀x ∈ [0,M ], (5.27b)

The relaxed model (5.27) has the same solution as the original model (5.26), as stated in

the following proposition.

Proposition 10. The optimal solutions to models (5.26) and (5.27) are always identical.

Proof. Proof: Since (5.27) is a Lagrangian relaxation, it always bounds (5.26) from below.

Since e(x, a) is a strongly super-linear and increasing function over a, the optimal A(x) for

(5.27) is finite and increases with ω continuously from 0 to ∞. This implies
∫

x∈[0,M ]

A(x)−1dx

also increases with ω continuously from 0 to ∞. Therefore exists a feasible ω value in (0,∞)

that corresponds an optimal solution with
∫

x∈[0,M ]

A(x)−1dx = N +1; i.e., the complementary

condition holds. Hence, optimality gap is zero; i.e., the optimal solutions from (5.26) and

(5.27) are identical. This completes the proof.

Model (5.27) can be solved iteratively. Note that the case with ω = 0 is trivial since it

yields an obviously suboptimal objective of ∞. For ω > 0, minimizing (5.27a) is equivalent

91



to minimizing its integrand at each x independently, i.e., minA(x) Ĉ(x,A(x), ω), ∀x ∈ [0,M ].

Function Ĉ(x,A(x), ω) is usually a unimodal function over A(x); i.e., Ĉ(x,A(x), ω) only has

one stationary point over A(x) ∈ (0,∞) and that point is the optimal solution. This allows

us to use a bisecting search to find the optimum. In some special cases (e.g., Ĉ(x,A(x), ω)

is an economic order quantity type function), we can even solve this optimum analytically.

Then given ω, (5.27) is solved by numerically integrating the solutions of Ĉ(x,A(x), ω) across

all x ∈ [0,M ]. By examining whether this solution violates constraint (5.26b) we can obtain

the subgradient direction and improve ω accordingly. Starting with an arbitrary positive ω

value c, we repeatedly search for the optimal ω in a similar bisecting manner. For each x,

this CA method requires only a squared logarithmic number of iterations.

The solution to (5.26) takes continuous input and yields continuous optimal sensor density

at each neighborhood. In many real-world sensor location design problems, only discrete

input is available and the expected output must be a discrete sensor location design that can

be practically implemented. The interpolation based method proposed by Peng and Ouyang

(2010) can be used to generate continuous input from discrete data. Suppose that the

locations in J are {0, 1, · · · |J |−1} ordered from upstream to downstream and each location

j ∈ J is at milepost Mj. Function q(x), for example, can be obtained by interpolation based

on {qj} (i.e., q(x) =
Mj+1−x

Mj+1−Mj
qj +

x−Mj

Mj−1−Mj
qj+1,∀Mj ≤ x < Mj+1, j ∈ J ). The specification

of function e(x, a) will be determined by the values of {ejk}d. One possible method is to let

e(
Mj+Mk

2
,Mk −Mj) = ejk,∀0 ≤ j < k ≤ |J |− 1, and then interpolate function e(x, a), ∀x, a.

Once we solve the CA problem (5.26), the discretization method in Daganzo (2005) can be

used to convert its continuous solution to a discrete sensor location design. If the candidate

locations are a finite set of discrete points, sensor installation locations in the discrete solution

are often rounded to their closest candidate locations.

Lower Bound Analysis

Under certain conditions, the solution to model (5.26) is a lower bound of that to the optimal

discrete sensor deployment, and thus can help evaluate the residual gap of this discrete

solution. When sensor failure probability is negligible, the relationship between the CA

solution to (5.26) and the optimal discrete solution is discussed in the following proposition.

Proposition 11. For the deterministic version (i.e., q(x) = 0,∀x ∈ [0,M ]) of the single

corridor RNSPC problem where sensors can be installed anywhere along the corridor, if

cBased on the fact that the optimal solution of (5.26) always activates constraint (5.26b), an initial ω
can be roughly estimated from the magnitudes of q(x) and e(x, a) values.

dWe omit subscript i since I is a singleton.
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e(x, a), ∀x ∈ [0,M ] is concave over x for any given a, the optimal objective value of (5.26a)

is a lower bound of the optimal discrete solution.

Proof. Proof: Suppose that in the optimal discrete solution, sensors are located at locations

x∗
1 < x∗

2 < · · · < x∗
N , and let x∗

0 = 0 and x∗
N+1 = M be the imaginary sensor locations. Then

the objective value of discrete solution is

N∑
n=0

e

(
x∗
n + x∗

n+1

2
, x∗

n+1 − x∗
n

)
. (5.28)

We construct a feasible CA solution A(x) = x∗
n+1 − x∗

n,∀x ∈ [x∗
nx

∗
n+1), n = 0, · · · , N . Then,

(5.26a) ≤
∫ M

0

e(x,A(x))

A(x)
dx =

N∑
n=0

∫ x∗
n+1

x∗
n

e(x, x∗
n+1 − x∗

n)

x∗
n+1 − x∗

n

dx ≤ (5.28).

The first inequality holds because the CA optimal objective is no larger than that for the

feasible solution {A(x)}. The second inequality comes from the concavity of e(x, a) over x

and the Jensen’s inequality. This completes the proof.

Proposition 11 can be easily adapted for problems where candidate sensor locations are

a finite set of discrete points on the corridor, as stated below,

Corollary 1. For the deterministic version (i.e., qj = 0, ∀j = 0, 1, · · · , |J |−1) of the single

corridor RNSPC problem where sensors can only be installed at a finite number of candidate

locations 0, 1, · · · |J | − 1 (ordered from upstream to downstream), if e(x, a) is constructed in

a way such that
∫Mk

Mj

e(x,Mk−Mj)

Mk−Mj
dx ≥ ejk,∀0 ≤ j < k ≤ |J | − 1, the optimal objective value

of (5.26a) is a lower bound of the optimal discrete solution.

Note that the total error under zero sensor failure probability shall be always no larger

than that under positive probability (due to the loss of estimation accuracy from possible

sensor failures). Then the CA solution for the deterministic case will also be a lower bound

of the optimal discrete solution under non-zero sensor failure probabilities, as summarized

below,

Corollary 2. When the condition in Proposition 11 (or Corollary 1) holds, the optimal

objective value of (5.26a) for a deterministic continuous problem (i.e., when q(x) = 0,∀x ∈
[0,M ]) is a lower bound of that for the corresponding discrete reliable problem (i.e. when

qj ≥ 0,∀j = 0, 1, · · · , |J | − 1).
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5.4.2 Fixed Charge Location Models

In some applications, rather than imposing an explicit budget constraint, the objective is to

minimize the overall disbenifits from estimation errors and sensor infrastructure investment.

These problems can be modeled by a slight variation of RNSPC where the budget constraint

(5.8b) is removed and the facility construction cost is added to objective (5.8a). Assume

installing a sensor at location j ∈ J̄ costs the same as fj units of estimation error. Then we

can formulate this Reliable Fixed Charge Neighboring Sensor Location model (RFCNSL) as

follows.

(RFCNSL) min
X,Y,P

∑
i∈I

∑
j∈Jid−

∑
k∈Jij+

Rijk∑
r=0

PijkrYijkreijk +
∑
j∈J

fjXj (5.29)

subject to (5.8c)-(5.8k).

The structure and complexity of the model are largely unchanged and all the solution

techniques proposed in Section 3 can be easily adapted for this RFCNSL problem.

For the single corridor RFCNSL problem, we can also apply the CA approach in a similar

manner. We use all the continuous settings in Section 5.4.1, and let f(x) denote a slowly-

varying installation cost function at location x ∈ [0,M ]. The CA version of the single

corridor RFCNSL model can be written as follows.

min
A(x)>0

∫
x∈[0,M ]

[
C(x,A(x)) +

f(x)

A(x)

]
dx, (5.30)

where f(x)
A(x)

represents the facility investment cost per unit distance and the integrand is the

total cost per unit length in the neighborhood of x. We can obtain the optimal solution to

(5.30) by independently minimizing the integrand at each x with a similar bisecting method.

Similar lower bound analysis can be conducted to show the relationship between the CA

solution and the discrete solution.

5.5 Case Studies

This section presents several numerical examples of the RNSPC model. All solution algo-

rithms are implemented on a PC with 2.0 GHz CPU and 2 GB memory, and we set the

solution time limit to be 1800 seconds. In the the Sioux-Falls network example, we will test

all the proposed algorithms under a variety of effectiveness measures and parameter settings

in order to draw insights on how these settings affect the optimal objective value and sensor

deployment. Then we will solve a Chicago intermodal network example. We also test the
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proposed CA approach on a hypothetical highway corridor and compare its performance

with those of the discrete algorithms.

The Sioux-Falls network is shown in Figure 4.2. Again, |J | = 24, |I| = 528. Assume too

that the sensor at a vertex can detect all passing traffic from all directions. Based on passing

traffic volumes, we group the 24 vertices into three sets (as marked with different colors),

J h = {8, 10, 11, 15, 16, 17, 19, 22} with the heaviest traffic, J l = {1, 2, 3, 7, 9, 13, 20, 23} with

the lightest traffic and Jm = {4, 5, 6, 12, 14, 17, 19, 24} with medium traffic. Assume that

sensors installed at locations with heavier traffic are subject to higher failure probabilities.

We define sensor failure probabilities as follows

qj =


q̄ − q̂ if j ∈ J l

q̄ if j ∈ Jm

q̄ + q̂ if j ∈ J h

(5.31)

where scalar q̄ is the average probability and scalar q̂ indicates spatial variation.

For the FV measure (5.2), we set bci = aiud, ∀i ∈ I; for the VM measure (5.3), we set

bti = 1,∀i ∈ I. Since no relevant empirical data are available to specify the exact SER

measure, we assume that it follows a simple convex form

eiuj = 2(aiuj)
β, eijd = 2(aijd)

β, eiud = 4(aijd)
β, and eijk = (aijk)

β,∀i ∈ I, j = J̄i, k ∈ Jijd

(5.32)

where scalar β > 1.

Table 5.2 compares the results from different algorithms under the three measures when

q̄ = 0.15, q̂ = 0, N = 10; β = 2. The results include solution objective values, residual

gaps (i.e., the percentage difference between the feasible solution and the estimated lower

bounde), the true optimality gap (i.e., the percentage difference from the true optimum) and

solution times. We see that only the LR algorithm can solve the instances for all measures

to optimality. The greedy and interchange (with η = 2) algorithms can obtain solutions

very fast. Although these two heuristics cannot provide lower bounds by themselves, their

solutions (especially those from the interchange algorithm) are actually already very close to

the true optima. This suggests that these two algorithms can be efficient tools for engineering

practice. In general, CPLEX can neither provide good estimates of the lower bounds nor yield

good near-optimal solutions. Compared with CPLEX, the linear programming algorithm can

yield comparable feasible solutions in shorter times, but the lower bounds from the linear

relaxation are far from optima. Overall, the solution quality is consistent across different

eWe do not use the estimated lower bound as the denominator since it may be negative in some extreme
cases.
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measures. Thus we will only focus on the SER measure in the following analysis.

Table 5.2: Result for different error measures.

Algorithm Measure Objective
Residual
gap

True optimal-
ity gap

Solution
time (sec)

LR based
FV 168881 0 % 0.0 % 192
VM 1650870 0 % 0.0 % 74
SER 34521100 0 % 0.0 % 60

Greedy
FV 178041 - 5.1 % 1.73
VM 1650870 - 0.0 % 0.04
SER 34985300 - 1.3 % 0.05

Interchange
FV 171537 - 1.5 % 4
VM 1650870 - 0.0 % 4
SER 34581700 - 0.2 % 5

CPLEX
FV 225888 167 % 25.2 % 1800
VM 1650870 27 % 0 % 1800
SER 37603900 35 % 8.2 % 1800

LP based
FV 208295 1332 % 18.9 % 71
VM 1731920 78 % 4.7 % 60
SER 37006100 86 % 6.7 % 63

Table 5.3 shows the solutions with different parameter settings under the SER measure.

We see that the algorithm performances are consistent with those in Table 5.2. The LR

based algorithm solves the instances with q̂ = 0 (i.e., spatially homogeneous probabilities)

more efficiently that those with q̂ > 0 (i.e., spatially heterogeneous probabilities), which

is probably due to the approximation gap in the ARRNSPC model. The objective value

significantly increases as q̄ gets higher while it is somehow less sensitive to the value of q̂. A

larger installation number N yields a smaller objective value, which is intuitive since more

sensors will generally bring in more benefit.

Figures 5.6 and 5.7 show the impacts of N and q̄ on the SER measure under different

β values. We see that the total error decreases with the installation number while the

decreasing trend flattens out. The total error is more sensitive to the value of N for a larger

β; i.e., the SER measure with larger convexity tends to have more improvement potential

from additional sensor installations. While a larger β implies a higher sensitivity as well, the

total error increases almost linearly with q̄ ∈ [0, 0.4].

Figure 5.8 shows the optimal sensor deployment for different sensor failure probabilitie.

The sensor installation locations are marked by circles. By comparing Figures 5.8(a) and

5.8(b), we see that sensors tend to cluster and back up each other when they are subject

to failure. By comparing Figure 5.8(b) and Figure 5.8(c), we see that under a higher q̂ the
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Table 5.3: Algorithm comparison (under the SER measure with β = 2 ).

Algorithm q̄ q̂ N Objective
Residual
gap

True optimal-
ity gap

Solution
time (sec)

LR based

0 0 6 4.27E+07 0 % 0.0 % 31
0.15 0 6 5.37E+07 0 % 0.0 % 46
0.15 0.05 6 5.60E+07 0 % 0.0 % 1040
0 0 8 3.15E+07 0 % 0.0 % 8
0.15 0 8 4.16E+07 0 % 0.0 % 41
0.15 0.05 8 4.30E+07 0 % 0.0 % 1585

Greedy

0 0 6 4.37E+07 - 2.3 % 0.03
0.15 0 6 5.40E+07 - 0.5 % 0.03
0.15 0.05 6 5.64E+07 - 0.6 % 0.03
0 0 8 3.25E+07 - 3.1 % 0.04
0.15 0 8 4.23E+07 - 1.5 % 0.04
0.15 0.05 8 4.41E+07 - 2.5 % 0.04

Interchange

0 0 6 4.27E+07 - 0.0 % 2
0.15 0 6 5.37E+07 - 0.0 % 2
0.15 0.05 6 5.60E+07 - 0.0 % 2
0 0 8 3.15E+07 - 0.0 % 3
0.15 0 8 4.16E+07 - 0.0 % 3
0.15 0.05 8 4.30E+07 - 0.0 % 3

CPLEX

0 0 6 4.27E+07 0 % 0.0 % 39
0.15 0 6 5.51E+07 23 % 2.4 % 1810
0.15 0.05 6 6.02E+07 35 % 7.0 % 1801
0 0 8 3.15E+07 0 % 0.0 % 34
0.15 0 8 4.55E+07 37 % 8.6 % 1801
0.15 0.05 8 4.37E+07 33 % 1.7 % 1801

LP based

0 0 6 4.58E+07 7 % 6.7 % 50
0.15 0 6 5.56E+07 73 % 3.4 % 53
0.15 0.05 6 5.81E+07 76 % 3.5 % 54
0 0 8 3.15E+07 0 % 0.0 % 49
0.15 0 8 4.21E+07 81 % 1.1 % 52
0.15 0.05 8 4.42E+07 83 % 2.7 % 44
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Figure 5.6: Relationship between the total error and N (q̂ = 0, under the SER measure).
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Figure 5.7: Relationship between the total error and q̄ (q̂ = 0, under the SER measure).
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sensor at vertex 8 has been relocated to vertex 6 where the failure probability is smaller.

This implies that optimal sensor deployment seeks more reliable sensor installation locations

when failure probabilities vary across space.
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Figure 5.8: Optimal sensor deployment for N = 6 installations under the SER measure with
β = 2: (a) q̄ = q̂ = 0; (b) q̄ = 0.3, q̂ = 0; (c) q̄ = 0.3, q̂ = 0.05.

5.5.1 Chicago Intermodal Network

Figure 4.5 shows the geometry of the Chicago interstate highway network, which contains 21

highway junctions and 17 railroad terminals (i.e., the railroad yards for intermodal freights).

Highway traffic comes in and goes out of the network through 8 access points. Since most

sensor technologies have a limited effectiveness range, a sensor installation at a highway

junction may not be able to inspect passing traffic from all directions. Thus, each highway

junction is split into multiple candidate locations (Sheffi, 1985) such that an installation

at any candidate location can inspect all passing flows. The final network representation

includes 89 candidate locations and 363 (directed) connecting links. The 2002 intermodal

freight trafficf originated from or destined to Chicago is grouped into 1046 O-D paths on

this network based on population distribution. Due to lack of detailed information, we again

assume that all O-D flows follow their shortest distance paths.

We test different algorithms with the SER measure (5.32). Let {qj} follow (5.31) where

sets J l, Jm and J h are specified similarly based on the passing traffic volumes; we have

|J l| = |Jm| = 30 and |J h| = 29. Due to the increased problem size, CPLEX ran out of

fData source: Bureau of Transportation Statistics, http://www.bts.gov/.
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memory even for the linear relaxed problem (LRNSPC). The LR based algorithm always

yields a near-optimal solution with a reasonable residual gap (≤ 15%) if q̂ is not too large

(e.g., ≤ 25%q̄). The solutions from the greedy and interchange algorithms, though not as

good, are close to those from the LR based algorithm. From our experiments, the differences

between these near-optimal solutions and the true optima are often much smaller than the

residual gaps. Thus these solutions are suitable for engineering practice.

Figures 5.9 and 5.10 show again that the objective value is more sensitive to changes of

N and q̄ under the SER measure when β is larger. The marginal change of the objective over

N gradually diminishes while that over q remains almost the same ∀q̄ ∈ [0, 0.4]. Figure 5.11

illustrates how q̄ and q̂ affect the optimal sensor deployment. Again, a higher q̄ generally

leads to higher sensor concentration (to back up locations with heavier traffic) while a higher

q̂ forces sensors to seek more reliable substitute locations (as highlighted in Figures 5.11(b)

and 5.11(c)).
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Figure 5.9: Relationship between the total error and N (q̂ = 0, under the SER measure).

5.5.2 Single Corridor

Consider a hypothetical single corridor [0,M ] where M = 27. Since the path set I is a

singleton, we omit subscript i in the notation. Let candidate locations be J = {0, 1, · · · ,M}
with u = 0, d = M and they are evenly distributed across the corridor; i.e., location j’s

mileage equals j. Define the a SER measure as ejk = c(k+j
2
)(k− j)2, ∀0 ≤ j < k ≤ M where

function c(x) is either a constant (e.g., c(x) = 1, ∀x) or slowly varying over x ∈ [0,M ] (e.g.,

c(x) = 0.5 + h(x), ∀x where h(x) = 1 − |x−M/2|
M/2

). Note that if the error measure {ejk} is

weighted by the traffic volume, the variation of c(x) can capture the traffic volume change
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Figure 5.10: Relationship between the total error and q (q̂ = 0, under the SER measure).

(a) (b) (c)

Figure 5.11: Optimal sensor deployment for N = 10 installations under the SER measure
with β = 2: (a)q̄ = q̂ = 0; (b)q̄ = 0.3, q̂ = 0; (c)q̄ = 0.3, q̂ = 0.05.
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along the corridor. Similarly, let qj,∀j ∈ J̄ be either a constant (e.g., 0.2) or a spatially

varying value (e.g., qj = 0.4h(j)). Let the installation budget be N = 8. In the CA model,

define e(x, a) = c(x)a2 and q(x) as a piecewise linear function by interpolating qj,∀j ∈ J ,

i.e., q(x) = (⌊x+ 1⌋ − x)q⌊x⌋ + (x− ⌊x⌋)q⌊x+1⌋.

Table 5.4 shows the test results for both the LR based algorithm and the CA approach

for different failure probabilities and error measures. The LR based algorithm can solve

instances # 1 and # 3 (where all qj values are identical) to the exact optima. For instances #

2 and # 4 where the spatial heterogeneity of failure probabilities is significant, the LR based

algorithm can not estimate lower bounds as effectively (the solutions end up with residual

gaps around 30%). For all these instances, the CA appoach always very quickly yields

approximate objective values that are very close to those from the LR based algorithm.

These continuous solutions from the CA approach are discretized into sensor installation

locations among J̄ . Interestingly, these discrete solutions are almost identical to those from

the LR based algorithm even under the spatial heterogeneity from sensor failure probabilities

(instance # 2), error measures (instance # 3) or both of them (instance # 4). This suggests

that the CA approach is able to not only efficiently estimate the optimal objective value but

also yield very good discrete location design.

Table 5.4: Result summary.
Algorithm # c(x) q(x) Objective Difference from

the LR solution
Solution
time (sec)

LR based

1 1 0.2 115.875 - 945
2 1 0.4h(x) 123.456 - 1800
3 0.5 + h(x) 0.2 114.929 - 675
4 0.5 + h(x) 0.4h(x) 127.372 - 1800

CA estimate
(5.26a)

1 1 0.2 119.787 3 % ≈ 0
2 1 0.4h(x) 123.947 ≈ 0 % ≈ 0
3 0.5 + h(x) 0.2 117.623 2 % ≈ 0
4 0.5 + h(x) 0.4h(x) 125.625 -1 % ≈ 0

Discrete CA
Solution

1 1 0.2 115.875 ≈ 0 % ≈ 0
2 1 0.4h(x) 123.549 ≈ 0 % ≈ 0
3 0.5 + h(x) 0.2 115.261 ≈ 0 % ≈ 0
4 0.5 + h(x) 0.4h(x) 127.974 ≈ 0 % ≈ 0

Figure 5.12 compares the discrete deployments from both the LR based algorithm and

the CA approach. We see that in instance # 1 (with almost homogeneous space), the

deployments from the two methods are exactly the same. In other three instances, their

deployments are also consistent: Sensors are more concentrated in areas with larger c(x)

and q(x).
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Figure 5.12: Optimal sensor deployment for solutions in Table 5.4.

The advantage of the CA model over its discrete counterparts becomes more signifi-

cant as the problem size continues increasing. Table 5.5 shows the test results for different

instance sizes, where c(x) = 0.5 + h(x), q(x) = 0.4h(x), M ∈ {27, 54, 81, 108, 135} and

N ∈ {8, 17, 26, 35, 44}. We see that with the instance size increases, the LR residual gap

keeps increasing, which indicates that the solution quality from the discrete model deteri-

orates with the problem size. While the CA solutions obtained within negligible solution

times are consistently better than those from LR.

Table 5.5: Sensitivity of solution quality over the problem instance size.
Algorithm # M N Objective LR resid-

ual gap
Difference
from the LR
solution

Solution
time (sec)

LR based

1 27 8 127.372 41 % - 1800
2 54 17 259.345 57 % - 1800
3 81 26 383.392 80 % - 1800
4 108 35 518.485 93 % - 1800
5 135 44 643.298 98 % - 1800

Discrete CA
Solution

1 27 8 127.974 - ≈ 0 % ≈ 0
2 54 17 253.953 - −2 % ≈ 0
3 81 26 380.37 - −1 % ≈ 0
4 108 35 506.846 - −2 % ≈ 0
5 135 44 636.008 - −1 % ≈ 0
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5.6 List of Symbols

A(x): Spacing between two neighboring sensors

aijk: DisList of variable definitionsto k along path i

bci : Benefit coefficient for flow coverage on path i

bti: Benefit coefficient for path coverage on path i

A(x): Spacing between two neighboring sensors

aijk: Distance from j to k along path i

bci : Benefit coefficient for flow coverage on path i

bti: Benefit coefficient for path coverage on path i

B(Q): Surveillance benefit from sensor installations at Q
Bi(Q): Benefit on path i from sensor installations at Q
C(x,A(x)): Unit-length continuum approximation cost

Ĉ(x,A(x), ω): Unit-length continuum approximation cost after Lagrangian relaxation

d: Downstream virtual location

e(x, a): Estimation error of a segment of length a centered at x ∈ [0,M ]

eijk: State estimation error measure for the segment on path i in between locations

j ∈ Jid− and k ∈ Jij+

fj: Sensor installation cost at location j

F (X′): Auxiliary function for the linear relaxation based algorithm

I: Set of O-D paths on the network

Ij: Set of paths that pass the same location j ∈ J
vi: The traffic volume on path i ∈ I
J : J̄

∪
{u, d} =

∪
∀i Ji

J h: Location set with a high failure probability

Jm: Location set with a medium failure probability

J l: Location set with a low failure probability

Jij+: Set of candidate locations downstream to j on path i

Jij−: Set of candidate locations upstream to j on path i

Jijk: Jij+\ (Jik+

∪
{k})

J̄ : Set of all candidate locations

Ji: J̄i

∪
{u, d}

J̄i: Set of candidate locations on path i ∈ I
N : Maximum number of facilities that the budget allows to build

M : Ending mileage on a corridor

104



Mi: Ending mileage on path i ∈ I
Mij: Mileage of location j ∈ Ji on path i ∈ I
P = {Pijkr}: Probability that sensors at j and k are paired up at level r on path i

q(x): Sensor failure probability at x

qj: Sensor failure probability at location j

q̄: Average sensor failure probability

q̄: Scalar to capture sensor failure probability variation

Q: Set of locations

rijd: Level for j to pair up d

Rij: maxk∈Jij+
Rijk = min{|Jij+| − 1, N}

Rijk: maximum possible pairing-up level for two sensors at j ∈ Jid− and k ∈ Jij+

Si: Number of sensors installed on path i ∈ I
w(x): Ground-truth traffic state at x

ŵ(x): Online estimation of w(x) with sensor data

w̄(x): Offline estimation of w(x)

u: Upstream virtual location

X = {Xj}j∈J : Xj = 1 (Xj = 0) if a sensor is (not) installed at j

XG: Greedy algorithm solution

XI : Interchange algorithm solution

XL: Linear relaxation based algorithm solution

XR: Rounded integral solution

Y = {Yijkr}: Yijkr = 1 (Yijkr = 0) if sensors at j and k are (not) paired up at level r on

path i

zLB: Objective value of the best-known feasible solution in LR

∆(λ, γ): Lagrangian relaxation objective

∆A(λ, γ): Approximated Lagrangian relaxation objective

Φ(X): Total error for sensor deployment X

ΦL(X): Linear relaxed objective for sensor deployment X

γ = {γikr}: Lagrangian multipliers for the Lagrangian relaxation algorithm

λ = {λijk}: Lagrangian multipliers for the Lagrangian relaxation algorithm

µm: Control scalar in the Lagrangian relaxation algorithm

tm: Step size in the Lagrangian relaxation algorithm

ω: Lagrangian multiplier for continuum approximation
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