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ABSTRACT

Gradient descent, conjugate gradient, and other iterative algorithms are a

powerful class of algorithms; however, they can take a long time for conver-

gence. Baseline accelerator designs feature insufficient coverage of operations

and do not work well on the problems we target. In this thesis we present

a novel hardware architecture for accelerating gradient descent and other

similar algorithms. To support this architecture, we also present a sparse

matrix-vector storage format, and software support for utilizing the format,

so that it can be efficiently mapped onto hardware which is also well suited for

dense operations. We show that the accelerator design outperforms similar

designs which target only the most dominant operation of a given algorithm,

providing substantial energy and performance benefits. We further show that

the accelerator can be reasonably implemented on a general purpose CPU

with small area overhead.
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CHAPTER 1

INTRODUCTION

Gradient descent, conjugate gradient, and other numerical optimization al-

gorithms constitute a powerful class of applications which are heavily used

in scientific and numerical computing. Due to the heavily numeric nature

of these algorithms, they can take advantage of specialized hardware which

can provide both performance and energy benefits. Traditionally this has

been exploited via the use of reconfigurable hardware such as FPGAs or the

use of hardware designed for highly parallel floating-point computation such

as GPUs. While these approaches have been very promising, further sub-

stantial energy gains can be made through the use of hardware specifically

designed to support these numerical optimizations. Furthermore, traditional

accelerators lack adaptability in terms of the operations they can execute

and the sparsity patterns of sparse matrices they can effectively handle. (Of

particular interest are recent investigations into the robustness benefits of

transforming non-numeric algorithms into numerical optimization problems

which results in matrices which are ill-suited to traditional hardware accel-

eration techniques [1].)

We propose a novel architecture, termed the “solver engine,” which is capa-

ble of executing a number of linear algebra operations to support numerical

algorithms utilizing dedicated low power hardware. Because it is designed

to be integrated onto a die along with a general purpose CPU, it will be

more area limited than FPGA based accelerators. Thus it must work with

buffer space which comprises an acceptably small amount of die area. The

solver engine design will also be fixed at fabrication time, unlike an FPGA.

As such, it must be able to support a variety of algorithms and operations

since it cannot be reconfigured on demand.

To support this architecture, we use a novel sparse matrix-vector multi-

plication format, row blocked coordinate list, along with a static scheduling

algorithm which provides several benefits. Firstly, it enables the efficient exe-
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cution of sparse matrix-vector multiplication with matrices which have spar-

sity patterns which cannot be handled by traditional accelerators. Secondly,

it is able to be easily executed on hardware which is also able to efficiently

execute dense matrix and vector operations. This allows it to execute a va-

riety of operations while sharing the majority of its hardware (including all

the floating point hardware) without the need for reconfigurable elements.

Finally, it addresses several general flaws in traditional accelerators such as

the use of shared, centralized structures.

The remainder of the thesis is organized as follows. Chapter 2 examines

gradient descent and conjugate gradient, describes the requirements that

those algorithms place on the solver engine, and motivates the need to sup-

port a variety of operations. Chapter 3 describes the system architecture

of a CPU with a solver engine integrated onto the chip, the architectural

layout of the solver engine itself, and the algorithms it uses to perform each

of its operations. Chapter 4 lays out the software support necessary for the

use of the solver engine, including the format of row-blocked coordinate list

and the way in which sparse matrices are statically scheduled on the solver

engine. Chapter 5 demonstrates how the specific characteristics of the solver

engine used in our experiments were derived, describes the simulation infras-

tructure, and examines the benchmarks used in our experiments. Chapter 6

describes the results of our experiments. Chapter 7 describes related work

in sparse matrix formats and hardware linear algebra accelerators. Chapter

8 concludes.
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CHAPTER 2

BACKGROUND AND MOTIVATION

Conjugate gradient [2], gradient descent [3], and other iterative optimization

algorithms are a powerful class of algorithms. Of particular interest is their

inherent error tolerance [1]. All iterative optimization algorithms work, in

general, by defining a function f(x) to be minimized, choosing a starting

location for x, iteratively choosing a direction, and then moving x along the

chosen direction with a certain step size. It is this behavior that provides

their innate error tolerance, because as long as the errors are bounded, the

algorithms can still make forward progress each iteration (technically, regres-

sion is possible in some iterations as long as the net progress is towards the

correct solution). The presence of errors does have negative impact on the

speed of convergence. Also, errors may weaken the guarantee of convergence

for algorithms such as conjugate gradient.

In this chapter, we discuss the construction of the gradient-based iterative

optimization algorithms and motivate the design requirements of the solver

engine, the hardware accelerator for such algorithms.

2.1 Gradient Descent

Also known as the method of steepest descent, gradient descent can be used

to solve arbitrary unconstrained linear programs. The goal is to minimize a

function f(x) by moving in the direction opposite and proportional to the

gradient, ∇f(x). The pseudocode for the basic algorithm is in Figure 2.1.

Every iteration of the algorithm consists of calculating the gradient at the

current position x, multiplying the gradient by a scaling factor, and adding

the result to the current position. The algorithm can also be run for a fixed

number of iterations, but there is no theoretical guarantee on the accuracy

of the result.
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while ||∇f(x)||2 > Threshold
x = x+ α∇f(x)

Figure 2.1: The gradient descent algorithm.

Linear programming is p-complete and is, therefore, capable of solving

a large class of applications [4]. Applications can be converted into linear

programs by defining a cost function c(x) and a set of constraints such that

c(x) will be minimized when x is the correct solution. In order to solve

this linear program, we need to convert it from a constrained optimization

problem to an unconstrained optimization problem. We do this by converting

the constraints into a numerical format defined by a matrix A and a vector

b, and minimizing

f(x) = c(x) + λ([Ax− b]+)2 (2.1)

where [.]+ is defined as max(., 0) and λ is chosen to be a sufficiently large

scaling factor. Essentially, each row of A defines a constraint on a subset of

values of x by forcing the linear combination of the values in x to be less

than the corresponding value of b. The gradient of f becomes

∇f(x) = ∇c(x) + λAT [Ax− b]+ (2.2)

As will be clear in later discussion, the performance of the solver engine

depends greatly on the sparsity of matrix A. Formulations of numeric ap-

plications yield A that may be dense or sparse. Converting non-numeric

applications into linear programs typically results in sparse A matrices.

Without errors, gradient descent-based algorithms are guaranteed to con-

verge to the correct answer as long as f(x) is convex. The function f(x) can

often be made convex even for non-numeric applications by constraining the

problem only partially. For example, we know that a correct solution vector

x for the graph matching problem will result in every value xi within x being

either 0 or 1. Therefore, our constraint may simply require that xi ≥ 0 and

xi ≤ 1. Since we can determine from the problem formulation that f will

be minimized only if xi = 0 or xi = 1 for all i, we will eventually converge

to a correct solution. With errors, convergence can still be guaranteed for

gradient descent-based problems as long as the step size α is monotonically
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decreasing, errors are independent, and the magnitude of the variance of the

errors is bounded [1].

Several optimizations are possible for gradient descent. An optimization of

particular interest exploits the regularity of the constraints. Constraints that

require that all elements of x must be above (or below) a certain value are

fairly common. When expressed in matrix form, such constraints result in

sections of A which are uniform and diagonal. The structure in A can then

be exploited to optimize performance/memory bandwidth. For example,

AT [Ax−b]+ (Equation 2.2) can be transformed into AT
1 [A1x−b1]++AT

2 [A2x−
b2]+ where A is a vertical concatenation of A1 and A2, and b is a vertical

concatenation of b1 and b2. Now, if A1 is diagonal, and A1 and b1 are both

uniform (which they may be for several problems because of the nature of

their constraints), we can replace A1 and b1 by a scalar each. This may

result in significantly lower memory bandwidth for computing AT [Ax− b]+.

Similarly, if b2 were uniform, we could simply use a single scalar instead of a

vector.

More details on gradient descent can be found in [3].

2.2 Conjugate Gradient

Conjugate gradient is an iterative numerical optimization algorithm which

can be used to solve problems of the form Ax = b, where A is an NxN

symmetric positive-definite matrix. For such problems, conjugate gradient

is significantly more powerful than gradient descent as conjugate gradient

is guaranteed to converge in N iterations. Conjugate gradient can also be

used in cases where A is not a symmetric positive definite matrix by defining

A′ = ATA and b′ = AT b, and then solving A′x = b′. The resulting vector x

minimizes ||Ax−b||2 (note that this is the goal of the least squares problem).

Figure 2.2 displays the pseudocode for conjugate gradient. While conjugate

gradient is more powerful than gradient descent for a class of problems, it

is also less error tolerant as computation in an iteration is not based on the

current position of x. Thus, unlike gradient descent, errors affecting the

current position of x cannot get corrected in future iterations.

More details on conjugate gradient can be found in [2].

5



Figure 2.2: The conjugate gradient algorithm.

2.3 Design Requirements of a Solver Engine

Typical hardware accelerator designs focus on accelerating one operation.

For example, in a work on accelerating dense matrix operations, Zhuo and

Prasanna present four different designs for four different operations: dot

product, matrix-matrix multiplication, matrix-vector multiplication, and LU

decomposition [5]. Similarly, [6] contains a hardware design which only accel-

erates sparse matrix-vector multiplication and nothing else. (More detailed

examinations of these works can be found in Section 7.2).

Our target algorithms feature a number of different operations, even within

a single algorithm. Consider gradient descent-based algorithms. Such algo-

rithms often deal with sparse matrices due to the nature of the constraints,

especially for programs that are traditionally non-numeric (e.g., bipartite

graph matching). As such, sparse matrix multiplications need to be sup-

ported in any accelerator architecture for such algorithms. However, such

algorithms are also heavy in vector operations due to the sparsity of the ma-

trices. So, the accelerator may need to support vector operations as well.

In fact, vector operations take approximately 60.6% of the execution time

that the sparse matrix-vector multiplication does for graph matching. Even

if the matrix is dense, the vector operations may still comprise a significant

fraction of the execution time depending on the shape of the matrix.

As another example, conjugate gradient iterations feature matrix-vector

multiplication, vector operations, and dot products. If the matrix is sparse,
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then the complexity of matrix-vector multiplication may be on par with the

vector operations as the matrix may only contain O(N) non-zero values.

With a random sparse matrix of size 150x150 with sparsity .05, we observed

that 27.6% of the iteration time is spent on vector operations, while 68.5% of

the time is spent on the matrix-vector product. If the matrix is dense, on the

other hand, the matrix-vector product will dominate since its computational

complexity will be O(N2), while the vector operations will have an O(N)

overhead. In fact, with a dense 150x150 matrix, the matrix-vector product

takes 93.5% of the execution time of the entire iteration.

In the case that A is not a symmetric positive definite matrix, ATAx = AT b

needs to be solved. If A is an MxN matrix, computing ATA will have a

computational complexity of O(MN2). Alternately, we can perform two

matrix-vector products per iteration (first calculating Ax, then multiplying

the resulting vector by AT ). This results in a computational complexity of

O(MN) per iteration for N iterations. Despite the fact that the compu-

tational complexities are the same, if M > N , it is much better to per-

form the matrix-matrix multiplication since matrix-matrix multiplication is

much more memory efficient than matrix-vector multiplication. If the matrix-

matrix multiplication is performed, every iteration will be dominated by a

matrix-vector multiplication involving ATA, an NxN matrix. This means

that each iteration will feature O(N2) complexity, and with N iterations the

total complexity of the iterative portion of the computation will be O(N3).

The ratio of work between the matrix-matrix multiplication and the iterative

computation will be determined by the ratio of M to N . Therefore, if M is

not substantially larger than N , the matrix-vector product will contribute a

significant enough fraction of the execution time to warrant acceleration.
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CHAPTER 3

A SOLVER ENGINE BASED SYSTEM
ARCHITECTURE FOR ACCELERATING

GRADIENT DESCENT AND CONJUGATE
GRADIENT

In this chapter, we examine the hardware support for accelerating gradient

descent and conjugate gradient. We first examine the overall system level

layout, showing how the solver engine is integrated onto a general purpose

CPU die. We also define the interface used to communicate with the solver

engine. We then examine the layout of individual processing elements and

describe how they are used to perform each of the solver engine’s target

operations.

3.1 System Layout

The solver engine is designed to be integrated onto a general purpose CPU

die. Figure 3.1 shows the system level layout of a single core augmented with

the solver engine. The memory interface of the core has been modified to

capture commands which should be routed to the solver engine. We have two

choices for connecting the solver engine to the on-chip interconnect. We can

give the solver engine its own interconnect port (and thus it would be treated

as an independent core from the point of view of the memory system), but

this may result in increased interconnect complexity due to the addition of

more nodes. Alternatively, the solver engine and the core could share one

port. However, sharing the port means that either non-trivial arbitration

between the core and the solver engine must be added or only one of the two

may be active at a time.

For now, we assume the solver engine can be given its own unique connec-

tion to the chip interconnect. In addition, the solver engine needs access to

the TLB via the addition of a new read port. Ideally we would store physical

addresses to avoid the need for the TLB; however, large matrices or vectors

may span multiple pages. Since we cannot guarantee that contiguous virtual

8



Figure 3.1: A diagram of a general purpose CPU augmented with the solver
engine. New components are in gray.

pages are also contiguous in physical memory, we need to store virtual ad-

dresses and translate every access. In the event that the solver engine suffers

a miss in the TLB, the core will need to process the miss just as if it suffered

the miss itself. Ideally, the miss latency will be hidden by the solver engine

prefetching far enough in advance, either naturally or by deliberately probing

ahead to force page misses.

Because the solver engine will be interacting with a standard core which

will have caches, we need to ensure coherence between the caches and the

solver engine. We have two choices here: integrate the solver engine with

the coherence protocol, or flush the caches manually to maintain coherence.

The challenge of integrating the solver engine into the coherence protocol is

that the solver engine does not cache data. As such, it needs to be able to

read the data from the cache without being marked as a sharer of the data

anywhere. Similarly when it writes data, the data needs to be invalidated

everywhere, rather than the solver being marked as the owner of modified

data. And since the solver engine cannot respond to coherence requests,

we need to ensure that no CPU is attempting to touch the data during the

operation of the solver engine.
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Flushing the data is more straightforward, although we still need to en-

sure that no CPU accesses the operand data while the solver is executing.

Obviously flushing the entire cache system is not ideal, since we will flush a

substantial amount of data which is not related to the solver engine’s opera-

tion. Instead, we would like to be able to flush only the data associated with

the matrices and vectors actually being used. We thus assume a targeted

invalidate of some kind will be available. Even if it requires some overhead

we only need to flush once (right at the beginning of the algorithm after we

have set up the matrices and vectors but before we start computation), so

we assume the cost is negligible.

We should note that the fact that we are not taking advantage of the data

being cached on chip does not negatively affect the performance of the solver

engine. The solver engine is designed assuming it will be memory bandwidth

limited. As such, even if higher effective bandwidth were available (due to

the data being cached), we could not take advantage of it. This does not

pose a problem as reasonable problem sizes will not fit within the cache and

will thus be bandwidth-bound anyway.

There is one final potential pitfall due to cache coherence due to false

sharing. If a matrix or vector starts or ends mid cache-line, there may be

unrelated data on the remainder of the cache line. If this is the case, we

cannot assure proper coherence. Standard cores may need to access and/or

modify that data, violating our otherwise enforceable condition that no CPU

access the operand data when a computation is in progress. Furthermore,

when the solver engine is writing data back to memory, we want to avoid

the overhead of needing to read-modify-write as this both increases memory

bandwidth and requires additional hardware. As such, we assume that all

matrices and vectors start at cache-line boundaries and are padded to cache-

line length. Given the large size of the matrices and vectors we will be

operating on, this overhead is negligible.

3.2 Engine Interface

The solver engine presents a memory-mapped IO interface. A range of ad-

dresses correspond to a set of registers inside the solver engine, while one

address is used to send commands. When a command is sent via the com-
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mand address, the solver engine begins immediately computing the com-

mand, blocking all subsequent IO until it has finished the computation.

The solver engine contains four sets of registers, for scalar values, vectors,

dense matrices, and sparse matrices. (We could also have one set of registers

and flag what kind of register it is, but different types of registers need

different amounts of storage.) Scalar registers hold a single, double precision,

floating point number. Vector registers hold a virtual pointer into memory

pointing to the start of the vector as well as the length of the vector. Dense

matrix registers similarly contain a pointer to memory as well as the width

and height of the matrix. Sparse matrices contain memory pointers to point

to each of the RBCOO arrays, the width and height of the matrix, and the

length of both the val array and the blkIdx array.

The solver engine is capable of performing four different operations: Matrix

multiplication (C = ±AB), matrix-vector multiplication (c = ±Ab ± βd),

vector operations (c = ±αb ± βd), and dot products (c = ±ab). Sparse

matrices are only supported in matrix-vector multiplication. Each instruction

consists of the 2-bit op-code, the source and destination registers, and a few

additional bits of information. The instruction has 6 4-bit fields for the

registers, one each for α, β, A, B, C, and D. (Note that not all operands are

used in every operation, in which case the field should contain 0.) Whether

A, B, C, and D represent vectors or matrices is inferred from the instruction,

while an additional bit is used to flag if A is sparse.

There are two additional bits for each source register (A, B, and D) to

indicate whether or not the operand should be clipped. “00” indicates no

clipping. “01” indicates that all values in the operand less than 0 should be

treated as 0, while “10” does the same thing for values greater than 0. “11”

is invalid. The reason the solver engine supports these operations, as well as

the logic required, is described in Section 3.3.6. Finally, we need two bits,

one each to control the ± terms in the operations.

3.3 Solver Engine Architecture

The backbone of the solver engine is made up of an array of processing

elements (PE). The general layout can be seen in Figure 3.2. Each processing

element consists of a pipelined floating point multiplier, adder, and a small
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Figure 3.2: The general layout of the base architecture of the solver engine.

Figure 3.3: The general layout of a processing element. Wires are labeled as
for matrix-vector multiplication.

amount of local storage to accumulate values in. The layout of the basic

PE can be see in Figure 3.3. Defining an operation consists of supplying

the inputs to the multiplier of the PE, controlling which value in the local

storage the multiplication will be summed with, and controlling when the

local memory will be output. The following parameters define the size and

characteristics of the solver engine. The number of processing elements is

p, La refers to the latency of the adder, Si is the number of output values

which can be calculated at a time (and so each PE has Si
p

registers), and Sj

is the maximum block width in sparse matrix vector multiply.

3.3.1 Vector Operations

The easiest operations to support are vector operations, i.e., operations of

the form c = αb± βd where α and β are scalars and b, c, and d are vectors.

In this case, an Si sized block of b is streamed into the engine with one value
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assigned to each PE. The second input of the PEs is α which is broadcast

to all PEs. The output of the multiplier is summed with 0 and the output

of the adder is stored into local storage. Once Si values of αb have started

being calculated, the corresponding values of d are streamed in while β is

broadcast to the second PE input. The adder in the PE adds the newly

calculated βd with the previously stored αb.

Computation for consecutive blocks of Si output values can be overlapped

with no latency since αb is summed with 0 rather than the contents of local

storage. As such, at that point we can output the values in local storage

corresponding to the previous Si calculated values.

3.3.2 Sparse Matrix-Vector Multiplication

The most important operation the solver engine handles is of the form c =

Ab ± βd where A is a sparse matrix. The βd portion of the calculation

is handled similarly to the first half of a vector operation where Si values

of d are streamed in, multiplied by β, and stored. The solver engine then

continues the computation by multiplying one row of blocks in A by b to

calculate Si output values.

To perform the actual matrix-vector computation, the solver loads the next

Sj values of b starting at the next block’s starting column. The solver then

begins streaming in value, column, row tuples. A total of p values are read

in at a time, and one is passed out to each processor. The column index is

used to index into the buffered Sj values of b to be sent to the appropriate

PE. The row index is buffered along with the value itself and passed into

the PE. At the output of the multiplier, the row index is used to read the

appropriate value from the PE’s local storage to accumulate with. It is then

used at the output of the adder to write back into the local store. When

the solver has processed all values from the current block, it proceeds to

the next block simply by loading a new Sj chunk of b. (This chunk can

actually be preloaded while the previous block is calculating, so there is no

delay between blocks.) In order to handle padded zeros, we flag zero outputs

of the multiplier, but go ahead and read the value out of the local storage

indicated by the row index. We propagate the flag through the adder so

that when the (now non-zero) value reaches the output of the adder, we can
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disable writing that value to the local storage. Because each PE can only

read and write its local storage, all values associated with a row of A should

be sent to the same PE.

In between rows of A, we need to ensure that all Si
p

values stored in each

PE are output. Just like with vector operations, we can output those values

while calculating βd. In the event that we only want the solver engine to

calculate Ab without adding a vector, we still need to emulate the addition

to ensure the values get flushed out of the PEs and the local store in each PE

gets initialized to zero. This is done by detecting that β = 0 and ensuring

that both inputs to the PE are 0 during this time (instead of retrieving d

from memory). This overhead is small when compared to the actual matrix-

vector multiplication (Si
p

cycles) so there is no incentive to add complexity

to avoid it.

With a large number of processing elements all needing to read the buffered

portion of b, it may become too complex. If this is the case, the b buffer can

be replicated so that only a subset of processors read from one buffer. Since

the buffers are being preloaded during the previous block’s computation,

replicating the data will not affect the critical path and so will not present a

substantial burden.

3.3.3 Dense Matrix-Vector Multiplication

Dense matrix-vector multiplication proceeds similarly to sparse matrix-vector

multiplication. The primary difference is that instead of arbitrarily indexing

into the buffered Sj values of b, we know that every PE will access every

value of b in order. As such we can simply broadcast the relevant value of b

to each PE. We also no longer have the row indices to index into the PE’s

local storage. However, again because of the regular nature of the dense

matrix, we can simply generate the row indices deterministically.

One catch with dense matrix-vector multiplication is that we actually want

to read the data in column-major format. This requires that the matrix either

be stored in column-major format or that we transpose the matrix on the

fly. We examine the cost of dynamically transposing A in Section 3.3.6.
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3.3.4 Dense Matrix-Matrix Multiplication

Dense matrix-matrix multiplication utilizes a blocked rank-one update algo-

rithm to perform C = AB. Calculation is done on one block of the matrix

C at a time. Each block is of height i and width j. Since the block must fit

into the available Si words of storage, i ∗ j = Si. In our solver engine we use

i = p and j = Si
p

. We could use i > p, but this requires more complex control

and more buffering of values. Thus in our design, each PE is responsible for

a j sized row of C.

To calculate an ixj block in C (call the current block pC), we need i rows

from A (call it pA) and j columns from B (call it pB). pC is initialized to all

0. Then we calculate the outer product of the kth column of pA and the kth

row of pB, which results in an ixj panel which is summed with the current

value of pC. Once all N columns of pA and rows of pB are multiplied, the

panel is complete and can be output while work begins on the next panel.

In order to actually perform this computation, the solver engine reads in

a column of i values from pA and buffers them. (Since in the solver engine

i = p, we only need two registers per PE: one for the current column and one

to preload the next column.) The appropriate row from pB is streamed in

one value at a time and broadcast to each PE. Once we have read the entire

row of j values from pB, we move to the next column of pA and the next

row of pB.

To handle the transition between blocks of C, we rely on the fact that for

the first outer product for a panel it is being summed with 0. Thus, at the

point we would normally read from local storage in the PE to send to the

adder, we can instead send that value from the previous panel out of the PE.

This way there is no latency between blocks. Again, like with dense matrix-

vector multiplication, A needs to be in column major format. B, meanwhile,

needs to be in row-major format. We will examine the implications of this

in Section 3.3.6.

3.3.5 Dot Product

Supporting dot products requires the most additional hardware since, unlike

the other operations, we cannot assign each PE an independent set of work.

Just as with vector operations, we pass out p values of the first vector per
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Figure 3.4: The flow of values in the adder tree. The output of the final PE
loops back into itself to finish the summation.

cycle, one to each processor. However unlike vector operations, rather than

broadcast a single value to all processing elements for the second operand,

we also pass out the corresponding p values of the second vector instead.

We continuously stream in these values until both vectors have been read in.

Meanwhile, the output of the adder in each PE is directly routed back into

its input rather than written into local storage.

The first stage of the dot product finishes when the multiplier has finished

multiplying all values input into the PE. At this point, there are La values

in each PE which need to be summed up. We perform this summation by

overlaying an adder tree on top of the processing elements. In other words,

the output of each adder is routed to one of the inputs of the adder above it

in the adder tree. Now, with p PEs, we can only create an adder tree with

p−1 PEs. The output of the top of the adder tree is routed to the multiplier-

side input of the one remaining PE’s adder. This final PE’s output remains

looped back to itself just as in the first stage. As computation continues, the

final PE will eventually sum all the remaining values until La values remain,

all in the final PE’s pipeline. An illustration of this adder tree can be seen

in Figure 3.4.

At this point, we transition to the third stage of the computation. A

special purpose control unit controls the adder writing to the PE’s local

storage, delaying until the next valid value is at the output of the adder,

then reading it back out to sum with the most recent output. An illustration

of this process can be seen in Figure 3.5. Because the control unit need only

be present in one PE, and because the adder latency La will be very small,

this final control unit need not be very complex.
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Figure 3.5: A view of the adder pipeline and registers of the final PE in the
dot product tree assuming an adder latency of 4 cycles.

While the dot product process may seem rather logically complex, it does

not require substantial additional hardware and still performs very efficiently.

The adder tree can be implemented by the addition of a single multiplexer

per PE. As for the performance, the first stage will require N
p

cycles, where

N is the length of each vector. The second stage will require La cycles per

level of the adder tree, which will be log2p levels tall, for Lalog2p total cycles.

In the final stage, we halve the number of remaining values every La cycles

and start with La cycles, so it will take La(1 + log2La) cycles. The first

stage will clearly dominate for large N , as it would for any hardware design

to calculate dot products.

3.3.6 Additional Support

As noted in the discussion of dense matrix-vector and matrix-matrix multi-

plication, we either need to store some matrices in column major format or

we need to transpose row-major matrices on the fly. Assuming a read from
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memory returns a line of W words, we would need a total of 2 ∗ W ∗ Si
registers. The solver engine would perform Si reads to fill half the registers,

and then read the values out in column major format. In order to hide the

latency of doing this buffering, we would also need to be loading the next Si

lines at the same time. Assuming 64-byte lines and Si = 256, we would need

32 kB of storage total to perform this transposition.

This does cost a fairly substantial amount of area, more than the rest of

the solver engine with 32 PEs; however, because it is low utilization, it does

not cost a substantial amount of power relative to the PEs themselves. As

such we would consider it an acceptable cost in a general purpose accelerator.

However given our target applications, there is not sufficient justification for

its use. In practice, only conjugate gradient uses dense matrices. Conjugate

gradient calculates ATA, so it requires A in row-major format and AT in

column-major format. Since these two are equivalent, we only need one copy

of A. The further matrix-vector multiplications are with a symmetric matrix

which obviously would never require transposition.

Gradient descent often needs to calculate [Ax − b]+, where [.]+ means

max(., 0). (This is used to enforce one-sided constraints, where we only

want the penalty to apply if Ax − b > 0.) This can be done with a single

multiplexer per PE which examines the sign bit of the incoming value. If

the sign bit is negative, the multiplexer passes 0; otherwise, it passes the

value through. This can be trivially modified to also support the opposite

operation, min(., 0).

3.3.7 Complexity of Supporting Multiple Operations

While supporting multiple operations will undoubtedly provide positive per-

formance benefits, they must be weighed against the additional complexity

of supporting these operations.

Table 3.1 summarizes the components of the architecture and which op-

erations utilize them. (Buffers are referred to with the labels in Figure 3.2.)

Clearly, most operations need most of the components to be present. More

importantly, except for the multiplexers to overlay the adder tree on the

PEs, there are no major components which are only necessary due to the

support of multiple operations. A is always necessary so that values can be
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Table 3.1: The operations of the system and which components they utilize

Unit Used By

A All
x Dense MM, SpMV, Dense MV
y All

Floating Point Multiplier All
Floating Point Adder All

PE Registers All but Dot Product
Adder Tree Dot Product

preloaded to be passed out to the PEs simultaneously. The x buffer is always

necessary in matrix operations to store the current row of the matrix B (for

matrix-matrix multiplication) or the current segment of x (for matrix-vector

multiplication). The y buffer is always necessary to store the output while

it is written off chip so that the PEs can continue processing. The adder

tree will contribute some additional logic in the amount of one additional

multiplexer per PE. There will also be some additional complexity in the

control logic since the control unit must support generating control signals

for multiple operations; however, the vast majority of the area of the accel-

erator will be taken up by the floating point units and buffers. Thus any

additional control complexity should be minor relative to the overall area of

the accelerator.
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CHAPTER 4

SOFTWARE SUPPORT FOR THE SOLVER
ENGINE

In this chapter, we examine the software support necessary for efficient use

of the solver engine described in Chapter 3. First, we define a new sparse

matrix storage format, the Row Blocked Coordinate List (RBCOO). Sparse

matrix-vector multiplication requires that the x vector be buffered on chip for

reasonable performance, and a blocked format ensures that only a segment

of x will be accessed at any given time. This allows us to buffer only the

active segments of x, as otherwise we would be limited to problem sizes

where x was small enough to fit on the chip in its entirety. Blocked formats

also allow for a lower memory footprint by storing lower precision relative

indices for each value, and only storing full precision absolute indices for each

block [7]. Next, we describe scheduling values within the RBCOO format,

which consists of reordering non-zero values and adding padding zeros such

that values are presented to the correct processing element in an order which

does not cause a data hazard due to the adder pipeline. We also describe

two further optimizations which can be used to improve the performance of

the RBCOO format on the solver engine.

4.1 Row Blocked Coordinate List Format

Compressed sparse row (CSR) or compressed sparse column (CSC) are fairly

common sparse matrix formats. However they can be somewhat complex

to execute in parallel when streaming in the values as only one row (for

CSR) or column (CSC) can be scheduled at a time (without complex logic).

This is particularly a problem as the sparse matrices seen in gradient descent

often have very few values in one dimension. For example, bipartite graph

matching (which will be described in detail in Chapter 5) features n values in

one dimension and 2 values in the other for problem size n. This will result
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in extremely poor behavior as a number of zeros will need to be used to pad

the computation, drastically limiting the effective speedup.

Instead, we store each subblock as a coordinate list (COO). We can then

arbitrarily reorder the values within the block. Given p processing elements,

every p contiguous values represent one cycle of values, each being assigned

to a different processing element. The values are ordered so that they will

be statically scheduled in such a way as to prevent data hazards and so that

there is no need for global storage that all processing elements need to be

able to write to.

The RBCOO matrix format itself consists of six arrays of data. The first

array, val, is an array which stores all the non-zero values in the matrix (as

well as any zeros added for padding purposes). The row and column indices

of each value relative to the upper left corner of the block are stored in

relColIdx and relRowIdx. Because these indices are relative and we know

the maximum block size, we do not need full 32-bit integers. We actually

only need 8-bit integers if blocks are limited to 256x256.

The remaining three arrays correspond to storing pointers to the start of

each block in a CSR format. The blockP tr array stores an index into val,

relColIdx, and relRowIdx which points to the start of a block. The block

column indices are stored in blockColIdx. The ith value of blockColIdx

corresponds to the first column containing a non-zero value in the ith block.

The blockRowPtr array contains an index into the blockP tr array, indicating

that that block is the start of a new row of blocks. An example matrix is

shown in Figure 4.1, along with the corresponding CSR matrix.

4.2 Scheduling

In its unscheduled and unpadded format, RBCOO will feature a smaller

memory footprint than the corresponding CSR matrix due to the use of rela-

tive indices. We could save even more memory by storing the blocks in CSR

format while still using relative indices. However, the choice of using a coor-

dinate list was made because the additional memory saved is not substantial

enough to make up for the fact that we can no longer arbitrarily reorder

values within the block. We rely on this ability to reorder values (and to pad

with zeros) to efficiently utilize all processing elements.
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Figure 4.1: An example matrix encoded as CSR and as RBCOO with a 2x2
block size. Semicolons indicate boundaries between blocks for clarity. The
RBCOO matrix has not been padded with zeros or reordered for scheduling
on the hardware.

The computation will progress through an entire row of blocks before pro-

gressing to the next row, meaning that only a portion of the output vector

is active at any given time. Each processing element will be in charge of

a subset of the active block of the output vector. Thus values for a given

row of the current block need to always be handled by the same processing

element. (By doing this we avoid a globally written structure or any need for

inter-processing element communication.) Because the floating point units

will be pipelined, there is a potential data hazard. If a new value from a row

of A is used before a previous value from the same row has exited the adder

pipeline, a data hazard will occur because both will try to accumulate with

the same register in local storage. Thus the scheduling algorithm also needs

to ensure that at least La cycles will pass between references to the same

row.

We currently use a greedy scheduling algorithm outlined in Figure 4.2.

Each “cycle” of scheduling consists of choosing p values, one for each pro-

cessing element. For each PE we examine the rows assigned to that PE and

choose the row with the largest number of values remaining that has not

been scheduled in the previous La cycles. If no row can be chosen (because

this processing element has scheduled all its non-zero values in the current

block, or because all its remaining non-zero values are in rows which have

been too recently scheduled), the algorithm inserts a padded zero. As we

will see in Section 6.4, the overhead of the extra padded zeros is small given
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for each sub-block:

while unscheduled non-zero values remain in current sub-block:

for each processing element PE:

R = all rows assigned to PE not scheduled in previous La cycles

if R empty:

schedule padded 0

else:

choose row in R with maximum remaining non-zero values

schedule next value of chosen row

Figure 4.2: Pseudocode for scheduling the RBCOO matrix to run on the
solver engine. Scheduling consists of choosing the order of values and
padding with zeros when necessary. La refers to the latency of the adder.

large enough, well behaved matrices.

In addition to the overhead added by padding zeros, we need to worry

about the computational complexity of the scheduling. Typically with sparse

matrices, the matrix is created using a format which allows for flexible ad-

dition of values such as a list-of-lists matrix (which comprises a linked list

of rows, each of which is a linked list of value, column pairs). The matrix

is then converted into a format which is more suitable to computation such

as CSR, or in our case RBCOO. The scheduling algorithm is applied dur-

ing this conversion when copying a list-of-lists matrix to an RBCOO matrix.

Converting from list-of-lists to CSR is O(nnz) where nnz is the number of

nonzero values.

Assuming the matrix is well-formed and contains roughly the same number

of non-zeros per block and the same number of non-zeros per row per block,

each block will consist of nnz
numBlocks

non-zero values. Each scheduling pass

will schedule p values and requires examining all S rows in the block. Thus

the complexity of scheduling each block will be roughly O( nnz
numBlocks∗p ∗S), or

O(nnz ∗ S
p
) = O(nnz) for the entire scheduling process. While the constant

factor is fairly substantial, for large enough problem sizes the conversion

overhead is acceptably small relative to the actual computation.
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Figure 4.3: The constraints for bipartite graph matching with 3 vertices in
each set. Blocks 1, 2, and 3 can use only a single PE at a time.

4.3 Column Shuffling

As noted above, scheduling does well if the matrices are well behaved, i.e., if

in each block, each processor has roughly the same number of non-zeros. Un-

fortunately, for some applications, the constraint matrix is not well behaved

due to the patterns the constraints form in the matrix. Figure 4.3 shows

the constraint matrix for graph matching on a fully connected 3,3 graph. It

is divided into blocks assuming a block size of 3 and 3 processing elements;

however, the same phenomenon occurs with larger block sizes and input sets.

Blocks 4, 5, and 6 all would schedule well. Each processing element handles

its one nonzero value in the block in the first cycle and the computation would

proceed to the next block. However blocks 1, 2, and 3 all contain non-zeros

only for one processing element. This means that the computation for each

block would require 3 ∗La cycles, requiring the other processing elements to

execute on padded zeros.

This results in unacceptable overheads when converting into RBCOO for-

mat. However, we can counter this by employing column shuffling. When

the matrix is being built, we shuffle the column indices as colnew = q ∗
colold%colWidth+1. Figure 4.4 shows the same matrix with shuffled columns.

As can be seen, the matrix will schedule much better than if it were unshuf-

fled. The only additional thing that must be done is that b must also have

its values shuffled in the same manner. This shuffling requires O(nnz) com-
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Figure 4.4: The constraints for bipartite graph matching with 3 vertices
when columns have been shuffled to achieve better scheduling with q = 11.
Each block can use 3 PEs at a time.

plexity since it needs to be applied once to each value in A, so it does not

increase the computational complexity of building the list-of-lists matrix.

4.4 Row Indices

Previously, we described how the row indices are relative to the start of the

block, and thus we can save memory by only utilizing enough bits to span

the maximum block height of 256 rows. One weakness of this approach is

that if we want to increase the number of PEs in the solver engine but keep

the block height fixed, each PE will be assigned fewer rows. This not only

negatively impacts the scheduling flexibility (resulting in more padded zeros),

but sets a hard limit on the maximum number of PEs which can be utilized.

To mitigate this problem, we can take advantage of the fact that row i is

statically assigned to PE i%p. This means that we need not store the bits

that determine which PE a value is being assigned to. For example, given 8

bit row indices and 32 PEs, the low 5 bits of the row index will be identical

for all rows assigned to the same PE. We can instead store the 6-13th bits of

the row position, allowing us to utilize a maximum block height of 213 = 8192

instead of 28 = 256. Essentially, instead of the entire solver engine being able

to address 256 rows at a time, each PE can address 256 rows at a time even
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if we scale the number of PEs. In practice, using this technique may result

in utilizing too much storage if the maximum possible block size is chosen.

However we can simply choose not to shift the row indices up as high as

possible, instead only shifting them up until we get the desired maximum

block height.
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CHAPTER 5

METHODOLOGY

In this section, we first derive the design characteristics of the solver engine

such as the number of processing elements and frequency. We then describe

our simulation methodology and infrastructure used to generate our results.

We also examine each of the example benchmarks and explain how they are

formulated.

5.1 Synthesis Results

To get baseline power and area estimates, we synthesized an unpipelined 64

bit floating point adder and multiplier in 45 nm using the Nangate 45 nm

Open Cell Library using an extremely small clock period to determine the

maximum frequency. The multiplier was capable of reaching a critical path

length of 15.67 ns, so 16 ns was chosen as the desired clock period. We resyn-

thesized with a 16 ns clock period and the resulting statistics are summarized

in Tables 5.1 and 5.2. (The synthesis results have 3 64-bit registers: two in-

put registers for the two operands and one output register for the output of

the unit.) We also derived statistics for a single 64-bit register.

We use these values to derive area and power characteristics for a design

point with a given number of processing elements p, frequency f (which in

turn determines the adder latency La), and the total number of rows the

solver engine can be working on at a time, Si. We derive the area and power

estimates from three primary sources, the processing elements themselves

(consisting of p adders, p multipliers, and Si total registers of storage), the

buffers for x during sparse matrix-vector multiplication (consisting of Sj reg-

isters), and the output buffers which hold the result of the computation for

a given set of rows before they are written back to memory (consisting of

Si registers). The resulting area and power numbers do neglect the control

27



Table 5.1: The power characterization of a 64 bit floating point adder and
multiplier at the 45 nm technology node

Unit Dynamic Power (µW) Leakage Power (µW)

Multiplier 822 213
Adder 152.93 37.8

Table 5.2: The area characterization of a 64 bit floating point adder and
multiplier at the 45 nm technology node

Unit Combinational Area (µm2) Register Area (µm2)

Multiplier 25033 1253
Adder 4906 1223

unit, TLB port, chip interconnect port, and routing; however, the compo-

nents included will account for the majority of the area and power of the

design.

5.2 Size of Engine

We have three variables we can set in our design: the number of processing

elements p, the frequency f (which implicitly determines the adder latency

La), and the number of rows per block in our matrix format, Si. (Refer

to Section 4.4 for an explanation of why we can vary Si.) There are two

obvious restrictions on the overall design. The first is that it should not

consume too much power and the second is that it should not take up too

much area. However memory bandwidth can end up being an even more

stringent restriction. Matrix vector multiplication and vector operations are

memory bound operations, requiring at least one value per processing element

per cycle.

Given that each PE will need to consume one double precision value per

cycle, we can estimate the necessary memory bandwidth as 8 ∗ p ∗ f = 8 ∗ p ∗
f0 ∗La, where f0 is the frequency of the unpipelined floating point units. We

assume the amount of memory bandwidth available to be 32 GB/s, which is

in line with current top-of-the-line desktop processors. Given that f0 = 62.5
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Table 5.3: The area of various design points of the solver engine in mm2

Si\p 64 32 16 8

256 1.69 1.12 0.83 0.68
512 1.91 1.33 1.04 0.9
1024 2.34 1.76 1.47 1.33
2048 3.2 2.63 2.34 2.19

Table 5.4: The power consumption of various design points of the solver
engine in W

Si\p 64 32 16 8

256 0.1 0.12 0.16 0.24
512 0.1 0.12 0.16 0.25
1024 0.1 0.13 0.17 0.27
2048 0.11 0.14 0.19 0.31

MHz from Section 5.1, we derive the restriction 8 ∗ 62.5 MHz ∗p ∗ La < 32

GB/s, or p ∗ La < 64. Also, given that we have 8 bits per PE to address

rows, we can restrict Si < 256 ∗ p.
We now have a tradeoff between many low latency processing elements and

fewer higher latency processing elements. Increasing the number of process-

ing elements and decreasing frequency increases area and decreases energy

consumption for the same memory bandwidth (disregarding padded zeros

due to scheduling). It also allows for a larger Si since each PE can address

up to 256 rows. This helps scheduling efficiency at the cost of area. However,

it turns out that having fewer higher latency processing elements itself also

improves scheduling efficiency even when maintaining the same number of

rows per PE because there are fewer PEs to pad zeros for when only a few PEs

have non-zero values remaining. Tables 5.3, 5.4, and 5.5 summarize the area,

power, and scheduling overhead of the design space. (The scheduling over-

head was calculated for a random 2048x2048 matrix with sparsity .052.) We

also show the performance of the various design points (solving the randomly

generated matrix with conjugate gradient) in Table 5.6. The performance

results show interesting behavior as diagonals of equal performance appear,

representing a range of area, energy points for the same performance.
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Table 5.5: The percentage overhead of padded zeros due to scheduling for
various design points

Si\p 64 32 16 8

256 27.49 18.92 12.67 7.1
512 19.97 14.02 8.68 5.37
1024 16.53 9.39 5.94 3.91
2048 11.19 6.67 4.15 2.23

Table 5.6: The execution time (in µs) of one iteration of conjugate gradient
on a 2048x2048 sparse matrix with sparsity 0.52 for varying design points
of the solver engine

Si\p 64 32 16 8

256 106.27 94.12 87.76 84
512 96.32 87.67 83.14 80.61
1024 89.22 83.88 80.43 77.94
2048 84.26 79.98 77.78 76.49

From this data, we can derive the optimal design point for our system.

For our experiments, we choose the design point with the lowest area *

power * performance product, which happens to be p = 16, f = 250 MHz,

La = 4 cycles, and Si = 256. The design features an area of .83 mm2 and

a power consumption of 0.16 W, well below a general purpose processor.

For real designs, decisions can be made depending on energy/power, area,

performance, or a combination of the three, but these exact decisions are

beyond the scope of this work. A summary of the characteristics of the

solver engine can be found in Table 5.7.

5.3 Simulation Infrastructure and Methodology

In order to perform experiments, we need to measure the performance of both

the standard core as well as the solver engine itself. In order to measure the

performance of the general purpose core, we ran our applications on M5 in

system emulation mode. We augmented M5 to perform a purely functional

simulation of the solver engine and enabled utilizing the solver engine by
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Table 5.7: The characteristics of the solver engine

Frequency 250 MHz
Processing Elements 16

Adder/Multiplier Latency 4
Si 256
Sj 256

Memory Bandwidth 32 GB/s

Table 5.8: The characteristics of the general purpose core

Frequency 3.33 GHz
Issue/Execution Width 4

L1 Cache (I/D) 32 kB/64 kB
L2 Cache 2 MB

adding in syscalls which performed the requested operations instantaneously.

Just as the solver engine avoids caches, the functional solver engine simulator

retrieves data directly from memory. We further augmented M5 to allow the

core to force the write back and invalidation of data so that data being read

by the solver engine is coherent, just as a real system utilizing the solver

engine would need to. The characteristics of the general purpose out of order

core simulated are in Table 5.8.

Because we implemented only a functional simulator of the solver engine

itself, we can only measure the performance of the core using M5. In order

to measure the performance of the solver engine itself, we wrote analysis

routines with the same interface as the corresponding algorithms, gradient

descent or conjugate gradient. When called by the benchmarks themselves,

the analysis routines convert any sparse matrices into RBCOO format to

measure the overhead of the padded zeros, then measure the number of cycles

the solver engine is used per call and per iteration. These measurements

ignore memory latency as the solver engine has been designed such that it

overlaps computation with memory access. (There will be an initial delay

when a computation begins, but the total computation time is much greater

than the initial delay.) The analysis tool does take memory bandwidth into

account as it is the limiting factor on any operation but matrix multiplication.
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A summary of the characteristics of the solver engine is in Table 5.7.

In order to examine the robustness of our applications, we create an error

model which can be applied by both the functional units in M5’s CPU mod-

els and by the functional solver engine simulator. The time between errors is

determined by an exponential distribution. If an error occurs on a particular

computation, mantissa bits are flipped at random. Each mantissa bit flips

with an independent probability which is chosen such that the expected num-

ber of bits flipped per error is approximately 1. (Specifically, each mantissa

bit in a double precision number flips with probability .02, and each bit in

a single precision number flips with probability .04.) The error model does

not guarantee that at least one bit flips, so it is possible that even though an

error “occurs,” no bits are actually flipped. This happens with probability

.9852 = .35. All error rates or number of operations per error seen from here

on are adjusted to account for this.

5.4 Benchmarks

5.4.1 Bipartite Graph Matching

Bipartite graph matching involves finding the set of weighted edges in a

bipartite graph such that every vertex is adjacent to at most one edge in

the set and the total weight of the set is maximized. We use a complete

bipartite graph with equal nodes in each half. The Hungarian algorithm is

an O(V 2E) algorithm and is implemented by the OpenCV calcEMD2() call

which is utilized as the baseline non-robust algorithm [8].

Gradient descent is transformed into a constrained optimization problem

by treating the search variable X as a V xV matrix such that xij is 1 if the

edge between the ith node in one vertex set and the jth node in the other set

is in the maximum matching. Otherwise Xij is 0. Thus we want to minimize

−cij ∗ xij, where cij is the weight of the corresponding edge. We also need

to apply the constraints so that each vertex is adjacent to at most one edge.

This is done by requiring that every row in X contain at most one 1 and

every column contain at most one 1.

In order to further transform the problem into an unconstrained optimiza-

tion problem, we must assemble our constraint matrix A and vector b. We
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Figure 5.1: The constraints for maxflow with 4 nodes. The label x23
indicates the column is associated with the edge from node 2 to node 3.
Each row is enforcing the constraint that the total flow entering a node
equals the total flow exiting a node. Nodes 0 and 3 are the source and sink
respectively, so there are no constraints on the total flow entering and
leaving the nodes.

need two sets of constraints. First we must constrain xij >= 0. Second, we

must constrain
∑V

i=0 xij <= 1∀j and
∑V

j=0 xij∀i. This results in a sparse

matrix with O(V 2) nonzero entries. An example for V = 3 can be seen in

Figure 4.3. The variable X which we are optimizing for also contains V 2

entries, and so the complexity for a single iteration of gradient descent on

this problem is O(V 2).

5.4.2 Maxflow

Given a weighted directional graph, the maximum flow problem attempts to

assign flows to each edge such that the total flow is maximized. The flow in

any given edge may not exceed the weight of the edge, and except for two

specially designated nodes (the source and the sink), the total flow entering

a node must be equal to the total flow exiting a node. The source allows an

infinite amount of flow to exit and the sink allows an infinite amount of flow

to enter.

In order to solve maxflow with gradient descent, we want to minimize

−
∑

i,j xij, where xij is the flow through the edge from vertex i to vertex

j. We subject X to three constraints, xij ≥ 0∀i, j, xij ≤ cij∀i, j (where cij

is the maximum capacity of the edge), and
∑

i xij =
∑

i xji for all nodes j

except the source and sink. An example constraints matrix for 4 vertices can

be seen in Figure 5.1. (The uniform constraints are not shown since they

are not implemented as a matrix.) The first two sets of constraints require

O(E) nonzero values total while the last set of constraints requires O(V )
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constraints with O(V ) non-zero elements each. Since E = O(V 2) for dense

graphs, the total complexity of a single iteration of gradient descent will be

O(V 2).

We use the Edmonds-Karp algorithm as the baseline non-robust algorithm.

Edmonds-Karp has an O(V E2) complexity.

5.4.3 Least Squares

The least squares problem is a common optimization problem where, given

an overdetermined set of equations on a set of variables x, we wish to find

the value of x which minimizes ||Ax − b||2. Each row of A corresponds to

an equation, each column corresponds to a variable in x, and we expect

substantially more equations than variables. In our experiments, A and b

are randomly generated. We utilize Cholesky decomposition in our baseline

non-robust version of least squares by solving ATAx = AT b. We then use

conjugate gradient to solve the same problem and compare the residuals of

both approaches. Overall, both algorithms spend most of their time on com-

puting ATA, since given MxN matrices ATA will be O(N2M). ATA itself

will be an NxN matrix, requiring an O(N2) matrix-vector multiplication

each iteration for N iterations. Since M > N in typical least squares prob-

lems, the matrix multiplication dominates. However if M and N scale at

the same rate, increasing problem size will keep the ratio of work between

matrix-matrix and matrix-vector operations the same.

5.4.4 System of Sparse Equations

Numerically solving sets of partial differential equations often results in need-

ing to solve Ax = b where A is symmetric, positive definite, and sparse simply

due to the nature of the problem being solved. To simulate this, we randomly

generate a symmetric positive definite sparse matrix A with sparsity between

.05 and .06 and solve it. Unlike with least squares, there is no need to compute

ATA, so most computation is spent on the matrix-vector operation in each

iteration of CG. Also, unlike least squares, we have found that Cholesky de-

composition performs poorly due to fill-in caused by the factorization. Thus

we consider the baseline to be CG itself. So while we gain no robustness
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due to algorithmic transformation, we still show the energy and performance

benefits of the solver engine in sparse matrix dependent algorithms.
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CHAPTER 6

RESULTS

6.1 Performance

In this chapter, we evaluate the performance and energy consumption of

the iterative algorithms when executed on a general purpose CPU (SW),

when executed on a general purpose CPU with support for the operation

which comprises the majority of the execution time (DOM), and when all

supportable operations are executed on the solver engine itself (ALL). Figure

6.1 shows the execution time of a single iteration of gradient descent solving

graph matching, normalized to the execution time of a single iteration with no

acceleration. We see that accelerating only the matrix-vector multiplication

does provide substantial speedup, but there is clearly room for improvement

by accelerating all operations.

Figure 6.2 shows performance results for gradient descent solving maxflow,

again normalized to a single iteration with no acceleration. Again, as ex-

pected, accelerating only sparse matrix-vector multiplication does provide

the most speedup, decreasing execution time by about a third. However,

accelerating vector operations decreases execution time by another third.

The performance results for using conjugate gradient to solve systems of

sparse equations is in Figure 6.3. Here, accelerating sparse matrix-vector

multiplication cuts the execution time for a single iteration approximately

in half. Further accelerating vector operations continues to provide benefit,

although it is less pronounced than in the gradient descent based algorithms.

This is partially because Amdahl’s law is coming into play with these smaller

vector sizes due to the non-accelerable overhead of conjugate gradient.

Least squares is different from the three previous benchmarks in that it

is dominated by dense matrix-matrix multiplication. Figure 6.4 shows the

execution time of the non-iterative computation (the matrix-matrix multipli-
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cation), the iterative computation (matrix-vector multiplication and vector

operations), and the total execution time (assuming the maximum required

iterations). The iterative computation is not shown for DOM since it is

not affected by accelerating matrix-matrix multiplication. All three are nor-

malized relative to the same computation done with no acceleration at all.

Accelerating only matrix-matrix multiplication provides around an order of

magnitude decrease in execution time at larger data sizes. However, this

acceleration is so effective that the execution time of the iterative portion of

the computation now makes up a substantial amount of the execution time.

Thus it is worthwhile to further accelerate the remaining operations. Note

that this is NOT an artifact of operating on small data sets. The matrix-

matrix multiplication is O(MN2) while the iterative matrix-vector multipli-

cation is O(N3). Assuming M and N scale at the same rate (as it does in

this work where M = 100N), the ratio of matrix-matrix multiplication to

matrix-vector multiplication will be roughly the same.
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Figure 6.1: Execution time of a single iteration of gradient descent solving
graph matching, normalized to the execution time of a single iteration
without acceleration.
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Figure 6.2: Execution time of a single iteration of gradient descent solving
maxflow, normalized to the execution time of a single iteration without
acceleration.
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Figure 6.3: Execution time of a single iteration of conjugate gradient with a
sparse matrix. Time is normalized to the same computation without
acceleration.
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Figure 6.4: Execution time of the static computation, iterative
computation, and total computation of conjugate gradient solving least
squares. Times are normalized to the same computation without
acceleration.

6.2 Comparison to Traditional Algorithms

The use of gradient descent to solve non-numerical optimization problems is

a new idea which has been shown to potentially show error resilience benefits

[1]. However, full convergence to the absolute correct answer is typically not

practical due to the long execution time. We can get approximate answers,

however, by running for a fixed number of iterations. Thus we want to com-

pare the behavior of gradient descent on the solver engine to the traditional

algorithm used to solve these problems.

Figure 6.5 shows the number of iterations of graph matching which equal

the execution time of the baseline algorithm for no acceleration, matrix-

vector acceleration only, and full acceleration. We can clearly see the number

of iterations increase at least linearly with the input size when all operations

are accelerated. Figure 6.6 shows the error in the total matching weight when

run for a range of iterations. We see that with two sets of 64 vertices, within

100 iterations we settle to around a 1% error. This falls within our desired
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limit of 168 iterations. Further iterations help very little, requiring orders of

magnitude more iterations to appreciably increase accuracy. We see a similar

trend with sets of 128 vertices, only taking around 200 iterations to reach

similar levels of accuracy.
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Figure 6.5: The number of iterations of gradient descent required to equal
the execution time of the baseline algorithm for graph matching.
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Figure 6.6: The error in the match weight returned by gradient descent
compared to the correct maximum match weight.

Figure 6.7 shows the number of iterations of gradient descent needed to

equal the execution time of the baseline algorithm for maxflow. We see that

acceleration does not help as much as it does with graph matching, just

more than doubling the number of iterations which will match the baseline’s

execution time from 8 to 18.5. We examine the accuracy of maxflow in Figure

6.8. We ultimately get within 3% error in the maximum flow in about 1500

iterations with 5 vertices and around 13% error in 5000 iterations with 10

vertices. We could stop gradient descent sooner and still get reasonable error;

however, the problem with maxflow is that we must take into consideration

both error in maximum flow as well as whether or not any flow violations

have occurred (i.e. whether a node has more flow entering than leaving or

vice versa). Figure 6.9 examines the relationship between flow violation and

iterations. Unlike in graph matching, we cannot round to a valid (if sub-

optimal) solution. Instead we must execute enough iterations that there is

acceptably low flow violation. This seems to indicate that problems where a

valid answer cannot be inferred easily from the results may not be suitable

for gradient descent computation.

Similar to the use of gradient descent, the use of conjugate gradient to solve

least squares is typically not optimal (although it can be close to traditional
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approaches such as our baseline Cholesky decomposition). However it is close

enough that we can run for the maximum number of iterations possible with

CG and still show energy benefits. In fact, we are capable of showing even

performance benefits due to the use of the solver engine. Figure 6.10 shows

the execution time of the baseline algorithm, Cholesky decomposition and

back substitution, alongside the execution time for CG with varying levels of

accelerator support. We can clearly see that the accelerated CG offers real

speedup benefits relative to Cholesky decomposition. CG has an extremely

small error relative to Cholesky: 1.46 ∗ 10−16 and 2.84 ∗ 10−16 for 50 and 100

variables respectively.
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Figure 6.7: The number of iterations of gradient descent required to equal
the execution time of the baseline algorithm for maxflow.
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Figure 6.8: The error of the maximum flow returned by gradient descent
compared to the correct maximum flow.
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Figure 6.9: The ratio of total amount of flow violating the problem
constraints to the correct maximum flow after gradient descent.
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Figure 6.10: The execution time of least squares using conjugate gradient
normalized to the execution time of using Choleskey decomposition.
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6.3 Error Tolerance

One of the reasons executing problems as gradient descent is attractive is

the innate error tolerance. As such, we would like to compare the results of

both the baseline and the optimization algorithms in the presence of floating

point errors. We executed graph matching with a range of fault rates, from

.0067 to .33. The results are in Figures 6.11 and 6.12 for 64 and 128 vertices

respectively. Even with an fault rate of .33 we achieve 4.25% and 5.25%

error in 300 iterations for 64 and 128 vertices. The baseline proved to be

unstable in the presence of floating point errors, causing segmentation faults.

At lower error rates we did see some successful completions with low error

in the match weight, but crashes were simply too common to collect any

consistent results.

The gradient descent version of maxflow does extremely poorly in the pres-

ence of faults, unable to guarantee either low error or minimal flow violation.

The accuracy and flow violation of the baseline algorithm and the gradient

descent version (run for 5000 iterations) with 10 vertices is shown in Figure

6.13 for a range of error rates. At high error rates the baseline output does

have 3% flow violation (i.e. the ratio of total flow violating the constraints

to total correct maximum flow); however, at lower error rates it has flow vi-

olation comparable to the flow violation seen from gradient descent with no

errors. In any case, the error and flow violation is substantially lower than

that of the gradient descent version.

The error in least squares can vary by orders of magnitude, so averages

are not particularly informative. Instead, we “bin” the output error of each

data set by order of magnitude of the error, from < 10−16 to > 102. Fig-

ure 6.14 shows the results for least squares run with 100 iterations of CG

and the baseline Cholesky decomposition over a range of error rates. Be-

cause conjugate gradient is less error tolerant, we use floating point error

rates which are much lower than with gradient descent. We discovered that

Cholesky decomposition can actually result in arithmetic faults due to the

square root operation if a value is negative due to floating point errors, so

we modified it such that if it attempts to take the square root of a nega-

tive number it instead simply uses the value 1. Without this modification

the faults will prevent Cholesky decomposition from completing consistently

enough to measure error.
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For solving a system of sparse equations, we do not compare the result to

a baseline algorithm run without errors. However, we measure the absolute

error by calculating ||Ax − b||2 and binning that similarly to least squares

with ranges from 10−24 to 106. Figure 6.15 shows the results for the same

range of errors as least squares on a 150x150 sparse matrix.
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Figure 6.11: The error in the match weight for sets of 64 vertices calculated
by gradient descent for a range of error rates.
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Figure 6.12: The error in the match weight for sets of 128 vertices
calculated by gradient descent for a range of error rates.
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Figure 6.13: The error and flow violation in the result of the baseline
algorithm and gradient descent after 5000 iterations for maxflow with 10
vertices.
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Figure 6.14: Frequency graph of the errors in the solution returned by 100
runs of CG and Cholesky decomposition relative to the correct answer
calculated by Cholesky decomposition with no errors. The algorithms were
used to solve the least squares problems for a random dense 1000x100
matrix.
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Figure 6.15: Frequency graph of ||Ax− b||2 for the solution returned by 100
runs of CG with errors for matrices of size 150x150.
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6.4 Software Support Overhead

There are two factors to consider when determining if the overhead of using

RBCOO is acceptable. First, the amount of padded zeros must be sufficiently

low. Second, the overhead of converting a matrix into RBCOO format must

be low enough that it does not wipe out the gains achieved by accelerating

gradient descent and conjugate gradient.

Converting the sparse matrix used in graph matching into RBCOO format

naively actually results in substantial overhead of 690% and 1490% extra val-

ues for 64 and 128 vertices. However if we shuffle the columns as per Section

4.3, we see a much lower overhead of 3.125% for both. This translates into a

nearly 14% decrease in total memory usage relative to a CSR implementation.

We also consider randomly generated sparse matrices. We generated a

set of sparse matrices with sparsities between .05 and .06 (the same way

we generated the sparse matrices in solving systems of sparse equations) and

calculated the overhead in terms of number of extra values. Figure 6.16 shows

the results of this test for a range of matrix sizes, from 75x75 to 2048x2048.

We see that at small matrix sizes the overhead can be substantial; however,

larger matrix sizes provide more flexibility in scheduling and result in just

over 10% padded zeros.

We also measure the execution time of performing the scheduling itself.

For graph matching, scheduling takes 3.04 ms and 18.07 ms for 64 and 128

vertices. This is equal to the execution time of the baseline algorithm for 64

nodes (3.37 ms), and around 60% of the execution time with 128 nodes (30.6

ms). For the randomly generated sparse matrices, scheduling a 75x75 matrix

takes 0.137 ms compared to the 0.143 ms needed to use it for (unaccelerated)

conjugate gradient. With a 150x150 matrix, the execution times are 0.56 ms

for scheduling versus 0.86 ms for conjugate gradient. Clearly the overheads

for the smaller data sizes would be unacceptable. However the overhead of

scheduling does not increase as quickly as the execution time of the actual

computation. Thus for larger data sizes, we expect the scheduling overhead

to be acceptable. (Note also that the scheduling algorithm is still a naive

implementation, and a more optimized version may fare even better).
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CHAPTER 7

RELATED WORK

7.1 Sparse Matrix Formats

Hierarchical sparse matrix (HiSM) is a matrix format designed for execu-

tion on machines with vector instructions [7]. It is a blocked format which

allows it to store only relative indices for non-zero elements, saving a sub-

stantial amount of storage. It is also intended to eliminate indexed loads

within blocks. The designers also propose some vector processor extensions

to accelerate the performance of operations using hierarchical sparse matri-

ces. The primary difference between HiSM and RBCOO is that RBCOO

stores one contiguous array of non-zero elements and uses indices to point to

the start of blocks. HiSM stores explicit pointers to point to blocks which

may be in arbitrary locations in memory. Additionally, blocks in RBCOO

may start at arbitrary indices while blocks in HiSM always start at fixed

intervals. This can potentially reduce the number of blocks since a pattern

of non-zeros which may only be n blocks wide may not align evenly with the

block boundaries.

Jagged Diagonal Storage (JDS) is a matrix format which features efficient

sparse matrix-vector multiplication on vector processors [9]. First, all non-

zero values are shifted left and their column indices are stored. Then the

rows are sorted by the number of non-zero values in them and the values and

column indices are stored in column major format. In addition, arrays need

to be stored indicating the initial row of each permuted row and indices to

the columns. In a vector processor, each column can be read and used in

a multiply-accumulate since each value is from a unique row. The ordering

created by JDS is identical to the ordering caused by RBCOO scheduling

if the number of rows is equal to the height of the matrix. RBCOO will

result in better scheduling, however, if the matrix is taller. In JDS, an entire
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column must be read, consuming one value from each row, before the next

value in a row may be consumed. RBCOO only requires an interleaving of

accesses to the same row equal to the adder latency.

Row Blocked CSR (RBCSR) is a matrix format most similar to RBCOO,

differing only in that the submatrices are stored in traditional CSR format

instead of as a coordinate list [6]. It too is designed for execution on spe-

cial purpose accelerator hardware; however, it was designed for the entire

submatrix to be buffered dynamically distributed row by row to processing

elements. RBCOO was specifically designed so that it could be streamed in

without buffering due to the limited amount of memory available for buffering

on a CPU. The downside to this is that RBCOO will have a larger memory

footprint due to needing to store explicit row indices for each coordinate (as

opposed to an index used to mark the start of rows in CSR).

7.2 Accelerators

Morris and Prasanna describe an FPGA based SPMV design based primarily

on a dot product unit [10]. The matrix A and the vector x are buffered on

their FPGA chip in its entirety. Each cycle, a vector of p values from a

single row of A (and the corresponding values from x) is passed into a dot

product unit consisting of p multipliers and an adder tree. The partial dot

products output by the dot product unit are passed into an accumulator

which draws from an LaxLa array of values buffered on chip to accumulate

with. This width of this array is necessary because there may be up to La

values corresponding to a given row in the accumulator pipeline at a time.

When a row has been reduced to La (or fewer) partial dot products, it enters

an adder tree which finishes the reduction and outputs the row’s final value.

This design features two fundamental flaws which make it unsuitable for

use in the solver engine. First, it requires that A and x be stored in their

entirety on chip. This restricts the maximum problem sizes which can be

accelerated. While this restriction may be acceptable on an FPGA which

has a comparatively large amount of storage, it is not acceptable on a CPU

where area is at a premium. Furthermore, it requires that each row have at

least p non-zero values or the dot product unit will be largely empty. This

will result in extremely sub-optimal performance on matrices common in our
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problems which may feature a small constant number of non-zero values per

row. (Graph matching, for example, features only two non-zeros per row

when multiplying with the transposed constraints matrix.)

DeLorimier and DeHon describe an FPGA based hardware accelerator

designed to compute Aix using a CSR representation of A [11]. The design

works by statically scheduling a set of rows of A onto each PE, then statically

scheduling the rows onto each PE, interleaving accesses to the same row

by a factor of La. After a single SPMV execution, the output vectors are

passed to PEs requiring them for the next multiplication via an on-chip ring

interconnect. The idea of static scheduling was highly influential on the

sparse matrix-vector design used in the solver engine. However, the design

does require that the matrix and input and output vector be stored on chip

in their entirety. Like in other designs, this is an extremely limiting feature

which makes it unsuitable for the solver engine.

Sun et al. propose an FPGA design for a hardware sparse matrix accelera-

tor which utilizes a row blocked CSR format [6]. The accelerator fully buffers

each submatrix and dynamically assigns rows to each PE. Each PE reduces

an entire row of the submatrix down to La values, then receives a new row

from the centralized matrix manager. A centralized result controller further

reduces the La values output by each PE using an adder tree and adds it to

the row’s running total stored in the result BRAM by previous submatrices

in the same row.

This accelerator design, while similar to the one presented in this thesis,

has several features which make it undesirable for our purposes. First, it

requires the entire submatrix be buffered so it can be dynamically distributed

to processing elements. This would necessitate the use of an unacceptably

large amount of on-chip storage or the use of small submatrices (which will

have negative effects on performance due to the poorer ability to distribute

small submatrices to processing elements). Secondly, for efficient operation,

it requires there to be more than La values per row of the submatrix. The first

La values of each row pass through the multiplier and enter the accumulator

which accumulates them with 0. After the accumulator’s pipeline fills up it

can route its output back to its input, performing useful operations. However,

if there are few values in a particular row of the submatrix, the accumulator

is active without performing any useful work. As previously noted, rows

with very few values are not only probable, but extremely common in some
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problems. Lastly, it requires the use of a centralized adder tree and result

BRAM. This not only presents a high cost (due to the complex routing

and arbitration logic required), but can potentially become a bottleneck to

scalability.

Much work has been done to enable efficient execution of sparse matrix-

vector multiplication on GPU’s [12, 13]. GPUs generally outperform CPUs

on sparse matrix vector multiplication, largely due to their higher peak mem-

ory bandwidth compared to general purpose CPUs. However, they do not

make the most efficient use of peak floating point capacity. For example,

Bell and Garland’s highest reported single-precision floating-point perfor-

mance on a GTX280 was 36 GFLOP/s, well below the GPUs peak of 933

[12]. The solver engine, by comparison, is capable of achieving a much higher

fraction of peak performance. This, combined with its inherent low power

design, will result in much higher performance per watt.

Attarde proposes an FPGA based SPMV design which is explicitly de-

signed for matrices which cannot be buffered on chip in their entirety [14].

The design exploits the fact that the matrices expected to be used will fea-

ture clusters of dense submatrices and so proposes handling clusters of dense

submatrices separately from the remaining highly sparse non-zero values.

The relatively dense blocks are stored in Blocked-Column-Row format. The

format is similar to RBCOO in that each element of a submatrix stores

both row and column indices relative to the start of the submatrix; however,

some additional information is stored for operation in the accelerator design.

Also, similar to the SPMV design used in the solver engine, the matrix is

pre-processed to divide the matrix into submatrices and those submatrices

are scheduled onto processing elements.

During execution, values in the dense block are passed out to each PE to

be operated on. Each PE stores a copy of the output vector for the current

set of rows and accumulates computations into it. When all submatrices

in a set of rows are finished, the output vectors of each PE are transferred

out and summed using an adder tree to get the final piece of the output

vector corresponding to those rows. While the design performs favorably,

it relies on matrices with dense subblocks to exploit. While this may be a

valid strategy in general computations, the problems we are targeting with

the solver engine do feature pathological sparsity patterns.

In contrast to sparse matrix operations, dense matrix multiplication and
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matrix vector multiplication map well onto specialized hardware and GPUs.

The dense matrix multiplication design proposed by Kumar et al., which

is based on the rank one update algorithm, heavily inspired the design of

the solver engine [15]. The largest fraction of work has focused specifically

on matrix multiplication on FPGAs [16, 17, 18, 19, 20, 21]. Other works

have also considered matrix-vector multiplication and dot products [22] on

FPGAS, or matrix multiplication on GPUs [23]. In fact, Nvidia has released a

CUDA based library of BLAS implementations called CUBLAS to encourage

the use of GPUs for dense matrix operations [24].
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CHAPTER 8

CONCLUSION

The solver engine described in this thesis represents a novel and effective

solution for the acceleration of numeric optimization algorithms. Because

it is intended to be integrated onto a traditional CPU die, it solves several

problems that traditional sparse matrix accelerator designs do not face. It is

able to work efficiently with low amounts of on-chip buffer space. It is also

able to accelerate a number of different operations for a number of different

algorithms because it cannot be reconfigured for each desired algorithm as

FPGA based accelerators can. Furthermore, it addresses several general

flaws in the design of traditional accelerators. It avoids the use of shared,

centralized structures which can limit the scalability of designs. It is also

capable of accelerating sparse matrices with sizes and sparsity patterns which

might not be effectively handled by other designs.

Many features of the solver engine are dependent on the use of a novel

sparse matrix storage format, Row Blocked Coordinate List. This novel

storage format is efficiently schedulable on the same accelerator hardware

which handles dense matrix and vector operations. It incurs less than 15%

overhead in terms of extra padding zeros on random matrices of sparsity

0.05 and less than 5% overhead on the matrix used for graph matching. The

latter is particularly interesting as the sparsity pattern of the graph matching

matrix is pathological to several accelerator designs.

We derived expected performance characteristics for an example solver en-

gine with 16 processing elements operating at 250 MHz with 32 GB/s of

memory bandwidth. We used a modified version of M5 to profile the be-

havior of the general purpose processor and calculated the behavior of the

solver engine itself. We examined four benchmarks, bipartite graph match-

ing, maxflow, least squares, and solving systems of sparse equations. We

show a 16x speedup for graph matching, a 2.4x speedup for maxflow, a 25x

speedup on least squares, and a 4.3x speedup on solving systems of sparse
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equations. These results demonstrate that the solver engine is indeed com-

petitive with traditional accelerator designs despite the additional challenges

it solves.

57



REFERENCES

[1] J. Sloan, D. Kesler, R. Kumar, and A. Rahimi, “A numerical
optimization-based methodology for application robustification: Trans-
forming applications for error tolerance,” in 40th IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, 2010, pp. 161–
170.

[2] M. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving
linear systems,” J. Res. Nat. Bur. Stand., vol. 49, no. 6, pp. 409–436,
1952.

[3] J. A. Snyman, Practical Mathematical Optimization: An Introduction
to Basic Optimization Theory and Classical and New Gradient-Based
Algorithms. New York, NY, USA: Springer Publishing, 2005.

[4] D. P. Dobkin and S. P. Reiss, “The complexity of linear programming,”
Theor. Comp. Sci., vol. 11, no. 1, pp. 1–18, 1980.

[5] L. Zhuo and V. K. Prasanna, “High performance linear algebra opera-
tions on reconfigurable systems,” in Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing, 2005, p. 2.

[6] J. Sun, G. Peterson, and O. Storaasli, “Sparse matrix-vector multiplica-
tion design on FPGAs,” in Proceedings of the 15th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines, 2007, pp.
349–352.

[7] P. Stathis, S. Vassiliadis, and S. Cotofana, “A hierarchical sparse matrix
storage format for vector processors,” in Proceedings of the International
Parallel and Distributed Processing Symposium, 2003, p. 61.

[8] “The OpenCV library,” Aug. 2010. [Online]. Available:
http://opencv.willowgarage.com/documentation/index.html

[9] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods,
2nd Edition. Philadelphia, PA: SIAM, 1994.

58



[10] G. R. Morris and V. K. Prasanna, “Sparse matrix computations on
reconfigurable hardware,” Computer, vol. 40, no. 3, pp. 58–64, 2007.

[11] M. deLorimier and A. DeHon, “Floating-point sparse matrix-vector mul-
tiply for FPGAs,” in FPGA ’05: Proceedings of the 2005 ACM/SIGDA
13th International Symposium on Field-Programmable Gate Arrays,
2005, pp. 75–85.

[12] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on CUDA,” NVIDIA Corporation, Santa Clara, CA, USA, Tech. Rep.
NVR-2008-004, Dec. 2008.

[13] M. M. Baskaran and R. Bordawekar, “Optimizing sparse matrix-vector
multiplication on GPUs,” IBM, IBM Research Report RC24704, Apr.
2009.

[14] S. Attarde, “Accelerating double precision sparse matrix vector multipli-
cation on FPGAs,” M.S. thesis, India Institute of Technology-Bombay,
2010.

[15] V. B. Y. Kumar, S. Joshi, S. B. Patkar, and H. Narayanan, “FPGA
based high performance double-precision matrix multiplication,” in VL-
SID ’09: Proceedings of the 2009 22nd International Conference on
VLSI Design, 2009, pp. 341–346.

[16] L. Zhuo and V. K. Prasanna, “Scalable and modular algorithms for
floating-point matrix multiplication on reconfigurable computing sys-
tems,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 4, pp. 433–448,
2007.

[17] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev, “64-bit
floating-point FPGA matrix multiplication,” in FPGA ’05: Proceed-
ings of the 2005 ACM/SIGDA 13th International Symposium on Field-
Programmable Gate Arrays, 2005, pp. 86–95.

[18] S. Rousseaux, D. Hubaux, P. Guisset, and J.-D. Legat, “A high per-
formance FPGA-based accelerator for BLAS library implementation,”
in RSSI’07: Proceedings of the Third Annual Reconfigurable Systems
Summer Institute, July 2007, pp. 1–10.

[19] N. Dave, K. Fleming, M. King, M. Pellauer, and M. Vijayaraghavan,
“Hardware acceleration of matrix multiplication on a Xilinx FPGA,”
in MEMOCODE ’07: Proceedings of the 5th IEEE/ACM International
Conference on Formal Methods and Models for Codesign, 2007, pp. 97–
100.

59



[20] S. M. Qasim, S. A. Abbasi, and B. A. Almashary, “Hardware real-
ization of matrix multiplication using field programmable gate array,”
MASAUM J. Comp., vol. 1, pp. 21–25, August 2009.

[21] C. Sajish, Y. Abhyankar, S. Ghotgalkar, and K. Venkates, “Floating
point matrix multiplication on a reconfigurable computing system,” in
Proceedings of the International Conference on High Performance Com-
puting and Applications, 2005, pp. 113–122.

[22] L. Zhuo and V. K. Prasanna, “High-performance designs for linear al-
gebra operations on reconfigurable hardware,” IEEE Trans. Comput.,
vol. 57, no. 8, pp. 1057–1071, 2008.

[23] S. Barrachina, M. Castillo, F. Igual, R. Mayo, and E. Quintana-Orti,
“Evaluation and tuning of the level 3 CUBLAS for graphics processors,”
in Proceedings of the International Parallel and Distributed Processing
Symposium, April 2008, pp. 1–8.

[24] CUDA CUBLAS Library, NVIDIA, Santa Clara, CA, USA, Aug. 2010.

60


