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Abstract

We characterize uniformly perfect, complete, doubling metric spaces which embed bi-Lipschitzly into Eu-

clidean space. Our result applies in particular to spaces of Grushin type equipped with Carnot-Carathéodory

distance. Hence we obtain the first example of a sub-Riemannian manifold admitting such a bi-Lipschitz

embedding. Our techniques involve a passage from local to global information, building on work of Christ

and McShane. A new feature of our proof is the verification of the co-Lipschitz condition. This verification

splits into a large scale case and a local case. These cases are distinguished by a relative distance map which

is associated to a Whitey-type decomposition of an open subset Ω of the space. We prove that if the Whitney

cubes embed uniformly bi-Lipschitzly into a fixed Euclidean space, and if the complement of Ω also embeds,

then so does the full space.
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Chapter 1

Introduction

A map between two metric spaces is bi-Lipschitz if distances in the image and source should not exceed

distances in the source and image respectively by more than a fixed, universal multiplicative constant. More

precisely, a map f between metric spaces (X, dX) and (Y, dY ) is called bi-Lipschitz if there exists an L ≥ 1

such that

1

L
dX(x, y) ≤ dY (f(x), f(y)) ≤ LdX(x, y)

for all x, y ∈ X.

Bi-Lipschitz maps play a role in computer science as well as in many branches of mathematics. Solving

the Sparsest cut problem approximately is important in the theory of approximation algorithms. The best

known algorithm for this question is related to the Goemans-Linial conjecture. That is, every metric space

(X, d) such that (X,
√
d) is isometric to a subset of l2 can be bi-Lipschitz embedded into L1 [11, 21]. Khot

and Vishnoi [17] proved that the Goemans-Linial conjecture is not true. Indeed they constructed arbitrarily

large metric spaces of negative type whose bi-Lipschitz constant for embeddings into L1 tends to infinity.

Recently, Cheeger and Kleiner [8] together with Lee and Naor [28] gave another counterexample to the

Goemans-Linial conjecture which is based on classical analysis and a well understood metric space. They

showed that the Heisenberg group admits a metric which is of negative type, yet does not admit a bi-Lipschitz

embedding into L1.

If two metric spaces are bi-Lipschitz equivalent then they have approximately the same behavior in terms

of length, Hausdorff measure, topology and so on. Moreover, bi-Lipschitz maps are related to problems of

differentiability by Rademacher’s theorem. Lipschitz maps form the right substitute for smooth maps in the

theory of analysis on metric spaces. We would like to know for which metric spaces the resulting analysis

is genuinely new and for which ones the analysis can be seen as just classical analysis on a suitable subset

of a Banach space. This leads to the question to characterize metric spaces that embed bi-Lipschitzly into

classical Banach spaces. However, the characterization of metric spaces which are bi-Lipschitz equivalent to

Rn or even of metric spaces which are bi-Lipschitzly embeddable into Rn remain difficult open problems in

1



Geometric Analysis.

Firstly, we state some known results concerning the question of which metric spaces are bi-Lipschitz

equivalent to Euclidean space. It is well known that a metric space (X, d) is bi-Lipschitz equivalent to R if

and only if it is of bounded turning and 1-Ahlfors regular. However, a bi-Lipschitz characterization of Rn is

still unknown for n ≥ 2. In the higher dimensional case, we might consider the condition of Linearly local

connectivity (LLC) which is an analogue of the bounded turning condition. However, Ahlfors n-regularity

and LLC are not sufficient conditions due to results of Semmes and Laakso. Indeed, Semmes [32] constructed

a 3-regular set E ⊂ R4, which is the quasiconformal image of the hyperplane, such that (E, d) is not bi-

Lipschitz equivalent to R3. Laakso [19] constructed a metric δω on R2 deformed by a strong A∞-weight ω

such that (R2, δω) is Ahlfors 2-regular and satisfies the LLC condition, yet admits no bi-Lipschitz embedding

into any Euclidean space. Therefore, in particular, it is not bi-Lipschitz equivalent to R2.

Bonk, Heinonen, and Saksman [4] showed that the bi-Lipschitz classification problem for Euclidean space

is closely related to the quasiconformal Jacobian problem, asked by David and Semmes in 1990 [10]. That is,

which locally integrable nonnegative functions ω can arise, up to a bounded multiplicative error, as Jacobian

determinants Jf(x) = det(Df(x)) of quasiconformal mappings f : Rn → Rn where n ≥ 2? Indeed, they

showed that the two problems are equivalent in case n = 2 and the second question is stronger than the first

one for any n > 2. However, it is still difficult to answer the quasiconformal Jacobian problem.

Now we come to the weaker question: which metric spaces embed bi-Lipschitzly into Euclidean space. We

state progress on this problem, beginning with sufficient conditions. Assouad gave a partial answer: every

snowflaked version of a doubling metric space embeds bi-Lipschitzly into some Euclidean space [1]. Even

though the theorem of Assouad completely answers the question which metric spaces are quasisymmetrically

embeddable into Euclidean space, this result does not guarantee bi-Lipschitz embeddability of the original

metric space. In particular, the Heisenberg group, which is a doubling metric space, admits no bi-Lipschitz

embedding into Euclidean space. Luosto [22] together with Luukkainen and Movahedi-Lankarani [23] gave a

precise relationship between Assouad dimension and dimension of receiving Euclidean space for ultra metric

spaces: an ultrametric space is bi-Lipschitzly embeddable into Rn if and only if its Assouad dimension is

less than n.

Semmes [31] showed that Rn equipped with any metric δω deformed by A1-weight ω admits a bi-Lipschitz

embedding into some RN . However, (Rn, δω) may be not bi-Lipschitzly equivalent to Rn. Bishop [3] con-

structed a Sierpinski carpet E ⊂ R2 and an A1-weight ω which blows up on E. In this construction, he

showed that w is not comparable to the Jacobian of any quasiconformal mapping.

We now turn to necessary conditions and counterexamples related to bi-Lipschitz embeddability. Pansu
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[29] showed that a version of Rademacher’s differentiation theorem holds for Lipschitz maps on Carnot

groups: every Lipschitz map between Carnot groups is almost everywhere differentiable in some sense and

its differential is a Lie group homomorphism. Semmes observed that Pansu’s result implies that nonabelian

Carnot groups admit no bi-Lipschitz embedding into Euclidean space (Theorem 7.1 in [32]). Cheeger proved

a remarkable extension of Rademacher’s theorem for doubling p-Poincaré spaces and gave a corresponding

nonembedding theorem (see Section 10 and Theorem 14.3 in [5]).

By Cheeger’s theorem, we can deduce nonembeddability of certain regular sub-Riemannian manifolds.

However, his result does not apply to singular sub-Riemannian manifolds. This thesis is motivated by the

question whether or not the Grushin plane embeds bi-Lipschitzly into Euclidean space. While the Grushin

plane is one of the simplest singular sub-Riemannian manifold, the previous known nonembedding theorems

do not apply. We will explain further in Chapter 4.

Now we come to the main result of this thesis. We will characterize uniformly perfect complete metric

spaces which admit a bi-Lipschitz embedding in terms of uniform local bi-Lipschitz embeddability. Indeed,

uniform perfectness and existence of a doubling measure yield existence of a type of Whitney decomposition.

Furthermore, uniform local bi-Lipschitz embeddability of Christ cubes associated with such a decomposition

implies global bi-Lipschitz embeddability.

Theorem 1.0.1. A uniformly perfect complete metric space (X, d) admits a bi-Lipschitz embedding into

some Euclidean space if and only if the following conditions hold:

(1) it supports a doubling measure µ,

(2) there exists a closed subset Y of X which admits a bi-Lipschitz embedding into some RM1 ,

(3) Ω = X \ Y admits uniformly Christ-local bi-Lipschitz embeddings into some RM2 .

The bi-Lipschitz constant and dimension of receiving Euclidean space depend on the data of the metric space

X, the doubling constant of µ, M1, M2 and the bi-Lipschitz constants in conditions (2) and (3).

The structure of this thesis follows. In the second chapter, we shall see some basic propositions for Lips-

chitz maps, Lipschitz embedding, and extension theorems. We will review Michael Christ’s construction of a

system of dyadic cubes [9] in doubling metric spaces. We will next construct a Whitney-type decomposition

which we call a Christ-Whitney decomposition (Lemma 2.4.2) for a uniformly perfect space supporting a

doubling measure. We will also introduce some definitions and lemmas which set the stage for the main

theorem.

In the following chapter, we shall characterize bi-Lipschitz embeddable metric spaces by proving Theorem

1.0.1. To this end, we first apply McShane’s extension theorem to extend a Lipschitz map on Y to X.
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We introduce the Whitney distance map dW (Definition 2.4.12). It is the key tool for construction of a

co-Lipschitz map. We break the Christ-Whitney decomposition into two parts using the Whitney distance

map. After some basic preliminaries, we will construct a W-local co-Lipschitz and W-large scale co-Lipschitz

map on these parts (Lemma 3.2.1 and Lemma 3.3.1).

In Chapter 4, we discuss our main application of Theorem 1.0.1 to the bi-Lipschitz embedding question for

sub-Riemannian manifolds. We first recall the Rademacher-type theorems of Pansu and Cheeger. Then, we

discuss their applications to the problem of bi-Lipschitz embedding. In contrast, as an application of Theorem

1.0.1 (Corollary 4.3.5) we will prove that spaces of Grushin type equipped with Carnot-Carathéodory distance

embed bi-Lipschitzly into Euclidean space. These are the first examples of sub-Riemannian manifolds that

embed bi-Lipschitzly into Euclidean space. In the last chapter, we will raise some remarks and questions

arising from this thesis.
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Chapter 2

Preliminaries

In Section 2.1 of this chapter we start with basic definitions and concepts. In Section 2.2 and Section

2.3 we state some well known Lipschitz embedding and extension theorems that will be used in our main

theorem. In the final section of this chapter we introduce some definitions and lemmas. They will set the

stage for Proposition 3.1.2 in Chapter 3.

2.1 Background on Metric Spaces

For a metric space X = (X, d), we write diam(A) (or diamd(A) in case we need to mention the metric)

for the diameter of a set A ⊂ X, dE for the Euclidean metric, and dist(A,B) for the distance between

nonempty sets A, B ⊂ X. We abbreviate dist(A, x) = dist(A, {x}) for a set A ⊂ X and x ∈ X. We denote

by A the closure of A and by B(x, r) (Bo(x, r)) a closed ball (open ball) in X with radius r and center x.

As customary, we let C, c, · · · denote finite positive constants. These constants may depend on auxiliary

data a, b, etc ; we indicate this by writing C(a, b) or c(a, b). We also write a . b if there is a constant C

such that a ≤ C b.

Definition 2.1.1. A map f : X → Y is an embedding if it is a homeomorphism onto its image. An

embedding f is L-bi-Lipschitz, L ≥ 1, if

1

L
dX(x, y) ≤ dY (f(x), f(y)) ≤ LdX(x, y) (2.1.1)

whenever x, y ∈ X. In the case L = 1, we call f an isometric embedding.

In other words, f and f−1 are L-Lipschitz. We say f is co-Lipschitz if f−1 is Lipschitz. We call any

constant L satisfying equation (2.1.1) a bi-Lipschitz constant for f .

Definition 2.1.2. An embedding f : X → Y is called quasisymmetric if there is a homeomorphism η :
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[0,∞)→ [0,∞) such that

dX(x, a) ≤ t dX(x, b) implies dY (f(x), f(a)) ≤ η(t) dY (f(x), f(b))

for all triples a, b, x ∈ X and for all t > 0.

Obviously, every L-bi-Lipschitz embedding is quasisymmetric with η(t) = L2t. On the other hand,

the identity map (X, dE) → (X, dE
ε) is quasisymmetric but not Lipschitz (Definition 2.2.1). Roughly

speaking bi-Lipschitz embeddings distort both the shape and size of an object by a bounded amount, while

quasisymmetry only preserves the approximate shape.

Properties of Lipschitz Maps. We denote by LIP (X, Y ) the collection of Lipschitz maps between metric

spaces X and Y and by LIP (f) the infimal Lipschitz constant.

Proposition 2.1.3. Let (X, d) be a metric space and Y be a normed vector space over R or C with metric

endowed with dY (x, y) = ‖x − y‖. Then, LIP (X, Y ) has a linear vector space structure. That is, for

arbitrary f, g ∈ LIP (X, Y ) and α ∈ R or C we have f + g ∈ LIP (X, Y ) and αf ∈ LIP (X, Y ).

We omit the proof.

Proposition 2.1.4. If f, g ∈ LIP (X, R) are bounded functions, then f · g ∈ LIP (X, R).

Proof. It is obvious from the triangle inequality.

Proposition 2.1.5. If f ∈ LIP (X, Y ) and g ∈ LIP (Y, Z), then g ◦ f ∈ LIP (X,Z) and LIP (g ◦ f) ≤

LIP (g)LIP (f).

Proof. Suppose that f is L1-Lipschitz and g is L2-Lipschitz. Then,

dZ(g ◦ f(x), g ◦ f(y)) ≤ L1 dY (f(x), f(y)) ≤ L1 L2 dX(x, y)

for all x, y ∈ X.

The following proposition means that we may assume the domain of a bi-Lipschitz map to a complete

metric space is closed.

Proposition 2.1.6. Let A be a subset of an arbitrary metric space (X, dX) and let (Y, dY ) be a complete

metric space. If f : A→ Y is L-bi-Lipschitz, then there is a uniquely defined L-bi-Lipschitz map F : A→ Y

such that F |A = f .
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Proof. For any two points x, y ∈ A, we have sequences {xn}, {yn} such that xn → x and yn → y. Whenever

{xn} and {yn} are Cauchy, {f(xn)} and {f(yn)} are Cauchy because f is Lipschitz. Thus, we have z, z′ ∈ Y

such that z = limn→∞ f(xn) and z′ = limn→∞ f(yn). We now define z = F (x) and z′ = F (y). We obtain a

well defined extension F of f and we can write

L−1 lim
n→∞

dX(xn, yn) ≤ dY (z, z′) = lim
n→∞

dY (f(xn), f(yn)) ≤ L lim
n→∞

dX(xn, yn).

Therefore, L−1 dX(x, y) ≤ dY (F (x), F (y)) ≤ LdX(x, y). Uniqueness is obvious.

Uniform perfectness, doubling metric measure space and p-Poincaré inequality. People have

studied spaces whose infinitesimal data yields global information. Metric spaces with a doubling measure and

a Poincaré inequality admit first-order differential calculus similar to that in Euclidean space. The doubling

condition provides a kind of boundedness of the geometry of the space and the p-Poincaré inequality expresses

global control of a function in terms of its derivative. For more details, see Theorem 4.2.2 in Chapter 4.

Definition 2.1.7. A metric space (X, d) is uniformly perfect if there exists a constant A > 0 such that for

each x ∈ X and 0 < r < diamX there is a point y ∈ X which satisfies A−1r ≤ d(x, y) ≤ r. We say that

(X, d) is A-uniformly perfect.

Uniform perfectness implies nonexistence of separating annuli of large modulus and nonexistence of

isolated points. Every connected metric space is uniformly perfect. This is useful since B(x, r)\B(x, A−1r)

is nonempty for all x ∈ X and 0 < r < diamX and then we can say A−1r ≤ diamB(x, r) ≤ 2r.

Definition 2.1.8. A Borel measure µ in a metric space is called doubling if balls have finite and positive

measure for any nonempty ball and there is a constant D ≥ 1 such that

µ(B(x, 2r)) ≤ Dµ(B(x, r)) (2.1.2)

for all x ∈ X and r > 0. We call D a doubling constant.

In this case 0 < µ(B) <∞ for all balls B and

µ(B(x, λr)) ≤ Dλsµ(B(x, r)) (2.1.3)

for all x ∈ X, r > 0 and λ ≥ 1 with s = log2(D).

Definition 2.1.9. A metric space is called doubling if there is a constant C so that every set of diameter d

in the space can be covered by at most C sets of diameter at most d/2.
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It is clear that subsets of doubling spaces are doubling with same doubling constant. The existence of

a doubling measure on (X, d) implies that (X, d) is doubling. The converse of this statement is not true in

general. Saksman [30] found a Jordan domain in R2 which does not carry a doubling measure. On the other

hand, we have the following theorem due to Luukkainen-Saksman and Wu.

Theorem 2.1.10 (Luukkainen-Saksman [24], Wu [34]). A complete metric space (X, d) carries a doubling

measure if and only if X is doubling.

Proposition 2.1.11. If X is a doubling metric space, then it has the following covering property: there

exists a function C : (0,
1

2
]→ (0, ∞) such that every set of diameter d can be covered by at most C(ε) sets

of diameter at most ε d. Moreover, the covering function C(ε) can be chosen to be the form

C(ε) = D ε−β for some D and β > 0. (2.1.4)

The infimal β satisfying (2.1.4) on a given doubling metric space (X, d) is called the Assouad dimension of

X.

The following theorem asserts that the doubling property and uniform perfectness are invariant under

bi-Lipschitz mappings. In fact, they are quasisymmetrically invariant quantatively [14].

Theorem 2.1.12. Quasisymmetric images of doubling or uniformly perfect metric spaces are doubling or

uniformly perfect respectively.

Proof. Let f : X → Y be an η-quasisymmetric homeomorphism. Suppose (X, dX) is a doubling metric

space. It suffices to show that every ball B of radius r′ can be covered by at most C2 of sets of diameter

≤ r

2
. Let B = B(y, r) and let

L = sup
z∈B
|f−1(y)− f−1(z)|.

Then, we can cover f−1(B) by at most C1(ε) sets of diameters at most 2εL for any ε ≤ 1

2
, where C1 is a

covering function ofX. LetA1, A2, · · · , Ap be such sets, p = p(ε) ≤ C(ε). We may assume thatAi ⊂ f−1(B)

for all i = 1, · · · , p. Thus f(Ai) ⊂ B and f(A1), · · · , f(Ap) cover B. Therefore, by Proposition 10.8 [14],

we have

diamf(Ai)

diamB
≤ η (

2 diamAi
diamf−1(B)

) ≤ η(4ε)

Thus, diamf(Ai) ≤ 2r η(4ε). We complete the proof of quasisymmetric invariance of doubling condition by

choosing ε = ε(η) so small that η(4ε) ≤ 1

4
.
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Now we assume that (Y, dY ) is A′-uniformly perfect. It suffices to show that for any x ∈ X and r > 0,

there exists A ≥ 1 so that the annulus B(x, r) \B(x, A−1r) is nonempty. We let

• R2 = inf{R > 0 | f(B(x, A−1r)) ⊂ B(f(x), R)}.

• R1 = sup{R > 0 | B(f(x), R) ⊂ f(B(x, r))}.

Since f is η-quasisymmetric, we have
R1

R2
≤ η (

1

A
). We choose A = A(η, A′) so that η (

1

A
) =

1

2A′
. By

A′-uniform perfectness of Y , the annulus B(f(x), R1) \ B(f(x), R2) 6= ∅. Therefore, we have A such that

B(x, r)\B(x, A−1r) 6= ∅. This completes the proof of quasisymmetric invariance of uniform perfectness.

Corollary 2.1.13. Bi-Lipschitz images of doubling or uniformly perfect metric spaces are doubling or uni-

formly perfect respectively.

Basic analysis involving only functions can be done in doubling metric measure spaces. However, the

structure of a doubling metric measure space is not strong enough for calculus. For example, we consider the

snowflaking of a doubling metric space, X = ([0, 1],
√
dE ,H2) where H2 is 2-dimensional Hausdorff measure.

The function f(x) = x is 1-Lipschitz on X, with

|f(x)− f(y)|√
|x− y|

=
√
|x− y|.

If an appropriate notion of derivative were defined for Lipschitz maps on X, it would vanish for f and such

infinitesimal information would imply that f is constant. Therefore, we need a requirement that must be

consequence to any reasonable calculus. The following definition allows one to obtain bounds on a function

using bounds on its derivatives and geometry of its domain of definition. Let (X, d, µ) be a metric space

with a Borel measure, not necessarily doubling.

Definition 2.1.14. Let (X, d) be a metric space. A Borel function ρ : X → [0, ∞] is said to be an upper

gradient of a function u : X → R if

|u(b)− u(a)| ≤
∫
γ

ρ ds (2.1.5)

whenever a, b ∈ X and γ is a rectifiable curve in X with end points a and b.

As a trivial example, we have an upper gradient ρ ≡ ∞ of every function, and ρ ≡ 0 is an upper gradient

of any function if X contains no rectifiable curves.

Definition 2.1.15. We say that the space (X, d, µ) supports a p-Poincaré inequality, 1 ≤ p <∞, if every

9



pair (u, ρ) of a continuous function u and its upper gradient ρ satisfies the inequality

∫
B

|u− uB | dµ ≤ Cp r
(∫

λB

ρp dµ

) 1
p

, (2.1.6)

on each ball B with radius r, where λ ≥ 1, Cp are fixed constants. We denote

uB =

∫
B

u dµ =
1

µ(B)

∫
B

u dµ.

Rn supports a Poincaré inequality for any p ≥ 1, known as the Sobolev-Poincaré inequality. In contrast,

the above example ([0, 1],
√
dE ,H2) can not support a p-Poincaré inequality for any p because there are no

rectifiable curves.

A doubling metric space supporting a p-Poincaré inequality gives a strong measurable differentiable

structure. This allow us to have a differential for a Lipschitz map.

We emphasize that uniformly perfect metric spaces supporting a doubling measure will play an important

role so as to have a type of Whitney decomposition, which we will discuss in the last section of this chapter.

2.2 Assouad Embedding Theorem

Characterizing metric spaces that admit a bi-Lipschitz embedding into Euclidean space is one of the

celebrated open questions in Geometric analysis. Assouad provided a sufficient condition for bi-Lipschitz

embeddability into Euclidean space. We start this section by introducing the definition of a snowflaked

version of metric space.

Definition 2.2.1 (Snowflaking). If (X, d) is a metric space, then its snowflaking is a metric space (X, dε),

where 0 < ε < 1. We say that (X, dε) is a snowflaked version of (X, d).

Theorem 2.2.2 (Assouad [1]). Each snowflaked version of a doubling metric space admits a bi-Lipschitz

embedding into some Euclidean space. If 0 < ε < 1, then (R, dEε) embeds bi-Lipschitzly into Rk, where k is

the smallest integer which is greater than 1
ε .

The identity snowflaking (X, d)→ (X, dε) is tε-quasisymmetric and hence, each metric space is quasisym-

metrically embedded in Euclidean space if and only if it is doubling by Theorem 2.2.2 and Theorem 2.1.12.

However, Assouad’s theorem does not answer whether or not the original metric space embeds bi-Lipschitzly.

For example, whereas the snowflaking of the Heisenberg group endowed with Carnot-Carathéodory dis-

tance, (H, dccε), admits a bi-Lipschitz embedding into some Euclidean space, the Heisenberg group is not
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bi-Lipschitzly embeddable into any Euclidean space due to Pansu and Semmes ([32], [29]) or Cheeger’s

nonembedding theorem [5] that will discussed in Chapter 4. For more examples, we give references [20], [19],

and [18].

We shall briefly sketch the proof of Assouad’s embedding theorem. He builds a multiscale family of maps

on scale 2−j for each j ∈ Z and glues these maps together into an embedding using 2−j-nets and a coloring

map. A similar idea will appear in the proof of Theorem 3.1.2. In fact, we shall consider a Whitney-type

decomposition instead of nets and use a coloring map to add dimensions of receiving Euclidean space.

Proof. A maximal ε-net in X is an ε-dense, ε-separated subset of X. (A set S is ε-separated if mutual

distances between two points of S are at least ε ; S is ε-dense if every point of X is within distance ε from

some point of S). Let N0 be a maximal 1-net. Doubling condition yields there are M finitely many points

in N0 ∩B(x, 12) for all x ∈ X. By a standard application of Zorn’s lemma, we have a coloring map

K : N0 → {1, 2, · · · , M}

so that K(pi) 6= K(pj) if d(pi, pj) < 12.

We now write {ej} for the standard basis of RM and define φ0 : X → RM by

φ0(x) =
∑
pi∈N0

max{2− d(x, pi), 0}eK(pi).

Clearly, it is finite sum of 1-Lipschitz maps and hence |φ0(x)− φ0(y)| ≤ C min{d(x, y), 1} for all x, y ∈ X

and uniform constant C , while 2−18 ≤ d(x, y) ≤ 8 implies |φ0(x)− φ0(y)| ≥ 1. For each j ∈ N, we have a

finite number of points in a maximal 2−j-net, Nj , intersecting B(x, 2−j12) for all x ∈ X and we similarly

obtain a map φj : X → RM with the properties

(1) |φj(x)− φj(y)| ≥ 1 if 2−j−18 < d(x, y) ≤ 2−j8 ,

(2) |φj(x)− φj(y)| ≤ C min{2jd(x, y), 1} for all x, y ∈ X.

Next, consider R2N with the standard basis {ej} cyclically extended to all j ∈ Z. Then the following map

Φ(x) :=
∑
j∈Z

2−εjφj(x)⊗ ej (2.2.1)

is the desired bi-Lipschitz map from (X, dε) to RM ⊗R2N , provided N is sufficiently large depending on the

given data. To this end, here we may normalize the map φj so that φj(x0) = 0 for a fixed base point x0.
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We first note that the above series converges, because

|Φ(x)| = |Φ(x)− Φ(x0)| ≤ C
∑
j∈Z

2−εj min{2jd(x, y), 1} <∞.

We now fix x, y ∈ X and choose k ∈ Z such that

2−k−18 < d(x, y) ≤ 2−k8

Then, we arrive at

|Φ(x)− Φ(y)| ≤
∑
j≥k+1

|φj(x)− φj(y)|+
∑
j≤k

|φj(x)− φj(y)|

≤ C (2−εk + 2k(1−ε)d(x, y))

≤ C d(x, y)ε.

Furthermore, provided N is large, we have

|Φ(x)− Φ(y)| ≥ |
∑

−N+k<j≤N+k

2−εj(φj(x)− φj(y))⊗ ej | −
∑

j>N+k

|φj(x)− φj(y)| −
∑

j≤−N+k

|φj(x)− φj(y)|

≥ 2−εk|φk(x)− φk(y)| − c 2−ε(N+k) − c 2−ε(−N+k)2−N+kd(x, y)

≥ 2−εk|φk(x)− φk(y)| − 1

2
2−εk

≥ c 2−εk ≥ c d(x, y)ε,

completing the proof.

2.3 Lipschitz Extension Theorems

With some restrictions on X and Y , and for A ⊂ X, every Lipschitz function f : A→ Y can be extended

to a Lipschitz function F : X → Y . In this section, we shall study three Lipschitz extension theorems of

Kirszbraun-Valentine, McShane, and Whitney. The Kirszbraun-Valentine extension theorem is defined on

any Hilbert space source and target and extension map preserves the Lipschitz constant. On the other hand,

Whitney’s extension theorem uses a Whitney decomposition on Euclidean space and an associated partition

of unity to construct an explicit Lipschitz extension map to metric space with linear structure. McShane’s

Lipschitz extension map has no restriction on the source space. For further information, see [15].
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Theorem 2.3.1 (Kirszbraun-Valentine). Let X and Y be Hilbert spaces and let A be a subset of X. Then

any L-Lipschitz map f : A→ Y extends to an L-Lipschitz map F : X → Y so that F |A = f .

The proof of Kirszbraun-Valentine’s theorem uses the following intersection property: for any {xi}i∈I ⊂

X, {yi}i∈I ⊂ Y and {ri}, we assume that d(yi, yj) ≤ d(xi, xj). Then
⋂
i∈I B(xi, ri) 6= ∅ implies that⋂

i∈I B(yi, ri) 6= ∅. We omit the proof.

Next extension theorem is useful because the source metric space can be arbitrary.

Theorem 2.3.2 (McShane). Let X be an arbitrary metric space. If A ⊂ X and f : A→ R is L-Lipschitz,

then there exists an L-Lipschitz function F : X → R which extends f . i.e. F |A = f .

Proof. We define fa(x) = f(a) + Ld(x, a) for a ∈ Y . Then fa is L-Lipschitz, fa ≥ f(a) and fa(a) = f(a).

Thus, F (x) = infa∈Y fa(x) is the required L-Lipschitz extension of f .

Corollary 2.3.3. Let f : A → RM where A ⊂ X, be an L-Lipschitz function. Then, there exists an
√
ML-Lipschitz function F : X → RM such that F |A = f .

Proof. This corollary follows immediately by applying Theorem 2.3.2 to coordinate functions of f .

We remark that Theorem 2.3.1 is sharper than Theorem 2.3.2 and Theorem 2.3.6 in the sense that the

Lipschitz constant for a Lipschitz extension map does not increase.

In Euclidean space Rn, a system of dyadic cubes is the collection D of cubes consisting of all (closed)

cubes Q in Rn that have sides parallel to the coordinate axes, side length 2k and vertices in the set 2kZn,

where k ∈ Z. We divide D into generations, each consisting of essentially disjoint cubes with side length 2k

for a fixed k. Then, we can decompose any open subset of Rn into a disjoint union of cubes whose diameters

are approximately proportional to their distances from its complement.

Definition 2.3.4 (Whitney decomposition). Let Y be a closed subset of Rn. Then its complement Ω is the

union of a sequence of cubes Q, whose interiors are mutually disjoint and whose diameters are approximately

proportional to their distances from the closed set Y . More precisely,

(1) Ω = ∪Q∈WΩQ,

(2) The interiors of any two cubes are mutually disjoint,

(3) c1 dist(Q, Y ) ≤ diam(Q) ≤ c2 dist(Q, Y ).

The constants c1 and c2 are independent of Q.
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Lemma 2.3.5. We have a Lipschitz partition of unity associated to the Whitney decomposition WΩ. More

precisely, we have a collection {ϕQ}Q∈WΩ
satisfying the following:

(1) 0 ≤ ϕQ ≤ 1,

(2) ϕQ|Q ≥ 1
C1

> 0 and ϕQ|X\λQ = 0,

(3) ϕQ is Lipschitz with constant C2/diam(Q),

(4) For every p ∈ Ω, we have ϕQ(p) 6= 0 for at most C3 elements in WΩ,

(5)
∑
Q∈WΩ

ϕQ = 1.

Here C1, C2, and C3 denote uniformly fixed constants depending on n while independent of the choice of

element in WΩ and λ is a universal fixed constant where 1 < λ < 5
4 which is independent of n and the choice

of element in WΩ. We denote λQ by a λ dilated Whitney cube with same center of Q.

Proof. We define

ψQ(x) = max
{

0, 1− dist(x,Q)

dist(Q,X \ λQ)

}
.

Then,

• 0 ≤ ψQ ≤ 1, ψQ|X\λQ = 0 and ψQ|Q = 1.

• ψQ is Lipschitz with constant
c

diam(Q)
.

Now we define

ψ :=
∑

Q∈WΩ

ψQ.

We note that ψ ≥ 1 everywhere and ψ is locally finite because each point of Ω is contained in at most c2(n)

of the cubes λQ ( see Proposition 3 in Chapter VI [33]). Then, ψ|λQ is
c c2

diam(Q)
-Lipschitz.

Next, when we set

ϕQ =
ψQ
ψ
,

then, 0 ≤ ϕQ ≤ 1, ϕQ|X\λQ = 0 and
∑
Q∈WΩ

ϕQ = 1. We further claim that ϕQ is
2c c2

diam(Q)
-Lipschitz. To
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this end, let us first consider x, y ∈ λQ. Then,

|ϕQ(x)− ϕQ(y)| = |ψQ(x)ψ(y)− ψQ(y)ψ(x)|
ψ(x)ψ(y)

≤ |ψQ(x)ψ(y)− ψQ(y)ψ(x)|

≤ |ψQ(x)ψ(y)− ψQ(y)ψ(y)|+ |ψQ(y)ψ(y)− ψQ(y)ψ(x)|

≤ sup
λQ
|ψ| c

diam(Q)
d(x, y) +

c c2
diam(Q)

d(x, y)

≤ 2c c2
diam(Q)

d(x, y)

Next, let x ∈ λQ and y ∈ X \ λQ. Then, we observe that

|ϕQ(x)− ϕQ(y)| ≤ |ϕQ(x)| ≤ |ψQ(x)| ≤ c

diam(Q)
d(x, y),

which proves the claim.

Theorem 2.3.6 (Whitney [33]). Let Y be a closed subset of Rn and f be an L-Lipschitz function from

(Y, d) into Rm for some m. Suppose that WΩ is a Whitney decomposition of Ω = X \ Y and {ϕQ} is an

associated Lipschitz partition of unity as in Lemma 2.3.5. Then,

g(p) =


∑
Q∈WΩ

f(zQ)ϕQ(p), for p ∈ Ω and zQ ∈ Y such that dist(Y, Q) = dist(zQ, Q);

f(p), for p ∈ Y.
(2.3.1)

is a L′(L, n)-Lipschitz extension of f to Rn.

Proof. Suppose that p ∈ Ω and q ∈ Y . Then

|g(p)− g(q)| = |
∑

Q∈WΩ

f(zQ)ϕQ(p)− f(q)|

≤
∑

Q∈WΩ,q∈λQ

|f(zQ)− f(q)||ϕQ(p)|

≤ c c2 Ld(p, q),

where c2(n) is the number of Q such that q ∈ λQ. The last inequality comes from d(q, zQ) ≤ c d(p, q) .
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When p, q ∈ Y , we have two cases. If there exists z ∈ Y such that d(p, z) + d(q, z) ≤ 100 d(p, q), then

|g(p)− g(q)| ≤ |g(p)− g(z)|+ |g(q)− g(z)|

≤ c c2 L {d(p, z) + d(q, z)}

≤ 100 c c2 Ld(p, q).

Otherwise, for all z ∈ Y , min{d(p, z), d(q, z)} ≥ 25 d(p, q). We consider γ a line segment p to q. Then,

|g(p)− g(q)| ≤
∫
γ

‖∇g‖ dγ

≤ C(n, L) d(p, q).

We can get the above inequality from the following:

∂

∂xi
g(p) =

∑
Q∈WΩ

f(zQ)
∂

∂xi
ϕQ(p)

=
∑

Q∈WΩ, p∈λQ

(f(zQ)− f(p))
∂

∂xi
ϕQ(p)

≤
∑

Q∈WΩ, p∈λQ

Ld(zQ, p)
∂

∂xi
ϕQ(p)

. c2 L

because
∑
ϕQ(p) = 1, d(zQ, p) . diamQ and ϕQ(p) .

1

diamQ
and hence, the theorem is completed.

Although the Whitney Lipschitz extension map is defined explicitly, the map is somewhat complicated

and the source metric space is restricted to Euclidean space. We will use McShane’s extension map for an

arbitrary metric space.

2.4 Preliminaries for the Main Theorem

In this section, we shall show that a uniformly perfect metric space equipped with a doubling measure

allows us to have a Christ-Whitney decomposition on X \ Y . We also see some definitions and lemmas

related to this decomposition.

As Euclidean space has a system of dyadic cubes, every doubling metric measure space also has a system

of Christ cubes akin to classical dyadic cubes. The following Proposition 2.4.1 may be transparent if we
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think of Qkα as being essentially a cube of diameter roughly δk with center zkα. When Qk+1
β ⊂ Qkα, we say

that Qk+1
β is a child of Qkα and Qkα is a parent of Qk+1

β .

Proposition 2.4.1 (Christ [9]). Let (X, d, µ) be a doubling metric measure space. Then, there exists a

collection of open subsets {Qkα ⊂ X | k ∈ Z , α ∈ Ik} where Ik is some index set depending on k, and

constants δ ∈ (0, 1) , a0 ∈ (0, 1), η > 0 and C1, c <∞ such that

(1) µ(X \ ∪α∈IkQkα) = 0, for all k ∈ Z.

(2) For any α, β, k, and l with l ≥ k, either Qlβ ⊂ Qkα or Qlβ
⋂
Qkα = ∅.

(3) Each Qkα has exactly one parent and at least one child for all k ∈ Z.

(4) For each (α, k), there exists zkα ∈ Xsuch that B(zkα, a0δ
k) ⊂ Qkα ⊂ B(zkα, C1δ

k).

Proof. We will sketch the construction of {Qkα}. Let δ ∈ (0, 1) be a small positive number and for each

k ∈ Z, fix a maximal collection of points zkα ∈ X satisfying

d(zkα, z
k
β) ≥ δk , for all α 6= β. (2.4.1)

By maximality, for each k, for each x ∈ X, there exists a α such that d(x, zkα) < δk. We now have a partial

ordering ≤ on the set of all ordered pairs (k, α), which satisfies,

(1) (k, α) ≤ (l, β) implies l ≤ k.

(2) For each (k, α) and l ≤ k there is a unique β such that (k, α) ≤ (l, β).

(3) If (k, α) ≤ (k − 1, β) then d(zkα, z
k−1
β ) < δk−1.

(4) If d(zkα, z
k−1
β ) < 1

2δ
k−1 then (k, α) ≤ (k − 1, β)

The above partial ordering is constructed as follows: For each (k, α) there exists at least one β for which

d(zkα, d
k−1
β ) < δk−1 and there exists at most one β for which d(zkα, z

k−1
β ) < 1

2 δ
k−1 by the maximality. We

check whether there exists β such that d(zkα, z
k−1
β ) < 1

2δ
k−1. If so, we give a partial order (k, α) < (k−1, β)

and also (k, α) is not related to any other (k − 1, r). If there is no such β, then select any β for which

d(zkα, z
k−1
β ) < δk−1 and we give a partial order (k, α) < (k − 1, β) and is not related to an other (k − 1, r).

Let a0 ∈ (0, 1) be a small constant and we define

Qkα = ∪(l, β)≤(k, α)B
o(zlβ , a0δ

l) (2.4.2)
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which is countable union of open balls with radius a0δ
l and center zlβ where (l, β) ≤ (k, α). Clearly, Qkα is

open and contains Bo(zkα, a0δ
k). For (l, β) ≤ (k, α), there exists a chain (k, α) = (k, r0) ≥ (k + 1, r1) ≥

(k + 2, r2) · · · ≥ (l, β). Then we can observe the following from triangle inequality

d(zkα, z
l
β) ≤ d(zkα, z

k+1
r1 ) + d(zk+1

r1 , zlβ) ≤ δk + d(zk+1
r1 , zlβ)

≤ δk + d(zk+1
r1 , zk+2

r2 ) + d(zk+2
r2 , zlβ) ≤ δk + δk+1 + d(zk+2

r2 , zlβ)

≤ δk + δk+1 + δk+2 + · · ·

=
1

1− δ
δk

and hence we have (4) with C1 = 2a0 +
1

1− δ
.

From Lemma 15 in [9], if Qkα ∩ Qkβ 6= ∅, then α = β. For if l ≥ k and Qkα ∩ Qlβ 6= ∅, choose γ so that

(l, β) ≤ (k, γ), whence Qlβ ⊂ Qkγ . Then, Qkγ ∩Qkα 6= ∅, so γ = α which complete (2).

For fixed k, we let E = ∪α∈IkQkα. Given any x ∈ X and any n, there exists znα such that d(znα, x) ≤ δn.

If n ≥ k, then Bo(znα, a0δ
n) ⊂ Bo(x, (1 +a0)δn), which we call Bo. Then, µ(Bo(znα, a0δ

n)) ≥ c µ(Bo) where

c ∈ (0, 1] follows from doubling condition (see (2.1.3)). In other words,

µ(E ∩Bo)
µ(Bo)

≥ c > 0.

Letting n→∞, we have

lim sup
r→0

µ(E ∩Bo(x, r))
µ(Bo(x, r))

≥ c > 0 for all x ∈ X. (2.4.3)

By Lebesgue’s differentiation theorem, E has full measure in X as desired. This finishes the proof of (1).

We now introduce a Whitney-type decomposition on an open subset of a uniformly perfect metric space

supporting a doubling measure. As open subset of Euclidean space has a Whitney decomposition from a

system of dyadic cubes, we have a type of Whitney decomposition from a system of Christ cubes. We call it a

Christ-Whitney decomposition. This decomposition has a comparability condition (see (4) Lemma 2.4.1) in

addition to all conditions of a Whitney decomposition. This comparability condition together with doubling

condition will play an important role in the proof of Lemma 2.4.14, which yields existence of a coloring map

in Lemma 2.4.15.

Lemma 2.4.2. Suppose that (X, d, µ) is a A-uniformly perfect metric space supporting a doubling metric

measure, Y is a closed subset of X, and Ω = X \ Y . Then Ω has a Christ-Whitney decomposition MΩ

satisfying the following properties:
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(1) µ(Ω \ ∪Q∈MΩQ) = 0.

(2) diam(Q) ≤ dist(Q, Y ) ≤ 4C1A

δ
diam(Q).

(3) Q ∩Q′ = ∅.

(4) For any Q ∈ MΩ, there exists x ∈ Ω such that B(x, a0δ
k) ⊂ Q ⊂ B(x, C1δ

k) for some k.

The constants δ, a0 and C1 are deduced from Proposition 2.4.1.

Remark 2.4.3. We say that Q is (C1, a0)-quasiball if the fourth condition holds. From now on, we will

call a ball B(x, C1δ
k) containing Q a C1-quasiball of Q and denote it by B̃Q. We observe that diam(B̃Q) is

comparable to δk by uniform perfectness of X.

Proof. Since Ω = X \ Y is a doubling metric measure space, we have a family of subsets

{Qkα ⊂ Ω | k ∈ Z , α ∈ Ik}

for fixed constants δ and C1 so that µ(Ω \ ∪α∈IkQkα) = 0 from Proposition 2.4.1. We now consider layers,

defined by Ωk = {x | c′δk < dist(x, Y ) ≤ c′δk−1}, where c′ is a positive constant we shall fix momentarily.

Obviously, Ω = ∪∞k=−∞Ωk.

We now make an initial choice of Q’s, and denote the resulting collection by M0. Our choice is made

as follows. We consider Q’s chosen from Ak = {Qkα | α ∈ Ik} for each k ∈ Z, (each such Q is of size

approximately δk), and include a Q in M0 if it intersects Ωk. In other words,

M0 = ∪k{Q ∈ Ak | Q ∩ Ωk 6= ∅}.

We then have µ(Ω \ ∪Q∈M0
Q) = 0. For an appropriate choice of c′,

diam(Q) ≤ dist(Q, Y ) ≤ 4C1A

δ
diam(Q). (2.4.4)

Let us prove (2.4.4) first. Suppose Q ∈ Ak, then
1

A
δk ≤ diam(Q) ≤ 2C1δ

k because of uniform perfect-

ness. Since Q ∈ M0, there exists x ∈ Q ∩ Ωk. Thus, dist(Q,Y ) ≤ dist(x, Y ) ≤ c′δk−1 ≤ c′A

δ
diamQ ≤

4C1A

δ
diam(Q) and dist(Q, Y ) ≥ dist(x, Y )− diam(Q) ≥ c′δk − 2C1 δ

k = 2C1 δ
k ≥ diam(Q). If we choose

c′ = 4C1, we get the equation (2.4.4).

Notice that the collection M0 has all required properties, except that Q’s in it are not necessarily disjoint.

To finish the proof of the lemma we need to refine our choice leading to M0, eliminating Q’s which were
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really unnecessary. We require the following observation. Suppose Q ∈ Ak and Q′ ∈ Ak′ . If Q and Q′ are

not disjoint, then one of two must be contained in the other. Start now with any Q ∈ M0, and consider the

unique maximal parent in M0 which contains it. We let MΩ denote the collection of maximal Q’s in M0.

The last property comes straightforward from Proposition 2.4.1 and Lemma 2.4.2 is therefore proved.

We now define new concepts Q∗ and Q∗∗ corresponding to Q and a dilated Whitney cube λQ respectively

in the classical Whitney decomposition.

Definition 2.4.4. For any fixed Q ∈ MΩ, we denote Q∗ by a collection of all R ∈ MΩ whose distance from

Q does not exceed minimum diameters of R and Q by a fixed constant ε. We denote Q∗∗ by a collection of

all S ∈ MΩ whose distance from R ∈ Q∗ does not exceed minimum diameters of R and S by a fixed constant

ε. Here ε is a fixed number such that 0 < ε < 1. In other words,

(1) Q∗ = ∪{R ∈ MΩ | dist(Q, R) < εmin{diam(Q), diam(R)} }.

(2) Q∗∗ = ∪{S ∈ MΩ | dist(S, R) < εmin{diam(S), diam(R)} for some R ∈ Q∗ }.

Remark 2.4.5. Q∗ could have no other Christ-cubes except Q. For example, we can consider the Cantor

set. In the rest of Chapter 2, we can choose any ε. However, in practice, we will restrict ε to a universal

fixed number in (0, 1) since we will consider condition of uniformly Christ-local bi-Lipschitz embeddings

(Definition 2.4.11).

Remark 2.4.6. Figure 2.1, Figure 3.1 and Figure 3.2 illustrate an idea how our construction goes. Of

course, actual shapes will depend on a metric space.

Y

(a) Christ-Whitney decomposition MΩ

Q

Y

(b) Definition of Q∗ and Q∗∗

Figure 2.1: The gray balls are elements of Q∗ and gray and black balls are elements of Q∗∗

We next see some propositions related to Q∗ and Q∗∗.
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Proposition 2.4.7. For any fixed Q ∈ MΩ, suppose R ∈ Q∗. Then,

[
4C1A

δ
+ 1 + ε]−1 diam(R) ≤ diam(Q) ≤ [

4C1A

δ
+ 1 + ε] diam(R)

Proof. We suppose that diam(R) ≥ diam(Q). Then, we arrive at

diam(R) ≤ dist(R, Y )

≤ diam(Q) + dist(Q, Y ) + dist(R, Q)

≤ [
4C1A

δ
+ 1 + ε] diam(Q)

and the symmetrical implication proves the proposition.

Proposition 2.4.8. Let (X, d) be a uniformly perfect metric space supporting a doubling measure µ. and

let MΩ be a Christ-Whitney decomposition as in Lemma 2.4.2.

(1) Suppose Q ∈ MΩ. Then there are at most N Christ cubes in MΩ in Q∗∗.

(2) Any point in MΩ is contained in at most N of Q∗∗.

The number N is independent of Q. It depends on the doubling constant of µ, ε and the data of X.

Proof. For any R ∈ Q∗∗, we have comparability between diam(Q) and diam(R) from Proposition 2.4.7.

Therefore, diam(Q∗∗) is comparable to diam(Q). Doubling condition yields that there are at most finite

number of R’s and hence there are at most N(µ, C1, A, δ, ε) Christ cubes in Q∗∗.

Let p be a point in MΩ and write p ∈ R. We now observe that for any Q ∈ R∗∗, we have R ∈ Q∗∗. We

have p ∈ Q∗∗ for all Q ∈ R∗∗ and hence p is contained in at most N of Q∗∗ from (1) of Proposition 2.4.8.

We now consider a family of Lipschitz cutoff functions {ϕQ}. We will use these functions to construct

a W-local co-Lipschitz map by composing with uniformly Christ-local bi-Lipschitz embeddings (see Lemma

3.3.1).

Lemma 2.4.9. There exist functions ϕQ : X → R where Q ∈ MΩ with the following properties:

(1) 0 ≤ ϕQ ≤ 1,

(2) ϕQ|Q∗ = 1,

(3) ϕQ|X\Q∗∗ = 0,

(4) ϕQ is Lipschitz with constant
C

diam(Q)
,
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(5) For all p ∈ Ω, we have ϕQ(p) 6= 0 for at most N cubes Q ∈ MΩ.

Here, C and N denote uniformly fixed constants independent of the choice of element Q ∈ MΩ. They depend

on the data of X, ε, and the doubling constant of µ quantatively.

Proof. We define

ϕQ(x) = min{1, dist(x,X \Q∗∗)
dist(Q∗, X \Q∗∗)

}.

Then, (1), (2) and (3) are obvious and (5) follows from Proposition 2.4.8. To check (4), consider

|ϕQ(p)− ϕQ(q)| ≤ d(p, q)

dist(Q∗, X \Q∗∗)
.

Thus, it suffices to show that

dist(Q∗, X \Q∗∗) ≥ c diam(Q)

To this end, let x be a point in Q∗. We write x ∈ R for some R ∈ Q∗ and choose y ∈ S ∈ X \Q∗∗. Then,

d(x, y) ≥ dist(R, S)

≥ εmin{diam(R), diam(S)}

≥ C(L1, A, δ, ε) diam(Q).

The last inequality is deduced from the comparability between diam(R) and diam(Q) in case diam(S) ≥

diam(R). Otherwise, diam(R) ≥ diam(S), we divide into two cases, either

(1) diam(R) ≥ diam(S) ≥ 1

2[
4C1A

δ
+ 1]

diam(R) or (2) diam(S) <
1

2[
4C1A

δ
+ 1]

diam(R).

In the first case, we have obviously comparability between diam(S) and diam(R). In the second case, we

use the comparability condition of a Christ-Whitney decomposition. Then,

dist(R, S) ≥ dist(R, Y )− dist(S, Y )− diam(S)

≥ diam(R)− [
4C1A

δ
+ 1] diam(S)

≥ 1

2
diam(R)

≥ C(L1, A, δ) diam(Q).

Therefore, the proof of (4) is completed.
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Remark 2.4.10. We use the fact that ϕQ = 1 on Q∗ and ϕQ = 0 off Q∗∗ so that h̃Q = hQ ·ϕQ in Subsection

3.3 is bi-Lipschitz on Q∗ and supported on Q∗∗. This is needed in the proof of Lemma 3.3.1, see case (3).

Definition 2.4.11. Let (X, d, µ) be a uniformly perfect metric space supporting a doubling measure and let

Y be a closed subset of X. We say that Ω = X \ Y admits uniformly Christ-local bi-Lipschitz embeddings

if there exist bi-Lipschitz embeddings of each Q∗∗ into a fixed Euclidean space with uniform bi-Lipschitz

constant.

The following relative distance map plays a key role to construct a co-Lipschitz map from a metric space

into Euclidean space in Chapter 3. We will break MΩ into two parts and construct co-Lipschitz maps on

these parts (Definition 3.1.3) by using the Whitney distance map.

Definition 2.4.12. The Whitney distance map dW on MΩ ×MΩ is defined by

dW(Q,R) =
dist(Q, R)

min(diam(Q), diam(R))
.

Remark 2.4.13. The Whitney distance map dW is not a metric. In fact, if Q∩R 6= ∅, then dW(Q, R) = 0.

We observe that dW(Q, R) ≤ dW(Q, S)+dW(S, R)+1 if diam(S) ≤ min{diam(Q), diam(R)}. Throughout

this thesis, we will use the terminology Whitney distance ball of radius ρ for the set of all elements in MΩ

such that Whitney distance to a fixed center cube in MΩ is less than ρ. We write BW(Q, ρ) for the Whitney

distance ball of radius ρ with center Q.

The next lemma allows us to construct a coloring map that gives different colors to Christ cubes within a

given Whitney distance ball. Indeed, this coloring map permits additional dimension of receiving Euclidean

space.

Lemma 2.4.14. Each Whitney distance ball of radius ρ contains a finite number of elements of the Christ-

Whitney decomposition MΩ. The number depends on the doubling constant of µ and ρ.

Proof. We fix a Christ cube Q ∈ MΩ and we require to count the number of R ∈ MΩ such that dW(Q,R) < ρ.

We have two cases either (1) diam(Q) < diam(R) or (2) diam(R) ≤ diam(Q).

Suppose diam(Q) < diam(R). Then, we have

dist(R, Y )− dist(Q, Y ) < dist(Q, R) + diam(Q) < (ρ+ 1) diam(Q).

Since dist(Q, Y ) ≤ 4C1A

δ
diam(Q), we have an upper bound for diam(R) in terms of diam(Q). That is,

diam(R) < (ρ+ 1 +
4C1A

δ
) diam(Q).

23



Similarly, diam(R) has a lower bound in terms of the size of Q in the case of diam(R) ≤ diam(Q):

diam(R) ≥ (ρ+ 1 +
4C1A

δ
)−1 diam(Q).

Therefore, the number of R ∈ MΩ in BW(Q, ρ) is the sum of the cardinality of the following sets:

{R ∈ MΩ | diam(Q) < diam(R) < (ρ+ 1 +
4C1A

δ
) diam(Q) and dist(Q,R) < ρdiam(Q)} (2.4.5)

and

{R ∈ MΩ | (ρ+ 1 +
4C1A

δ
)−1 diam(Q) < diam(R) ≤ diam(Q) and dist(Q,R) < ρdiam(R)} (2.4.6)

Now we suppose that p and q are centers of C1- quasiballs B̃Q and B̃R which have approximately sizes of Q

and R. If R is in either the set (2.4.5) or the set (2.4.6), then we find that

d(p, q) ≤ diam(Q) + dist(Q, R) + diam(R) < (2ρ+ 1 +
4C1A

δ
) diam(Q). (2.4.7)

Thus, the number of R ∈ MΩ in BW(Q, ρ) is at most twice of the number of centers q satisfying (2.4.7).

In other words, we can count the number of R’s in (2.4.5) and (2.4.6) by counting the number of centers of

C1-quasiballs B̃R. By the doubling condition, the ball centered at p with radius (2ρ+ 1 +
4C1A

δ
) diam(Q)

can be covered by finite number of C1-quasiballs centered at such q. Finally, the comparability of the size

of R and that of the ball centered at q concludes Lemma 2.4.14.

We write the number of Christ cubes within Whitney distance ball of radius ρ as m = m(ρ, D) in terms

of ρ and the doubling constant D of µ.

Lemma 2.4.15. There exists a coloring map

K : MΩ −→ {1, 2, 3, . . . ,M} for some M ≥ m(m− 1)

such that any two boxes within Whitney distance ball of radius ρ have different colors. In other words,

if R′, R′′ have dW(R′, R′′) < ρ, then K(R′) 6= K(R′′).

Proof. We apply Zorn’s lemma. Let us consider the partially ordered set (P,6) where P is the collection

of maps k defined from S ⊂ MΩ to {1, 2, . . . ,M} so that K(R) 6= K(R′) for all R, R′ ∈ S whose Whitney

distance < ρ. The inequality (k,S) 6 (k′,S ′) means k′ is a extension of k (S ⊂ S ′ ∈ P and k′|S = k|S).

24



By Zorn’s lemma, there exists a maximal element k̂. If the domain of k̂ is MΩ, then we can set K = k̂.

Otherwise, take Q′ ∈ MΩ \domain(k̂). We now want to give a color to Q′. The color of Q′ should differ from

any color already assigned to any R where dW(Q′, R) < ρ and also differ from any color already assigned

to any S where dW(S, R) < ρ and dW(Q′, R) < ρ. We observe that the number of such R is at most m− 1

and the number of S for given R is at most m. Thus, the total number of colors seen is at most m(m− 1).

Since M ≥ m(m− 1), it contradicts maximality of k̂.
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Chapter 3

Main Theorem

Now we are ready to state the main theorem. It asserts that in a uniformly perfect complete metric space

supporting a doubling measure, the local information of uniformly Christ-local bi-Lipschitz embeddability

(Definition 2.4.11) can be turned into global information of bi-Lipschitz embeddability.

3.1 Main Theorem and Outline of Proof

Theorem 3.1.1. A uniformly perfect complete metric space (X, d) admits a bi-Lipschitz embedding into

some Euclidean space if and only if the following conditions hold:

(1) it supports a doubling measure µ,

(2) there exists a closed subset Y of X which admits a bi-Lipschitz embedding into some RM1 ,

(3) Ω = X \ Y admits uniformly Christ-local bi-Lipschitz embeddings into some RM2 .

The bi-Lipschitz constant and dimension of receiving Euclidean space depend on the data of the metric space

X, the doubling constant of µ, M1, M2, and the bi-Lipschitz constants in conditions (2) and (3).

Outline of Proof

Suppose that we have a L-bi-Lipschitz embedding f from (X, d) into Rn for some n. Euclidean space is

a doubling metric space and the doubling condition is bi-Lipschitz invariant. Hence, (X, d) is a complete

doubling metric space. Thus, there exists a doubling measure µ from Theorem 2.1.10. The second condition

is trivial, setting Y = X. The third condition is trivial since Ω = ∅.

The content of the theorem is the other implication: a uniformly perfect complete space satisfying (1),

(2), and (3) embeds bi-Lipschitzly in some Rn for some n. We will use Proposition 3.1.2 to complete the

main theorem. Since the full measure set MΩ ∪ Y is dense in X and the constructed map in Proposition

3.1.2 is uniformly continuous, the main theorem follows immediately. Therefore, we will focus on proving

Proposition 3.1.2 in section 3.2, Section 3.3, and Section 3.4.
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Proposition 3.1.2. Let (X, d, µ) be a A-uniformly perfect, complete, doubling metric space and let Y be a

closed subset of X. Then, the full measure set MΩ ∪Y admits a bi-Lipschitz embedding into some Euclidean

space if the followings are satisfied:

(1) Y admits a bi-Lipschitz embedding into some RM1 ,

(2) Ω = X \ Y admits uniformly Christ-local bi-Lipschitz embeddings into some RM2 .

The bi-Lipschitz constant and dimension of receiving Euclidean space depend on the data of metric space X,

the doubling constant, M1, M2, and the bi-Lipschitz constants in conditions (1) and (2).

We briefly outline the proof of Proposition 3.1.2. We first extend a (bi)-Lipschitz map f on Y to a global

Lipschitz map g on X, using McShane’s extension theorem (see Theorem 2.3.2 and Corollary 2.3.3). We

then suppose that f is a L1-bi-Lipschitz embedding from Y into RM1 . From McShane’s theorem, we have a
√
M1L1-Lipschitz extension map

g : X −→ RM1 such that g|Y = f.

From now on we fix such L1 and M1 is chosen sufficiently large relative to other data C1, A, and δ. The

precise choice of M1 will be made so that Equation (3.2.1) make sense.

In general, the map g is not globally co-Lipschitz on a full measure set MΩ of Ω. Therefore, we next shall

construct a co-Lipschitz map using a local and large scale argument in the sense of Whitney distance on a

Christ-Whitney decomposition (see Definition 2.4.12 and Definition 3.1.3).

Definition 3.1.3. Let Q be any fixed cube in MΩ. We say f : MΩ → Rn is W-local co-Lipschitz if it is

co-Lipschitz for any two points p ∈ Q, q ∈ R where R is in BW(Q, 16M1L1
2). We say f is W-large scale

co-Lipschitz if it is co-Lipschitz for any two points p ∈ Q and q ∈ R where R is not in BW(Q, 16M1L1
2).

In Section 3.2, we will construct a W-large scale co-Lipschitz map and global Lipschitz map on MΩ. To

this end, we will break the complement of arbitrary Whitney distance ball of radius 16M1L1
2 into two parts

using relative distance in terms of distance between two cubes and maximum diameter of them. We shall

see that McShane’s extension map g and distance map from Y , dist(·, Y ), which are global Lipschitz maps,

are W-large scale co-Lipschitz on these two parts respectively.

In Section 3.3, we will construct a W-local co-Lipschitz map on MΩ via putting together all local patches

of bi-Lipschitz embeddings. We will assign different colors to elements in a Christ-Whitney decomposition

within arbitrary Whitney distance ball of radius 16M1L1
2.
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Finally, in Section 3.4, we will construct a global bi-Lipschitz embedding on the full measure set MΩ ∪Y

of X completing the proof of Lemma 3.1.2.

Y

Q

q

p

Bw

(a) W-local co-Lipschitz

Y

Qp

Bw
q

(b) W-large scale co-Lipschitz

Figure 3.1: Let the square be the Whitney distance ball of radius 16M1L1
2 centered at Q. W-local co-

Lipschitz means |f(p) − f(q)| & d(p, q) for any p ∈ Q and q ∈ R where dW(Q, R) < 16M1L1
2. W-large

scale co-Lipschitz means |f(p)− f(q)| & d(p, q) for p ∈ Q and q ∈ R with dW(Q, R) ≥ 16M1L1
2.

3.2 W-Large Scale Co-Lipschitz and Global Lipschitz Map on MΩ

We construct a W-large scale co-Lipschitz and global Lipschitz map on a full measure set MΩ ⊂ Ω.

Roughly speaking, McShane’s extension map guarantees a W-large scale co-Lipschitz bound for points p, q

in MΩ whose distance is big enough with respect to maximum diameter of cubes containing them. Whenever

p ∈ Q and q ∈ R with dist(Q, R) exceeds maximum diameter of them by a fixed constant, we consider points

z, z′ in Y which give distances to p, q respectively. Then, |g(p)− g(z)| and |g(q)− g(z′)| are approximately

greater than maximum diameter and we can conclude co-Lipschitz from the triangle inequality. Furthermore,

when the distance between two points is small enough with respect to maximum diameter of cubes containing

them, |d(p, Y )− d(q, Y )| is approximately greater than maximum diameter (see Figure 3.2).

Lemma 3.2.1. Let Q be any fixed cube in MΩ. For any two points p ∈ Q and q ∈ R, where dW(Q, R) ≥

16M1L1
2, the McShane extension map g and dist(·, Y ) guarantee W-large scale co-Lipschitz bounds. More

precisely,

(1) If
dist(Q, R)

max(diam(Q), diam(R))
≥ 8M1L1

2

1 + 4C1 A
δ

, then |g(p)− g(q)| ≥ C(L1, M1) d(p, q).

(2) If
dist(Q, R)

max(diam(Q), diam(R))
≤ 8M1L1

2

1 + 4C1 A
δ

, then |dist(p, Y )− dist(q, Y )| ≥ C(L1, M1) d(p, q).

Proof. We may assume that diam(R) ≥ diam(Q) without loss of generality. We choose z, z′ ∈ Y such that

dist(Y, Q) = dist(z, Q) and dist(Y, R) = dist(z′, R). We claim that z 6= z′. In fact, d(z, z′) ≥ 1
2 d(p, q).
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Y

Qp

qz'

z

BW

(a)
dist(Q, R)

max(diam(Q), diam(R))
≥

8M1L1
2

1 + 4C1 A
δ

Y

Qp
q

BW

(b)
dist(Q, R)

max(diam(Q), diam(R))
≤

8M1L1
2

1 + 4C1 A
δ

Figure 3.2: g and dist(·, Y ) guarantee W-large scale co-Lipschitz bounds.

To conclude the claim, we suppose that d(z, z′) < 1
2 d(p, q). Then,

d(p, q) ≤ d(p, z) + d(z, z′) + d(z′, q).

Thus, we have

d(p, q) ≤ 2 [d(p, z) + d(z′, q)]

≤ 2 [dist(z, Q) + diam(Q) + dist(z′, R) + diam(R)]

≤ 2 [dist(Y, Q) + diam(Q) + dist(Y, R) + diam(R)]

≤ 2 (
4C1A

δ
+ 1)[diam(Q) + diam(R)]

≤ 2 (
4C1A

δ
+ 1)(

1 + 4C1A
δ

8M1L1
2 +

1

16M1L1
2 ) dist(Q, R)

≤
(1 + 4C1 A

δ )(3 + 4C1 A
δ )

8M1L1
2 d(p, q).

This is a contradiction since provided M1 is selected sufficiently large relative to C1, A, and δ. Now,

|g(p)− g(q)| ≥ |f(z)− f(z′)| − |f(z)− g(p)| − |f(z′)− g(q)|

≥ 1

L1
d(z, z′)− C d(z, p)− C d(z′, q).
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where C =
√
M1L1 from McShane’s theorem. We have

d(p, z) ≤ (
4C1A

δ
+ 1) diam(Q) ≤

( 4C1 A
δ + 1)

16M1L1
2 dist(Q, R)

≤
( 4C1 A

δ + 1)

16M1L1
2 d(p, q).

Similarly, we have

|g(q)− g(z′)| ≤ L1 d(z′, q) ≤
( 4C1 A

δ + 1)2

8M1L1
2 d(p, q).

In conclusion,

|g(p)− g(q)| ≥ [
1

2L1
− 2C

( 4C1 A
δ + 1)2

8M1L1
2 ] d(p, q) (3.2.1)

≥ 1

2L1
[1−

( 4C1 A
δ + 1)2

2
√
M1

] d(p, q) (3.2.2)

≥ 1

4L1
d(p, q) (3.2.3)

since we can choose M1 sufficiently large. This complete the proof of the first case.

In second case, we have

16M1L1
2diam(Q) ≤ dist(Q, R) ≤ 8M1L1

2

1 + 4C1 A
δ

diam(R).

Therefore, 2 (1 +
4C1A

δ
) diam(Q) ≤ diam(R). We now have

|dist(p Y )− dist(q Y )| ≥ dist(q, Y )− dist(p, Y )

≥ dist(R, Y )− dist(Q, Y )− diam(Q)

≥ diam(R)− (1 +
4C1A

δ
) diam(Q)

≥ 1

2
diam(R)

while d(p, q) ≤ diam(Q) + dist(Q, R) + diam(R) . diam(R). Thus, we proved the second case.

3.3 W-Local Co-Lipschitz and Global Lipschitz Map on MΩ

We next construct a W-local co-Lipschitz and global Lipschitz map on a full measure set MΩ ⊂ Ω into

some Euclidean space. In general, M1 + 1, the dimension of the target space of g(·)× dist(·, Y ) is not large
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enough to construct a co-Lipschitz map. Hence, we will use a coloring map that gives additional dimension

of the Euclidean space (see Lemma 2.4.15).

Suppose that hQ’s are L2-bi-Lipschitz embeddings of Q∗∗ for each Q ∈ MΩ into RM2 with uniformly

determined L2 and M2. Now we consider everywhere defined map

h̃Q = hQ · ϕQ ;

it is bi-Lipschitz on Q∗, Lipschitz on MΩ, and supported on Q∗∗. We recall that {ϕQ} is a family of Lipschitz

cutoff functions as in Lemma 2.4.9. Then, we may assume that for some c

h̃Q(Q∗) ⊂ B(0, c L2diam(Q)) \B(0,
1

cL2
diam(Q))

because we can postcompose with an isometric translation map of RM2 if necessary. Next, we will put

together all patches to make a W-local co-Lipschitz map by assigning different colors to each element in MΩ.

We will denote {e1, e2, . . . , eM} by an orthonormal basis for RM .

Lemma 3.3.1. The following map H from MΩ into (RM2)M given by

H(p) =
∑
Q∈MΩ

h̃Q(p)⊗ eK(Q), (3.3.1)

is a global Lipschitz and W-local co-Lipschitz map. The (W-local) bi-Lipschitz constant depends on L1, L2 and M1.

That is,

|H(p)−H(q)| ≥ C(L1, L2, M1) d(p, q)

for any points p in any fixed Q and q in R where dW(Q,R) < 16M1L1
2.

Proof. Since h̃Q is bi-Lipschitz on Q∗ with the uniform bi-Lipschitz constant L2, Lipschitz on MΩ, and

supported on Q∗∗, the map H is a N finite sum of Lipschitz maps on MΩ from Proposition 2.4.8. Thus, it

is Lipschitz on Ω. Now, we will show that H is a W-local co-Lipschitz map according to positions of two

points p and q on MΩ. There are three cases.

(1) If p, q ∈ Q∗, then h̃Q is bi-Lipschitz on Q∗ and Q is the element in MΩ that shares the same color
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at p and q. Therefore, we find that

|H(p)−H(q)| ≥ |h̃Q(p)− h̃Q(q)|

= |hQ(p)− hQ(q)| since ϕQ|Q∗ = 1

≥ 1

L2
d(p, q)

since hQ is L2-bi-Lipschitz.

(2) If p ∈ Q, q /∈ Q∗∗, then h̃Q(q) = 0. Thus, we have

|H(p)−H(q)| ≥ |h̃Q(p)− h̃Q(q)| = |h̃Q(p)|

≥ 1

cL2
diam(Q).

On the other hand, we observe that

d(p, q) ≤ diam(Q) + dist(Q, R) + diam(R)

≤ diam(Q) + dist(Q, R) + dist(R, Y )

≤ 2diam(Q) + 2dist(Q, R) + dist(Q, Y ).

Since dist(Q, Y ) ≤ 4C1A

δ
diam(Q) and dist(Q, R) ≤ 16M1L1

2 min{diam(Q), diam(R)} ≤ 16M1L1
2diam(Q),

we conclude

d(p, q) . diam(Q)

and so |H(p)−H(q)| & d(p, q) as desired.

(3) If p ∈ Q, q ∈ Q∗∗, then there is a R ∈ Q∗ so that p, q ∈ R∗ and h̃R is bi-Lipschitz on R∗. Therefore,

we conclude the following from the first case:

|H(p)−H(q)| ≥ |h̃R(p)− h̃R(q)| ≥ 1

L2
d(p, q).
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3.4 Global Bi-Lipschitz Embedding on a Full Measure Set MΩ ∪Y

Finally, we are ready to construct a global bi-Lipschitz embedding on a full measure set of X. We define

the map F from MΩ ∪ Y into RM1 × (RM2)M × R as following:

F (p) =


g(p)×H(p)× dist(p, Y ), for p ∈ MΩ ;

f(p)× {0} × {0}, for p ∈ Y.
(3.4.1)

Then F is Lipschitz on a full measure set MΩ ⊂ Ω because g and dist(·, Y ) are Lipschitz on X and H is a

finite sum of Lipschitz maps on MΩ. Moreover, when we define H(q) = 0 for q ∈ Y , then for every p ∈ MΩ

and any q ∈ Y , we arrive at

|H(p)−H(q)| = |H(p)| =|
∑
Q∈MΩ

h̃Q(p)⊗ eK(Q)|

≤ N L2 diam(Q)

≤ N L2 dist(Q,Y )

≤ N L2 d(p, q)

We have shown that F is co-Lipschitz on MΩ by Lemma 3.2.1 and Lemma 3.3.1 and F |Y = f is co-Lipschitz.

Finally, we have a bi-Lipschitz embedding F from a full measure set MΩ ∪ Y of X into RM1 × (RM2)M ×R.

The bi-Lipschitz constant depends on the data of metric space X, the doubling constant of µ, M1, M2, L1

and L2. Therefore, Proposition 3.1.2 is proved.
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Chapter 4

Applications

In this chapter, we shall state theorems of Pansu and Cheeger which can be applied to get bi-Lipschitz

nonembeddability of certain regular sub-Riemannian manifolds. In contrast, as a corollary of Theorem 3.1.1

we will prove bi-Lipschitz embeddability of spaces of Grushin type equipped with Carnot-Carathéodory

distance. These are the first examples of sub-Riemannian manifolds which admit a bi-Lipschitz embedding.

4.1 Sub-Riemannian Manifolds

Definition 4.1.1. [26] A sub-Riemannian manifold is a triple (M,H, g), where M is a connected manifold,

H, called the horizontal distribution, is a subbundle of tangent bundle TM and g is a metric on the horizontal

distribution. A horizontal curve is a continuous, almost everywhere differentiable curve, which is tangent to

the horizontal distribution. The length of a horizontal curve γ : [0, 1] → M is defined via the Riemannian

metric on H. That is,

l (γ) =

∫ 1

0

√
gγ(t)(γ′(t), γ′(t)) dt

The Carnot-Carathéodory distance between two points p and q is induced by length of horizontal curves:

dcc (p, q) = inf{l (γ) | γ : [0, 1] →M such that γ(0) = p, γ(1) = q}

We abbreviate the Carnot-Carathéodory distance by cc-distance. The distance is infinite if there is no such

curve joining p to q.

Definition 4.1.2 ( Hörmander condition). Let M be a connected manifold and let H ⊂ TM be a distribution.

The distribution H satisfies the Hörmander condition if, for each x ∈ M , the following holds. There is a

local basis X1, X2, · · · , Xm of sections of H such that iterated brackets [Xi, Xj ], [[Xi, Xj ], Xk], etc. span

the tangent space TxM .

We sometimes say that a collection of vector fields defining H satisfies the Hörmander condition.
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Theorem 4.1.3 (Chow, Rashevsky [26]). Suppose M is connected manifold and a distribution H ⊂ TM

satisfies the Hörmander condition. Then, any two points of M can be joined by a finite length of horizontal

curve.

To avoid complications, we will from now on restrict attention to the case of vector fields on Euclidean

domains. This is the context of our main result in this chapter.

Let Ω ⊂ RN be a domain and let X1, X2, · · · , Xm be a system of vector fields verifying the Hörmander

condition. Let L1 = L1(X1, X2, · · · , Xm) be the set of linear combinations with smooth coefficients of the

vector fields X1, X2, · · · , Xm. We define recursively

Ls = Ls−1 + [L1, Ls−1],

so that Ls is generated by the vector fields

XI = [Xi1 , [Xi2 , · · · , [Xil−1
, Xil ], · · · ]]

with 1 ≤ l ≤ s. We denote Ls(x) by the subspace of TxΩ spanned by values at x of the brackets of length

≤ s of vector fields. Theorem 4.1.3 states that for each x ∈ Ω, there is a smallest integer r = r(x) such that

Lr(x) = TxΩ. For each x ∈ Ω, there is an increasing sequence of vector subspaces,

0 = L0(x) ⊂ L1(x) ⊂ · · · ⊂ Ls(x) ⊂ · · · ⊂ Lr(x)(x) = TxΩ.

Definition 4.1.4. The step or depth of the distribution at x is the first integer r such that Lr(x)(x) = TxΩ.

We say that x is a regular point if the integer ns(y) = dimLs(y) (s = 1, 2, · · · ) is constant for y in some

neighborhood of x. Otherwise we say that x is a singular point.

Carnot groups are particular examples of regular sub-Riemannian manifolds. They provide infinitesimal

models for sub-Riemannian manifolds and all the fundamental results of sub-Riemannian geometry are easy

to prove and understand in the case of Carnot groups.

Definition 4.1.5. A Carnot (or stratified nilpotent) group is a simply connected group N with a distinguished

vector space V1 such that Lie algebra of the group has the direct sum decomposition:

g = V1 ⊕ V2 ⊕ · · · ⊕ Vm, (4.1.1)

where V = V1 and [Vi, Vj ] = Vi+j, and Vs = 0 for s > r. The number m is the step of the group. The number
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Q =
∑m
i=1 i dimVi is called the homogenous dimension of the group. The Carnot groups admit dilations δλ

which are mappings such that

dcc (δλx, δλy) = λ dcc(x, y) for all x, y ∈ N. (4.1.2)

Since the group is nilpotent and simply connected, the exponential mapping is a diffeomorphism. We

shall identify the group with the algebra. For more information of Carnot-Carathéodory geometry, see [12].

Here we give examples of sub-Riemannian manifolds.

Example 4.1.6. Rn with addition is the only commutative Carnot group.

Example 4.1.7. The Heisenberg group H is R3 with horizontal distribution spanned by two vectors

X1 =
∂

∂x
− y

2

∂

∂z
and X2 =

∂

∂y
+
x

2

∂

∂z
.

It is the first non trivial example of step 2 Carnot group and it has dilations δλ(x, y, z) = (λx, λy, λ2z).

Example 4.1.8. The Grushin plane G is R2 with horizontal distribution spanned by

X1 =
∂

∂x
and X2 = x

∂

∂y
.

The points on the line x = 0 are singular, while the other points in the plane are regular. It has dilations

δλ(x, y) = (λx, λ2y).

Nagel, Stein and Wainger studied the geometry of Carnot-Carathéodory spaces and showed that space

with a system of vector fields satisfying the Hörmander condition is locally doubling measure space with

respect to Lebesgue measure in the following sense. It also satisfies locally Poincaré inequality due to Jerison.

Theorem 4.1.9 (Nagel-Stein-Wainger [27]). Let X1, X2, · · · , Xm be a system of vector fields satisfying

the Hörmander condition and let dcc be the associated Carnot-Carathéodory metric. Then for every compact

K ⊂ Ω, there are r0 > 0 and C ≥ 1 such that

µ(B(x, 2r)) ≤ Cµ(B(x, r))

for Lebesgue measure µ whenever x ∈ K and r ≤ r0.

Theorem 4.1.10 (Jerison [16]). Let X1, X2, · · · , Xm be a system of vector fields satisfying the Hörmander

condition in Ω. Then for every compact set K ⊂ Ω there are constants C > 1 and r0 > 0 such that for
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u ∈ Lip(B) ∫
B

|u− uB | dx ≤ C r
∫

2B

|Xu| dx

whenever B is a ball centered at K with radius r ≤ r0.

For further information about analysis on Carnot-Carathéodory spaces, see [13]. We remark the following.

Remark 4.1.11. The Grushin plane with Carnot-Carathéodory distance is a globally doubling measure space

and satisfies globally Poincaré inequality with respect to Lebesgue measure .

The Grushin plane has dilations, dcc(δλp, δλq) = λ dcc(p, q) for all p, q ∈ G because X1 and X2 are

homogenous of degree one with respect to the dilations. We fix a compact K which contains a neighborhood

of the origin and r0 > 0 so that the above two theorems are true. For any p ∈M and any r > 0, we choose

λ > 0 so that δλ(B(p, 2r)) = B(δλ(p), 2λ r) is contained in K and λ r ≤ r0. Then the doubling condition

holds for δλ(B(p, r)) = B(δλ(p), λr) and δλ(B(p, 2r)) = B(δλ(p), 2λr). Since µ(δλ(E)) = λ3µ(E) for any

set E ⊂ G we conclude the doubling condition for B(p, r). A similar argument applies to the Poincaré

inequality.

4.2 Bi-Lipschitz Nonembedding Theorems

In Euclidean space, Rademacher’s theorem states that a Lipschitz function is differentiable almost ev-

erywhere and the derivative is linear. We shall state theorems of Pansu and Cheeger which are analogues

of Rademacher’s theorem in some sense. These theorems can be applied to get nonembeddability of some

metric spaces into Euclidean space. The first proof of the nonembeddability result of the Carnot groups is

based on a differentiability result due to Pansu. His theorem takes into account the algebraic structure in

Carnot groups, which appear as tangent space from Mitchell’s theorem [25].

Theorem 4.2.1 ( Pansu [29]). Let (M, •) and (N, ?) be Carnot groups. Every Lipschitz mapping f between

open sets in M and N is differentiable almost everywhere. Moreover, the differential

dfy(x) = lim
t→0

δt−1 [f(y)
−1
? f(y • δt(x))]

is a Lie group homomorphism almost everywhere.

Semmes [32] observed that Theorem 4.2.1 implies that nonabelian Carnot groups M can not be embedded

bi-Lipschitzly in Euclidean space. If M had a bi-Lipschitz embedding f into some Euclidean space Rn, then

f must be differentiable in the sense of Pansu and its differential should be an isomorphism. This gives a
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contradiction because it has nontrivial kernel. Hence M cannot be bi-Lipschitz embeddable. In particular,

the Heisenberg group does not admit a bi-Lipschitz embedding into Euclidean space.

Rademacher’s theorem states that infinitesimal behavior of any Lipschitz functions on Rn is approxi-

mated at almost every point by some linear function; that is, a linear combination of the coordinate func-

tions. Cheeger proved a remarkable extension of Rademacher’s theorem in doubling metric measure spaces

supporting a p-Poincaré inequality. He constructed coordinate charts that span the differentials of Lipschitz

functions. Moreover, his work gives a way to get nonembeddability results by using a purely geometric and

analytic method.

Theorem 4.2.2 (Cheeger [5]). If (X, d, µ) is a doubling metric measure space supporting a p-Poincaré

inequality for some p ≥ 1, then (X, d, µ) has a strong measurable differentiable structure, i.e. a countable

collection of coordinate patches {(Xα, πα)} that satisfy the following conditions:

(1) Each Xα is a measurable subset of X with positive measure and the union of the Xα’s has full measure

in X.

(2) Each πα is a N(α)-tuple of Lipschitz functions, for some N(α) ∈ N, where N(α) is bounded from

above independently of α.

(3) Given a Lipschitz function f : X −→ R, there exists an L∞ function dfα : Xα −→ RN(α) so that

lim sup
y→x

|f(y)− f(x)− dfα(x)· (πα(y)− πα(x))|
d(x, y)

= 0 for µ− a.e x ∈ Xα.

Cheeger also provided a uniform statement that covers many of the known nonembedding results.

Theorem 4.2.3 (Cheeger). If a doubling p-Poincaré space X admits a bi-Lipschitz embedding into some

finite dimensional Euclidean space, then at almost every point x ∈ Xα, the tangent cone of X at x is

bi-Lipschitz equivalent to RN(α).

We can deduce from Cheeger’s theorem the known nonembedding results both for the Carnot groups

and for Laakso spaces. Cheeger and Kleiner generalized the almost everywhere differentiability for Lipschitz

maps on PI space to any Banach space V with Radon-Nikodým property (RNP). That is, every Lipschitz

map f : R→ V is differentiable almost everywhere. Moreover, a bi-Lipschitz nonembedding theorem holds

whenever the target has RNP ([6], [7]).

We now check nonembeddability of the Heisenberg group H by applying Cheeger’s nonembedding theo-

rem. The Heisenberg group has a strong measurable differentiable structure with a single coordinate patch
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(H, π1, π2), where π1(x, y, t) = x and π2(x, y, t) = y. If we assume that the Heisenberg group admits a bi-

Lipschitz embedding into some Euclidean space, then every tangent cone at almost every point in H must be

bi-Lipschitz equivalent to R2. Since the Hausdorff dimension of H is not equal to 2, we conclude bi-Lipschitz

nonembeddability.

In contrast to the Heisenberg group, Cheeger’s nonembedding theorem does not answer whether or not

the Grushin plane locally embeds into some Euclidean space. The Grushin plane G with Lebesgue measure

is a doubling metric measure space supporting p-Poincaré inequality for any p ≥ 1 (see Remark 4.1.11).

Let K be any compact subset of G and A be set of singular points, y-axis. It has a Cheeger’s coordinate

patch (K \ A, π1, π2), where π1(x, y) = x and π2(x, y) = y. Since every tangent cone to K \ A is bi-

Lipschitz equivalent to R2, we cannot conclude non-embeddability of the Grushin plane, unlike the case of

the Heisenberg group. Indeed, we prove in the next section that the Grushin plane admits a bi-Lipschitz

embedding into some Euclidean space.

4.3 Spaces of Grushin Type

In this section, we will prove that spaces of Grushin type endowed with Carnot-Carathéodory distance

embed bi-Lipschitzly into some Euclidean space. To do so, we will check the conditions in Theorem 3.1.1.

Throughout this section, points in Rn×Rl are denoted by p = (x, y), where x = (x1, x2, · · · , xn) ∈ Rn and

y = (y1, y2, · · · , yl) ∈ Rl. We let α = (α1, α2, · · · , αn) be an n-tuple of non-negative integers with length

|α| =
∑n
i=1 αi. If x = (x1, x2, · · · , xn) ∈ Rn, we put xα := xα1

1 xα2
2 · · ·xαn

n .

Definition 4.3.1. The space of Grushin type is Rn × Rl for n, l ∈ N with horizontal distribution spanned

by Xi and Yj for i = 1, 2, , · · · , n and j = 1, 2, , · · · , l

Xi =
∂

∂xi
and Yj = xα

j ∂

∂yj

where for each j, αj is an n-tuple of non-negative integers αji and |αj | = k. We denote the space of Grushin

type by GS.

Remark 4.3.2. When n = l = 1 and |α1| = 1, this is the Grushin plane described in Example 4.1.8. For

more information about the Grushin plane, see [2].

We can easily observe that k-th iterated Lie brackets generate the tangent space and (k + 1)-th iterated
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Lie brackets are zero. We next define dilations δλ on Rn × Rl by

δλ(x, y) = (λx, λk+1y) (4.3.1)

whenever p = (x, y) ∈ GS and λ > 0. Then, Xi and Yj for all i and j are homogeneous of degree one with

respect to the dilations. Hence, the Carnot-Carathéodory distance satisfies

dcc (δλ(p, q)) = λ dcc(p, q). (4.3.2)

for all p, q ∈ GS. The set of all singular points is

S := ∪ni=1{(x, y) ∈ Rn × Rl | xi = 0}.

The metric on GS\S is the Riemannian metric ds2 making Xi and Yj where i = 1, 2, · · · , n and j = 1, 2, · · · , l

into an orthonormal basis for the tangent space,

ds2 =

n∑
i=1

dx2
i +

l∑
j=1

dy2
j

x2αj . (4.3.3)

The metric can be extended across S as the Carnot-Carathéodory distance by means of the length elements

ds2, since the horizontal distribution satisfies the Hörmander condition.

For any horizontal curve γ : [0, 1] → GS, we write γ(t) = (x1(t), · · · , xn(t), y1(t), · · · , yl(t)) for a

parametrized horizontal curve. Then, we have

length(γ) =

∫ 1

0

√√√√ n∑
i=1

x′i(t)
2

+

l∑
j=1

y′j(t)
2

x(t)2αj dt (4.3.4)

where x(t)2αj

:= x1(t)
2α1

j

x2(t)
2α2

j

· · · xn(t)
2αn

j

.

The following proposition gives distance estimates for the cc-distance on GS. We emphasize that A is

proper subset of S and µ(S \ A) = 0 with respect to Lebesgue measure.

Proposition 4.3.3. Let A be {0} × Rl. The cc-distance on A is comparable to k+1
√
dE. Now fix points

p = (x, y) and q = (v, w) in GS \ A. We have the following distance estimates:

c1
{ n∑
i=1

|xi−vi|+
l∑

j=1

|yj − wj |∑n
i=1 min(|xi|, |vi|)k +

∑l
j=1 |yj − wj |

k
k+1

} ≤ dcc(p, q) ≤ c2{
n∑
i=1

|xi−vi|+
l∑

j=1

|yj−wj |
1

k+1 }

(4.3.5)
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Here c1 and c2 are constants independent of p and q.

Proof. The first estimation of the cc-distance on A is deduced from equation (4.3.1). The upper bound in

equation (4.3.5) comes from the triangle inequality. We will use equation (4.3.4) to get the lower bound

in equation (4.3.5). Let γ(t) = (x1(t), · · · , xn(t), y1(t), · · · , yl(t)) be a parametrized horizontal curve

joining p to q where t ∈ [0, 1]. Then, (∗) length(γ) ≥ |xi − vi| for all i = 1, 2, · · · , n. If there exists

Ki such that |xi(t)| ≤ Ki for all t ∈ [0, 1]., then length(γ) ≥ K−k|yj − wj | for all j = 1, 2, , · · · , l

where K = maxi{Ki}. Otherwise, there exists ti ∈ [0, 1] such that |xi(ti)| ≥ Ki for all i and length(γ) ≥

length(γ̃) ≥ max{|xi(ti) − xi|, |xi(ti) − vi|} ≥ Ki − min{|xi|, |vi|} where γ̃ is a subcurves of γ joining p to

(x1(ti), · · · , xn(ti), y1(ti), · · · , yl(ti)) or q to (x1(ti), · · · , xn(ti), y1(ti), · · · , yl(ti)). Then , we have the

following:

(∗∗) length(γ) ≥ sup
Ki>max{|xi|,|vi|}

min
i, j
{Ki −min{|xi|, |vi|}, K−k|yj − wj |}

For the sake of simplicity for computation, we denote min{|xi|, |vi|} by ai and denote |yj −wj | by bj . When

we choose K satisfying the following:

n
∑
i

ai + n

∑
j bj∑

i ai
k +

∑
j bj

k
k+1

≤ nKi ≤ nK ≤ (1 + n)nl
1
k (
∑
i

ai
k +

∑
j

bj
k

k+1 )
1
k (4.3.6)

Then, we can see that

(1) Ki − ai ≥
∑
j bj∑

i ai
k +

∑
j bj

k
k+1

,

(2)
bj
Kk
≥

∑
j bj∑

i ai
k +

∑
j bj

k
k+1

.

and, hence (∗∗) length(γ) ≥ |yj − wj |
(1 + n)kl(

∑
i min{|xi|, |vi|}k +

∑
j |yj − wj |

k
k+1 )

for all j. We can compute the

lower bound in equation (4.3.5) by averaging (∗) and (∗∗) for all i and j.

We next consider the lattice of points in Rn × Rl whose coordinates are integers. Then, this lattice

determines a mesh M0×M0. For each j ∈ Z, consider the submesh Mj = 2−jM0× 2−j(k+1)M0 which is set

of cubes in Rn × Rl of sidelengths 2−j and 2−j(k+1) in Rn and in Rl respectively. From the above distance

estimates, GS \ A has a Whitney decomposition. We recall this in the following Proposition 4.3.4.

Proposition 4.3.4. Let A be {0} × Rl. Then its complement Ω = GS \ A is the union of a sequence of

cubes Q , whose interiors are mutually disjoint and whose diameters are approximately proportional to their

distances from A. More precisely,

(1) Ω = ∪Q∈WΩQ
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(2) Any two cubes are mutually disjoint.

(3) distcc(Q,A) ≤ diamcc(Q) ≤ 2c2(n+ l)distcc(Q,A).

The space of Grushin type is a locally doubling metric measure space with respect to Lebesgue measure

(see Theorem 4.1.9). Because of self-similarity, it is a globally doubling metric measure space from similar

argument as Remark 4.1.11. It is uniformly perfect. Since cc-distance on A is comparable to k+1
√
dE , we

apply Assouad’s theorem. Then we have a L-bi-Lipschitz embedding f from A into Rm for some m and

L. If we verify the condition of uniformly Christ-local bi-Lipschitz embeddings, then we can conclude the

following corollary.

Corollary 4.3.5. The space of Grushin type endowed with Carnot-Carathéodory distance admits a bi-

Lipschitz embedding into some Euclidean space.

It is enough to verify uniformly Christ-local bi-Lipschitz embeddings. In this case, Q∗ is the set of all

Whitney cubes which touch Q and Q∗∗ is the set of all Whitney cubes which touch Q∗ (see Definition 2.4.4).

Lemma 4.3.6. The complement of A admits uniformly Christ-local bi-Lipschitz embeddings.

Proof. We may assume that Q∗∗ does not touch the set of singular points S. If Q∗∗ intersects S, then

Q∗∗ ∩ S is measure zero with respect to Lebesgue measure. Therefore, bi-Lipschitz embeddings on each

Q∗∗ \ S can be extended to Q∗∗. We observe that Q∗∗ is a closed (n+ l)-dimensional Riemannian manifold

for each Q. For any two elements Q and Q′ in WΩ, we have Q′ = Φ(Q) where Φ is composition of

translation map ς with respect to {0} × Rl and expansion map ψ(x, y) = (2(j′−j)x, 2(j′−j)(k+1)y). Then,

we have diam(Q′) = 2(j′−j)diam(Q) from Proposition 4.3.4. Therefore, we can cover all Q∗∗ by balls

B1, B2, · · · , BN of radius diam(Q) > 0 where N is independent of Q. For each i, there exist L-bi-Lipschitz

diffeomorphisms for some L

ϕi : 5Bi → ϕi(5Bi) ⊂ R(n+l).

Without loss of generality, we may assume that |ϕi(x)| ≥ diam(Q) for all i and x ∈ 5Bi. let ui ∈ C∞0 (2Bi)

be such that 0 ≤ ui ≤ 1 and ui|Bi
= 1, and let vi ∈ C∞0 (5Bi) be such that 0 ≤ vi ≤ 1 and vi|4Bi

= 1. Then,

we define ϕ : X → R(n+l)N × R(n+l)N

ϕ(x) := (ϕ1(x)u1(x), · · · , ϕN (x)uN (x), ϕ1(x)v1(x), · · · , ϕN (x)vN (x))

Obviously ϕ is smooth, and hence it is Lipschitz with Lipschitz constant 2LN . We will show that ϕ is

co-Lipschitz. To this end, let us assume first that d(x, y) > 3 diam(Q). Then, there exists i such that
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ui(x) = 1 and vi(x) = 0. Thus,

|ϕ(x)− ϕ(y)| ≥ |ϕi(x)ui(x)− ϕi(y)ui(y)|

= |ϕi(x)|

≥ diam(Q) ≥ 1

C(C1, A, δ)
d(x, y)

The last inequality arises from comparability of diam(Q) and diam(Q∗∗) ( see Proposition 2.4.7 ). On the

other hand, if d(x, y) ≤ 3diam(Q), then there exists i such that vi(x) = 1 = vi(y). Thus,

|ϕ(x)− ϕ(y)| ≥ |ϕi(x)− ϕi(y)| ≥ 1

L
d(x, y).

Therefore, we have uniformly local bi-Lipschitz embeddings on each Q∗∗ into R2(n+l)N . The bi-Lipschitz

constant and dimension of the target space are independent of Q.
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Chapter 5

Questions and Remarks

5.1 Questions and Remarks

So far we have given a characterization of Euclidean bi-Lipschitz embeddability of uniformly perfect

metric spaces supporting a doubling measure. The hypothesis in Theorem 3.1.1 is based on a Christ-Whitney

decomposition deduced from uniform perfectness and existence of a doubling measure. We emphasize that

uniform perfectness is only used in Section 2.4 to show existence of a Christ-Whitney decomposition.

Question 5.1.1. Can the condition of uniform perfectness be weakened?

From Theorem 3.1.1, the dimension M1 +MM2 + 1 of the Euclidean space depends on the bi-Lipschitz

constant L1 and the doubling constant of µ. However, the number of colors M is not optimal. Thus, the

following question naturally arises.

Question 5.1.2. What is the minimal dimension of Euclidean space into which the metric space satisfying

the conditions in Theorem 3.1.1 bi-Lipschitzly embeds?

As an application of Theorem 3.1.1, we have considered the space of Grushin type with fixed length

|αj | = k for all j = 1, 2, · · · , n. We now can consider the space of Grushin type with extended horizontal

distribution on Rn × Rl.

Definition 5.1.3. The extended space of Grushin type is Rn ×Rl for n, l ∈ N with horizontal distribution

spanned by Xi and Yj for i = 1, 2, , · · · , n and j = 1, 2, , · · · , l

Xi =
∂

∂xi
and Yj = xα

j ∂

∂yj
.

Remark 5.1.4. We emphasize that the lengths |αji | can be distinct in Definition 4.3.1.

It seems that we can follow similar steps to prove embeddability. However, some of the technical details

must be checked.
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Conjecture 1. The extended space of Grushin type equipped with Carnot-Carathéodory distance admits a

bi-Lipschitz embedding into Euclidean space.

In the case of spaces of Grushin type, horizontal distributions are good enough to have uniformly Christ-

local embeddings. Therefore, the following problem naturally comes up.

Problem 5.1.5. Find sufficient conditions on a higher dimensional horizontal distribution in a given sub-

Riemannian manifold so as to guarantee the existence of uniformly Christ-local bi-Lipschitz embeddability.

Even more generally, we meet the following problem:

Problem 5.1.6. Characterize Christ-local bi-Lipschitz embeddability.

If Problem 5.1.6 were solved, then we could characterize bi-Lipschitz embeddable metric spaces with

geometric and analytic criteria. Therefore, we could determine which metric spaces admit a bi-Lipschitz

embedding and we can classify metric spaces which are subsets of Euclidean space.

Problem 5.1.7. Find other examples of sub-Riemannian manifolds that satisfy conditions in Theorem 3.1.1

and hence, embed bi-Lipschitzly into Euclidean space.
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